IV. Environmental Impact Analysis

M.4 Utilities and Service Systems—Energy Infrastructure

1. Introduction

This section of the Recirculated Draft EIR provides an analysis of the Project's potential impacts upon electric power and natural gas infrastructure. This section focuses on the existing infrastructure serving the Project Site and vicinity and the potential for environmental impacts to occur as a result of any physical improvements that may be necessary to accommodate the Project. The information presented in this section is based in part on the information provided by the City of Los Angeles Department of Water and Power (LADWP), the *Energy Calculations for the Paseo Marina Project* prepared by Eyestone Environmental and the Paseo Marina Dry Utility Letter provided by Moran Utility Service, Inc, dated October 19, 2018, which are included in Appendix C and Appendix M of this Recirculated Draft EIR, respectively. Potential impacts associated with energy demand and energy conservation policies are discussed in Section IV.C, Energy, of this Recirculated Draft EIR.

2. Environmental Setting

a. Regulatory Framework

There are several plans, policies, and programs regarding electric power and natural gas infrastructure at the federal and state levels. Described below, these include:

- United States Department of Energy (Energy Policy Act of 2005)
- California Independent System Operator
- California Public Utilities Commission
- California Energy Commission
- Senate Bill 1389

(1) Federal

The United States Department of Energy (DOE) is the federal agency responsible for establishing policies regarding energy conservation, domestic energy production, and infrastructure. The Federal Energy Regulatory Commission (FERC) is an independent federal agency, officially organized as part of the DOE, which is responsible for regulating interstate transmission of natural gas, oil and electricity, reliability of the electric grid and approving of construction of interstate natural gas pipelines and storage facilities. The Energy Policy Act of 2005 has also granted FERC with additional responsibilities of overseeing the reliability of the nation's electricity transmission grid and supplementing state transmission siting efforts in national interest electric transmission corridors.

FERC has the authority to oversee mandatory reliability standards governing the nation's electricity grid. FERC has established rules on certification of an Electric Reliability Organization (ERO) which establishes, approves, and enforces mandatory electricity reliability standards. The North American Electric Reliability Corporation (NERC) has been certified as the nation's ERO by FERC to enforce reliability standards in all interconnected jurisdictions in North America. Although FERC regulates the bulk energy transmission and reliability throughout the United States, the areas outside of FERC's jurisdictional responsibility include state level regulations and retail electricity and natural gas sales to consumers which falls under the jurisdiction of state regulatory agencies.

(2) State

California energy infrastructure policy is governed by three institutions: the California Independent System Operator (California ISO), the California Public Utilities Commission (CPUC), and the California Energy Commission (CEC). These three agencies share similar goals but have different roles and responsibilities in managing the State's energy needs. The majority of state regulations with respect to electricity and natural gas pertain to energy conservation. For a discussion of these regulations, refer to Section IV.C, Energy, of this Recirculated Draft EIR. There are, however, regulations pertaining to infrastructure. These are discussed further below.

(a) California Independent System Operator

The California ISO is an independent public benefit corporation responsible for operating California's long-distance electric transmission lines. The California ISO is led by a five-member board appointed by the Governor and is also regulated by FERC. While transmission owners and private electric utilities own their lines, the California ISO operates the transmission system independently to ensure that electricity flows comply with federal operational standards. The California ISO analyzes current and future electricity demand and plans for any needed expansion or upgrade of the electric transmission system.

(b) California Public Utilities Commission

The CPUC establishes policies and rules for electricity and natural gas rates provided by private utilities in California such as Southern California Edison (SCE) and Southern California Gas Company (SoCalGas). Publicly-owned utilities such as the Los Angeles Department of Water and Power (LADWP) do not fall under the CPUC's jurisdiction. The Digital Infrastructure and Video Competition Act of 2006 (DIVCA) established the CPUC as the sole cable/video TV franchising authority in the State of California. DIVCA took effect January 1, 2007.

The CPUC is overseen by five commissioners appointed by the Governor and confirmed by the State Senate. The CPUC's responsibilities include regulating electric power procurement and generation, infrastructure oversight for electric transmission lines and natural gas pipelines and permitting of electrical transmission and substation facilities.

(c) California Energy Commission

The CEC is a planning agency which provides guidance on setting the state's energy policy. Responsibilities include forecasting electricity and natural gas demand, promoting and setting energy efficiency standards throughout the State, developing renewable energy resources, and permitting thermal power plants 50 megawatts and larger. The CEC also has specific regulatory authority over publicly-owned utilities to certify, monitor and verify eligible renewable energy resources procured.

(d) Senate Bill 1389

Senate Bill (SB) 1389 (Public Resources Code Sections 25300–25323), adopted in 2002, requires the development of an integrated plan for electricity, natural gas, and transportation fuels. Under the bill, the CEC must adopt and transmit to the Governor and Legislature an Integrated Energy Policy Report every two years. In 2021, the CEC decided to write the Integrated Energy Policy Report in four volumes that were subsequently published in February 2022. Volume I highlights the actions necessary to decarbonize buildings within California. Additionally, the volume explores ways to reduce greenhouse gases from the agricultural and industrial sectors. Volume II explores actions to ensure California's energy system remains reliable and resilient. Volume III examines the role of gas in the energy system. Finally, Volume IV forecasts future demand in the electricity, gas, and transportation sectors.¹

²⁰²¹ Integrated Energy Policy Report, February 2022.

b. Existing Conditions

(1) Electricity

LADWP provides electrical service throughout the City and many areas of the Owens Valley, serving approximately 4 million people within a service area of approximately 465 square miles, excluding the Owens Valley. Electrical service provided by the LADWP is divided into two planning districts: Valley and Metropolitan. The Valley Planning District includes the LADWP service area north of Mulholland Drive, and the Metropolitan Planning District includes the LADWP service area south of Mulholland Drive. The Project Site is located within LADWP's Metropolitan Planning District.

LADWP generates power from a variety of energy sources, including hydropower, coal, gas, nuclear sources, and renewable resources, such as wind, solar, and geothermal sources. According to LADWP's 2017 Power Strategic Long-Term Resource Plan, the LADWP has a net dependable generation capacity of 7,880 MW.² In 2017, the LADWP power system experienced an instantaneous peak demand of 6,432 MW.³ Approximately 35 percent of LADWP's 2021 electricity purchases were from renewable sources, which is better than the 34 percent statewide percentage of electricity purchases from renewable sources.⁴

It is noted that LADWP is currently in the process of updating the 2017 Power Strategic Long-Term Resource Plan, which would be replaced by the 2022 Power Strategic Long-Term Resource Plan. A draft of the 2022 Power Strategic Long-Term Resource Plan has been made available to the public and public comments were due by February 17, 2023.⁵ As set forth in the Draft 2022 Power Strategic Long-Term Resource Plan, as of August 31, 2022, LADWP has a net dependable capacity of 8,101 MW.

LADWP supplies electrical power to the Project Site from electrical service lines located in the Project vicinity. Existing electricity usage was estimated based on the same methodology contained in the greenhouse gas (GHG) analysis included in Section IV.C, Greenhouse Gas Emissions, of this Recirculated Draft EIR (California Emissions Estimator

LADWP, 2017 Power Strategic Long-Term Resource Plan, December 2017.

³ LADWP, 2018 Retail Electric Sales and Demand Forecast, p. 15, November 2018.

⁴ LADWP, 2021 Power Content Label, 2022.

LADWP, Power, Strategic Long-Term Resource Plan, www.ladwp.com/ladwp/faces/ladwp/aboutus/a-power/a-p-integratedresourceplanning;jsessionid=CMgGkfLR8VpNSzV4WMdyPqvtl1yjbn131x4ZFLhYVG382lx08nT0!2025023576?_afrLoop=59346984872070&_afrWindowMode=0&_afrWindowId=null#%40%3F_afrWindowId%3Dnull%26_afrLoop%3D59346984872070%26_afrWindowMode%3D0%26_adf.ctrl-state%3D17q3ba9u1v_4, accessed July 6, 2023.

Model [CalEEMod] Version 2022.1). It is estimated that existing uses on the Project Site currently consume approximately 1,121,727 kWh of electricity per year.⁶

(2) Natural Gas

Natural gas is provided to the Project Site by SoCalGas. SoCalGas is the principal distributor of natural gas in Southern California, serving residential, commercial, and industrial markets. SoCalGas serves approximately 21.1 million customers in more than 500 communities encompassing approximately 24,000 square miles throughout Central and Southern California, from the City of Visalia to the Mexican border.⁷

SoCalGas receives gas supplies from several sedimentary basins in the western United States and Canada, including supply basins located in New Mexico (San Juan Basin), West Texas (Permian Basin), the Rocky Mountains, and Western Canada, as well as local California supplies.⁸ The traditional, southwestern United States sources of natural gas will continue to supply most of SoCalGas' natural gas demand. Gas supply available to SoCalGas from California sources averaged 69 million cubic feet (cf) per day in 2021 (the most recent year for which data are available).⁹

SoCalGas supplies natural gas to the Project Site from natural gas service lines located in the Project vicinity. It is estimated that existing uses on the Project Site currently consume approximately 472,624 cf of natural gas per year.¹⁰

3. Project Impacts

a. Thresholds of Significance

In accordance with Appendix G to the State CEQA Guidelines, the Project would have a significant impact related to energy infrastructure if it would:

Threshold (a): Require or result in the relocation or construction of new or expanded water, wastewater treatment, or storm water drainage,

⁶ Eyestone Environmental, Energy Calculations for the Paseo Marina Project. See Appendix C of this Recirculated Draft EIR.

⁷ SoCalGas, Company Profile, www.socalgas.com/about-us/company-profile, accessed June 12, 2023.

⁸ California Gas and Electric Utilities, 2022 California Gas Report, p. 135.

⁹ California Gas and Electric Utilities, 2022 California Gas Report, p. 135.

¹⁰ Eyestone Environmental, Energy Calculations for the Paseo Marina Project. See Appendix C of this Recirculated Draft EIR.

electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?¹¹

In assessing impacts related to energy infrastructure in this section, the City used Threshold (a) from Appendix G as the threshold of significance. The factors and considerations identified below from the *L.A. CEQA Thresholds Guide* were used where applicable and relevant to assist in analyzing the Appendix G significance threshold.

The *L.A. CEQA Thresholds Guide* identifies the following criterion to evaluate impacts to energy infrastructure:

- Would the project result in the need for new (off-site) energy supply facilities, or major capacity enhancing alterations to existing facilities?
- Whether and when the needed infrastructure was anticipated by adopted plans?

b. Methodology

This analysis evaluates the potential impact of the Project on existing energy infrastructure by comparing the estimated Project energy demand with the available capacity. Will-serve letters from LADWP and SoCalGas, included in Appendix L of this Recirculated Draft EIR, demonstrate the availability of sufficient energy resources to supply the Project's demand.

Project energy usage, including electricity and natural gas, was calculated using CalEEMod Version 2022.1. During Project construction, energy would be consumed in the form of electricity associated with the conveyance of water used for dust control (including supply and conveyance) and, on a limited basis, powering lights, electronic equipment, or other construction activities necessitating electrical power. Construction activities typically do not involve the consumption of natural gas. During Project operation, energy consumption would include electricity and natural gas from uses such as heating/ventilating/air conditioning (HVAC); refrigeration; lighting; and the use of electronics, equipment, and machinery. Additional details regarding Project energy usage are provided in Section IV.C, Energy, and Appendix C of this Recirculated Draft EIR.

Refer to Section IV.M.1, Water Supply and Infrastructure, of this Recirculated Draft EIR for a discussion of water infrastructure; Section IV.M.2, Utilities and Service Systems—Wastewater, of this Recirculated Draft EIR for a discussion of wastewater impacts; Section IV.G, Hydrology and Water Quality, of this Recirculated Draft EIR for a discussion of stormwater impacts; and Section VI, Other CEQA Considerations for a discussion of telecommunications facility impacts.

The Project's estimated energy demands were also analyzed relative to LADWP's and SoCalGas' existing and planned energy supplies in 2027 (i.e., the Project buildout year) to determine if these two energy utility companies would be able to meet the Project's energy demands. Finally, the capacity of local infrastructure to accommodate the Project's estimated electricity and natural gas demand was assessed based on the Infrastructure Assessment Report, included in Appendix L of this Recirculated Draft EIR.

c. Project Design Features

No specific project design features are proposed with regard to energy infrastructure. However, the Project includes project design features designed to improve energy efficiency, as set forth in Section IV.E, Greenhouse Gas Emissions, of this Recirculated Draft EIR.

d. Analysis of Project Impacts

As set forth in Section II, Project Description, of this Recirculated Draft EIR, the Project proposes two development options – Option A and Option B. Under Option A, the Project proposes the development of 658 multi-family residential units and 27,300 square feet of neighborhood-serving commercial uses, including approximately 13,650 square feet of retail space and approximately 13,650 square feet of restaurant space. Option B proposes the development of 425 multi-family residential units, 90,000 square feet of office space, and 40,000 square feet of neighborhood-serving commercial uses, including approximately 20,000 square feet of retail space and approximately 20,000 square feet of restaurant space. Both development options are evaluated in the following analysis.

Threshold (a): Would the Project require or result in the relocation or construction of new or expanded water, wastewater treatment, or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?¹²

Refer to Section IV.M.1, Water Supply and Infrastructure, of this Recirculated Draft EIR for a discussion of water infrastructure; Section IV.M.2, Utilities and Service Systems—Wastewater, of this Recirculated Draft EIR for a discussion of wastewater impacts; Section IV.G, Hydrology and Water Quality, of this Recirculated Draft EIR for a discussion of stormwater impacts; and Section VI, Other CEQA Considerations for a discussion of telecommunications facility impacts.

(1) Impact Analysis

- (a) Construction
 - (i) Electricity

As discussed above, construction activities at the Project Site would require minor quantities of electricity for lighting, power tools and other support equipment. Heavy construction equipment would be powered with diesel fuel. As discussed in Section IV.C, Energy, of this Recirculated Draft EIR, the Project's estimated construction electricity usage represents approximately six percent of the estimated Project Site's existing annual operational demand under Option A and B, which, as discussed below, would be within the supply and infrastructure service capabilities of LADWP. Moreover, electricity usage during construction of the Project would be substantially lower than the current demand for electricity generated by the existing onsite uses. Thus, LADWP's existing electrical infrastructure currently has enough capacity to provide service for construction activities. As discussed in Section IV.C, Energy, of this Recirculated Draft EIR, electricity to the Project Site during construction would be supplied by LADWP and would be obtained from the existing electrical lines that connect to the Project Site, which would require the use of electricity from power poles and/or solar powered generators supplied by the Applicant or construction contractor rather than temporary gasoline or diesel powered generators where available. Therefore, existing offsite infrastructure would not have to be expanded or newly developed to provide electrical service to the Project Site during construction activities.

With regard to existing electrical distribution lines, the Applicant would be required to coordinate electrical infrastructure removals or relocations with LADWP and comply with site-specific requirements set forth by LADWP, which would ensure that service disruptions and potential impacts associated with all phases of construction within LADWP easements are minimized. Project contractors would notify and coordinate with LADWP to identify the locations and depth of water mains and power lines and avoid disruption of electric and water service to other properties. As such, construction of the Project would not adversely affect the electrical infrastructure serving the surrounding uses or utility system capacity.

Based on the above, construction of the Project would not result in an increase in demand for electricity that exceeds available supply or distribution infrastructure capabilities that could result in the construction of new energy facilities or expansion of existing facilities, the construction of which could cause significant environmental effects, and the Project's impact would therefore be less than significant.

(ii) Natural Gas

Construction activities, including the construction of new buildings and facilities, typically do not involve the consumption of natural gas. Accordingly, natural gas would not be supplied to support Project construction activities; thus, there would be no demand generated by construction. However, the Project would involve the installation of new natural gas connections to serve the Project Site. Since the Project Site is located in an area already served by existing natural gas infrastructure, it is anticipated that the Project would not require extensive off-site infrastructure improvements to serve the Project Site. Construction impacts associated with the installation of natural gas connections are expected to be confined to trenching in order to place the lines below the surface. In addition, prior to ground disturbance, Project contractors would notify and coordinate with SoCalGas to identify the locations and depth of all existing gas lines and avoid disruption of gas service to other properties. Therefore, construction of the Project would not result in an increase in demand for natural gas to affect available supply or distribution infrastructure capabilities and would not result in the relocation or construction of new or expanded natural gas facilities, the construction or relocation of which could cause significant environmental effects, and the Project's impact would therefore be less than significant.

(b) Operation

(i) Electricity

As shown in Table IV.C-2 in Section IV.C, Energy, of this Recirculated Draft EIR, the Project-related annual electricity consumption of 6,833,181 kWh per year under Option A and 8,012,313 kWh per year under Option B would represent approximately 0.03 percent under Options A and B of LADWP's projected sales in 2027.¹³ In addition, during peak conditions, the Project's electricity demand would represent approximately 0.03 percent of the LADWP base peak load conditions under Option A and B.¹⁴ Additionally, LADWP has confirmed that the Project's electricity demand can be served by the facilities in the Project area.¹⁵ Furthermore, the Project would implement any necessary connections and upgrades required by LADWP to ensure that LADWP would be able to adequately serve the Project. As such, operation of the Project is not anticipated to adversely affect the electrical infrastructure serving the surrounding uses or utility system capacity and would

-

¹³ LADWP, 2017 Power Strategic Long-Term Resources Plan, December 2017, Appendix A.

The percentage is derived by taking the peak electricity usage during Project operations (1,528 kW under Option A and 1,771 kW under Option B) and dividing that number by the LADWP base case peak demand of 5,854,000 kWh (5,854 MWh) to arrive at 0.03 percent.

¹⁵ LADWP. Will-Serve, 4325 Glencoe Avenue, July 15, 2022. Refer to Appendix M of this Recirculated Draft EIR.

not result in the construction of new energy facilities or expansion of existing facilities, the construction of which could cause significant environmental effects. Therefore, during Project operations, it is anticipated that LADWP's existing and planned electricity capacity and electricity supplies would be sufficient to support the Project's electricity demand, and the Project's impact would therefore be less than significant.

(ii) Natural Gas

As shown in Table IV.C-2 in Section IV.C, Energy, of this Recirculated Draft EIR, the Project's estimated natural gas consumption of 439,976 cubic feet per year under Option A and 864,519 cubic feet per year under Option B would account for approximately 0.0001 percent of the 2027 forecasted consumption in SoCalGas' planning area under both Option A and B. Additionally, SoCalGas has confirmed that the Project's natural gas demand can be served by the facilities in the Project area. Furthermore, the Project would implement any necessary connections and upgrades required by SoCalGas to ensure that SoCalGas would be able to adequately serve the Project. Thus, operation of the Project would not result in an increase in demand for natural gas to affect available supply or distribution infrastructure capabilities and would not result in the construction of new energy facilities or expansion of existing facilities, the construction of which could cause significant environmental effects. Therefore, it is anticipated that SoCalGas' existing and planned natural gas supplies would be sufficient to support the Project's net increase in demand for natural gas, and the Project's impact would therefore be less than significant.

(c) Conclusion

As demonstrated in the analysis above, construction and operation of the Project would not result in an increase in demand for electricity or natural gas that exceeds available supply or distribution infrastructure capabilities that could result in the construction of new energy facilities or expansion of existing facilities, the construction of which could cause significant environmental effects. Therefore, Project impacts related to energy infrastructure capacity would be less than significant during construction and operation.

(2) Mitigation Measures

Project-level impacts with regard to energy infrastructure would be less than significant. Therefore, no mitigation measures are required.

¹⁶ SoCalGas. Will-Serve, 4325 Glencoe Avenue. June 2, 2022. Refer to Appendix M of this Recirculated Draft EIR.

(3) Level of Significance After Mitigation

Project-level impacts related to energy infrastructure were determined to be less than significant without mitigation. Therefore, no mitigation measures are required or included, and the impact levels remain less than significant.

e. Cumulative Impacts

(1) Impact Analysis

(a) Electricity

Buildout of the Project, related projects listed in Table III-1 in Section III, Environmental Setting, of this Recirculated Draft EIR, and additional forecasted growth in LADWP's service area would cumulatively increase the demand for electricity supplies and infrastructure capacity. LADWP forecasts that its total energy sales in the 2027-2028 fiscal year (the Project's buildout year) will be approximately 24,078 gigawatt hours (GWh) of electricity. Based on the Project's estimated electrical consumption of 6,833,131 kWh per year under Option A and 8,012,313 kWh per year under Option B would represent approximately 0.03 percent under Options A and B of LADWP's projected sales in 2027. In addition, LADWP has confirmed that the Project's electricity demand can be served by the facilities in the Project area.

Data used to develop the LADWP demand forecasts take into account population growth, energy efficiency improvements, and economic growth which includes construction projects. ¹⁹ Electricity infrastructure is typically expanded in response to increasing demand, and system expansion and improvements by LADWP are ongoing. LADWP would continue to expand delivery capacity as needed to meet demand increases within its service area at the lowest cost and risk, consistent with LADWP's environmental priorities and reliability standards.

The 2017 Power Strategic Long-Term Resources Plan takes into account future energy demand, advances in renewable energy resources and technology, energy efficiency, conservation, and forecast changes in regulatory requirements. Development projects within the LADWP service area would also be anticipated to incorporate site-specific infrastructure improvements, as necessary. Although detailed information regarding electrical infrastructure for development projects in LADWP's service area is not

¹⁷ LADWP defines its future electricity supplies in terms of sales that will be realized at the meter.

¹⁸ LADWP, 2017 Power Strategic Long-Term Resources Plan, Appendix A, Table A-1, page A-6.

¹⁹ LADWP, 2017 Retail Electric Sales and Demand Forecast, p. 6.

known, it is reasonably expected that LADWP would provide for necessary improvements specific to each development project. Each of the development projects would be reviewed by LADWP to identify necessary power facilities and service connections to meet the needs of their respective projects. Project applicants would be required to provide for the needs of their individual projects, thereby contributing to the electrical infrastructure in the service area. As discussed above, will-serve letters are provided for individual projects in which LADWP determines whether sufficient infrastructure is in place to provide electricity to a proposed project. As part of the will-serve letter process, LADWP takes into account all uses (including future development projects) in the service area to ensure that sufficient local and regional infrastructure is adequate. As the will-serve letter for the Project identified adequate infrastructure, the estimated power requirement for the Project is a part of the total load growth forecast for the City of Los Angeles and has been taken into account in the planned growth of the City's power system.²⁰ For these reasons: (1) the Project's contribution to cumulative impacts related to electricity infrastructure would not be cumulatively considerable and, therefore, would be less than significant; and (2) the cumulative impact of the Project's incremental effect and the effect of related projects related to electricity infrastructure would be less than significant.

(b) Natural Gas

Buildout of the Project, the related projects listed in Table III-1 in Section III, Environmental Setting, of this Recirculated Draft EIR, and additional forecasted growth in SoCalGas' service area would cumulatively increase the demand for natural gas supplies and infrastructure capacity. SoCalGas serves the City of Los Angeles, the City of Beverly Hills, and the City of West Hollywood. SoCalGas forecasts that its total natural gas consumption in 2027 will be 2.22 billion cubic feet/day. Based on the Project's estimated natural gas consumption of 439,976 cubic feet per year or approximately 1,205 cf per day under Option A and 864,519 cubic feet per year or approximately 2,369 cf per day under Option B, the Project would account for approximately 0.0001 percent of the 2027 forecasted consumption in SoCalGas' planning area under both Option A and B. Additionally, SoCalGas has confirmed that the Project's natural gas demand can be served by the facilities in the Project area.²¹ Given the types of uses and size of those uses proposed by the related projects, each related project would be expected to comprise a similarly limited percentage of overall natural gas consumption. Moreover, SoCalGas' forecasts consider projected population growth and development based on local and

_

²⁰ LADWP. Will-Serve, 4325 Glencoe Avenue. July 15, 2022. Refer to Appendix M of this Recirculated Draft EIR.

²¹ SoCalGas. Will-Serve, 4325 Glencoe Avenue. June 2, 2022. Refer to Appendix M of this Recirculated Draft EIR.

regional plans. Therefore, natural gas usage resulting from future operations at many of the development projects is likely accounted for in the SoCalGas projections.

Natural gas infrastructure is typically expanded in response to increasing demand and system expansion and improvements by SoCalGas occur as needed. It is expected that SoCalGas would continue to expand delivery capacity if necessary to meet demand increases within its service area. Although detailed information regarding natural gas infrastructure for each of the development projects is not known, it is expected that SoCalGas would provide for necessary improvements specific to each development project. Development projects within its service area would also be anticipated to incorporate site-specific infrastructure improvements, as appropriate. Project applicants would be required to provide for the needs of their individual projects, thereby contributing to the natural gas infrastructure in the service area.

As discussed above, will-serve letters are provided for individual projects, in which SoCalGas determines whether sufficient infrastructure is in place to provide natural gas service to a proposed project. As part of the will-serve letter process, SoCalGas takes into account all uses (including future development projects) in the service area to ensure that sufficient local and regional infrastructure is adequate. As the will-serve letter for the Project identified adequate infrastructure, construction and operation of the Project would not significantly affect the SoCalGas regional infrastructure.

For these reasons: (1) the Project's contribution to cumulative impacts with respect to natural gas infrastructure would not be cumulatively considerable and, therefore, would be less than significant; and (2) the cumulative impact of the Project's incremental effect and the effect of related projects related to natural gas infrastructure would be less than significant.

(c) Conclusion

Based on the analysis provided above: (1) the Project's contribution to cumulative impacts related to energy consumption (i.e., electricity, natural gas) would not result in a cumulatively considerable effect related to distribution infrastructure capabilities that could result in the construction of new energy facilities or expansion of existing facilities and, therefore, would be less than significant; and (2) the cumulative impact of the Project's incremental effect and the effect of related projects related to electricity and natural gas infrastructure would be less than significant.

(2) Mitigation Measures

Cumulative impacts with regard to energy infrastructure would be less than significant. Therefore, no mitigation measures are required.

(3) Level of Significance after Mitigation

Cumulative impacts related to energy infrastructure were determined to be less than significant without mitigation. Therefore, no mitigation measures are required or included, and the impact levels remain less than significant.