Appendix J

Transportation

Appendix J.1

Updated LADOT Assessment Letter

CITY OF LOS ANGELES

INTER-DEPARTMENTAL CORRESPONDENCE

13400 West Maxella Avenue LADOT Case No. CTC20-109212

To: Milena Zasadzien, Senior City Planner Department of City Planning

From: Robert Sanchez, Transportation Engineer Department of Transportation

Subject: REVISED TRANSPORTATION IMPACT ASSESSMENT FOR THE PROPOSED MIXED USE PROJECT AT 13400 WEST MAXELLA AVENUE (ENV-2016-3343-EIR/ CPC-2016-3341-GPA-VZC-HD-MCUP-CDP-MEL-SPR)

LADOT requests that our revised assessment letter, dated May 3, 2022, for the proposed mixed-use development at 13400 Maxella Avenue be rescinded, for the reasons described below, and replaced with the attached revised assessment letter.

On August 26, 2021, LADOT issued an assessment letter for the proposed mixed-use project at 13400 Maxella Avenue. The assessment was based on the transportation analysis report prepared by Linscott, Law & Greenspan (LLG), dated April 29, 2021, and subsequent revision dated July 6, 2021. The revision included a project specific methodology for analyzing the potential overall VMT impact of the project. The methodology suggested an overall VMT reduction calculation instead of a land-use specific VMT calculation, as currently used in the LADOT VMT Calculator tool and required by LADOT's Transportation Assessment Guidelines.

Subsequent to this initial review, DOT received a request to revisit the project specific methodology used to analyze the project's VMT impact and it was determined that, although the VMT calculation delivers a delivers a mathematical resultant that achieves a lower total VMT when averaged across all land uses when compared to a project that equated the respective VMT thresholds, to simply combine these resultants into an overall project calculation would negate the build environment details used to identify the land-use specific VMT thresholds the City developed which is an imperative part of the analysis.

As noted in the Technical Advisory document on Evaluating Transportation Impacts in CEQA, released by the Office of Planning and Research (OPR) in December of 2018, "Combining land uses for VMT analysis is not recommended. Different land uses generate different amounts of VMT, so the outcome of such an analysis could depend more on the mix of uses than on their travel efficiency. As a result, it could be difficult or impossible for a lead agency to connect a significance threshold with an environmental policy objective (such as a target set by law), inhibiting the CEQA imperative of identifying a project's significant impacts and providing mitigation where feasible. Combining land uses for a VMT analysis could streamline certain mixes of uses in a manner disconnected from policy objectives or environmental outcomes. Instead, OPR recommends <u>analyzing each use separately</u>, or simply focusing analysis on the dominant use, and comparing each result to the appropriate threshold."

Therefore, in accordance with the OPR guidance sighted above, DOT issued a revised assessment letter dated May 3, 2022. Subsequent to the issuance of the May 3, 2022 assessment letter, LLG prepared an updated VMT analysis for the project's Option B, dated October 26, 2022. The updated VMT analysis describes the project's commitment to participating in the Metro Universal College Student Transit Pass

(U-Pass) program. We request that you please replace the aforementioned May 3, 2022 assessment letter, in its entirety, with the attached revised assessment letter.

CITY OF LOS ANGELES

INTER-DEPARTMENTAL CORRESPONDENCE

13400 West Maxella Avenue LADOT Case No. CTC20-109212

Date:	August 26, 2021
	Revised May 3, 2022
	Revised November 16, 2022
To:	Milena Zasadzien, Senior City Planner
	Department of City Planning Robert Sanchez (Nov 4, 2022 14 PST)
From:	Robert Sanchez, Transportation Engineer
	Department of Transportation
Subject:	REVISED TRANSPORTATION IMPACT ASSESSMENT FOR THE PROPOSED MIXED USE PROJECT AT 13400 WEST MAXELLA AVENUE (ENV-2016-3343-EIR/ CPC-2016-3341-

GPA-VZC-HD-MCUP-CDP-MEL-SPR)

The Department of Transportation (DOT) has completed its review of the transportation analysis prepared by Linscott, Law, & Greenspan, Engineers (LLG), dated April 29, 2021, with a subsequent revision dated July 6, 2021 for the proposed mixed use project located at 13400 West Maxella Avenue. In compliance with SB 743, a vehicle miles traveled (VMT) analysis is required to identify the project's alignment with the California Environmental Quality Act (CEQA) mandates to promote the reduction of green-house gas emissions, access to diverse land uses, and the development of multi-modal networks. Subsequent to the preparation of the July 6, 2021 transportation analysis, LLG prepared an updated VMT analysis for the project's Option B dated October 26, 2022. The significance of a project's impact in this regard is measured against the VMT thresholds established in DOT's Transportation Assessment Guidelines (TAG), as described below.

DISCUSSION AND FINDINGS

A. <u>Project Description</u>

The project proposes to construct a new mixed use residential and commercial development on the southwest corner of Glencoe Avenue and Maxella Avenue with the following two land use options:

1. <u>Option A</u>: consists of the construction of a mixed-use development including 592 market-rate residential apartment dwelling units, 66 affordable housing dwelling units, 13,650 square feet of restaurant floor area, and 13,650 square feet of commercial floor area. Parking for Option A will be provided in two subterranean levels and two abovegrade levels of parking within each of the three buildings. Option A proposes to provide a total of 1,217 parking spaces. Vehicular access for Option A will be provided via two access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, one driveway along the west side of Glencoe Avenue, and one entry/exit driveway located along the southern boundary of the project site as shown in the site plan for the project provided as **Attachment "A"** to this report. The proposed land uses under Option A are expected to be fully build out and occupied by the year 2026.

2. <u>Option B</u>: consists of the construction a mixed-use development including 382 market rate residential apartment dwelling units, 43 affordable housing dwelling units, 20,000 square feet of restaurant floor area, 20,000 square feet of commercial floor area, and 90,000 square feet of office use. Parking for Option B will be provided in an onsite parking garage with one level of at-grade parking and three levels of subterranean parking. Option B proposes to provide a total of 1,287 parking spaces. Vehicular access for Option B will be provided via three access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, and one driveway along the west side of Glencoe Avenue, along the southern boundary of the project site as shown in the site plan for the project provided as **Attachment "B**" to this report. The proposed land uses under Option B are expected to be fully build out and occupied by the year 2026.

The project site includes approximately 6.06 acres of land and is currently improved with 100,781 square feet of commercial floor area and surface parking areas. The project proposes to remove the existing improvements on the site and construct a mixed-use development under one of the two proposed development options.

B. <u>Freeway Safety Analysis</u>

Per the interim guideline for Freeway Safety Analysis memorandum issued by DOT on May 1, 2020 to address Caltrans safety concerns on freeways, the study addresses the project's effects on vehicle queueing on freeway off-ramps. Such an evaluation measures the project's potential to lengthen a forecasted off-ramp queue and create speed differentials between vehicles exiting the freeway off-ramp and vehicles operating on the freeway mainline.

The evaluation included in the assessment by LLG, identified the project trips expected to be added to nearby freeway off-ramps serving the project site. It was determined that as the SR-90 ("Marina freeway") is an at-grade roadway in the immediate project site vicinity, these nearby intersections are not considered to be freeway off-ramps. As there are no freeway off-ramps located in the immediate project site area, neither Option A nor Option B will add 25 or more trips to any nearby freeway off-ramps. Therefore, a freeway ramp analysis is not required.

C. <u>Trip Generation</u>

Option A is expected to potentially generate a net increase of 1,379 new daily vehicle trips, a net increase of 222 new AM peak hour trips (67 inbound and 155 outbound), and a net increase of 50 new PM peak hour trips (58 inbound and -8 outbound). A copy of the proposed weekday AM and PM peak hour trip generation table under Option A can be found in **Attachment "C"** to this report.

Option B is expected to generate a net increase of 1,979 new daily vehicle trips, a net increase of 231 new AM peak hour trips (114 inbound and 117 outbound), and a net increase of 59 new PM peak hour trips (36 inbound and 23 outbound). A copy of the proposed weekday AM and PM peak hour trip generation table under Option B can be found in **Attachment "D"** to this report. The weekday AM and PM peak hour trip generation estimates are based on rates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition, 2017.

D. <u>CEQA Screening Threshold</u>

Prior to accounting for trip reductions resulting from the application of Transportation Demand Management (TDM) Strategies, a trip generation analysis was conducted to determine if the project would exceed the 250 daily vehicle trips screening threshold. Using the City of Los Angeles VMT Calculator tool, which draws upon local trip generation information and trip rate estimates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition, and based on sociodemographic data and the built environment factors of the project's surroundings, it was determined that the project <u>does</u> exceed the net 250 daily vehicle trips threshold under both proposed project options. This determination is based on the latest VMT calculator version 1.3 at the time the transportation analysis was submitted and accepted by DOT. A copy of the VMT calculator screening pages, with the corresponding net daily trip estimates under both Option A and Option B are provided, as **Attachment "F"** correspondingly, to this report.

E. <u>Transportation Impacts</u>

On July 30, 2019, pursuant to SB 743 and the recent changes to Section 15064.3 of the State's CEQA Guidelines, the City of Los Angeles adopted VMT as the criteria used to determine transportation impacts under CEQA. The new DOT TAG provides instructions on preparing transportation assessments for land use proposals and defines the significant impact thresholds.

The DOT VMT Calculator tool measures project impact in terms of Household VMT per Capita, and Work VMT per Employee. DOT identified distinct thresholds for significant VMT impacts for each of the seven Area Planning Commission (APC) areas in the City. For the West Los Angeles APC area, in which the project is located, the following thresholds have been established:

- Household VMT per Capita: 7.4
- Work VMT per Employee: 11.1

As cited in the VMT Analysis report prepared by LLG, the proposed project is projected to have:

Under Option A, prior to the consideration of any TDM measures, a Household VMT per capita of 6.9 which is less than the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita, and a less than significant impact for the Daily Work VMT per employee for the retail component since the project's retail portion is less than the 50,000 square feet threshold. Therefore, it is concluded that implementation of the project under Option A would result in no significant VMT impact. A copy of the VMT Calculator summary impact report for Option A is provided as **Attachment "G"** to this letter.

Under Option B, prior to the consideration of any TDM measures, a Household VMT per capita portion of 6.8 which is less than the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita, and a Work VMT per employee of 14.5 which is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee. Taking into consideration the TDM measures being proposed by the project, the estimated Household VMT per Capita for Option B is reduced to 5.4, which us further below the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita. The estimated Work VMT per Employee for Option B is reduced to 11.6, which is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee.

Under Option B, the project proposes the implementation of a combination of transit, education and encouragement, commute trip reductions, bicycle parking and infrastructure, and neighborhood infrastructure TDM strategies that are forecasted to further reduce the project Household VMT to 5.4.

For the project's Work VMT, the measures described in the paragraph above would essentially "max-out" the allowable 20% TDM strategies in the VMT Calculator. The VMT Calculator estimates that Option B would generate a Total Home Based Work Attraction VMT of 5,574, resulting in a Total Work Based VMT per Employee of 11.6 Daily VMT per Employee, which would exceed the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee.

To mitigate the remaining Daily Work VMT per Employee impact under Option B, the project would need to implement supplemental TDM measures to achieve approximately a 4% reduction in Total Home Based Work Attraction VMT. The project proposes to participate in a pilot program similar to the new Metro Universal College Student Transit Pass (U-Pass) program. The U-Pass program is a strategy identified in the VMT Mitigation Program Pilot Project (Fehr & Peers, June 2021, U-Pass Study) that has potential to reduce regional VMT through subsidizing transit passes for college students in Los Angeles County. The project would contribute a fee to the pilot program based on the VMT reduction needed to eliminate the impact and bring the Household VMT per Capita under the threshold. To calculate the fee amount, a ratio of 10.79 student transit passes per one (10.79:1) daily VMT reduction was identified in the U-Pass Study. This means that for every 10.79 student passes funded, the project could eliminate one daily VMT from its calculated impact. Based on the U-Pass Study, the average invoiced fee for each student transit pass using the "opt-in" mechanism is \$94.18 per semester. However, after discussion with LADOT and Metro, it was proposed to use a lower "opt-out" rate for the pilot program, which would cost \$7.00 per student per year.

As only the project's Daily Work VMT per Employee would exceed the West Los Angeles APC significance threshold, only the project's Total Home Based Work Attraction VMT was considered for the VMT reduction. Thus, instead of daily trips, the credits would be applied to the Total Home Based Work Attraction VMT to achieve a VMT reduction of approximately 4%. The project, prior to any mitigation, would generate a Total Home Based Work Attraction VMT of 6,968. To fully mitigate the VMT impact, the project would need to reduce Total Home Based Work Attraction VMT to 5,328. The mitigations included within the VMT Calculator would reduce the Total Home Based Work Attraction VMT from 6,968 to 5,574. Therefore, an additional 246 Daily Work VMT would need to be reduced to mitigate the VMT impact. A full mitigation of daily VMT would require the project to fund 2,654 student passes annually at a rate of \$7.00 per pass. The total cost for this program would be \$18,578.00 annually.

The \$18,578.00 fee calculated above will be a required annual payment from the project to Metro for a minimum of seven years. The fee would continue to be required until the project's non-supplemental mitigation measures described above are alone sufficient to reduce the project's VMT to less than significant in the version of the VMT calculator that is current at the time of future analysis. However, if a VMT impact were to remain based on the version of the VMT calculator that is current at the time of future analysis, the annual fee amount would be adjusted proportionally based on the Total Home Based Work Attraction required to reduce the impact to a less than significant level. Revisions to the VMT calculator are cyclical and include additions and alterations to transit systems, land uses, and travel behaviors that may show that the project, without the supplemental mitigation measure, does not exceed future VMT thresholds. The project's proposed TDM measures would mitigate its significant VMT impact and no further mitigations would be required. A copy of the VMT Calculator summary reports is provided as **Attachment "H"** to this report.

F. Access and Circulation

During the preparation of the new CEQA guidelines, the State's Office of Planning and Research stressed that lead agencies can continue to apply traditional operational analysis requirements to inform land use decisions provided that such analyses were outside of the CEQA process. The authority for requiring non-CEQA transportation analysis and requiring improvements to address potential circulation deficiencies, lies in the City of Los Angeles' Site Plan Review authority as established in Section 16.05 of the Los Angeles Municipal Code (LAMC). Therefore, DOT continues to require and review a project's site access, circulation, and operational plan to determine if any access enhancements, transit amenities, intersection improvements, traffic signal upgrades, neighborhood traffic calming, or other improvements are needed. In accordance with this authority, the project has completed an access and circulation analysis for both Option A and Option B using a "level of service" screening methodology that indicates that the trips generated by the proposed development will likely result in adverse circulation conditions at the project adjacent intersection of Glencoe Avenue and Glencoe Avenue Southerly Driveway/Villa Velletri Driveway, and at the intersection of Glencoe Avenue and Mindanao Way under both Options. A copy of the study analysis report tables that summarize these potential queueing and/or operational deficiencies are provided as Attachment "I" (Option A) and Attachment "J" (Option B) to this report.

PROJECT REQUIREMENTS

A. CEQA Related Mitigation

Consistent with City policies on sustainability and smart growth, and with DOT's trip reduction and multi-modal transportation goals, the project's mitigation program first focuses on developing a trip reduction program and on solutions that promote other modes of travel. To off-set the expected significant impacts identified in the project's VMT analysis for Option B (since Option A as proposed results in a less than significant VMT impact), DOT recommends that the applicant be required to implement the following Transportation Demand Management (TDM) strategies as mitigation: 1. <u>Transit – Transit Subsidies</u>

This TDM strategy involves the subsidization of transit fare for residents and employees of Option B. The subsidy will be proactively offered to each resident and employee at least once annually for a minimum of five years. At the time of initial opening, Option B will offer a daily transit subsidy to all (i.e., 100%) residents and employees of \$2.98 per day.

2. Education and Encouragement – Promotions and Marketing

Option B will utilize promotional and marketing tools to educate and inform residents and employees about alternative transportation options and the effects of their travel choices. Rather than two-way communication tools or tools that would encourage an individual to consider a different mode of travel at the time the trip is taken (i.e., smartphone application, daily email, etc.), this TDM strategy includes passive educational and promotional materials, such as posters, information boards, or a website with information that residents and employees can choose to read at their own leisure.

- 3. <u>Commute Trip Reductions Alternative Work Schedules and Telecommute Program</u> The strategy encourages employees to work alternative schedules or telecommute, including staggered start times, flexible schedules, or compressed work weeks. At the time of initial opening of the development, Option B will offer 1.5 days per week of telecommuting to at least 5% of all employees.
- 4. <u>Bicycle Infrastructure Include Bike Parking per LAMC</u> Option B is required to provide 200 bicycle parking spaces (19 short-term and 181 longterm) for the residential component, and 67 bicycle parking spaces (29 short-term spaces and 38 long-term) for the restaurant, commercial, and office components. Therefore, under Option B, the project will provide the LAMC-required number of shortterm and long-term bicycle parking spaces: an overall total of 267 bicycle parking spaces (48 short-term and 219 long-term) on-site thus meeting the code required spaces. This measure helps reduce peak-hour vehicle trips by making commuting by bicycle easier and more convenient.
- 5. <u>Bicycle Infrastructure Include Secure Bike Parking and Showers per LAMC</u> This strategy involves implementation of additional end-of-trip bicycle facilities to support safe and comfortable bicycle travel by providing amenities at destinations. This strategy applies to projects that include bicycle parking onsite per LAMC. Projects providing long-term bicycle parking secured from the general public in accordance with LAMC Section 12.21A.16(d)(2) and showers in accordance with LAMC Section 91.6307 qualify for this measure. These improvements help reduce peak-hour vehicle trips by making commuting by bicycle easier and more convenient. Under Option B, the project is committed to provide short-term and long-term bicycle parking in accordance with LAMC Section 12.21A.16(d)(2). In addition, Option B will provide showers in accordance with LAMC Section 91.6307.
- <u>Neighborhood Infrastructure Pedestrian Network Improvements</u>
 This strategy involves implementation of pedestrian network improvements throughout

and around the Project Site that encourage people to walk. This includes internally linking all uses within the Project Site with pedestrian facilities such as sidewalks and connecting the Project Site to the surrounding pedestrian network. Option B includes pedestrian access points directly to sidewalks on the adjacent streets, including Maxella Avenue, and Glencoe Avenue. Additionally, Option B will improve existing sidewalks or construct new sidewalks on the above-mentioned streets adjacent to the Project Site. Furthermore, Option B will add street trees and landscaping, including a park along the Project Site's easterly frontage, to enhance the pedestrian network and improve exterior lighting along the sidewalks to improve safety.

7. <u>Supplemental Mitigation Measures – Metro U-Pass Program</u>

The project proposes to participate in the Metro U-Pass program, which has the potential to reduce regional VMT through subsidizing transit passes for college students in Los Angeles County. The project will fund 2,654 student passes annually at a rate of \$7.00 per pass. The total cost for this program would be \$18,578.00 annually. The \$18,578.00 fee calculated above will be a required annual payment from the project to Metro for a minimum of seven years. The fee would continue to be required until the project's non-supplemental mitigation measures described above are alone sufficient to reduce the project's VMT to less than significant in the version of the VMT calculator that is current at the time of future analysis. Additionally, if an impact were to remain based on the version of the VMT calculator that is current at the time of future analysis, the fee would be adjusted proportionally based on the Total Home Based Work Attraction required to reduce the impact to a less than significant level.

B. Operational Improvements (Non-CEQA Analysis)

In the Traffic Study report prepared by LLG, the analysis included a review of current operational deficiencies and potential future deficiencies that may result from the project considering both proposed Options. To address these deficiencies, the applicant should be required to implement the following operational improvements (the project must coordinate with Culver City to determine appropriate traffic operational improvements within their jurisdiction):

- 1. <u>Glencoe Avenue and Mindanao Way Intersection Implement Left-Turn Phasing</u> The project shall assume full responsibility for implementing protected/permissive leftturn phasing for the northbound direction, as well as implementing overlap right-turn phasing for the eastbound direction at the intersection of Glencoe Avenue and Mindanao Way. The implementation of this improvement is in alignment with the improvements identified in the Coastal Transportation Corridor Specific Plan and should be coordinated with the DOT Western District office. If at the time of project approval, the above traffic signal improvements have been funded by others, the DOT shall require a similar nearby measure of equivalent value in the vicinity of the project.
- <u>Glencoe Avenue and Glencoe Avenue Southerly Project Driveway/Villa Velletri Driveway</u> <u>Intersection – Pedestrian Crosswalk/ Traffic Signal Relocation</u> The project shall assume full responsibility for the design and relocation of the existing signalized Glencoe Avenue midblock crossing to the north to align with the Glencoe

Avenue Southerly Project Driveway intersection. The resulting lane configuration on the northbound and southbound approaches of Glencoe Avenue would provide one leftturn lane, one through lane, and one shared through/right-turn lane. No changes to the eastbound Glencoe Avenue Southerly Project Driveway and westbound Villa Velletri approaches are proposed. Changes to the existing traffic signal equipment needed in conjunction with the recommended improvements would also be implemented as part of the improvement. In addition, crosswalks would be installed on both the northbound and southbound Glencoe Avenue approaches. The implementation of this improvement is in alignment with the project improvements identified in the Coastal Transportation Corridor Specific Plan and should be coordinated with the DOT Western District office.

3. <u>Ocean Way and Maxella Avenue Intersection-New Traffic Signal/Relocate Ped-Crosswalk</u> The project shall assume full responsibility for the design and implementation of roadway striping changes along Maxella Avenue at the Ocean Way intersection. Specifically, the existing signalized crosswalk located approximately 100 feet west of the east leg of the intersection will be removed, and crosswalks will be installed at the Ocean Way and Maxella Avenue intersection. Additionally, the Applicant, in consultation with LADOT, will install a traffic signal at the intersection with controlled crossing devices (e.g., signalized crosswalks). The implementation of this improvement is in alignment with the project improvements identified in the Coastal Transportation Corridor Specific Plan and should be coordinated with the DOT Western District office.

4. <u>Transportation Demand Management (TDM) Program</u>

In addition to the TDM strategies cited above, DOT further recommends that the project prepare and submit a TDM program to DOT for review <u>prior</u> to the issuance of the first building permit for this project with a final TDM program to be approved by DOT <u>prior</u> to the issuance of the first certificate of occupancy. The TDM program should include not only the TDM strategies identified to mitigate Project VMT impacts but should also consider and include all of the VMT Calculator TDM strategies that can potentially reduce the Project's VMT footprint.

C. Transportation Impact Assessment (TIA) Fee

Pursuant to Section 6 of the CTC SP Ordinance No. 186104 authorizing the TIA Fee Programs Ordinance No. 186105, an applicant for a project within the Specific Plan area, except as exempted, shall pay, or guarantee payment of a TIA Fee prior to issuance of any building permit. Applicable fee rates are identified in the TIA Fee Table of Ordinance No. 186105. In addition, credit for affordable housing units can be granted as detailed in Section D.3.b.i of Ordinance No. 186105. The applicable fee for the proposed project (Option B) has been determined as follows:

Proposed Use:

382 Apartment units x \$4,720 per unit [Full TIA fee applicable on or after October 26, 2020]	\$ 1,803,040
40,000 sq. ft. Retail x \$13,561 per 1000 sq. ft.	\$ 542,440

90,000 sq. ft. Office x \$23,724 per 1000 sq. ft.		\$ 2,135,160
-43 Affordable u	nits x [2 x (\$4,720 per unit)]	-\$ 450,920
Subtotal Proposed TIA Fee		\$ 4,029,720
<u>Existing Use (credit)</u> 100,781 sq. ft. o	f Retail x \$13,561 per 1000 sq. ft.	-\$ 1,366,691
Subtotal Existing TIA Fee		-\$ 1,366,691
Total Estimated TIA Fee		<u>\$ 2,663,029</u>

D. Implementation of Physical Improvements

The applicant shall be responsible for the cost and implementation of any traffic signal equipment modifications and bus stop relocations associated with the proposed transportation improvements and enhancements described above. All improvements, enhancements, and associated traffic signal work within the City of Los Angeles must be guaranteed through Bureau of Engineering's (BOE) B-Permit process, prior to the issuance of any building permits and **completed** prior to the issuance of any certificates of occupancy. Temporary certificates of occupancy may be granted in the event of any delay through no fault of the applicant, provided that, in each case, the applicant has demonstrated reasonable efforts and due diligence to the satisfaction of DOT. Prior to setting the bond amount, BOE shall require that the developer's engineer or contractor email DOT's B-Permit Coordinator at ladot.planprocessing@lacity.org to arrange a pre-design meeting to finalize the proposed design needed for the project. If a proposed traffic corrective measure does not receive the required approval during plan review, a substitute corrective measure may be provided subject to the approval of LADOT or other governing agency with jurisdiction over the corrective condition location, upon demonstration that the substitute measure is correctively equivalent or superior to the original measure in addressing the project's corrective traffic condition. To the extent that a corrective measure proves to be infeasible and no substitute corrective measure is available, then the identified corrective condition would remain.

E. Construction Impacts

DOT recommends that a construction work site traffic control plan be submitted to DOT's Citywide Temporary Traffic Control Section or Permit Plan Review Section for review and approval prior to the start of any construction work. Refer to http://ladot.lacity.org/what-we-do/plan-review to determine which section to coordinate review of the work site traffic control plan. The plan should show the location of any roadway or sidewalk closures, traffic detours, haul routes, hours of operation, protective devices, warning signs and access to abutting properties. DOT also recommends that all construction related traffic be restricted to off-peak hours to the extent feasible.

F. Highway Dedication And Street Widening Requirements

In order to mitigate potential access and circulation impacts, the applicant may be required to make highway dedications and improvements. The applicant shall consult the Bureau of Engineering (BOE) for any highway dedication or street widening requirements. These

requirements must be guaranteed before the issuance of any building permit through the Bpermit process of the BOE. They must be constructed and completed prior to the issuance of any certificate of occupancy to the satisfaction of DOT and BOE.

G. Parking Analysis

The project is proposing to provide a minimum Code-required total of 1,217 parking spaces under Option A, and a total of 1,287 parking spaces under Option B. Also, an overall minimum Code-required total of 267 bicycle parking spaces (48 short-term and 219 long-term) will be provided on site within parking garage. The applicant should check with the Department of Building and Safety on the number of Code-required parking spaces needed for the project.

H. Project Access

Project access to the site will be provided for Option A and Option B as follows:

For Option A, vehicular access will be provided via two access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, one driveway along the west side of Glencoe Avenue, and one entry/exit driveway located along the southern boundary of the project site, and for Option B, vehicular access will be provided via three access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, and one driveway along the south side of Maxella Avenue, and one driveway along the south side of Maxella Avenue, and one driveway along the west side of Glencoe Avenue, along the southern boundary of the project site.

I. Driveway Access and Circulation

The proposed site plan is acceptable to DOT; however, review of the study does not constitute approval of the driveway dimensions and internal circulation schemes. Those require separate review and approval and should be coordinated with DOT's West LA/Coastal Development Review Section (7166 W Manchester Ave, @ 213-485-1062). In order to minimize potential building design changes, the applicant should contact DOT for driveway width and internal circulation requirements so that such traffic flow considerations are designed and incorporated early into the building and parking layout plans. All new driveways should be Case 2 driveways and any security gates should be a minimum 20 feet from the property line. All truck loading and unloading should take place on site with no vehicles backing into the project from public streets via any of the project driveways.

J. Development Review Fees

An ordinance adding Section 19.15 to the Los Angeles Municipal Code relative to application fees paid to DOT for permit issuance activities was adopted by the Los Angeles City Council in 2009 and updated in 2014. This ordinance identifies specific fees for traffic study review, condition clearance, and permit issuance. The applicant shall comply with any applicable fees per this ordinance.

If you have any questions, please contact me or Pedro Ayala at (213) 485-1062.

RS:pa

Attachments

c: Alan Como, Marcus Woersching, DCP
 Jason Douglas, Eric Bruins, Len Nguyen, Council District No. 11
 Rudy Guevara, DOT
 Mike Patonai, Oscar Gutierrez, BOE
 Jason Shender, Linscott, Law, & Greenspan, Engineers

13400 W. Maxella Ave.: Mixed-Use - Paseo Marina project (CTC19-109212)

Attachment "A"

LINSCOTT, LAW & GREENSPAN, engineers

PASEO MARINA PROJECT

-6-

g

color

exhibits

₽

09:32:54 jshender

12/11/2020

o:\0265\dwg\f2-2.dwg

13400 W. Maxella Ave.: Mixed-Use - Paseo Marina project (CTC19-109212)

Attachment "B"

LINSCOTT, LAW & GREENSPAN, engineers

PASEO MARINA PROJECT

-8-

10:36:21 jshender IIg exhibits color.ctb

o:\0265\dwg\f2-3.dwg 11/11/2020

27-Apr-21

		AM PEAK HOUR		PM PEAK HOUR			
		VOLUMES [2]		VOLUMES [2]		[2]	
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL
Proposed Project							
Apartments [3]	592 DU	55	158	213	159	101	260
Affordable Family Housing [4]	66 DU	13	21	34	14	11	25
Restaurant [5]	13,650 GSF	75	61	136	82	51	133
Commercial [6]	13,650 GLSF	<u>8</u>	<u>5</u>	<u>13</u>	25	<u>27</u>	<u>52</u>
Subtotal		151	245	396	280	190	470
Internal Capture [7]		(17)	(27)	(44)	(64)	(43)	(107)
Transit Trips (15%) [8]		(18)	(30)	(48)	(30)	(20)	(50)
Subtotal Project Driveway Trips		116	188	304	186	127	313
Existing Land Use							
Commercial [5]	(100,781) GLSF	(59)	(36)	(95)	(184)	(200)	(384)
Existing Transit Trips [8]							
Commercial (15%)		9	5	14	28	30	58
Subtotal Existing Driveway Trips		(50)	(31)	(81)	(156)	(170)	(326)
NET INCREASE DRIVEWAY TRIPS		66	157	223	30	(43)	(13)
Proposed Pass-By Trips [9]							
Restaurant (20%)		(11)	(9)	(20)	(11)	(7)	(18)
Commercial (50%)		(3)	(2)	(5)	(8)	(9)	(17)
Subtotal		(14)	(11)	(25)	(19)	(16)	(35)
Existing Pass-By Trips (9)							
Commercial (30%)		15	9	24	47	51	98
NET INCREASE "OFF-SITE" TRIPS		67	155	222	58	(8)	50

Table 2-1 OPTION A TRIP GENERATION [1]

[1] Sources: ITE Trip Generation Manual, 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

- [2] This are one-way failed internetics, energing of reaving.[3] ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates.
- AM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 26% inbound/74% outbound
- PM Peak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/39% outbound
- [4] City of Los Angeles Affordable Housing (Family) trip generation average rates.
- AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
- PM Peak Hour Trip Rate: 0.38 trips/dwelling unit; 55% inbound/45% outbound
- [5] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
 AM Peak Hour Trip Rate: 9.94 trips/1,000 SF of floor area; 55% inbound/45% outbound
 PM Peak Hour Trip Rate: 9.77 trips/1,000 SF of floor area; 62% inbound/38% outbound
- [6] ITE Land Use Code 820 (Shopping Center) trip generation average rates.
- AM Peak Hour Trip Rate: 0.94 trips/1,000 SF of leasable area; 62% inbound/38% outbound - PM Peak Hour Trip Rate: 3.81 trips/1,000 SF of leasable area; 48% inbound/52% outbound
- [7] The internal capture reduction for the residential, restaurant, retail, and office is based on the synergy between all the land uses provided within the Project Site, and determined via NCHRP 684 Internal Capture Estimation Tool (12% for AM Peak Hour and 24% for PM Peak Hour).
- [8] A 15% transit use reduction applied based on the Project Site being located within 1/4 mile of a Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the proposed Project and existing land uses based on the *LADOT Transportation Assessment Guidelines*, July 2020 for developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop.
- [9] Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The trip reduction for pass-by trips has been applied to the restaurant and commercial components of the Project based on the *LADOT Transportation Assessment Guidelines*, July 2020 for High Turnover Restaurant, Shopping Center less than 50,000 sf, and Shopping Center 100,000 to less than 300,000 sf.

20-Apr-21

		AM PEAK HOUR			PM PEAK HOUR			
		VOLUMES [2]			V	OLUMES	[2]	
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL	
Proposed Project								
Apartments [3]	382 DU	36	102	138	102	66	168	
Affordable Family Housing [4]	43 DU	8	14	22	9	7	16	
Restaurant [5]	20,000 GSF	109	90	199	121	74	195	
Commercial [6]	20,000 GLSF	12	7	19	36	40	76	
Office [7]	90,000 GSF	<u>89</u>	<u>15</u>	104	17	87	104	
Subtotal		254	228	482	285	274	559	
Internal Capture [8]		(59)	(51)	(110)	(86)	(83)	(169)	
Transit Trips (15%) [9]		(28)	(24)	(52)	(29)	(28)	(57)	
Subtotal Project Driveway Trips		167	153	320	170	163	333	
Existing Land Usa								
Commercial [5]	(100,781) GLSF	(59)	(36)	(95)	(184)	(200)	(384)	
Existing Transit Trins [9]								
Commercial (15%)		9	5	14	28	30	58	
Subtotal Existing Driveway Trips	•	(50)	(31)	(81)	(156)	(170)	(326)	
NET INCREASE DRIVEWAY TRIPS		117	122	239	14	(7)	7	
Proposed Dass Py Trins [10]								
Postaurant (20%)		(14)	(12)	(26)	(14)	(0)	(23)	
Commercial (50%)		(14)	(12)	(20)	(14)	(12)	(23)	
Subtotal		(18)	(14)	(22)	(25)	(12) (21)	(23)	
Subtotal		(18)	(14)	(32)	(23)	(21)	(40)	
Existing Pass-By Trips [10]								
Commercial (30%)		15	9	24	47	51	98	
NET INCREASE "OFF-SITE" TRIPS		114	117	231	36	23	59	

Table 2-2 OPTION B TRIP GENERATION [1]

[1] Source: ITE Trip Generation Manual, 10th Edition, 2017.

2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates. - AM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 26% inbound/74% outbound DM Deak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/20% outbound

- PM Peak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/39% outbound
 [4] City of Los Angeles Affordable Housing (Family) trip generation average rates.
 AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
- AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
 PM Peak Hour Trip Rate: 0.38 trips/dwelling unit; 55% inbound/45% outbound
 ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation avoid
- [5] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
 AM Peak Hour Trip Rate: 9.94 trips/1,000 SF of floor area; 55% inbound/45% outbound
 PM Peak Hour Trip Rate: 9.77 trips/1,000 SF of floor area; 62% inbound/38% outbound
- [6] ITE Land Use Code 820 (Shopping Center) trip generation average rates.
 AM Peak Hour Trip Rate: 0.94 trips/1,000 SF of leasable area; 62% inbound/38% outbound
 PM Peak Hour Trip Rate: 3.81 trips/1,000 SF of leasable area; 48% inbound/52% outbound
- [7] ITE Land Use Code 710 (General Office Building) trip generation average rates.
 AM Peak Hour Trip Rate: 1.16 trips/1,000 SF of floor area; 86% inbound/14% outbound
 PM Peak Hour Trip Rate: 1.15 trips/1,000 SF of floor area; 16% inbound/84% outbound
- [8] The internal capture reduction for the residential, restaurant, retail, and office is based on the synergy between all the market-rate apartments, restaurant, commercial, and office land uses provided within the Project Site, and determined via NCHRP 684 Internal Capture Estimation Tool (24% for AM Peak Hour and 31% for PM Peak Hour).
- [9] A 15% transit use reduction applied based on the Project Site being located within 1/4 mile of a Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the proposed Project and existing land uses based on the *LADOT Transportation Assessment Guidelines*, July 2020 for developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop. The transit reduction was not applied to the affordable housing component of the Project, per the *LADOT Transportation Assessment Guidelines*, July 2020.
- [10] Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The trip reduction for pass-by trips has been applied to the restaurant and commercial components of the Project based on the *LADOT Transportation Assessment Guidelines*, July 2020 for High Turnover Restaurant, Shopping Center less than 50,000 sf, and Shopping Center 100,000 to less than 300,000 sf.

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Existing Land Use

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

O No

O Yes

Land Use Type		Value	Unit		
Retail General Retail	▼	100.781	ksf	+	
Retail General Retail		100.781	ksf		

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type		Value	Unit	
Retail General Retail	-	13.65	ksf	•
Housing Multi-Family Housing Affordable Housing - Family Retail High-Turnover Sit-Down Restaurar Retail General Retail	nt	592 66 13.65 13.65	DU DU ksf ksf	

Project Screening Summary

Existing Land Use	Proposed Project				
3,595 Daily Vehicle Trips	4,974 Daily Vehicle Trips				
29,609 Daily VMT	37,347 Daily VMT				
Tier 1 Scree	ning Criteria				
Project will have less residential units compared to existing residential units & is within one-half mile of a fixed-rail station.					
The net increase in daily tri	ps < 250 trips	1,379 Net Daily Trips			
The net increase in daily VN	/T ≤ 0	7,738 Net Daily VMT			
The proposed project consists of only retail27.300land uses ≤ 50,000 square feet total.ksf					
The proposed project is required to perform VMT analysis.					

Click here to add a single custom land use type (will be included in the above list)

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Existing Land Use

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

Land Use Type		Value	Unit		
Retail General Retail	-	100.781	ksf		
Retail General Retail		100.781	ksf		

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type		Value	Unit	
Office General Office	-	90	ksf	•
Housing Multi-Family		382	DU	
Housing Affordable Housing - Family		43	DU	
Retail High-Turnover Sit-Down Restaurant		20	ksf	
Retail General Retail		20	ksf	
Office General Office		90	ksf	

Existing Proposed Project Land Use 3,595 5,574 Daily Vehicle Trips Daily Vehicle Trips 29,609 45.178 Daily VMT Daily VMT **Tier 1 Screening Criteria** Project will have less residential units compared to existing residential units & is within one-half mile of a fixed-rail station. **Tier 2 Screening Criteria** 1.979 The net increase in daily trips < 250 trips Net Daily Trips 15,569 The net increase in daily VMT ≤ 0 Net Daily VMT

The proposed project consists of only retail40.000land uses $\leq 50,000$ square feet total.ksf

The proposed project is required to perform VMT analysis.

Project Screening Summary

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	592	DU
Housing Affordable Housing - Family	66	DU
Retail High-Turnover Sit-Down Restaurant	13.65	ksf
Retail General Retail	13.65	ksf

TDM Strategies

Select each section to show individual strategies Use 🗹 to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
4.974	4.974
Daily Vehicle Trips	Daily Vehicle Trips
37,347	37,347
Daily VMT	Daily VMT
6.9	6.9
Houseshold VMT per Capita	Houseshold VMT per Capita
N/A	N/A
Work VMT	Work VMT
Per	
Significant V	/MT Impact?
Household: No	Household: No
Threshold = 7.4	Threshold = 7.4
15% Below APC	15% Below APC
Work: N/A	Work: N/A
Threshold = 11.1	Threshold = 11.1
15% Below APC	15% Below APC

Measuring the Miles

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	382	DU
Housing Affordable Housing - Family	43	DU
Retail High-Turnover Sit-Down Restaurant	20	ksf
Retail General Retail	20	ksf
Office General Office	90	ksf

TDM Strategies - Max Mitigation Reduction

Select each section to show individual strategies Use I/ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

With Proposed **Mitigation** Project 5.574 4.459 Daily Vehicle Trips Daily Vehicle Trips 36.142 45.178 Daily VMT Daily VMT 6.8 5.4 Houseshold VMT Houseshold VMT per Capita per Capita 14.5 11.6 Work VMT Work VMT per Employee per Employee **Significant VMT Impact?** Household: No Household: No Threshold = 7.4Threshold = 7.415% Below APC 15% Below APC Work: Yes Work: Yes Threshold = 11.1Threshold = 11.1 15% Below APC 15% Below APC

Analysis Results

		TRAFFIC	PEAK	YEA	YEAR 2020 EXISTING YEA LAY [2] LOS [3] QUEUE [4] DEI 64.4 F 215.0 6 155.5 F 430.0 11 25.0 C 112.5 2			XISTING	W/ PROJECT	YEAR 2026 F	UTURE W	O PROJECT	YEAR 2026	FUTURE V	/ PROJECT	YEAR 2026 F IMF	UTURE W PROVEME	PROJECT + NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
1	Walgrove Avenue / Washington Boulevard (Unsignalized)	SB Left/Right	AM PM	64.4 155.5	F F	215.0 430.0	68.2 160.8	F F	222.5 435.0	138.1 291.2	F F	335.0 610.0	149.2 300.0	F F	347.5 620.0			
	(Chargenanices)	EB Left	AM PM	25.0 18.1	C C	112.5 67.5	25.6 18.4	D C	117.5 70.0	33.9 23.0	D C	157.5 95.0	35.1 23.5	E C	162.5 95.0			-
2	Lincoln Boulevard / Marina Pointe Drive - Maxella Avenue (Signalized)	NB Left	AM PM	44.6 47.2	D D	73.9 122.9	44.6 47.2	D D	73.9 122.9	46.0 47.8	D D	78.4 130.4	46.0 47.8	D D	78.4 130.4			
		NB Through	AM PM	140.5 76.7	F F	1225.2 814.0	140.5 76.7	F F	1225.2 814.0	176.2 123.0	F F	1459.9 1111.2	176.2 123.0	F F	1459.9 1111.2			-
		NB Right	AM PM	22.2 24.0	C C	234.3 293.7	22.6 24.4	C C	245.9 306.5	22.9 26.0	C C	257.0 355.3	23.3 26.5	C C	268.8 369.4			
		SB Left	AM PM	33.8 33.6	C C	62.7 53.2	33.8 33.7	C C	65.4 55.8	33.9 33.7	C C	68.0 59.5	33.9 33.8	C C	70.8 62.2			
		SB Through	AM PM	40.2 45.0	D D	493.7 598.6	40.2 45.0	D D	493.7 598.6	42.1 51.1	D D	540.5 684.3	42.1 51.1	D D	540.5 684.3			
		SB Right	AM PM	45.3 54.3	D D	511.9 627.2	45.3 54.3	D D	511.9 627.2	48.7 64.6	D E	564.8 732.8	48.7 64.6	D E	564.8 732.8			
		EB Left	AM PM	45.6 45.9	D D	99.3 113.1	45.6 45.9	D D	99.3 113.1	45.8 46.1	D D	106.2 120.0	45.8 46.1	D D	106.2 120.0			-
		EB Through	AM PM	45.6 45.1	D D	104.4 84.0	45.6 45.1	D D	104.4 84.0	45.7 45.2	D D	111.3 89.5	45.7 45.2	D D	111.3 89.5	-		
		EB Right	AM PM	7.1 6.5	A A	140.9 71.9	7.1 6.5	A A	140.9 71.9	7.2 6.5	A A	150.2 76.2	7.2 6.5	A A	150.2 76.2			
		WB Left	AM PM	52.3 74.1	D E	175.0 332.5	52.8 73.7	D E	187.8 330.8	59.6 108.8	E F	254.3 457.8	61.7 108.1	E F	268.1 455.2	-		
		WB Through	AM PM	51.1 66.4	D E	139.2 302.4	51.3 66.3	D E	145.1 301.8	52.5 79.8	D E	182.3 363.3	52.7 79.6	D E	188.5 362.5	-		
		WB Right	AM PM	35.7 37.8	D D	141.0 223.3	36.1 37.8	D D	156.2 222.1	36.1 38.4	D D	157.5 241.4	36.4 38.3	D D	172.9 240.3		-	-
3	Del Rey Avenue / Maxella Avenue (Invinentized)	SB Left/Right	AM PM	11.8 17.0	B C	15.0 70.0	12.0 17.0	B C	17.5 70.0	13.4 21.4	B C	32.5 100.0	13.6 21.5	B C	32.5 102.5			
	(Onsignan280)	EB Left	AM PM	8.5 8.9	A A	10.0 7.5	8.6 8.9	A A	12.5 7.5	8.7 9.3	A A	12.5 10.0	8.8 9.3	A A	12.5 10.0			-

		TRAFFIC	BEAK	VEAD	2020 EVIS	TINC	VE A D 2020 E	VISTING	W BRO IFCT	VE A D 2026 E	UTUDE W	OPPOIECT	VEAD 2026	EUTUDE W/	PROJECT	YEAR 2026 F	UTURE W/	PROJECT +
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
4	Ocean Way / Maxella Avenue	NB Left	AM PM	14.3 20.5	B C	10.0 20.0	11.0 10.9	B B	28.5 23.9	16.2 27.2	C D	15.0 35.0	10.9 11.0	B B	31.7 28.3	-		
	(Unsignalized w/o Project; Signalized w/ Project)	NB Right	AM PM	9.8 10.4	A B	7.5 5.0	11.4 10.8	B B	34.1 18.3	10.1 10.8	B B	7.5 7.5	11.0 10.9	B B	36.8 22.2	-		
		EB Through	AM PM				12.3 13.6	B B	78.5 125.1			-	12.7 14.2	B B	91.5 147.4	-		
		EB Right	AM PM				12.4 13.7	B B	76.3 119.0			-	12.8 14.4	B B	88.8 139.4	-		
		WB Left	AM PM	8.2 8.8	A A	2.5 5.0	13.8 16.3	B B	16.9 27.0	8.3 9.1	A A	2.5 5.0	14.5 18.1	B B	19.9 37.5	-		
		WB Through	AM PM				11.5 12.1	B B	54.2 77.7			-	11.7 12.5	B B	60.5 94.3			
5	Maxella Avenue Driveway / Maxella Avenue (Unsignalized)	NB Right	AM PM	9.4 9.9	A A	0.0 0.0	9.5 9.9	A A	0.0 0.0	9.6 10.2	A B	0.0 0.0	9.8 10.2	A B	0.0 0.0	-		
6	Glencoe Avenue / Maxella Avenue	NB Left	AM PM	17.9 22.4	B C	59.4 77.2	18.2 22.9	B C	60.2 78.2	19.3 30.5	B C	67.2 116.9	19.7 31.7	B C	68.1 119.3	-		
	(Signalized)	NB Through	AM PM	18.6 13.0	B B	280.9 151.8	20.2 13.0	C B	304.6 150.5	21.9 13.5	C B	327.0 174.9	24.7 13.5	C B	359.7 173.3	-		
		NB Right	AM PM	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	20.6 27.4	10.7 10.8	B B	20.6 27.4	-		
		SB Left	AM PM	24.1 16.8	C B	44.2 22.7	25.3 16.8	C B	45.5 22.7	26.7 18.0	C B	51.1 27.4	28.1 17.9	C B	53.0 27.3	-		
		SB Through	AM PM	12.5 13.9	B B	128.1 189.4	12.6 14.1	B B	132.9 194.3	12.9 15.1	B B	145.6 218.0	13.0 15.4	B B	150.6 224.0	-		
		SB Right	AM PM	12.6 14.0	B B	122.7 180.2	12.6 14.2	B B	127.4 186.5	12.9 15.2	B B	139.3 208.9	13.0 15.5	B B	144.2 214.8	-		
		EB Left	AM PM	13.4 15.4	B B	47.9 72.3	13.8 15.4	B B	57.2 72.0	14.0 16.8	B B	57.6 90.4	14.4 16.8	B B	67.3 89.9	-		
		EB Through	AM PM	11.3 11.8	B B	38.6 57.2	11.3 11.7	B B	41.1 56.8	11.4 12.0	B B	45.3 68.3	11.5 12.0	B B	47.9 67.7	-		
		EB Right	AM PM	12.0 12.9	B B	55.2 81.0	12.2 12.9	B B	59.0 81.0	12.4 13.2	B B	66.9 89.5	12.5 13.2	B B	70.8 89.5	-		
		WB Left	AM PM	12.5 13.9	B B	27.5 44.7	12.6 13.9	B B	27.6 44.5	12.9 14.5	B B	29.6 48.9	13.0 14.5	B B	29.9 48.9	-		
		WB Through	AM PM	11.1 11.6	B B	31.7 52.6	11.1 11.6	B B	32.9 53.3	11.2 11.8	B B	35.7 61.0	11.2 11.9	B B	37.0 61.7	-		
		WB Right	AM PM	11.3 11.8	B B	32.5 50.1	11.3 11.8	B B	32.5 50.7	11.4 12.0	B B	35.4 57.8	11.4 12.1	B B	35.5 58.6	-		
7	Glencoe Avenue / Glencoe Avenue Northerly Driveway	NB Left	AM PM				9.7 10.9	A B	2.5 5.0				10.0 11.5	B B	2.5 5.0			
	(Unsignalized)	EB Right	AM PM		-		11.8 12.9	B B	7.5 5.0		-		12.3 13.6	B B	7.5 7.5			

			r – –		YEAR 2020 EXISTING YEA											YEAR 2026 F	UTURE W	13-Apr-21
		TRAFFIC	PEAK	YEAF	R 2020 EXIS	STING	YEAR 2020 E	XISTING	W/ PROJECT	YEAR 2026 F	UTURE W	O PROJECT	YEAR 2026	FUTURE V	V/ PROJECT	IMF	ROVEME	NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
8	Glencoe Avenue / Glencoe Avenue Southerly Driveway - Villa	NB Left	AM PM	9.5 10.9	A B	2.5 5.0	9.8 10.9	A B	2.5 5.0	9.9 11.5	A B	2.5 7.5	10.2 11.5	B B	2.5 5.0	9.1 11.8	A B	8.9 23.0
	(Unsignalized; Signalized w/ Improvements)	NB Through	AM PM	-			-					-			-	6.9 6.2	A A	145.5 96.3
		NB Right	AM PM								-	-			-	6.9 6.2	A A	145.3 95.8
		SB Left	AM PM	9.4 8.5	A A	0.0 0.0	9.5 8.6	A A	0.0 0.0	9.6 8.8	A A	0.0 0.0	9.7 8.8	A A	0.0 0.0	8.1 7.0	A A	1.3 4.2
		SB Through	AM PM				-					-			-	7.3 8.1	A A	165.6 212.7
		SB Right	AM PM				-					-			-	7.3 8.1	A A	163.9 209.4
		EB Left/Right	AM PM	28.3 118.5	D F	10.0 142.5	42.3 116.7	E F	50.0 137.5	35.3 230.9	E F	12.5 200.0	59.8 227.0	F F	67.5 192.5	28.8 29.8	C C	60.0 95.1
		WB Left/Right	AM PM	23.2 21.4	C C	7.5 5.0	25.8 21.9	D C	10.0 5.0	27.3 25.5	D D	10.0 5.0	30.8 26.1	D D	12.5 5.0	27.9 27.7	C D	18.5 10.0
9	Mindanao Way/ Glencoe Avenue	NB Left	AM PM	195.5 54.1	F D	892.7 276.3	216.5 64.1	F E	970.9 309.6	283.1 101.4	F F	1182.0 397.3	306.7 120.5	F F	1264.2 453.8	22.1 23.3	C C	303.4 187.2
	(Signalized)	NB Through	AM PM	20.9 19.1	C B	233.0 133.3	20.9 19.1	C B	233.0 133.3	21.4 19.4	C B	251.8 152.4	21.4 19.4	C B	251.8 152.4	15.1 17.4	B B	211.3 142.5
		NB Right	AM PM	21.0 19.1	C B	225.5 129.9	21.0 19.1	C B	225.5 129.9	21.5 19.4	C B	243.0 147.9	21.5 19.4	B B	243.0 147.9	15.2 17.4	B B	204.0 138.3
		SB Left	AM PM	25.9 21.7	C C	6.1 7.0	25.9 21.7	C C	6.1 7.0	26.9 22.4	C C	7.0 8.6	26.9 22.4	C C	7.0 8.6	29.3 26.6	C C	7.4 9.5
		SB Through	AM PM	19.7 20.6	B C	171.2 218.4	19.7 20.7	B C	173.5 220.3	20.0 21.1	B C	189.3 240.8	20.0 21.2	C C	191.2 242.9	35.2 34.1	D C	249.0 305.0
		SB Right	AM PM	19.7 20.6	B C	161.9 210.0	19.8 20.7	B C	163.7 211.4	20.0 21.2	C C	178.3 230.8	20.1 21.2	C C	180.1 232.5	35.5 34.3	D C	237.5 291.8
		EB Left	AM PM	14.3 16.0	B B	42.5 86.1	14.5 16.1	B B	50.1 85.5	14.7 16.8	B B	51.8 98.6	15.0 16.9	B B	59.9 98.1	21.4 19.1	C B	74.3 105.9
		EB Through	AM PM	12.7 13.6	B B	73.6 122.1	12.8 13.6	B B	78.3 122.1	13.0 13.9	B B	86.0 135.4	13.0 13.9	B B	90.8 135.4	18.6 15.7	B B	113.0 146.7
		EB Right	AM PM	19.4 28.6	B C	295.3 473.9	21.4 28.3	C C	341.4 469.8	20.9 35.3	C D	330.7 567.3	23.3 35.0	C D	381.3 561.7	11.2 17.7	B B	259.1 398.8
		WB Left	AM PM	14.1 17.5	B B	25.8 83.0	14.3 17.5	B B	26.0 83.0	14.6 18.5	B B	29.3 99.3	14.7 18.5	B B	29.4 99.3	20.9 21.1	C C	36.5 107.3
		WB Through	AM PM	12.4 12.6	B B	57.0 66.0	12.5 12.6	B B	58.0 67.1	12.5 12.8	B B	61.6 74.8	12.5 12.8	B B	62.4 76.1	17.8 14.5	B B	77.7 82.2
		WB Right	AM PM	12.5 12.6	B B	56.7 64.9	12.5 12.7	B B	57.5 66.2	12.5 12.8	B B	61.0 73.7	12.6 12.8	B B	62.0 74.8	17.8 14.5	B B	77.2 81.0

LINSCOTT, LAW & GREENSPAN, engineers

		TRAFFIC DE AV. VE AD 1010 EVETING VE AD 1010 EVETING W/BROLEGT VE AD 1010 EUTIDE W/O BROLEGT. VE AD 1010 EUTIDE W/O BROLEGT.																13-Apr-21
		TRAFFIC				TRIC	VE + D 4040 F		U BBO IE OT						DBO IEGT	YEAR 2026 F	UTURE W	PROJECT +
NO	INTERSECTION	IKAFFIC	PEAK	YEAF DELAV [2]	LOS 131	OUFUE MI	YEAR 2020 E	LOS 131	OUFUE M	YEAR 2026 F	LOS 131	OUFUE MI	YEAR 2026	FUTURE W	OUFUE MI	DELAV [2]	LOS 131	OUFUE MI
10	Mindanao Way/ SR-90 Westbound	NB Left	AM PM	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 15.4	31.5 31.7	C C	6.2 15.4	 		
	(Signalized)	NB Through	AM PM	14.0 13.4	B B	158.0 120.6	14.1 13.4	B B	159.6 121.7	14.3 13.8	B B	174.0 136.9	14.3 13.8	B B	175.2 138.1	-		
		SB Through	AM PM	31.0 51.3	C D	257.8 478.2	31.8 51.0	C D	274.1 476.1	32.2 73.0	C F	282.9 607.0	33.2 72.4	C F	300.2 603.5	-	-	
		SB Right	AM PM	33.7 62.4	C E	267.8 520.3	34.9 62.0	C E	286.2 518.0	35.6 84.7	D F	295.5 650.1	37.0 84.1	D F	315.1 646.8	-	-	
		WB Left	AM PM	26.8 23.1	C C	330.0 251.9	26.8 23.1	C C	330.0 251.9	29.4 25.1	C C	369.5 297.5	29.4 25.1	C C	369.5 297.5	-	-	
		WB Through	AM PM	97.0 31.6	F C	969.8 442.1	99.7 32.1	F C	990.5 449.0	130.4 47.2	F D	1222.9 594.9	133.3 48.9	F D	1246.0 609.9	-	-	
		WB Right	AM PM	160.0 23.8	F C	1250.5 243.7	166.8 24.3	F C	1296.3 252.5	200.3 25.6	F C	1525.8 277.0	207.2 26.2	F C	1573.6 286.4	-	-	
11	Mindanao Way/ SR-90 Eastbound	NB Through	AM PM	197.8 144.4	F F	760.8 587.7	200.6 146.3	F F	770.1 594.2	241.2 200.4	F F	902.7 768.5	244.0 202.5	F F	912.2 775.4		1 1	
	(Signalized)	NB Right	AM PM	474.9 394.0	F F	1498.1 1261.5	474.9 394.0	F F	1498.1 1261.5	539.1 497.8	F F	1683.9 1564.6	539.1 497.8	F F	1683.9 1564.6	-		
		SB Left	AM PM	27.7 33.3	C C	197.3 303.4	28.4 33.2	C C	214.8 302.5	28.4 36.8	C D	215.8 343.2	29.2 36.7	C D	233.9 341.7	-	-	
		SB Through	AM PM	17.5 18.7	B B	304.5 344.5	17.6 18.7	B B	307.3 344.5	18.4 20.6	B C	336.3 403.2	18.5 20.6	B C	339.2 403.2	-	-	
		EB Left	AM PM	17.9 17.8	B B	17.3 10.3	17.9 17.8	B B	17.3 10.3	18.0 17.8	B B	20.9 11.5	18.0 17.8	B B	20.9 11.5	-	-	
		EB Through	AM PM	40.1 35.9	D D	518.7 474.6	40.1 35.9	D D	518.7 474.6	57.4 46.2	E D	668.3 574.1	57.4 46.2	E D	668.3 574.1	-		
		EB Right	AM PM	40.3 35.9	D D	517.7 473.0	40.3 35.9	D D	517.7 473.0	57.8 46.3	D D	668.1 573.4	57.8 46.3	E D	668.1 573.4	-	1 1	

Table 5-2 (Continued) SUMMARY OF DELAYS, LEVELS OF SERVICE, AND VEHICLE QUEUING [1] WEEKDAY AM AND PM PEAK HOURS OPTION A

>

																		13-Apr-21
		TRAFFIC	PEAK	YEAI	R 2020 EXIS	TING	YEAR 2020 E	XISTING V	V/ PROJECT	YEAR 2026 F	UTURE W	O PROJECT	YEAR 2026	FUTURE W	// PROJECT	YEAR 2026 F IMF	UTURE W/ ROVEMEN	PROJECT + TS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
12	Mindanao Way⁄ La Villa Marina	NB Left	AM PM	9.3 9.5	AA	10.6 12.3	9.3 9.5	AA	10.6 12.3	9.4 9.7	AA	11.2 13.6	9.4 9.7	A	11.2 13.6			
	(Signalized)	NB Through	AM PM	14.7 13.5	B B	302.9 258.9	14.7 13.5	B B	303.8 260.0	15.5 14.5	B B	332.4 297.6	15.5 14.5	B B	333.9 298.8			
		NB Right	AM PM	14.7 13.5	B B	299.3 254.6	14.7 13.5	B B	300.7 255.7	15.6 14.6	B B	328.7 293.1	15.6 14.6	B B	330.2 294.3	-		
		SB Left	AM PM	6.9 6.6	A A	14.1 30.1	6.9 6.6	A A	14.1 30.1	7.6 7.6	A A	15.1 32.1	7.6 7.6	A A	15.1 32.1	-		
		SB Through	AM PM	5.3 5.6	A A	139.4 153.7	5.4 5.6	A A	140.7 153.7	5.6 6.0	A A	156.3 183.4	5.6 6.0	A A	158.4 183.4	-		
		SB Right	AM PM	5.3 5.6	A A	138.1 153.1	5.4 5.6	A A	139.5 153.1	5.6 6.0	A A	155.0 182.8	5.6 6.0	A A	157.1 183.4	-		
		EB Left/Through/Right	AM PM	32.1 32.7	C C	24.6 49.3	32.1 32.7	C C	24.6 49.3	32.1 32.8	C C	26.4 52.0	32.1 32.8	C C	26.4 52.0			
		WB Left/Through/Right	AM PM	45.0 34.4	D C	236.9 112.5	45.0 34.4	D C	236.9 112.5	49.2 34.6	D C	260.0 119.6	49.2 34.6	D C	260.0 119.6			

[1] Pursuant to LADOT Transportation Assessment Guidelines, July 2020, the Highway Capacity Manual (HCM) methodology for signalized and unsignalized intersections was utilized to calculate vehicle queuing.

Control delay reported in seconds per vehicle.
 Signalized Intersection Levels of Service were based or

ection Levels of Service were based on the follow	ing criteria:	Unsignalized Intersection Levels of Service wer	re based on the following criteria:
Control Delay (s/veh)	LOS	Control Delay (s/veh)	LOS
<= 10	Α	<= 10	Α
> 10-20	В	> 10-15	В
> 20-35	С	> 15-25	С
> 35-55	D	> 25-35	D
> 55-80	E	> 35-50	E
> 80	F	> 50	F

[4] The 95th percentile queue is the maximum back of queue with 95th percentile traffic volumes. The HCM 6th Edition methodology worksheets report queues in number of vehicles, however an average vehicle length of 25 feet was assumed for analysis purposes. The reported queues therefore represent the calculated maximum back of queue in feet.

																		13-Apr-21
		TDAFFIC	DEAL	VEAD	2 2020 EVB	TINC	VEAD 2020 E	VISTING	V/OPTION P	VE AD 2026 E	UTUDE W	O OPTION P	VE AD 2026	EUTUDE V	OPTION P	YEAR 2026 F	UTURE W	OPTION B +
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	OUEUE [4]	DELAY [2]	LOS [3]	OUEUE [4]	DELAY [2]	LOS [3]	OUEUE 141	DELAY [2]	LOS [3]	OUEUE [4]	DELAY [2]	LOS [3]	OUEUE [4]
1	Walgrove Avenue / Washington Boulevard	SB Left/Right	AM PM	64.4 155.5	F	215.0 430.0	70.7 158.9	F F	227.5 432.5	138.1 291.2	F F	335.0 610.0	156.3 296.8	F	355.0 615.0			
	(Unsignalized)	EB Left	AM PM	25.0 18.1	C C	112.5 67.5	26.2 18.3	D C	120.0 67.5	33.9 23.0	D C	157.5 95.0	36.1 23.2	E C	165.0 95.0	-		
2	Lincoln Boulevard / Marina Pointe Drive - Maxella Avenue	NB Left	AM PM	44.6 47.2	D D	73.9 122.9	44.6 47.2	D D	73.9 122.9	46.0 47.8	D D	78.4 130.4	46.0 47.8	D D	78.4 130.4			-
	(Signanzed)	NB Through	AM PM	140.5 76.7	F F	1225.2 814.0	140.5 76.7	F F	1225.2 814.0	176.2 123.0	F F	1459.9 1111.2	176.2 123.0	F F	1459.9 1111.2			
		NB Right	AM PM	22.2 24.0	C C	234.3 293.7	22.9 24.2	C C	256.0 301.1	22.9 26.0	C C	257.0 355.3	23.6 26.3	C C	279.5 363.3	-		-
		SB Left	AM PM	33.8 33.6	C C	62.7 53.2	33.9 33.6	C C	67.5 54.7	33.9 33.7	C C	68.0 59.5	34.0 33.8	C C	72.9 61.1	-		-
		SB Through	AM PM	40.2 45.0	D D	493.7 598.6	40.2 45.0	D D	493.7 598.6	42.1 51.1	D D	540.5 684.3	42.1 51.1	D D	540.5 684.3	-	-	-
		SB Right	AM PM	45.3 54.3	D	511.9 627.2	45.3 54.3	D	511.9 627.2	48.7 64.6	D E	564.8 732.8	48.7 64.6	DE	564.8 732.8	-		-
		EB Lett	AM PM	45.6 45.9	D	99.3 113.1	45.6 45.9	D	99.3 113.1	45.8	D	106.2 120.0	45.8 46.1	D	106.2 120.0	-	-	-
		EB Through	AM PM	45.6 45.1	D	104.4 84.0	45.6 45.1	D	104.4 84.0	45.7 45.2	D	111.3 89.5	45.7 45.2	D	111.3 89.5	-	-	-
		EB Right	AM PM	7.1 6.5	A	140.9 71.9	7.1 6.5	A	140.9 71.9	7.2 6.5	A	150.2 76.2	7.2 6.5	A	150.2 76.2	-	-	-
		WB Lett	AM PM	52.3 74.1	E	332.5	52.6 74.5	E	184.5 334.0	59.6 108.8	F	254.3 457.8	61.1 109.6	F	264.5 460.2	-	-	-
		WB Ihrough	AM PM	51.1 66.4	E	302.4	51.2 66.6	E	303.1	52.5 79.8	E	182.3 363.3	52.6 80.0	F	364.2	-	-	-
		WB Right	AM PM	35.7 37.8	D	141.0 223.3	36.0 37.9	D	152.3 224.4	36.1 38.4	D	157.5 241.4	36.4 38.4	D	169.0 242.3	-	-	-
3	Del Rey Avenue / Maxella Avenue (Unsionalized)	SB Left/Right	AM PM	11.8 17.0	B C	15.0 70.0	12.0 17.1	B C	17.5 70.0	13.4 21.4	B C	32.5 100.0	13.6 21.6	B C	32.5 102.5			
	(enspirated)	EB Left	AM PM	8.5 8.9	A A	10.0 7.5	8.6 8.9	A A	12.5 7.5	8.7 9.3	A A	12.5 10.0	8.8 9.4	A A	12.5 10.0	-		

Table 5-3 SUMMARY OF DELAYS, LEVELS OF SERVICE, AND VEHICLE QUEUING [1] WEEKDAY AM AND PM PEAK HOURS OPTION B

~

																YEAR 2026 F	UTURE W	OPTION B +
NO.	INTERSECTION	TRAFFIC MOVEMENT	PEAK HOUR	YEAI DELAY [2]	R 2020 EXIS LOS [3]	STING QUEUE [4]	YEAR 2020 E DELAY [2]	LOS [3]	V/ OPTION B QUEUE [4]	YEAR 2026 F DELAY [2]	LOS [3]	O OPTION B QUEUE [4]	YEAR 2026 1 DELAY [2]	LOS [3]	QUEUE [4]	IMP DELAY [2]	ROVEME LOS [3]	NTS QUEUE [4]
4	Ocean Way / Maxella Avenue	NB Left	AM PM	14.3 20.5	B	10.0	10.9	B	26.5 25.9	16.2 27.2	CD	15.0 35.0	10.8	B	29.9 30.3	-		
	(Unsignalized w/o Project; Signalized w/ Project)	NB Right	AM	9.8	A	7.5	11.2	В	32.0	10.1	В	7.5	11.0	В	34.8	-		
		EB Through	AM				12.4	В	20.3 82.9			-	12.8	в	24.3 96.2	-	-	-
		ED Dight	PM				13.5	В	122.6			-	14.2	В	144.7	-		
		ED Right	PM				13.7	В	117.0		-	-	14.3	В	137.2	-		-
		WB Left	AM PM	8.2 8.8	A A	2.5 5.0	14.0 16.1	B B	18.0 26.3	8.3 9.1	A A	2.5 5.0	14.7 17.9	B B	21.1 36.7	-	-	
		WB Through	AM PM				11.5 12.1	B B	54.2 77.7			-	11.7 12.5	B B	60.5 94.3	-		
5	Maxella Avenue Driveway / Maxella Avenue (Unsignalized)	NB Right	AM PM	9.4 9.9	A A	0.0 0.0	9.5 9.9	A A	0.0 0.0	9.6 10.2	A B	0.0 0.0	9.7 10.2	A B	0.0 0.0		-	
6	Glencoe Avenue / Maxella Avenue	NB Left	AM PM	17.9 22.4	B C	59.4 77.2	18.5 22.7	B C	60.7 77.9	19.3 30.5	B C	67.2 116.9	20.0 31.2	B C	68.8 118.3			
	(Signalized)	NB Through	AM PM	18.6 13.0	B B	280.9 151.8	19.8 13.0	B B	299.1 154.0	21.9 13.5	C B	327.0 174.9	24.0 13.6	C B	352.3 177.5	-		
		NB Right	AM PM	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	20.6 27.4	10.7 10.8	B B	20.6 27.4			
		SB Left	AM PM	24.1 16.8	C B	44.2 22.7	25.1 16.9	C B	45.3 22.8	26.7 18.0	C B	51.1 27.4	27.8 18.1	C B	52.5 27.5			
		SB Through	AM PM	12.5	B	128.1	12.7	B	137.1	12.9	B	145.6	13.0	B	155.0	-	-	
		SB Right	AM	12.6	В	122.7	12.7	В	131.5	12.9	В	139.3	13.1	В	148.0	-	-	
		EB Left	AM	13.4	В	47.9	13.7	В	55.0	14.0	В	57.6	14.3	В	65.2	-		
		EB Through	AM	15.4	В	38.6	15.5	В	40.7	16.8	В	90.4 45.3	17.0	в	92.4 47.1	-	-	-
		FB Right	PM AM	11.8	B	57.2	11.8	B	57.8	12.0	B	68.3 66.9	12.0	B	68.8 69.7	-	-	-
		22 Right	PM	12.9	В	81.0	12.9	B	81.5	13.2	В	89.5	13.2	В	89.9	-	-	
		WB Left	AM PM	12.5	B	27.5 44.7	12.6	B	27.6 44.7	12.9	B	29.6 48.9	12.9 14.6	B	29.8 49.0	-	-	-
		WB Through	AM PM	11.1 11.6	B B	31.7 52.6	11.2 11.6	B B	33.7 53.1	11.2 11.8	B B	35.7 61.0	11.2 11.9	B B	37.4 61.5	-	-	-
		WB Right	AM PM	11.3 11.8	B B	32.5 50.1	11.3 11.8	B B	32.5 50.5	11.4 12.0	B B	35.4 57.8	11.4 12.1	B B	35.9 58.4	-		-
7	Glencoe Avenue / Glencoe Avenue Northerly Driveway	NB Left	AM PM						-			-			-			
	(Unsignalized)	EB Right	AM PM						-		-	-	-		-	-	-	-

																		13-Apr-21
																YEAR 2026 F	UTURE W	OPTION B +
		TRAFFIC	PEAK	YEAH	R 2020 EXI	STING	YEAR 2020 1	EXISTING	W/ OPTION B	YEAR 2026 F	UTURE W	O OPTION B	YEAR 2026	FUTURE V	W/ OPTION B	IMI	ROVEME	NTS
NC	D. INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
8	Glencoe Avenue / Glencoe Avenue Southerly Driveway - Villa	NB Left	AM PM	9.5 10.9	A B	2.5 5.0	10.0 11.2	A B	7.5 10.0	9.9 11.5	A B	2.5 7.5	10.4 11.8	B B	7.5 10.0	14.7 18.9	B B	36.1 49.8
	(Unsignalized; Signalized w/ Improvements)	NB Through	AM PM													9.9 8.8	A A	183.0 116.0
		NB Right	AM PM				-				-					9.9 8.8	A A	182.8 115.4
		SB Left	AM PM	9.4 8.5	A A	0.0 0.0	9.4 8.5	A A	0.0 0.0	9.6 8.8	A A	0.0 0.0	9.6 8.7	A A	0.0 0.0	11.6 10.0	B A	1.6 5.3
		SB Through	AM PM								-					10.3 11.6	B B	205.8 261.7
		SB Right	AM PM					-			-					10.4 11.7	B B	202.0 256.0
		EB Left/Right	AM PM	28.3 118.5	D F	10.0 142.5	35.7 162.8	E F	60.0 222.5	35.3 230.9	E F	12.5 200.0	50.7 311.3	F F	82.5 300.0	24.6 25.9	C C	79.8 132.5
		WB Left/Right	AM PM	23.2 21.4	C C	7.5 5.0	29.5 24.2	D C	10.0 5.0	27.3 25.5	D D	10.0 5.0	36.0 29.5	E D	15.0 7.5	23.3 23.2	C C	16.7 9.0
9	Mindanao Way/ Glencoe Avenue	NB Left	AM PM	195.5 54.1	F D	892.7 276.3	234.5 59.2	F E	1037.7 293.5	283.1 101.4	F F	1182.0 397.3	326.7 111.5	F F	1333.7 427.1	22.0 23.4	C C	308.2 183.2
	(Signalized)	NB Through	AM PM	20.9 19.1	C B	233.0 133.3	20.9 19.1	C B	233.0 133.3	21.4 19.4	C B	251.8 152.4	21.4 19.4	C B	251.8 152.4	14.8 17.6	B B	209.1 143.7
		NB Right	AM PM	21.0 19.1	C B	225.5 129.9	21.0 19.1	C B	225.5 129.9	21.5 19.4	C B	243.0 147.9	21.5 19.4	C B	243.0 147.9	14.8 17.6	B B	201.8 139.5
		SB Left	AM PM	25.9 21.7	C C	6.1 7.0	25.9 21.7	C C	6.1 7.0	26.9 22.4	C C	7.0 8.6	26.9 22.4	C C	7.0 8.6	29.2 26.7	C C	7.4 9.5
		SB Through	AM PM	19.7 20.6	B C	171.2 218.4	19.7 20.6	B C	175.4 219.4	20.0 21.1	B C	189.3 240.8	20.0 21.1	C C	192.7 242.2	35.2 34.1	D C	250.7 304.2
		SB Right	AM PM	19.7 20.6	B C	161.9 210.0	19.8 20.7	B C	164.8 211.0	20.0 21.2	C C	178.3 230.8	20.1 21.2	C C	181.6 231.6	35.4 34.3	D C	238.7 290.9
		EB Left	AM PM	14.3 16.0	B B	42.5 86.1	14.5 16.1	B B	48.2 87.0	14.7 16.8	B B	51.8 98.6	15.0 16.9	B B	57.9 99.3	21.8 19.0	C B	72.7 106.7
		EB Through	AM PM	12.7 13.6	B B	73.6 122.1	12.8 13.6	B B	77.0 122.7	13.0 13.9	B B	86.0 135.4	13.0 13.9	B B	89.5 136.0	18.9 15.5	B B	112.8 146.0
		EB Right	AM PM	19.4 28.6	B C	295.3 473.9	20.9 29.4	C C	330.7 485.7	20.9 35.3	C D	330.7 567.3	22.7 36.9	C D	369.6 583.1	11.1 18.1	B B	252.7 409.3
		WB Left	AM PM	14.1 17.5	B B	25.8 83.0	14.2 17.5	B B	25.9 83.0	14.6 18.5	B B	29.3 99.3	14.7 18.6	B B	29.4 99.3	21.3 20.8	C C	36.9 106.6
		WB Through	AM PM	12.4 12.6	B B	57.0 66.0	12.5 12.6	B B	58.5 66.5	12.5 12.8	B B	61.6 74.8	12.5 12.8	B B	63.1 75.6	18.1 14.3	B B	79.4 81.0
		WB Right	AM PM	12.5 12.6	B B	56.7 64.9	12.5 12.6	B B	58.0 65.6	12.5 12.8	B B	61.0 73.7	12.6 12.8	B B	62.5 74.2	18.2 14.3	B B	78.9 79.6

																		13-Apr-21
		TRAFFIC	PEAK	YEAI	R 2020 EXIS	STING	YEAR 2020 E	XISTING V	V/ OPTION B	YEAR 2026 F	UTURE W	O OPTION B	YEAR 2026	FUTURE W	/ OPTION B	YEAR 2026 F IMP	UTURE W/ ROVEME	OPTION B + NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
10	Mindanao Way/ SR-90 Westbound	NB Left	AM PM	31.5 31.7	C C	6.2 14.6	31.5 31.7	с с	6.2 14.6	31.5 31.7	C C	6.2 15.4	31.5 31.7	C C	6.2 15.4			
	(Signalized)	NB Through	AM PM	14.0 13.4	B B	158.0 120.6	14.1 13.4	B B	160.4 121.1	14.3 13.8	B B	174.0 136.9	14.4 13.8	B B	176.5 137.5	-		
		SB Through	AM PM	31.0 51.3	C D	257.8 478.2	31.6 52.3	C D	270.7 484.8	32.2 73.0	C F	282.9 607.0	33.0 74.7	C F	296.2 616.3	-	-	-
		SB Right	AM PM	33.7 62.4	C E	267.8 520.3	34.6 63.5	C E	282.1 527.4	35.6 84.7	D F	295.5 650.1	36.7 86.3	D F	310.6 659.2	-	-	-
		WB Left	AM PM	26.8 23.1	C C	330.0 251.9	26.8 23.1	C C	330.0 251.9	29.4 25.1	C C	369.5 297.5	29.4 25.1	C C	369.5 297.5	-		-
		WB Through	AM PM	97.0 31.6	F C	969.8 442.1	102.2 31.9	F C	1009.1 446.8	130.4 47.2	F D	1222.9 594.9	135.9 48.2	F D	1265.3 603.6	-	-	-
		WB Right	AM PM	160.0 23.8	F C	1250.5 243.7	172.8 24.1	F C	1337.4 248.7	200.3 25.6	F C	1525.8 277.0	213.4 26.0	F C	1616.4 282.6	-	1 1	-
11	Mindanao Way/ SR-90 Eastbound	NB Through	AM PM	197.8 144.4	F F	760.8 587.7	202.7 145.7	F F	777.0 592.0	241.2 200.4	F F	902.7 768.5	246.2 201.8	F F	919.4 773.1			-
	(Signanizet)	NB Right	AM PM	474.9 394.0	F F	1498.1 1261.5	474.9 394.0	F F	1498.1 1261.5	539.1 497.8	F F	1683.9 1564.6	539.1 497.8	F F	1683.9 1564.6	-		-
		SB Left	AM PM	27.7 33.3	C C	197.3 303.4	28.2 33.6	C C	211.2 307.3	28.4 36.8	C D	215.8 343.2	29.0 37.3	C D	230.2 348.0	-	-	-
		SB Through	AM PM	17.5 18.7	B B	304.5 344.5	17.6 18.7	B B	306.8 345.5	18.4 20.6	B C	336.3 403.2	18.5 20.6	B C	338.6 404.4	-	-	
		EB Left	AM PM	17.9 17.8	B B	17.3 10.3	17.9 17.8	B B	17.3 10.3	18.0 17.8	B B	20.9 11.5	18.0 17.8	B B	20.9 11.5	-	-	-
		EB Through	AM PM	40.1 35.9	D D	518.7 474.6	40.1 35.9	D D	518.7 474.6	57.4 46.2	E D	668.3 574.1	57.4 46.2	E D	668.3 574.1	-		-
		EB Right	AM PM	40.3 35.9	D D	517.7 473.0	40.3 35.9	D D	517.7 473.0	57.8 46.3	D D	668.1 573.4	57.8 46.3	E D	668.1 573.4	-	-	-

>

																		13-Apr-21
																YEAR 2026 F	UTURE W/	OPTION B +
		TRAFFIC	PEAK	YEA	R 2020 EXIS	TING	YEAR 2020 E	XISTING W	// OPTION B	YEAR 2026 F	UTURE W/	O OPTION B	YEAR 2026	FUTURE W	OPTION B	IME	ROVEMEN	TS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
12	Mindanao Way/	NB Left	AM	9.3	А	10.6	9.3	А	10.6	9.4	А	11.2	9.4	Α	11.2			
	La Villa Marina		PM	9.5	А	12.3	9.5	А	12.3	9.7	А	13.6	9.7	А	13.6			
	(Signalized)					-			-									
	(8)	NB Through	AM	14.7	В	302.9	14.7	В	305.1	15.5	В	332.4	15.6	В	334.7			
		0	PM	13.5	в	258.9	13.5	в	259.3	14.5	В	297.6	14.5	в	298.0			
					-			-			-			-				
		NB Right	AM	14.7	в	299.3	14.8	в	301.5	15.6	В	328.7	15.6	в	331.6			
		0	PM	13.5	в	254.6	13.5	в	255.5	14.6	В	293.1	14.6	в	294.1			
					-			-			-			-				
		SB Left	AM	6.9	А	14.1	6.9	А	14.1	7.6	А	15.1	7.6	А	15.1			
			PM	6.6	А	30.1	6.6	А	30.1	7.6	А	32.1	7.6	А	32.1			
		SB Through	AM	5.3	А	139.4	5.3	А	140.4	5.6	А	156.3	5.6	А	158.1			
		0	PM	5.6	А	153.7	5.6	А	154.0	6.0	А	183.4	6.0	А	183.7			
		SB Right	AM	5.3	А	138.1	5.4	А	139.2	5.6	А	155.0	5.6	А	156.7			
		0	PM	5.6	А	153.1	5.6	А	153.4	6.0	А	182.8	6.0	А	183.1			
		EB Left/Through/Right	AM	32.1	С	24.6	32.1	С	24.6	32.1	С	26.4	32.1	С	26.4			
		0 0	PM	32.7	С	49.3	32.7	С	49.3	32.8	С	52.0	32.8	С	52.0			
		WB Left/Through/Right	AM	45.0	D	236.9	45.0	D	236.9	49.2	D	260.0	49.2	D	260.0			
			PM	34.4	c	112.5	34.4	с	112.5	34.6	С	119.6	34.6	Ċ	119.6			
				-		-	-		-									

[1] Pursuant to LADOT Transportation Assessment Guidelines, July 2020, the Highway Capacity Manual (HCM) methodology for signalized and unsignalized intersections was utilized to calculate vehicle queuing.

Control delay reported in seconds per vehicle.
 Signalized Intersection Levels of Service were based on

ction Levels of Service were based on the followi	ng criteria:	Unsignalized Intersection Levels of Service were based on the following criteria:				
Control Delay (s/veh)	LOS	Control Delay (s/veh)	LOS			
<= 10	А	<= 10	A			
> 10-20	В	> 10-15	В			
> 20-35	С	> 15-25	С			
> 35-55	D	> 25-35	D			
> 55-80	E	> 35-50	E			
> 80	F	> 50	F			

[4] The 95th percentile queue is the maximum back of queue with 95th percentile traffic volumes. The HCM 6th Edition methodology worksheets report queues in number of vehicles, however an average vehicle length of 25 feet was assumed for analysis purposes. The reported queues therefore represent the calculated maximum back of queue in feet.

Appendix J.2

Updated Option B VMT Analysis

MEMORANDUM

To:	Pedro Ayala Los Angeles Department of Transportation	Date:	October 26, 2022
From:	David S. Shender, P.E. Jason A. Shender, AICP	LLG Ref:	1-16-0265-1
	Linscou, Law & Greenspan, Engineers		
Subject:	Updated Vehicle Miles Traveled Analysis Project (Option B), 13400 Maxella Avenu	s for the l le – CTC	Paseo Marina 20-109212

This memorandum has been prepared by Linscott, Law & Greenspan, Engineers (LLG) to provide an updated Vehicle Miles Traveled (VMT) analysis for the proposed Paseo Marina project ("the Project") located at 13400 Maxella Avenue (the "Project Site") in the Palms – Mar Vista – Del Rey Community Plan area of the City of Los Angeles (the "City"). The Project Site is located within the City's Coastal Transportation Corridor Specific Plan (CTCSP) area.

For this Project, LLG previously prepared a Transportation Assessment dated July 6, 2021 (the "2021 Transportation Assessment") based on the *Los Angeles Department of Transportation (LADOT) Transportation Assessment Guidelines*, July 2020 (the "TAG"). The findings of the 2021 Transportation Assessment were confirmed based on the LADOT assessment letter¹ dated May 3, 2022.

The 2021 Transportation Assessment evaluated the potential transportation impacts related to vehicle miles traveled (VMT) for two Project development scenarios: Option A and Option B. The 2021 Transportation Assessment determined that the Option A development would have a less than significant impact related to VMT. For the Option B development, the commercial component was determined to have a significant impact related to VMT which could not be fully mitigated based on the transportation demand management (TDM) measures provided in LADOT's VMT Calculator. These findings were confirmed in LADOT's May 3, 2022 assessment letter.

This memorandum has been prepared to provide an updated VMT analysis for the Project's Option B development to consider the effects of an additional TDM measure recently made available for consideration by LADOT in evaluating the potential mitigation of VMT effects related to development projects. The proposed development description for the Project's Option B scenario as evaluated in the 2021 Transportation Assessment has not changed, and the other analyses (i.e., the Threshold T-1 and T-3 analyses prepared for Option B) provided within the 2021 Transportation Assessment are still applicable.

LINSCOTT LAW & GREENSPAN

engineers

Engineers & Planners Traffic Transportation Parking

Linscott, Law & Greenspan, Engineers 600 S. Lake Avenue Suite 500 Pasadena, CA 91106

626.796.2322 т 626.792.0941 F www.llgengineers.com

Pasadena Irvine San Diego

¹ Revised Transportation Impact Assessment for the Proposed Mixed Use Project Located at 13400 Maxella Avenue (ENV-2016-3343-EIR / CPC-2016-3341-GPA-VZC-HD-MCUB-CDP-MEL-SPR), LADOT, May 3, 2022.

Pedro Ayala October 26, 2022 Page 2

Project Description – Option B

For Option B, the Applicant proposes to remove the existing improvements on the Project Site and construct a mixed-use development consisting of 382 market-rate residential apartment dwelling units, 43 affordable housing dwelling units, 20,000 square feet of restaurant floor area, 20,000 square feet of commercial retail floor area, and 90,000 square feet of office floor area. Option B proposes to provide 1,287 parking spaces within an onsite parking garage with an at-grade level and three subterranean levels. The at-grade level of the parking garage will provide parking for the restaurant and commercial retail components of Option B, as well as for the leasing office associated with the residential component. The first subterranean level of the parking garage (Level B1) will provide parking for all components of Option B (i.e., residential, restaurant, commercial retail, and office). Level B2 will provide parking for the residential and office components of Option B. Level B3 will provide parking for the residential component of Option B. Construction and occupancy of Option B is proposed to be completed by the year 2026.

Updated VMT Analysis

A VMT calculation was prepared for the Project utilizing the City's VMT Calculator and was included in Appendix E of the 2021 Transportation Assessment. The VMT Calculator output is attached at the end of this memorandum for reference. As shown on Page 2 of the VMT Calculator output, the residential component of Option B, without consideration of the TDM measures described, the Project is forecast to generate the following:

- The estimated Daily Household VMT per Capita for Option B is 6.8, which is less than the West Los Angeles Area Planning Commission (APC) significance threshold of 7.4 Daily Household VMT per Capita. VMT impacts are therefore less than significant.
- The estimated Daily Work VMT per Employee for Option B is 14.5, which is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee, and therefore considered a significant impact.
- As stated in Section 2.9 of the 2021 Transportation Assessment, Option B includes six (6) transportation demand management (TDM) measures to be implemented as mitigation measures: Transit Subsidies; Promotions and Marketing; Alternative Work Schedules and Telecommuting Program; Include Bike Parking per the Los Angeles Municipal Code; Include Secure Bicycle Parking and Showers; and Pedestrian Network Improvements.
engineers

- Taking the TDM measures described above into consideration, the estimated Daily Household VMT per Capita for Option B is reduced to 5.4 Daily Household VMT per Capita, further below the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita.
- The estimated Daily Work VMT per Employee for Option B is reduced to 11.6 Daily Work VMT per Employee due to the TDM measures, which is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee and therefore still considered a significant impact.

Per the VMT Calculator output, the Project Site is located within a "Suburban Center," resulting in a 20 percent (20%) maximum allowable VMT reduction. As shown on Page 2 of the VMT Calculator output, the maximum work based TDM is achieved based on the selection of the six TDM measures listed above. As stated on Page 11 of the VMT Calculator output, Option B is estimated to have 480 total employees, and a Total Home Based Work Attraction VMT of 5,574, resulting in a Total Work Based VMT per Employee of 11.6 Daily VMT per Employee.

As stated previously, the West Los Angeles APC significance threshold is 11.1 Daily Work VMT per Employee. Multiplying 480 employees by the significance threshold of 11.1 Daily Work VMT per Employee results in a Total Home Based Work Attraction VMT of 5,328. Therefore, further supplemental mitigation would be required to achieve the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee. Stated otherwise, reducing the Total Home Based Work Attract VMT from 5,574 to 5,328, a reduction of 246 Daily Work VMT, would reduce the impact to less than significant.

Supplemental Mitigation Measure

As stated above, with consideration of the above TDM measures, the Option B Total Home Based Work Attraction VMT is 5,574. This would need to be reduced by a total of 246 Daily Work VMT in order to reduce the Option B Daily Work VMT per Employee impact to less than significant. To achieve this reduction, the Project proposes to participate in the Metro Universal College Student Transit Pass (U-Pass) program. The U-Pass program is a strategy identified in the *VMT Mitigation Pilot Program Project*² report (the "U-Pass Study") prepared by Fehr & Peers for SCAG and LADOT. Per the U-Pass Study, the U-Pass program has the potential to reduce regional VMT through subsidizing transit passes for college students throughout Los Angeles County. The Project would contribute a fee to the pilot program based on the VMT reduction needed to eliminate the impact and bring the equivalent Daily Work VMT per Employee to the West Los Angeles APC threshold of 11.1.

² VMT Mitigation Program Pilot Project, Fehr & Peers, June 2021.

The U-Pass Study states that for every 10.79 student passes funded, a project could eliminate one (1) daily VMT from its calculated impact. As Option B needs to reduce 246 daily VMT to achieve a less than significant impact, approximately 2,654 student passes would need to be funded annually in order to fully mitigate the impact. The U-Pass Study states that each pass would cost \$7.00 per student per year. Accordingly, the Project will contribute \$18,578.00 annually in order to fund the 2,654 student passes required to fully mitigate the Option B Daily Work VMT per Employee impact.

It is recommended that the Project shall be required to annually fund the purchase of student passes at a cost of \$18,578.00 for a minimum of seven (7) years. LADOT has acknowledged that future revisions to its VMT Calculator are expected and may include additions and alterations to transit systems, land uses, and travel behaviors that may show that the Project's Option B may not require supplemental mitigation such as the annual purchase of transit passes for students to not exceed future VMT thresholds. The Project's proposed TDM measures may be determined to be sufficient to mitigate its significant VMT impact and no further mitigations would be required, thereby eliminating the requirement to fund the annual purchase of the student transit passes. Otherwise, the annual fee of \$18,578.00 (or a portion thereof if it is determined that fewer than 246 daily VMT are needed to be reduced to result in a less than significant impact) would continue until the Project's Option B TDM measures are alone sufficient to reduce the Project's VMT to less than significant in the version of the VMT Calculator that is current at the time of future analysis.

Updated Cumulative VMT Analysis

As stated in the City's TAG document, analyses should consider both short-term and long-term project effects on VMT. Short-term effects are evaluated in the detailed Project-level VMT analysis summarized above. Long-term, or cumulative, effects are determined through a consistency check with the SCAG's Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS). The RTP/SCS is the regional plan that demonstrates compliance with air quality conformity requirements and greenhouse gas (GHG) reduction targets. As such, projects that are consistent with this plan in terms of development, location, density, and intensity, are part of the regional solution for meeting air pollution and GHG goals. Projects that are deemed to be consistent would have a less than significant cumulative impact on VMT. Development in a location where the RTP/SCS does not specify any development may indicate a significant impact on transportation. However, as noted in the City's TAG document, for projects that do not demonstrate a project impact by applying an efficiency-based impact threshold (i.e., VMT per capita or VMT per employee) in the analysis, a less than significant project impact conclusion is sufficient in demonstrating there is no cumulative VMT impact. Projects that fall

under the City's efficiency-based impact thresholds are already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS.

Based on the above Project-related VMT analysis and the conclusions (i.e., which conclude that the Project, with the implementation of the six TDM mitigation measures and participation in the U-Pass program, falls under the City's efficiency-based impact thresholds and thus is already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS), no cumulative VMT impacts are anticipated. Therefore, a "less than significant" determination can be made as it relates to the Project's cumulative VMT impact.

Conclusions

This memorandum has been prepared by Linscott, Law & Greenspan, Engineers (LLG) to provide an updated Vehicle Miles Traveled (VMT) analysis for the proposed Paseo Marina project located at 13400 Maxella Avenue in the Palms – Mar Vista – Del Rey Community Plan area of the City of Los Angeles (the "City"). The Project Site is located within the City's Coastal Transportation Corridor Specific Plan area. The conclusions are as follows:

- Prior to the consideration of any supplemental mitigation measures, Option B's Daily Work VMT per Employee was greater than the Daily Work VMT per Employee threshold for the West Los Angeles APC.
- The Project will participate in the U-Pass program, which funds transit passes for college students throughout Los Angeles County, in order to reduce the Option B equivalent daily VMT contribution to a less than significant level.
- Per the U-Pass Study, 10.79 transit passes must be purchased in order to eliminate one daily VMT. As 246 daily VMT must be reduced to mitigate Project's Option B significant impact related to VMT, 2,654 student passes must be purchased.
- Based on the U-Pass Study, the total annual cost of funding 2,654 passes at \$7.00 per pass is \$18,578.00. The Project will contribute the required amount of \$18,578.00 to the U-Pass program annually for a minimum of seven (7) years. Future evaluations may be prepared using LADOT's VMT Calculator which may demonstrate that the Project's Option B TDM measures alone are sufficient to mitigate it significant VMT impact and that the purchase of transit passes for students is no longer required. Additionally, the annual fee may be reduced if it is determined that fewer than 246 VMT are needed to be reduced to achieve a less than significant impact.

- As the Project will participate in the U-Pass program, the Option B Daily Work VMT per Employee impact is considered to be fully mitigated and reduced to less than significant.
- Further, based on the Project-related VMT analysis and the conclusions reported herein (i.e., which conclude that the Project, with the implementation of the six TDM mitigation measures and participation in the U-Pass program, falls under the City's efficiency-based impact thresholds and thus are already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS), no cumulative VMT impacts are anticipated.

cc: File

APPENDIX E

LADOT VMT CALCULATOR OUTPUT OPTION B

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Existing Land Use

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

O No

• Yes

Land Use Type		Value	Unit		
Retail General Retail	-	100.781	ksf	•	
Retail General Retail		100.781	ksf		

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type		Value	Unit	
Office General Office	-	90	ksf	+
Housing Multi-Family		382	DU	
Housing Affordable Housing - Family		43	DU	
Retail High-Turnover Sit-Down Restaurant	t	20	ksf	
Retail General Retail		20	ksf	
Office General Office		90	ksf	

Project Screening Summary

Existing Land Use	Proposed Project		
3,595 Daily Vehicle Trips	5,574 Daily Vehicle Trips		
29,609 Daily VMT	45,178 Daily VMT		
Tier 1 Scree	ning Criteria		
Project will have less residential units compared to existing residential units & is within one-half mile of a fixed-rail station.			
The net increase in daily trips < 250 trips 1,979 Net Daily Trips			
The net increase in daily VMT ≤ 0 15,569 Net Daily VM			
The proposed project consists of only retail40.000land uses < 50,000 square feet total.			
The proposed project is required to perform VMT analysis.			

Click here to add a single custom land use type (will be included in the above list)

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	382	DU
Housing Affordable Housing - Family	43	DU
Retail High-Turnover Sit-Down Restaurant	20	ksf
Retail General Retail	20	ksf
Office General Office	90	ksf

TDM Strategies - Max Mitigation Reduction

Use 🗹 to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Select each section to show individual strategies

Analysis Results

Max Home Based TDM A Max Work Based TDM Ac	chieve :hieve	Prop ed? d?	osed Project No No	With Mitigation Yes Yes		
A		Parking				
Reduce Parking Supply	100	city code parking	g provision for th	ne project site		
Proposed Prj Mitigation	74	actual parking p	rovision for the p	broject site		
Unbundle Parking Proposed Prj Mitigation	175	monthly parking site	J cost (dollar) for	the project		
Parking Cash-Out	100	percent of emplo	oyees eligible			
Price Workplace Parking	6.00 100	daily parkir percent of emplo parking	ng charge (dollar oyees subject to) priced		
Residential Area Parking Permits Proposed Prj Mitigation	200	_ cost (dollar	r) of annual perm	it		
B Transit						
C Educa	C Education & Encouragement					
D Com	nmute	e Trip Redu	ictions			
•	Shai	red Mobilit	у			
F Bi	icycle	Infrastruct	ture			
G Neighborhood Enhancement						

Proposed Project	With Mitigation
5,574	4,459
Daily Vehicle Trips	Daily Vehicle Trips
45,178	36,142
Daily VMT	Daily VMT
6.8	5.4
Houseshold VMT	Houseshold VMT
per Capita	per Capita
14.5	11.6
Work VMT	Work VMT
per Employee	per Employee
Significant	/MT Impact?
Significant V Household: No	/MT Impact? Household: No
Significant N Household: No Threshold = 7.4	VMT Impact? Household: No Threshold = 7.4
Significant N Household: No Threshold = 7.4 15% Below APC	VMT Impact? Household: No Threshold = 7.4 15% Below APC
Significant N Household: No Threshold = 7.4 15% Below APC Work: Yes	VMT Impact? Household: No Threshold = 7.4 15% Below APC Work: Yes
Significant N Household: No Threshold = 7.4 15% Below APC Work: Yes Threshold = 11.1	VMT Impact? Household: No Threshold = 7.4 15% Below APC Work: Yes Threshold = 11.1

Report 1: Project & Analysis Overview

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Project Information					
Land	Use Type	Value	Units		
	Single Family	0	DU		
	Multi Family	382	DU		
Housing	Townhouse	0	DU		
	Hotel	0	Rooms		
	Motel	0	Rooms		
	Family	43	DU		
Affordable Housing	Senior	0	DU		
Allordable Housing	Special Needs	0	DU		
	Permanent Supportive	0	DU		
	General Retail	20.000	ksf		
	Furniture Store	0.000	ksf		
	Pharmacy/Drugstore	0.000	ksf		
	Supermarket	0.000	ksf		
	Bank	0.000	ksf		
	Health Club	0.000	ksf		
Datall	High-Turnover Sit-Down	20.000	1.0		
Retail	Restaurant	20.000	KST		
	Fast-Food Restaurant	0.000	ksf		
	Quality Restaurant	0.000	ksf		
	Auto Repair	0.000	ksf		
	Home Improvement	0.000	ksf		
	Free-Standing Discount	0.000	ksf		
	Movie Theater	0	Seats		
Office	General Office	90.000	ksf		
Office	Medical Office	0.000	ksf		
	Light Industrial	0.000	ksf		
Industrial	Manufacturing	0.000	ksf		
	Warehousing/Self-Storage	0.000	ksf		
	University	0	Students		
	High School	0	Students		
School	Middle School	0	Students		
	Elementary	0	Students		
	Private School (K-12)	0	Students		
Other		0	Trips		

Project and Analysis Overview

Report 1: Project & Analysis Overview

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Analysis Results					
Total Employees: 480					
	Total Population: 996				
Propose	ed Project	With Mitigation			
5,574	Daily Vehicle Trips	4,459	Daily Vehicle Trips		
45,178	Daily VMT	36,142	Daily VMT		
6.0	Household VMT	5.4	Household VMT per		
6.8	per Capita	5.4	Capita		
	Work VMT		Work VMT per		
14.5	per Employee	11.6	Employee		
Significant VMT Impact?					
	APC: West Los A	Angeles			
	Impact Threshold: 15% Belo	ow APC Average			
	Household = 7	7.4			
	Work = 11.1	L			
Propose	ed Project	With Mi	tigation		
VMT Threshold	Impact	VMT Threshold	Impact		
Household > 7.4	No	Household > 7.4	No		
Work > 11.1	Yes	Work > 11.1	Yes		

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

Reduce parking supply Unbundle parking	Description City code parking provision (spaces) Actual parking provision (spaces) Monthly cost for parking (\$)	Proposed Project 0 0 0	Mitigation: 0 0
Reduce parking supply Unbundle parking	City code parking provision (spaces) Actual parking provision (spaces) Monthly cost for parking (\$)	0 0	0
Unbundle parking	Actual parking provision (spaces) Monthly cost for parking (\$)	0	0
Unbundle parking	Monthly cost for parking (\$)		
Parking cash-out	parting (9)	\$0	\$0
	Employees eligible (%)	0%	0%
Price workplace parking	Daily parking charge \$0.00 Price workplace	\$0.00	\$0.00
	Employees subject to priced parking (%)	0%	0%
Residential area parking permits	Cost of annual permit (\$)	\$0	\$0
(cont. on following page	:)	
	Price workplace parking Residential area parking permits	Price workplace parking (\$) Employees subject to priced parking (%) Residential area parking permits permit (\$) (cont. on following page	Price workplace parkingDaily parking charge (\$)\$0.00Employees subject to priced parking (%)0%Residential area parking permitsCost of annual permit (\$)\$0\$0\$0(cont. on following page)

Report 2: TDM Inputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Strategy Type Description Proposed Project Mitigations						
		Reduction in headways (increase in frequency) (%)	0%	0%		
	Reduce transit headways	Existing transit mode share (as a percent of total daily trips) (%)	0%	0%		
Transit Implement neighborhod Transit subs		Lines within project site improved (<50%, >=50%)	0	0		
	Implement neighborhood shuttle	Degree of implementation (low, medium, high)	0	0		
		Employees and residents eligible (%)	0%	0%		
		Employees and residents eligible (%)	0%	100%		
	Transit subsidies	Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$2.98		
Education &	Voluntary travel behavior change program	Employees and residents participating (%)	0%	0%		
Encouragement	Promotions and marketing	Employees and residents participating (%)	0%	100%		

Report 2: TDM Inputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

TDM Strategy Inputs, Cont.					
Strate	gy Туре	Description	Proposed Project	Mitigations	
	Required commute trip reduction program	Employees participating (%)	0%	0%	
Alternation Schedule Telecome Reductions Employee vanpool of Ride-shar	Alternative Work	Employees participating (%)	0%	5%	
	Schedules and Telecommute Program	Type of program	0	1.5 days of telecommuting per week	
		Degree of implementation (low, medium, high)	0	0	
	Employer sponsored vanpool or shuttle	Employees eligible (%)	0%	0%	
		Employer size (small, medium, large)	0	0	
	Ride-share program	Employees eligible (%)	0%	0%	
Shared Mobility	Car share	Car share project setting (Urban, Suburban, All Other)	0	0	
	Bike share	Within 600 feet of existing bike share station - OR- implementing new bike share station (Yes/No)	0	0	
	School carpool program	Level of implementation (Low, Medium, High)	0	0	
	(1	cont. on following page	:)		

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.				
Strate	еду Туре	Description	Proposed Project	Mitigations
	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0
Bicycle	icycle structure Include Bike parking per LAMC Include secure bike parking and showers	Meets City Bike Parking Code (Yes/No)	0	Yes
Infrastructure		Includes indoor bike parking/lockers, showers, & repair station (Yes/No)	0	Yes
Traffic calming improvements Neighborhood Enhancement Pedestrian network improvements	Streets with traffic calming improvements (%)	0%	0%	
	improvements	Intersections with traffic calming improvements (%)	0%	0%
	Pedestrian network improvements	Included (within project and connecting off- site/within project only)	0	within project and connecting off-site

Report 3: TDM Outputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

TDM Adjustments by Trip Purpose & Strategy														
						Place type	: Suburban	Center						
		Ноте Ва	ased Work	Ноте Ва	ised Work	Home Bo	ised Other	Ноте Вс	ased Other	Non-Home Based Other		Non-Home Based Other		
		Prod	uction Mitigated	Attro	Aitigated	Prod	uction Mitigated	Attro	action Mitigated	Proc	luction Mitigated	Attr	action Mitigated	Source
		Proposed	wiitigateu	Proposed	wiitigated	Proposed	wiitigated	Proposed	wiitigateu	Proposed	wiitigated	Proposed	willigated	
	Reduce parking supply	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_
	Unbundle parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy
Parking	Parking cash-out	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Parking
	Price workplace parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1 - 5
	Residential area parking permits	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Transit	Reduce transit headways	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Stratogy
	Implement neighborhood shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Transit sections 1 - 3
	Transit subsidies	0%	16%	0%	16%	0%	16%	0%	16%	0%	16%	0%	16%	-
Education &	Voluntary travel behavior change program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Education &
Encouragement	Promotions and marketing	0%	4%	0%	4%	0%	4%	0%	4%	0%	4%	0%	0%	Encouragement sections 1 - 2
	Required commute trip reduction program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Commute Trip Reductions	Alternative Work Schedules and Telecommute Program	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Commute Trip
Reductions	Employer sponsored vanpool or shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	- Reductions sections 1 - 4
	Ride-share program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Car-share	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Shared Mobility	Bike share	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Appendix, Shared
	School carpool program	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Mobility sections 1 - 3

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 3: TDM Outputs

TDM Adjustments by Trip Purpose & Strategy, Cont.														
Place type: Suburban Center														
		Home Bo Prod	ased Work luction	Home Based Work Attraction		Home Based Other Home Based Other Production Attraction		ased Other action	Non-Home Based Other Production		Non-Home Based Other Attraction		Source	
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
	Implement/ Improve on-street bicycle facility	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Bicycle Infrastructure	Include Bike parking per LAMC	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	Appendix, Bicycle Infrastructure
	Include secure bike parking and showers	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	sections 1 - 3
Neighborhood Enhancement	Traffic calming improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix,
	Pedestrian network improvements	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	Neighborhood Enhancement sections 1 - 2

Final Combined & Maximum TDM Effect												
	Home Based Work Production		Home Ba Attra	ed Work Home B ction Pro [,]		used Other Home Based Ot uction Attraction		sed Other Iction	Non-Home Based Other Production		Non-Home Based Other Attraction	
	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated
COMBINED TOTAL	0%	22%	0%	22%	0%	22%	0%	22%	0%	22%	0%	19%
MAX. TDM EFFECT	0%	20%	0%	20%	0%	20%	0%	20%	0%	20%	0%	20%

= Minimum (X%, 1-[(1-A)*(1-B)])							
where X%=							
PLACE	urban	75%					
ТҮРЕ	compact infill	40%					
MAX:	suburban center	20%					
	suburban	15%					

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (*Transportation Assessment Guidelines Attachment G*) for further discussion of dampening.

> Report 3: TDM Outputs 10 of 13

Report 4: MXD Methodology

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

MXD Methodology - Project Without TDM											
Unadjusted Trips MXD Adjustment MXD Trips Average Trip Length Unadjusted VMT MXD VMT											
Home Based Work Production	379	-18.5%	309	8.3	3,146	2,565					
Home Based Other Production	1,049	-32.6%	707	5.9	6,189	4,171					
Non-Home Based Other Production	1,358	-6.1%	1,275	7.4	10,049	9,435					
Home-Based Work Attraction	696	-20.5%	553	12.6	8,770	6,968					
Home-Based Other Attraction	2,457	-26.3%	1,810	7.5	18,428	13,575					
Non-Home Based Other Attraction	987	-6.8%	920	9.2	9,080	8,464					

MXD Methodology with TDM Measures

		Proposed Project		Project with Mitigation Measures			
	TDM Adjustment	nt Project Trips Project VMT TE		TDM Adjustment	Mitigated Trips	Mitigated VMT	
Home Based Work Production	0.0%	309	2,565	-20.0%	247	2,052	
Home Based Other Production	0.0%	707	4,171	-20.0%	566	3,337	
Non-Home Based Other Production	0.0%	1,275	9,435	-20.0%	1,020	7,548	
Home-Based Work Attraction	0.0%	553	6,968	-20.0%	442	5,574	
Home-Based Other Attraction	0.0%	1,810	13,575	-20.0%	1,448	10,860	
Non-Home Based Other Attraction	0.0%	920	8,464	-20.0%	736	6,771	

MXD VMT Methodology Per Capita & Per Employee									
Total Population: 996									
Total Employees: 480									
APC: West Los Angeles									
	Proposed Project	Project with Mitigation Measures							
Total Home Based Production VMT	6,736	5,389							
Total Home Based Work Attraction VMT	6,968	5,574							
Total Home Based VMT Per Capita	6.8	5.4							
Total Work Based VMT Per Employee	14.5	11.6							

VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr & Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr & Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr & Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr & Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr & Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr & Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr & Peers, or another third party, even if the City or Fehr & Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr & Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

You, the User	
By:	Jash
Print Name:	Jason Shender, AICP
Title:	Transportation Planner III
Company:	Linscott, Law & Greenspan, Engineers
Address:	20931 Burbank Boulevard, Suite C Woodland Hills, CA 91367
Phone:	(818) 835-8648
Email Address:	jshender@llgengineers.com
Date:	6/21/2021

Appendix J.3

LADOT Assessment Letter

CITY OF LOS ANGELES

INTER-DEPARTMENTAL CORRESPONDENCE

13400 West Maxella Avenue LADOT Case No. CTC20-109212

Date: August 26, 2021

Susan Jimenez, Administrative Clerk Department of City Planning

From:

To:

Robert Sanchez, Transportation Engineer Department of Transportation

Subject: TRANSPORTATION IMPACT ASSESSMENT FOR THE PROPOSED MIXED USE PROJECT AT 13400 WEST MAXELLA AVENUE (ENV-2016-3343-EIR/ CPC-2016-3341-GPA-VZC-HD-MCUP-CDP-MEL-SPR)

The Department of Transportation (DOT) has completed its review of the transportation analysis prepared by Linscott, Law, & Greenspan, Engineers (LLG), dated April 29, 2021, with a subsequent revision dated July 6, 2021 for the proposed mixed use project located at 13400 West Maxella Avenue. In compliance with SB 743, a vehicle miles traveled (VMT) analysis is required to identify the project's alignment with the California Environmental Quality Act (CEQA) mandates to promote the reduction of green-house gas emissions, access to diverse land uses, and the development of multi-modal networks. The significance of a project's impact in this regard is measured against the VMT thresholds established in DOT's Transportation Assessment Guidelines (TAG), as described below.

DISCUSSION AND FINDINGS

A. <u>Project Description</u>

The project proposes to construct a new mixed use residential and commercial development on the southwest corner of Glencoe Avenue and Maxella Avenue with the following two land use options:

- 1. Option A: consists of the construction of a mixed-use development including 592 market-rate residential apartment dwelling units, 66 affordable housing dwelling units, 13,650 square feet of restaurant floor area, and 13,650 square feet of commercial floor area. Parking for Option A will be provided in two subterranean levels and two above-grade levels of parking within each of the three buildings. Option A proposes to provide a total of 1,217 parking spaces. Vehicular access for Option A will be provided via two access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, one driveway along the west side of Glencoe Avenue, and one entry/exit driveway located along the southern boundary of the project site as shown in the site plan for the project provided as Attachment "A" to this report. The proposed land uses under Option A are expected to be fully build out and occupied by the year 2026.
- 2. <u>Option B</u>: consists of the construction a mixed-use development including 382 market rate residential apartment dwelling units, 43 affordable housing dwelling units, 20,000

square feet of restaurant floor area, 20,000 square feet of commercial floor area, and 90,000 square feet of office use. Parking for Option B will be provided in an onsite parking garage with one level of at-grade parking and three levels of subterranean parking. Option B proposes to provide a total of 1,287 parking spaces. Vehicular access for Option B will be provided via three access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, and one driveway along the west side of Glencoe Avenue, along the southern boundary of the project site as shown in the site plan for the project provided as **Attachment "B"** to this report. The proposed land uses under Option B are expected to be fully build out and occupied by the year 2026.

The project site includes approximately 6.06 acres of land and is currently improved with 100,781 square feet of commercial floor area and surface parking areas. The project proposes to remove the existing improvements on the site and construct a mixed-use development under one of the two proposed development options.

B. Freeway Safety Analysis

Per the interim guideline for Freeway Safety Analysis memorandum issued by DOT on May 1, 2020 to address Caltrans safety concerns on freeways, the study addresses the project's effects on vehicle queueing on freeway off-ramps. Such an evaluation measures the project's potential to lengthen a forecasted off-ramp queue and create speed differentials between vehicles exiting the freeway off-ramp and vehicles operating on the freeway mainline.

The evaluation included in the assessment by LLG, identified the project trips expected to be added to nearby freeway off-ramps serving the project site. It was determined that as the SR-90 ("Marina freeway") is an at-grade roadway in the immediate project site vicinity, these nearby intersections are not considered to be freeway off-ramps. As there are no freeway off-ramps located in the immediate project site area, neither Option A nor Option B will add 25 or more trips to any nearby freeway off-ramps. Therefore, a freeway ramp analysis is not required.

C. <u>Trip Generation</u>

Option A is expected to potentially generate a net increase of 1,379 new daily vehicle trips, a net increase of 222 new AM peak hour trips (67 inbound and 155 outbound), and a net increase of 50 new PM peak hour trips (58 inbound and -8 outbound). A copy of the proposed weekday AM and PM peak hour trip generation table under Option A can be found in **Attachment "C"** to this report.

Option B is expected to generate a net increase of 1,979 new daily vehicle trips, a net increase of 231 new AM peak hour trips (114 inbound and 117 outbound), and a net increase of 59 new PM peak hour trips (36 inbound and 23 outbound). A copy of the proposed weekday AM and PM peak hour trip generation table under Option B can be found in **Attachment "D"** to this report. The weekday AM and PM peak hour trip generation estimates are based on rates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition, 2017.

D. <u>CEQA Screening Threshold</u>

Prior to accounting for trip reductions resulting from the application of Transportation Demand Management (TDM) Strategies, a trip generation analysis was conducted to determine if the project would exceed the 250 daily vehicle trips screening threshold. Using the City of Los Angeles VMT Calculator tool, which draws upon local trip generation information and trip rate estimates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition, and based on sociodemographic data and the built environment factors of the project's surroundings, it was determined that the project <u>does</u> exceed the net 250 daily vehicle trips threshold under both proposed project options. This determination is based on the latest VMT calculator version 1.3 at the time the transportation analysis was submitted and accepted by DOT. A copy of the VMT calculator screening pages, with the corresponding net daily trip estimates under both Option A and Option B are provided, as **Attachment "E"** and **Attachment "F"** correspondingly, to this report.

E. <u>Transportation Impacts</u>

On July 30, 2019, pursuant to SB 743 and the recent changes to Section 15064.3 of the State's CEQA Guidelines, the City of Los Angeles adopted VMT as the criteria used to determine transportation impacts under CEQA. The new DOT TAG provides instructions on preparing transportation assessments for land use proposals and defines the significant impact thresholds.

The DOT VMT Calculator tool measures project impact in terms of Household VMT per Capita, and Work VMT per Employee. DOT identified distinct thresholds for significant VMT impacts for each of the seven Area Planning Commission (APC) areas in the City. For the West Los Angeles APC area, in which the project is located, the following thresholds have been established:

- Household VMT per Capita: 7.4
- Work VMT per Employee: 11.1

As cited in the VMT Analysis report prepared by LLG, the proposed project is projected to have:

Under Option A, prior to the consideration of any TDM measures, a Household VMT per capita of 6.9 which is less than the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita, and a less than significant impact for the Daily Work VMT per employee for the retail component since the project's retail portion is less than the 50,000 square feet threshold. Therefore, it is concluded that implementation of the project under Option A would result in no significant VMT impact. A copy of the VMT Calculator summary impact report for Option A is provided as **Attachment "G"** to this letter.

Under Option B, prior to the consideration of any TDM measures, a Household VMT per capita portion of 6.8 which is less than the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita, and a Work VMT per employee of 14.5 which is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee. Taking into consideration the TDM measures being proposed by the project, the estimated Household VMT per Capita for Option B is reduced to 5.4, which further below the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita. The estimated Work VMT per Employee for Option B is reduced to 11.6, which is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee. While the Option B Work VMT per Employee is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee. LLG has identified that the total VMT related to the residential and commercial components would fall below the total VMT that would be calculated using the applicable thresholds of significance for Option B based on the data provided in LADOT's VMT Calculator. As previously stated, the Household VMT per Capita for the residential component of Option B is calculated to be 5.4 with implementation of the recommended mitigation measures, which is well below the threshold for the West Los Angeles APC of 7.4 Daily Household VMT per Capita. For the office component of Option B, the Work VMT per Employee value is calculated to be reduced from 14.5 to 11.6 with consideration of TDM measures. While the Work VMT per Employee value after application of TDM measures is greater than the threshold of 11.1 Daily Work VMT per Employee, a finding of a less than significant impact is made related to the Work VMT per Employee for Option B in consideration of the "excess" mitigation provided by the TDM measures recommended for Option B. This is demonstrated through the calculation of total VMT as detailed in a memorandum detailing the methodology for determining the less than significant impact that was submitted by LLG and was approved by LADOT on April 1, 2021.

Under Option B, the project proposes the implementation of a combination of transit, education and encouragement, commute trip reductions, bicycle parking and infrastructure, and neighborhood infrastructure TDM strategies that are forecasted to reduce the Project Household and Work VMTs to 5.4 and 11.6, respectively. The resulting Daily Household VMT per Capita for the residential component is substantially less than the threshold of significance for the West Los Angeles APC and therefore is deemed to offset the unmitigated portion of the Daily Work VMT per Employee related to the office component. Therefore, it is concluded that implementation of the Project under Option B would not result in a significant VMT impact with implementation of the proposed TDM strategies. A copy of the VMT Calculator summary reports is provided as **Attachment "H"** to this report.

F. Access and Circulation

During the preparation of the new CEQA guidelines, the State's Office of Planning and Research stressed that lead agencies can continue to apply traditional operational analysis requirements to inform land use decisions provided that such analyses were outside of the CEQA process. The authority for requiring non-CEQA transportation analysis and requiring improvements to address potential circulation deficiencies, lies in the City of Los Angeles' Site Plan Review authority as established in Section 16.05 of the Los Angeles Municipal Code (LAMC). Therefore, DOT continues to require and review a project's site access, circulation, and operational plan to determine if any access enhancements, transit amenities, intersection improvements, traffic signal upgrades, neighborhood traffic calming, or other improvements are needed. In accordance with this authority, the project has completed an access and circulation analysis for both Option A and Option B using a "level of service" screening methodology that indicates that the trips generated by the proposed development will likely result in adverse circulation conditions at the project adjacent intersection of Glencoe Avenue and Glencoe Avenue Southerly Driveway/Villa Velletri Driveway, and at the intersection of Glencoe Avenue and Mindanao Way under both Options. A copy of the study analysis report tables that summarize these potential queueing and/or operational deficiencies are provided as Attachment "I" (Option A) and Attachment "J" (Option B) to this report.

PROJECT REQUIREMENTS

A. CEQA Related Mitigation

Consistent with City policies on sustainability and smart growth, and with DOT's trip reduction

and multi-modal transportation goals, the project's mitigation program first focuses on developing a trip reduction program and on solutions that promote other modes of travel. To off-set the expected significant impacts identified in the project's VMT analysis for Option B (since Option A as proposed results in a less than significant VMT impact), DOT recommends that the applicant be required to implement the following Transportation Demand Management (TDM) strategies as mitigation:

1. <u>Transit – Transit Subsidies</u>

This TDM strategy involves the subsidization of transit fare for residents and employees of Option B. The subsidy will be proactively offered to each resident and employee at least once annually for a minimum of five years. At the time of initial opening, Option B will offer a daily transit subsidy to all (i.e., 100%) residents and employees of \$2.98 per day.

2. Education and Encouragement – Promotions and Marketing

Option B will utilize promotional and marketing tools to educate and inform residents and employees about alternative transportation options and the effects of their travel choices. Rather than two-way communication tools or tools that would encourage an individual to consider a different mode of travel at the time the trip is taken (i.e., smartphone application, daily email, etc.), this TDM strategy includes passive educational and promotional materials, such as posters, information boards, or a website with information that residents and employees can choose to read at their own leisure.

- 3. <u>Commute Trip Reductions Alternative Work Schedules and Telecommute Program</u> The strategy encourages employees to work alternative schedules or telecommute, including staggered start times, flexible schedules, or compressed work weeks. At the time of initial opening of the development, Option B will offer 1.5 days per week of telecommuting to at least 5% of all employees.
- 4. <u>Bicycle Infrastructure Include Bike Parking per LAMC</u>

Option B is required to provide 200 bicycle parking spaces (19 short-term and 181 longterm) for the residential component, and 67 bicycle parking spaces (29 short-term spaces and 38 long-term) for the restaurant, commercial, and office components. Therefore, under Option B, the project will provide the LAMC-required number of shortterm and long-term bicycle parking spaces: an overall total of 267 bicycle parking spaces (48 short-term and 219 long-term) on-site thus meeting the code required spaces. This measure helps reduce peak-hour vehicle trips by making commuting by bicycle easier and more convenient.

5. Bicycle Infrastructure – Include Secure Bike Parking and Showers per LAMC This strategy involves implementation of additional end-of-trip bicycle facilities to support safe and comfortable bicycle travel by providing amenities at destinations. This strategy applies to projects that include bicycle parking onsite per LAMC. Projects providing long-term bicycle parking secured from the general public in accordance with LAMC Section 12.21A.16(d)(2) and showers in accordance with LAMC Section 91.6307 qualify for this measure. These improvements help reduce peak-hour vehicle trips by making commuting by bicycle easier and more convenient. Under Option B, the project is committed to provide short-term and long-term bicycle parking in accordance with LAMC Section 12.21A.16(d)(2). In addition, Option B will provide showers in accordance with LAMC Section 91.6307.

6. Neighborhood Infrastructure – Pedestrian Network Improvements

This strategy involves implementation of pedestrian network improvements throughout and around the Project Site that encourage people to walk. This includes internally linking all uses within the Project Site with pedestrian facilities such as sidewalks and connecting the Project Site to the surrounding pedestrian network. Option B includes pedestrian access points directly to sidewalks on the adjacent streets, including Maxella Avenue, and Glencoe Avenue. Additionally, Option B will improve existing sidewalks or construct new sidewalks on the above-mentioned streets adjacent to the Project Site. Furthermore, Option B will add street trees and landscaping, including a park along the Project Site's easterly frontage, to enhance the pedestrian network and improve exterior lighting along the sidewalks to improve safety.

B. Operational Improvements (Non-CEQA Analysis)

In the Traffic Study report prepared by LLG, the analysis included a review of current operational deficiencies and potential future deficiencies that may result from the project considering both proposed Options. To address these deficiencies, the applicant should be required to implement the following operational improvements (the project must coordinate with Culver City to determine appropriate traffic operational improvements within their jurisdiction):

1. <u>Glencoe Avenue and Mindanao Way Intersection - Implement Left-Turn Phasing</u> The project shall assume full responsibility for implementing protected/permissive leftturn phasing for the northbound direction, as well as implementing overlap right-turn phasing for the eastbound direction at the intersection of Glencoe Avenue and Mindanao Way. The implementation of this improvement is in alignment with the improvements identified in the Coastal Transportation Corridor Specific Plan and should be coordinated with the DOT Western District office. If at the time of project approval, the above traffic signal improvements have been funded by others, the DOT shall require a similar nearby measure of equivalent value in the vicinity of the project.

2. <u>Glencoe Avenue and Glencoe Avenue Southerly Project Driveway/Villa Velletri Driveway</u> <u>Intersection – Pedestrian Crosswalk/ Traffic Signal Relocation</u> The project shall assume full responsibility for the design and relocation of the existing signalized Glencoe Avenue midblock crossing to the north to align with the Glencoe Avenue Southerly Project Driveway intersection. The resulting lane configuration on the northbound and southbound approaches of Glencoe Avenue would provide one leftturn lane, one through lane, and one shared through/right-turn lane. No changes to the eastbound Glencoe Avenue Southerly Project Driveway and westbound Villa Velletri approaches are proposed. Changes to the existing traffic signal equipment needed in conjunction with the recommended improvements would also be implemented as part of the improvement. In addition, crosswalks would be installed on both the northbound and southbound Glencoe Avenue approaches. The implementation of this improvement is in alignment with the project improvements identified in the Coastal Transportation Corridor Specific Plan and should be coordinated with the DOT Western District office.

-6-

3. Ocean Way and Maxella Avenue Intersection-New Traffic Signal/Relocate Ped-Crosswalk The project shall assume full responsibility for the design and implementation of roadway striping changes along Maxella Avenue at the Ocean Way intersection. Specifically, the existing signalized crosswalk located approximately 100 feet west of the east leg of the intersection will be removed, and crosswalks will be installed at the Ocean Way and Maxella Avenue intersection. Additionally, the Applicant, in consultation with LADOT, will install a traffic signal at the intersection with controlled crossing devices (e.g., signalized crosswalks). The implementation of this improvement is in alignment with the project improvements identified in the Coastal Transportation Corridor Specific Plan and should be coordinated with the DOT Western District office.

4. <u>Transportation Demand Management (TDM) Program</u>

In addition to the TDM strategies cited above, DOT further recommends that the project prepare and submit a TDM program to DOT for review <u>prior</u> to the issuance of the first building permit for this project with a final TDM program to be approved by DOT <u>prior</u> to the issuance of the first certificate of occupancy. The TDM program should include not only the TDM strategies identified to mitigate Project VMT impacts but should also consider and include all of the VMT Calculator TDM strategies that can potentially reduce the Project's VMT footprint.

C. Transportation Impact Assessment (TIA) Fee

Pursuant to Section 6 of the CTC SP Ordinance No. 186104 authorizing the TIA Fee Programs Ordinance No. 186105, an applicant for a project within the Specific Plan area, except as exempted, shall pay, or guarantee payment of a TIA Fee prior to issuance of any building permit. Applicable fee rates are identified in the TIA Fee Table of Ordinance No. 186105. In addition, credit for affordable housing units can be granted as detailed in Section D.3.b.i of Ordinance No. 186105. The applicable fee for the proposed project (Option B) has been determined as follows:

Proposed Use:		4
	382 Apartment units x \$4,720 per unit [Full TIA fee applicable on or after October 26, 2020]	\$ 1,803,040
	40,000 sq. ft. Retail x \$13,561 per 1000 sq. ft.	\$ 542,440
	90,000 sq. ft. Office x \$23,724 per 1000 sq. ft.	\$ 2,135,160
	-43 Affordable units x [2 x (\$4,720 per unit)]	-\$ 450,920
Subtotal Propo	sed TIA Fee	\$ 4,029,720
Existing Use (cr	<u>edit)</u>	
	100,781 sq. ft. of Retail x \$13,561 per 1000 sq. ft.	-\$ 1,366,691
Subtotal Existin	g TIA Fee	-\$ 1,366,691
Total Estimated	<u>\$ 2,663,029</u>	

D. Implementation of Physical Improvements

The applicant shall be responsible for the cost and implementation of any traffic signal equipment modifications and bus stop relocations associated with the proposed transportation improvements and enhancements described above. All improvements, enhancements, and associated traffic signal work within the City of Los Angeles must be guaranteed through Bureau of Engineering's (BOE) B-Permit process, prior to the issuance of any building permits and completed prior to the issuance of any certificates of occupancy. Temporary certificates of occupancy may be granted in the event of any delay through no fault of the applicant, provided that, in each case, the applicant has demonstrated reasonable efforts and due diligence to the satisfaction of DOT. Prior to setting the bond amount, BOE shall require that the developer's engineer or contractor email DOT's B-Permit Coordinator at ladot.planprocessing@lacity.org to arrange a pre-design meeting to finalize the proposed design needed for the project. If a proposed traffic corrective measure does not receive the required approval during plan review, a substitute corrective measure may be provided subject to the approval of LADOT or other governing agency with jurisdiction over the corrective condition location, upon demonstration that the substitute measure is correctively equivalent or superior to the original measure in addressing the project's corrective traffic condition. To the extent that a corrective measure proves to be infeasible and no substitute corrective measure is available, then the identified corrective condition would remain.

E. Construction Impacts

DOT recommends that a construction work site traffic control plan be submitted to DOT's Citywide Temporary Traffic Control Section or Permit Plan Review Section for review and approval prior to the start of any construction work. Refer to http://ladot.lacity.org/what-we-do/plan-review to determine which section to coordinate review of the work site traffic control plan. The plan should show the location of any roadway or sidewalk closures, traffic detours, haul routes, hours of operation, protective devices, warning signs and access to abutting properties. DOT also recommends that all construction related traffic be restricted to off-peak hours to the extent feasible.

F. Highway Dedication And Street Widening Requirements

In order to mitigate potential access and circulation impacts, the applicant may be required to make highway dedications and improvements. The applicant shall consult the Bureau of Engineering (BOE) for any highway dedication or street widening requirements. These requirements must be guaranteed before the issuance of any building permit through the B-permit process of the BOE. They must be constructed and completed prior to the issuance of any certificate of occupancy to the satisfaction of DOT and BOE.

G. Parking Analysis

The project is proposing to provide a minimum Code-required total of 1,217 parking spaces under Option A, and a total of 1,287 parking spaces under Option B. Also, an overall minimum Code-required total of 267 bicycle parking spaces (48 short-term and 219 long-term) will be provided on site within parking garage. The applicant should check with the Department of Building and Safety on the number of Code-required parking spaces needed for the project.

H. Project Access

Project access to the site will be provided for Option A and Option B as follows:

For Option A, vehicular access will be provided via two access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, one driveway along the west side of Glencoe Avenue, and one entry/exit driveway located along the southern boundary of the project site, and for Option B, vehicular access will be provided via three access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, and one driveway along the west side of Glencoe Avenue, along the south side of Maxella Avenue, and one driveway along the west side of Glencoe Avenue, along the southern boundary of the project site.

I. Driveway Access and Circulation

The proposed site plan is acceptable to DOT; however, review of the study does not constitute approval of the driveway dimensions and internal circulation schemes. Those require separate review and approval and should be coordinated with DOT's West LA/Coastal Development Review Section (7166 W Manchester Ave, @ 213-485-1062). In order to minimize potential building design changes, the applicant should contact DOT for driveway width and internal circulation requirements so that such traffic flow considerations are designed and incorporated early into the building and parking layout plans. All new driveways should be Case 2 driveways and any security gates should be a minimum 20 feet from the property line. All truck loading and unloading should take place on site with no vehicles backing into the project from public streets via any of the project driveways.

J. Development Review Fees

An ordinance adding Section 19.15 to the Los Angeles Municipal Code relative to application fees paid to DOT for permit issuance activities was adopted by the Los Angeles City Council in 2009 and updated in 2014. This ordinance identifies specific fees for traffic study review, condition clearance, and permit issuance. The applicant shall comply with any applicable fees per this ordinance.

If you have any questions, please contact me or Pedro Ayala at (213) 485-1062.

RS:pa

Attachments

c: Alan Como, Marcus Woersching, DCP
 Jason Douglas, Eric Bruins, Len Nguyen, Council District No. 11
 Rudy Guevara, DOT
 Mike Patonai, Oscar Gutierrez, BOE
 Jason Shender, Linscott, Law, & Greenspan, Engineers

13400 W. Maxella Ave.: Mixed-Use - Paseo Marina project (CTC19-109212)

Attachment "A"

LINSCOTT, LAW & GREENSPAN, engineers

PASEO MARINA PROJECT

-6-

g

color

exhibits

₽

09:32:54 jshender

12/11/2020

o:\0265\dwg\f2-2.dwg

13400 W. Maxella Ave.: Mixed-Use - Paseo Marina project (CTC19-109212)

Attachment "B"

LINSCOTT, LAW & GREENSPAN, engineers

PASEO MARINA PROJECT

-8-

10:36:21 jshender IIg exhibits color.ctb

o:\0265\dwg\f2-3.dwg 11/11/2020

27-Apr-21

		AM PEAK HOUR			PM PEAK HOUR			
		V	OLUMES	[2]	V	OLUMES	[2]	
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL	
Proposed Project								
Apartments [3]	592 DU	55	158	213	159	101	260	
Affordable Family Housing [4]	66 DU	13	21	34	14	11	25	
Restaurant [5]	13,650 GSF	75	61	136	82	51	133	
Commercial [6]	13,650 GLSF	<u>8</u>	<u>5</u>	<u>13</u>	25	<u>27</u>	<u>52</u>	
Subtotal		151	245	396	280	190	470	
Internal Capture [7]		(17)	(27)	(44)	(64)	(43)	(107)	
Transit Trips (15%) [8]		(18)	(30)	(48)	(30)	(20)	(50)	
Subtotal Project Driveway Trips		116	188	304	186	127	313	
Existing Land Use								
Commercial [5]	(100,781) GLSF	(59)	(36)	(95)	(184)	(200)	(384)	
Existing Transit Trips [8]								
Commercial (15%)		9	5	14	28	30	58	
Subtotal Existing Driveway Trips		(50)	(31)	(81)	(156)	(170)	(326)	
NET INCREASE DRIVEWAY TRIPS		66	157	223	30	(43)	(13)	
Proposed Pass-By Trips [9]								
Restaurant (20%)		(11)	(9)	(20)	(11)	(7)	(18)	
Commercial (50%)		(3)	(2)	(5)	(8)	(9)	(17)	
Subtotal		(14)	(11)	(25)	(19)	(16)	(35)	
Existing Pass-By Trips (9)								
Commercial (30%)		15	9	24	47	51	98	
NET INCREASE "OFF-SITE" TRIPS		67	155	222	58	(8)	50	

Table 2-1 OPTION A TRIP GENERATION [1]

[1] Sources: ITE Trip Generation Manual, 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

- [2] This are one-way failed internetics, energing of reaving.[3] ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates.
- AM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 26% inbound/74% outbound
- PM Peak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/39% outbound
- [4] City of Los Angeles Affordable Housing (Family) trip generation average rates.
- AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
- PM Peak Hour Trip Rate: 0.38 trips/dwelling unit; 55% inbound/45% outbound
- [5] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
 AM Peak Hour Trip Rate: 9.94 trips/1,000 SF of floor area; 55% inbound/45% outbound
 PM Peak Hour Trip Rate: 9.77 trips/1,000 SF of floor area; 62% inbound/38% outbound
- [6] ITE Land Use Code 820 (Shopping Center) trip generation average rates.
- AM Peak Hour Trip Rate: 0.94 trips/1,000 SF of leasable area; 62% inbound/38% outbound - PM Peak Hour Trip Rate: 3.81 trips/1,000 SF of leasable area; 48% inbound/52% outbound
- [7] The internal capture reduction for the residential, restaurant, retail, and office is based on the synergy between all the land uses provided within the Project Site, and determined via NCHRP 684 Internal Capture Estimation Tool (12% for AM Peak Hour and 24% for PM Peak Hour).
- [8] A 15% transit use reduction applied based on the Project Site being located within 1/4 mile of a Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the proposed Project and existing land uses based on the *LADOT Transportation Assessment Guidelines*, July 2020 for developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop.
- [9] Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The trip reduction for pass-by trips has been applied to the restaurant and commercial components of the Project based on the *LADOT Transportation Assessment Guidelines*, July 2020 for High Turnover Restaurant, Shopping Center less than 50,000 sf, and Shopping Center 100,000 to less than 300,000 sf.

20-Apr-21

		AM	PEAK H	OUR	PM PEAK HOUR			
		V	OLUMES	[2]	V	OLUMES	[2]	
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL	
Proposed Project								
Apartments [3]	382 DU	36	102	138	102	66	168	
Affordable Family Housing [4]	43 DU	8	14	22	9	7	16	
Restaurant [5]	20,000 GSF	109	90	199	121	74	195	
Commercial [6]	20,000 GLSF	12	7	19	36	40	76	
Office [7]	90,000 GSF	<u>89</u>	<u>15</u>	104	17	87	104	
Subtotal		254	228	482	285	274	559	
Internal Capture [8]		(59)	(51)	(110)	(86)	(83)	(169)	
Transit Trips (15%) [9]		(28)	(24)	(52)	(29)	(28)	(57)	
Subtotal Project Driveway Trips		167	153	320	170	163	333	
Existing Land Usa								
Commercial [5]	(100,781) GLSF	(59)	(36)	(95)	(184)	(200)	(384)	
Existing Transit Trins [9]								
Commercial (15%)		9	5	14	28	30	58	
Subtotal Existing Driveway Trips	•	(50)	(31)	(81)	(156)	(170)	(326)	
NET INCREASE DRIVEWAY TRIPS		117	122	239	14	(7)	7	
Proposed Dass Py Trins [10]								
Postaurant (20%)		(14)	(12)	(26)	(14)	(0)	(23)	
Commercial (50%)		(14)	(12)	(20)	(14)	(12)	(23)	
Subtotal		(18)	(14)	(22)	(25)	(12) (21)	(23)	
Subtotal		(18)	(14)	(32)	(23)	(21)	(40)	
Existing Pass-By Trips [10]								
Commercial (30%)		15	9	24	47	51	98	
NET INCREASE "OFF-SITE" TRIPS		114	117	231	36	23	59	

Table 2-2 OPTION B TRIP GENERATION [1]

[1] Source: ITE Trip Generation Manual, 10th Edition, 2017.

2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates. - AM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 26% inbound/74% outbound DM Deak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/20% outbound

- PM Peak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/39% outbound
 [4] City of Los Angeles Affordable Housing (Family) trip generation average rates.
 AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
- AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
 PM Peak Hour Trip Rate: 0.38 trips/dwelling unit; 55% inbound/45% outbound
 ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation avoid
- [5] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
 AM Peak Hour Trip Rate: 9.94 trips/1,000 SF of floor area; 55% inbound/45% outbound
 PM Peak Hour Trip Rate: 9.77 trips/1,000 SF of floor area; 62% inbound/38% outbound
- [6] ITE Land Use Code 820 (Shopping Center) trip generation average rates.
 AM Peak Hour Trip Rate: 0.94 trips/1,000 SF of leasable area; 62% inbound/38% outbound
 PM Peak Hour Trip Rate: 3.81 trips/1,000 SF of leasable area; 48% inbound/52% outbound
- [7] ITE Land Use Code 710 (General Office Building) trip generation average rates.
 AM Peak Hour Trip Rate: 1.16 trips/1,000 SF of floor area; 86% inbound/14% outbound
 PM Peak Hour Trip Rate: 1.15 trips/1,000 SF of floor area; 16% inbound/84% outbound
- [8] The internal capture reduction for the residential, restaurant, retail, and office is based on the synergy between all the market-rate apartments, restaurant, commercial, and office land uses provided within the Project Site, and determined via NCHRP 684 Internal Capture Estimation Tool (24% for AM Peak Hour and 31% for PM Peak Hour).
- [9] A 15% transit use reduction applied based on the Project Site being located within 1/4 mile of a Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the proposed Project and existing land uses based on the *LADOT Transportation Assessment Guidelines*, July 2020 for developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop. The transit reduction was not applied to the affordable housing component of the Project, per the *LADOT Transportation Assessment Guidelines*, July 2020.
- [10] Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The trip reduction for pass-by trips has been applied to the restaurant and commercial components of the Project based on the *LADOT Transportation Assessment Guidelines*, July 2020 for High Turnover Restaurant, Shopping Center less than 50,000 sf, and Shopping Center 100,000 to less than 300,000 sf.

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Existing Land Use

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

O No

O Yes

Land Use Type		Value	Unit							
Retail General Retail	▼	100.781	ksf	+						
Retail General Retail		100.781	ksf							

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type		Value	Unit	
Retail General Retail	-	13.65	ksf	•
Housing Multi-Family Housing Affordable Housing - Family Retail High-Turnover Sit-Down Restaurar Retail General Retail	nt	592 66 13.65 13.65	DU DU ksf ksf	

Project Screening Summary

Existing Land Use	Proposed Project		
3,595 Daily Vehicle Trips	4,974 Daily Vehicle Trips		
29,609 Daily VMT	37,347 Daily VMT		
Tier 1 Scree	ning Criteria		
Project will have less reside to existing residential units mile of a fixed-rail station. Tier 2 Screen	ntial units compa & is within one-h ning Criteria	red alf	
The net increase in daily tri	ps < 250 trips	1,379 Net Daily Trips	
The net increase in daily VN	/T ≤ 0	7,738 Net Daily VMT	
The proposed project consi land uses ≤ 50,000 square fe	sts of only retail eet total.	27.300 ksf	
The proposed project	is required to	perform	

Click here to add a single custom land use type (will be included in the above list)

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Existing Land Use

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

Land Use Type		Value	Unit	
Retail General Retail	-	100.781	ksf	
Retail General Retail		100.781	ksf	

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type		Value	_	Jnit	
Office General Office	-	90		ksf	•
Housing Multi-Family		382		DU	
Housing Affordable Housing - Family		43		DU	
Retail High-Turnover Sit-Down Restaurant		20		ksf	
Retail General Retail		20		ksf	
Office General Office		90	I	ksf	

Existing Proposed Project Land Use 3,595 5,574 Daily Vehicle Trips Daily Vehicle Trips 29,609 45.178 Daily VMT Daily VMT **Tier 1 Screening Criteria** Project will have less residential units compared to existing residential units & is within one-half mile of a fixed-rail station. **Tier 2 Screening Criteria** 1.979 The net increase in daily trips < 250 trips Net Daily Trips 15,569 The net increase in daily VMT ≤ 0 Net Daily VMT

The proposed project consists of only retail40.000land uses $\leq 50,000$ square feet total.ksf

The proposed project is required to perform VMT analysis.

Project Screening Summary

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	592	DU
Housing Affordable Housing - Family	66	DU
Retail High-Turnover Sit-Down Restaurant	13.65	ksf
Retail General Retail	13.65	ksf

TDM Strategies

Select each section to show individual strategies Use 🗹 to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Analysis Results

Proposed Project	With Mitigation
4.974	4.974
Daily Vehicle Trips	Daily Vehicle Trips
37,347	37,347
Daily VMT	Daily VMT
6.9	6.9
Houseshold VMT per Capita	Houseshold VMT per Capita
N/A	N/A
Work VMT	Work VMT
Per	P
Significant V	/MT Impact?
Household: No	Household: No
Threshold = 7.4	Threshold = 7.4
15% Below APC	15% Below APC
Work: N/A	Work: N/A
Threshold = 11.1	Threshold = 11.1
15% Below APC	15% Below APC

Measuring the Miles

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	382	DU
Housing Affordable Housing - Family	43	DU
Retail High-Turnover Sit-Down Restaurant	20	ksf
Retail General Retail	20	ksf
Office General Office	90	ksf

TDM Strategies - Max Mitigation Reduction

Select each section to show individual strategies Use I/ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

With Proposed **Mitigation** Project 5.574 4.459 Daily Vehicle Trips Daily Vehicle Trips 36.142 45.178 Daily VMT Daily VMT 6.8 5.4 Houseshold VMT Houseshold VMT per Capita per Capita 14.5 11.6 Work VMT Work VMT per Employee per Employee **Significant VMT Impact?** Household: No Household: No Threshold = 7.4Threshold = 7.415% Below APC 15% Below APC Work: Yes Work: Yes Threshold = 11.1Threshold = 11.1 15% Below APC 15% Below APC

Analysis Results

		TRAFFIC	PEAK	YEA	R 2020 EXI	STING	YEAR 2020 I	XISTING	W/ PROJECT	YEAR 2026 F	UTURE W	O PROJECT	YEAR 2026	FUTURE V	/ PROJECT	YEAR 2026 F IMF	UTURE W PROVEME	PROJECT + NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
1	Walgrove Avenue / Washington Boulevard (Unsignalized)	SB Left/Right	AM PM	64.4 155.5	F F	215.0 430.0	68.2 160.8	F F	222.5 435.0	138.1 291.2	F F	335.0 610.0	149.2 300.0	F F	347.5 620.0			
	(Chargenanices)	EB Left	AM PM	25.0 18.1	C C	112.5 67.5	25.6 18.4	D C	117.5 70.0	33.9 23.0	D C	157.5 95.0	35.1 23.5	E C	162.5 95.0			-
2	Lincoln Boulevard / Marina Pointe Drive - Maxella Avenue (Signalized)	NB Left	AM PM	44.6 47.2	D D	73.9 122.9	44.6 47.2	D D	73.9 122.9	46.0 47.8	D D	78.4 130.4	46.0 47.8	D D	78.4 130.4			
		NB Through	AM PM	140.5 76.7	F F	1225.2 814.0	140.5 76.7	F F	1225.2 814.0	176.2 123.0	F F	1459.9 1111.2	176.2 123.0	F F	1459.9 1111.2			-
		NB Right	AM PM	22.2 24.0	C C	234.3 293.7	22.6 24.4	C C	245.9 306.5	22.9 26.0	C C	257.0 355.3	23.3 26.5	C C	268.8 369.4			
		SB Left	AM PM	33.8 33.6	C C	62.7 53.2	33.8 33.7	C C	65.4 55.8	33.9 33.7	C C	68.0 59.5	33.9 33.8	C C	70.8 62.2			
		SB Through	AM PM	40.2 45.0	D D	493.7 598.6	40.2 45.0	D D	493.7 598.6	42.1 51.1	D D	540.5 684.3	42.1 51.1	D D	540.5 684.3			
		SB Right	AM PM	45.3 54.3	D D	511.9 627.2	45.3 54.3	D D	511.9 627.2	48.7 64.6	D E	564.8 732.8	48.7 64.6	D E	564.8 732.8			
		EB Left	AM PM	45.6 45.9	D D	99.3 113.1	45.6 45.9	D D	99.3 113.1	45.8 46.1	D D	106.2 120.0	45.8 46.1	D D	106.2 120.0			-
		EB Through	AM PM	45.6 45.1	D D	104.4 84.0	45.6 45.1	D D	104.4 84.0	45.7 45.2	D D	111.3 89.5	45.7 45.2	D D	111.3 89.5	-		
		EB Right	AM PM	7.1 6.5	A A	140.9 71.9	7.1 6.5	A A	140.9 71.9	7.2 6.5	A A	150.2 76.2	7.2 6.5	A A	150.2 76.2			
		WB Left	AM PM	52.3 74.1	D E	175.0 332.5	52.8 73.7	D E	187.8 330.8	59.6 108.8	E F	254.3 457.8	61.7 108.1	E F	268.1 455.2	-		
		WB Through	AM PM	51.1 66.4	D E	139.2 302.4	51.3 66.3	D E	145.1 301.8	52.5 79.8	D E	182.3 363.3	52.7 79.6	D E	188.5 362.5	-		
		WB Right	AM PM	35.7 37.8	D D	141.0 223.3	36.1 37.8	D D	156.2 222.1	36.1 38.4	D D	157.5 241.4	36.4 38.3	D D	172.9 240.3		-	-
3	Del Rey Avenue / Maxella Avenue (Invinentized)	SB Left/Right	AM PM	11.8 17.0	B C	15.0 70.0	12.0 17.0	B C	17.5 70.0	13.4 21.4	B C	32.5 100.0	13.6 21.5	B C	32.5 102.5			
	(Onsignan280)	EB Left	AM PM	8.5 8.9	A A	10.0 7.5	8.6 8.9	A A	12.5 7.5	8.7 9.3	A A	12.5 10.0	8.8 9.3	A A	12.5 10.0			-

		TRAFFIC	BEAK	VEAD	2020 EVIS	TINC	VE A D 2020 E	VISTING	W BRO IFCT	VE A D 2026 E	UTUDE W	OPPOIECT	VEAD 2026	EUTUDE W/	PROJECT	YEAR 2026 F	UTURE W/	PROJECT +
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
4	Ocean Way / Maxella Avenue	NB Left	AM PM	14.3 20.5	B C	10.0 20.0	11.0 10.9	B B	28.5 23.9	16.2 27.2	C D	15.0 35.0	10.9 11.0	B B	31.7 28.3	-		
	(Unsignalized w/o Project; Signalized w/ Project)	NB Right	AM PM	9.8 10.4	A B	7.5 5.0	11.4 10.8	B B	34.1 18.3	10.1 10.8	B B	7.5 7.5	11.0 10.9	B B	36.8 22.2	-		
		EB Through	AM PM				12.3 13.6	B B	78.5 125.1			-	12.7 14.2	B B	91.5 147.4	-		
		EB Right	AM PM				12.4 13.7	B B	76.3 119.0			-	12.8 14.4	B B	88.8 139.4	-		
		WB Left	AM PM	8.2 8.8	A A	2.5 5.0	13.8 16.3	B B	16.9 27.0	8.3 9.1	A A	2.5 5.0	14.5 18.1	B B	19.9 37.5	-		
		WB Through	AM PM				11.5 12.1	B B	54.2 77.7			-	11.7 12.5	B B	60.5 94.3			
5	Maxella Avenue Driveway / Maxella Avenue (Unsignalized)	NB Right	AM PM	9.4 9.9	A A	0.0 0.0	9.5 9.9	A A	0.0 0.0	9.6 10.2	A B	0.0 0.0	9.8 10.2	A B	0.0 0.0	-		
6	Glencoe Avenue / Maxella Avenue	NB Left	AM PM	17.9 22.4	B C	59.4 77.2	18.2 22.9	B C	60.2 78.2	19.3 30.5	B C	67.2 116.9	19.7 31.7	B C	68.1 119.3	-		
	(Signalized)	NB Through	AM PM	18.6 13.0	B B	280.9 151.8	20.2 13.0	C B	304.6 150.5	21.9 13.5	C B	327.0 174.9	24.7 13.5	C B	359.7 173.3	-		
		NB Right	AM PM	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	20.6 27.4	10.7 10.8	B B	20.6 27.4	-		
		SB Left	AM PM	24.1 16.8	C B	44.2 22.7	25.3 16.8	C B	45.5 22.7	26.7 18.0	C B	51.1 27.4	28.1 17.9	C B	53.0 27.3	-		
		SB Through	AM PM	12.5 13.9	B B	128.1 189.4	12.6 14.1	B B	132.9 194.3	12.9 15.1	B B	145.6 218.0	13.0 15.4	B B	150.6 224.0	-		
		SB Right	AM PM	12.6 14.0	B B	122.7 180.2	12.6 14.2	B B	127.4 186.5	12.9 15.2	B B	139.3 208.9	13.0 15.5	B B	144.2 214.8	-		
		EB Left	AM PM	13.4 15.4	B B	47.9 72.3	13.8 15.4	B B	57.2 72.0	14.0 16.8	B B	57.6 90.4	14.4 16.8	B B	67.3 89.9	-		
		EB Through	AM PM	11.3 11.8	B B	38.6 57.2	11.3 11.7	B B	41.1 56.8	11.4 12.0	B B	45.3 68.3	11.5 12.0	B B	47.9 67.7	-		
		EB Right	AM PM	12.0 12.9	B B	55.2 81.0	12.2 12.9	B B	59.0 81.0	12.4 13.2	B B	66.9 89.5	12.5 13.2	B B	70.8 89.5	-		
		WB Left	AM PM	12.5 13.9	B B	27.5 44.7	12.6 13.9	B B	27.6 44.5	12.9 14.5	B B	29.6 48.9	13.0 14.5	B B	29.9 48.9	-		
		WB Through	AM PM	11.1 11.6	B B	31.7 52.6	11.1 11.6	B B	32.9 53.3	11.2 11.8	B B	35.7 61.0	11.2 11.9	B B	37.0 61.7	-		
		WB Right	AM PM	11.3 11.8	B B	32.5 50.1	11.3 11.8	B B	32.5 50.7	11.4 12.0	B B	35.4 57.8	11.4 12.1	B B	35.5 58.6	-		
7	Glencoe Avenue / Glencoe Avenue Northerly Driveway	NB Left	AM PM				9.7 10.9	A B	2.5 5.0				10.0 11.5	B B	2.5 5.0			
	(Unsignalized)	EB Right	AM PM		-		11.8 12.9	B B	7.5 5.0		-		12.3 13.6	B B	7.5 7.5			

			r – –													YEAR 2026 F	UTURE W	13-Apr-21
		TRAFFIC	PEAK	YEAF	R 2020 EXIS	STING	YEAR 2020 E	XISTING	W/ PROJECT	YEAR 2026 F	UTURE W	O PROJECT	YEAR 2026	FUTURE V	V/ PROJECT	IMF	ROVEME	NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
8	Glencoe Avenue / Glencoe Avenue Southerly Driveway - Villa	NB Left	AM PM	9.5 10.9	A B	2.5 5.0	9.8 10.9	A B	2.5 5.0	9.9 11.5	A B	2.5 7.5	10.2 11.5	B B	2.5 5.0	9.1 11.8	A B	8.9 23.0
	(Unsignalized; Signalized w/ Improvements)	NB Through	AM PM	-			-					-			-	6.9 6.2	A A	145.5 96.3
		NB Right	AM PM								-	-			-	6.9 6.2	A A	145.3 95.8
		SB Left	AM PM	9.4 8.5	A A	0.0 0.0	9.5 8.6	A A	0.0 0.0	9.6 8.8	A A	0.0 0.0	9.7 8.8	A A	0.0 0.0	8.1 7.0	A A	1.3 4.2
		SB Through	AM PM				-					-			-	7.3 8.1	A A	165.6 212.7
		SB Right	AM PM				-					-			-	7.3 8.1	A A	163.9 209.4
		EB Left/Right	AM PM	28.3 118.5	D F	10.0 142.5	42.3 116.7	E F	50.0 137.5	35.3 230.9	E F	12.5 200.0	59.8 227.0	F F	67.5 192.5	28.8 29.8	C C	60.0 95.1
		WB Left/Right	AM PM	23.2 21.4	C C	7.5 5.0	25.8 21.9	D C	10.0 5.0	27.3 25.5	D D	10.0 5.0	30.8 26.1	D D	12.5 5.0	27.9 27.7	C D	18.5 10.0
9	Mindanao Way/ Glencoe Avenue	NB Left	AM PM	195.5 54.1	F D	892.7 276.3	216.5 64.1	F E	970.9 309.6	283.1 101.4	F F	1182.0 397.3	306.7 120.5	F F	1264.2 453.8	22.1 23.3	C C	303.4 187.2
	(Signalized)	NB Through	AM PM	20.9 19.1	C B	233.0 133.3	20.9 19.1	C B	233.0 133.3	21.4 19.4	C B	251.8 152.4	21.4 19.4	C B	251.8 152.4	15.1 17.4	B B	211.3 142.5
		NB Right	AM PM	21.0 19.1	C B	225.5 129.9	21.0 19.1	C B	225.5 129.9	21.5 19.4	C B	243.0 147.9	21.5 19.4	B B	243.0 147.9	15.2 17.4	B B	204.0 138.3
		SB Left	AM PM	25.9 21.7	C C	6.1 7.0	25.9 21.7	C C	6.1 7.0	26.9 22.4	C C	7.0 8.6	26.9 22.4	C C	7.0 8.6	29.3 26.6	C C	7.4 9.5
		SB Through	AM PM	19.7 20.6	B C	171.2 218.4	19.7 20.7	B C	173.5 220.3	20.0 21.1	B C	189.3 240.8	20.0 21.2	C C	191.2 242.9	35.2 34.1	D C	249.0 305.0
		SB Right	AM PM	19.7 20.6	B C	161.9 210.0	19.8 20.7	B C	163.7 211.4	20.0 21.2	C C	178.3 230.8	20.1 21.2	C C	180.1 232.5	35.5 34.3	D C	237.5 291.8
		EB Left	AM PM	14.3 16.0	B B	42.5 86.1	14.5 16.1	B B	50.1 85.5	14.7 16.8	B B	51.8 98.6	15.0 16.9	B B	59.9 98.1	21.4 19.1	C B	74.3 105.9
		EB Through	AM PM	12.7 13.6	B B	73.6 122.1	12.8 13.6	B B	78.3 122.1	13.0 13.9	B B	86.0 135.4	13.0 13.9	B B	90.8 135.4	18.6 15.7	B B	113.0 146.7
		EB Right	AM PM	19.4 28.6	B C	295.3 473.9	21.4 28.3	C C	341.4 469.8	20.9 35.3	C D	330.7 567.3	23.3 35.0	C D	381.3 561.7	11.2 17.7	B B	259.1 398.8
		WB Left	AM PM	14.1 17.5	B B	25.8 83.0	14.3 17.5	B B	26.0 83.0	14.6 18.5	B B	29.3 99.3	14.7 18.5	B B	29.4 99.3	20.9 21.1	C C	36.5 107.3
		WB Through	AM PM	12.4 12.6	B B	57.0 66.0	12.5 12.6	B B	58.0 67.1	12.5 12.8	B B	61.6 74.8	12.5 12.8	B B	62.4 76.1	17.8 14.5	B B	77.7 82.2
		WB Right	AM PM	12.5 12.6	B B	56.7 64.9	12.5 12.7	B B	57.5 66.2	12.5 12.8	B B	61.0 73.7	12.6 12.8	B B	62.0 74.8	17.8 14.5	B B	77.2 81.0

LINSCOTT, LAW & GREENSPAN, engineers

											13-Apr-21							
		TRAFFIC				TRIC	VE + D 4040 F		U BBO IECT						DBO IEGT	YEAR 2026 F	UTURE W	PROJECT +
NO	INTERSECTION	IKAFFIC	PEAK	YEAI DELAV [2]	LOS 131	OUFUE MI	YEAR 2020 E	LOS 131	OUFUE M	YEAR 2026 F	LOS 131	OUFUE MI	YEAR 2026	FUTURE W	OUFUE MI	DELAV [2]	LOS 131	OUFUE MI
10	Mindanao Way/ SR-90 Westbound	NB Left	AM PM	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 15.4	31.5 31.7	C C	6.2 15.4	 		
	(Signalized)	NB Through	AM PM	14.0 13.4	B B	158.0 120.6	14.1 13.4	B B	159.6 121.7	14.3 13.8	B B	174.0 136.9	14.3 13.8	B B	175.2 138.1	-		
		SB Through	AM PM	31.0 51.3	C D	257.8 478.2	31.8 51.0	C D	274.1 476.1	32.2 73.0	C F	282.9 607.0	33.2 72.4	C F	300.2 603.5	-	-	
		SB Right	AM PM	33.7 62.4	C E	267.8 520.3	34.9 62.0	C E	286.2 518.0	35.6 84.7	D F	295.5 650.1	37.0 84.1	D F	315.1 646.8	-	-	
		WB Left	AM PM	26.8 23.1	C C	330.0 251.9	26.8 23.1	C C	330.0 251.9	29.4 25.1	C C	369.5 297.5	29.4 25.1	C C	369.5 297.5	-	-	
		WB Through	AM PM	97.0 31.6	F C	969.8 442.1	99.7 32.1	F C	990.5 449.0	130.4 47.2	F D	1222.9 594.9	133.3 48.9	F D	1246.0 609.9	-	-	
		WB Right	AM PM	160.0 23.8	F C	1250.5 243.7	166.8 24.3	F C	1296.3 252.5	200.3 25.6	F C	1525.8 277.0	207.2 26.2	F C	1573.6 286.4	-	-	
11	Mindanao Way/ SR-90 Eastbound	NB Through	AM PM	197.8 144.4	F F	760.8 587.7	200.6 146.3	F F	770.1 594.2	241.2 200.4	F F	902.7 768.5	244.0 202.5	F F	912.2 775.4		1 1	
	(Signalized)	NB Right	AM PM	474.9 394.0	F F	1498.1 1261.5	474.9 394.0	F F	1498.1 1261.5	539.1 497.8	F F	1683.9 1564.6	539.1 497.8	F F	1683.9 1564.6	-		
		SB Left	AM PM	27.7 33.3	C C	197.3 303.4	28.4 33.2	C C	214.8 302.5	28.4 36.8	C D	215.8 343.2	29.2 36.7	C D	233.9 341.7	-	-	
		SB Through	AM PM	17.5 18.7	B B	304.5 344.5	17.6 18.7	B B	307.3 344.5	18.4 20.6	B C	336.3 403.2	18.5 20.6	B C	339.2 403.2	-	-	
		EB Left	AM PM	17.9 17.8	B B	17.3 10.3	17.9 17.8	B B	17.3 10.3	18.0 17.8	B B	20.9 11.5	18.0 17.8	B B	20.9 11.5	-	-	
		EB Through	AM PM	40.1 35.9	D D	518.7 474.6	40.1 35.9	D D	518.7 474.6	57.4 46.2	E D	668.3 574.1	57.4 46.2	E D	668.3 574.1	-		
		EB Right	AM PM	40.3 35.9	D D	517.7 473.0	40.3 35.9	D D	517.7 473.0	57.8 46.3	D D	668.1 573.4	57.8 46.3	E D	668.1 573.4	-	1 1	

Table 5-2 (Continued) SUMMARY OF DELAYS, LEVELS OF SERVICE, AND VEHICLE QUEUING [1] WEEKDAY AM AND PM PEAK HOURS OPTION A

>

																		13-Apr-21
		TRAFFIC	PEAK	YEAI	R 2020 EXIS	TING	YEAR 2020 E	XISTING V	V/ PROJECT	YEAR 2026 F	UTURE W	O PROJECT	YEAR 2026	FUTURE W	// PROJECT	YEAR 2026 F IMF	UTURE W/ ROVEMEN	PROJECT + TS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
12	Mindanao Way⁄ La Villa Marina	NB Left	AM PM	9.3 9.5	AA	10.6 12.3	9.3 9.5	AA	10.6 12.3	9.4 9.7	AA	11.2 13.6	9.4 9.7	A	11.2 13.6			
	(Signalized)	NB Through	AM PM	14.7 13.5	B B	302.9 258.9	14.7 13.5	B B	303.8 260.0	15.5 14.5	B B	332.4 297.6	15.5 14.5	B B	333.9 298.8			
		NB Right	AM PM	14.7 13.5	B B	299.3 254.6	14.7 13.5	B B	300.7 255.7	15.6 14.6	B B	328.7 293.1	15.6 14.6	B B	330.2 294.3	-		
		SB Left	AM PM	6.9 6.6	A A	14.1 30.1	6.9 6.6	A A	14.1 30.1	7.6 7.6	A A	15.1 32.1	7.6 7.6	A A	15.1 32.1	-		
		SB Through	AM PM	5.3 5.6	A A	139.4 153.7	5.4 5.6	A A	140.7 153.7	5.6 6.0	A A	156.3 183.4	5.6 6.0	A A	158.4 183.4	-		
		SB Right	AM PM	5.3 5.6	A A	138.1 153.1	5.4 5.6	A A	139.5 153.1	5.6 6.0	A A	155.0 182.8	5.6 6.0	A A	157.1 183.4	-		
		EB Left/Through/Right	AM PM	32.1 32.7	C C	24.6 49.3	32.1 32.7	C C	24.6 49.3	32.1 32.8	C C	26.4 52.0	32.1 32.8	C C	26.4 52.0			
		WB Left/Through/Right	AM PM	45.0 34.4	D C	236.9 112.5	45.0 34.4	D C	236.9 112.5	49.2 34.6	D C	260.0 119.6	49.2 34.6	D C	260.0 119.6			

[1] Pursuant to LADOT Transportation Assessment Guidelines, July 2020, the Highway Capacity Manual (HCM) methodology for signalized and unsignalized intersections was utilized to calculate vehicle queuing.

Control delay reported in seconds per vehicle.
 Signalized Intersection Levels of Service were based or

ection Levels of Service were based on the follow	ing criteria:	Unsignalized Intersection Levels of Service wer	re based on the following criteria:
Control Delay (s/veh)	LOS	Control Delay (s/veh)	LOS
<= 10	Α	<= 10	Α
> 10-20	В	> 10-15	В
> 20-35	С	> 15-25	С
> 35-55	D	> 25-35	D
> 55-80	E	> 35-50	E
> 80	F	> 50	F

[4] The 95th percentile queue is the maximum back of queue with 95th percentile traffic volumes. The HCM 6th Edition methodology worksheets report queues in number of vehicles, however an average vehicle length of 25 feet was assumed for analysis purposes. The reported queues therefore represent the calculated maximum back of queue in feet.

																		13-Apr-21
		TDAFFIC	DEAL	VEAD	2 2020 EVB	TINC	VEAD 2020 E	VISTING	V/OPTION P	VE AD 2026 E	UTUDE W	O OPTION P	VE AD 2026	EUTUDE V	OPTION P	YEAR 2026 F	UTURE W	OPTION B +
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	OUEUE [4]	DELAY [2]	LOS [3]	OUEUE [4]	DELAY [2]	LOS [3]	OUEUE 141	DELAY [2]	LOS [3]	OUEUE [4]	DELAY [2]	LOS [3]	OUEUE [4]
1	Walgrove Avenue / Washington Boulevard	SB Left/Right	AM PM	64.4 155.5	F	215.0 430.0	70.7 158.9	F F	227.5 432.5	138.1 291.2	F F	335.0 610.0	156.3 296.8	F	355.0 615.0			
	(Unsignalized)	EB Left	AM PM	25.0 18.1	C C	112.5 67.5	26.2 18.3	D C	120.0 67.5	33.9 23.0	D C	157.5 95.0	36.1 23.2	E C	165.0 95.0	-		
2	Lincoln Boulevard / Marina Pointe Drive - Maxella Avenue	NB Left	AM PM	44.6 47.2	D D	73.9 122.9	44.6 47.2	D D	73.9 122.9	46.0 47.8	D D	78.4 130.4	46.0 47.8	D D	78.4 130.4			-
	(Signanzed)	NB Through	AM PM	140.5 76.7	F F	1225.2 814.0	140.5 76.7	F F	1225.2 814.0	176.2 123.0	F F	1459.9 1111.2	176.2 123.0	F F	1459.9 1111.2			
		NB Right	AM PM	22.2 24.0	C C	234.3 293.7	22.9 24.2	C C	256.0 301.1	22.9 26.0	C C	257.0 355.3	23.6 26.3	C C	279.5 363.3	-		-
		SB Left	AM PM	33.8 33.6	C C	62.7 53.2	33.9 33.6	C C	67.5 54.7	33.9 33.7	C C	68.0 59.5	34.0 33.8	C C	72.9 61.1	-		-
		SB Through	AM PM	40.2 45.0	D D	493.7 598.6	40.2 45.0	D D	493.7 598.6	42.1 51.1	D D	540.5 684.3	42.1 51.1	D D	540.5 684.3	-	-	-
		SB Right	AM PM	45.3 54.3	D	511.9 627.2	45.3 54.3	D	511.9 627.2	48.7 64.6	D E	564.8 732.8	48.7 64.6	DE	564.8 732.8	-		-
		EB Lett	AM PM	45.6 45.9	D	99.3 113.1	45.6 45.9	D	99.3 113.1	45.8	D	106.2 120.0	45.8 46.1	D	106.2 120.0	-	-	-
		EB Through	AM PM	45.6 45.1	D	104.4 84.0	45.6 45.1	D	104.4 84.0	45.7 45.2	D	111.3 89.5	45.7 45.2	D	111.3 89.5	-	-	-
		EB Right	AM PM	7.1 6.5	A	140.9 71.9	7.1 6.5	A	140.9 71.9	7.2 6.5	A	150.2 76.2	7.2 6.5	A	150.2 76.2	-	-	-
		WB Lett	AM PM	52.3 74.1	E	332.5	52.6 74.5	E	184.5 334.0	59.6 108.8	F	254.3 457.8	61.1 109.6	F	264.5 460.2	-	-	-
		WB Ihrough	AM PM	51.1 66.4	E	302.4	51.2 66.6	E	303.1	52.5 79.8	E	182.3 363.3	52.6 80.0	F	364.2	-	-	-
		WB Right	AM PM	35.7 37.8	D	141.0 223.3	36.0 37.9	D	152.3 224.4	36.1 38.4	D	157.5 241.4	36.4 38.4	D	169.0 242.3	-	-	-
3	Del Rey Avenue / Maxella Avenue (Unsionalized)	SB Left/Right	AM PM	11.8 17.0	B C	15.0 70.0	12.0 17.1	B C	17.5 70.0	13.4 21.4	B C	32.5 100.0	13.6 21.6	B C	32.5 102.5			
	(enspirated)	EB Left	AM PM	8.5 8.9	A A	10.0 7.5	8.6 8.9	A A	12.5 7.5	8.7 9.3	A A	12.5 10.0	8.8 9.4	A A	12.5 10.0	-		

Table 5-3 SUMMARY OF DELAYS, LEVELS OF SERVICE, AND VEHICLE QUEUING [1] WEEKDAY AM AND PM PEAK HOURS OPTION B

~

																YEAR 2026 F	UTURE W	OPTION B +
NO.	INTERSECTION	TRAFFIC MOVEMENT	PEAK HOUR	YEAI DELAY [2]	R 2020 EXIS LOS [3]	STING QUEUE [4]	YEAR 2020 E DELAY [2]	LOS [3]	V/ OPTION B QUEUE [4]	YEAR 2026 F DELAY [2]	LOS [3]	O OPTION B QUEUE [4]	YEAR 2026 1 DELAY [2]	LOS [3]	QUEUE [4]	IMP DELAY [2]	ROVEME LOS [3]	NTS QUEUE [4]
4	Ocean Way / Maxella Avenue	NB Left	AM PM	14.3 20.5	B	10.0	10.9	B	26.5 25.9	16.2 27.2	CD	15.0 35.0	10.8	B	29.9 30.3	-		
	(Unsignalized w/o Project; Signalized w/ Project)	NB Right	AM	9.8	A	7.5	11.2	В	32.0	10.1	В	7.5	11.0	В	34.8	-		
		EB Through	AM				12.4	В	20.3 82.9			-	12.8	в	24.3 96.2	-	-	-
		ED Dight	PM				13.5	В	122.6			-	14.2	В	144.7	-		
		ED Right	PM				13.7	В	117.0		-	-	14.3	В	137.2	-		-
		WB Left	AM PM	8.2 8.8	A A	2.5 5.0	14.0 16.1	B B	18.0 26.3	8.3 9.1	A A	2.5 5.0	14.7 17.9	B B	21.1 36.7	-	-	
		WB Through	AM PM				11.5 12.1	B B	54.2 77.7			-	11.7 12.5	B B	60.5 94.3	-		
5	Maxella Avenue Driveway / Maxella Avenue (Unsignalized)	NB Right	AM PM	9.4 9.9	A A	0.0 0.0	9.5 9.9	A A	0.0 0.0	9.6 10.2	A B	0.0 0.0	9.7 10.2	A B	0.0 0.0		-	
6	Glencoe Avenue / Maxella Avenue	NB Left	AM PM	17.9 22.4	B C	59.4 77.2	18.5 22.7	B C	60.7 77.9	19.3 30.5	B C	67.2 116.9	20.0 31.2	B C	68.8 118.3			
	(Signalized)	NB Through	AM PM	18.6 13.0	B B	280.9 151.8	19.8 13.0	B B	299.1 154.0	21.9 13.5	C B	327.0 174.9	24.0 13.6	C B	352.3 177.5	-		
		NB Right	AM PM	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	20.6 27.4	10.7 10.8	B B	20.6 27.4			
		SB Left	AM PM	24.1 16.8	C B	44.2 22.7	25.1 16.9	C B	45.3 22.8	26.7 18.0	C B	51.1 27.4	27.8 18.1	C B	52.5 27.5			
		SB Through	AM PM	12.5	B	128.1	12.7	B	137.1	12.9	B	145.6	13.0	B	155.0	-	-	
		SB Right	AM	12.6	В	122.7	12.7	В	131.5	12.9	В	139.3	13.1	В	148.0	-	-	
		EB Left	AM	13.4	В	47.9	13.7	В	55.0	14.0	В	57.6	14.3	В	65.2	-		
		EB Through	AM	15.4	В	38.6	15.5	В	40.7	16.8	В	90.4 45.3	17.0	в	92.4 47.1	-	-	-
		FB Right	PM AM	11.8	B	57.2	11.8	B	57.8	12.0	B	68.3 66.9	12.0	B	68.8 69.7	-	-	-
		22 Right	PM	12.9	В	81.0	12.9	B	81.5	13.2	В	89.5	13.2	B	89.9	-	-	
		WB Left	AM PM	12.5	B	27.5 44.7	12.6	B	27.6 44.7	12.9	B	29.6 48.9	12.9 14.6	B	29.8 49.0	-	-	-
		WB Through	AM PM	11.1 11.6	B B	31.7 52.6	11.2 11.6	B B	33.7 53.1	11.2 11.8	B B	35.7 61.0	11.2 11.9	B B	37.4 61.5	-	-	-
		WB Right	AM PM	11.3 11.8	B B	32.5 50.1	11.3 11.8	B B	32.5 50.5	11.4 12.0	B B	35.4 57.8	11.4 12.1	B B	35.9 58.4	-		-
7	Glencoe Avenue / Glencoe Avenue Northerly Driveway	NB Left	AM PM						-			-			-			
	(Unsignalized)	EB Right	AM PM						-		-	-	-		-	-	-	-

																		13-Apr-21
																YEAR 2026 F	UTURE W	OPTION B +
		TRAFFIC	PEAK	YEAH	R 2020 EXI	STING	YEAR 2020 1	EXISTING	W/ OPTION B	YEAR 2026 F	UTURE W	O OPTION B	YEAR 2026	FUTURE V	W/ OPTION B	IMI	ROVEME	NTS
NC	D. INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
8	Glencoe Avenue / Glencoe Avenue Southerly Driveway - Villa	NB Left	AM PM	9.5 10.9	A B	2.5 5.0	10.0 11.2	A B	7.5 10.0	9.9 11.5	A B	2.5 7.5	10.4 11.8	B B	7.5 10.0	14.7 18.9	B B	36.1 49.8
	(Unsignalized; Signalized w/ Improvements)	NB Through	AM PM													9.9 8.8	A A	183.0 116.0
		NB Right	AM PM				-				-					9.9 8.8	A A	182.8 115.4
		SB Left	AM PM	9.4 8.5	A A	0.0 0.0	9.4 8.5	A A	0.0 0.0	9.6 8.8	A A	0.0 0.0	9.6 8.7	A A	0.0 0.0	11.6 10.0	B A	1.6 5.3
		SB Through	AM PM								-					10.3 11.6	B B	205.8 261.7
		SB Right	AM PM					-			-					10.4 11.7	B B	202.0 256.0
		EB Left/Right	AM PM	28.3 118.5	D F	10.0 142.5	35.7 162.8	E F	60.0 222.5	35.3 230.9	E F	12.5 200.0	50.7 311.3	F F	82.5 300.0	24.6 25.9	C C	79.8 132.5
		WB Left/Right	AM PM	23.2 21.4	C C	7.5 5.0	29.5 24.2	D C	10.0 5.0	27.3 25.5	D D	10.0 5.0	36.0 29.5	E D	15.0 7.5	23.3 23.2	C C	16.7 9.0
9	Mindanao Way/ Glencoe Avenue	NB Left	AM PM	195.5 54.1	F D	892.7 276.3	234.5 59.2	F E	1037.7 293.5	283.1 101.4	F F	1182.0 397.3	326.7 111.5	F F	1333.7 427.1	22.0 23.4	C C	308.2 183.2
	(Signalized)	NB Through	AM PM	20.9 19.1	C B	233.0 133.3	20.9 19.1	C B	233.0 133.3	21.4 19.4	C B	251.8 152.4	21.4 19.4	C B	251.8 152.4	14.8 17.6	B B	209.1 143.7
		NB Right	AM PM	21.0 19.1	C B	225.5 129.9	21.0 19.1	C B	225.5 129.9	21.5 19.4	C B	243.0 147.9	21.5 19.4	C B	243.0 147.9	14.8 17.6	B B	201.8 139.5
		SB Left	AM PM	25.9 21.7	C C	6.1 7.0	25.9 21.7	C C	6.1 7.0	26.9 22.4	C C	7.0 8.6	26.9 22.4	C C	7.0 8.6	29.2 26.7	C C	7.4 9.5
		SB Through	AM PM	19.7 20.6	B C	171.2 218.4	19.7 20.6	B C	175.4 219.4	20.0 21.1	B C	189.3 240.8	20.0 21.1	C C	192.7 242.2	35.2 34.1	D C	250.7 304.2
		SB Right	AM PM	19.7 20.6	B C	161.9 210.0	19.8 20.7	B C	164.8 211.0	20.0 21.2	C C	178.3 230.8	20.1 21.2	C C	181.6 231.6	35.4 34.3	D C	238.7 290.9
		EB Left	AM PM	14.3 16.0	B B	42.5 86.1	14.5 16.1	B B	48.2 87.0	14.7 16.8	B B	51.8 98.6	15.0 16.9	B B	57.9 99.3	21.8 19.0	C B	72.7 106.7
		EB Through	AM PM	12.7 13.6	B B	73.6 122.1	12.8 13.6	B B	77.0 122.7	13.0 13.9	B B	86.0 135.4	13.0 13.9	B B	89.5 136.0	18.9 15.5	B B	112.8 146.0
		EB Right	AM PM	19.4 28.6	B C	295.3 473.9	20.9 29.4	C C	330.7 485.7	20.9 35.3	C D	330.7 567.3	22.7 36.9	C D	369.6 583.1	11.1 18.1	B B	252.7 409.3
		WB Left	AM PM	14.1 17.5	B B	25.8 83.0	14.2 17.5	B B	25.9 83.0	14.6 18.5	B B	29.3 99.3	14.7 18.6	B B	29.4 99.3	21.3 20.8	C C	36.9 106.6
		WB Through	AM PM	12.4 12.6	B B	57.0 66.0	12.5 12.6	B B	58.5 66.5	12.5 12.8	B B	61.6 74.8	12.5 12.8	B B	63.1 75.6	18.1 14.3	B B	79.4 81.0
		WB Right	AM PM	12.5 12.6	B B	56.7 64.9	12.5 12.6	B B	58.0 65.6	12.5 12.8	B B	61.0 73.7	12.6 12.8	B B	62.5 74.2	18.2 14.3	B B	78.9 79.6

																	13-Apr-21	
		TRAFFIC	PEAK	YEAI	R 2020 EXIS	STING	YEAR 2020 E	XISTING V	// OPTION B	YEAR 2026 F	UTURE W	O OPTION B	YEAR 2026	FUTURE W	/ OPTION B	YEAR 2026 F IMP	UTURE W/ ROVEME	OPTION B + NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
10	Mindanao Way/ SR-90 Westbound	NB Left	AM PM	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 15.4	31.5 31.7	C C	6.2 15.4			
	(Signalized)	NB Through	AM PM	14.0 13.4	B B	158.0 120.6	14.1 13.4	B B	160.4 121.1	14.3 13.8	B B	174.0 136.9	14.4 13.8	B B	176.5 137.5	-		
		SB Through	AM PM	31.0 51.3	C D	257.8 478.2	31.6 52.3	C D	270.7 484.8	32.2 73.0	C F	282.9 607.0	33.0 74.7	C F	296.2 616.3	-	-	-
		SB Right	AM PM	33.7 62.4	C E	267.8 520.3	34.6 63.5	C E	282.1 527.4	35.6 84.7	D F	295.5 650.1	36.7 86.3	D F	310.6 659.2	-	-	
		WB Left	AM PM	26.8 23.1	C C	330.0 251.9	26.8 23.1	C C	330.0 251.9	29.4 25.1	C C	369.5 297.5	29.4 25.1	C C	369.5 297.5	-		
		WB Through	AM PM	97.0 31.6	F C	969.8 442.1	102.2 31.9	F C	1009.1 446.8	130.4 47.2	F D	1222.9 594.9	135.9 48.2	F D	1265.3 603.6	-	-	
		WB Right	AM PM	160.0 23.8	F C	1250.5 243.7	172.8 24.1	F C	1337.4 248.7	200.3 25.6	F C	1525.8 277.0	213.4 26.0	F C	1616.4 282.6	-	-	
11	Mindanao Way/ SR-90 Eastbound	NB Through	AM PM	197.8 144.4	F F	760.8 587.7	202.7 145.7	F F	777.0 592.0	241.2 200.4	F F	902.7 768.5	246.2 201.8	F F	919.4 773.1			-
	(Signalized)	NB Right	AM PM	474.9 394.0	F F	1498.1 1261.5	474.9 394.0	F F	1498.1 1261.5	539.1 497.8	F F	1683.9 1564.6	539.1 497.8	F F	1683.9 1564.6	-		
		SB Left	AM PM	27.7 33.3	C C	197.3 303.4	28.2 33.6	C C	211.2 307.3	28.4 36.8	C D	215.8 343.2	29.0 37.3	C D	230.2 348.0	-	-	-
		SB Through	AM PM	17.5 18.7	B B	304.5 344.5	17.6 18.7	B B	306.8 345.5	18.4 20.6	B C	336.3 403.2	18.5 20.6	B C	338.6 404.4	-	-	
		EB Left	AM PM	17.9 17.8	B B	17.3 10.3	17.9 17.8	B B	17.3 10.3	18.0 17.8	B B	20.9 11.5	18.0 17.8	B B	20.9 11.5	-	-	
		EB Through	AM PM	40.1 35.9	D D	518.7 474.6	40.1 35.9	D D	518.7 474.6	57.4 46.2	E D	668.3 574.1	57.4 46.2	E D	668.3 574.1	-		
		EB Right	AM PM	40.3 35.9	D D	517.7 473.0	40.3 35.9	D D	517.7 473.0	57.8 46.3	D D	668.1 573.4	57.8 46.3	E D	668.1 573.4	-		-

>

																		13-Apr-21
																YEAR 2026 F	UTURE W/	OPTION B +
		TRAFFIC	PEAK	YEA	R 2020 EXIS	TING	YEAR 2020 E	XISTING W	// OPTION B	YEAR 2026 F	UTURE W/	O OPTION B	YEAR 2026	FUTURE W	OPTION B	IME	ROVEMEN	TS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
12	Mindanao Way/	NB Left	AM	9.3	А	10.6	9.3	Α	10.6	9.4	А	11.2	9.4	Α	11.2			
	La Villa Marina		PM	9.5	А	12.3	9.5	А	12.3	9.7	А	13.6	9.7	А	13.6			
	(Signalized)					-			-									
	(8)	NB Through	AM	14.7	В	302.9	14.7	В	305.1	15.5	В	332.4	15.6	В	334.7			
		0	PM	13.5	в	258.9	13.5	в	259.3	14.5	В	297.6	14.5	в	298.0			
					-			-			-			-				
		NB Right	AM	14.7	в	299.3	14.8	в	301.5	15.6	В	328.7	15.6	в	331.6			
		0	PM	13.5	в	254.6	13.5	в	255.5	14.6	В	293.1	14.6	в	294.1			
					-			-			-			-				
		SB Left	AM	6.9	А	14.1	6.9	А	14.1	7.6	А	15.1	7.6	А	15.1			
			PM	6.6	А	30.1	6.6	А	30.1	7.6	А	32.1	7.6	А	32.1			
		SB Through	AM	5.3	А	139.4	5.3	А	140.4	5.6	А	156.3	5.6	А	158.1			
		0	PM	5.6	А	153.7	5.6	А	154.0	6.0	А	183.4	6.0	А	183.7			
		SB Right	AM	5.3	А	138.1	5.4	А	139.2	5.6	А	155.0	5.6	А	156.7			
		0	PM	5.6	А	153.1	5.6	А	153.4	6.0	А	182.8	6.0	А	183.1			
		EB Left/Through/Right	AM	32.1	С	24.6	32.1	С	24.6	32.1	С	26.4	32.1	С	26.4			
		0 0	PM	32.7	С	49.3	32.7	С	49.3	32.8	С	52.0	32.8	С	52.0			
		WB Left/Through/Right	AM	45.0	D	236.9	45.0	D	236.9	49.2	D	260.0	49.2	D	260.0			
			PM	34.4	c	112.5	34.4	с	112.5	34.6	С	119.6	34.6	Ċ	119.6			
				-		-	-		-									

[1] Pursuant to LADOT Transportation Assessment Guidelines, July 2020, the Highway Capacity Manual (HCM) methodology for signalized and unsignalized intersections was utilized to calculate vehicle queuing.

Control delay reported in seconds per vehicle.
 Signalized Intersection Levels of Service were based on

ction Levels of Service were based on the followi	ng criteria:	Unsignalized Intersection Levels of Service wer	re based on the following criteria:
Control Delay (s/veh)	LOS	Control Delay (s/veh)	LOS
<= 10	А	<= 10	A
> 10-20	В	> 10-15	В
> 20-35	С	> 15-25	С
> 35-55	D	> 25-35	D
> 55-80	E	> 35-50	E
> 80	F	> 50	F

[4] The 95th percentile queue is the maximum back of queue with 95th percentile traffic volumes. The HCM 6th Edition methodology worksheets report queues in number of vehicles, however an average vehicle length of 25 feet was assumed for analysis purposes. The reported queues therefore represent the calculated maximum back of queue in feet.

Appendix J.4

Transportation Assessment

LINSCOTT LAW & GREENSPAN

engineers

TRANSPORTATION ASSESSMENT

PASEO MARINA PROJECT City of Los Angeles, California July 6, 2021

Prepared for:

RAR2-Villa Marina Center CA, LLC 3501 Jamboree Road, Suite 3000 Newport Beach, CA 92660

LLG Ref. 5-16-0265-1

Prepared by:

Jáson A. Shender, AICP Transportation Planner III Under the Supervision of:

David S. Shender, P.E. Principal

Linscott, Law & Greenspan, Engineers

20931 Burbank Boulevard Suite C Woodland Hills, CA 91367

818.835.8648 т 818.835.8649 г

www.llgengineers.com

TABLE OF CONTENTS

SECT	ION		PAGE
10	Intr	aduction	1
1.0	1 1	Transportation Assessment Overview	••••••••••••••••••••••••••••••••••••••
	1.1	Study Area	
	1.4	Study / Hou	
2.0	Proi	iect Description	
	2.1	Project Site Location	4
	2.2	Existing Project Site	4
	2.3	Project Description	4
	2.4	Vehicular Project Site Access	7
	2.5	Pedestrian and Bicycle Project Site Access	
	2.6	Project Parking	
	2.7	Project Loading	
	2.8	Project Traffic Generation and Distribution	10
		2.8.1 Project Traffic Generation	10
		2.8.2 Project Traffic Distribution and Assignment	
	2.9	Project Transportation Demand Management	
	,	2.9.1 Transit Subsidies	
		2.9.2 Promotions and Marketing	
		2.9.3 Alternative Work Schedules and Telecommuting	22
		2.9.4 Include Bike Parking per LAMC	
		2.9.5 Include Secure Bicycle Parking and Showers	
		2.9.6 Pedestrian Network Improvements	
		1	
3.0	Proj	ject Context	25
	3.1	Non-Vehicle Transport System	
		3.1.1 Pedestrian Framework	
		3.1.2 Bicycle Network	
	3.2	Transit Framework	32
	3.3	Vehicle Network	32
		3.3.1 Regional Highway Access	32
		3.3.2 Local Roadway System	32
		3.3.3 Roadway Descriptions	
		3.3.4 City of Los Angeles High Injury Network	40
	3.4	Traffic Counts	41
	3.5	Cumulative Development Projects	47
		3.5.1 Related Projects	47
		3.5.2 Ambient Traffic Growth	47
4.0	CEC	QA Analysis of Transportation Impacts	56
	4.1	Consistency with Adopted Plans and Policies (Threshold T-1)	56
		4.1.1 Screening Criteria	56
		4.1.2 Impact Criteria and Methodology	57
		4.1.3 Review of Project Consistency	58
		4.1.4 Review of Cumulative Consistency	58
		•	

TABLE OF CONTENTS (continued)

SECT	ION			Page
	42	VMT	Analysis (Threshold T-2 1)	59
	1.2	421	Impact Criteria and Methodology	60
		4.2.2	Summary of Project VMT Analysis	61
		4.2.3	Summary of Cumulative VMT Analysis	64
	4.3	Geom	etric Design (Threshold T-3)	65
		4.3.1	Screening Criteria	65
		4.3.2	Impact Criteria and Methodology	66
		4.3.3	Qualitative Review of Site Access Points	67
	4.4	Freew	vay Safety Analysis	68
	4.5	CEOA	Transportation Measures	68
		4.5.1	Transportation Demand Management	68
		4.5.2	CEQA Transportation Summary	69
5.0	Non	-CEOA	A Analysis	70
	5.1	Pedes	trian, Bicycle, and Transit Access	70
		5.1.1	Screening Criteria	70
		5.1.2	Evaluation Criteria	71
		5.1.3	Results of Qualitative Access Review	72
	5.2	Projec	et Access and Circulation Review	74
		5.2.1	Screening Criteria	74
		5.2.2	Evaluation Criteria	85
		5.2.3	Project Operational and Passenger Loading Evaluation Methodology	86
		5.2.4	Option B Operational and Passenger Loading Evaluation Methodology	100
	5.3	Projec	et Construction Effect on Nearby Mobility	102
		5.3.1	Screening Criteria	102
		5.3.2	Evaluation Criteria and Methodology	103
		5.3.3	Recommended Project-Specific Action Items	105
6.0	Con	clusion	8	107

LIST OF FIGURES

SECTIO	Section—Figure #		
1–1	Vicinity Map 2	!	
2–1	Project Site Aerial	,	
2–2	Project Site Plan – Option A)	
2–3	Project Site Plan – Option B	;	
2–4	Existing Project Site Trip Distribution	,	
2–5	Option A Trip Distribution)	
2–6	Option B Trip Distribution	/	

≻

TABLE OF CONTENTS (continued)

LIST OF FIGURES (continued)

SECTIO	n—Figure #	Page
2–7	Net New Option A Traffic Volumes – Weekday AM Peak Hour	18
2–8	Net New Option A Traffic Volumes – Weekday PM Peak Hour	19
2–9	Net New Option B Traffic Volumes – Weekday AM Peak Hour	20
2–10	Net New Option B Traffic Volumes – Weekday PM Peak Hour	21
3–1	Pedestrian Attractors Inventory	26
3–2	Facilities Inventory	27
3–3	Pedestrian Enhanced Districts	29
3–4	Neighborhood Enhanced Network	30
3–5	Bicycle Network	31
3–6	Existing Public Transit Routes	34
3–7	Transit Enhanced Network	35
3–8	Existing and Option A Lane Configurations	37
3–9	Existing and Option B Lane Configurations	38
3–10	High Injury Network	42
3–11	Off-Site Trip Distribution – Villa Marina Marketplace/Villa Velletri Townhomes	46
3–12	Existing Traffic Volumes – Weekday AM Peak Hour	48
3–13	Existing Traffic Volumes – Weekday PM Peak Hour	49
3–14	Location of Related Projects	52
3–15	Related Projects Traffic Volumes – Weekday AM Peak Hour	53
3–16	Related Projects Traffic Volumes – Weekday PM Peak Hour	54
5–1	Existing with Option A Traffic Volumes – Weekday AM Peak Hour	89
5–2	Existing with Option A Traffic Volumes – Weekday PM Peak Hour	90
5–3	Existing with Option B Traffic Volumes – Weekday AM Peak Hour	91
5–4	Existing with Option B Traffic Volumes – Weekday PM Peak Hour	92
5–5	Future Cumulative Baseline Traffic Volumes – Weekday AM Peak Hour	93
5–6	Future Cumulative Baseline Traffic Volumes – Weekday PM Peak Hour	94
5–7	Future Cumulative with Option A Traffic Volumes – Weekday AM Peak Hour	95
5–8	Future Cumulative with Option A Traffic Volumes – Weekday PM Peak Hour	96
5–9	Future Cumulative with Option B Traffic Volumes – Weekday AM Peak Hour	97
5-10	Future Cumulative with Option B Traffic Volumes – Weekday PM Peak Hour	98

TABLE OF CONTENTS (continued)

LIST OF TABLES

SECTION	ION—TABLE#	PAGE
2–1	Option A Trip Generation	12
2–2	Option B Trip Generation	13
3–1	Existing Public Transit Routes	
3–2	Villa Marina Marketplace Trip Generation	
3–3	Villa Velletri Townhomes Trip Generation	45
3–4	Related Projects List and Trip Generation	50
4–1	City of Los Angeles VMT Impact Criteria	62
5-1	Project Evaluation of Pedestrian, Bicycle, and Transit Access	
5–2	Summary of Delays, Levels of Service, and Vehicle Queuing – Option A	75
5–3	Summary of Delays, Levels of Service, and Vehicle Queuing – Option B	80
5–4	Qualitative Review of Project Construction Activities	106

APPENDICES

Appe	NDIX
A.	Approved Transportation Assessment Memorandum of Understanding
B.	Concept Plan – Ocean Way / Maxella Avenue
C.	NCHRP Internal Capture Tool Outputs
D.	LADOT VMT Calculator Output – Option A
E.	LADOT VMT Calculator Output – Option B
F.	Manual Traffic Count Data
G.	Detailed Plans, Programs, Ordinances, and Policies Review – Option A
H.	Detailed Plans, Programs, Ordinances, and Policies Review – Option B
I.	Vehicle Miles Traveled Analysis for Mixed-Use Projects – LADOT Approved Methodology for Mitigation of VMT Impacts
J.	HCM and Levels of Service Explanation Option A HCM Data Worksheets – AM and PM Peak Hours
K.	HCM and Levels of Service Explanation Option B HCM Data Worksheets – AM and PM Peak Hours

TRANSPORTATION ASSESSMENT

PASEO MARINA PROJECT

City of Los Angeles, California July 6, 2021

1.0 INTRODUCTION

1.1 Transportation Assessment Overview

This transportation assessment has been conducted to identify and evaluate the potential transportation impacts of the proposed Paseo Marina project (the "Project") on the surrounding street system. The "Project Site" is located at the southwest corner of the Glencoe Avenue and Maxella Avenue intersection in the Palms-Mar Vista-Del Rey Community Plan area of the City of Los Angeles (the "City"). Additionally, the Project Site is located within the City's Coastal Transportation Corridor Specific Plan area. The Project Site is currently improved with 100,781 square feet of commercial floor area and surface parking areas, and the site is generally bounded by Maxella Avenue to the north, commercial uses to the south, Glencoe Avenue to the east, and a private driveway to the west. The private driveway is named Ocean Way in this transportation assessment for identification purposes. The Project Site location and general vicinity are shown in *Figure 1–1*.

The transportation analysis follows City's applicable transportation assessment guidelines¹ (TAG). The TAG are focused on transportation metrics that promote the reduction of greenhouse gas emissions, the development of multimodal networks and access to diverse land uses, as well as safety, sustainability and smart growth. In compliance with the California Environmental Quality Act (CEQA), the TAG identify vehicle miles traveled (VMT) as the primary metric for evaluating a project's transportation impacts along with whether the proposed project conflicts or is inconsistent with local plans and policies. In addition, the TAG require evaluation of non-CEQA mobility elements such as pedestrian, bicycle and transit access, project access and circulation, and project construction.

This transportation assessment presents (i) a CEQA assessment of whether the Project conflicts or is inconsistent with local transportation-related plans and policies, (ii) a CEQA assessment of Project-related VMT, (iii) a CEQA assessment of whether the Project increases hazards due to a geometric design feature or incompatible use, (iv) a CEQA freeway safety assessment, (v) a non-CEQA assessment of pedestrian, bicycle and transit access, (vi) a non-CEQA evaluation of Project access, safety and circulation, and (vii) a non-CEQA review of Project construction activities.

¹ Los Angeles Department of Transportation (LADOT) Transportation Assessment Guidelines, LADOT, July 2020.

exhibits ₽ 14:08:12 jshender 04/30/2020 o:\0265\dwg\f1-1.dwg

-2-

1.2 Study Area

The CEQA and non-CEQA analysis criteria for this transportation assessment were identified in consultation with City of Los Angeles Department of Transportation (LADOT) staff. The analysis criteria were determined based on the City's TAG, the proposed Project description and location, and the characteristics of the surrounding transportation system. As defined by the City as Lead Agency under CEQA, LADOT confirmed the appropriateness of the analysis criteria when it entered into a transportation assessment Memorandum of Understanding (MOU) for the Project on March 12, 2020. The approved MOU is contained in *Appendix A*. In addition to the Project, this transportation assessment evaluates an alternative Project ("Option B"). LADOT confirmed the appropriateness of the analysis criteria for Option B when it entered into a transportation assessment evaluates an alternative Project ("Option B").

2.0 **PROJECT DESCRIPTION**

2.1 **Project Site Location**

The Project Site is located at the southwest corner of Glencoe Avenue and Maxella Avenue in the Palms-Mar Vista-Del Rey Community Plan area of the City. Additionally, the Project Site is located within the City's Coastal Transportation Corridor Specific Plan area. The Project Site is generally bounded by Maxella Avenue to the north, commercial uses to the south, Glencoe Avenue to the east, and Ocean Way to the west. The Project Site location and general vicinity are shown in *Figure 1–1*.

The Project Site is located within a Transit Priority Area as determined by the Southern California Association of Governments (SCAG) and is currently served by many local lines and regional/commuter lines via stops located within convenient walking distance along Maxella Avenue, Glencoe Avenue, Lincoln Boulevard, and Mindanao Way. The bus lines with stops in the Project study area include: Metro Local Line 108/358, LADOT Commuter Express 437A, Culver City Bus (CCB) Line 1, CCB Line 2, CCB Line 7, City of Santa Monica Big Blue Bus (BBB) Line 3, BBB Rapid Line 3, and BBB Line 16.

2.2 Existing Project Site

The Project Site includes approximately 6.06 acres of land and is currently improved with 100,781 square feet of commercial floor area. Vehicular access to the existing Project Site is provided by two access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, and three driveways along the west side of Glencoe Avenue. Parking for the existing commercial space is provided in onsite surface parking lots. The Project Site is highlighted in an aerial photograph presented in *Figure 2–1*.

2.3 Project Description

The Applicant proposes to remove the existing improvements on the Project Site and construct a mixed-use development under one of two development options. Option A would include 592 market-rate residential apartment dwelling units, 66 affordable housing dwelling units, 13,650 square feet of restaurant floor area, and 13,650 square feet of commercial retail floor area. Parking for Option A would be provided in two subterranean levels and two above-grade levels of parking within each of the three buildings. Option A proposes to provide a total of 1,217 parking spaces. Construction and occupancy of Option A is proposed to be completed by the year 2026. The site plan for Option A is shown in *Figure 2–2*.

Option B would include 382 market-rate residential apartment dwelling units, 43 affordable housing dwelling units, 20,000 square feet of restaurant floor area, 20,000 square feet of commercial retail floor area, and 90,000 square feet of office floor area. Option B proposes to provide 1,287 parking spaces within an onsite parking garage with an at-grade level and three subterranean levels. The at-grade level of the parking garage will provide parking for the restaurant and commercial retail components of Option B, as well as for the leasing office associated with the residential component. The first subterranean level of the parking garage

Ϋ́

color.ctb exhibits ₽ 09:32:54 jshender 12/11/2020 o:\0265\dwg\f2-2.dwg

6

LINSCOTT, LAW & GREENSPAN, engineers

(Level B1) will provide parking for all components of Option B (i.e., residential, restaurant, commercial retail, and office). Level B2 will provide parking for the residential and office components of Option B. Level B3 will provide parking for the residential component of Option B. Construction and occupancy of Option B is proposed to be completed by the year 2026. The site plan for Option B is shown in *Figure 2–3*.

The following analysis accounts for both development options, and the term "Project" is used to describe both options unless stated otherwise.

2.4 Vehicular Project Site Access

Vehicular access to the Project Site will generally be provided by access points along Ocean Way, and driveways along Maxella Avenue and Glencoe Avenue. Proposed site access to Option A and Option B differs slightly and is described in detail in the following paragraphs.

Vehicular access to Option A will be provided via two access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, one driveway along the west side of Glencoe Avenue, and one entry/exit driveway located along the southern boundary of the Project Site. As shown in *Figure 2–2*, the parking areas within each of the residential buildings will be provided with two vehicular access points. The Ocean Way access points are proposed to accommodate full vehicular access (i.e., left-turn and right-turn ingress and egress turning movements). The Maxella Avenue driveway is proposed to accommodate right-turn vehicular ingress and egress only (i.e., left-turn ingress and egress traffic movements are not permitted). The northerly Glencoe Avenue driveway is proposed to accommodate full vehicular ingress and egress traffic movements are not permitted). The southerly Glencoe Avenue driveway is proposed to accommodate full vehicular ingress and egress traffic movements are not permitted). The southerly Glencoe Avenue driveway serving the Pavilions parking area and is proposed to continue to accommodate full vehicular access (i.e., left-turn and right-turn ingress and egress turning movements).

Vehicular access to Option B will be provided via three access points along the east side of Ocean Way, one driveway along the south side of Maxella Avenue, and one driveway along the west side of Glencoe Avenue, along the southern boundary of the Project Site. As shown in Figure 2-3, the southerly Ocean Way access point will provide access to the subterranean parking areas designated for the residential component of Option B. The central Ocean Way access point will provide access to the subterranean parking area designated for the office component of Option B. The northerly Ocean Way access point will provide access to the atgrade level of the onsite parking garage designated for the restaurant and commercial components of Option B. The three Ocean Way access points are proposed to accommodate full vehicular access (i.e., left-turn and right-turn ingress and egress turning movements). The Maxella Avenue driveway will provide access to the at-grade level of the onsite parking garage designated for the restaurant and commercial components of the onsite parking garage and is proposed to accommodate right-turn vehicular ingress and egress only (i.e., left-turn ingress and egress traffic movements are not permitted). The Glencoe Avenue driveway is the existing driveway serving the Pavilions parking area and is proposed to provide access to two vehicular access points along the south side of Option B. The westerly access point will provide access the

LINSCOTT, LAW & GREENSPAN, engineers

<u>-</u>8-

PASEO MARINA PROJECT

subterranean parking area within the onsite parking garage designated for the residential component of Option B, while the easterly access point will provide access to the at-grade level of the onsite parking garage designated for the restaurant and commercial components of Option B. The Glencoe Avenue driveway is proposed to continue to accommodate full vehicular access (i.e., left-turn and right-turn ingress and egress turning movements).

As part of the Project, the Applicant, in conjunction with LADOT, will design and implement roadway striping changes along Maxella Avenue at the Ocean Way intersection. Specifically, the existing signalized crosswalk located approximately 100 feet west of the east leg of the intersection will be removed, and crosswalks will be installed at the Ocean Way / Maxella Avenue intersection. Additionally, the Applicant, in conjunction with LADOT, will install a traffic signal at the intersection with controlled crossing devices (e.g., signalized crosswalks). A concept plan for these improvements was previously submitted to the LADOT Western District Office for initial review and approval and is attached in *Appendix B*.

2.5 Pedestrian and Bicycle Project Site Access

Proposed pedestrian access to the Project will be provided via Ocean Way, Maxella Avenue, and Glencoe Avenue. The Project will provide access locations to ensure pedestrian safety in compliance with City standards (e.g., provide sidewalks and crosswalks, and other pedestrian traffic controls). Separate pedestrian entrances would provide access from the nearby public transit stops, as well as other amenities along the major corridors.

Proposed bicycle access to the Project will be provided via Ocean Way, Maxella Avenue, and Glencoe Avenue. The Project will provide bicycle parking onsite for residents, visitors, and employees of the Project. Bicycle parking spaces will be installed in compliance with the Los Angeles Municipal Code.

2.6 Project Parking

Option A will provide a total of 1,217 parking spaces within two subterranean levels and two above-grade levels of the onsite parking garage. Parking for Option B will be provided within one at-grade level and three subterranean levels of the onsite parking garage and will provide a total of 1,287 parking spaces.

2.7 Project Loading

Loading activities associated with service and delivery operations, trash collection and Waste Management for Option A will occur along the south side of the westerly residential building and the south side of the southerly residential building (i.e., at the westerly and southeasterly portions of the Project Site). Service and delivery vehicles will utilize the northerly and southerly Glencoe Avenue driveways to access the Project's service areas. Additionally, a passenger loading area is provided within the westerly residential building's parking garage. Therefore, all loading activities will occur off-street and internal to the Project Site.

Loading activities associated with service and delivery operations, trash collection and Waste Management for Option B will occur along at the northwest and south-central portions of the Project Site. Service and delivery vehicles will utilize the northerly Ocean Way access points, Maxella Avenue driveway, and Glencoe Avenue driveway to access the loading zones and trash/recycling areas located within the at-grade level of the onsite parking garage. Additionally, a passenger drop-off/pick-up area is provided along east side of Ocean Way, internal to the Project Site. Therefore, all loading activities will occur off-street and internal to the Project Site.

2.8 **Project Traffic Generation and Distribution**

2.8.1 Project Traffic Generation

Traffic generation is expressed in vehicle trip ends, defined as one-way vehicular movements, either entering or exiting the generating land use. Traffic volumes expected to be generated by the proposed Project during the weekday AM and PM peak hours, as well as on a daily basis, were estimated using rates provided in the Institute of Transportation Engineers' (ITE) *Trip Generation Manual*² and the affordable housing trip rates published in Table 3.3-2 of the TAG. The following trip generation rates were used to forecast the traffic volumes expected to be generated by the Project:

- Apartments: ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates were used to forecast the traffic volumes expected to be generated by the residential components of Option A and Option B.
- Affordable Housing: LADOT Affordable Housing (Family) trip generation average rates were used to forecast the traffic volumes expected to be generated by the affordable housing components of Option A and Option B.
- Restaurant: ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates were used to forecast the traffic volumes expected to be generated by the restaurant components of Option A and Option B.
- Commercial: ITE Land Use Code 820 (Shopping Center) trip generation average rates were used to forecast the traffic volumes expected to be generated by the commercial retail components of Option A and Option B.
- Office: ITE Land Use Code 710 (General Office Building) trip generation average rates were used to forecast the traffic volumes expected to be generated by the office component of Option B.

In addition to the trip generation forecasts for Option A and Option B (which are essentially an estimate of the number of vehicles that could be expected to enter and exit the Project Site access points), an internal capture adjustment has been applied for Option A and Option B to account for the synergistic effects of the planned land use mix. Internal capture trips are those trips made

² Institute of Transportation Engineers, *Trip Generation Manual*, 10th Edition, Washington, D.C., 2017.

internal to the site between land uses in a mixed or multi-use development. When combined within a mixed or multi-use development, land uses tend to interact, and thus attract a portion of each other's trip generation. LLG utilized the Internal Capture Tool published by the National Cooperative Highway Research Program (NCHRP) which estimates internal capture trips within a single development site. The NCHRP Internal Capture Tool generates an internal capture adjustment for Option A of 12 percent (12%) and 24% for the AM and PM peak hours, respectively. For Option B, the NCHRP Internal Capture Tool generates an internal capture adjustment of 24% and 31% for the AM and PM peak hours, respectively. The outputs of the NCHRP Internal Capture Tool for Option A and Option B are provided in *Appendix C*.

An adjustment was made to the trip generation forecast based on the Project Site's existing land use. The existing land use includes 100,781 square feet of commercial floor area and the trips associated with that existing use will be subtracted from the projected Project trips to account for the existing environmental condition. ITE Land Use Code 820 (Shopping Center) trip generation average rates were used to estimate the trip reduction related to the existing commercial floor area.

Furthermore, a forecast was also made of the transit trips that will be generated by the Project in lieu of trips by the private automobile. The Project Site is within a Transit Priority Area as determined by SCAG and is currently served by many local lines and regional/commuter lines via stops located within convenient walking distance along Maxella Avenue, Glencoe Avenue, Lincoln Boulevard, and Mindanao Way. The bus lines with stops in the Project study area include: Metro Local Line 108/358, LADOT Commuter Express 437A, Culver City Bus (CCB) Line 1, CCB Line 2, CCB Line 7, City of Santa Monica Big Blue Bus (BBB) Line 3, BBB Rapid Line 3, and BBB Line 16. Further discussion of the transit framework is provided in Section 3.2 herein. As the Project Site is within one-quarter mile of a Rapid Bus stop, a transit adjustment of 15% has been utilized, consistent with guidance provided in the TAG.

Lastly, a forecast was made of likely pass-by trips. Pass-by trips are made as intermediate stops on the way from an origin to a primary destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. In this instance, the adjacent roadways to the Project Site include Maxella Avenue and Glencoe Avenue. In accordance with the pass-by trip rates provided in Attachment H of the TAG, a 20% pass-by reduction adjustment was applied to the restaurant land use components of Option A and Option B, a 50% pass-by reduction adjustment for Shopping Center less than 50,000 square feet was applied to the commercial land use components of Option A and Option B, and a 30% pass-by reduction adjustment for Shopping Center 100,000 to less than 300,000 square feet was applied to the existing commercial floor area.

The trip generation forecasts for Option A and Option B were submitted for review and approval by LADOT staff. As presented in *Table 2–1*, Option A is expected to generate 222 net new vehicle trips (67 inbound trips and 155 outbound trips) during the AM peak hour. During the PM peak hour, Option A is expected to generate 50 net new vehicle trips (58 inbound trips and -8 outbound trips). As presented in *Table 2–2*, Option B is expected to generate 231 net new

Table 2-1 OPTION A TRIP GENERATION [1]

27-Apr-21							27-Apr-21
		AM PEAK HOUR			PM PEAK HOUR		
		VOLUMES [2]		VOLUMES [2]		[2]	
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL
Proposed Project							
Apartments [3]	592 DU	55	158	213	159	101	260
Affordable Family Housing [4]	66 DU	13	21	34	14	11	25
Restaurant [5]	13,650 GSF	75	61	136	82	51	133
Commercial [6]	13,650 GLSF	<u>8</u>	5	<u>13</u>	25	27	<u>52</u>
Subtotal		151	245	396	280	190	470
Internal Capture [7]		(17)	(27)	(44)	(64)	(43)	(107)
Transit Trips (15%) [8]		(18)	(30)	(48)	(30)	(20)	(50)
Subtotal Project Driveway Trips	•	116	188	304	186	127	313
Fristing Land Has							
Commencial [5]	(100 781) CLEE	(50)	(26)	(05)	(194)	(200)	(294)
Commercial [5]	(100,781) GLSF	(39)	(30)	(93)	(104)	(200)	(384)
Existing Transit Trips [8]							
Commercial (15%)		9	5	14	28	30	58
Subtotal Existing Driveway Trips		(50)	(31)	(81)	(156)	(170)	(326)
NET INCREASE DRIVEWAY TRIPS		66	157	223	30	(43)	(13)
Pronosed Pass-Ry Trins [9]							
Restaurant (20%)		(11)	(9)	(20)	(11)	(7)	(18)
Commercial (50%)		(11)	(2)	(20)	(8)	(9)	(17)
Subtotal		(14)	(11)	(25)	(19)	(16)	(35)
~		(1.)	()	(20)	(1)	(10)	(55)
Existing Pass-By Trips [9]							
Commercial (30%)		15	9	24	47	51	98
NET INCREASE "OFF-SITE" TRIPS	-	67	155	222	58	(8)	50

[1] Sources: ITE Trip Generation Manual, 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates.
 AM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 26% inbound/74% outbound

- PM Peak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/39% outbound
- [4] City of Los Angeles Affordable Housing (Family) trip generation average rates.
- AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
- PM Peak Hour Trip Rate: 0.38 trips/dwelling unit; 55% inbound/45% outbound [5] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
- AM Peak Hour Trip Rate: 9.94 trips/1,000 SF of floor area; 55% inbound/45% outbound
 PM Peak Hour Trip Rate: 9.77 trips/1,000 SF of floor area; 62% inbound/38% outbound
- [6] ITE Land Use Code 820 (Shopping Center) trip generation average rates.
- AM Peak Hour Trip Rate: 0.94 trips/1,000 SF of leasable area; 62% inbound/38% outbound
 PM Peak Hour Trip Rate: 3.81 trips/1,000 SF of leasable area; 48% inbound/52% outbound
- [7] The internal capture reduction for the residential, restaurant, retail, and office is based on the synergy between all the land uses provided within the Project Site, and determined via NCHRP 684 Internal Capture Estimation Tool (12% for AM Peak Hour and 24% for PM Peak Hour).
- [8] A 15% transit use reduction applied based on the Project Site being located within 1/4 mile of a Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the proposed Project and existing land uses based on the *LADOT Transportation Assessment Guidelines*, July 2020 for developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop.
- [9] Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The trip reduction for pass-by trips has been applied to the restaurant and commercial components of the Project based on the *LADOT Transportation Assessment Guidelines*, July 2020 for High Turnover Restaurant, Shopping Center less than 50,000 sf, and Shopping Center 100,000 to less than 300,000 sf.

Table 2-2 OPTION B TRIP GENERATION [1]

	20-Apr-21						
		AM PEAK HOUR			PM PEAK HOUR		
		VOLUMES [2]			VOLUMES [2]		
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL
Proposed Project							
Apartments [3]	382 DU	36	102	138	102	66	168
Affordable Family Housing [4]	43 DU	8	14	22	9	7	16
Restaurant [5]	20,000 GSF	109	90	199	121	74	195
Commercial [6]	20,000 GLSF	12	7	19	36	40	76
Office [7]	90,000 GSF	89	<u>15</u>	104	17	87	<u>104</u>
Subtotal		254	228	482	285	274	559
Internal Capture [8]		(59)	(51)	(110)	(86)	(83)	(169)
Transit Trips (15%) [9]		(28)	(24)	(52)	(29)	(28)	(57)
Subtotal Project Driveway Trips		167	153	320	170	163	333
Existing Land Use							
Commercial [5]	(100,781) GLSF	(59)	(36)	(95)	(184)	(200)	(384)
Existing Transit Trips [9]							
Commercial (15%)		9	5	14	28	30	58
Subtotal Existing Driveway Trips		(50)	(31)	(81)	(156)	(170)	(326)
NET INCREASE DRIVEWAY TRIPS		117	122	239	14	(7)	7
Proposed Pass-By Trips [10]							
Restaurant (20%)		(14)	(12)	(26)	(14)	(9)	(23)
Commercial (50%)		(4)	(2)	(6)	(11)	(12)	(23)
Subtotal		(18)	(14)	(32)	(25)	(21)	(46)
Existing Pass-By Trips [10]							
Commercial (30%)		15	9	24	47	51	98
NET INCREASE "OFF-SITE" TRIPS	•	114	117	231	36	23	59

[1] Source: ITE Trip Generation Manual, 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates.
 - AM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 26% inbound/74% outbound
 - PM Peak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/39% outbound

- FM Peak Hour Trip Rate: 0.44 (rips/dwelling unit; 01% indound/59% outbound
 City of Los Angeles Affordable Housing (Family) trip generation average rates.
 AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
- AM Peak Hour Trip Rate: 0.52 trips/dwelling unit; 38% inbound/62% outbound
 PM Peak Hour Trip Rate: 0.38 trips/dwelling unit; 55% inbound/45% outbound
 ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation avoid
- [5] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
 AM Peak Hour Trip Rate: 9.94 trips/1,000 SF of floor area; 55% inbound/45% outbound
 PM Peak Hour Trip Rate: 9.77 trips/1,000 SF of floor area; 62% inbound/38% outbound
- [6] ITE Land Use Code 820 (Shopping Center) trip generation average rates.
 AM Peak Hour Trip Rate: 0.94 trips/1,000 SF of leasable area; 62% inbound/38% outbound
 PM Peak Hour Trip Rate: 3.81 trips/1,000 SF of leasable area; 48% inbound/52% outbound
- [7] ITE Land Use Code 710 (General Office Building) trip generation average rates.
 AM Peak Hour Trip Rate: 1.16 trips/1,000 SF of floor area; 86% inbound/14% outbound
 PM Peak Hour Trip Rate: 1.15 trips/1,000 SF of floor area; 16% inbound/84% outbound
- [8] The internal capture reduction for the residential, restaurant, retail, and office is based on the synergy between all the market-rate apartments, restaurant, commercial, and office land uses provided within the Project Site, and determined via NCHRP 684 Internal Capture Estimation Tool (24% for AM Peak Hour and 31% for PM Peak Hour).
- [9] A 15% transit use reduction applied based on the Project Site being located within 1/4 mile of a Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the proposed Project and existing land uses based on the *LADOT Transportation Assessment Guidelines*, July 2020 for developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop. The transit reduction was not applied to the affordable housing component of the Project, per the *LADOT Transportation Assessment Guidelines*, July 2020.
- [10] Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The trip reduction for pass-by trips has been applied to the restaurant and commercial components of the Project based on the *LADOT Transportation Assessment Guidelines*, July 2020 for High Turnover Restaurant, Shopping Center less than 50,000 sf, and Shopping Center 100,000 to less than 300,000 sf.

vehicle trips (114 inbound trips and 117 outbound trips) during the AM peak hour. During the PM peak hour, Option B is expected to generate 59 net new vehicle trips (36 inbound trips and 23 outbound trips).

The daily vehicle trips expected to be generated by Option A and Option B were estimated using Version 1.3 of the City's VMT Calculator. Copies of the detailed VMT Calculator worksheets for Option A and Option B are contained in *Appendix D* and *Appendix E*. As indicated in the summary VMT Calculator worksheets, Option A is forecast to generate 1,379 net new daily vehicle trips, and Option B is forecast to generate 1,979 net new daily vehicle trips. It is noted that Option B will incorporate transportation demand management (TDM) strategies. Further discussion of the TDM strategies is provided in Section 2.9.

2.8.2 Project Traffic Distribution and Assignment

Project traffic volumes both entering and exiting the Project Site have been distributed and assigned to the adjacent street system based on the following considerations:

- The Project Site's proximity to major traffic corridors (e.g., Washington Boulevard, Lincoln Boulevard, SR-90);
- Expected localized traffic flow patterns based on adjacent roadway channelization and presence of traffic signals;
- Existing intersection traffic volumes;
- Ingress/egress availability at the Project Site assuming the site access and circulation scheme described in Section 2.4;
- The location of proposed parking areas;
- Nearby population and employment; and
- Input from LADOT staff.

The general, directional traffic distribution patterns for the existing commercial floor area on the Project Site is presented in *Figure 2–4*. The general, directional traffic distribution patterns for Option A related trips bound to the Project Site is presented in *Figure 2–5*. The general, directional traffic distribution patterns for Option B related trips bound to the Project Site is presented in *Figure 2–6*. The forecast net new weekday AM and PM peak hour traffic volumes at the study intersections associated with Option A are presented in *Figures 2–7* and *2–8*, respectively. The forecast net new weekday AM and PM peak hour traffic volumes at the study intersections associated with Option B are presented in *Figures 2–9* and *2–10*, respectively. The Option A traffic volume assignments presented in *Figures 2–7* and *2–8* reflect the traffic distribution characteristics shown in *Figures 2–4* and *2–5*, and the Option A traffic generation forecast presented in *Table 2–1*. The Option B traffic volume assignments presented in *Figures 1–9* and *2–8* reflect the traffic distribution characteristics shown in *Figures 2–4* and *2–5*, and the Option A traffic generation forecast presented in *Table 2–1*. The Option B traffic volume assignments presented in *Figures 1–9* and *2–8* reflect the traffic distribution characteristics shown in *Figures 2–4* and *2–5*, and the Option A traffic generation forecast presented in *Figures 1–9* and *2–10*.

2-9 and 2-10 reflect the traffic distribution characteristics shown in *Figures 2–4* and 2–6, and the Option B traffic generation forecast presented in *Table 2–2*.

2.9 **Project Transportation Demand Management**

The Applicant will comply with the City's existing transportation demand management (TDM) Ordinance in Los Angeles Municipal Code (LAMC) Section 12.26.J. Beyond the requirements in the TDM ordinance, Option B includes six TDM strategies to be implemented as mitigation measures.³ The TDM strategies are listed in Table 2.2-2 of the TAG. Further discussion of these TDM strategies is provided in the sections below.

2.9.1 Transit Subsides

This TDM strategy involves the subsidization of transit fare for residents and employees of Option B. The subsidy will be proactively offered to each resident and employee at least once annually for a minimum of five years. At the time of initial opening, Option B will offer a daily transit subsidy to all (i.e., 100%) residents and employees of \$2.98 per day.

2.9.2 **Promotions and Marketing**

Option B will utilize promotional and marketing tools to educate and inform residents and employees about alternative transportation options and the effects of their travel choices. Rather than two-way communication tools or tools that would encourage an individual to consider a different mode of travel at the time the trip is taken (i.e., smartphone application, daily email, etc.), this TDM strategy includes passive educational and promotional materials, such as posters, information boards, or a website with information that residents and employees can choose to read at their own leisure.

2.9.3 Alternative Work Schedules and Telecommuting Program

The strategy encourages employees to work alternative schedules or telecommute, including staggered start times, flexible schedules, or compressed work weeks. At the time of initial opening of the development, Option B will offer 1.5 days per week of telecommuting to at least 5% of all employees.

2.9.4 Include Bike Parking per Los Angeles Municipal Code

Table 12.21A.16(a)(1)(i) of the LAMC provides the required short-term and long-term bicycle parking spaces for the residential component of Option B (425 units). The short-term bicycle parking ratios are as follows:

•	Dwelling Units 1-25:	1 space per 10 units (3 spaces);
•	Dwelling Units 26-100:	1 space per 15 units (5 spaces);

• Dwelling Units 101-200: 1 space per 20 units (5 spaces); and

³ As discussed in Section 4.2, Option A as proposed results in a less than significant VMT impact. Therefore, no additional TDM measures are proposed in conjunction with Option A as proposed since mitigation is not required.

LINSCOTT, LAW & GREENSPAN, engineers

• Dwelling Units 201-425: 1 space per 40 units (6 spaces).

The long-term bicycle parking ratios are as follows:

•	Dwelling Units 1-25:	1 space per unit (25 spaces);
•	Dwelling Units 26-100:	1 space per 1.5 units (50 spaces);
•	Dwelling Units 101-200:	1 space per 2 units (50 spaces); and
•	Dwelling Units 201-425:	1 space per 4 units (56 spaces).

Table 12.21.A.16(a)(2) in the LAMC provides the required short-term and long-term bicycle parking spaces for the restaurant, commercial, and office components of Option B. The short-term bicycle parking ratios are as follows:

•	Retail (20,000 s.f.):	1 space per 2,000 s.f. (10 spaces);
•	Restaurant (20,000 s.f.):	1 space per 2,000 s.f. (10 spaces); and
•	Office (90,000 s.f.):	1 space per 10,000 s.f. (9 spaces).

The long-term bicycle parking ratios are as follows:

•	Retail (20,000 s.f.):	1 space per 2,000 s.f. (10 spaces);
•	Restaurant (20,000 s.f.):	1 space per 2,000 s.f. (10 spaces); and
•	Office (90,000 s.f.):	1 space per 5,000 s.f. (18 spaces).

Based on the above, Option B is required to provide 19 short-term and 181 long-term bicycle parking spaces for the residential component. For the restaurant, commercial, and office components, Option B is required to provide 29 short-term spaces and 38 long-term spaces. Option B will provide the LAMC-required number of short-term and long-term bicycle parking spaces.

2.9.5 Include Secure Bicycle Parking and Showers

This strategy involves implementation of additional end-of-trip bicycle facilities to support safe and comfortable bicycle travel by providing amenities at destinations. This strategy applies to projects that include bicycle parking onsite per LAMC. Projects providing long-term bicycle parking secured from the general public in accordance with LAMC Section 12.21A.16(d)(2) and showers in accordance with LAMC Section 91.6307 qualify for this measure.

Option B will provide short-term and long-term bicycle parking in accordance with LAMC Section 12.21A.16(d)(2). In addition, Option B will provide showers in accordance with LAMC Section 91.6307.

2.9.6 Pedestrian Network Improvements

This strategy involves implementation of pedestrian network improvements throughout and around the Project Site that encourage people to walk. This includes internally linking all uses within the Project Site with pedestrian facilities such as sidewalks and connecting the Project Site to the surrounding pedestrian network.

Option B includes pedestrian access points directly to sidewalks on the adjacent streets, including Maxella Avenue, and Glencoe Avenue. Additionally, Option B will improve existing sidewalks or construct new sidewalks on the above-mentioned streets adjacent to the Project Site. Furthermore, Option B will add street trees and landscaping, including a park along the Project Site's easterly frontage, to enhance the pedestrian network and improve exterior lighting along the sidewalks to improve safety.

3.0 PROJECT CONTEXT

3.1 Non-Vehicle Transport System

3.1.1 *Pedestrian Framework*

Public sidewalks and pedestrian facilities are provided on all streets within the Project Site vicinity. Public sidewalks ranging in width from nine feet to 11 feet are provided along the Maxella Avenue and Glencoe Avenue property frontages. Potential pedestrian destinations located within an approximately one-quarter mile radius (i.e., 1,320 feet) from the Project Site are noted in *Figure 3–1*, per Section 3.2.4 of the TAG. *Figure 3–2* shows the existing and planned pedestrian, bicycle, and transit facilities within an approximately one-quarter mile radius (i.e., 1,320 feet) from the Project Site. As presented in *Figure 3–2*, the following pedestrian facilities currently are provided in the direct vicinity of the Project Site:

- American With Disabilities Act (ADA) access ramps, including some with the yellow truncated domes, are provided at the following intersections and midblock crossings located along Maxella Avenue and Glencoe Avenue in the immediate vicinity of the Project Site:
 - Lincoln Boulevard / Marina Pointe Drive Maxella Avenue
 - Del Rey Avenue / Maxella Avenue
 - Ocean Way / Maxella Avenue
 - Maxella Avenue Signalized Midblock Crossing⁴
 - Glencoe Avene / Maxella Avenue
 - Glencoe Avenue Signalized Midblock Crossing
 - Mindanao Way / Glencoe Avenue
- Traditional parallel bar or continental style pedestrian crosswalks with varying widths of between approximately 12 feet and 20 feet are provided at the following intersections and midblock crossings located near the Project Site:
 - Lincoln Boulevard / Marina Pointe Drive Maxella Avenue
 - Del Rey Avenue / Maxella Avenue
 - Ocean Way / Maxella Avenue

⁴ The existing Maxella Avenue midblock crossing will be removed as part of both Option A and Option B. The existing crosswalk will be shifted to the Ocean Way / Maxella Avenue intersection, which will be signalized with controlled crossing devices in conjunction with Option A and Option B.

LINSCOTT, LAW & GREENSPAN, engineers

-26-

:\0265\dwg\t3-1.dwg 10/15/2020 15:13:43 jshender IIg exhibits c

-27-

o:\0265\dwg\f3-2.dwg 10/15/2020 15:34:15 jshender ∥g exhibits c

- Maxella Avenue Signalized Midblock Crossing
- Glencoe Avene / Maxella Avenue
- Glencoe Avenue Signalized Midblock Crossing
- Mindanao Way / Glencoe Avenue
- Pedestrian crossing signals and push buttons are presently included as part of the traffic signal controls at the nearby signalized intersections that are noted in *Figure 3–2*.

Option A and Option B have been designed to encourage pedestrian activity and walking as a transportation mode. Walkways are planned within Option A and Option B that will connect to the sidewalks along Maxella Avenue and Glencoe Avenue in a manner that promotes walkability.

The City's Mobility Plan 2035^5 identifies a collection of arterial streets, known as Pedestrian Enhanced Districts (PEDs), where pedestrian improvements could be prioritized to provide enhanced walking connections to and from the major destinations within communities. The arterials in close proximity to the Project Site that have been identified as PEDs are presented in *Figure 3–3*. Mobility Plan 2035 also identifies a collection of streets, known as the Neighborhood Enhanced Network (NEN), that provide comfortable and safe routes for nonmotorized modes of travel such as walking. Roadways within the NEN in close proximity to the Project Site are presented in *Figure 3–4*.

3.1.2 Bicycle Network

Bicycle access to the Project Site is facilitated by the City's bicycle roadway network. Existing bicycle facilities (e.g., Class I Bicycle Path, Class II Bicycle Lanes, Class III Bicycle Routes, Bicycle Friendly Streets, etc.) identified in the City's 2010 Bicycle Plan are located within an approximately one-half mile radius from the Project Site.⁶ Within the immediate Project Site vicinity, Lincoln Boulevard has been designated for Class II Bicycle Lanes as part of the City's Bicycle Lane Network. The 2010 Bicycle Plan goals and policies have been folded into the Mobility Plan 2035 to reflect a commitment to a balanced, multi-modal viewpoint. Roadways within the City's Bicycle Network in close proximity to the Project Site and in the surrounding area are shown in *Figure 3–5*. Additionally, as shown in *Figure 3–4*, Maxella Avenue and Glencoe Avenue have been designated within the NEN, a selection of streets that provide safe routes for non-motorized modes of travel such as bicycling.

⁵ Mobility Plan 2035, Los Angeles Department of City Planning, December 2015.

⁶ Source: 2010 Bicycle Plan, Los Angeles Department of City Planning, Adopted March 1, 2011. As noted in the Mobility Plan 2035, the 2010 Bicycle Plan and policies have been folded into the Mobility Plan to reflect a commitment to a balanced, multi-modal viewpoint.

-29-

3.2 Transit Framework

The Project Site is located within a Transit Priority Area and is currently served by many local lines and regional/commuter lines via stops located within convenient walking distance along Maxella Avenue, Glencoe Avenue, Lincoln Boulevard, and Mindanao Way. Public bus transit service in the Project Site area is currently provided by the Los Angeles County Metropolitan Transit Authority (Metro), LADOT, City of Culver City (CCB), and City of Santa Monica Big Blue Bus (BBB). A summary of the existing transit service, including the transit route, destinations and peak hour headways is presented in *Table 3–1*. The existing public transit routes in the Project Site vicinity are illustrated in *Figure 3–6*.

Mobility Plan 2035 identifies a collection of streets, known as the Transit Enhanced Network (TEN), where improvements, in collaboration with transit operators, aim to provide reliable and frequent service that is convenient and safe, increase transit ridership, reduce single-occupancy vehicle trips and integrate transit infrastructure improvements with the identity of the surrounding street. Potential enhancements range from streetscape improvements, installation of transit shelters, or installation of dedicated transit lanes. Roadways within the TEN in close proximity to the Project Site and in the surrounding area are shown in *Figure 3–7*. In addition, the location of bus stops and amenities (e.g., bus benches, shelters, etc.) in the Project study area is displayed in *Figure 3–3*.

3.3 Vehicle Network

3.3.1 Regional Highway Access

Regional vehicular access to the Project Site is primarily provided by State Route 90 (SR-90). A brief description of SR-90 is provided in the following paragraph.

SR-90 is an east-west State Highway that locally extends from Culver City to Marina del Rey to Culver City. In the immediate vicinity of the Project Site, SR-90 is known as the Marina Expressway, and provides at-grade intersections. East of Culver Boulevard, SR-90 is known as the Marina Freeway. In the Project study area, two to three travel lanes are provided in each direction on SR-90. In the immediate vicinity of the Project Site, SR-90 intersects Mindanao Way and Lincoln Boulevard in both the eastbound and westbound direction. The SR-90 intersections at Mindanao Way and Lincoln Boulevard are located approximately one-quarter mile (0.25-mile) southeast and southwest of the Project Site, respectively.

3.3.2 Local Roadway System

The following intersections were selected in consultation with LADOT staff for analysis of potential traffic operations deficiencies due to the proposed Project:

- 1. Walgrove Avenue / Washington Boulevard⁷
- 2. Lincoln Boulevard / Marina Pointe Drive Maxella Avenue

⁷ Intersection located within the jurisdiction of the City of Culver City.

LINSCOTT, LAW & GREENSPAN, engineers

Table 3-1	
EXISTING PUBLIC TRANSIT ROUTES [1]

					28-Apr-20
			Ν	NO. OF BUSE	S
DOUTE	DECTINATIONS	ROADWAY(S)	DUR	ING PEAK H	IOUR
ROUTE	DESTINATIONS	NEAR SITE	DIR	AM	PM
Metro 108 / 358	Pico Rivera to Marina del Rev	Mindanao Way	EB	3	2
	(via Slauson Avenue)		WB	3	3
Commuter Express 437A	Downtown Los Angeles to Culver City/Marina Del Pey/Venice	Mindanao Way	FB	2	0
Commuter Express 457A	(via Culver Boulevard, Grand Avenue, and Olive Street)	Windanao way	WB	0	2
CODI: 1			FD		
CCB Line I	West LA Transit Center to Venice Beach	Washington Boulevard	EB	4	4
	(via washington Boulevard)		WD	-	-
CCB Line 2	Culver City Transit Center to Venice High School	Washington Boulevard	EB	1	1
	(via inglewood Boulevard)		wВ	1	1
CCD Line 7	Department Colour Cites to Marine del Davi	Madama Were Chance Darkered	ED	2	
CCB Line /	Downtown Culver City to Marina del Rey (via Culver Boulevard)	Mindanao Way, Glencoe Boulevard,	EB	2	2
		Waxena Avenac, Eliconi Boulevard	WB	2	2
DDD 2	Doumtourn Sonto Monico to Aviotion Station	Lincoln Doulovard	ND	4	4
5 000	(via Lincoln Boulevard)	Lincoli Bouevard	SB	4	4
BBB Papid 3	Downtown Santa Monica to Aviation Station	Lincoln Boulevard	NB	5	6
сари з	(via Lincoln Boulevard)	Enconi Boulevaru	SB	3	6
	(-	
DDD 14	West Les Angeles te Marine Del Deu	Washington Devlayand	ND	2	2
10 10	west Los Angeles to Marina Del Key (via Wilshire Boulevard and Bundy Drive)	w assungton Boulevard	NB SB	5 1	2
	(bout bout and buildy birro)		55		-
			Total	42	45

[1] Sources: Los Angeles County Metropolitan Transportation Authority (Metro) website, 2020.
 Los Angeles Department of Transportation (Commuter Express) website, 2020.
 Culver CityBus (CCB) website, 2020.
 City of Santa Monica Big Blue Bus (BBB) website, 2020.

o:/0265/dwg/f3-7.dwg 09/23/2020 13:47:00 jshender IIg exhibits color.ctb

- 3. Del Rey Avenue / Maxella Avenue
- 4. Ocean Way / Maxella Avenue
- 5. Maxella Avenue Driveway / Maxella Avenue
- 6. Glencoe Avenue / Maxella Avenue
- 7. Glencoe Avenue / Glencoe Avenue Northerly Driveway⁸
- 8. Glencoe Avenue / Glencoe Avenue Southerly Driveway Villa Velletri Driveway
- 9. Mindanao Way / Glencoe Avenue
- 10. Mindanao Way / SR-90 (Marina Expressway) Westbound
- 11. Mindanao Way / SR-90 (Marina Expressway) Eastbound
- 12. Mindanao Way / La Villa Marina

Six of the 12 intersections are presently controlled by traffic signals. The Walgrove Avenue / Washington Boulevard, Del Rey Avenue / Maxella Avenue, and Ocean Way / Maxella Avenue, intersections are two-way stop-controlled intersections. A traffic signal will be installed at the Ocean Way / Maxella Avenue intersection in conjunction with both Option A and Option B.

The existing southerly driveway along Glencoe Avenue (Study Int. No. 8) is a two-way stopcontrolled intersection (i.e., a stop sign faces the outbound driveway approach) and will remain in conjunction with both Option A and Option B. The existing Maxella Avenue Driveway will be shifted approximately 101 feet to the east under Option A and two feet to the west under Option B and will be a two-way stop-controlled intersection (i.e., a stop sign will face the outbound driveway approach). The Glencoe Avenue Northerly Driveway is proposed in conjunction with Option A and will be a two-way stop-controlled intersection (i.e., a stop sign will face the outbound driveway approach).

The existing and Project lane configurations at the 12 study intersections for Option A and Option B are displayed in *Figures 3–8* and *3–9*, respectively.

3.3.3 Roadway Descriptions

Immediate access to the Project Site is provided by Maxella Avenue and Glencoe Avenue. A brief description of the roadways in the Project study area is provided in the following paragraphs.

Walgrove Avenue is a north-south oriented roadway located northwest of the Project Site. Within the Project study area, Walgrove Avenue is designated as a Collector by the City and the

⁸ Option B does not propose a northerly driveway along Glencoe Avenue. However, for consistency purposes, the intersection is included as a study intersection for both Option A and Option B.

LINSCOTT, LAW & GREENSPAN, engineers

llg exhibits jshender 14:45:59 04/13/2021 o:\0265\dwg\f3-9.dwg City of Culver City. One through travel lane is provided in each direction on Walgrove Avenue within the Project study area. Walgrove Avenue is posted for a speed limit of 25 miles per hour within the Project study area.

Lincoln Boulevard is a north-south oriented roadway located west of the Project Site. Within the Project study area, Lincoln Boulevard is designated as a Boulevard I by the City. Three through travel lanes are provided in each direction on Lincoln Boulevard within the Project study area. Separate exclusive left-turn lanes are provided in each direction on Lincoln Boulevard at the Marina Pointe Drive – Maxella Avenue intersection. A separate exclusive right-turn lane is provided in the northbound direction on Lincoln Boulevard at the Marina Pointe Drive – Maxella Avenue intersection. Lincoln Boulevard at the Marina Pointe Drive – Maxella Avenue intersection. Lincoln Boulevard at the Project study area.

Del Rey Avenue is a north-south oriented roadway located west of the Project Site. Within the Project study area, Del Rey Avenue is designated as a Local Street – Standard by the City. One through travel lane is provided in each direction on Del Rey Avenue within the Project study area. Del Rey Avenue is posted for a speed limit of 25 miles per hour within the Project study area.

Glencoe Avenue is a northwest-southeast oriented roadway that borders the Project Site to the east. Within the Project study area, Glencoe Avenue is designated as an Avenue II Modified north of Maxella Avenue, and as a Collector south of Maxella Avenue by the City. One through travel lane is provided in each direction on Glencoe Avenue north of Maxella Avenue and east of Mindanao Way. Two two through travel lanes are provided in each direction on Glencoe Avenue between Maxella Avenue and Mindanao Way. Separate exclusive left-turn lanes are provided in each direction on Glencoe Avenue at the Maxella Avenue and Mindanao Way intersections. A separate exclusive right-turn lane is provided in the northbound direction on Glencoe Avenue intersection, and in the eastbound direction at the Mindanao Way intersection. Glencoe Avenue is posted for a speed limit of 25 miles per hour within the Project study area.

Mindanao Way is a north-south oriented roadway located east of the Project Site. Within the Project study area, Mindanao Way is designated as an Avenue II north of Glencoe Avenue and as an Avenue I south of Glencoe Avenue by the City. Two through travel lanes are provided in each direction on Mindanao Way within the Project study area. Separate exclusive left-turn lanes are provided in each direction on Mindanao Way at the Glencoe Avenue, SR-90 Westbound, SR-90 Eastbound, and La Villa Marina intersections. A separate exclusive right-turn lane is provided in the northbound direction on Mindanao Way at the SR-90 Eastbound intersection. Mindanao Way is posted for a speed limit of 30 miles per hour within the Project study area.

Washington Boulevard is an east-west oriented roadway located north of the Project Site. Within the Project study area, Washington Boulevard is designated as a Boulevard II by the City and as a Primary Arterial by the City of Culver City. Two through travel lanes are provided in each direction on Washington Boulevard within the Project study area. A separate exclusive left-turn

lane is provided on Washington Boulevard in the eastbound direction at the Walgrove Avenue intersection. Washington Boulevard is posted for a speed limit of 35 miles per hour within the Project study area.

Marina Pointe Drive is an east-west oriented roadway located southwest of the Project Site. Within the Project study area, Marina Pointe Drive is designated as a Private Street by the City. One through travel lane is provided in each direction on Marina Pointe Drive within the Project study area. A separate exclusive left- and right-turn lane is provided on Marina Pointe Drive intersection in the eastbound direction at the Lincoln Boulevard intersection. There is no speed limit posted on Marina Pointe Drive within the Project study area, thus a prima facie speed limit of 25 miles per hour is assumed, consistent with California Vehicle Code Section 22352(b)(1).

Maxella Avenue is an east-west oriented roadway located that borders the Project Site to the north. Within the Project study area, Maxella Avenue is designated as an Avenue III west of Glencoe Avenue and as a Collector east of Glencoe Avenue by the City. Two through travel lanes are provided in each direction on Maxella Avenue west of Glencoe Avenue. One through travel lane is provided in each direction east of Glencoe Avenue. Separate exclusive left-turn lanes are provided in each direction on Maxella Avenue at the Glencoe Avenue intersection, in the westbound direction at the Lincoln Boulevard intersection, and the eastbound direction at the Del Rey Avenue intersection. A separate exclusive right-turn lane is provided on Maxella Avenue in the westbound direction at the Lincoln Boulevard intersection and the eastbound direction at the Glencoe Avenue intersection. Maxella Avenue is posted for a speed limit of 25 miles per hour within the Project study area.

La Villa Marina is an east-west oriented roadway located southeast of the Project Site. Within the Project study area, La Villa Marina is designated as a Local Street – Standard by the City. One through travel lane is provided in each direction on La Villa Marina within the Project study area. La Villa Marina is posted for a speed limit of 25 miles per hour within the Project study area.

3.3.4 City of Los Angeles High Injury Network

Vision Zero⁹ is a citywide initiative which prioritizes the safety of pedestrians and bicyclists on public streets, with the understanding that roads which are safe for vulnerable users will be safer for all users, in an effort to eliminate traffic fatalities. Key elements of the policy, such as reducing traffic speeds, are founded on the principles of engineering, education, enforcement, evaluation, and equity. Originating in Sweden, the policy has been adopted in numerous other North American cities, including California cities such as San Francisco and San Diego.

Mayor Eric Garcetti issued Executive Directive No. 10 in August 2015, formally launching the Vision Zero initiative in Los Angeles. Vision Zero is also a stated safety objective in the Mobility Plan 2035, which sets the goal of zero traffic deaths by 2035. Jointly directed by LADOT and the Police Department, Vision Zero takes a multi-disciplinary approach to identifying safety risk factors and implementing solutions on a citywide scale. Using a

LINSCOTT, LAW & GREENSPAN, engineers

methodology originally developed by the San Francisco Public Health Department, the Vision Zero Task Force has identified streets where investments in safety will have the most impact in reducing severe injuries and traffic fatalities in the City. These roads are collectively known as the High Injury Network (HIN). The HIN will be reviewed by the LADOT's Vision Zero group for potential engineering re-design as well as educational and enforcement campaigns. As shown in *Figure 3–10*, Lincoln Boulevard has been identified on the HIN.

If a proposed project results in significant transportation impacts, LADOT's Vision Zero group will review those specific locations and immediate vicinity for potential safety enhancements that are consistent with the City's Vision Zero initiative.

3.4 Traffic Counts

In April 2020, LADOT issued guidance¹⁰ to transportation consultants related to traffic count data to be used in transportation assessments prepared in accordance with the City's TAG. Because traffic count data could not be collected at the study intersections due to the COVID-19 pandemic, LADOT has directed transportation consultants to use historical data, with appropriate modifications to represent current (pre-pandemic) traffic volume conditions. For this transportation assessment, the following techniques were used to estimate current year (2020) peak hour turning movement traffic volumes at the study intersections:

- <u>Walgrove Avenue / Washington Boulevard:</u> Peak hour traffic volume data collected at this intersection in 2017 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes. Further discussion of the annual traffic growth rate is provided in Section 3.5.2.
- <u>Lincoln Boulevard / Marina Pointe Drive Maxella Avenue:</u> Peak hour traffic volume data collected at this intersection in 2016 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes.
- <u>Del Rey Avenue / Maxella Avenue:</u> Peak hour traffic volume data collected at this intersection in 2016 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes.
- <u>Ocean Way / Maxella Avenue</u>: Peak hour traffic volume data collected at this intersection in 2016 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes.
- <u>Maxella Avenue Driveway / Maxella Avenue</u>: The traffic count data and subsequent adjustments to year 2020 conditions at the Glencoe Avenue / Maxella Avenue intersection were used to derive the westbound and eastbound through volumes. Turning movements at the intersection were derived based on application of trip generation rates to the commercial floor area within the existing Project Site. The existing Project Site

⁹ Vision Zero Los Angeles 2015-2025, August 2015.

¹⁰ Pandemic-related updates to LADOT's Transportation Assessment Requirements, LADOT, April 17, 2020.

0

-s 1:50:37

09/23/2020

-42-

LINSCOTT, LAW & GREENSPAN, engineers

PASEO MARINA PROJECT

trips were assigned to the existing Project Site driveways, including the intersection. *Tables 2–1* and 2–2 present the trip generation forecast for the commercial floor area within the existing Project Site. The general, directional traffic distribution patterns for the existing Project Site are presented in *Figure 2–4*.

- <u>Glencoe Avenue / Maxella Avenue:</u> Peak hour traffic volume data collected at this intersection in 2016 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes.
- <u>Glencoe Avenue / Glencoe Avenue Northerly Driveway:</u> The traffic count data and subsequent adjustments approaching and departing the Glencoe Avenue / Maxella Avenue intersection were used to derive the northbound and southbound through volumes.
- Glencoe Avenue / Glencoe Avenue Southerly Driveway Villa Velletri Driveway: The traffic count data and subsequent adjustments approaching and departing the Glencoe Avenue / Maxella Avenue intersection were used to derive the northbound and southbound through volumes. Turning movements at the intersection were derived based on application of trip generation rates to the size of the land uses within the existing Project Site, the existing Villa Marina Marketplace bordering the Project Site to the south, and the Villa Velletri townhomes utilizing the driveway located across Glencoe Avenue from the Project Site. The existing Project Site trips, Villa Marina Marketplace Trips, and Villa Velletri townhomes trips were assigned to the existing driveways serving the respective sites, including the intersection. Tables 2-1 and 2-2 present the trip generation forecast for the commercial floor area within the existing Project Site. Tables 3-2 and 3-3 present the trip generation forecasts for the land uses within the existing Villa Marina Marketplace and Villa Velletri townhomes, respectively. The general, directional traffic distribution patterns for the existing Project Site are presented in Figure 2-4. The general, directional traffic distribution patterns for the existing Villa Marina Marketplace and Villa Velletri townhomes are presented in *Figure 3–11*.
- <u>Mindanao Way / Glencoe Avenue:</u> Peak hour traffic volume data collected at this intersection in 2016 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes.
- <u>Mindanao Way / SR-90 Westbound:</u> Peak hour traffic volume data collected at this intersection in 2016 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes.
- <u>Mindanao Way / SR-90 Eastbound:</u> Peak hour traffic volume data collected at this intersection in 2016 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes.

LINSCOTT, LAW & GREENSPAN, engineers

Table 3-2VILLA MARINA MARKETPLACE TRIP GENERATION [1]SOUTH OF PROJECT SITE

23-Sep-20									
		AM PEAK HOUR			PM PEAK HOUR				
		VOLUMES [2] VOLUMES [2					ES [2]		
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL		
<i>Existing Site</i> Commercial [3]	113,599 GLSF	66	41	107	208	225	433		
<i>Transit Trips [4]</i> Commercial (15%)		(10)	(6)	(16)	(31)	(34)	(65)		
NET EXISTING DRIVEWAY TR	RIPS	56	35	91	177	191	368		

[1] Sources: ITE *Trip Generation Manual*, 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 820 (Shopping Center) trip generation average rates.

- AM Peak Hour Trip Rate: 0.94 trips/1,000 SF of leasable area; 62% inbound/38% outbound - PM Peak Hour Trip Rate: 3.81 trips/1,000 SF of leasable area; 48% inbound/52% outbound

[4] A 15% transit use reduction applied based on the site being located within 1/4 mile of a

Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the existing site based on the *LADOT Transportation Assessment Guidelines*, July 2020 for developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop.

Table 3-3 VILLA VELLETRI TOWNHOMES TRIP GENERATION [1]

23-Sep-20

		AM PEAK HOUR VOLUMES [2]			PM PEAK HOUR VOLUMES [2]			
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL	
<i>Existing Site</i> Townhomes [3]	54 DU	6	19	25	19	11	30	
NET EXISTING VILLA VELLETRI DRIVEWAY TRIPS			19	25	19	11	30	

[1] Source: ITE Trip Generation Manual, 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 220 (Multifamily Housing [Low-Rise]) trip generation average rates.

- AM Peak Hour Trip Rate: 0.46 trips/dwelling unit; 23% inbound/77% outbound

- PM Peak Hour Trip Rate: 0.56 trips/dwelling unit; 63% inbound/37% outbound

• <u>Mindanao Way / La Villa Marina:</u> Peak hour traffic volume data collected at this intersection in 2017 were increased by a 1.0% annual traffic growth rate through the year 2020 to estimate current year traffic volumes.

The existing traffic volumes at the study intersections during the weekday AM and PM peak hours are shown in *Figures 3–12* and *3–13*, respectively. Summary data worksheets of the manual traffic counts at the study intersections are contained in *Appendix F*.

3.5 Cumulative Development Projects

3.5.1 Related Projects

A forecast of on-street traffic conditions prior to occupancy of Option A and Option B was prepared by incorporating the potential trips associated with other known development projects (related projects) in the area. With this information, the potential impact of the Project can be evaluated within the context of the cumulative impact of all ongoing development. The related projects research was based on information on file at LADOT, City of Culver City Planning Department, and County of Los Angeles Department of Regional Planning within a 0.75-mile radius (one-quarter mile past the farthest outlying study intersection) of the Project Site. The list of related projects in the Project Site area is presented in *Table 3–4*. The location of the related projects is shown in *Figure 3–14*.

Traffic volumes expected to be generated by the related projects were calculated using rates provided in the ITE *Trip Generation Manual*. The related projects' respective traffic generation for the weekday AM and PM peak hours, as well as on a daily basis for a typical weekday, is summarized in *Table 3–4*. The distribution of the related projects traffic volumes to the study intersections during the weekday AM and PM peak hours are displayed in *Figures 3–15* and 3-16, respectively.

As noted in Section 3.4, peak hour traffic volume data was collected at the study intersections in 2016 and 2017. Many of the related projects listed in *Table 3–4* have been completed. However, as noted in Section 3.4, peak hour traffic volume data was collected at the study intersections in 2016 and 2017, and these projects had yet to be completed. The completed projects have been included in the cumulative baseline to provide a complete forecast of onstreet traffic conditions prior to occupancy of Option A and Option B. Furthermore, two of the related projects are expected to generate a net reduction in traffic volumes during the weekday AM and PM peak hours. These projects were removed from the cumulative baseline to provide a conservative forecast of on-street traffic conditions prior to occupancy of Option A and Option B.

3.5.2 Ambient Traffic Growth

In order to account for unknown related projects not included in this analysis, the existing traffic volumes were increased at an annual rate of 1.0% per year to and including the year 2026 (i.e., the anticipated year of Project buildout). The ambient growth factor was based on general traffic growth factors provided in the 2010 Congestion Management Program for Los Angeles County

							DAILY	AN	1 PEAK H	DUR	PM PEAK HOUR			
MAP	PROJECT NAME/	PROJECT	ADDRESS/	LAND USE	DATA	DATA	TRIP ENDS [2]	N N	OLUMES	[2] TOTAL	IN .	VOLUMES	[2]	
NO.	PROJECT NUMBER	SIATUS	LOCATION	LAND USE City of I	os Angeles	SOURCE	VOLUMES	IN	001	IUIAL	IN	001	IUIAL	
		1			os Angeles	1								
LA1	X67 Lofts	Completed	4140 S. Glencoe Avenue	Apartments Office	67 DU 3,211 GSF		481	11	28	39	33	23	56	
LA2	C1 by CLG	Completed	4210 S. Del Rey Avenue	Condominiums Office	136 DU 14,929 GSF		627	24	47	71	48	37	85	
LA3	R3 by CLG	Completed	4091 S. Redwood Avenue	Condominiums Office	67 DU 7,525 GSF		391	4	21	25	29	22	51	
LA4	G8 by CLG	Completed	4040 S. Del Rey Avenue	Apartments Office	230 DU 18,800 GSF	[3]	831	(28)	72	44	74	(14)	60	
LA5	INclave	Completed	4065-71 Glencoe Avenue	Creative Office Specialty Retail	35,206 GSF 1,500 GSF 49 DU	[4]	(96)	31	18	49	1	47	48	
LA6	Warehouse to Office	Completed	4721 S. Alla Road	Office	118,352 GSF		267	38	5	43	9	48	57	
LA7	Stella Phase 2	Completed	13488 W. Maxella Avenue	Apartments	65 DU		362	6	23	29	26	14	40	
LA8	Thatcher Yard	Approved	3233 S. Thatcher Avenue	Affordable Senior Housing Affordable Family Housing	68 DU 30 DU	[5]	239	9	14	23	11	9	20	
LA9	Cedars-Sinai Marina del Rey Replacement Hospital	Approved	4650 Lincoln Boulevard	Hospital Hospital Medical Office	160 Beds (133) Beds (50,500) GSF	[6]	(1,155)	(73)	(18)	(91)	(34)	(90)	(124)	
				City of C	Culver City		1							
CC1	Costco Expansion	Under Construction	13463 Washington Boulevard	Discount Club Fueling Station Supermarket	31,023 GSF 2 FP (63,213) GSF	[7] [8] [9]	1,297 344 (6,750)	11 11 (145)	4 10 (96)	15 21 (241)	65 14 (298)	65 14 (286)	130 28 (584)	
CC2	Baldwin Site	Under Construction	12803 Washington Boulevard	Apartments Retail	37 DU 7,206 GSF	[10] [11]	271 272	4 4	13 3	17 7	6 13	15 14	21 27	
CC3	Kayvon Mixed-Use	Completed	12712-12718 Washington Boulevard	Residential Retail Retail	5 DU 3,414 GSF (2,340) GSF	[10] [11] [11]	37 129 (88)	0 2 (1)	2 1 (1)	2 3 (2)	1 6 (4)	2 7 (5)	3 13 (9)	
CC4	Townhome Development	Proposed	4118 Wade Street	Townhomes	4 DU	[10]	29	0	2	2	1	1	2	

Table 3-4 RELATED PROJECTS LIST AND TRIP GENERATION [1]

Table 3-4 (Continued) RELATED PROJECTS LIST AND TRIP GENERATION [1]

						PROJECT	DAILY	AM PEAK HOUR			PM PEAK HOUR		
MAP	PROJECT NAME/	PROJECT	ADDRESS/	LAND USE	DATA	DATA	TRIP ENDS [2]	· · · ·	OLUMES	[2]		VOLUMES	[2]
NO.	PROJECT NUMBER	STATUS	LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
	County of Los Angeles												
LC1	Pier 44/Pacific Marina Venture (Lease Parcel 44)	Under Construction	4637 Admiralty Way	Commercial Marina	91,760 GSF 141 Berths	[11] [12]	3,464 326	53 3	33 7	86 10	168 18	182 12	350 30
TOTA	L						1,278	(36)	188	152	187	117	304

[1] Source: City of Los Angeles Department of Transportation Related Projects List, City of Culver City Active Projects Map, and County of Los Angeles Related Projects List.

[2] Trips are one-way traffic movements, entering or leaving.

[3] Source: Memorandum for the 4040 Del Rey Avenue Apartment Project, prepared by Gibson Transportation Consulting, Inc., Revised March 30, 2016.

[4] Source: Traffic Impact Study for the Inclave Mixed-Use Project, prepared by Linscott, Law & Greenspan, Engineers, November 4, 2016.

[5] Source: Technical Memorandum for the Thatcher Yard Residential Project, prepared by Linscott, Law & Greenspan, Engineers, February 19, 2019.

[6] Source: Transportation Assessment for the Cedars-Sinai Marina del Rey Replacement Hospital Project, prepared by Linscott, Law & Greenspan, Engineers, March 12, 2020.

[7] ITE Land Use Code 857 (Discount Club) trip generation average rates.

[8] ITE Land Use Code 944 (Gasoline/Service Station) trip generation average rates.

[9] ITE Land Use Code 850 (Supermarket) trip generation average rates.

[10] ITE Land Use Code 220 (Multifamily Housing [Low-Rise]) trip generation average rates.

[11] ITE Land Use Code 820 (Shopping Center) trip generation average rates.

[12] ITE Land Use Code 420 (Marina) trip generation average rates.

LINSCOTT, LAW & GREENSPAN, engineers

-52-

-53-

10/01/2020

-54-

exhibits ₽ jshender 16:44:16 10/05/2020 o:\0265\dwg\f3-16.dwg ("CMP manual") and determined in consultation with LADOT staff. It is noted that based on review of the general traffic growth factors provided in the CMP manual for the Project Site area (i.e., Regional Statistical Area [RSA] 16, Santa Monica, which includes the Project Site), it is anticipated that the existing traffic volumes are expected to increase at an annual rate of approximately 0.23% per year between the years 2015 and 2026. Thus, application of an annual growth factor of 1.0% annual growth results in a highly conservative forecast of future traffic volumes in the area as it substantially exceeds the annual traffic growth rate published in the CMP manual. Furthermore, the CMP manual's traffic growth rate is intended to anticipate future traffic generated by development projects in the Project Site vicinity. Thus, the inclusion in this traffic analysis of a forecast of traffic generated by known related projects plus the use of an ambient growth traffic factor based on CMP traffic model data results in an even more conservative estimate of future traffic volumes at the study intersections.

4.0 CEQA ANALYSIS OF TRANSPORTATION IMPACTS

4.1 Conflicting with Plans, Programs, Ordinances, or Policies (Threshold T-1)

The City aims to achieve an accessible and sustainable transportation system that meets the needs of all users. The City's adopted transportation-related plans and policies affirm that streets should be safe and convenient for all users of the transportation system, including pedestrians, bicyclists, motorists, public transit riders, disabled persons, senior citizens, children, and movers of commercial goods. Therefore, the transportation requirements for proposed developments should be generally consistent with the City's transportation-related plans and policies.

As stated in Section 2.1.1 of the TAG, proposed projects shall be analyzed to identify potential conflicts with adopted City plans and policies and, if there is a conflict, improvements that prioritize access for and improve the comfort of people walking, bicycling, and riding transit in order to provide safe and convenient streets for all users should be identified. Projects designed to encourage sustainable travel help to reduce vehicle miles traveled. This section provides a review of the screening criteria and a summary of the consistency of the Project with the City's adopted plans and policies.

4.1.1 Screening Criteria

Per Section 2.1.2 of the TAG, if the project requires a discretionary action, and the answer is yes to any of the following questions, further analysis is required to assess whether the Project would conflict with adopted City plans, programs, ordinances, or policies that establish the transportation planning framework for all travel modes:

- Does the project require a discretionary action that requires the decision maker to find that the decision substantially conforms to the purpose, intent, and provisions of the General Plan?
 - Yes, both Option A and Option B will require a discretionary action.
- Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety?
 - No, neither Option A nor Option B are known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety.
- Is the project proposing to, or required to make any voluntary or required modifications to the public right-of-way (i.e., street dedications, reconfigurations of curb line, etc.)?
 - Yes, a three-foot street dedication is required for Maxella Avenue and Glencoe Avenue along the Project Site.
As the answer is "yes" to two of the three screening criteria questions in the TAG, further analysis is required to assess whether Option A or Option B would conflict with adopted City plans, programs, ordinances, or policies.

4.1.2 Impact Criteria and Methodology

The impact criteria set forth in Appendix G to the State CEQA Guidelines, as well as Section 2.1.3 of the City's TAG, regarding conflicts with plans, programs, ordinances, or policies (referred to as Threshold T-1 in the TAG) are as follows:

• Would the project conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities?

The threshold test is to assess whether a project would conflict with an adopted program, policy, plan, or ordinance that is adopted to protect the environment. In general, transportation policies or standards adopted to protect the environment are those that support multimodal transportation options and a reduction in VMT. Conversely, a project would not always have a significant impact merely based on whether or not it would implement a particular transportation-related program, plan, policy, or ordinance. Many of these programs must be implemented by the City itself over time, and over a broad area, and it is the intention of this threshold test to ensure that proposed development projects and plans do not preclude the City from implementing adopted programs, plans and policies.

The methodology for determining a project's transportation impact associated with conflicts with plans, programs, ordinances, or policies is describe in the TAG as follows:

- A project that generally conforms with and does not obstruct the City's development policies and standards will generally be considered to be consistent. The Applicant should review the documents and ordinances identified in the TAG (refer to Table 2.1-1 on Page 2-3) for City plans, policies, programs, ordinances and standards relevant to determining project consistency. TAG Attachment D: Plan Consistency Worksheet provides questions that must be answered in order to help guide whether the project conflicts with City circulation system policies. A "yes" or "no" answer to these questions does not determine a conflict. Rather, as indicated in TAG Attachment D, the Applicant must provide substantiating information to help determine whether the proposed project precludes the City's implementation of any adopted policy and/or program that was adopted to protect the environment. A mere conflict with adopted transportation related policies, or standards that require administrative relief or legislative change does not in itself constitute an impact.
- If vacation of a public right-of-way, or relief from a required street dedication is sought as part of a proposed project, an assessment should be made as to whether the right-of-way in question is necessary to serve a long-term mobility need, as defined in Mobility Plan 2035, transportation specific plan, or other planned improvement in the future.

Per Section 2.1.4 of the TAG, the analysis of cumulative impacts may be quantitative or qualitative. Each of the plans, ordinances, and policies reviewed to assess potential conflicts with proposed projects should be reviewed to assess cumulative impacts that may result from the proposed project in combination with other development projects in the study area. In addition, the cumulative analysis should also consider planned transportation system improvements within the study area as identified in consultation with LADOT.

Related projects to be considered in the cumulative analysis are known development projects located within a one-half mile radius of the Project Site. Please refer to the list of related projects identified in *Table 3–4* and *Figure 3–14* for the location of the related projects in relation to the Project Site.

4.1.3 Review of Project Consistency

This section provides a summary of the consistency review that compares the characteristics of the Project and site design features (i.e., including the site access and circulation scheme) with the City's relevant plans and policies. *Appendix G* provides the Plans, Policies, and Programs Worksheet from the TAG, and provide additional detail regarding the plans, programs, ordinances, and policies review for Option A. As confirmed in *Appendix G*, Option A has been found to be generally consistent with the relevant City plans, policies and programs and does not include any features that would preclude the City from completing and complying with these guiding documents and policy objectives. Therefore, Option A does not conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities, and the impact would therefore be "less than significant".

Appendix H provides the Plans, Policies, and Programs Worksheet from the TAG, and provide additional detail regarding the plans, programs, ordinances, and policies review for Option B. As confirmed in *Appendix H*, Option B been found to be generally consistent with the relevant City plans, policies and programs and does not include any features that would preclude the City from completing and complying with these guiding documents and policy objectives. Therefore, Option B does not conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities, and the impact would therefore be "less than significant".

Furthermore, the Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance, referred to in the LAMC Section 12.26.J) and the other requirements per the City's Municipal Code, as well as the TDM requirements of the Coastal Transportation Corridor Specific Plan.

4.1.4 Review of Cumulative Consistency

Per Section 2.1.4 of the TAG, the analysis of cumulative consistency requires consultation and confirmation with City of Los Angeles Department of Planning and Transportation (i.e., with LADCP and LADOT).

As with Option A and Option B, the related projects would include adequate bicycle facilities and include high density urban uses in proximity to the nearby multimodal transportation facilities. Furthermore, the Stella Phase 2 project, located adjacent to the Project Site at 13488 Maxella Avenue, has been completed. The related projects, as with Option A and Option B, would not conflict with adjacent street designations and classifications. No street widenings would be necessary for these projects. Accordingly, there would be no significant cumulative impacts to which Option A and Option B, as well as other nearby related projects contribute to regarding transportation policies or standards adopted to protect the environment and support multimodal transportation options and a reduction in VMT.

Based on the discussion and conclusion in the preceding Section 4.1.3, the guiding language contained in the City's TAG, and review of related projects in the Project vicinity, this documentation is sufficient to demonstrate that there is also no cumulative inconsistency with the City's plans, policies, ordinances and programs, and therefore, the cumulative impacts of Option A and Option B would be less than significant. In addition, since neither Option A nor Option B include any features that would preclude the City from completing and complying with these guiding documents and policy objectives, there is no cumulative inconsistency that can be determined.

4.2 VMT Analysis (Threshold T-2.1)

The California Office of Planning and Research (OPR) issued proposed updates to the State CEQA Guidelines in November 2017 and an accompanying technical advisory guidance in April 2018 (*OPR Technical Advisory*) that amended one of the Appendix G significance thresholds for transportation impacts to delete reference to vehicle delay and level of service and instead refer to Section 15064.3 (b)(1) of the State CEQA Guidelines to ask if the project would result in a substantial increase in vehicle miles traveled (VMT). Section 15064.3(b)(1) states as follows:

• Land Use Projects. Vehicle miles traveled exceeding an applicable threshold of significance may indicate a significant impact. Generally, projects within one-half mile of either an existing major transit stop or a stop along an existing high-quality transit corridor should be presumed to cause a less than significant transportation impact. Projects that decrease vehicle miles traveled in the project area compared to existing conditions should be considered to have a less than significant transportation impact.

The California Natural Resources Agency adopted this change to the CEQA Guidelines in December 2018, and it is now in effect. Accordingly, the City has adopted a significance criterion for transportation impacts based on VMT for land use projects and plans that closely tracks the amended Appendix G question:

• Threshold T-2.1: For a land use project, would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)(1)?

The City has developed the following screening and impact criteria to address this question. The criteria below are based on the OPR technical advisory but reflects local considerations.

Per Section 2.2.2 of the TAG, if the project requires discretionary action, and the answer is no to either T-2.1-1 or T-2.1-2, further analysis will not be required for CEQA Threshold T-2.1, and a "no impact" determination can be made:

• T-2.1-1: Would the land use project generate a net increase of 250 or more daily vehicle trips?

For purposes of screening the daily vehicle trips, a proposed project's daily vehicle trips should be estimated using the City's VMT Calculator tool or the most recent edition of the ITE *Trip Generation Manual*. TDM strategies should not be considered for the purposes of screening. If existing land uses are present on the project site or there were previously terminated land uses that meet the criteria for trip credits described in the trip generation methodology discussion (refer to Subsection 3.3.4.1 of the TAG), the daily vehicle trips generated by the existing or qualified terminated land uses can be estimated using the VMT Calculator tool and subtracted from the proposed project's daily vehicle trips to determine the net increase in daily vehicle trips.

• T-2.1-2: Would the project generate a net increase in daily VMT?

For the purpose of screening the VMT, a project's daily VMT should be estimated using the City's VMT Calculator tool or the City's Travel Demand Forecasting (TDF) model. TDM strategies should not be considered for the purpose of screening. If existing land uses are present on the project site or there were previously terminated land uses that meet the criteria for trip credits description in the trip generation methodology discussion (refer to Subsection 3.3.4.1 of the TAG), the daily VMT generated by the existing or qualified terminated land uses can be estimated using the City VMT Calculator tool and subtracted from the project's daily VMT to determine the net increase in daily VMT.

In addition to the above screening criteria, the portion of, or the entirety of a project that contains small-scale or local serving retail uses¹¹ are assumed to have less than significant VMT impacts. If the answer to the following question is no, then that portion of the project meets the screening criteria, and a no impact determination can be made for the portion of the project that contains retail uses. However, if the retail project is part of a larger mixed-use project, then the remaining portion of the project may be subject to further analysis in accordance with the above screening criteria. Projects that include retail uses in excess of the screening criteria would need to evaluate the entirety of the project's VMT, as specified in Subsection 2.2.4 of the TAG.

• If the project includes retail uses, does the portion of the project that contain retail uses exceed a net 50,000 square feet?

4.2.1 Impact Criteria and Methodology

A development project will have a potential VMT impact if the project meets the following criteria stated in Section 2.2.3 of the TAG:

¹¹ As noted in the TAG, the definition of retail for this purpose includes restaurant.

LINSCOTT, LAW & GREENSPAN, engineers

- For residential projects, the project would generate household VMT per capita exceeding 15% below the existing average household VMT per capita for the Area Planning Commission (APC) area in which the project is located.
- For office projects, the project would generate work VMT per employee exceeding 15% below the existing average work VMT per employee for the APC in which the project is located.
- For regional serving retail projects, the project would result in a net increase in VMT.
- For other land use types, measure VMT impacts for the work trip element using the criteria for office projects above.

The City's TAG establishes different VMT significance thresholds for each of the seven Area Planning Commission (APC) areas as the characteristics of each are distinct in terms of land use, density, transit availability, employment, etc. The City's significance thresholds (i.e., based on a Daily Household VMT per Capita basis and a Daily Work VMT per Employee) for each of the APC areas are presented in *Table 4–1*. As the Project Site is located within the area governed by the West Los Angeles APC, the VMT significant impact criterion (i.e., 15% below the APC average) applicable to the Project is 7.4 Daily Household VMT per Capita and 11.1 Daily Work VMT per Employee.

The impact methodology set forth in the TAG for a mixed-use project is as follows:

• Mixed-Use Projects. The project VMT impact should be considered significant, if, after taking credit for internal capture, the project exceeds the impact criteria for any one (or all) of a particular project's land use(s). In such cases, mitigation options that reduce the VMT generated by any or all of the land uses could be considered.

It is important to note that since the restaurant and retail components of both Option A and Option B are local-serving and are below 50,000 square feet (i.e., the proposed restaurant and retail space for Option A and Option B totals 27,300 square feet and 40,000 square feet, respectively), the restaurant and retail components are assumed to have a less than significant VMT impact based on the screening criteria contained in the City's TAG.

4.2.2 Summary of Project VMT Analysis

The daily vehicle trips and VMT expected to be generated by the Project were forecast using Version 1.3 of the City's VMT Calculator tool. Copies of the detailed City of Los Angeles VMT Calculator worksheets for Option A and Option B are contained in *Appendix D* and *Appendix E*, respectively. As indicated in the summary VMT Calculator worksheet, the Project is forecast to generate the following:

• Option A is estimated to generate a total of 4,974 daily vehicle trips and 1,379 net new daily vehicle trips.

Table 4-1 CITY OF LOS ANGELES VMT IMPACT CRITERIA [1]

	15% BELOW AP	C CRITERIA [2]
AREA PLANNING COMMISSION	DAILY HOUSEHOLD VMT PER CAPITA	DAILY WORK VMT PER EMPLOYEE
Central	6.0	7.6
East Los Angeles	7.2	12.7
Harbor	9.2	12.3
North Valley	9.2	15.0
South Los Angeles	6.0	11.6
South Valley	9.4	11.6
West Los Angeles	<u>7.4</u>	<u>11.1</u>

[1] Source: LADOT Transportation Assessment Guidelines, July 2020.

[2] The development project will have a potential impact if the project meets the following:

- For residential projects, the project would generate household VMT per capita exceeding 15% below the existing average household VMT per capita for the APC area in which the project (refer to above [source: Table 2.2-1 of the TAG]).

- For office projects, the project would generate work VMT per employee exceeding 15% below the existing average work VMT per employee for the APC in which the project is located (refer to above [source: Table 2.2-1 of the TAG]).

- For retail projects, the project would result in a net increase in VMT.

- For other land use types, measure VMT impacts for the work trip element using the criteria for office project above (source: Table 2.2-1 of the TAG).

- The estimated Daily Household VMT per Capita for Option A is 6.9 Daily Household VMT per Capita, which is less than the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita.
- Option B, prior to the consideration of the TDM measures described in Section 2.9, is estimated to generate a total of 5,574 daily vehicle trips and 1,979 net new daily vehicle trips.
- Prior to the consideration of the TDM measures described in Section 2.9, the estimated Daily Household VMT per Capita for Option B is 6.8, which is less than the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita.
- Prior to the consideration of the TDM measures described in Section 2.9, the estimated Daily Work VMT per Employee for Option B is 14.5, which is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee.
- Taking the TDM measures described in Section 2.9 into consideration, the estimated Daily Household VMT per Capita for Option B is reduced to 5.4 Daily Household VMT per Capita, which further below the West Los Angeles APC significance threshold of 7.4 Daily Household VMT per Capita. The estimated Daily Work VMT per Employee for Option B is reduced to 11.6 Daily Work VMT per Employee, which is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee.

While the Option B Daily Work VMT per Employee is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee, LLG has identified that the total VMT related to the residential and commercial components would fall below the total VMT that would be calculated using the applicable thresholds of significance for Option B based on the data provided in LADOT's VMT Calculator. A memorandum detailing the methodology for determining the less than significant impact was submitted to LADOT staff and was approved by LADOT on April 1, 2021.¹² The approved memorandum is attached in *Appendix I*.

As stated above, the Daily Household VMT per Capita for the residential component of Option B is calculated to be 5.4 Daily Household VMT per Capita with implementation of the recommended mitigation measures, which is well below the threshold for the West Los Angeles APC of 7.4 Daily Household VMT per Capita. For the office component of Option B, the Daily Work VMT per Employee value is calculated to be reduced from 14.5 to 11.6 with consideration of TDM measures. While the Daily Work VMT per Employee value after application of TDM measures is greater than the threshold of 11.1 Daily Work VMT per Employee, a finding of a less than significant impact is made related to the Daily Work VMT per Employee for Option B in consideration of the "excess" mitigation provided by the TDM measures recommended for Option B. For example, as shown in VMT Calculator output provided in *Appendix E*, prior to consideration of TDM measures, the Daily Household VMT per Capita associated with the residential component of Option B is 6.8 VMT, which is below the threshold of significance of

LINSCOTT, LAW & GREENSPAN, engineers

7.4 VMT. Implementation of the following TDM measures previously described in Section 2.9, while not required, will further reduce the Option B Daily Household VMT per Capita: Transit Subsidies for Project residents; Promotions and Marketing; Bike Parking per the LAMC; Secure Bicycle Parking and Showers; and Pedestrian Network Improvements. The resulting Daily Household VMT per Capita for the residential component is with implementation of the non-required TDM measures is calculated to be reduced to 5.4 VMT, which is substantially less than the threshold of significance for the West Los Angeles APC (7.4 VMT) and therefore is deemed to offset the unmitigated portion of the Daily Work VMT per Employee related to the office component. This is demonstrated through the calculation of total VMT, as further described in the memorandum provided in *Appendix I*.

4.2.3 Summary of Cumulative VMT Analysis

As stated in the City's TAG (refer to Section 2.2.4 thereof), analyses should consider both shortterm and long-term project effects on VMT. Short-term effects are evaluated in the detailed Project-level VMT analysis summarized above. Long-term, or cumulative, effects are determined through a consistency check with the SCAG RTP/SCS. The RTP/SCS is the regional plan that demonstrates compliance with air quality conformity requirements and GHG reduction targets. As such, projects that are consistent with this plan in terms of development, location, density, and intensity, are part of the regional solution for meeting air pollution and GHG goals. Projects that are deemed to be consistent would have a less than significant cumulative impact on VMT. Development in a location where the RTP/SCS does not specify any development may indicate a significant impact on transportation. However, as discussed in the TAG, for projects that do not demonstrate a significant impact based on an efficiency-based significance threshold (i.e., VMT per Capita or VMT per Employee), the determination that the project would individually have a less-than-significant VMT impact is sufficient to demonstrate there would be no cumulatively significant VMT impact associated with the project and the relevant related projects. This is because projects that fall under the City's efficiency-based impact thresholds are already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS.

Based on the Option A VMT analysis and conclusion in Section 4.2.2, above (i.e., which conclude that Option A falls under the City's efficiency-based significant impact thresholds and thus are already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS), no cumulative VMT impact is anticipated. Therefore, the Option A cumulative VMT impact would be less than significant.

Based on the Option B VMT analysis and conclusion in Section 4.2.2, above (i.e., which conclude that the excess TDM mitigation provided for the residential component of Option B will offset the unmitigated Daily Work VMT per Employee impact of the office component), no cumulative VMT impact is anticipated. Therefore, the Option B cumulative VMT impact would be less than significant.

¹² Per email with Eddie Guerrero, LADOT Senior Transportation Engineer on April 1, 2021.

LINSCOTT, LAW & GREENSPAN, engineers

4.3 Geometric Design (Threshold T-3)

As stated in the City's TAG (refer to Section 2.4.1 thereof), impacts regarding the potential increase of hazards due to a geometric design feature generally relate to the design of access points to and from the project site, and may include safety, operational, or capacity impacts. Impacts can be related to vehicle/vehicle, vehicle/bicycle, or vehicle/pedestrian conflicts as well as to operational delays caused by vehicles slowing and/or queuing to access a project site. These conflicts may be created by the driveway configuration or through the placement of project driveway(s) in areas of inadequate visibility, adjacent to bicycle or pedestrian facilities, or too close to busy or congested intersections. Evaluation of access impacts require details relative to project land use, size, design, location of access points, etc. These impacts are typically evaluated for permanent conditions after project completion but can also be evaluated for temporary conditions during project construction. Project access can be analyzed in qualitative and/or quantitative terms, and in conjunction with the review of internal site circulation and access to parking areas. All proposed site access points should be evaluated.

4.3.1 Screening Criteria

Per Section 2.4.2 of the TAG, if the project requires a discretionary action, and the answer is "yes" to either of the following questions, further analysis will be required to assess whether the project would result in impacts due to geometric design hazards or incompatible uses:

- Is the project proposing new driveways, or introducing new vehicle access to the property from the public right-of-way?
 - Yes, Option A proposes to shift the existing driveway along the Project Site's Maxella Avenue frontage approximately 101 feet east of the existing driveway. Additionally, Option A proposes a new driveway along the Project Site's Glencoe Avenue frontage, approximately 113 feet south of the existing driveway. Option B proposes to shift the existing driveway along the Project Site's Maxella Avenue frontage approximately two feet west of the existing driveway.
- Is the project proposing to, or required to make any voluntary or required modifications to the public right-of-way (i.e., street dedications, reconfigurations of curb line, etc.)?

As stated in the City's TAG (refer to Section 2.4.2 thereof), for the purpose of the screening for projects that include physical changes to the public right-of-way, the street designation and improvement standard for any project frontage along streets classified as an Avenue or Boulevard (as designated in the City's General Plan) must first be determined using Mobility Plan 2035 or NavigateLA. If any street fronting the project site is an Avenue or Boulevard and it is determined that additional dedication, or physical modifications to the public right-of-way are proposed or required, the answer to this question is yes. For projects not subject to dedication and improvement requirements under the LAMC, but the project nonetheless includes dedications or physical modifications to the public right-of-way, the answer to this question is yes. Based on a review of the proposed project, the following answer is provided:

• Yes, a three-foot street dedication is required for Maxella Avenue and Glencoe Avenue along the Project Site.

As the answer is "yes" to all of the screening criteria questions, further analysis is required to assess whether the Project would result in impacts due to geometric design hazards or incompatible uses.

4.3.2 Impact Criteria and Methodology

The significance threshold set forth in Appendix G to the CEQA Guidelines, as well as the City's TAG, for substantially increasing hazards due to a geometric design feature or incompatible use (referred to a Threshold T-3), is as follows:

- Threshold T-3: Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?
 - No, neither Option A nor Option B would substantially increase hazards due to a geometric design feature.

As set forth in Section 2.4.3 of the TAG, in making this determination, preliminary project access plans are to be reviewed in light of commonly accepted traffic engineering design standards to ascertain whether any deficiencies are apparent in the site access plans which would be considered significant. The determination of significance shall be on a case-by-case basis, considering the following factors:

- The relative amount of pedestrian activity at project access points.
- Design features/physical configurations that affect the visibility of pedestrians and bicyclists to drivers entering and exiting the site, and the visibility of cars to pedestrians and bicyclists.
- The type of bicycle facilities the project driveway(s) crosses and the relative level of utilization.
- The physical conditions of the site and surrounding area, such as curves, slopes, walks, landscaping or other barriers, that could result in vehicle/pedestrian, vehicle/bicycle, or vehicle/vehicle impacts.
- The project location, or project-related changes to the public right-of-way, relative to proximity to the High Injury Network or a Safe Routes to School program area.
- Any other conditions, including the approximate location of incompatible uses that would substantially increase a transportation hazard.

With respect to vehicle, bicycle and pedestrian safety impacts, the TAG (refer to Section 2.4.4 thereof) indicates that a review of all project access points, internal circulation, and parking access from an operational and safety perspective (for example, turning radii, driveway queuing, line of sight for turns into and out of project driveway[s]) should be conducted. Where project driveways would cross pedestrian facilities or bicycle facilities (bike lanes or bike paths), operational and safety issues related to the potential for vehicle/pedestrian and vehicle/bicycle conflicts and the severity of consequences that could result should be considered. In areas with moderate to high levels of pedestrian or bicycle activity, the collection of pedestrian or bicycle count data may be required.

4.3.3 Qualitative Review of Site Access Points

As discussed in Section 3.3.3 herein, the Project Site has frontage along Maxella Avenue, an Avenue III with a posted speed limit of 25 miles per hour, and Glencoe Avenue, a Collector with a posted speed limit of 25 miles per hour. Option A and Option B will enhance the pedestrian experience along these corridors, including at the Project Site access points, which will enhance connections to and from the numerous pedestrian destinations in the direct vicinity of the Project Site. As previously noted, Option A and Option B will be required to provide a 3-foot dedication along the Project Site, thereby providing opportunities for wider sidewalks and/or parkway areas on Maxella Avenue and Glencoe Avenue and also reduces the potential for vehicle/pedestrian conflicts at driveways. Excellent line of sight is provided for all modes of travel (motorists, pedestrians, and bicyclists) at the Project Site driveways under Option A and Option B. Sidewalks are provided along both the Project Site's Maxella Avenue and Glencoe Avenue frontages, and signalized crossings within convenient walking distance to the Project Site. Neither Option A nor Option B will add site access points along the Project Site's Maxella Avenue frontage. Option A will remove one site vehicular site access point along the Project Site's Glencoe Avenue frontage and shift the existing northerly driveway along Glencoe Avenue 113 feet south, increasing the distance between the driveway and the Glencoe Avenue / Maxella Avenue intersection. Option B will reduce the number of curb cuts along the Project Site's Glencoe Avenue frontage from three to one, with the southerly Glencoe Avenue Driveway to remain. The Project Site and surrounding area are in good physical condition and located on flat terrain. The physical condition of the Project Site and proposed entry/exit points would be improved by both Option A and Option B, therefore, the potential for vehicle/pedestrian, vehicle/bicycle, or vehicle/vehicle impacts would be reduced. Neither Maxella Avenue nor Glencoe Avenue are noted in the City's HIN. Given the existing physical conditions of the Project Site and planned reduction of curb cuts along Glencoe Avenue, no safety concerns related to geometric design are noted. The driveways would be designed to comply with LADOT standards. The driveways would not require the removal or relocation of existing passenger transit stops and would be designed and configured to avoid or minimize potential conflicts with transit services and pedestrian traffic. No security gates or other parking control features are proposed along the Project Site driveways in close proximity to the public right-ofway under Option A or Option B. As discussed in a following section, no excessive vehicle queuing is anticipated at the Project Site driveways under Option A or Option B. Project Site driveways will be designed and constructed to City standards to ensure adequate maneuvering by

vehicles entering and exiting the Project Site. Therefore, it can be determined that neither Option A nor Option B would not substantially increase hazards due to a geometric design feature or incompatible use, and a less than significant impact determination can be reached.

4.4 Freeway Safety Analysis

It is noted that the City issued an interim guidance on the preparation of a freeway safety analysis for land use projects.¹³ If the answer is yes to the following question, a freeway safety analysis will be required to assess whether the project would lengthen a forecasted off-ramp queue and create speed differentials between vehicles exiting freeway off-ramps and vehicles operation on the freeway mainline:

- Does the land use project add 25 or more trips to any nearby freeway off-ramp serving the project site in either the morning or afternoon peak-hour?
 - No, the Project does not add 25 or more trips to any nearby freeway off-ramp serving the Project Site in either the morning or afternoon peak hour. SR-90 is an at-grade roadway in the immediate Project Site vicinity. As SR-90 is an at-grade roadway, the Mindanao Way / SR-90 Westbound and Mindanao Way / SR-90 Eastbound intersections are not considered to be freeway off-ramps. As there are no freeway off-ramps located in the immediate Project Site area, neither Option A nor Option B will add 25 or more trips to any nearby freeway off-ramps.

As the answer is "no" to the screening criteria question (i.e., Option A and Option B will not add 25 or more trips to nearby freeway off-ramps serving the Project Site during either the AM of PM peak hour), a freeway safety analysis is not required, and both Option A and Option B would cause a less than significant freeway safety impact.

4.5 CEQA Transportation Measures

4.5.1 Transportation Demand Management

The Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance, referred to in the LAMC Section 12.26.J) and the other requirements per the City's Municipal Code, as well as the TDM requirements of the Coastal Transportation Corridor Specific Plan. Beyond the requirements in the TDM ordinance and Coastal Transportation Corridor Specific Plan, Option B includes six TDM strategies to be implemented as mitigation measures and are described in detail in Section 2.9 above. The TDM strategies include:

- Transit Subsidies;
- Promotions and Marketing;
- Alternative Work Schedules and Telecommuting;

¹³ LADOT Transportation Assessments – Interim Guidance for Freeway Safety Analysis, City of Los Angeles Department of Transportation, May 2020.

LINSCOTT, LAW & GREENSPAN, engineers

- Include Bicycle Parking per LAMC;
- Include Secure Bicycle Parking and Showers; and
- Pedestrian Network Improvements.

4.5.2 CEQA Transportation Summary

Based on the analysis and findings above, Option A would not conflict with City plans, policies, ordinances and programs, would not result in a significant VMT impact, would not substantially increase hazards due to a geometric design feature, and would not result in a freeway safety impact. Therefore, for CEQA purposes, the transportation impacts of Option A would be less than significant.

Based on the analysis and findings above, Option B would not conflict with City plans, policies, ordinances and programs, would not result in a significant VMT impact, would not substantially increase hazards due to a geometric design feature, and would not result in a freeway safety impact. Therefore, for CEQA purposes, the transportation impacts of Option B would be less than significant.

5.0 NON-CEQA ANALYSIS

The authority for requiring non-CEQA transportation analysis and potentially requiring improvements to address identified deficiencies lies in the City of Los Angeles' Site Plan Review authority as established in LAMC Section 16.05. As provided in Section 16.05:

"The purposes of site plan review are to promote orderly development, evaluate and mitigate significant environmental impacts, and promote public safety and the general welfare by ensuring that development projects are properly related to their sites, surrounding properties, traffic circulation, sewers, other infrastructure and environmental setting; and to control or mitigate the development of projects which are likely to have a significant adverse effect on the environment as identified in the City's environmental review process, or on surrounding properties by reason of inadequate site planning or improvements."

Additional authority is found in other City ordinances, such as certain transportation specific plans. The impacts, also referred to as deficiencies, discussed in the City's TAG are not intended to be interpreted as thresholds of significance, or significance criteria for purposes of CEQA review unless otherwise specifically identified (refer to Section 4.0).

5.1 Pedestrian, Bicycle, and Transit Access

The assessment of pedestrian, bicycle, and transit facilities is intended to determine a project's potential effect on pedestrian, bicycle, and transit facilities in the vicinity of the project. A potential deficiency could be physical (through removal, modification, or degradation of facilities) or demand-based (by adding pedestrian or bicycle demand to inadequate facilities).

5.1.1 Screening Criteria

Per Section 3.2.2 of the TAG, if the answer is yes to all of the following questions, further analysis is required to assess whether the Project would negatively affect existing pedestrian, bicycle, or transit facilities:

- Does the land use project involve a discretionary action that would be under review by the Department of City Planning?
 - Yes, Option A and Option B involve a discretionary action that would be under review by the Department of City Planning.
- Does the land use project include the construction, or addition of 50 dwelling units or guest rooms or combination thereof, or 50,000 square feet of non-residential space?
 - Yes, Option A proposes the construction of 592 market-rate residential apartment dwelling units and 66 affordable housing dwelling units. Additionally, Option A proposes the construction of 27,300 square feet of non-residential space, including 13,650 square feet of restaurant floor area and 13,650 square feet of commercial floor area. Option B proposes the construction of 382 market-rate residential apartment

dwelling units, 43 affordable housing dwelling units, and 130,000 square feet of nonresidential space, including 20,000 square feet of restaurant floor area, 20,000 square feet of commercial floor area, and 90,000 square feet of office floor area.

- Would the project generate a net increase of 1,000 daily vehicle trips, or is the project's frontage along a street classified as an Avenue or Boulevard (as designated in the City General Plan), 250 linear feet or more, or is the project's building frontage encompassing an entire block along a street classified as an Avenue or Boulevard by the City's General Plan?
 - Yes, both Option A and Option B will generate a net increase of 1,000 daily vehicle trips. As indicated on the Screening Tab of the City's VMT Calculator (Page 1 of *Appendix D*), Option A would generate a net increase of 1,379 daily vehicle trips. As indicated on the Screening Tab of the City's VMT Calculator (Page 1 of *Appendix E*), Option B would generate net increase of 1,979 daily vehicle trips. The Project Site's frontage along Maxella Avenue, which is designated as an Avenue III, is approximately 505 linear feet. The Project Site's frontage along Glencoe Avenue, which is designated as a Collector, is approximately 555 linear feet. The Project Site's frontage along Maxella Avenue or the Glencoe Avenue does not include an entire block.

As the answer is "yes" to all of the screening criteria, further analysis is required to assess whether the Project would negatively affect existing pedestrian, bicycle, or transit facilities.

5.1.2 Evaluation Criteria

Per Section 3.2.2 of the TAG, factors to consider when assessing a project's potential effect on pedestrian, bicycle and transit facilities, include, but are not limited to, the following:

- Would a project directly or indirectly result in a permanent removal or modification that would lead to the degradation of pedestrian, bicycle, or transit facilities, such as:
 - Removal or degradation of existing sidewalks, crosswalks, pedestrian refuge islands, and/or curb extensions/bulbouts.
 - Removal or degradation of existing bikeways and/or supporting facilities (e.g., bikeshare stations, on-street bike racks/parking, bike corrals, etc.).
 - Removal or degradation of existing transit and/or local circulator facilities including stop, bench, shelter, concrete pad, bus lane, or other amenities.
 - Removal of other existing transportation system elements supporting sustainable mobility.
 - Increase street crossing distance for pedestrians; increase in number of travel/turning lanes; increase in turning radius or turning speeds.

- Removal, degradation, or narrowing of an existing sidewalk, path, crossing, or pedestrian access way.
- Removal or narrowing of existing sidewalk-street buffering elements (e.g., curb extension, parkway, planting strip, street trees, etc.).
- Would a project intensify use of existing pedestrian, bicycle, or transit facilities, such as:
 - Increase in pedestrian or vehicle volume, and thereby increase the need or attraction to cross a street at unmarked pedestrian crossings or unsignalized or uncontrolled intersections where a crossing is not available without significant rerouting. Refer to the Guidelines for Marked Crosswalks Across Uncontrolled Locations, in LADOT's Manual of Policies and Procedures (MPP) Section 344, or Guidelines for Traffic Signals in MPP Section 353 to determine approval and warrant criteria for an additional crossing.
 - Result in new pedestrian demand between project site entries/exits and major destinations or transit stops expected to serve the development where there are missing pedestrian facilities (e.g., gaps in the sidewalk network) or substandard pedestrian facilities (e.g., narrow or uneven sidewalks, no crosswalks at intersections or mid-block, no marked crossing, or push button crossing rather than actuated, etc.).
 - Increase transit demand at bus stops that lack marked crossings, with insufficient sidewalks, or are in isolated, or unlit areas.

The locations and descriptions of pedestrian, bicycle and transit facilities in the Project vicinity that could be affected by Project-related traffic or by users traveling between the Project Site and nearby destinations is presented in Section 3.0 (Project Context) herein. Potential pedestrian destinations located within an approximately one-quarter mile (i.e., 1,320 feet) from the Project Site (as stated in Section 3.2.4 of the TAG) are noted in *Figure 3–1*. Pedestrian facilities currently located near the Project Site also are provided in *Figure 3–2*. The location of the City's Bicycle Network within the immediate Project Site vicinity and in the surrounding area is shown in *Figure 3–5*.

5.1.3 Results of Qualitative Access Review

Table 5–1 summarizes the City's criteria associated with the two guiding questions regarding the pedestrian, bicycle, and transit access assessment and the determination of potential Project-related effect on the subject facilities in the Project vicinity. The determination is based on whether the Project would create deficiencies that could be physical (through removal, modification, or degradation of facilities) or demand-based (by adding pedestrian or bicycle demand to inadequate facilities). As indicated in *Table 5–1*, the Project does not include any features that would permanently remove, adversely modify, or degrade pedestrian, bicycle, and transit facilities in the Project vicinity. As also noted in *Table 5–1*, it is possible that the Project may nominally intensify use of pedestrian, bicycle, and transit facilities in the Project vicinity. As

Table 5-1 PROJECT EVALUATION OF PEDESTRIAN, BICYCLE, AND TRANSIT ACCESS

		14-Dec-20
CRITERIA	PROJECT RESPONSE	FURTHER QUANTITATIVE ASSESSMENT?
PERMANENT REMOVAL OR MOL	DIFICATION OF FACILITIES	
Removal or degradation of existing sidewalks, crosswalks, pedestrian refuge islands, and/or curb extensions/bulbouts.	No	No
Removal or degradation of existing bikeways and/or supporting facilities (e.g., bikeshare stations, on-street bike racks/parking, bike corrals, etc.).	No	No
Removal or degradation of existing transit and/or local circulator facilities including stop, bench, shelter, concrete pad, bus lane, or other amenities.	No	No
Removal of other existing transportation system elements supporting sustainable mobility.	No	No
Increase street crossing distance for pedestrians; increase in number of travel/turning lanes; increase in turning radius or turning speeds.	No	No
Removal, degradation, or narrowing of an existing sidewalk, path, crossing, or pedestrian access way.	No	No
Removal or narrowing of existing sidewalk-street buffering elements (e.g., curb extension, parkway, planting strip, street trees, etc.).	No	No
INTENSIFY USE O	F FACILITIES	
Increase in pedestrian or vehicle volume, and thereby increase the need or attraction to cross a street at unmarked pedestrian crossings or unsignalized or uncontrolled intersections where a crossing is not available without significant rerouting. Refer to the Guidelines for Marked Crosswalks Across Uncontrolled Locations, in LADOT's Manual of Policies and Procedures (MPP) Section 344, or Guidelines for Traffic Signals in MPP Section 353 to determine approval and warrant criteria for an additional crossing.	The Project may nominally increase pedestrians attempting to cross Maxella Avenue and/or Glencoe Avenue. Existing signalized crossings are available along the Project Site's frontage midblock at Maxella Avenue and at the Glencoe Avenue Maxella Avenue intersection. Futher, the Project proposes to shift the existing midblock crossing on Maxella Avenue 100 feet to the west and provide signalized crossings in conjunction with the signalized crossings in to dy Maxella Avenue intersection. Therefore, the need for a marked crosswalk is not warranted per LADOT MPP Section 344.	No
Result in new pedestrian demand between project site entries/exits and major destinations or transit stops expected to serve the development where there are missing pedestrian facilities (e.g., gaps in the sidewalk network) or substandard pedestrian facilities (e.g., narrow or uneven sidewalks, no crosswalks at intersections or mid-block, no marked crossing, or push button crossing rather than actuated, etc.).	The Project may nominally increase pedestrians walking to local destinations and/or transit stops. The intersections along Maxella Avenue and Glencoe Avenue provides crosswalks and pedestrian phasing.	No
Increase transit demand at bus stops that lack marked crossings, with insufficient sidewalks, or are in isolated, unshaded, or unlit areas.	The Project may nominally increase pedestrians walking to local transit stops. Transit stops for BBB Rapid 3, BBB Route 16, and CCB Route 7 are provided at the Lincoln Boulevard / Marina Pointe Drive - Maxella Avenue intersection. Transit stops for BBB Route 16 are provided at the Glencoe Avenue / Maxella Avenue intersection. These intersections are signalized and provide crosswalks with pedestrian phasing.	No

also shown in *Table 5–1*, the Project has the potential to nominally increase pedestrian activity to an existing unmarked crossing (e.g., across Maxella Avenue and/or Glencoe Avenue), but this is not expected to result in a deficient condition.

It is noted that the Project Site is located in close proximity to roadways (e.g., Lincoln Boulevard) included on the HIN. As such, it is understood that LADOT staff may coordinate internal review with the Vision Zero Programs Bureau to determine if safety-related measures are needed to support safe access to and/or from the development site for vulnerable road users (i.e., pedestrians and bicyclists).

Based on this analysis, no specific actions or improvements are recommended relating to pedestrian, bicycle, and transit access for both Option A and Option B.

5.2 **Project Access and Circulation Review**

Project access and circulation constraints relate to the provision of access to and from the project site, and may include safety, operational, or capacity constraints. Constraints can be related to vehicular/vehicular, vehicular/bicycle, or vehicular/pedestrian constraints as well as to operational delays. These conflicts may be created by the driveway configuration or through the placement of Project driveway(s) in areas of inadequate visibility, adjacent to bicycle or pedestrian facilities, or too close to an intersection or crosswalk. The Project access and circulation has been evaluated for permanent conditions after Project completion. *Tables* 5-2 and 5-3 summarize the vehicle queuing analysis prepared for each of the study locations for the representative intersection traffic movements for the weekday AM and PM peak hours, for Option A and Option B, respectively. *Appendix J* and *Appendix K* contain the analysis data worksheets for the study intersections for Option A and Option B, respectively.

5.2.1 Screening Criteria

For land use projects, if the answer is yes to all of the following questions (refer to Section 3.3.2 of the TAG), further analysis will be required to assess whether the project would negatively affect project access and circulation:

- Does the land use project involve a discretionary action that would be under review by the Department of City Planning?
 - Yes, the Project will require a discretionary action that would be under review by the Department of City Planning.
- Would the land use project generate a net increase of 250 or more daily vehicle trips?
 - Yes, both Option A and Option B will generate a net increase of 250 or more daily vehicle trips. As indicated on the Screening Tab of the City's VMT Calculator (Page 1 of *Appendix D*), Option A would generate a net increase of 1,379 daily vehicle trips. As indicated on the Screening Tab of the City's VMT Calculator (Page 1 of *Appendix E*), Option B would generate net increase of 1,979 daily vehicle trips.

			1													VEAD 2026 F	UTUDE W	13-Apr-21
		TRAFFIC	PEAK	YEA	R 2020 EXIS	STING	YEAR 2020 I	XISTING	W/ PROJECT	YEAR 2026 F	UTURE W/	O PROJECT	YEAR 2026	FUTURE W	PROJECT	I LAK 2020 F	ROVEME	NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
1	Walgrove Avenue / Washington Boulevard (Incignalized)	SB Left/Right	AM PM	64.4 155.5	F F	215.0 430.0	68.2 160.8	F F	222.5 435.0	138.1 291.2	F F	335.0 610.0	149.2 300.0	F F	347.5 620.0	-		
	(Chaighanized)	EB Left	AM PM	25.0 18.1	C C	112.5 67.5	25.6 18.4	D C	117.5 70.0	33.9 23.0	D C	157.5 95.0	35.1 23.5	E C	162.5 95.0	-		
2	Lincoln Boulevard / Marina Pointe Drive - Maxella Avenue (Signalizzed)	NB Left	AM PM	44.6 47.2	D D	73.9 122.9	44.6 47.2	D D	73.9 122.9	46.0 47.8	D D	78.4 130.4	46.0 47.8	D D	78.4 130.4			
	(Signanzer)	NB Through	AM PM	140.5 76.7	F F	1225.2 814.0	140.5 76.7	F F	1225.2 814.0	176.2 123.0	F F	1459.9 1111.2	176.2 123.0	F F	1459.9 1111.2	-		
		NB Right	AM PM	22.2 24.0	C C	234.3 293.7	22.6 24.4	C C	245.9 306.5	22.9 26.0	C C	257.0 355.3	23.3 26.5	C C	268.8 369.4	-		
		SB Left	AM PM	33.8 33.6	C C	62.7 53.2	33.8 33.7	C C	65.4 55.8	33.9 33.7	C C	68.0 59.5	33.9 33.8	C C	70.8 62.2	-	-	
		SB Through	AM PM	40.2 45.0	D D	493.7 598.6	40.2 45.0	D D	493.7 598.6	42.1 51.1	D D	540.5 684.3	42.1 51.1	D D	540.5 684.3	-	-	
		SB Right	AM PM	45.3 54.3	D D	511.9 627.2	45.3 54.3	D D	511.9 627.2	48.7 64.6	D E	564.8 732.8	48.7 64.6	D E	564.8 732.8	-	-	
		EB Left	AM PM	45.6 45.9	D D	99.3 113.1	45.6 45.9	D D	99.3 113.1	45.8 46.1	D D	106.2 120.0	45.8 46.1	D D	106.2 120.0	-	-	
		EB Through	AM PM	45.6 45.1	D D	104.4 84.0	45.6 45.1	D D	104.4 84.0	45.7 45.2	D D	111.3 89.5	45.7 45.2	D D	111.3 89.5	-	-	
		EB Right	AM PM	7.1 6.5	A A	140.9 71.9	7.1 6.5	A A	140.9 71.9	7.2 6.5	A A	150.2 76.2	7.2 6.5	A A	150.2 76.2	-	-	
		WB Left	AM PM	52.3 74.1	D E	175.0 332.5	52.8 73.7	D E	187.8 330.8	59.6 108.8	E F	254.3 457.8	61.7 108.1	E F	268.1 455.2	-	-	
		WB Through	AM PM	51.1 66.4	D E	139.2 302.4	51.3 66.3	D E	145.1 301.8	52.5 79.8	D E	182.3 363.3	52.7 79.6	D E	188.5 362.5	-	-	
		WB Right	AM PM	35.7 37.8	D D	141.0 223.3	36.1 37.8	D D	156.2 222.1	36.1 38.4	D D	157.5 241.4	36.4 38.3	D D	172.9 240.3	-	-	
3	Del Rey Avenue / Maxella Avenue (Invinentized)	SB Left/Right	AM PM	11.8 17.0	B C	15.0 70.0	12.0 17.0	B C	17.5 70.0	13.4 21.4	B C	32.5 100.0	13.6 21.5	B C	32.5 102.5			
	(Onsignanzeu)	EB Left	AM PM	8.5 8.9	A A	10.0 7.5	8.6 8.9	A A	12.5 7.5	8.7 9.3	A A	12.5 10.0	8.8 9.3	A A	12.5 10.0	-	-	

																YEAR 2026 F	UTURE W/	13-Apr-21 PROJECT +
NO	INTERSECTION	TRAFFIC MOVEMENT	PEAK HOUR	YEAF DELAV [2]	2020 EXIS	OUFUE 141	YEAR 2020 E	XISTING V	V/ PROJECT	YEAR 2026 I DELAV [2]	FUTURE W/	O PROJECT	YEAR 2026	FUTURE W	/ PROJECT	IMP DELAV [2]	ROVEMEN	VTS OUFUE 141
			nook		-	QULUE [4]	DEE.11 [2]		QULUE [4]	DEE.11 [2]	100 [0]	QULUE [1]		200[0]	QULUE [4]	DEL.[1]	100 [0]	Quint [4]
4	Ocean Way / Maxella Avenue	NB Lett	AM PM	14.3 20.5	В С	10.0 20.0	11.0 10.9	B	28.5 23.9	16.2 27.2	C D	15.0 35.0	10.9	B	31.7 28.3			
	(Unsignalized w/o Project; Signalized w/ Project)	ND Di-Le		0.8		7.6	11.4	р	24.1	10.1	р	7.6	11.0	р	26.9			
		NB Right	PM	9.8	B	5.0	10.8	В	18.3	10.1	В	7.5	10.9	В	22.2	-		
		FB Through	AM				12.3	в	78.5				12.7	в	91.5			
			PM				13.6	В	125.1				14.2	В	147.4			
		EB Right	AM				12.4	в	76.3				12.8	в	88.8			
			PM				13.7	В	119.0				14.4	в	139.4			
		WB Left	AM	8.2	А	2.5	13.8	в	16.9	8.3	А	2.5	14.5	в	19.9			
			PM	8.8	Α	5.0	16.3	В	27.0	9.1	А	5.0	18.1	в	37.5			
		WB Through	AM				11.5	В	54.2				11.7	B	60.5			
			Pivi				12.1	Б	11.1				12.5	Б	94.5	-		
5	Maxella Avenue Driveway/	NB Right	AM	9.4	А	0.0	9.5	А	0.0	9.6	А	0.0	9.8	А	0.0			
	Maxella Avenue	-	PM	9.9	А	0.0	9.9	Α	0.0	10.2	В	0.0	10.2	В	0.0			
	(Unsignalized)																	
6	Glencoe Avenue /	NB Left	AM	17.9	в	59.4	18.2	в	60.2	19.3	в	67.2	19.7	в	68.1			
	Maxella Avenue		PM	22.4	С	77.2	22.9	С	78.2	30.5	С	116.9	31.7	С	119.3			
	(Signalized)	NB Through	AM	18.6	в	280.9	20.2	С	304.6	21.9	С	327.0	24.7	С	359.7			
			PM	13.0	В	151.8	13.0	В	150.5	13.5	В	174.9	13.5	В	173.3	-		
		NB Right	AM	10.7	В	19.5	10.7	В	19.5	10.7	B	20.6	10.7	B	20.6			
			Pivi	10.8	Б	25.9	10.8	Б	23.9	10.8	Б	27.4	10.8	Б	27.4			
		SB Left	AM PM	24.1 16.8	C B	44.2 22.7	25.3 16.8	C B	45.5 22.7	26.7 18.0	C B	51.1 27.4	28.1 17.9	C B	53.0 27.3		-	
		0D 77 1			-		10.0			10.0								
		SB Through	AM PM	12.5	В	128.1 189.4	12.6	В	132.9 194.3	12.9	B	218.0	13.0	B	150.6 224.0		-	
		SB Right	AM	12.6	в	122.7	12.6	в	127.4	12.9	в	1393	13.0	в	144.2			
		ob rigin	PM	14.0	В	180.2	14.2	В	186.5	15.2	В	208.9	15.5	В	214.8			
		EB Left	AM	13.4	в	47.9	13.8	в	57.2	14.0	в	57.6	14.4	в	67.3			
			PM	15.4	В	72.3	15.4	В	72.0	16.8	в	90.4	16.8	в	89.9			
		EB Through	AM	11.3	В	38.6	11.3	В	41.1	11.4	В	45.3	11.5	В	47.9			
			РМ	11.8	в	57.2	11.7	в	56.8	12.0	в	68.3	12.0	в	67.7			
		EB Right	AM PM	12.0	B	55.2 81.0	12.2	B	59.0 81.0	12.4	B	66.9 89.5	12.5	B	70.8 89.5	-		
					-			-	01.0		5			5	0,15			
		WB Left	AM PM	12.5	B	27.5 44.7	12.6 13.9	B	27.6 44.5	12.9 14.5	B	29.6 48.9	13.0 14.5	B	29.9 48.9		-	
		WB Through	AM	11.1	R	31.7	11.1	в	32.0	11.2	в	35.7	11.2	в	37.0	-	_	
		WD Infough	PM	11.6	В	52.6	11.6	В	53.3	11.8	B	61.0	11.9	В	61.7		-	-
		WB Right	AM	11.3	в	32.5	11.3	в	32.5	11.4	в	35.4	11.4	в	35.5			
		5	PM	11.8	В	50.1	11.8	В	50.7	12.0	В	57.8	12.1	В	58.6			
7	Glencoe Avenue / Glencoe Avenue Northerly Driveway	NB Left	AM PM				9.7 10.9	A B	2.5 5.0		-		10.0 11.5	B B	2.5 5.0		-	
	(Unsignalized)	ED Di-La	434				11.9	Р	75				12.2	P	75			
		EB Kight	PM PM				11.8 12.9	В	7.5 5.0				12.5	В	7.5 7.5		_	
	1																	

			1													VEAD 2024 P	CEUDENS	13-Apr-21
		TRAFFIC	PEAK	YEAR	2020 EXIS	STING	YEAR 2020 F	XISTING	W/ PROJECT	YEAR 2026 F	UTURE W	O PROJECT	YEAR 2026	FUTURE	V/PROJECT	Y EAR 2026 F	UTURE W/	FROJECT +
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
8	Glencoe Avenue /	NB Left	AM	9.5	A	2.5	9.8	A	2.5	9.9	A	2.5	10.2	В	2.5	9.1	A	8.9
	Glencoe Avenue Southerly Driveway - Villa Velletri Driveway (Unsignalized; Signalized w/ Improvements)	NB Through	AM			5.0			5.0			-	-		5.0	6.9	A	23.0 145.5
			PM									-				6.2	А	96.3
		NB Right	AM PM			-	-				-	-			-	6.9 6.2	A A	145.3 95.8
		SB Left	AM PM	9.4 8.5	A A	0.0 0.0	9.5 8.6	A A	0.0 0.0	9.6 8.8	A A	0.0 0.0	9.7 8.8	A A	0.0 0.0	8.1 7.0	A A	1.3 4.2
		SB Through	AM PM									-			-	7.3 8.1	A A	165.6 212.7
		SB Right	AM PM			-	-					-			-	7.3 8.1	A A	163.9 209.4
		EB Left/Right	AM PM	28.3 118.5	D F	10.0 142.5	42.3 116.7	E F	50.0 137.5	35.3 230.9	E F	12.5 200.0	59.8 227.0	F F	67.5 192.5	28.8 29.8	C C	60.0 95.1
		WB Left/Right	AM PM	23.2 21.4	C C	7.5 5.0	25.8 21.9	D C	10.0 5.0	27.3 25.5	D D	10.0 5.0	30.8 26.1	D D	12.5 5.0	27.9 27.7	C D	18.5 10.0
9	Mindanao Way/ Glencoe Avenue	NB Left	AM PM	195.5 54.1	F D	892.7 276.3	216.5 64.1	F E	970.9 309.6	283.1 101.4	F F	1182.0 397.3	306.7 120.5	F F	1264.2 453.8	22.1 23.3	C C	303.4 187.2
	(Signalized)	NB Through	AM PM	20.9 19.1	C B	233.0 133.3	20.9 19.1	C B	233.0 133.3	21.4 19.4	C B	251.8 152.4	21.4 19.4	C B	251.8 152.4	15.1 17.4	B B	211.3 142.5
		NB Right	AM PM	21.0 19.1	C B	225.5 129.9	21.0 19.1	C B	225.5 129.9	21.5 19.4	C B	243.0 147.9	21.5 19.4	B B	243.0 147.9	15.2 17.4	B B	204.0 138.3
		SB Left	AM PM	25.9 21.7	C C	6.1 7.0	25.9 21.7	C C	6.1 7.0	26.9 22.4	C C	7.0 8.6	26.9 22.4	C C	7.0 8.6	29.3 26.6	C C	7.4 9.5
		SB Through	AM PM	19.7 20.6	B C	171.2 218.4	19.7 20.7	B C	173.5 220.3	20.0 21.1	B C	189.3 240.8	20.0 21.2	C C	191.2 242.9	35.2 34.1	D C	249.0 305.0
		SB Right	AM PM	19.7 20.6	B C	161.9 210.0	19.8 20.7	B C	163.7 211.4	20.0 21.2	C C	178.3 230.8	20.1 21.2	C C	180.1 232.5	35.5 34.3	D C	237.5 291.8
		EB Left	AM PM	14.3 16.0	B B	42.5 86.1	14.5 16.1	B B	50.1 85.5	14.7 16.8	B B	51.8 98.6	15.0 16.9	B B	59.9 98.1	21.4 19.1	C B	74.3 105.9
		EB Through	AM PM	12.7 13.6	B B	73.6 122.1	12.8 13.6	B B	78.3 122.1	13.0 13.9	B B	86.0 135.4	13.0 13.9	B B	90.8 135.4	18.6 15.7	B B	113.0 146.7
		EB Right	AM PM	19.4 28.6	B C	295.3 473.9	21.4 28.3	C C	341.4 469.8	20.9 35.3	C D	330.7 567.3	23.3 35.0	C D	381.3 561.7	11.2 17.7	B B	259.1 398.8
		WB Left	AM PM	14.1 17.5	B B	25.8 83.0	14.3 17.5	B B	26.0 83.0	14.6 18.5	B B	29.3 99.3	14.7 18.5	B B	29.4 99.3	20.9 21.1	C C	36.5 107.3
		WB Through	AM PM	12.4 12.6	B B	57.0 66.0	12.5 12.6	B B	58.0 67.1	12.5 12.8	B B	61.6 74.8	12.5 12.8	B B	62.4 76.1	17.8 14.5	B B	77.7 82.2
		WB Right	AM PM	12.5 12.6	B B	56.7 64.9	12.5 12.7	B B	57.5 66.2	12.5 12.8	B B	61.0 73.7	12.6 12.8	B B	62.0 74.8	17.8 14.5	B B	77.2 81.0

																		13-Apr-21
		TRAFFIC	PEAK	YEAF	R 2020 EXIS	STING	YEAR 2020 E	XISTING V	V/ PROJECT	YEAR 2026 F	UTURE W	O PROJECT	YEAR 2026	FUTURE W	// PROJECT	YEAR 2026 F IMP	UTURE W/ ROVEME!	PROJECT + NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
10	Mindanao Way/ SR-90 Westbound	NB Left	AM PM	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 15.4	31.5 31.7	C C	6.2 15.4			
	(Signalized)	NB Through	AM PM	14.0 13.4	B B	158.0 120.6	14.1 13.4	B B	159.6 121.7	14.3 13.8	B B	174.0 136.9	14.3 13.8	B B	175.2 138.1			
		SB Through	AM PM	31.0 51.3	C D	257.8 478.2	31.8 51.0	C D	274.1 476.1	32.2 73.0	C F	282.9 607.0	33.2 72.4	C F	300.2 603.5			
		SB Right	AM PM	33.7 62.4	C E	267.8 520.3	34.9 62.0	C E	286.2 518.0	35.6 84.7	D F	295.5 650.1	37.0 84.1	D F	315.1 646.8			
		WB Left	AM PM	26.8 23.1	C C	330.0 251.9	26.8 23.1	C C	330.0 251.9	29.4 25.1	C C	369.5 297.5	29.4 25.1	C C	369.5 297.5			
		WB Through	AM PM	97.0 31.6	F C	969.8 442.1	99.7 32.1	F C	990.5 449.0	130.4 47.2	F D	1222.9 594.9	133.3 48.9	F D	1246.0 609.9			
		WB Right	AM PM	160.0 23.8	F C	1250.5 243.7	166.8 24.3	F C	1296.3 252.5	200.3 25.6	F C	1525.8 277.0	207.2 26.2	F C	1573.6 286.4	-		
11	Mindanao Way/ SR-90 Eastbound	NB Through	AM PM	197.8 144.4	F F	760.8 587.7	200.6 146.3	F F	770.1 594.2	241.2 200.4	F F	902.7 768.5	244.0 202.5	F F	912.2 775.4			
	(Signalized)	NB Right	AM PM	474.9 394.0	F F	1498.1 1261.5	474.9 394.0	F F	1498.1 1261.5	539.1 497.8	F F	1683.9 1564.6	539.1 497.8	F F	1683.9 1564.6			
		SB Left	AM PM	27.7 33.3	C C	197.3 303.4	28.4 33.2	C C	214.8 302.5	28.4 36.8	C D	215.8 343.2	29.2 36.7	C D	233.9 341.7			
		SB Through	AM PM	17.5 18.7	B B	304.5 344.5	17.6 18.7	B B	307.3 344.5	18.4 20.6	B C	336.3 403.2	18.5 20.6	B C	339.2 403.2			
		EB Left	AM PM	17.9 17.8	B B	17.3 10.3	17.9 17.8	B B	17.3 10.3	18.0 17.8	B B	20.9 11.5	18.0 17.8	B B	20.9 11.5			
		EB Through	AM PM	40.1 35.9	D D	518.7 474.6	40.1 35.9	D D	518.7 474.6	57.4 46.2	E D	668.3 574.1	57.4 46.2	E D	668.3 574.1			
		EB Right	AM PM	40.3 35.9	D D	517.7 473.0	40.3 35.9	D D	517.7 473.0	57.8 46.3	D D	668.1 573.4	57.8 46.3	E D	668.1 573.4			

																		13-Apr-21
		TRAFFIC	PFAK	VEA	R 2020 EXIS	TING	VEAR 2020 F	XISTING V	V PROJECT	VEAR 2026 F	UTURE W	OPROJECT	VEAR 2026	FUTURE W	PROJECT	YEAR 2026 F	UTURE W/ PROVEMEN	PROJECT + TS
NO	INTERSECTION	MOVEMENT	HOUR	DELAV [2]	LOS 131	OUFUE MI	DEL AV [2]	LOSIB	OUFUE MI	DEL AV 121	LOSIN	OUFUE IAI	DEL AV [2]	LOS BI	OUFUE MI	DELAV [2]	LOS BL	OUFUE MI
	INTERSECTION	MOVEMENT	noek	DELAI [2]	103 [5]	QUEUE [4]	DELAI [2]	103 [5]	QUEUE [4]	DELAT [2]	103[5]	QUEUE [4]	DELAI [2]	103 [5]	QUEUE [4]	DELAI [2]	105 [5]	QUEUE [4]
12	Mindanao Way/ La Villa Marina	NB Left	AM PM	9.3 9.5	A A	10.6 12.3	9.3 9.5	A A	10.6 12.3	9.4 9.7	A A	11.2 13.6	9.4 9.7	A A	11.2 13.6			
	(Signalized)	NB Through	AM PM	14.7 13.5	B B	302.9 258.9	14.7 13.5	B B	303.8 260.0	15.5 14.5	B B	332.4 297.6	15.5 14.5	B B	333.9 298.8	-		
		NB Right	AM PM	14.7 13.5	B B	299.3 254.6	14.7 13.5	B B	300.7 255.7	15.6 14.6	B B	328.7 293.1	15.6 14.6	B B	330.2 294.3	-		
		SB Left	AM PM	6.9 6.6	A A	14.1 30.1	6.9 6.6	A A	14.1 30.1	7.6 7.6	A A	15.1 32.1	7.6 7.6	A A	15.1 32.1	-		
		SB Through	AM PM	5.3 5.6	A A	139.4 153.7	5.4 5.6	A A	140.7 153.7	5.6 6.0	A A	156.3 183.4	5.6 6.0	A A	158.4 183.4			
		SB Right	AM PM	5.3 5.6	A A	138.1 153.1	5.4 5.6	A A	139.5 153.1	5.6 6.0	A A	155.0 182.8	5.6 6.0	A A	157.1 183.4	-		
		EB Left/Through/Right	AM PM	32.1 32.7	C C	24.6 49.3	32.1 32.7	с с	24.6 49.3	32.1 32.8	C C	26.4 52.0	32.1 32.8	C C	26.4 52.0			
		WB Left/Through/Right	AM PM	45.0 34.4	D C	236.9 112.5	45.0 34.4	D C	236.9 112.5	49.2 34.6	D C	260.0 119.6	49.2 34.6	D C	260.0 119.6	-		

[1] [2]	Pursuant to LADOT Transportation Assessment Guidelines, July 20 Control delay reported in seconds per vehicle.	20, the Highway Capacity Manua	l (HCM) methodology for signalized and unsignalized in	tersections was utilized to calculate vehicle queuing
[5]	Signalized intersection Levels of Service were based on the following	criteria.	Unsignalized intersection Levels of Bervice wer	e based on the following criteria.
	Control Delay (s/veh)	LOS	Control Delay (s/veh)	LOS
	<= 10	A	<= 10	A
	> 10-20	В	> 10-15	В
	> 20-35	С	> 15-25	С
	> 35-55	D	> 25-35	D
	> 55-80	E	> 35-50	E
	> 80	F	> 50	F

[4] The 95th percentile queue is the maximum back of queue with 95th percentile traffic volumes. The HCM 6th Edition methodology worksheets report queues in number of vehicles, however an average vehicle length of 25 feet was assumed for analysis purposes. The reported queues therefore represent the calculated maximum back of queue in feet.

>

		TRAFFIC	PEAK	YEAI	R 2020 EXIS	STING	YEAR 2020 E	XISTING	V/ OPTION B	YEAR 2026 F	UTURE W	O OPTION B	YEAR 2026	FUTURE W	OPTION B	YEAR 2026 F IMF	UTURE W/	13-Apr-21 OPTION B + NTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
1	Walgrove Avenue / Washington Boulevard (Unsignalized)	SB Left/Right	AM PM	64.4 155.5	F	215.0 430.0	70.7 158.9	F	227.5 432.5	138.1 291.2	F	335.0 610.0	156.3 296.8	F F	355.0 615.0	-	-	
		EB Left	AM PM	25.0 18.1	C C	112.5 67.5	26.2 18.3	C	120.0 67.5	33.9 23.0	C	157.5 95.0	36.1 23.2	E C	165.0 95.0	-		
2	Lincoln Boulevard / Marina Pointe Drive - Maxella Avenue (Signalized)	NB Left	AM PM	44.6 47.2	D D	73.9 122.9	44.6 47.2	D D	73.9 122.9	46.0 47.8	D D	78.4 130.4	46.0 47.8	D D	78.4 130.4	-		
	(Spinned)	NB Through	AM PM	140.5 76.7	F F	1225.2 814.0	140.5 76.7	F F	1225.2 814.0	176.2 123.0	F F	1459.9 1111.2	176.2 123.0	F F	1459.9 1111.2	-		
		NB Right	AM PM	22.2 24.0	C C	234.3 293.7	22.9 24.2	C C	256.0 301.1	22.9 26.0	C C	257.0 355.3	23.6 26.3	с с	279.5 363.3	-		
		SB Left	AM PM	33.8 33.6	C C	62.7 53.2	33.9 33.6	C C	67.5 54.7	33.9 33.7	C C	68.0 59.5	34.0 33.8	с с	72.9 61.1	-		
		SB Through	AM PM	40.2 45.0	D D	493.7 598.6	40.2 45.0	D D	493.7 598.6	42.1 51.1	D D	540.5 684.3	42.1 51.1	D D	540.5 684.3	-	-	
		SB Right	AM PM	45.3 54.3	D D	511.9 627.2	45.3 54.3	D D	511.9 627.2	48.7 64.6	D E	564.8 732.8	48.7 64.6	D E	564.8 732.8	-		
		EB Left	AM PM	45.6 45.9	D D	99.3 113.1	45.6 45.9	D D	99.3 113.1	45.8 46.1	D D	106.2 120.0	45.8 46.1	D D	106.2 120.0	-		
		EB Through	AM PM	45.6 45.1	D D	104.4 84.0	45.6 45.1	D D	104.4 84.0	45.7 45.2	D D	111.3 89.5	45.7 45.2	D D	111.3 89.5	-		
		EB Right	AM PM	7.1 6.5	A A	140.9 71.9	7.1 6.5	A A	140.9 71.9	7.2 6.5	A A	150.2 76.2	7.2 6.5	A A	150.2 76.2	-		
		WB Left	AM PM	52.3 74.1	D E	175.0 332.5	52.6 74.5	D E	184.5 334.0	59.6 108.8	E F	254.3 457.8	61.1 109.6	E F	264.5 460.2	-		
		WB Through	AM PM	51.1 66.4	D E	139.2 302.4	51.2 66.6	D E	143.7 303.1	52.5 79.8	D E	182.3 363.3	52.6 80.0	E F	187.0 364.2	-		
		WB Right	AM PM	35.7 37.8	D D	141.0 223.3	36.0 37.9	D D	152.3 224.4	36.1 38.4	D D	157.5 241.4	36.4 38.4	D D	169.0 242.3	-		
3	Del Rey Avenue / Maxella Avenue (Incinentized)	SB Left/Right	AM PM	11.8 17.0	B C	15.0 70.0	12.0 17.1	B C	17.5 70.0	13.4 21.4	B C	32.5 100.0	13.6 21.6	B C	32.5 102.5			
	(Onsignalized)	EB Left	AM PM	8.5 8.9	A A	10.0 7.5	8.6 8.9	A A	12.5 7.5	8.7 9.3	A A	12.5 10.0	8.8 9.4	A A	12.5 10.0	-	-	

															YEAR 2026 F	UTURE W/	13-Apr-21 OPTION B +	
NO.	INTERSECTION	TRAFFIC MOVEMENT	PEAK HOUR	YEAI DELAY [2]	2020 EXIS LOS [3]	TING QUEUE [4]	YEAR 2020 E DELAY [2]	LOS [3]	V/ OPTION B QUEUE [4]	YEAR 2026 F DELAY [2]	UTURE W/ LOS [3]	O OPTION B QUEUE [4]	YEAR 2026 DELAY [2]	FUTURE W LOS [3]	QUEUE [4]	IMF DELAY [2]	ROVEMEN LOS [3]	VTS QUEUE [4]
4	Ocean Way / Maxella Avenue	NB Left	AM PM	14.3 20.5	B C	10.0 20.0	10.9 10.9	B B	26.5 25.9	16.2 27.2	C D	15.0 35.0	10.8 11.1	B B	29.9 30.3	-		
	(Unsignalized w/o Project; Signalized w/ Project)	NB Right	AM PM	9.8 10.4	A B	7.5 5.0	11.2 10.9	B B	32.0 20.3	10.1 10.8	B B	7.5 7.5	11.0 11.0	B B	34.8 24.3	-		
		EB Through	AM PM			-	12.4	B	82.9	-	-	-	12.8	B	96.2 144 7	-		
		EB Right	AM				12.5	B	80.0	-	-	-	12.9	B	92.6	-		
		WB Left	AM	8.2	A	2.5	14.0	В	18.0	8.3	A	2.5	14.5	B	21.1	-		
		WB Through	AM		A 		11.5	В	26.3 54.2		A 		17.9	В	36.7 60.5	-	-	
			PM				12.1	В	77.7				12.5	В	94.3	-		
5	Maxella Avenue Driveway / Maxella Avenue (Unsignalized)	NB Right	AM PM	9.4 9.9	A A	0.0 0.0	9.5 9.9	A A	0.0 0.0	9.6 10.2	A B	0.0 0.0	9.7 10.2	A B	0.0 0.0			
6	Glencoe Avenue / Maxella Avenue	NB Left	AM PM	17.9 22.4	B C	59.4 77.2	18.5 22.7	B C	60.7 77.9	19.3 30.5	B C	67.2 116.9	20.0 31.2	B C	68.8 118.3			
	(Signalized)	NB Through	AM PM	18.6 13.0	B B	280.9 151.8	19.8 13.0	B B	299.1 154.0	21.9 13.5	C B	327.0 174.9	24.0 13.6	C B	352.3 177.5	-		
		NB Right	AM PM	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	19.5 25.9	10.7 10.8	B B	20.6 27.4	10.7 10.8	B B	20.6 27.4	-		
		SB Left	AM PM	24.1 16.8	C B	44.2 22.7	25.1 16.9	C B	45.3 22.8	26.7 18.0	C B	51.1 27.4	27.8 18.1	C B	52.5 27.5			
		SB Through	AM PM	12.5 13.9	B B	128.1 189.4	12.7 14.0	B B	137.1 192.1	12.9 15.1	B B	145.6 218.0	13.0 15.3	B B	155.0 221.1	-		
		SB Right	AM PM	12.6 14.0	B B	122.7 180.2	12.7 14.1	B B	131.5 183.8	12.9 15.2	B B	139.3 208.9	13.1 15.4	B B	148.0 211.9			
		EB Left	AM PM	13.4 15.4	B B	47.9 72.3	13.7 15.5	B B	55.0 74.5	14.0 16.8	B B	57.6 90.4	14.3 17.0	B B	65.2 92.4			
		EB Through	AM PM	11.3 11.8	B B	38.6 57.2	11.3 11.8	B B	40.7 57.8	11.4 12.0	B B	45.3 68.3	11.5 12.0	B B	47.1 68.8	-		
		EB Right	AM PM	12.0 12.9	B B	55.2 81.0	12.1 12.9	B B	57.9 81.5	12.4 13.2	B B	66.9 89.5	12.5 13.2	B B	69.7 89.9	-		
		WB Left	AM PM	12.5 13.9	B B	27.5 44.7	12.6 13.9	B B	27.6 44.7	12.9 14.5	B B	29.6 48.9	12.9 14.6	B B	29.8 49.0	-	-	
		WB Through	AM PM	11.1	B	31.7 52.6	11.2	B	33.7 53.1	11.2	B	35.7 61.0	11.2	B	37.4 61.5	-		
		WB Right	AM PM	11.3 11.8	BB	32.5 50.1	11.3 11.8	B B	32.5 50.5	11.4 12.0	BB	35.4 57.8	11.4 12.1	BB	35.9 58.4			
7	Glencoe Avenue / Glencoe Avenue Northerly Driveway	NB Left	AM PM								-	-				-		
	(Unsignalized)	EB Right	AM PM			-					-	-		-	-	-	-	

			1													YEAR 2026 F	UTURE W/	13-Apr-21 OPTION B +
	N TEROPORTON	TRAFFIC	PEAK	YEAR	2020 EXIS	STING	YEAR 2020 E	XISTING	W/ OPTION B	YEAR 2026 F	UTURE W	O OPTION B	YEAR 2026	FUTURE V	/ OPTION B	IMP	ROVEMEN	VTS
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
8	Glencoe Avenue / Glencoe Avenue Southerly Driveway - Villa	NB Left	AM PM	9.5 10.9	A B	2.5 5.0	10.0 11.2	A B	7.5 10.0	9.9 11.5	A B	2.5 7.5	10.4 11.8	B B	7.5 10.0	14.7 18.9	B B	36.1 49.8
	(Unsignalized; Signalized w/ Improvements)	NB Through	AM PM			-	-					-			-	9.9 8.8	A A	183.0 116.0
		NB Right	AM PM									-			-	9.9 8.8	A A	182.8 115.4
		SB Left	AM	9.4	A	0.0	9.4	A	0.0	9.6	A	0.0	9.6	А	0.0	11.6	в	1.6
		SB Through	AM		-	-	-	-			-			-	-	10.3	В	205.8
		SB Right	PM AM		-	-	-				-	-			-	11.6	B B	261.7 202.0
			PM													11.7	В	256.0
		EB Left/Right	AM PM	28.3 118.5	D F	10.0 142.5	35.7 162.8	E F	60.0 222.5	35.3 230.9	E F	12.5 200.0	50.7 311.3	F F	82.5 300.0	24.6 25.9	C C	79.8 132.5
		WB Left/Right	AM PM	23.2 21.4	C C	7.5 5.0	29.5 24.2	D C	10.0 5.0	27.3 25.5	D D	10.0 5.0	36.0 29.5	E D	15.0 7.5	23.3 23.2	C C	16.7 9.0
9	Mindanao Way/ Glencoe Avenue	NB Left	AM PM	195.5 54.1	F D	892.7 276.3	234.5 59.2	F E	1037.7 293.5	283.1 101.4	F F	1182.0 397.3	326.7 111.5	F F	1333.7 427.1	22.0 23.4	C C	308.2 183.2
	(Signalized)	NB Through	AM PM	20.9 19.1	C B	233.0 133.3	20.9 19.1	C B	233.0 133.3	21.4 19.4	C B	251.8 152.4	21.4 19.4	C B	251.8 152.4	14.8 17.6	B B	209.1 143.7
		NB Right	AM PM	21.0 19.1	C B	225.5 129.9	21.0 19.1	C B	225.5 129.9	21.5 19.4	C B	243.0 147.9	21.5 19.4	C B	243.0 147.9	14.8 17.6	B B	201.8 139.5
		SB Left	AM PM	25.9 21.7	C C	6.1 7.0	25.9 21.7	C C	6.1 7.0	26.9 22.4	C C	7.0 8.6	26.9 22.4	C C	7.0 8.6	29.2 26.7	C C	7.4 9.5
		SB Through	AM PM	19.7 20.6	B C	171.2 218.4	19.7 20.6	B C	175.4 219.4	20.0 21.1	B C	189.3 240.8	20.0 21.1	C C	192.7 242.2	35.2 34.1	D C	250.7 304.2
		SB Right	AM PM	19.7 20.6	B C	161.9 210.0	19.8 20.7	B C	164.8 211.0	20.0 21.2	C C	178.3 230.8	20.1 21.2	C C	181.6 231.6	35.4 34.3	D C	238.7 290.9
		EB Left	AM PM	14.3 16.0	B B	42.5 86.1	14.5 16.1	B B	48.2 87.0	14.7 16.8	B B	51.8 98.6	15.0 16.9	B B	57.9 99.3	21.8 19.0	C B	72.7 106.7
		EB Through	AM PM	12.7 13.6	B B	73.6 122.1	12.8 13.6	B B	77.0 122.7	13.0 13.9	B B	86.0 135.4	13.0 13.9	B B	89.5 136.0	18.9 15.5	B B	112.8 146.0
		EB Right	AM PM	19.4 28.6	B C	295.3 473.9	20.9 29.4	C C	330.7 485.7	20.9 35.3	C D	330.7 567.3	22.7 36.9	C D	369.6 583.1	11.1 18.1	B B	252.7 409.3
		WB Left	AM PM	14.1 17.5	B B	25.8 83.0	14.2 17.5	B B	25.9 83.0	14.6 18.5	B B	29.3 99.3	14.7 18.6	B B	29.4 99.3	21.3 20.8	с с	36.9 106.6
		WB Through	AM PM	12.4 12.6	B B	57.0 66.0	12.5 12.6	B B	58.5 66.5	12.5 12.8	B B	61.6 74.8	12.5 12.8	B B	63.1 75.6	18.1 14.3	B B	79.4 81.0
		WB Right	AM PM	12.5 12.6	B B	56.7 64.9	12.5 12.6	B B	58.0 65.6	12.5 12.8	B B	61.0 73.7	12.6 12.8	B B	62.5 74.2	18.2 14.3	B B	78.9 79.6

LINSCOTT, LAW & GREENSPAN, engineers

																		13-Apr-21
																YEAR 2026 F	UTURE W/	OPTION B +
NO	INTEDSECTION	TRAFFIC	PEAK	YEAF DELAV 121	C 2020 EXIS	STING	YEAR 2020 E	LOS 121	V/ OPTION B	YEAR 2026 F	UTURE W	O OPTION B	YEAR 2026	FUTURE W	OUFUE 12	IMP	ROVEMEN	NTS
10	Mindanao Way/ SR-90 Westbound	NB Left	AM PM	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 14.6	31.5 31.7	C C	6.2 15.4	31.5 31.7	C C	6.2 15.4	 		
	(Signalized)	NB Through	AM PM	14.0 13.4	BB	158.0 120.6	14.1 13.4	BB	160.4 121.1	14.3 13.8	B	174.0 136.9	14.4 13.8	BB	176.5 137.5			
		SB Through	AM PM	31.0 51.3	C D	257.8 478.2	31.6 52.3	C D	270.7 484.8	32.2 73.0	C F	282.9 607.0	33.0 74.7	C F	296.2 616.3			
		SB Right	AM PM	33.7 62.4	C E	267.8 520.3	34.6 63.5	C E	282.1 527.4	35.6 84.7	D F	295.5 650.1	36.7 86.3	D F	310.6 659.2			
		WB Left	AM PM	26.8 23.1	C C	330.0 251.9	26.8 23.1	C C	330.0 251.9	29.4 25.1	C C	369.5 297.5	29.4 25.1	C C	369.5 297.5			
		WB Through	AM PM	97.0 31.6	F C	969.8 442.1	102.2 31.9	F C	1009.1 446.8	130.4 47.2	F D	1222.9 594.9	135.9 48.2	F D	1265.3 603.6			
		WB Right	AM PM	160.0 23.8	F C	1250.5 243.7	172.8 24.1	F C	1337.4 248.7	200.3 25.6	F C	1525.8 277.0	213.4 26.0	F C	1616.4 282.6			
11	Mindanao Way/ SR-90 Eastbound (Simplical)	NB Through	AM PM	197.8 144.4	F F	760.8 587.7	202.7 145.7	F F	777.0 592.0	241.2 200.4	F F	902.7 768.5	246.2 201.8	F F	919.4 773.1	-		
	(signanzed)	NB Right	AM PM	474.9 394.0	F F	1498.1 1261.5	474.9 394.0	F F	1498.1 1261.5	539.1 497.8	F F	1683.9 1564.6	539.1 497.8	F F	1683.9 1564.6			
		SB Left	AM PM	27.7 33.3	C C	197.3 303.4	28.2 33.6	C C	211.2 307.3	28.4 36.8	C D	215.8 343.2	29.0 37.3	C D	230.2 348.0			
		SB Through	AM PM	17.5 18.7	B B	304.5 344.5	17.6 18.7	B B	306.8 345.5	18.4 20.6	B C	336.3 403.2	18.5 20.6	B C	338.6 404.4			
		EB Left	AM PM	17.9 17.8	B	17.3 10.3	17.9 17.8	B	17.3 10.3	18.0 17.8	B	20.9 11.5	18.0 17.8	B	20.9 11.5			
		EB Through	AM PM	40.1 35.9	D	518.7 474.6	40.1 35.9	D	518.7 474.6	57.4 46.2	E D	668.3 574.1	57.4 46.2	E D	668.3 574.1			
		EB Right	AM PM	40.3 35.9	D	517.7 473.0	40.3 35.9	D	517.7 473.0	57.8 46.3	D	668.1 573.4	57.8 46.3	E D	668.1 573.4			

																		13-Apr-21
		TRAFFIC	PEAK	YEAR	R 2020 EXIS	TING	YEAR 2020 E	XISTING V	V/ OPTION B	YEAR 2026 FUTURE W/O OPTION B		YEAR 2026 FUTURE W/ OPTION B		YEAR 2026 FUTURE W/ OPTION B + IMPROVEMENTS				
NO.	INTERSECTION	MOVEMENT	HOUR	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]	DELAY [2]	LOS [3]	QUEUE [4]
12	Mindanao Way/ La Villa Marina	NB Left	AM PM	9.3 9.5	A A	10.6 12.3	9.3 9.5	A A	10.6 12.3	9.4 9.7	A A	11.2 13.6	9.4 9.7	A A	11.2 13.6			
	(Signalized)	NB Through	AM PM	14.7 13.5	B B	302.9 258.9	14.7 13.5	B B	305.1 259.3	15.5 14.5	B B	332.4 297.6	15.6 14.5	B B	334.7 298.0	-		
		NB Right	AM PM	14.7 13.5	B B	299.3 254.6	14.8 13.5	B B	301.5 255.5	15.6 14.6	B B	328.7 293.1	15.6 14.6	B B	331.6 294.1	-		-
		SB Left	AM PM	6.9 6.6	A A	14.1 30.1	6.9 6.6	A A	14.1 30.1	7.6 7.6	A A	15.1 32.1	7.6 7.6	A A	15.1 32.1	-		
		SB Through	AM PM	5.3 5.6	A A	139.4 153.7	5.3 5.6	A A	140.4 154.0	5.6 6.0	A A	156.3 183.4	5.6 6.0	A A	158.1 183.7			
		SB Right	AM PM	5.3 5.6	A A	138.1 153.1	5.4 5.6	A A	139.2 153.4	5.6 6.0	A A	155.0 182.8	5.6 6.0	A A	156.7 183.1	-		
		EB Left/Through/Right	AM PM	32.1 32.7	C C	24.6 49.3	32.1 32.7	C C	24.6 49.3	32.1 32.8	C C	26.4 52.0	32.1 32.8	C C	26.4 52.0			
		WB Left/Through/Right	AM PM	45.0 34.4	D C	236.9 112.5	45.0 34.4	D C	236.9 112.5	49.2 34.6	D C	260.0 119.6	49.2 34.6	D C	260.0 119.6			

[1] [2]	Pursuant to LADOT Transportation Assessment Guidelines, July 20 Control delay reported in seconds per vehicle.	20, the Highway Capacity Manua	l (HCM) methodology for signalized and unsignalized in	tersections was utilized to calculate vehicle queuing					
[5]	Signalized intersection Levels of Service were based on the following	criteria.	Unsignatized intersection Levels of Service were based on the following criteria.						
	Control Delay (s/veh)	LOS	Control Delay (s/veh)	LOS					
	<= 10	A	<= 10	A					
	> 10-20	В	> 10-15	В					
	> 20-35	С	> 15-25	С					
	> 35-55	D	> 25-35	D					
	> 55-80	E	> 35-50	E					
	> 80	F	> 50	F					

[4] The 95th percentile queue is the maximum back of queue with 95th percentile traffic volumes. The HCM 6th Edition methodology worksheets report queues in number of vehicles, however an average vehicle length of 25 feet was assumed for analysis purposes. The reported queues therefore represent the calculated maximum back of queue in feet.

>

As the answer is "yes" to both of the screening criteria questions (i.e., the Project will require a discretionary action and the Project will generate more than 250 daily trips), further analysis is required to evaluate Project access, safety and circulation.

5.2.2 Evaluation Criteria

For operational evaluation of land use projects, the City's TAG (Section 3.3.3 thereof) requires a quantitative evaluation of the Project's expected access and circulation operations. Project access is considered constrained if the Project's traffic would contribute to unacceptable queuing on an Avenue or Boulevard (as designated in the Mobility Plan 2035) at Project driveway(s) or would cause or substantially extend queuing at nearby signalized intersections. Unacceptable or extended queuing may be defined as follows:

- Spillover from turn pockets into through lanes.
- Block cross streets or alleys.
- Contribute to gridlock congestion. For the purposes of this section, "gridlock" is defined as the condition where traffic queues between closely spaced intersections and impedes the flow of traffic through upstream intersections.

The TAG acknowledges that demand for curbside space has substantially increased due to the continued expansion of driver-for-hire transportation network companies (TNCs) and shared mobility services. As such, the TAG states that a transportation assessment should characterize the onsite loading demand of the project frontage and answer the following questions:

- Would the project result in passenger loading demand that could not be accommodated within any proposed onsite passenger loading facility?
 - No, as discussed in Section 2.7, passenger loading and unloading for Option A would occur within the westerly residential building's parking garage. Passenger loading and unloading for Option B would occur in the drop-off/pick-up zone located on the westerly portion of the Project Site. While passenger loading and unloading will occur internally to the Project Site, some intermittent curbside loading/unloading may occur along the Project Site's Maxella Avenue and Glencoe Avenue frontages.
- Would accommodating the passenger loading demand create pedestrian or bicycle conflicts? Which curbside management options should be explored to better address passenger loading needs in the public right-of-way?
 - No pedestrian or bicycle conflicts due to potential loading/unloading activities are anticipated to occur because activity will occur internal to the Project Site, minimizing the need to utilize the curbside surrounding the Project Site for loading and unloading. For any curbside loading/unloading zones that may be proposed by the Applicant, the City would require the Applicant to install appropriate signage and

pavement/curb markings. Any installations that fall within the City's (public) rightof-way would require prior review and approval by LADOT.

5.2.3 Project Operational and Passenger Loading Evaluation Methodology

Based on coordination with LADOT staff and as presented in the transportation assessment MOU for Option A and Option B, the following 12 study intersections were identified for operational evaluation of whether the Project's traffic would contribute to unacceptable queuing on an Avenue or Boulevard:

- 1. Walgrove Avenue / Washington Boulevard (Unsignalized) [City of Culver City]
- 2. Lincoln Boulevard / Marina Pointe Drive Maxella Avenue
- 3. Del Rey Avenue / Maxella Avenue (Unsignalized)
- 4. Ocean Way / Maxella Avenue (Unsignalized without Project; Signalized with Project)
- 5. Maxella Avenue Driveway / Maxella Avenue
- 6. Glencoe Avenue / Maxella Avenue
- 7. Glencoe Avenue / Glencoe Avenue Northerly Driveway¹⁴ (Unsignalized)
- 8. Glencoe Avenue / Glencoe Avenue Southerly Driveway Villa Velletri Driveway (Unsignalized)
- 9. Mindanao Way / Glencoe Avenue
- 10. Mindanao Way / SR-90 (Marina Expressway) Westbound
- 11. Mindanao Way / SR-90 (Marina Expressway) Eastbound
- 12. Mindanao Way / La Villa Marina

The study locations were based on proximity to the Project Site and the importance of the intersections in terms of the Project's site access and circulation scheme.

The analysis was prepared based on the *Highway Capacity Manual*¹⁵ (HCM) operational analysis methodology pursuant to the City's TAG. Intersection analyses were prepared utilizing the *HCS7* software package, which implements the Highway Capacity Manual operational methods. In addition, specifics such as traffic volume data, lane configurations, available vehicle storage lengths, crosswalk locations, posted speed limits, traffic signal timing and phasing for signalized

¹⁴ As stated in Section 3.3.2, Option B does not propose a northerly driveway along Glencoe Avenue. However, for consistency purposes, the intersection is included as a study intersection for both Option A and Option B.

¹⁵ *Highway Capacity Manual 6th Edition*, Transportation Research Board of the National Academies of Sciences-Engineering-Medicine, 2016.

LINSCOTT, LAW & GREENSPAN, engineers

locations, etc., were coded in the *HCS7* software. The operational analysis was prepared utilizing the following data previously presented herein:

- Project Peak Hour Traffic Generation: Refer to Subsection 2.8.1
- Project Trip Distribution and Assignment: Refer to Subsection 2.8.2
- Existing Vehicle Network: Refer to Subsection 3.3
- Existing Weekday AM and PM Hour Traffic Count Data: Refer to Subsection 3.4
- Related Projects (i.e., within a 0.75-mile radius) and Ambient Traffic Growth: Refer to Subsection 3.5

LADOT confirmed the appropriateness of the above data in the transportation assessment MOU it approved for Option A and Option B. The transportation assessment MOU prepared by LLG for both the Option A and Option B are attached to this report in *Appendix A*.

The operational analysis of vehicle queuing at the study intersections was prepared for the following conditions:

- (a) Existing (2020) conditions.
- (b) Condition (a) with completion and occupancy of the Project.
- (c) Condition (a) plus 1.0% annual ambient traffic growth through year 2026 and with completion and occupancy of the related projects (i.e., future cumulative baseline)
- (d) Condition (c) with completion and occupancy of the Project.
- (e) Condition (d) with Project improvements, if necessary.

Pursuant to the City's TAG, the HCM methodology for signalized and unsignalized intersections was utilized to calculate vehicle queuing. The operation analysis reports the control delay (in seconds), Levels of Service (LOS), and 95th percentile queues (in feet) for all approaches for the signalized intersections and the minor street approaches for the unsignalized intersections. The 95th percentile queue is the maximum back of queue with 95th percentile traffic volumes. The HCM 6th Edition methodology worksheets report queues in number of vehicles. As such, an average vehicle length of 25 feet, which includes the length of the vehicle and spacing between vehicles, was assumed for analysis purposes. The reported queues therefore represent the calculated maximum back of queue in feet. The summary of the operational analysis of the study intersections is provided in *Tables 5–2* and *5–3* for Option A and Option B, respectively. *Appendix J* and *Appendix K* contain the HCM methodology worksheets for the study intersections for the Option A and Option B, respectively.

The existing traffic volumes at the study intersections during the weekday AM and PM peak hours are displayed in *Figures 3–12* and *3–13*, respectively. The "Existing with Option A" traffic volumes at the study intersections during the weekday AM and PM peak hours are

illustrated in *Figures 5–1* and *5–2*, respectively. The "Existing with Option B" traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in *Figures 5–3* and *5–4*, respectively. The "Future Cumulative Baseline" (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in *Figures 5–5* and *5–6*, respectively. The "Future Cumulative with Option A" (existing, ambient growth, related projects, and Option A) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in *Figures 5–7* and *5–8*, respectively. The "Future Cumulative with Option B" (existing, ambient growth, related projects, and Option B) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in *Figures 5–9* and *5–10*, respectively.

As presented in *Table 5–2*, Option A would not cause or substantially extend vehicle queuing at 10 of the 12 study intersections during the weekday AM and PM peak hours. At these intersections, the change in queue length associated with Option A ranges from a slight decrease in queue length to a maximum of 47.8 feet (i.e., just less than two vehicles). Option A would result in unacceptable queuing and/or operational deficiencies at the following intersections:

- Glencoe Avenue / Glencoe Avenue Southerly Driveway Villa Velletri Driveway
 - The change in queue length associated with Option A at the eastbound left/right approach under Future Cumulative with Option A conditions increases by 55.0 feet (i.e., just greater than two vehicles) during the weekday AM peak hour. During the weekday PM peak hour, the overall queue length is expected to be 192.5 feet (i.e., just less than eight vehicles) under Future Cumulative with Option A conditions.
- Mindanao Way / Glencoe Avenue
 - The change in queue length at the northbound left-turn approach under Future Cumulative with Option A conditions increases by 82.2 feet (i.e., greater than three vehicles) and 56.5 feet (i.e., greater than two vehicles) during the weekday AM and PM peak hours, respectively.
 - The reported back of queue length at the eastbound right-turn approach is expected to be 381.3 feet during the weekday AM peak hour and 561.7 feet during the weekday PM peak hour under Future Cumulative with Option A conditions.

Improvements to these intersections have been identified and are summarized in the following sections:

- Glencoe Avenue / Glencoe Avenue Southerly Driveway Villa Velletri Driveway
 - The recommended improvements consist of shifting the existing signalized Glencoe Avenue midblock crossing to the north to align with the Glencoe Avenue Southerly Driveway intersection. The resulting lane configuration on the northbound and southbound approaches of Glencoe Avenue would provide one left-turn lane, one through lane, and one shared through/right-turn lane. No changes to the eastbound

-89-

-90-

-91-

₽ jshender 10:06:21 12/14/2020 o:\0265\dwg\f5-3.dwg

-92-

-93-

exhibits ₽ jshender 16:17:08 10/01/2020 o:\0265\dwg\f5-5.dwg

-94-

exhibits ₽ jshender 10:33:35 04/21/2021 o:\0265\dwg\f5-6.dwg

-95-

₽ jshender 3:59:29 /2021 04/29/

-97-

exhibits ₽ jshender 16:03:55 04/13/2021 o:\0265\dwg\f5-9.dwg

-98-

Glencoe Avenue Southerly Driveway and westbound Villa Velletri approaches are proposed. Changes to the existing traffic signal equipment needed in conjunction with the recommended improvements would also be implemented as part of the improvement. Crosswalks would be installed on both the northbound and southbound Glencoe Avenue approaches.

- Mindanao Way / Glencoe Avenue
 - The recommended improvements consist of changing the existing traffic signal equipment to provide a northbound protected/permissive left-turn phase, as well as an eastbound overlap right-turn phase. No striping changes would be needed as part of the improvement.

As presented in *Table 5–2*, the proposed improvements to the intersections would significantly reduce the effects of the cumulative and Option A-related traffic at the intersection. A summary of the effects of the improvements at each of the intersections is provided below.

- Glencoe Avenue / Glencoe Avenue Southerly Driveway Villa Velletri Driveway
 - With the proposed improvements, the overall queue length at the eastbound approach under Future Cumulative with Option A conditions is reduced by 7.5 feet during the weekday AM peak hour. During the weekday PM peak hour, the overall queue length at the eastbound approach under Future Cumulative with Option A conditions is reduced by 97.4 feet (i.e., just less than four vehicles).
- Mindanao Way / Glencoe Avenue
 - With the proposed improvements, the overall queue length at the northbound left-turn approach under Future Cumulative with Option A conditions is reduced by 960.8 feet (i.e., greater than 38 vehicles) and 266.6 feet (i.e., less than 11 vehicles) during the weekday AM and PM peak hours, respectively.
 - With the proposed improvements, the overall queue length at the eastbound right-turn approach under Future Cumulative with Option A conditions is reduced by 122.2 feet (i.e., just less than five vehicles) and 162.9 feet (i.e., less than seven vehicles) during the weekday AM and PM peak hours, respectively.

It is noted that there are delays and extended vehicle queuing on the southbound Walgrove Avenue approach to its intersection with Washington Boulevard as noted in *Table 5–2* during the existing AM and PM peak hours. These delays and vehicle queuing are expected to incrementally increase with the addition of traffic from the related projects, ambient growth and Option A. It is noted that the intersection is located within the City of Culver City and thus, any improvements to the intersection are outside the control of the City of Los Angeles.

It is likely that existing traffic volumes would satisfy standard warrants for installation of a traffic signal at the Walgrove Avenue / Washington Boulevard intersection. Further, the City of

Culver City would likely review whether the installation of a traffic signal at the Walgrove Avenue / Washington Boulevard may induce additional regional vehicle trips on Walgrove Avenue north of Washington Boulevard, which is primarily residential in nature. Accordingly, it is beyond the scope of this transportation analysis to identify and evaluate potential changes to traffic control at the Walgrove Avenue / Washington Boulevard intersection.

It is envisioned that passenger loading/unloading will occur within the drop-off/pick-up area located within Option A's onsite parking garage. No pedestrian or bicycle conflicts due to potential loading/unloading activities are anticipated to occur. While not currently proposed, for any future curbside loading/unloading zones that may be proposed by the Applicant, appropriate signage and pavement/curb markings will be required by the City and installed by the Applicant. Any installations that fall within the City's (public) right-of-way will require prior review and approval by LADOT. Thus, it is envisioned that should any curbside loading/unloading zones be proposed by the Applicant, on-street parking along the direct Option A frontages will not be allowed and some or most of the curbside space would be repurposed for loading/unloading operations.

5.2.4 Option B Project Operational and Passenger Loading Evaluation Methodology

Based on coordination with LADOT staff and as presented in the transportation assessment MOU for Option B, the 12 study intersections identified in Subsection 5.2.3 herein were identified for operational evaluation of whether Option B traffic would contribute to unacceptable queuing on an Avenue or Boulevard.

The analysis was prepared based on the HCM operational analysis methodology pursuant to the City's TAG, and intersection analyses were prepared utilizing the *HCS7* software package. LADOT confirmed the appropriateness of the data coded in the *HCS7* software when it entered into a transportation assessment MOU for Option B. The transportation assessment MOU prepared for the screening criteria set forth in the TAG is in *Appendix A*. The operational analysis of vehicle queuing at the study intersections was prepared for the conditions identified in Subsection 5.2.3 herein.

As presented in *Table 5–3*, Option B would not cause or substantially extend vehicle queuing at 10 of the 12 study intersections during the weekday AM and PM peak hours. At these intersections, the change in queue length associated with Option B ranges from a slight decrease in queue length to a maximum of 90.6 feet (i.e., greater than three vehicles). Option B would result in unacceptable queuing and/or operational deficiencies at the following intersections:

- Glencoe Avenue / Glencoe Avenue Southerly Driveway Villa Velletri Driveway
 - The change in queue length associated with Option B at the eastbound left/right approach increases by 70.0 feet (i.e., just less than three vehicles) and 100 feet (i.e., four vehicles) during the weekday AM and PM peak hours, respectively under Future Cumulative with Option B conditions. During the weekday AM peak hour, the overall queue length is expected to be 82.5 feet (i.e., just greater than three vehicles) under Future Cumulative with Option B conditions. During the weekday PM peak

hour, the overall queue length is expected to be 300 feet (i.e., 12 vehicles) under Future Cumulative with Option B conditions.

- Mindanao Way / Glencoe Avenue
 - The change in queue length at the northbound left-turn approach queue increases by 151.7 feet (i.e., just greater than six vehicles) during the weekday AM peak hour under Future Cumulative with Option B conditions.
 - The reported back of queue length at the eastbound right-turn approach is expected to be 369.6 feet during the weekday AM peak hour and 583.1 feet during the weekday PM peak hour under Future Cumulative with Option B conditions.

Improvements to these intersections have been identified and are summarized in Section 5.2.3 above. As presented in *Table 5–3*, the proposed improvements to the intersections would significantly reduce the effects of cumulative and Option B-related traffic at the intersection. A summary of the effects of the improvements at each of the intersections is provided below.

- Glencoe Avenue / Glencoe Avenue Southerly Driveway Villa Velletri Driveway
 - With the proposed improvements, the overall queue length at the eastbound approach under Future Cumulative with Option B conditions is reduced by 2.7 feet during the weekday AM peak hour. During the weekday PM peak hour, the overall queue length at the eastbound approach under Future Cumulative with Option B conditions is reduced by 167.5 feet (i.e., just less than seven vehicles).
- Mindanao Way / Glencoe Avenue
 - With the proposed improvements, the overall queue length at the northbound left-turn approach under Future Cumulative with Option B conditions is reduced by 1025.5 feet (i.e., just greater than 41 vehicles) and 243.9 feet (i.e., just less than 10 vehicles) during the weekday AM and PM peak hours, respectively.
 - With the proposed improvements, the overall queue length at the eastbound right-turn approach under Future Cumulative with Option B conditions is reduced by 116.9 feet (i.e., less than five vehicles) and 173.8 feet (i.e., just less than eight vehicles) during the weekday AM and PM peak hours, respectively.

It is envisioned that passenger loading/unloading will occur within the Option B drop-off/pick-up area located along the east side of Ocean Way, along the westerly portion of the Project Site. No pedestrian or bicycle conflicts due to potential loading/unloading activities are anticipated to occur. While not currently proposed, for any future curbside loading/unloading zones that may be proposed by the Applicant, appropriate signage and pavement/curb markings will be required by the City and installed by the Applicant. Any installations that fall within the City's (public) right-of-way will require prior review and approval by LADOT. Thus, it is envisioned that should any curbside loading/unloading zones be proposed by the Applicant, on-street parking

along the direct Option B frontages will not be allowed and some or most of the curbside space would be repurposed for loading/unloading operations.

5.3 Project Construction Effect on Nearby Mobility

The project construction evaluation addresses activity associated with project construction and major in-street construction of infrastructure projects.

5.3.1 Screening Criteria

For land use projects, if the answer is yes to any of the following questions, further analysis will be required to assess whether project construction would negatively affect pedestrian, bicycle, transit, or vehicle circulation:

- Would a project that requires construction activities to take place within the right-of-way of a Boulevard or Avenue (as designated in Mobility Plan 2035) which would necessitate temporary lane, alley, or street closures for more than one day (including day and evening hours, and overnight closures if on a residential street)?
 - No.
- Would a project require construction activities to take place within the right-of-way of a Collector or Local Street (as designated in the Mobility Plan 2035) which would necessitate temporary lane, alley, or street closures for more than seven days (including day and evening hours, and including overnight closures if on a residential street)?
 - No.
- Would in-street construction activities result in the loss of regular vehicle, bicycle, or pedestrian access, including loss of existing bicycle parking to an existing land use for more than one day, including day and evening hours and overnight closures if access is lost to residential units?
 - Yes. Temporary closures of the sidewalks along the Project Site's Maxella Avenue and Glencoe Avenue frontages may be required during portions of the construction period. However, signs would be posted advising pedestrians of temporary sidewalk closures and providing alternative routes. No bicycle routes/lanes in the Project study area would require temporary closure. Additionally, the Applicant will prepare and implement a Construction Management Plan that will reduce construction-related impacts on the surrounding community, and will minimize potential conflicts between construction activities, street traffic, bicyclists, and pedestrians.
- Would in-street construction activities result in the loss of regular ADA pedestrian access to an existing transit station, stop, or facility (e.g., layover zone) during revenue hours?
 - No.

LINSCOTT, LAW & GREENSPAN, engineers

- Would in-street construction activities result in the temporary loss for more than one day of an existing bus stop or rerouting of a bus route that serves the project site?
 - No.
- Would construction activities result in the temporary removal and/or loss of on-street metered parking for more than 30 days?
 - No.
- Would the project involve a discretionary action to construct new building of more than 1,000 square feet that require access for hauling construction materials and equipment from streets of less than 24-feet wide in a hillside area?
 - No.

As the answer is "yes" to one of the screening criteria questions, further analysis is required to evaluate whether Project construction would negatively affect pedestrian, bicycle, transit, or vehicle circulation.

5.3.2 Evaluation Criteria and Methodology

The evaluation criteria for project construction is focused on whether the proposed project would adversely affect mobility in the project vicinity during the construction process. Specifically, the City's TAG asks the following question: "Would construction of a project substantially interfere with pedestrian, bicycle, transit, or vehicle circulation and accessibility to adjoining areas?" Factors to be considered are the location of the project site, the functional classification of the adjacent street(s), the availability of alternate routes or additional capacity, temporary loss of bicycle parking, temporary loss of bus stops or rerouting of transit lines, the duration of temporary loss of access, the affected land uses, and the magnitude of the temporary construction activities.

Factors to consider when assessing a project construction's potential effect on mobility in the project area include the following:

- Temporary transportation constraints:
 - The length of time of temporary street closures or closures of two or more travel lanes;
 - The classification of the street (major arterial, state highway) affected;
 - The existing congestion levels on the affected street segments and intersections;
 - Whether the affected street directly leads to a freeway on- or off-ramp or other state highway;

- Potential safety issues involved with street or lane closures; and
- The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street.
- Temporary loss of access:
 - The length of time of any loss of pedestrian or bicycle circulation past a construction area;
 - The length of time of any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area;
 - The length of time of any loss of ADA pedestrian access to a transit station, stop, or facility;
 - The availability of nearby vehicular or pedestrian access within ¹/₄ mile of the lost access; and
 - The type of land uses affected, and related safety, convenience, and/or economic issues.
- Temporary Loss of Bus Stops or Rerouting of Bus Lines:
 - The length of time that an existing bus stop would be unavailable or that existing service would be interrupted;
 - The availability of a nearby location (within ¼ mile) to which the bus stop or route can be temporarily relocated;
 - The existence of other bus stops or routes with similar routes/destinations within a ¹/₄mile radius of the affected stops or routes; and
 - Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service that/those day(s).

Descriptions of the Project location and physical setting are provided in Subsection 2.1, Project Site Location, and Section 3.0, Project Context, herein that apply to this analysis. The Project location and Project setting data items such as adjacent street classifications, public bicycle parking, inventory of existing transit lines, bus stops, etc. Per Section 3.4.4 of the TAG, the evaluation of the Project construction includes a review of whether construction activity within the street right-of-way would require any of the following:

• Street, sidewalk, or lane closures.

LINSCOTT, LAW & GREENSPAN, engineers

- Block existing vehicle, bicycle, or pedestrian access along a street or to parcels fronting the street.
- Modification of access to transit stations, stops, or facilities during revenue hours.
- Closure or movement of an existing bus stop or rerouting of an existing bus line.
- Creation of transportation hazards.

The City's TAG notes that a comparison of the results to the evaluation criteria are to be provided in order to determine the level of impact. The summary of the Option A and Option B construction evaluation criteria review in order to determine level of impact is provided in *Table* 5-4.

As presented in *Table 5–4*, it is concluded that Option A and Option B construction would not result in the closure of two or more travel lanes, would not require relocation of existing bus transit stops or routes, would not result in the loss of regular vehicle, bicycle, or pedestrian access, and would not impede emergency access.

5.3.3 Recommended Project-Specific Action Items

Due to the short-term nature of construction activities and the variable characteristics and needs of a specific project's construction phase(s), it is recommended that a construction work site traffic control plan be submitted to LADOT's Citywide Temporary Traffic Control Section or Permit Plan Review Section for review and approval prior to the start of construction activity. The construction work site traffic control plan is required to identify the location of all temporary roadway lane and/or sidewalk closures needed during project construction. Additionally, if pedestrian detours and/or temporary travel lane closures are proposed, LADOT requires submission and approval of a traffic control/management plan prior to the issuance of building permits.

Consistent with LADOT's recommendation and requirements, the Applicant will prepare a detailed Construction Staging and Traffic Management Plan (CSTMP), which will include any applicable street/lane/sidewalk closure information, a detour plan, haul route(s), and a staging plan. The plan will be based on the nature and timing of the Project's specific construction activities and will consider other projects under construction in the immediate vicinity of the Project Site. The CSTMP will also include features such as notification to adjacent project owners and occupants of upcoming construction activities, advance notification regarding any temporary transit stop relocations, and limitation of any potential roadway lane closure(s) to off-peak travel periods, to the extent feasible.

LINSCOTT, LAW & GREENSPAN, engineers

Table 5-4 QUALITATIVE REVIEW OF PROJECT CONSTRUCTION ACTIVITIES

CRITERIA	PROJECT RESPONSE	DESCRIPTION
TEMPORARY TRANSPORTATION CON	STRAINTS	
The length of time of temporary street closures or closures of two or more travel lanes.	N/A	Project construction will not require street closures or closures of two or more travel lanes.
The classification of the street (major arterial, state highway) affected.	Avenue III; Collector	Maxella Avenue and Glencoe Avenue are classified as an Avenue III and Collector, respectively, by the City of Los Angeles.
The existing congestion levels on the affected street segments and intersections.	Acceptable LOS	
Whether the affected street directly leads to a freeway on- or off-ramp or other state highway.	N/A	N/A
Potential safety issues involved with street or lane closures.	N/A	While safety issues are not anticipated, the Project Applicant will prepare a Construction Staging and Traffic Management Plan (CSTMP) which would detail any potential safety issues.
The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street.	None	N/A
TEMPORARY LOSS OF ACCE	SS	
The length of time of any loss of pedestrian or bicycle circulation past a construction area.	Unknown	The Project Applicant will prepare a CSTMP which would detail any loss of pedestrian or bicycle circulation past the construction of the Project.
The length of time of any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area.	Unknown	The Project Applicant will prepare a CSTMP which would detail any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area.
The length of time of any loss of ADA pedestrian access to a transit station, stop, or facility.	None	N/A
The availability of nearby vehicular or pedestrian access within 1/4 mile of the lost access.	None	N/A
The type of land uses affected, and related safety, convenience, and/or economic issues.	None	Access will be maintained for adjacent parcels in the Project vicinity.
TEMPORARY LOSS OF BUS STOPS OR REROUT	TING OF BUS LINES	
The length of time that an existing bus stop would be unavailable or that existing service would be interrupted.	N/A	No relocations proposed.
The availability of a nearby location (within one quarter-mile) to which the bus stop or route can be temporarily relocated.	N/A	N/A
The existence of other bus stops or routes with similar routes/destinations within a 1/4-mile radius of the affected stops or routes.	N/A	N/A
Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service that/those day(s).	N/A	N/A

6.0 SUMMARY AND CONCLUSIONS

• **Project Description** – Option A consists of the construction of a mixed-use development including 592 market-rate residential apartment dwelling units, 66 affordable housing dwelling units, 13,650 square feet of restaurant floor area, and 13,650 square feet of commercial floor area. Parking for Option A will be provided in two subterranean levels and two above-grade levels of parking within each of the three buildings. Option A proposes to provide a total of 1,217 parking spaces. Construction of Option A would be completed, and occupancy to occur, by the year 2026.

Option B consists of the construction a mixed-use development including 382 marketrate residential apartment dwelling units, 43 affordable housing dwelling units, 20,000 square feet of restaurant floor area, 20,000 square feet of commercial floor area, and 90,00 square feet of office floor area. Parking for Option B will be provided in an onsite parking garage with one level of at-grade parking and three levels of subterranean parking. Option B proposes to provide a total of 1,287 parking spaces. Construction of Option B would be completed, and occupancy to occur, by the year 2026.

- *Study Scope* This transportation assessment presents (i) a CEQA assessment of whether the Project conflicts or is inconsistent with local transportation-related plans and policies, (ii) a CEQA assessment of Project-related VMT, (iii) a CEQA assessment of whether the Project increases hazards due to a geometric design feature or incompatible use, (iv) a CEQA freeway safety assessment, (v) a non-CEQA assessment of pedestrian, bicycle and transit access, (vi) a non-CEQA evaluation of Project access, safety and circulation, and (vii) a non-CEQA review of Project construction activities. LADOT confirmed the appropriateness of the analysis criteria when it entered into a transportation assessment MOU for both Option A and Option B.
- **Project Trip Generation** Option A is expected to generate 222 net new vehicle trips (67 inbound trips and 155 outbound trips) during the weekday AM peak hour. During the weekday PM peak hour, Option A is expected to generate 50 net new vehicle trips (58 inbound trips and -8 outbound trips). Option A is expected to generate 1,379 net new daily vehicle trips. Option B is expected to generate 231 net new vehicle trips (114 inbound trips and 117 outbound trips) during the weekday AM peak hour. During the weekday PM peak hour, Option B is expected to generate 59 net new vehicle trips (36 inbound trips and 23 outbound trips). Option B is expected to generate 1,979 net new daily vehicle trips.
- CEQA Analysis
 - Project Consistency with Local Plans and Policies: Option A and Option B would be generally consistent with the relevant City transportation plans, policies and programs and does not include any features that would preclude the City from completing and complying with these guiding documents and policy objectives. Therefore, both

Option A and Option B would have a less than significant impact with respect to consistency with transportation plans, policies, and programs.

Furthermore, the Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance) and the other transportation-related requirements pursuant to the LAMC, as well as the TDM requirements of the Coastal Transportation Corridor Specific Plan.

• *VMT Analysis:* Option A would not result in a significant VMT impact. Furthermore, based on the Option A-related VMT analysis and the conclusions discussed in Section 4.2.3 (which demonstrate that Option A falls under the City's efficiency-based impact thresholds and thus are already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS), no cumulatively significant VMT impacts are anticipated.

While the Option B Daily Work VMT per Employee is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee, LLG has proposed an alternative assessment of the VMT impacts for Option B. As stated in Section 4.2.2, the Daily Household VMT per Capita for the residential component of Option B is calculated to be 5.4 Daily Household VMT per Capita with implementation of the recommended mitigation measures, which is well below the threshold for the West Los Angeles APC of 7.4 Daily Household VMT per Capita. For the office component of Option B, the Daily Work VMT per Employee value is calculated to be reduced from 14.5 to 11.6 with consideration of TDM measures. While the Daily Work VMT per Employee value after application of TDM measures is greater than the threshold of 11.1 Daily Work VMT per Employee, a finding of a less than significant impact is made related to the Daily Work VMT per Employee for Option B in consideration of the "excess" mitigation provided by the TDM measures recommended for Option B. The resulting Daily Household VMT per Capita for the residential component is substantially less than the threshold of significance for the West Los Angeles APC and therefore is deemed to offset the unmitigated portion of the Daily Work VMT per Employee related to the office component. This is demonstrated through the calculation of total VMT as detailed in Appendix I. Furthermore, no cumulatively significant VMT impacts are anticipated as it relates to Option B.

Geometric Design Review: Given the classification of the roadways along the Project Site's frontage, existing physical condition of the Project Site, surrounding land uses, and planned pedestrian enhancements, no safety concerns related to geometric design are noted. Additionally, it is noted that neither Option A nor Option B will add curb cuts to the Project Site's Maxella Avenue frontage and will reduce the number of curb cuts along the Project Site's Glencoe Avenue frontage from two to one with Option A, and from two to zero with Option B. Therefore, it can be determined that neither Option A nor Option B will not substantially increase hazards due to a geometric

design feature or incompatible use, resulting in a less than significant impact determination.

- *Freeway Safety Analysis:* Neither the Option A nor Option B would add 25 or more trips to a freeway off-ramp. As trips added by Option A and Option B would not result in extended queuing onto a freeway mainline, the freeway safety impact would be less than significant.
- Non-CEQA Analysis
 - Pedestrian, Bicycle, and Transit Access: Option A and Option B do not include any features that would permanently remove, adversely modify, or degrade pedestrian, bicycle, and transit facilities in the Project Site vicinity. As noted herein, it is determined that it is possible that Option A and Option B may intensify use of pedestrian, bicycle, and transit facilities in the Project Site vicinity, however, such use is not expected to result in a deficient condition caused by Option A or Option B.
 - Project Access and Circulation Review: The Project's weekday AM and PM peak hour traffic volumes would not cause or substantially extend vehicle queuing at 10 of the 12 study intersections analyzed (as discussed in Sections 5.2.3 and 5.2.4 herein). Physical improvements to these intersections have been identified and are shown to improve traffic operation at these intersections.
 - Project Construction Effect on Nearby Mobility: As construction of Option A or Option B would not result in the closure of two or more travel lanes, would not relocate existing bus transit stops or routes, and would not impede emergency access, it can be concluded that construction of either Option A or Option B would not negatively affect pedestrian, bicycle, transit, or vehicle circulation.

APPENDIX A

APPROVED TRANSPORTATION ASSESSMENT MEMORANDUM OF UNDERSTANDING

Transportation Assessment Memorandum of Understanding (MOU)

This MOU acknowledges that the Transportation Assessment for the following Project will be prepared in accordance with the latest version of LADOT's Transportation Assessment Guidelines:

1. PROJECT INFORMATION

Project Name: Paseo Marina

Project Address: 13400 Maxella Avenue

Project Description: Development of 658 residential apartment dwelling units, 13,650 square feet of restaurant floor area, and 13,650 square feet of commercial floor area.

LADOT Project Case Number: CTC20-109212 Project Site Plan attached? (Required) Yes INO

11. TRIP GENERATION

Geographic Distribution: N 20 % S 25 % E 45 % 10 % W

Illustration of Project trip distribution percentages at Study intersections attached? (Required) 🖾 Yes 🗆 No Trip Generation Rate(s): ITE 10th Edition / Other ITE 10th Edition

Trip Generation Adjustment (Exact amount of credit subject to approval by LADOT)	Yes	No
Transit Usage	X	
Transportation Demand Management		X
Existing Active Land Use	X	
Previous Land Use		X
Internal Trip	X	
Pass-By Trip	X	

Trip generation table including a description of the proposed land uses, ITE rates, estimated morning and afternoon peak hour volumes (ins/outs/totals), proposed trip credits, etc. attached? (Required) 🗵 Yes 🗆 No

	IN	OUT	TOTAL	
AM Trips	61	149	210	NET Daily Trips 1,295
PM Trips	61	(7)	54	(From VMT Calculator

ш. STUDY AREA AND ASSUMPTIONS

Map of Study Intersections/Segments attached? X Yes INo

Project Buildout Year: 2026

Ambient Growth Rate:

1.0 % Per Yr.

Related Projects List, researched by the consultant and approved by LADOT, attached? (Required) XYes No *Forthcoming

STUDY INTERSECTIONS (May be subject to LADOT revision after access, safety and circulation analysis)

1 Walgrove Avenue / Washington Boulevard

2 Lincoln Boulevard / Maxella Avenue

3 Del Rey Avenue / Maxella Avenue

4 Ocean Way / Maxella Avenue

5 Maxella Avenue Driveway / Maxella Avenue

6 Glencoe Avenue / Maxella Avenue

10 Mindanao Way / SR-90 Eastbound Ramps

7 Glencoe Avenue / Glencoe Avenue Northerly Driveway 8 Glencoe Avenue / Glencoe Avenue Southerly Driveway

11 Mindanao Way / SR-90 Westbound Ramps

12 Mindanao Way / La Villa Marina

9 Mindanao Way / Glencoe Avenue

Is this Project located on a street within the High Injury Network?
Yes No November 2019 | Page 1 of 2

LADOT

IV. ACCESS ASSESSMENT

Is the project on a lot that is 0.5-acre or more in total gross area? 🖾 Yes 🗆 No

Is the project's frontage 250 linear feet or more along an Avenue or Boulevard as classified by the City's General Plan? ⊠ Yes □ No

Is the project's building frontage encompassing an entire block along an Avenue or Boulevard as classified by the City's General Plan?
Yes X No

V. CONTACT INFORMATION

Consultant's Representative

CONSULTANT Name: Linscott, Law & Greenspan, Engineers	DEVELOPER RAR2-Villa Marina Center CA, LLC
Address: 20931 Burbank Boulevard, Suite C	3501 Jamboree Road, Suite 3000
Woodland Hills, CA 91367	Newport Beach, CA 92660
Phone Number: (818) 835-8648	(949) 809-2502
E-Mail: jshender@llgengineers.com	TGuiteras@Sares-Regis.com
Approved by: x Julia 3/5/2020	x Churchen 3/12/20

*MOUs are generally valid for two years after signing. If after two years a transportation assessment has not been submitted to LADOT, the developer's representative shall check with the appropriate LADOT office to determine if the terms of this MOU are still valid or if a new MOU is needed.

Date

LADOT Representative

*Date

2 14:25:50 jshe 12/03/2019 o:\0265\dwg\f1.dwg

24/2017

Table 1 PROJECT TRIP GENERATION [1]

	SIZE	DAILY TRIP ENDS [2]	AM PEAK HOUR VOLUMES [2]			PM PEAK HOUR VOLUMES [2]		
LAND USE Proposed Project		VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
Proposed Project				1	1.7*	1. 10.1	1.1	100
Apartments [3]	658 DU	3,580	62	175	237	177	113	290
Restaurant [4]	13,650 GSF	1,531	75	61	136	82	51	133
Commercial [5]	13,650 GLSF	515	8	5	13	25	27	52
Subtotal	1000	5,626	145	241	386	284	191	475
Internal Capture [6], [7]		(900)	(16)	(27)	(43)	(60)	(40)	(100)
Transit Trips (15%) [8]		(709)	(19)	(32)	(51)	(34)	(23)	(57)
Subtotal Project Driveway Trips		4,017	110	182	292	190	128	318
Existing Land Use Commercial [5]	(100,781) GLSF	(3,804)	(59)	(36)	(95)	(184)	(200)	(384)
Transit Trips [8] Commercial (15%)		571	9	5	.14	28	30	58
Subtotal Existing Driveway Trips		(3,233)	(50)	(31)	(81)	(156)	(170)	(326)
NET INCREASE DRIVEWAY T	RIPS	784	60	151	211	34	(42)	(8)
Proposed Pass-By Trips [9] Restaurant (20%) Commercial (50%)		(219)	(11)	(9)	(20)	(11)	(7)	(18)
Subtotal		(403)	(14)	(11)	(25)	(20)	(16)	(36)
Existing Pass-By Trips [9] Commercial (30%)		970	15	9	24	47	51	98
NET INCREASE "OFF-SITE" T	RIPS	1,351	61	149	210	61	(7)	54

[1] Sources: ITE "Trip Generation Manual", 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates.
 Daily Trip Rate: 5.44 trips/dwelling unit; 50% inbound/50% outbound
 AM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 26% inbound/74% outbound

- PM Peak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/39% outbound

[4] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates. - Daily Weekday Trip Rate: 112.18 trips/1,000 SF of floor area; 50% inbound/50% outbound - AM Peak Hour Trip Rate: 9.94 trips/1,000 SF of floor area; 55% inbound/45% outbound

PM Peak Hour Trip Rate: 9.77 trips/1.000 SF of floor area, 62% inbound/38% outbound
 [5] ITE Land Use Code 820 (Shopping Center) trip generation average rates.

Daily Trip Rate: 37.75 trips/1.000 SF of leasable area; 50% inbound/50% outbound
 AM Peak Hour Trip Rate: 0.94 trips/1.000 SF of leasable area; 62% inbound/38% outbound
 PM Peak Hour Trip Rate: 3.81 trips/1.000 SF of leasable area; 48% inbound/52% outbound

[6] The internal capture reduction for the residential, restaurant, retail, and office is based on the synergy between all the land uses provided within the project site, and determined via NCHRP 684 Internal Capture Estimation Tool (11% for AM Peak Hour and 21% for PM Peak Hour).

[7] Daily internal capture (16%) determined by averaging internal capture for AM Peak Hour (11%) and PM Peak Hour (21%),

per the NCHRP 684 Internal Capture Estimation Tool.

[8] A 15% transit use reduction applied based on the project site being located within 1/4 mile of a Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the proposed project and existing land uses based on the "LADOT Transportation Assessment Guidelines", July 2019 for developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop.

[9] Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The trip reduction for pass-by trips has been applied to the restaurant and commercial components of the project based on the "LADOT Transportation Assessment Guidelines", July 2019 for High Turnover Restaurant. Shopping Center less than 50,000 sf, and Shopping Center 100,000 to less than 300,000 sf.

	NCHRP 684 Internal Trip	Capture Estimation Tool	
Project Name:	Paseo Marina	Organization:	
Project Location:		Performed By:	
Scenario Description:		Date:	
Analysis Year:		Checked By:	
Analysis Period:	AM Street Peak Hour	Date:	

and the second se	Table 1-	A: Base Vehicle-	Trip Generation Est	imates (Single-Use Sit	e Estimate)		
	Developme	ent Data (For Infor	mation Only)	Estimated Vehicle-Trips ³			
Land Use	ITE LUCs1	Quantity	Units	Total	Entering	Exiting	
Office	14			0			
Retail	820	13,650		13	8	5	
Restaurant	932	13,650		136	75	61	
Cinema/Entertainment				0			
Residential	221	658		237	62	175	
Hotel				0			
All Other Land Uses ²				0			
				386	145	241	

		Table 2-A:	Mode Split and Vehicle	Occupancy Estimates	mar to an		
Land Use Veh. Occ.4	1	Entering Tr	ips	Exiting Trips			
	Veh. Occ.4	% Transit	% Non-Motorized	Veh. Occ.4	% Transit	% Non-Motorized	
Office							
Retail		15%			15%		
Restaurant	12 12 1	15%			15%		
Cinema/Entertainment							
Residential		15%	A DECEMBER OF		15%		
Hotel						1	
All Other Land Uses ²						6 Cu 2	

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)								
Origin (From)		- LA		Destination (To)				
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office	(c							
Retail								
Restaurant	1							
Cinema/Entertainment								
Residential	1							
Hotel								

Table 4-A: Internal Person-Trip Origin-Destination Matrix*									
Origin (From)	1	Destination (To)							
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		0	0	0	0	0			
Retail	0	1000	1	0	1	0			
Restaurant	0	1		0	2	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	0	1	15	0		0			
Hotel	0	0	0	0	0				

Table 5-A:	Computatio	ons Summary	Table 6-A: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	386	145	241	Office	N/A	N/A
Internal Capture Percentage	11%	14%	9%	Retail	25%	40%
			1000	Restaurant	21%	5%
External Vehicle-Trips ⁵	292	105	187	Cinema/Entertainment	N/A	N/A
External Transit-Trips ⁶	52	19	33	Residential	5%	9%
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A

 ¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

 ²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

 ³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

 ⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

 ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

 ⁶Person-Trips

 *Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Paseo Marina		
Analysis Period:	AM Street Peak Hour		

		Table 7-A: Conv	ersion of Vehicle-Trip	Ends to Person-Trip	Ends	
Land Use	Table 7-A (D): Entering Trips			Table 7-A (O): Exiting Trips		
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	0	0	1.00	0	0
Retail	1.00	8	8	1.00	5	5
Restaurant	1.00	75	75	1.00	61	61
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.00	62	62	1.00	175	175
Hotel	1.00	0	0	1.00	0	0

	Table 8-A	(O): Internal P	Person-Trip Origin-	Destination Matrix (Computed	d at Origin)	
Origin (From)				Destination (To)		
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	1		1	0	1	0
Restaurant	19	9		0	2	2
Cinema/Entertainment	0	0	0		0	0
Residential	4	2	35	0		0
Hotel	0	0	0	0	0	

-	Table 8-A (D): Internal Per	son-Trip Origin-De	stination Matrix (Computed a	t Destination)					
Origin (From)	1	Destination (To)								
Origin (Plotti)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		3	17	0	0	0				
Retail	0		38	0	1	0				
Restaurant	0	1		0	3	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	0	1	15	0		0				
Hotel	0	0	5	0	0					

A REAL PROPERTY OF A REAL PROPER	T/	able 9-A (D): Inte	rnal and External T	Frips Summary (Entering 7	Trips)		
Destination Land Lise	1	Person-Trip Estim	lates	External Trips by Mode*			
Destination Land Use	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²	
Office	0	0	0	0	0	0	
Retail	2	6	8	5	1	0	
Restaurant	16	59	75	50	9	0	
Cinema/Entertainment	0	0	0	0	0	0	
Residential	3	59	62	50	9	0	
Hotel	0	0	0	0	0	0	
All Other Land Uses ³	0	0	0	0	0	0	

	т	able 9-A (O): Inte	ernal and External	Trips Summary (Exiting T	rips)		
Origin Lond Han	F	Person-Trip Estim	ates	External Trips by Mode*			
Origin Land Use	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²	
Office	0	0	0	0	0	0	
Retail	2	3	5	3	0	0	
Restaurant	3	58	61	49	9	0	
Cinema/Entertainment	0	0	0	0	0	0	
Residential	16	159	175	135	24	0	
Hotel	0	0	0	0	0	0	
All Other Land Uses ³	0	0	0	0	0	0	

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A ²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

	NCHRP 684 Internal Trip	Capture Estimation Tool	
Project Name:	Paseo Marina	Organization:	
Project Location:		Performed By:	
Scenario Description:		Date:	
Analysis Year:		Checked By:	
Analysis Period:	PM Street Peak Hour	Date:	

	Table 1-	P: Base Vehicle-	Trip Generation Est	imates (Single-Use Sit	e Estimate)	
Landling	Development Data (For Information Only)			Estimated Vehicle-Trips ³		
Land Use	ITE LUCs1	Quantity	Units	Total	Entering	Exiting
Office	18		and the second sec	0		
Retail	820	13,650		52	25	27
Restaurant	932	13,650		133	82	51
Cinema/Entertainment				0		
Residential	221	658		290	177	113
Hotel	1			0		
All Other Land Uses ²		14		0		
				475	284	191

		Table 2-P:	Mode Split and Vehicle	Occupancy Estimates	The second F		
facilities.	Entering Trips				Exiting Trips		
Land Use	Veh. Occ.4	% Transit	% Non-Motorized	Veh. Occ.4	% Transit	% Non-Motorized	
Office							
Retail		15%			15%		
Restaurant		15%			15%		
Cinema/Entertainment							
Residential		15%			15%		
Hotel				• · · · · · · · · · · · · · · · · · · ·			
All Other Land Uses ²							

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)									
Origin (From)				Destination (To)						
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail										
Restaurant						1				
Cinema/Entertainment			1							
Residential		1				2				
Hotel			1			N				

		Table 4-P: I	nternal Person-Tri	p Origin-Destination Matrix*		
Origin (From)	1-1-1-			Destination (To)	1	
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	0		8	0	7	0
Restaurant	0	13		0	9	0
Cinema/Entertainment	0	0	0		0	0
Residential	0	3	11	0		0
Hotel	0	0	0	0	0	

Table 5-P:	Computatio	ons Summary		Table 6-P: Internal	Trip Capture Percentag	ges by Land Use
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	475	284	191	Office	N/A	N/A
Internal Capture Percentage	21%	18%	27%	Retail	64%	56%
				Restaurant	23%	43%
External Vehicle-Trips ⁵	318	199	119	Cinema/Entertainment	N/A	N/A
External Transit-Trips ⁶	55	34	21	Residential	9%	12%
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P. ⁵Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Paseo Marina	1.1
Analysis Period:	PM Street Peak Hour	

Lond Llos	Tabl	e 7-P (D): Entering	Trips		Table 7-P (O): Exiting Trip:	S
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	0	0	1.00	0	0
Retail	1.00	25	25	1.00	27	27
Restaurant	1,00	82	82	1.00	51	51
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.00	177	177	1.00	113	113
Hotel	1.00	0	0	1.00	0	0

	Table 8-P (O): Internal Per	son-Trip Origin-De	estination Matrix (Computed a	t Origin)	
Orderin (Freen)	the second second			Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	1	1	8	1	7	1
Restaurant	2	21		4	9	4
Cinema/Entertainment	0	0	0		0	0
Residential	5	47	24	0		3
Hotel	0	0	0	0	0	

	Table 8-P (D):	Internal Person	n-Trip Origin-Desti	nation Matrix (Computed at D	estination)	
October (Errore)	-			Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		2	2	0	7	0
Retail	0		24	0	81	0
Restaurant	0	13		0	28	0
Cinema/Entertainment	0	1	2		7	0
Residential	0	3	11	0		0
Hotel	0	1	4	0	0	

	Tat	ole 9-P (D): Interna	al and External Trip	os Summary (Entering Tri	ps)	
Destination Lond Line	Pr	erson-Trip Estimate	es		External Trips by Mode	•
Destination Land Use	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0	0	0	0
Retail	16	9	25	8	1	0
Restaurant	19	63	82	54	9	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	16	161	177	137	24	0
Hotel	0	0	0	0	0	0
All Other Land Uses ³	0	0	0	0	0	0

Sector	Та	ble 9-P (O): Intern	al and External Tri	ps Summary (Exiting Trip	s)	
Odded and the	P	erson-Trip Estimate	es		External Trips by Mode	•
Origin Land Use	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0	0	0	0
Retail	15	12	27	10	2	0
Restaurant	22	29	51	25	4	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	14	99	113	84	15	0
Hotel	0	0	0	0	0	0
All Other Land Uses ³	0	0	0	0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P ²Person-Trips ³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator ^{*}Indicates computation that has been rounded to the nearest whole number.

12.4		Wee	kday
Land	Use Pairs	AM Peak Hour	PM Peak Hou
	To Office	0.0%	0.0%
	To Retail	28.0%	20.0%
E. SELEC	To Restaurant	63.0%	4.0%
From OFFICE	To Cinema/Entertainment	0.0%	0.0%
	To Residential	1.0%	2.0%
	To Hotel	0.0%	0.0%
	To Office	29.0%	2.0%
	To Retail	0.0%	0.0%
From DETAIL	To Restaurant	13.0%	29.0%
From RETAIL	To Cinema/Entertainment	0.0%	4.0%
	To Residential	14.0%	26.0%
	To Hotel	0.0%	5.0%
	To Office	31.0%	3.0%
	To Retail	14.0%	41.0%
From RESTAURANT	To Restaurant	0.0%	0.0%
	To Cinema/Entertainment	0.0%	8.0%
	To Residential	4.0%	18.0%
	To Hotel	3.0%	7.0%
	To Office	0.0%	2.0%
	To Retail	0.0%	21.0%
	To Restaurant	0.0%	31.0%
FIOM CINEWAVENTER FAINWENT	To Cinema/Entertainment	0.0%	0.0%
	To Residential	0.0%	8.0%
	To Hotel	0.0%	2.0%
	To Office	2.0%	4.0%
	To Retail	1.0%	42.0%
From RESIDENTIAL	To Restaurant	20.0%	21.0%
FION RESIDENTIAL	To Cinema/Entertainment	0.0%	0.0%
	To Residential	0.0%	0.0%
	To Hotel	0.0%	3.0%
	To Office	75.0%	0.0%
	To Retail	14.0%	16.0%
From HOTEL	To Restaurant	9.0%	68.0%
FIGHTHOTEL	To Cinema/Entertainment	0.0%	0.0%
	To Residential	0.0%	2.0%
	To Hotel	0.0%	0.0%

Table 7.2a Adjusted Internal Trip C	Capture Rates for Trip Destinations	within a Multi-Use	Development
Land Us	se Pairs	AM Deals Hours	Ruay
	From Office	AIVI Peak Hour	
	From Potail	0.0%	31.0%
	From Retain	4.0%	31.0%
To OFFICE	From Cinoma/Entortainment	14.0%	6.0%
	From Cinema/Entertainment	0.0%	6.0%
	From Residential	3.0%	57.0%
	From Office	3.0%	0.0%
	From Date!	32.0%	0.0%
	From Rectaurant	0.0%	0.0%
To RETAIL	From Restaurant	8.0%	50.0%
	From Cinema/Entertainment	0.0%	4.0%
	From Residential	17.0%	10.0%
	From Hotel	4.0%	2.0%
	From Office	23.0%	2.0%
	From Retail	50.0%	29.0%
To RESTAURANT	From Restaurant	0.0%	0.0%
	From Cinema/Entertainment	0.0%	3.0%
	From Residential	20.0%	14.0%
	From Hotel	6.0%	5.0%
	From Office	0.0%	1.0%
	From Retail	0.0%	26.0%
To CINEMA/ENTERTAINMENT	From Restaurant	0.0%	32.0%
	From Cinema/Entertainment	0.0%	0.0%
	From Residential	0.0%	0.0%
	From Hotel	0.0%	0.0%
	From Office	0.0%	4.0%
	From Retail	2.0%	46.0%
To RESIDENTIAL	From Restaurant	5.0%	16.0%
	From Cinema/Entertainment	0.0%	4.0%
	From Residential	0.0%	0.0%
	From Hotel	0.0%	0.0%
	From Office	0.0%	0.0%
	From Retail	0.0%	17.0%
To HOTEL	From Restaurant	4.0%	71.0%
	From Cinema/Entertainment	0.0%	1.0%
	From Residential	0.0%	12.0%
	From Hotel	0.0%	0.0%

CITY OF LOS ANGELES VMT CALCULATOR Version 1.2

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Project Information

If the project is replacing an existing number of residential units with a smaller number of residential units, is the proposed project located within one-half mile of a fixed-rail or fixed-guideway transit station?

	value	Unit	
tail General Retail 🔹	100.781	ksf	-
etail General Retail	100.781	ksf	
lick here to add a single custom land use type (will l	be included in	the above I	list)
lick here to add a single custom land use type (will l Proposed Project La	be included in and Use	the above I	list)
lick here to add a single custom land use type (will l Proposed Project La Land Use Type tail General Retail	be included in Ind Use Value 13,65	the above I Unit ksf	list)
lick here to add a single custom land use type (will I Proposed Project La Land Use Type tail General Retail	be included in and Use Value 13.65 658	the above Unit ksf	list)

Click here to add a single custom land use type (will be included in the above list)

Project Screening Summary

Existing Land Use	Propos Proje	sed ct
3,434	4,72	9
Daily Vehicle Trips	Daily Vehicl	e Trips
26,012	32,639	
Daily VMT	Daily VI	ИТ
Tier 1 Scree	ening Criteria	
Project will have less resid to existing residential unit mile of a fixed-rail station.	ential units compa s & is within one-l	nalf
Tier 2 Scree	ening Criteria	
The net increase in daily t	rips < 250 trips	1,295 Net Daily Trip
The net increase in daily V	'MT ≤ 0	6,627 Net Daily VM
The proposed project con	sists of only retail	27 300
		27.500

Measuring the Miles

CITY OF LOS ANGELES VMT CALCULATOR Version 1.2

Project Information

Proposed Project Land Use Type	Value	Uni
Housing Multi-Family	658	DU
Retail General Retail	13.65	ksf
Retail High-Turnover Sit-Down Restaurant	13.65	ksf

se 🔽 to denote if the TDM strate	egy is part of the	proposed project or is a	mitigation strategy
Max Home Based TDM Max Work Based TDM /	Achieved? Achieved?	Proposed Project No No	With Mitigation No No
A	Park	king	E. DENT
Reduce Parking Supply	100 city co	ode parking provision for	the project site
Proposed Prj Mitigation	74 actual	parking provision for the	e project site
Unbundle Parking	150 month site	nly parking cost (dollar) f	or the project
Parking Cash-Out	50 percer	nt of employees eligible	
Price Workplace Parking	6.00 _ c	laily parking charge (doll	lar)
Proposed Prj Mitigation	25 percer parkin	nt of employees subject t g	o priced
Residential Area Parking Permits Proposed Prj Mitigation	200 _ c	ost (dollar) of annual pe	rmit
B	Tra	nsit	
C Edu	cation & Er	ncouragement	
D Co	mmute Tri	p Reductions	
Đ	Shared M	Vobility	
F	Bicycle Infr	astructure	
G Neir	ahborhood	Enhancement	and the second

TDM Strategies

Analysis Results

Proposed	With
Project	Mitigation
4,729	4,729
Daily Vehicle Trips	Daily Vehicle Trips
32,639	32,639
Daily VMT	Daily VMT
10.2	10.2
Houseshold VMT	Houseshold VMT
per Capita	per Capita
N/A	N/A
Work VMT	Work VMT
per Employee	per Employee
Significant	/MT Impact?
Significant V Household: Yes	/MT Impact? Household: Yes
Significant V Household: Yes Threshold = 7.4	/MT Impact? Household: Yes
Significant Mousehold: Yes Threshold = 7.4 15% Below APC	/MT Impact? Household: Yes Threshold = 7.4 15% Below APC
Significant V Household: Yes Threshold = 7.4 15% Below APC Work: N/A	VMT Impact? Household: Yes Threshold = 7.4 15% Below APC Work: N/A
Significant V Household: Yes Threshold = 7.4 15% Below APC Work: N/A Threshold = 11.1	/MT Impact? Household: Yes Threshold = 7.4 15% Below APC Work: N/A Threshold = 11.1

Measuring the Miles

Report 1: Project & Analysis Overview

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project Project Address: 13400 W MAXELLA AVE, 90292

Project Information				
Land Use Type		Value	Units	
	Single Family	0	DU	
	Multi Family	658	DU	
Housing	Townhouse	0	DU	
	Hotel	0	Rooms	
and a set in	Motel	0	Rooms	
	Family	0	DU	
Affordable Housing	Senior	0	DU	
ajjoruuble nousing	Special Needs	0	DU	
	Permanent Supportive	0	DU	
	General Retail	13.650	ksf	
	Furniture Store	0.000	ksf	
	Pharmacy/Drugstore	0.000	ksf	
	Supermarket	0.000	ksf	
	Bank	0.000	ksf	
	Health Club	0.000	ksf	
Potoil	High-Turnover Sit-Down	10.000		
Retail	Restaurant	13.650	ksf	
	Fast-Food Restaurant	0.000	ksf	
	Quality Restaurant	0.000	ksf	
	Auto Repair	0.000	ksf	
	Home Improvement	0.000	ksf	
	Free-Standing Discount	0.000	ksf	
	Movie Theater	0	Seats	
Office	General Office	0.000	ksf	
	Medical Office	0.000	ksf	
Industrial	Light Industrial	0.000	ksf	
	Manufacturing	0.000	ksf	
	Warehousing/Self-Storage	0.000	ksf	
	University	0	Students	
	High School	0	Students	
School	Middle School	0	Students	
	Elementary	0	Students	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Private School (K-12)	0	Students	
Other	Service of the service service of	0	Trins	

Project and Analysis Overview

3 of 13

Report 1: Project & Analysis Overview

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project Project Address: 13400 W MAXELLA AVE, 90292

	Analysis I	Results		
	Total Employe	es: 82		
	Total Populati	on: 1,483		
Propo	sed Project	With M	litigation	
4,729	Daily Vehicle Trips	4,729	Daily Vehicle Trips	
32,639	Daily VMT	32,639	Daily VMT	
10.2	Household VMT per Capita	10.2	Household VMT pe Capita	
N/A	Work VMT per Employee	N/A	Work VMT per Employee	
	Significant VN	/IT Impact?		
	APC: West Lo	s Angeles		
	Impact Threshold: 15%	Below APC Average		
	Household	d = 7.4		
	Work =	11.1		
Proposed Project		With N	With Mitigation	
VMT Threshold	Impact	VMT Threshold	Impact	
Household > 7.4	Yes	Household > 7.4	Yes	
Work > 11.1	N/A	Work > 11.1	N/A	

Report 2: TDM Inputs

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project Project Address: 13400 W MAXELLA AVE, 90292

Strategy Type		Description	Proposed Project	Mitigations
	Reduce parking supply	City code parking provision (spaces)	0	0
Parking		Actual parking provision (spaces)	0	0
	Unbundle parking	Monthly cost for parking (\$)	\$0	\$0
	Parking cash-out	Employees eligible (%)	0%	0%
	Price workplace parking	Daily parking charge (\$)	\$0.00	\$0.00
		Employees subject to priced parking (%)	0%	0%
	Residential area parking permits	Cost of annual permit (\$)	\$0	\$0

(cont. on following page)

Report 2: TDM Inputs 5 of 13

Report 2: TDM Inputs

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project Project Address: 13400 W MAXELLA AVE, 90292

Strategy Type		Description	Proposed Project	Mitigations
		Reduction in headways (increase in frequency) (%)	0%	0%
Reduc heady Transit Imple neigh Trans	Reduce transit headways	Existing transit mode share (as a percent of total daily trips) (%)	0%	0%
		Lines within project site improved (<50%, >=50%)	0	0
	Implement neighborhood shuttle	Degree of implementation (low, medium, high)	0	0
		Employees and residents eligible (%)	0%	0%
	Transit subsidies	Employees and residents eligible (%)	0%	0%
		Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$0.00
Education & Encouragement	Voluntary travel behavior change program	Employees and residents participating (%)	0%	0%
	Promotions and marketing	Employees and residents participating (%)	0%	0%

Report 2: TDM Inputs 6 of 13
Report 2: TDM Inputs

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project Project Address: 13400 W MAXELLA AVE, 90292

Strate	gy Туре	Description	Proposed Project	Mitigations
	Required commute trip reduction program	Employees participating (%)	0%	0%
	Alternative Work Schedules and	Employees participating (%)	0%	0%
	Telecommute	Type of program	0	0
Commute Trip Reductions		Degree of implementation (low, medium, high)	0	0
	Employer sponsored vanpool or shuttle	Employees eligible (%)	0%	0%
		Employer size (small, medium, large)	0	0
	Ride-share program	Employees eligible (%)	0%	0%
	Car share	Car share project setting (Urban, Suburban, All Other)	0	0
Shared Mobility	Bike share	Within 600 feet of existing bike share station - OR- implementing new bike share station (Yes/No)	0	D
	School carpool program	Level of implementation (Low, Medium, High)	0	0

Report 2: TDM Inputs

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project Project Address: 13400 W MAXELLA AVE, 90292

TDM Strategy Inputs, Cont.							
Strate	egy Type	Description	Proposed Project	Mitigations			
	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0			
Bicycle Infrastructure	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	0	0			
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, & repair station (Yes/No)	0	0			
	Traffic calming	Streets with traffic calming improvements (%)	0%	0%			
Neighborhood	improvements	Intersections with traffic calming improvements (%)	0%	0%			
cimancement	Pedestrian network improvements	Included (within project and connecting off- site/within project only)	0	0			

Report 2: TDM Inputs 8 of 13

Report 3: TDM Outputs

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project

Project Address: 13400 W MAXELLA AVE, 90292

(
and the second	

				TDI	I Adjustm	ents by T	rip Purpo	ose & Stra	itegy					
						Place type	: Suburbar	n Center						
		Home Be	ased Work	Home B	ased Work	Home B	ased Other	Home B	ased Other	Non-Home	Based Other	Non-Home	Based Other	
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Attr	Mitigated	Proposed	luction	Attr	action	Source
	Reduce parking supply	0%	0%	0%	/196	0%	0%	of the second	Wittigateu	Proposed	witigated	Proposed	Witigated	
	Hobundlo parking	000	010	070	070	070	0%	070	0%	0%	0%	0%	0%	
	onoundie parking	070	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy
Parking	Parking cash-out	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Parking
	Price workplace parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	sections 1 - 5
	Residential area parking permits	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
	Reduce transit headways	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Transit	Implement neighborhood shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Transit sections 1 - 3
	Transit subsidies	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Education &	Voluntary travel behavior change program	0%	<i>D%</i>	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix,
Encouragement	Promotions and marketing	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Encouragement
	Required commute trip reduction program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Commute Trip Reductions	Alternative Work Schedules and Telecommute Program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Commute Trip
	Employer sponsored vanpool or shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Reductions sections 1 - 4
	Ride-share program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Car-share	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Shared Mobility	Bike share	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Appendix, Shared
	School carpool program	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Mobility sections 1 - 3

Report 3: TDM Outputs

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project Project Address: 13400 W MAXELLA AVE, 90292

				TDM Ac	ljustment	ts by Trip	Purpose	& Strateg	y, Cont.					
						Place type	: Suburbar	Center						
		Home B Proc	ased Work duction	Home B Attr	ased Work action	Home Bi Proc	ased Other luction	Home B Attr	ased Other action	Non-Home Proc	e Based Other duction	Non-Home Attr	Based Other	Source
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
	Implement/ Improve on-street bicycle facility	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Bicycle Infrastructure	Include Bike parking per LAMC	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Appendix, Bicycle Infrastructure
	Include secure bike parking and showers	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	sections 1 - 3
Neighborhood	Traffic calming improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix,
Enhancement	Pedestrian network improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Neighborhood Enhancement sections 1 - 2

				Final Con	nbined &	Maximur	n TDM Ef	fect				
	Home Ba Produ	sed Work uction	Home Ba Attra	sed Work action	Home Ba. Produ	sed Other Iction	Home Ba Attro	sed Other action	Non-Home Produ	Based Other action	Non-Home Attra	Based Other
	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated
COMBINED TOTAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
MAX. TDM EFFECT	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

= Mini	i mum (X%, 1-[(1-A)*(1 - where X%=	В)])
PLACE	urban	75%
TYPE	compact infill	40%
MAX:	suburban center	20%
	suburban	15%

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (*Transportation Assessment Guidelines Attachment G*) for further discussion of dampening.

> Report 3: TDM Outputs 10 of 13

Report 4: MXD Methodology

Date: December 4, 2019 Project Name: Paseo Marina Project Scenario: Proposed Project Project Address: 13400 W MAXELLA AVE, 90292

	MXD M	lethodology - Pro	ject Without	TDM		
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT
Home Based Work Production	891	-22.4%	691	8.2	7.306	5.666
Home Based Other Production	2,386	-28.9%	1,696	5.6	13.362	9,498
Non-Home Based Other Production	512	-10.5%	458	7.2	3.686	3,298
Home-Based Work Attraction	119	-40.3%	71	11.4	1.357	809
Home-Based Other Attraction	1,607	-29.4%	1.135	6.7	10.767	7 605
Non-Home Based Other Attraction	752	-9.8%	678	8.5	6,392	5,763

	MXD N	lethodology w	ith TDM Measu	ures		
		Proposed Project		Project	with Mitigation M	easures
1	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT
Home Based Work Production	0.0%	691	5,666	0.0%	691	5.666
Home Based Other Production	0.0%	1,696	9,498	0.0%	1.696	9.498
Non-Home Based Other Production	0,0%	458	3,298	0.0%	458	3,298
Home-Based Work Attraction	0.0%	71	809	0.0%	71	809
Home-Based Other Attraction	0.0%	1,135	7.605	0.0%	1,135	7 605
Non-Home Based Other Attraction	0.0%	678	5,763	0.0%	678	5,763

M	XD VMT Methodology Per Capita & Pe	er Employee
	Total Populat Total Employ A	tion: 1,483 ees: 82 APC: West Los Angeles
	Proposed Project	Project with Mitigation Measures
Total Home Based Production VMT	15,164	15,164
Total Home Based Work Attraction VMT	809	809
Total Home Based VMT Per Capita	10.2	10.2
Total Work Based VMT Per Employee	N/A	N/A

VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr & Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr & Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr & Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr & Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr & Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr & Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr & Peers, or another third party, even if the City or Fehr & Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr & Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

You, the User	
Βγ:	Jash
Print Name:	Jason Shender
Title:	Transportation Planner II
Company:	Linscott, Law & Greenspan, Engineers
Address:	20931 Burbank Boulevard, Suite C Woodland Hills, CA 91367
Phone:	(818) 835-8648
Email Address:	jshender@llgengineers.com
Date:	12/4/2019

· · · · · ·

Transportation Assessment Memorandum of Understanding (MOU)

This MOU acknowledges that the Transportation Assessment for the following Project will be prepared in accordance with the latest version of LADOT's Transportation Assessment Guidelines:

١. **PROJECT INFORMATION**

Project Name: Paseo Marina (Option B)

Project Address: 13400 Maxella Avenue

Project Description: Development of 425 apartment dwelling units, 20,000 square feet of restaurant floor area, 20,000 square feet of commercial floor area, and 90,000 square feet of office floor area.

LADOT Project Case Number: CTC20-109212 Project Site Plan attached? (Required) Yes INO

11. TRIP GENERATION

Geographic Distribution: N 20 % S 25 % E 45 % 10 % W

Illustration of Project trip distribution percentages at Study intersections attached? (Required) 🖾 Yes 🗆 No Trip Generation Rate(s): ITE 10th Edition / Other ITE 10th Edition

Trip Generation Adjustment (Exact amount of credit subject to approval by LADOT)	Yes	No
Transit Usage	X	
Transportation Demand Management		X
Existing Active Land Use	X	
Previous Land Use	Ö	
Internal Trip	X	
Pass-By Trip	X	

Trip generation table including a description of the proposed land uses, ITE rates, estimated morning and afternoon peak hour volumes (ins/outs/totals), proposed trip credits, etc. attached? (Required) I Yes D No.

III. STUDY AREA AND ASSUMPTIONS

Project Buildout Year: 2026 Ambient Growth Rate: 1.0 % Per Yr. Related Projects List, researched by the consultant and approved by LADOT, attached? (Required) X Yes No *Forthcoming Map of Study Intersections/Segments attached? X Yes INO STUDY INTERSECTIONS (May be subject to LADOT revision after access, safety and circulation analysis) 1 Walgrove Avenue / Washington Boulevard

2 Lincoln Boulevard / Maxella Avenue 3 Del Rey Avenue / Maxella Avenue

4 Ocean Way / Maxella Avenue

5 Maxella Avenue Driveway / Maxella Avenue

6 Glencoe Avenue / Maxella Avenue

- 7 Glencoe Avenue / Glencoe Avenue Driveway
- 8 Mindanao Way / Glencoe Avenue
- 9 Mindanao Way / SR-90 Eastbound Ramps
- 10 Mindanao Way / SR-90 Westbound Ramps
- 11 Mindanao Way / La Villa Marina

Is this Project located on a street within the High Injury Network?
Yes No November 2019 | Page 1 of 2

ACCESS ASSESSMENT 1V.

Is the project on a lot that is 0.5-acre or more in total gross area? 🖾 Yes 🗆 No

Is the project's frontage 250 linear feet or more along an Avenue or Boulevard as classified by the City's General Plan? XYes No

Is the project's building frontage encompassing an entire block along an Avenue or Boulevard as classified by the City's General Plan?
Yes
No

CONTACT INFORMATION V.

Consultant's Representative

	CONSULTANT	DEVELOPER
Name: Lins	scott, Law & Greenspan, Engineer	rs RAR2-Villa Marina Center CA, LLC
Address: 20	931 Burbank Boulevard, Suite C	3501 Jamboree Road, Suite 3000
W	oodland Hills, CA 91367	Newport Beach, CA 92660
Phone Numbe	r: (818) 835-8648	(949) 809-2502
E-Mail: jshe	ender@llgengineers.com	DPowers@Sares-Regis.com
Approved by:	x Jabla 4	4/10/2020 × Ampl 5/13/2020
	Consultant's Representative	Date LADOT Representative *Date

*MOUs are generally valid for two years after signing. If after two years a transportation assessment has not been submitted to LADOT, the developer's representative shall check with the appropriate LADOT office to determine if the terms of this MOU are still valid or if a new MOU is needed.

o:\0265\dwg\option b project\f1.dwg 04/10/2020 09:43:27 jshender lig exhibits color.ctb

o:\0265\dwg\option b project\f2.dwg 04/10/2020 09:41:55 jshender llg exhibits co

Table 1 PROJECT TRIP GENERATION [1] OPTION B PROJECT

	10.00	AM PEAK HOUR VOLUMES [2]			PM PEAK HOUR VOLUMES [2]		
LAND USE	SIZE	IN	OUT	TOTAL	IN	OUT	TOTAL
Proposed Project		1.1	1			1.0	1.1.1
Apartments [3]	425 DU	40	113	153	114	73	187
Restaurant [4]	20,000 GSF	109	90	199	121	74	195
Commercial [5]	20,000 GLSF	12	7	19	36	40	76
Office [6]	90,000 GLSF	89	15	104	17	87	104
Subtotal		250	225	475	288	274	562
Internal Capture [7]		(60)	(54)	(114)	(86)	(82)	(168)
Transit Trips (15%) [8]		(29)	(26)	(55)	(30)	(29)	(59)
Subtotal Project Driveway Trips		161	145	306	172	163	335
Existing Land Use				1.1		1.1.1	
Commercial [5]	(100,781) GLSF	(59)	(36)	(95)	(184)	(200)	(384)
Transit Trips [8]	11 222 3	1.000	1	1.11			
Commercial (15%)		9	5	14	28	30	58
Subtotal Existing Driveway Trips		(50)	(31)	(81)	(156)	(170)	(326)
NET INCREASE DRIVEWAY TRII	PS	111	114	225	16	(7)	9
Proposed Pass-By Trips [9]						1.74	
Restaurant (20%)		(14)	(12)	(26)	(14)	(9)	(23)
Commercial (50%)		(4)	(2)	(6)	(11)	(12)	(23)
Subtotal		(18)	(14)	(32)	(25)	(21)	(46)
Existing Pass-By Trips (9)					1.71		1.1
Commercial (30%)		15	9	24	47	51	98
NET INCREASE "OFF-SITE" TRI	PS	108	109	217	38	23	61

[1] Sources: ITE Trip Generation Manual, 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 221 (Multifamily Housing [Mid-Rise]) trip generation average rates.
 - AM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 26% inbound/74% outbound

- PM Peak Hour Trip Rate: 0.44 trips/dwelling unit; 61% inbound/39% outbound

[4] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
 AM Peak Hour Trip Rate: 9.94 trips/1,000 SF of floor area; 55% inbound/45% outbound

PM Peak Hour Trip Rate: 9.77 trips/1,000 SF of floor area; 62% inbound/38% outbound
 [5] ITE Land Use Code 820 (Shopping Center) trip generation average rates.

AM Peak Hour Trip Rate: 0.94 trips/1,000 SF of leasable area; 62% inbound/38% outbound
 PM Peak Hour Trip Rate: 3.81 trips/1,000 SF of leasable area; 48% inbound/52% outbound

[6] ITE Land Use Code 710 (General Office Building) trip generation average rates.
 AM Peak Hour Trip Rate: 1.16 trips/1,000 SF of floor area; 86% inbound/14% outbound

- PM Peak Hour Trip Rate: 1.15 trips/1,000 SF of floor area; 16% inbound/84% outbound
 The internal capture reduction for the residential, restaurant, retail, and office is based on the synergy between all the land uses provided within the project site, and determined via NCHRP 684
- Internal Capture Estimation Tool (24% for AM Peak Hour and 30% for PM Peak Hour).
 [8] A 15% transit use reduction applied based on the project site being located within 1/4 mile of a Big Blue Bus rapid stop. The trip reduction for transit trips has been applied to the proposed project and and existing land uses based on the *LADOT Transportation Assessment Guidelines*, July 2019 for

developments within a 1/4 mile walking distance of a transit station or a Rapid Bus stop. [9] Pass-by trips are made as intermediate stops on the way from an origin to a primary trip destination

without a route diversion. Pass-by trips are attracted from traffic passing the site on an adjacent street or roadway that offers direct access to the site. The trip reduction for pass-by trips has been applied to the restaurant and commercial components of the project based on the *LADOT Transportation Assessment Guidelines*. July 2019 for High Turnover Restaurant, Shopping Center less than 50,000 sf, and Shopping Center 100,000 sf to less than 300,000 sf.

LLG Ref. 5-16-0265-1 Paseo Marina Project

NCHRP 684 Internal Trip Capture Estimation Tool						
Project Name:	Paseo Marina (Option B)	Organization:				
Project Location:		Performed By:				
Scenario Description:		Date:				
Analysis Year:		Checked By:				
Analysis Period:	AM Street Peak Hour	Date:				

	Table 1	-A: Base Vehicle-	Trip Generation Est	timates (Single-Use Sit	e Estimate)		
t and then	Developme	ent Data (For Inform	mation Only)	Estimated Vehicle-Trips ³			
Land Use	ITE LUCs1	Quantity	Units	Total	Entering	Exiting	
Office	710	90,000		104	89	15	
Retail	820	20,000		19	12	7	
Restaurant	932	20,000		199	109	90	
Cinema/Entertainment	-171-1711-1	1.1.1		0			
Residential	221	425		153	40	113	
Hotel			1	0			
All Other Land Uses ²	1 1 mar 1 mar 1			0			
		1		475	250	225	

		Table 2-A:	Mode Split and Vehicle	Occupancy Estimates			
Land Use		Entering Tr	ips	Exiting Trips			
	Veh. Occ.4	% Transit	% Non-Motorized	Veh. Occ.4	% Transit	% Non-Motorized	
Office		15%			15%		
Retail		15%			15%		
Restaurant		15%			15%		
Cinema/Entertainment				1 C			
Residential		15%			15%		
Hotel							
All Other Land Uses ²							

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)									
011-15	Destination (To)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office	11 1	1	6						
Retail			Contraction of						
Restaurant	2), ····			· · · · · · · · · · · · · · · · · · ·				
Cinema/Entertainment	the second second	19	Las de seres de		(I				
Residential									
Hotel	1				and the second se	and the second second			

Table 4-A: Internal Person-Trip Origin-Destination Matrix*									
Origin (From)	Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		4	9	0	0	0			
Retail	2	line and	1	0	1	0			
Restaurant	12	1		0	2	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	2	1	22	0		0			
Hotel	0	0	0	0	0	1. S. S			

Table 5-A: Computations Summary				Table 6-A: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips	
All Person-Trips	475	250	225	Office	18%	87%	
Internal Capture Percentage	24%	23%	25%	Retail	50%	57%	
		A		Restaurant	29%	17%	
External Vehicle-Trips ⁵	307	163	144	Cinema/Entertainment	N/A	N/A	
External Transit-Trips ⁶	54	30	24	Residential	8%	22%	
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A	

nd Use Codes (LUCs) from Trip Generation Manual, published by the Institute of Transportation Engineers.
al estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
ter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).
ter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be m ables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.
hicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.
rson-Trips
licates computation that has been rounded to the nearest whole number.

1

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

E

Project Name:	Paseo Marina (Option B
Analysis Period:	AM Street Peak Hour

		Table 7-A: Conv	ersion of Vehicle-Trip	Ends to Person-Trip	Ends		
Land Use	Tat	ole 7-A (D): Enter	ing Trips	Table 7-A (O): Exiting Trips			
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*	
Office	1.00	89	89	1.00	15	15	
Retail	1.00	12	12	1.00	7	7	
Restaurant	1.00	109	109	1.00	90	90	
Cinema/Entertainment	1.00	0	0	1.00	0	0	
Residential	1.00	40	40	1.00	113	113	
Hotel	1.00	0	0	1.00	0	0	

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)									
Origin (From)	Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office	1	4	9	0	0	0			
Retail	2		1	0	1	0			
Restaurant	28	13		0	4	3			
Cinema/Entertainment	0	0	0		0	0			
Residential	2	1	23	0		0			
Hotel	0	0	0	0	0				

1	Table 8-A (D)	: Internal Pers	son-Trip Origin-De	stination Matrix (Computed a	t Destination)	200 200				
Origin (From)		Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		4	25	0	0	0				
Retail	4		55	0	1	0				
Restaurant	12	1		0	2	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	3	2	22	0		0				
Hotel	3	0	7	0	0					

	Та	ble 9-A (D): Inter	rnal and External 7	Trips Summary (Entering	Trips)	and the second se	
Destination Land Use	F	Person-Trip Estim	nates	External Trips by Mode*			
	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²	
Office	16	73	89	62	11	0	
Retail	6	6	12	5	1	0	
Restaurant	32	77	109	65	12	0	
Cinema/Entertainment	0	0	0	0	0	0	
Residential	3	37	40	31	6	0	
Hotel	0	0	0	0	0	0	
All Other Land Uses ³	0	0	0	0.	0	0	

(i	Ta	able 9-A (O): Inte	ernal and External	Trips Summary (Exiting 1	rips)		
Origin Land Use	Person-Trip Estimates			External Trips by Mode*			
	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²	
Office	13	2	15	2	0	0	
Retail	4	3	7	3	0	0	
Restaurant	15	75	90	64	11	0	
Cinema/Entertainment	0	0	0	0	0	0	
Residential	25	88	113	75	13	0	
Hotel	0	0	0	0	0	0	
All Other Land Uses ³	0	0	0	0	0	0	

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

	NCHRP 684 Internal Trip C	apture Estimation Tool	
Project Name:	Paseo Marina (Option B)	Organization:	
Project Location:		Performed By:	
Scenario Description:		Date:	
Analysis Year:		Checked By:	
Analysis Period:	PM Street Peak Hour	Date:	

Land Use	Developme	ent Data (For Inform	mation Only)	Estimated Vehicle-Trips ³		
	ITE LUCs1	Quantity	Units	Total	Entering	Exiting
Office	710	90,000		104	17	87
Retail	820	20,000		76	36	40
Restaurant	932	20,000		195	121	74
Cinema/Entertainment				0		
Residential	221	425		187	114	73
Hotel	1			0		
All Other Land Uses ²	1.1.1.1.1.1.1	·		0		
		10000		562	288	274

		Table 2-P:	Mode Split and Vehicle	Occupancy Estimates		
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ.4	% Transit	% Non-Motorized	Veh. Occ.4	% Transit	% Non-Motorized
Office		15%			15%	
Retail		15%		and the second second	15%	
Restaurant		15%	· · · · · · · · · · · · · · · · · · ·		15%	
Cinema/Entertainment						
Residential	1	15%			15%	
Hotel						
All Other Land Uses ²		a second				

Origin (From)	Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office	120								
Retail		45.4							
Restaurant			-						
Cinema/Entertainment	Marine and the		I THE HEAD IN						
Residential	1					1			
Hotel	Land David V		inem based	and the second s					

Origin (From)	Destination (To)							
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office		3	2	0	2	0		
Retail	1		12	0	10	0		
Restaurant	2	18	Ne se se	0	13	0		
Cinema/Entertainment	0	0	0		0	0		
Residential	3	4	15	0		0		
Hotel	0	0	0	0	0			

Table 5-P:	Computatio	ns Summary	Table 6-P: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	562	288	274	Office	35%	8%
Internal Capture Percentage	30%	30%	31%	Retail	69%	58%
			1997 - 19	Restaurant	24%	45%
External Vehicle-Trips ⁵	332	172	160	Cinema/Entertainment	N/A	N/A
External Transit-Trips ⁶	60	31	29	Residential	22%	30%
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A

d Use Codes (LUCs) from Trip Generation Manual, published by the Institute of Transportation Engineers.
al estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
er trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).
er vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must
icle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.
son-Trips
cates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Paseo Marina (Option E
Analysis Period:	PM Street Peak Hour

	1 7.1	able /-I . Convers	nus to reison-inp En	uə		
Land Use	Tabl	e 7-P (D): Entering	Trips		Table 7-P (O): Exiting Trip	S
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	17	17	1.00	87	87
Retail	1.00	36	36	1.00	40	40
Restaurant	1.00	121	121	1.00	74	74
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.00	114	114	1.00	73	73
Hotel	1.00	0	0	1.00	0	0

230.000				Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		17	3	0	2	0
Retail	1		12	2	10	2
Restaurant	2	30		6	13	5
Cinema/Entertainment	0	0	0		0	0
Residential	3	31	15	0		2
Hotel	0	0	0	0	0	

	Table 8-P (D)	Internal Person	n-Trip Origin-Dest	ination Matrix (Computed at D	Destination)	
Origin (From)	1		Contraction and	Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		3	2	0	5	0
Retail	5		35	0	52	0
Restaurant	5	18		0	18	0
Cinema/Entertainment	1	1	4		5	0
Residential	10	4	17	0		0
Hotel	0	1	6	0	0	

	Tab	ole 9-P (D): Interna	and External Trip	s Summary (Entering Tri	ps)	
Destination Land Line	Pe	erson-Trip Estimate	es	External Trips by Mode*		
Destination Land Use	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²
Office	6	11	17	9	2	0
Retail	25	11	36	9	2	0
Restaurant	29	92	121	78	14	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	25	89	114	76	13	0
Hotel	0	0	0	0	0	0
All Other Land Uses ³	0	0	0	0	0	0

	Та	ble 9-P (O): Intern	al and External Tri	ps Summary (Exiting Trip	os)	
Origin Land Line	P	erson-Trip Estimate	es	External Trips by Mode*		
Origin Land Use	Internal	External	Total	Vehicles ¹	Transit ²	Non-Motorized ²
Office	7	80	87	68	12	0
Retail	23	17	40	14	3	0
Restaurant	33	41	74	35	6	0
Cinema/Entertainment	0	0	0	0	0	0
Residential	22	51	73	43	8	0
Hotel	0	0	0	0	0	0
All Other Land Uses ³	0	0	0	0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P ²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

Land	Lee Paire	Wee	kday
Lanu	Use Fails	AM Peak Hour	PM Peak Hou
	To Office	0.0%	0.0%
	To Retail	28.0%	20.0%
From OFFICE	To Restaurant	63.0%	4.0%
FIGHTOFFICE	To Cinema/Entertainment	0.0%	0.0%
	To Residential	1.0%	2.0%
	To Hotel	0.0%	0.0%
	To Office	29.0%	2.0%
	To Retail	0.0%	0.0%
From DETAIL	To Restaurant	13.0%	29.0%
From RETAIL	To Cinema/Entertainment	0.0%	4.0%
	To Residential	14.0%	26.0%
	To Hotel	0.0%	5.0%
From RESTAURANT	To Office	31.0%	3.0%
	To Retail	14.0%	41.0%
	To Restaurant	0.0%	0.0%
	To Cinema/Entertainment	0.0%	8.0%
	To Residential	4.0%	18.0%
	To Hotel	3.0%	7.0%
	To Office	0.0%	2.0%
	To Retail	0.0%	21.0%
	To Restaurant	0.0%	31.0%
From CINEWA/ENTERTAINWENT	To Cinema/Entertainment	0.0%	0.0%
	To Residential	0.0%	8.0%
	To Hotel	0.0%	2.0%
	To Office	2.0%	4.0%
	To Retail	1.0%	42.0%
E DEDIDENTAL	To Restaurant	20.0%	21.0%
From RESIDEN HAL	To Cinema/Entertainment	0.0%	0.0%
	To Residential	0.0%	0.0%
	To Hotel	0.0%	3.0%
	To Office	75.0%	0.0%
	To Retail	14.0%	16.0%
From LIOTEL	To Restaurant	9.0%	68.0%
From HOTEL	To Cinema/Entertainment	0.0%	0.0%
	To Residential	0.0%	2.0%
	To Hotel	0.0%	0.0%

		1Mo	okday	
Land Use Pairs		AM Peak Hour PM Peak Hou		
	From Office	0.0%	0.0%	
	From Retail	4.0%	31.0%	
	From Restaurant	14.0%	30.0%	
TO OFFICE	From Cinema/Entertainment	0.0%	6.0%	
	From Residential	3.0%	57.0%	
	From Hotel	3.0%	0.0%	
	From Office	32.0%	8.0%	
	From Retail	0.0%	0.0%	
To RETAIL	From Restaurant	8.0%	50.0%	
	From Cinema/Entertainment	0.0%	4.0%	
	From Residential	17.0%	10.0%	
	From Hotel	4.0%	2.0%	
	From Office	23.0%	2.0%	
	From Retail	50.0%	29.0%	
	From Restaurant	0.0%	0.0%	
TORESTROUGHT	From Cinema/Entertainment	0.0%	3.0%	
	From Residential	20.0%	14.0%	
	From Hotel	6.0%	5.0%	
	From Office	0.0%	1.0%	
	From Retail	0.0%	26.0%	
	From Restaurant	0.0%	32.0%	
TO CINEWA/ENTERTAINWENT	From Cinema/Entertainment	0.0%	0.0%	
	From Residential	0.0%	0.0%	
	From Hotel	0.0%	0.0%	
	From Office	0.0%	4.0%	
	From Retail	2.0%	46.0%	
TO RESIDENTIAL	From Restaurant	5.0%	16.0%	
TOTREOIDENTIAL	From Cinema/Entertainment	0.0%	4.0%	
	From Residential	0.0%	0.0%	
	From Hotel	0.0%	0.0%	
	From Office	0.0%	0.0%	
	From Retail	0.0%	17.0%	
To HOTE!	From Restaurant	4.0%	71.0%	
TOTOTEE	From Cinema/Entertainment	0.0%	1.0%	
	From Residential	0.0%	12.0%	
	From Hotel	0.0%	0.0%	

CITY OF LOS ANGELES VMT CALCULATOR Version 1.2

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Project Information

If the project is replacing an existing number of residential units with a smaller number of residential units, is the proposed project located within one-half mile of a fixed-rail or fixedguideway transit station?

Existing Lar	nd U	se			
Land Use Type		Value	Unit		
tail General Retail	-	100.781	ksf		
etail General Retail		100.781	ksf		

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type	Value	Unit	
Office General Office -	90	ksf	-
Housing Multi-Family	425	DU	
Retail General Retail	20	ksf	
Retail High-Turnover Sit-Down Restaurant	20	ksf	
Office General Office	90	ksf	

Click here to add a single custom land use type (will be included in the above list)

Project Screening Summary

Land Use	Propos Projec	ed :t
3,434 Daily Vehicle Trips	5,322 Daily Vehicle	2 Trips
26,012 Daily VMT	39,62 Daily VM	3
Tier 1 Screen	ning Criteria	
to existing residential units mile of a fixed-rail station.	& is within one-h	alf 🔲
Tier 2 Screet	ning Criteria	
The net increase in daily tri	ps < 250 trips	1,888 Net Daily Trip
The net increase in daily tri	ning Criteria ps < 250 trips ⁄/T ≤ 0	1,888 Net Daily Trip 13,611 Net Daily VM
The net increase in daily tri The net increase in daily VN The proposed project consi land uses ≤ 50,000 square fi	ning Criteria ps < 250 trips $AT \le 0$ ists of only retail eet total.	1,888 Net Daily Trip 13,611 Net Daily VM1 40.000 ksf

CITY OF LOS ANGELES VMT CALCULATOR Version 1.2

Project Information

Proposed Project Land Use Type	Value	Uni
Housing Multi-Family	425	DU
Retail General Retail	20	ksf
Retail High-Turnover Sit-Down Restaurant	20	ksf
Office General Office	90	ksf

Max Home Based TDM	Achieve	Proposed Project	With Mitigation
Max Work Based TDM	Achieve	d? No	No
A		Parking	- 3
Reduce Parking Supply	100	city code parking provision for	the project site
Proposed Prj Mitigation	74	actual parking provision for the	e project site
Unbundle Parking	150	monthly parking cost (dollar) for site	or the project
Parking Cash-Out	50	percent of employees eligible	
Price Workplace Parking	6.00	daily parking charge (doll	ar)
Proposed Prj Mitigation	25	percent of employees subject t parking	o priced
Residential Area Parking Permits Proposed Prj Mitigation	200	cost (dollar) of annual per	mit
B		Transit	
C Edu	cation	& Encouragement	
D Co	mmut	e Trip Reductions	201
E	Shar	red Mobility	NAME AND AND
F	Bicycle	Infrastructure	
G Neid	hborh	ood Enhancement	and a second

TDM Strategies

Analysis Results

Proposed Project	With Mitigation				
5,322	5.322				
Daily Vehicle Trips	Daily Vehicle Trips				
39,623	39,623				
Daily VMT	Daily VMT				
10.1	10.1				
Houseshold VMT per Capita	Houseshold VMT per Capita				
12.6	12.6				
Work VMT	Work VMT				
per Employee	per Employee				
Significant	/MT Impact?				
Significant \ Household: Yes	/MT Impact? Household: Ye				
Significant N Household: Yes Threshold = 7.4 15% Below APC	/MT Impact? Household: Ye Threshold = 7.4 15% Below APC				
Significant N Household: Yes Threshold = 7.4 15% Below APC Work: Yes	/MT Impact? Household: Ye Threshold = 7.4 15% Below APC Work: Yes				
Significant N Household: Yes Threshold = 7.4 15% Below APC Work: Yes Threshold = 11.1	/MT Impact? Household: Ye Threshold = 7.4 15% Below APC Work: Yes Threshold = 11.1				

Measuring the Miles

Report 1: Project & Analysis Overview

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

	Project Informa	tion		
Land	d Use Type	Value	Units	
	Single Family	0	DU	
	Multi Family	425	DU	
Housing	Townhouse	0	DU	
	Hotel	0	Rooms	
	Motel	0	Rooms	
	Family	0	DU	
Affordable Housing	Senior	0	DU	
Ajjorauble Housing	Special Needs	0	DU	
	Permanent Supportive	0	DU_	
	General Retail	20.000	ksf	
	Furniture Store	0.000	ksf	
	Pharmacy/Drugstore	0.000	ksf	
	Supermarket	0.000	ksf	
	Bank	0.000	ksf	
Retail	Health Club	0.000	ksf	
	High-Turnover Sit-Down	20.000	1.6	
	Restaurant	20.000	KST	
	Fast-Food Restaurant	0.000	ksf	
	Quality Restaurant	0.000	ksf	
	Auto Repair	0.000	ksf	
	Home Improvement	0.000	ksf	
	Free-Standing Discount	0.000	ksf	
	Movie Theater	0	Seats	
Office	General Office	90.000	ksf	
Onice	Medical Office	0.000	ksf	
	Light Industrial	0.000	ksf	
Industrial	Manufacturing	0.000	ksf	
	Warehousing/Self-Storage	0.000	ksf	
	University	0	Student	
	High School	0	Student	
School	Middle School	0	Students	
	Elementary	0	Students	
and the second second	Private School (K-12)	0	Students	
Other		0	Trips	

Project and Analysis Overview 3 of 13

Report 1: Project & Analysis Overview

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

	Analysis F	Results		
	Total Employe	ees: 480		
	Total Populati	on: 958		
Propo	sed Project	With N	litigation	
5,322	Daily Vehicle Trips	5,322	Daily Vehicle Trips	
39,623	Daily VMT	39,623	Daily VMT	
10.1	Household VMT per Capita	10.1	Household VMT per Capita	
12.6	Work VMT per Employee	12.6	Work VMT per Employee	
	Significant VM	IT Impact?		
	APC: West Lo	s Angeles		
	Impact Threshold: 15%	Below APC Average		
	Household	d = 7.4		
	Work = :	11.1		
Propo	sed Project	With N	litigation	
VMT Threshold	Impact	VMT Threshold	Impact	
Household > 7.4	Yes	Household > 7.4	Yes	
Work > 11.1	Yes	Work > 11.1	Yes	

Report 2: TDM Inputs

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

TDM Strategy Inputs							
Stra	itegy Type	Description	Proposed Project	Mitigations			
	Doduco prelúpa supelu	City code parking provision (spaces)	0	0			
	Reduce parking supply	Actual parking provision (spaces)	0	0			
	Unbundle parking	Monthly cost for parking (\$)	\$0	\$0			
Parking	Parking cash-out	Employees eligible (%)	0%	0%			
	Price workplace	Daily parking charge (\$)	\$0.00	\$0.00			
	parking	Employees subject to priced parking (%)	0%	0%			
	Residential area parking permits	Cost of annual permit (\$)	\$0	\$0			

(cont. on following page)

Report 2: TDM Inputs 5 of 13

Report 2: TDM Inputs

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

Strate	еду Туре	Description	Proposed Project	Mitigations	
		Reduction in			
		headways (increase	0%	0%	
		in frequency) (%)			
	Reduce transit	shtue (as a percent			
	headways	of total daily trins)	0%	0%	
	neaurays	(%)			
		Lines within project			
		site improved (<50%,	0	0	
		>=50%)		0	
		Degree of			
Transit	Imploment	implementation (low,	0		
	naighborhood shuttle	medium, high)			
	neighbornoou snuttie	Employees and	09/	0.04	
		residents eligible (%)	0%	076	
		Employees and			
		residents eligible (%)	0%	0%	
	Transit subsidies	Amount of transit			
		subsidy per			
		passenger (daily	\$0.00	\$0.00	
		equivalent) (\$)			
	Voluntary travel	Employees and			
Education &	behavior change	residents	0%	0%	
	program	participating (%)			
incouragement	Promotions and	residents	00/	00%	
	marketing	participating (%)	0%	0%	
		Is a constrainty (20)			

Report 2: TDM Inputs 6 of 13

Report 2: TDM Inputs

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

Strate	ду Туре	Description	Proposed Project	Mitigations	
	Required commute trip reduction program	Employees – participating (%)	0%	0%	
	Alternative Work Schedules and	Employees participating (%)	0%	0%	
	Telecommute	Type of program	0	0	
Commute Trip Reductions		Degree of implementation (low, medium, high)	0	0	
	Employer sponsored vanpool or shuttle	Employees eligible (%)	0%	0%	
		Employer size (small, medium, large)	0	0	
	Ride-share program	Employees eligible (%)	0%	0%	
	Car share	Car share project setting (Urban, Suburban, All Other)	0	0	
Shared Mobility	Bike share	Within 600 feet of existing bike share station - OR- implementing new bike share station (Yes/No)	0	0	
	School carpool program	Level of implementation (Low, Medium, High)	0	0	

Report 2: TDM Inputs 7 of 13

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.								
Strate	egy Type	Description	Proposed Project	Mitigations				
	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0				
Bicycle Infrastructure	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	0	0				
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, & repair station (Yes/No)	0	0				
	Traffic calming	Streets with traffic calming improvements (%)	0%	0%				
Neighborhood Enhancement	improvements	Intersections with traffic calming improvements (%)	0%	0%				
	Pedestrian network improvements	Included (within project and connecting off- site/within project only)	0	D				

Report 2: TDM Inputs 8 of 13

Report 3: TDM Outputs

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

				TDM	1 Adjustm	ents by T	rip Purpo	ose & Stra	tegy					
		Home B	ased Work	Home B	ased Work	Place type Home B	: Suburban	Home Bo	ased Other	Non-Home	Based Other	Non-Home	Based Other	
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Source
	Reduce parking supply	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Unbundle parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy
Parking	Parking cash-out	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Parking
	Price workplace parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1 - 5
	Residential area parking permits	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
	Reduce transit headways	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Transit	Implement neighborhood shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Transit sections 1 - 3
	Transit subsidies	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Education &	Voluntary travel behavior change program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Education & Encouragement sections 1 - 2
Encouragement	Promotions and marketing	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Required commute trip reduction program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Commute Trip Reductions	Alternative Work Schedules and Telecommute Program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Commute Trip
Reductions	Employer sponsored vanpool or shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Reductions sections 1 - 4
	Ride-share program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Car-share	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Shared Mobility	Bike share	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Appendix, Shared
	School carpool program	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Mobility sections 1 - 3

Report 3: TDM Outputs

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

				TDM Ac	ljustment	ts by Trip	Purpose	& Strateg	y, Cont.					
						Place type	: Suburbar	Center						
		Home B Proc	ased Work duction	Home B Attr	ased Work action	Home B Proc	ased Other luction	Home Be Attr	ased Other action	Non-Home Proc	Based Other duction	Non-Home Attr	Based Other	Source
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
Bicycle	Implement/ Improve on-street bicycle facility	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix, Bicycle Infrastructure sections 1 - 3
	Include Bike parking per LAMC	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
	Include secure bike parking and showers	0.0%	0.0%	0,0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Neighborhood	Traffic calming improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix,
Enhancement	Pedestrian network improvements	0.0%	0.0%	0,0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Neighborhood Enhancement

				Final Con	nbined &	Maximur	n TDM Ef	fect				
	Home Ba Produ	sed Work uction	Home Ba Attra	sed Work action	Home Ba. Produ	sed Other uction	Home Ba Attro	sed Other action	Non-Home Produ	Based Other uction	Non-Home Attro	Based Other action
	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated
COMBINED TOTAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
MAX. TDM EFFECT	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

= Min	= Minimum (X%, 1-[(1-A)*(where X%= PLACE urban TYPE compact infill MAX: suburban center	В)])
PLACE	urban	75%
TYPE	compact infill	40%
MAX:	suburban center	20%
	suburban	15%

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (*Transportation Assessment Guidelines Attachment G*) for further discussion of dampening.

> Report 3: TDM Outputs 10 of 13

Report 4: MXD Methodology

Date: April 10, 2020 Project Name: Paseo Marina Project Scenario: Option B Project Project Address: 13400 W MAXELLA AVE, 90292

	MXD M	MXD Methodology - Project Without TDM										
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT						
Home Based Work Production	575	-25.0%	431	8.2	4,715	3,534						
Home Based Other Production	1,541	-29.4%	1,088	5.6	8,630	6.093						
Non-Home Based Other Production	868	-11.1%	772	7.2	6,250	5.558						
Home-Based Work Attraction	696	-24.0%	529	11.4	7,934	6.031						
Home-Based Other Attraction	2,236	-28.9%	1,589	6.7	14,981	10.646						
Non-Home Based Other Attraction	1,023	-10.8%	913	8.5	8,696	7.761						

MXD Methodology with TDM Measures

	Proposed Project			Project with Mitigation Measures		
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT
Home Based Work Production	0,0%	431	3,534	0.0%	431	3,534
Home Based Other Production	0.0%	1,088	6,093	0.0%	1,088	6,093
Non-Home Based Other Production	0.0%	772	5,558	0.0%	772	5,558
Home-Based Work Attraction	0.0%	529	6,031	0.0%	529	6,031
Home-Based Other Attraction	0.0%	1,589	10,646	0.0%	1,589	10,646
Non-Home Based Other Attraction	0.0%	913	7,761	0.0%	913	7,761

	MXD VMT Methodology Per Capita & Pe	er Employee		
	Total Populat	ion: 958		
	Total Employ	ees: 480		
	APC: West Los Angeles			
	Proposed Project	Project with Mitigation Measures		
Total Home Based Production VMT	9,627	9,627		
Total Home Based Work Attraction VMT	6,031	6,031		
Total Home Based VMT Per Capita	10.1	10.1		
Total Work Based VMT Per Employee	12.6	12.6		

VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr & Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr & Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr & Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr & Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr & Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr & Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr & Peers, or another third party, even if the City or Fehr & Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr & Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

You, the User	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
By:	gash		
Print Name:	Jason Shender		
Title:	Transportation Planner II		
Company:	Linscott, Law & Greenspan, Engineer		
Address:	20931 Burbank Boulevard, Suite C Woodland Hills, CA 91367		
Phone:	(818) 835-8648		
Email Address:	jshender@llgengineers.com		
Date:	4/10/2020		

APPENDIX B

CONCEPT PLAN OCEAN WAY / MAXELLA AVENUE

o:\0265\design\dwg\p0265c2b-02.dwg 09/22/2020 14:51:03 jshender IIg exhibits color.ctb
APPENDIX C

NCHRP INTERNAL CAPTURE TOOL OUTPUTS

	NCHRP 684 Internal Trip Capture Estimation Tool										
Project Name:	Paseo Marina - Option A		Organization:								
Project Location:			Performed By:								
Scenario Description:			Date:								
Analysis Year:			Checked By:								
Analysis Period:	AM Street Peak Hour		Date:								

Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)									
Law dillar	Developm	ent Data (For Inf	ormation Only)		Estimated Vehicle-Trips ³				
Land Use	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting		
Office					0				
Retail	820	13,650			13	8	5		
Restaurant	932	13,650			136	75	61		
Cinema/Entertainment					0				
Residential	221	592			191	50	141		
Hotel					0				
All Other Land Uses ²					0				
					340	133	207		

				_						
Table 2-A: Mode Split and Vehicle Occupancy Estimates										
L en d H e e		Entering Tri	ps			Exiting Trips				
Land Use	Veh. Occ.4	% Transit	% Non-Motorized	1	Veh. Occ. ⁴	% Transit	% Non-Motorized			
Office				, [
Retail		15%		, [15%				
Restaurant		15%		, [15%				
Cinema/Entertainment				, [
Residential		15%		, [15%				
Hotel				, [
All Other Land Uses ²				, [

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)											
Origina (France)		Destination (To)									
Oligin (Floin)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											

Table 4-A: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)		Destination (To)									
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	0		1	0	1	0					
Restaurant	0	1		0	2	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	1	15	0		0					
Hotel	0	0	0	0	0						

Table 5-A: Computations Summary				Table 6-A: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips	
All Person-Trips	340	133	207	Office	N/A	N/A	
Internal Capture Percentage	12%	16%	10%	Retail	25%	40%	
				Restaurant	21%	5%	
External Vehicle-Trips ⁵	253	95	158	Cinema/Entertainment	N/A	N/A	
External Transit-Trips ⁶	45	17	28	Residential	6%	11%	
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A	

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Paseo Marina - Option A
Analysis Period:	AM Street Peak Hour

Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends											
Land Lies	Tab	le 7-A (D): Enter	ing Trips		1	able 7-A (O): Exiting Trips					
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*				
Office	1.00	0	0		1.00	0	0				
Retail	1.00	8	8		1.00	5	5				
Restaurant	1.00	75	75		1.00	61	61				
Cinema/Entertainment	1.00	0	0		1.00	0	0				
Residential	1.00	50	50		1.00	141	141				
Hotel	1.00	0	0	1	1.00	0	0				

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)										
Origin (From)	Destination (To)									
Oligili (FIOIII)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		0	0	0	0	0				
Retail	1		1	0	1	0				
Restaurant	19	9		0	2	2				
Cinema/Entertainment	0	0	0		0	0				
Residential	3	1	28	0		0				
Hotel	0	0	0	0	0					

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)											
	Destination (To)										
Ongin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		3	17	0	0	0					
Retail	0		38	0	1	0					
Restaurant	0	1		0	3	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	1	15	0		0					
Hotel	0	0	5	0	0						

	Table 9-A (D): Internal and External Trips Summary (Entering Trips)										
		Person-Trip Esti	mates		External Trips by Mode*						
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²				
Office	0	0	0		0	0	0				
Retail	2	6	8		5	1	0				
Restaurant	16	59	75		50	9	0				
Cinema/Entertainment	0	0	0		0	0	0				
Residential	3	47	50		40	7	0				
Hotel	0	0	0		0	0	0				
All Other Land Uses ³	0	0	0		0	0	0				

	Table 9-A (O): Internal and External Trips Summary (Exiting Trips)									
		Person-Trip Esti	mates		External Trips by Mode*					
Oligin Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0		0	0	0			
Retail	2	3	5		3	0	0			
Restaurant	3	58	61		49	9	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	16	125	141		106	19	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

NCHRP 684 Internal Trip Capture Estimation Tool								
Project Name:	Paseo Marina - Option A		Organization:					
Project Location:			Performed By:					
Scenario Description:			Date:					
Analysis Year:			Checked By:					
Analysis Period:	PM Street Peak Hour		Date:					

	Table 1	-P: Base Vehicle	e-Trip Generation	Esti	mates (Single-Use	Site Estimate)	
Land Llas	Developme	ent Data (<i>For Info</i>	ormation Only)			Estimated Vehicle-Trips ³	
Land Use	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting
Office				1 [0		
Retail	820	13,650		1 [52	25	27
Restaurant	932	13,650		1 [133	82	51
Cinema/Entertainment					0		
Residential	221	592		1 [233	142	91
Hotel				1 [0		
All Other Land Uses ²				1 [0		
				1 [418	249	169

Table 2-P: Mode Split and Vehicle Occupancy Estimates										
and Use		Entering Tri	ps			Exiting Trips				
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized			
Office										
Retail		15%				15%				
Restaurant		15%				15%				
Cinema/Entertainment										
Residential		15%				15%				
Hotel										
All Other Land Uses ²										

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)									
Origin (From)				Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office									
Retail									
Restaurant									
Cinema/Entertainment									
Residential									
Hotel									

Table 4-P: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)	Destination (To)									
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		0	0	0	0	0				
Retail	0		8	0	7	0				
Restaurant	0	13		0	9	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	0	3	11	0		0				
Hotel	0	0	0	0	0					

Table 5-P	: Computatio	ns Summary		Table 6-P: Interna	Table 6-P: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips		
All Person-Trips	418	249	169	Office	N/A	N/A		
Internal Capture Percentage	24%	20%	30%	Retail	64%	56%		
				Restaurant	23%	43%		
External Vehicle-Trips ⁵	269	169	100	Cinema/Entertainment	N/A	N/A		
External Transit-Trips ⁶	47	29	18	Residential	11%	15%		
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A		

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Paseo Marina - Option A
Analysis Period:	PM Street Peak Hour

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends								
Land Use	Table	7-P (D): Entering	g Trips		Table 7-P (O): Exiting Trips			
	Veh. Occ.	Vehicle-Trips	Person-Trips*	T	Veh. Occ.	Vehicle-Trips	Person-Trips*	
Office	1.00	0	0		1.00	0	0	
Retail	1.00	25	25		1.00	27	27	
Restaurant	1.00	82	82		1.00	51	51	
Cinema/Entertainment	1.00	0	0		1.00	0	0	
Residential	1.00	142	142		1.00	91	91	
Hotel	1.00	0	0		1.00	0	0	

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)									
Origin (From)	Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		0	0	0	0	0			
Retail	1		8	1	7	1			
Restaurant	2	21		4	9	4			
Cinema/Entertainment	0	0	0		0	0			
Residential	4	38	19	0		3			
Hotel	0	0	0	0	0				

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)									
Origin (From)				Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		2	2	0	6	0			
Retail	0		24	0	65	0			
Restaurant	0	13		0	23	0			
Cinema/Entertainment	0	1	2		6	0			
Residential	0	3	11	0		0			
Hotel	0	1	4	0	0				

	Table 9-P (D): Internal and External Trips Summary (Entering Trips)									
Destination Land Use	P	erson-Trip Estima	ates		External Trips by Mode*					
	Internal	External	Total	T	Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0		0	0	0			
Retail	16	9	25		8	1	0			
Restaurant	19	63	82		54	9	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	16	126	142		107	19	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

	Table 9-P (O): Internal and External Trips Summary (Exiting Trips)								
	P	erson-Trip Estima	tes		External Trips by Mode*				
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²		
Office	0	0	0		0	0	0		
Retail	15	12	27		10	2	0		
Restaurant	22	29	51		25	4	0		
Cinema/Entertainment	0	0	0		0	0	0		
Residential	14	77	91		65	12	0		
Hotel	0	0	0		0	0	0		
All Other Land Uses ³	0	0	0		0	0	0		

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

Table 7.1a Adjusted Internal Trip Capture Rates for Trip Origins within a Multi-Use Development							
land	Wee	kday					
		AM Peak Hour	PM Peak Hour				
	To Office	0.0%	0.0%				
	To Retail	28.0%	20.0%				
	To Restaurant	63.0%	4.0%				
From OFFICE	To Cinema/Entertainment	0.0%	0.0%				
	To Residential	1.0%	2.0%				
	To Hotel	0.0%	0.0%				
	To Office	29.0%	2.0%				
	To Retail	0.0%	0.0%				
	To Restaurant	13.0%	29.0%				
From RETAIL	To Cinema/Entertainment	0.0%	4.0%				
From OFFICE From RETAIL From RESTAURANT From CINEMA/ENTERTAINMENT From RESIDENTIAL	To Residential	14.0%	26.0%				
	To Hotel	0.0%	5.0%				
	To Office	31.0%	3.0%				
	To Retail	14.0%	41.0%				
	To Restaurant	0.0%	0.0%				
From RESTAURANT	To Cinema/Entertainment	0.0%	8.0%				
	To Residential	4.0%	18.0%				
	To Hotel	3.0%	7.0%				
	To Office	0.0%	2.0%				
	To Retail	0.0%	21.0%				
	To Restaurant	0.0%	31.0%				
FIOTI CINEMA/ENTERTAINMENT	To Cinema/Entertainment	0.0%	0.0%				
From RESTAURANT	To Residential	0.0%	8.0%				
	To Hotel	0.0%	2.0%				
	To Office	2.0%	4.0%				
	To Retail	1.0%	42.0%				
	To Restaurant	20.0%	21.0%				
From RESIDENTIAL	To Cinema/Entertainment	0.0%	0.0%				
	To Residential	0.0%	0.0%				
	To Hotel	0.0%	3.0%				
	To Office	75.0%	0.0%				
	To Retail	14.0%	16.0%				
	To Restaurant	9.0%	68.0%				
	To Cinema/Entertainment	0.0%	0.0%				
	To Residential	0.0%	2.0%				
	To Hotel	0.0%	0.0%				

Table 7.2a Adjusted Internal Trip Capture Rates for Trip Destinations within a Multi-Use I						
	Paire	Wee	kday			
Laild Use		AM Peak Hour	PM Peak Hour			
	From Office	0.0%	0.0%			
	From Retail	4.0%	31.0%			
	From Restaurant	14.0%	30.0%			
10 OFFICE	From Cinema/Entertainment	0.0%	6.0%			
	From Residential	3.0%	57.0%			
	From Hotel	3.0%	0.0%			
	From Office	32.0%	8.0%			
	From Retail	0.0%	0.0%			
	From Restaurant	8.0%	50.0%			
TORETAIL	From Cinema/Entertainment	0.0%	4.0%			
	From Residential	17.0%	10.0%			
	From Hotel	4.0%	2.0%			
	From Office	23.0%	2.0%			
	From Retail	50.0%	29.0%			
	From Restaurant	0.0%	0.0%			
TO RESTAURANT	From Cinema/Entertainment	0.0%	3.0%			
	From Residential	20.0%	14.0%			
	From Hotel	6.0%	5.0%			
	From Office	0.0%	1.0%			
	From Retail	0.0%	26.0%			
	From Restaurant	0.0%	32.0%			
TO CINEMA/ENTERTAINMENT	From Cinema/Entertainment	0.0%	0.0%			
	From Residential	0.0%	0.0%			
	From Hotel	0.0%	0.0%			
	From Office	0.0%	4.0%			
	From Retail	2.0%	46.0%			
	From Restaurant	5.0%	16.0%			
TO RESIDENTIAL	From Cinema/Entertainment	0.0%	4.0%			
	From Residential	0.0%	0.0%			
	From Hotel	0.0%	0.0%			
	From Office	0.0%	0.0%			
	From Retail	0.0%	17.0%			
	From Restaurant	4.0%	71.0%			
TOHUTEL	From Cinema/Entertainment	0.0%	1.0%			
	From Residential	0.0%	12.0%			
	From Hotel	0.0%	0.0%			

	NCHRP 684 Internal Trip Capture Estimation Tool								
Project Name:	Paseo Marina (Option B)		Organization:						
Project Location:			Performed By:						
Scenario Description:			Date:						
Analysis Year:			Checked By:						
Analysis Period:	AM Street Peak Hour		Date:						

	Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)							
Land Line	Developm	ent Data (For Inf	ormation Only)		Estimated Vehicle-Trips ³			
Land Use	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting	
Office	710	90,000			104	89	15	
Retail	820	20,000			19	12	7	
Restaurant	932	20,000			199	109	90	
Cinema/Entertainment					0			
Residential	221		382		138	36	102	
Hotel					0			
All Other Land Uses ²					0			
					460	246	214	

	Table 2-A: Mode Split and Vehicle Occupancy Estimates										
Lond Have	Entering Trips					Exiting Trips					
Land Use	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized				
Office		15%				15%					
Retail		15%				15%					
Restaurant		15%				15%					
Cinema/Entertainment											
Residential		15%				15%					
Hotel											
All Other Land Uses ²											

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)									
Origin (From)				Destination (To)					
Oligin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office									
Retail									
Restaurant									
Cinema/Entertainment									
Residential									
Hotel									

Table 4-A: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		4	9	0	0	0					
Retail	2		1	0	1	0					
Restaurant	12	1		0	2	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	2	1	20	0		0					
Hotel	0	0	0	0	0						

Table 5-A	: Computatio	ns Summary		Table 6-A: Interna	Table 6-A: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips		
All Person-Trips	460	246	214	Office	18%	87%		
Internal Capture Percentage	24%	22%	26%	Retail	50%	57%		
				Restaurant	28%	17%		
External Vehicle-Trips ⁵	298	162	136	Cinema/Entertainment	N/A	N/A		
External Transit-Trips ⁶	52	29	23	Residential	8%	23%		
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A		

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.
 ²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
 ³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).
 ⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Paseo Marina (Option B)
Analysis Period:	AM Street Peak Hour

Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends									
Landling	Table 7-A (D): Entering Trips				Table 7-A (O): Exiting Trips				
Land Ose	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*		
Office	1.00	89	89		1.00	15	15		
Retail	1.00	12	12		1.00	7	7		
Restaurant	1.00	109	109		1.00	90	90		
Cinema/Entertainment	1.00	0	0		1.00	0	0		
Residential	1.00	36	36		1.00	102	102		
Hotel	1.00	0	0		1.00	0	0		

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)										
Origin (From)				Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		4	9	0	0	0				
Retail	2		1	0	1	0				
Restaurant	28	13		0	4	3				
Cinema/Entertainment	0	0	0		0	0				
Residential	2	1	20	0		0				
Hotel	0	0	0	0	0					

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)										
	Destination (To)									
Oligili (FIOIII)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		4	25	0	0	0				
Retail	4		55	0	1	0				
Restaurant	12	1		0	2	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	3	2	22	0		0				
Hotel	3	0	7	0	0					

	Table 9-A (D): Internal and External Trips Summary (Entering Trips)									
Destinction Land Llas	Person-Trip Estimates				External Trips by Mode*					
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²			
Office	16	73	89		62	11	0			
Retail	6	6	12		5	1	0			
Restaurant	30	79	109		67	12	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	3	33	36		28	5	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

	Table 9-A (O): Internal and External Trips Summary (Exiting Trips)									
	Person-Trip Estimates				External Trips by Mode*					
Oligin Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²			
Office	13	2	15		2	0	0			
Retail	4	3	7		3	0	0			
Restaurant	15	75	90		64	11	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	23	79	102		67	12	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Paseo Marina (Option B)		Organization:						
Project Location:			Performed By:						
Scenario Description:			Date:						
Analysis Year:			Checked By:						
Analysis Period:	PM Street Peak Hour		Date:						

	Table 1	-P: Base Vehicle	-Trip Generation	Estimates	(Single-Use	Site Estimate)			
Land Llas	Developm	Development Data (For Information Only)				Estimated Vehicle-Trips ³			
Land Use	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting		
Office	710	90,000			104	17	87		
Retail	820	20,000			76	36	40		
Restaurant	932	20,000			195	121	74		
Cinema/Entertainment					0				
Residential	221	382			168	102	66		
Hotel					0				
All Other Land Uses ²					0				
					543	276	267		

Table 2-P: Mode Split and Vehicle Occupancy Estimates									
		Entering Tri	ps			Exiting Trips			
Land Use	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized		
Office		15%				15%			
Retail		15%				15%			
Restaurant		15%				15%			
Cinema/Entertainment									
Residential		15%				15%			
Hotel									
All Other Land Uses ²									

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)									
Origin (From)		Destination (To)							
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office									
Retail									
Restaurant									
Cinema/Entertainment									
Residential									
Hotel									

Table 4-P: Internal Person-Trip Origin-Destination Matrix*									
Origin (From)	Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		3	2	0	2	0			
Retail	1		12	0	10	0			
Restaurant	2	18		0	13	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	3	4	14	0		0			
Hotel	0	0	0	0	0				

Table 5-P: Computations Summary				Table 6-P: Interna	Table 6-P: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips		
All Person-Trips	543	276	267	Office	35%	8%		
Internal Capture Percentage	31%	30%	31%	Retail	69%	58%		
				Restaurant	23%	45%		
External Vehicle-Trips ⁵	317	162	155	Cinema/Entertainment	N/A	N/A		
External Transit-Trips ⁶	58	30	28	Residential	25%	32%		
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A		

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Paseo Marina (Option B)
Analysis Period:	PM Street Peak Hour

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends								
	Table 7-P (D): Entering Trips				Table 7-P (O): Exiting Trips			
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*	T	Veh. Occ.	Vehicle-Trips	Person-Trips*	
Office	1.00	17	17		1.00	87	87	
Retail	1.00	36	36		1.00	40	40	
Restaurant	1.00	121	121		1.00	74	74	
Cinema/Entertainment	1.00	0	0		1.00	0	0	
Residential	1.00	102	102		1.00	66	66	
Hotel	1.00	0	0		1.00	0	0	

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)									
Origin (From)	Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		17	3	0	2	0			
Retail	1		12	2	10	2			
Restaurant	2	30		6	13	5			
Cinema/Entertainment	0	0	0		0	0			
Residential	3	28	14	0		2			
Hotel	0	0	0	0	0				

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)								
Origin (From)		Destination (To)						
Oligin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office		3	2	0	4	0		
Retail	5		35	0	47	0		
Restaurant	5	18		0	16	0		
Cinema/Entertainment	1	1	4		4	0		
Residential	10	4	17	0		0		
Hotel	0	1	6	0	0			

Table 9-P (D): Internal and External Trips Summary (Entering Trips)							
Destination Land Llas	Person-Trip Estimates				External Trips by Mode*		
Destination Land Ose	Internal	External	Total	T	Vehicles ¹	Transit ²	Non-Motorized ²
Office	6	11	17	1	9	2	0
Retail	25	11	36	1	9	2	0
Restaurant	28	93	121		79	14	0
Cinema/Entertainment	0	0	0	1	0	0	0
Residential	25	77	102	1	65	12	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0		0	0	0

Table 9-P (O): Internal and External Trips Summary (Exiting Trips)							
	P	Person-Trip Estimates			External Trips by Mode*		
Origin Land Use	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²
Office	7	80	87		68	12	0
Retail	23	17	40		14	3	0
Restaurant	33	41	74		35	6	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	21	45	66		38	7	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0		0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

Table 7.1a Adjusted Internal Trip Capture Rates for Trip Origins within a Multi-Use Development					
Lond		Wee	Weekday		
	ise Pairs	AM Peak Hour	PM Peak Hour		
	To Office	0.0%	0.0%		
	To Retail	28.0%	20.0%		
	To Restaurant	63.0%	4.0%		
From OFFICE	To Cinema/Entertainment	0.0%	0.0%		
	To Residential	1.0%	2.0%		
	To Hotel	0.0%	0.0%		
	To Office	29.0%	2.0%		
	To Retail	0.0%	0.0%		
	To Restaurant	13.0%	29.0%		
From RETAIL	To Cinema/Entertainment	0.0%	4.0%		
	To Residential	14.0%	26.0%		
	To Hotel	0.0%	5.0%		
	To Office	31.0%	3.0%		
	To Retail	14.0%	41.0%		
	To Restaurant	0.0%	0.0%		
From RESTAURANT	To Cinema/Entertainment	0.0%	8.0%		
	To Residential	4.0%	18.0%		
	To Hotel	3.0%	7.0%		
	To Office	0.0%	2.0%		
	To Retail	0.0%	21.0%		
	To Restaurant	0.0%	31.0%		
From CINEMA/ENTERTAINMENT	To Cinema/Entertainment	0.0%	0.0%		
	To Residential	0.0%	8.0%		
	To Hotel	0.0%	2.0%		
	To Office	2.0%	4.0%		
	To Retail	1.0%	42.0%		
	To Restaurant	20.0%	21.0%		
From RESIDENTIAL	To Cinema/Entertainment	0.0%	0.0%		
	To Residential	0.0%	0.0%		
	To Hotel	0.0%	3.0%		
	To Office	75.0%	0.0%		
	To Retail	14.0%	16.0%		
	To Restaurant	9.0%	68.0%		
	To Cinema/Entertainment	0.0%	0.0%		
	To Residential	0.0%	2.0%		
	To Hotel	0.0%	0.0%		

Table 7.2a Adjusted Internal Trip Capture Rates for Trip Destinations within a Multi-Use Development					
L and Lise	Paire	Wee	kday		
Laild Use		AM Peak Hour	PM Peak Hour		
	From Office	0.0%	0.0%		
	From Retail	4.0%	31.0%		
To OFFICE	From Restaurant	14.0%	30.0%		
	From Cinema/Entertainment	0.0%	6.0%		
	From Residential	3.0%	57.0%		
	From Hotel	3.0%	0.0%		
	From Office	32.0%	8.0%		
	From Retail	0.0%	0.0%		
	From Restaurant	8.0%	50.0%		
TORETAIL	From Cinema/Entertainment	0.0%	4.0%		
	From Residential	17.0%	10.0%		
	From Hotel	4.0%	2.0%		
	From Office	23.0%	2.0%		
	From Retail	50.0%	29.0%		
	From Restaurant	0.0%	0.0%		
TO RESTAURANT	From Cinema/Entertainment	0.0%	3.0%		
	From Residential	20.0%	14.0%		
	From Hotel	6.0%	5.0%		
	From Office	0.0%	1.0%		
	From Retail	0.0%	26.0%		
	From Restaurant	0.0%	32.0%		
TO CINEMA/ENTERTAINMENT	From Cinema/Entertainment	0.0%	0.0%		
	From Residential	0.0%	0.0%		
	From Hotel	0.0%	0.0%		
	From Office	0.0%	4.0%		
	From Retail	2.0%	46.0%		
	From Restaurant	5.0%	16.0%		
TO RESIDENTIAL	From Cinema/Entertainment	0.0%	4.0%		
	From Residential	0.0%	0.0%		
	From Hotel	0.0%	0.0%		
	From Office	0.0%	0.0%		
	From Retail	0.0%	17.0%		
	From Restaurant	4.0%	71.0%		
TOHUTEL	From Cinema/Entertainment	0.0%	1.0%		
	From Residential	0.0%	12.0%		
	From Hotel	0.0%	0.0%		

APPENDIX D

LADOT VMT CALCULATOR OUTPUT OPTION A

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Existing Land Use

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

Land Use Type		Value	Unit			
Retail General Retail	Ŧ	100.781	ksf	•		
Retail General Retail		100.781	ksf			

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type		Value	Unit	
Retail General Retail	-	13.65	ksf	•
Housing Multi-Family Housing Affordable Housing - Family Retail High-Turnover Sit-Down Restaurar Retail General Retail	nt	592 66 13.65 13.65	DU DU ksf ksf	

Project Screening Summary

Existing Land Use	Proposed Project			
3,595	4,974			
Daily Vehicle Trips	Daily Vehicle	e Trips		
29,609	37.347			
Daily VMT	Daily VM	ИТ		
Tier 1 Scree	ning Criteria			
Project will have less residential units compared to existing residential units & is within one-half mile of a fixed-rail station.				
The net increase in daily tri	ps < 250 trips	1,379 Net Daily Trips		
The net increase in daily VMT ≤ 0		7,738 Net Daily VMT		
The proposed project consists of only retail land uses ≤ 50,000 square feet total.27.300 ksf		27.300 ksf		
The proposed project is required to perform VMT analysis.				

🔍 Yes 🔍 No

Click here to add a single custom land use type (will be included in the above list)

Measuring the Miles

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	592	DU
Housing Affordable Housing - Family	66	DU
Retail High-Turnover Sit-Down Restaurant	13.65	ksf
Retail General Retail	13.65	ksf

TDM Strategies

Select each section to show individual strategies Use ✓ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy Max Home Based TDM Achieved? No Max Work Based TDM Achieved? No No No Max Work Based TDM Achieved? No Parking Reduce Parking Supply 100 city code parking provision for the project site

100 city code parking provision for the project site 74 actual parking provision for the project site Proposed Prj 🔲 Mitigation Unbundle Parking monthly parking cost (dollar) for the project 175 Proposed Prj 🔲 Mitigation site Parking Cash-Out 50 percent of employees eligible Proposed Prj 🔲 Mitigation Price Workplace Parking daily parking charge (dollar) 6.00 _ percent of employees subject to priced 50 , parking Proposed Prj 📃 Mitigation **Residential Area Parking** cost (dollar) of annual permit 200 Permits _ Proposed Prj 🔲 Mitigation В Transit C **Education & Encouragement** D **Commute Trip Reductions** E **Shared Mobility** F **Bicycle Infrastructure** G **Neighborhood Enhancement**

Analysis Results

Proposed Project	With Mitigation
4,974	4,974
Daily Vehicle Trips	Daily Vehicle Trips
37,347	37,347
Daily VMT	Daily VMT
6.9	6.9
Houseshold VMT per Capita	Houseshold VMT per Capita
N/A	N/A
Work VMT	Work VMT
per Employee	per Employee
Significant	/MT Impact?
Household: No	Household: No
Threshold = 7.4	Threshold = 7.4
15% Below APC	15% Below APC
Work: N/A	Work: N/A
Threshold = 11.1	Threshold = 11.1
15% Below APC	15% Below APC

Measuring the Miles

Report 1: Project & Analysis Overview

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

Project Information					
Land	Use Туре	Value	Units		
	Single Family	0	DU		
	Multi Family	592	DU		
Housing	Townhouse	0	DU		
	Hotel	0	Rooms		
	Motel	0	Rooms		
	Family	66	DU		
	Senior	0	DU		
Affordable Housing	Special Needs	0	DU		
	Permanent Supportive	0	DU		
	General Retail	13.650	ksf		
	Furniture Store	0.000	ksf		
	Pharmacy/Drugstore	0.000	ksf		
	Supermarket	0.000	ksf		
	Bank	0.000	ksf		
	Health Club	0.000	ksf		
Datati	High-Turnover Sit-Down	h-Turnover Sit-Down			
Retail	Restaurant	13.650	kst		
	Fast-Food Restaurant	0.000	ksf		
	Quality Restaurant	0.000	ksf		
	Auto Repair	0.000	ksf		
	Home Improvement	0.000	ksf		
	Free-Standing Discount	0.000	ksf		
	Movie Theater	0	Seats		
Office	General Office	0.000	ksf		
Office	Medical Office	0.000	ksf		
	Light Industrial	0.000	ksf		
Industrial	Manufacturing	0.000	ksf		
	Warehousing/Self-Storage	0.000	ksf		
	University	0	Students		
	High School	0	Students		
School	Middle School	0	Students		
	Elementary	0	Students		
	Private School (K-12)	0	Students		
Other		0	Trips		

Project and Analysis Overview

Report 1: Project & Analysis Overview

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

	Analysis Results					
	Total Employees: 82					
	Total Population:	1,541				
Propose	ed Project	With Mi	tigation			
4,974	Daily Vehicle Trips	4,974	Daily Vehicle Trips			
37,347	Daily VMT	37,347	Daily VMT			
6.0	Household VMT	6.0	Household VMT per			
6.9	6.9 per Capita		Capita			
	N/A Work VMT per Employee		Work VMT per			
N/A			Employee			
	Significant VMT	Impact?				
	APC: West Los A	Angeles				
	Impact Threshold: 15% Belo	ow APC Average				
	Household = 7	7.4				
	Work = 11.1					
Propose	ed Project	With Mitigation				
VMT Threshold	Impact	VMT Threshold	Impact			
Household > 7.4	No	Household > 7.4	No			
Work > 11.1	N/A	Work > 11.1	N/A			

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

Strategy Type Description Proposed Project Mitigations Reduce parking supply City code parking provision (spaces) 0 0 Actual parking 0 0 0 Inbundle parking Monthly cost for parking (\$) \$0 \$0 Parking Parking cash-out Employees eligible (%) 0% 0% Price workplace parking permits Employees subject to priced parking (%) 0% 0% Residential area parking permits Cost of annual permit (\$) \$0 \$0		TE	OM Strategy Inpu	uts		
Reduce parking supply City code parking provision (spaces) 0 0 Actual parking provision (spaces) 0 0 Unbundle parking Monthly cost for parking (\$) \$0 \$0 Parking Parking cash-out Monthly cost for parking (\$) \$0 \$0 Parking Parking cash-out Employees eligible (%) 0% 0% Price workplace parking Daily parking charge (\$) \$0.00 \$0.00 Residential area parking permits Cost of annual permit (\$) \$0 \$0 Residential area parking permits Cost of annual permit (\$) \$0 \$0 (cont. on following page) (cont. on following page) \$0 \$0	Stra	tegy Туре	Description	Proposed Project	Mitigations	
Parking 0 0 Unbundle parking Monthly cost for parking (\$) \$0 \$0 Parking Parking cash-out Employees eligible (%) 0% 0% Parking Parking cash-out Employees eligible (%) 0% 0% Parking Parking cash-out Employees eligible (%) 0% 0% Price workplace parking Employees subject to priced parking (%) 0% 0% Residential area parking permits Cost of annual permit (\$) \$0 \$0 (cont. on following page) \$0 \$0 \$0		Reduce narkina supply	City code parking provision (spaces)	0	0	
ParkingMonthly cost for parking (\$)\$0\$0Parking cash-outEmployees eligible (%)0%0%Price workplace parkingDaily parking charge (\$)\$0.00\$0.00Employees subject to priced parking (%)0%0%Residential area parking permitsCost of annual permit (\$)\$0\$0(cont. on following page)			Actual parking provision (spaces)	0	0	
Parking Parking cash-out Employees eligible (%) 0% 0% Parking Daily parking charge parking \$0.00 \$0.00 Residential area parking permits Employees subject to priced parking (%) 0% 0% Residential area parking permits Cost of annual permit (\$) \$0 \$0 (cont. on following page) (cont. on following page) (cont. on following page)		Unbundle parking	Monthly cost for parking (\$)	\$0	\$0	
Daily parking charge (\$)\$0.00\$0.00Price workplace parkingEmployees subject to priced parking (%)0%0%Residential area parking permitsCost of annual permit (\$)\$0\$0(cont. on following page)	Parking cash-out		Employees eligible (%)	0%	0%	
parkingEmployees subject to priced parking (%)0%0%Residential area parking permitsCost of annual permit (\$)\$0\$0(cont. on following page)		Price workplace	Daily parking charge (\$)	\$0.00	\$0.00	
Residential area parking permits Cost of annual permit (\$) \$0 \$0 (cont. on following page)		parking	Employees subject to priced parking (%)	0%	0%	
(cont. on following page)		Residential area parking permits	Cost of annual permit (\$)	\$0	\$0	
		(cont. on following page	2)		

Report 2: TDM Inputs

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

Strate	еду Туре	Description	Proposed Project	Mitigations
		Reduction in headways (increase in frequency) (%)	0%	0%
Transit	Reduce transit headways	Existing transit mode share (as a percent of total daily trips) (%)	0%	0%
		Lines within project site improved (<50%, >=50%)	0	0
	Implement	Degree of implementation (low, medium, high)	0	0
	neighborhood shuttle	Employees and residents eligible (%)	0%	0%
		Employees and residents eligible (%)	0%	0%
	Transit subsidies	Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$0.00
Education & Encouragement	Voluntary travel behavior change program	Employees and residents participating (%)	0%	0%
	Promotions and marketing	Employees and residents participating (%)	0%	0%

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

Strate	gy Туре	Description	Proposed Project	Mitigations
Required commute trip reduction program		Employees participating (%)	0%	0%
Commute Trip Reductions	Alternative Work Schedules and	Employees participating (%)	0%	0%
	Telecommute	Type of program	0	0
		Degree of implementation (low, medium, high)	0	0
	Employer sponsored vanpool or shuttle	Employees eligible (%)	0%	0%
		Employer size (small, medium, large)	0	0
	Ride-share program	Employees eligible (%)	0%	0%
Shared Mobility	Car share	Car share project setting (Urban, Suburban, All Other)	0	0
	Bike share	Within 600 feet of existing bike share station - OR- implementing new bike share station (Yes/No)	0	0
	School carpool program	Level of implementation (Low, Medium, High)	0	0

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.							
Strate	еду Туре	Description	Proposed Project	Mitigations			
Implement/Improve on-street bicycle facility		Provide bicycle facility along site (Yes/No)	0	0			
Bicycle Infrastructure	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	0	0			
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, & repair station (Yes/No)	0	0			
Neighborhood Enhancement	Traffic calming	Streets with traffic calming improvements (%)	0%	0%			
	improvements	Intersections with traffic calming improvements (%)	0%	0%			
	Pedestrian network improvements	Included (within project and connecting off- site/within project only)	0	0			

Report 3: TDM Outputs

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

	TDM Adjustments by Trip Purpose & Strategy													
						Place type	Suburban	Center						
		Ноте Ва	ised Work	Ноте Ва	ised Work	Ноте Ва	ised Other	Ноте Ва	ised Other	Non-Home	Based Other	Non-Home	Based Other	
		Proposed	uction Mitigated	<u>Attra</u> Proposed	Mitigated	Proposed	uction Mitigated	Attro Proposed	Action Mitigated	Proposed	Mitigated	<u>Attr</u>	action Mitigated	Source
	Deduce certine constru	006		00/	Wittigated	00%	Wittigated	000	ivitigated	00/	Ivirtigated	00%	Wittigated	
		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Unbundle parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy
Parking	Parking cash-out	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Parking
	Price workplace parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1 - 5
	Residential area parking permits	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
	Reduce transit headways	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy
Transit	Implement neighborhood shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Transit sections 1 - 3
	Transit subsidies	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Education &	Voluntary travel behavior change program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Education &
Encouragement	Promotions and marketing	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Encouragement sections 1 - 2
	Required commute trip reduction program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Commute Trip Reductions	Alternative Work Schedules and Telecommute Program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Commute Trip
Reductions	Employer sponsored vanpool or shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	sections 1 - 4
	Ride-share program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Car-share	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Shared Mobility	Bike share	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Appendix, Shared
· · · · · · · · · · · · · · · · · · ·	School carpool program	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Mobility sections 0% 1 - 3

Report 3: TDM Outputs

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

	TDM Adjustments by Trip Purpose & Strategy, Cont.													
	Place type: Suburban Center													
		Home Bo Prod	ased Work uction	Home Ba Attra	nsed Work action	Home Bo Prod	ased Other luction	Home Ba Attro	nsed Other action	Non-Home Prod	Based Other uction	Non-Home Attro	Based Other action	Source
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
Bicycle Infrastructure	Implement/ Improve on-street bicycle facility	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
	Include Bike parking per LAMC	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Appendix, Bicycle Infrastructure
	Include secure bike parking and showers	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	sections 1 - 3
Neighborhood	Traffic calming improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix,
Enhancement	Pedestrian network improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Neighborhood Enhancement sections 1 - 2

	Final Combined & Maximum TDM Effect											
	Home Based Work Ho Production		Home Ba Attra	Based Work Home Bo traction Proc		used Other Home Based Other Attraction Attraction		sed Other oction	Non-Home Based Other Production		Non-Home Based Othe Attraction	
	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated
COMBINED TOTAL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
MAX. TDM EFFECT	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

= Min	= Minimum (X%, 1-[(1-A)*(1-B)])							
where X%=								
PLACE	urban	75%						
ТҮРЕ	compact infill	40%						
MAX:	suburban center	20%						
	suburban	15%						

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (*Transportation Assessment Guidelines Attachment G*) for further discussion of dampening.

> Report 3: TDM Outputs 10 of 13

Report 4: MXD Methodology

Date: April 27, 2021 Project Name: Paseo Marina Project Scenario: Option A Project Address: 13400 W MAXELLA AVE, 90292

MXD Methodology - Project Without TDM							
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT	
Home Based Work Production	586	-14.3%	502	8.3	4,864	4,167	
Home Based Other Production	1,624	-32.0%	1,104	5.9	9,582	6,514	
Non-Home Based Other Production	1,270	-5.3%	1,203	7.4	9,398	8,902	
Home-Based Work Attraction	119	-31.1%	82	12.6	1,499	1,033	
Home-Based Other Attraction	1,949	-26.6%	1,431	7.5	14,618	10,733	
Non-Home Based Other Attraction	696	-6.3%	652	9.2	6,403	5,998	

MXD Methodology with TDM Measures

		Proposed Project		Project with Mitigation Measures			
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT	
Home Based Work Production	0.0%	502	4,167	0.0%	502	4,167	
Home Based Other Production	0.0%	1,104	6,514	0.0%	1,104	6,514	
Non-Home Based Other Production	0.0%	1,203	8,902	0.0%	1,203	8,902	
Home-Based Work Attraction	0.0%	82	1,033	0.0%	82	1,033	
Home-Based Other Attraction	0.0%	1,431	10,733	0.0%	1,431	10,733	
Non-Home Based Other Attraction	0.0%	652	5,998	0.0%	652	5,998	

MXD VMT Methodology Per Capita & Per Employee								
Total Population: 1,541								
Total Employees: 82								
APC: West Los Angeles								
	Proposed Project Project with Mitigation Measures							
Total Home Based Production VMT	10,681	10,681						
Total Home Based Work Attraction VMT	1,033	1,033						
Total Home Based VMT Per Capita	6.9	6.9						
Total Work Based VMT Per Employee	N/A	N/A						

VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr & Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr & Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr & Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr & Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr & Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr & Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr & Peers, or another third party, even if the City or Fehr & Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr & Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

You, the User	
Ву:	Jash
Print Name:	Jason Shender
Title:	Transportation Planner III
Company:	Linscott, Law & Greenspan, Engineers
Address:	20931 Burbank Boulevard, Suite C Woodland Hills, CA 91367
Phone:	(818) 835-8648
Email Address:	jshender@llgengineers.com
Date:	4/27/2021

APPENDIX E

LADOT VMT CALCULATOR OUTPUT OPTION B

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Existing Land Use

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

O No

• Yes

Land Use Type		Value	Unit		
Retail General Retail	-	100.781	ksf	•	
Retail General Retail		100.781	ksf		

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type		Value	Unit	
Office General Office	-	90	ksf	+
Housing Multi-Family		382	DU	
Housing Affordable Housing - Family		43	DU	
Retail High-Turnover Sit-Down Restaurant	t	20	ksf	
Retail General Retail		20	ksf	
Office General Office		90	ksf	

Project Screening Summary

Existing Land Use	Proposed Project			
3,595 Daily Vehicle Trips	5,574 Daily Vehicle Trips			
29,609 Daily VMT	45,178 Daily VMT			
Tier 1 Scree	ning Criteria			
Project will have less residential units compared to existing residential units & is within one-half mile of a fixed-rail station.				
The net increase in daily trips < 250 trips				
The net increase in daily VMT ≤ 0 15,569 Net Daily VMT				
The proposed project consists of only retail40.000land uses ≤ 50,000 square feet total.ksf				
The proposed project is required to perform VMT analysis.				

Click here to add a single custom land use type (will be included in the above list)

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	382	DU
Housing Affordable Housing - Family	43	DU
Retail High-Turnover Sit-Down Restaurant	20	ksf
Retail General Retail	20	ksf
Office General Office	90	ksf

TDM Strategies - Max Mitigation Reduction

Use 🗹 to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Select each section to show individual strategies

Analysis Results

Max Home Based TDM Ac Max Work Based TDM Ac	chieve hieve	Prop ed? d?	osed Project No No	With Mitigation Yes Yes		
A		Parking				
Reduce Parking Supply	100	city code parking	g provision for th	e project site		
Proposed Prj Mitigation	74	actual parking p				
Proposed Prj Mitigation	175	monthly parking site	g cost (dollar) for	the project		
Parking Cash-Out	100	percent of emplo	oyees eligible			
Price Workplace Parking	6.00 100	daily parkir percent of emplo parking	ng charge (dollar) oyees subject to p	priced		
Residential Area Parking Permits Proposed Prj Mitigation	200	cost (dollar) of annual perm	it		
B Transit						
C Educa	C Education & Encouragement					
D Com	D Commute Trip Reductions					
E	E Shared Mobility					
F Bi	Bicycle Infrastructure					
G Neigh	G Neighborhood Enhancement					

Proposed Project	With Mitigation
5,574	4,459
Daily Vehicle Trips	Daily Vehicle Trips
45,178	36,142
Daily VMT	Daily VMT
6.8	5.4
Houseshold VMT per Capita	Houseshold VMT per Capita
14.5	11.6
Work VMT	Work VMT
per Employee	per Employee
Significant	VMT Impact?
Household: No	Household: No
Threshold = 7.4	Threshold = 7.4
1370 Delow AFC	15% below Ar c
Work: Yes	Work: Yes
Threshold = 11.1	Threshold = 11.1
15% Below APC	15% Below APC

Report 1: Project & Analysis Overview

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Project Information					
Land	Use Type	Value	Units		
	Single Family	0	DU		
	Multi Family	382	DU		
Housing	Townhouse	0	DU		
_	Hotel	0	Rooms		
	Motel	0	Rooms		
	Family	43	DU		
Affordable Housing	Senior	0	DU		
Allordable Housing	Special Needs	0	DU		
	Permanent Supportive	0	DU		
	General Retail	20.000	ksf		
	Furniture Store	0.000	ksf		
	Pharmacy/Drugstore	0.000	ksf		
	Supermarket	0.000	ksf		
	Bank	0.000	ksf		
	Health Club	0.000	ksf		
Datall	High-Turnover Sit-Down	20.000	1.0		
Retail	Restaurant	20.000	KST		
	Fast-Food Restaurant	0.000	ksf		
	Quality Restaurant	0.000	ksf		
	Auto Repair	0.000	ksf		
	Home Improvement	0.000	ksf		
	Free-Standing Discount	0.000	ksf		
	Movie Theater	0	Seats		
Office	General Office	90.000	ksf		
Office	Medical Office	0.000	ksf		
	Light Industrial	0.000	ksf		
Industrial	Manufacturing	0.000	ksf		
	Warehousing/Self-Storage	0.000	ksf		
	University	0	Students		
	High School	0	Students		
School	Middle School	0	Students		
	Elementary	0	Students		
	Private School (K-12)	0	Students		
Other		0	Trips		

Project and Analysis Overview

Report 1: Project & Analysis Overview

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Analysis Results						
	Total Employees: 480					
	Total Population:	996				
Propose	ed Project	With Mitigation				
5,574	Daily Vehicle Trips	4,459	Daily Vehicle Trips			
45,178	Daily VMT	36,142	Daily VMT			
6.0	Household VMT	5.4	Household VMT per			
6.8	per Capita	5.4	Capita			
	Work VMT		Work VMT per			
14.5	per Employee	11.6	Employee			
Significant VMT Impact?						
	APC: West Los A	Angeles				
	Impact Threshold: 15% Belo	ow APC Average				
	Household = 7	7.4				
	Work = 11.1	L				
Propose	ed Project	With Mi	tigation			
VMT Threshold	Impact	VMT Threshold	Impact			
Household > 7.4	No	Household > 7.4	No			
Work > 11.1	Yes	Work > 11.1	Yes			

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

Reduce parking supply Unbundle parking	Description City code parking provision (spaces) Actual parking provision (spaces) Monthly cost for parking (\$)	Proposed Project 0 0 0	Mitigation: 0 0
Reduce parking supply Unbundle parking	City code parking provision (spaces) Actual parking provision (spaces) Monthly cost for parking (\$)	0 0	0
Unbundle parking	Actual parking provision (spaces) Monthly cost for parking (\$)	0	0
Unbundle parking	Monthly cost for parking (\$)		
Parking cash-out	parting (9)	\$0	\$0
	Employees eligible (%)	0%	0%
Price workplace parking	Daily parking charge \$0.00	\$0.00	\$0.00
	Employees subject to priced parking (%)	0%	0%
Residential area parking permits	Cost of annual permit (\$)	\$0	\$0
(cont. on following page	:)	
	Price workplace parking Residential area parking permits	Price workplace parking (\$) Employees subject to priced parking (%) Residential area parking permits permit (\$) (cont. on following page	Price workplace parkingDaily parking charge (\$)\$0.00Employees subject to priced parking (%)0%Residential area parking permitsCost of annual permit (\$)\$0\$0\$0(cont. on following page)

Report 2: TDM Inputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Strate	еду Туре	Description	Proposed Project	Mitigations
		Reduction in headways (increase in frequency) (%)	0%	0%
Reduce transit headways Transit Implement neighborhood shutt	Reduce transit headways	Existing transit mode share (as a percent of total daily trips) (%)	0%	0%
		Lines within project site improved (<50%, >=50%)	0	0
	Implement neighborhood shuttle	Degree of implementation (low, medium, high)	0	0
		Employees and residents eligible (%)	0%	0%
		Employees and residents eligible (%)	0%	100%
	Transit subsidies	Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$2.98
Education &	Voluntary travel behavior change program	Employees and residents participating (%)	0%	0%
Encouragement	Promotions and marketing	Employees and residents participating (%)	0%	100%

Report 2: TDM Inputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

TDM Strategy Inputs, Cont.				
Strategy Type Description			Proposed Project	Mitigations
	Required commute trip reduction program	Employees participating (%)	0%	0%
	Alternative Work	Employees participating (%)	0%	5%
Commute Trip Reductions	Schedules and Telecommute Program	Type of program	0	1.5 days of telecommuting per week
		Degree of implementation (low, medium, high)	0	0
	Employer sponsored vanpool or shuttle	Employees eligible (%)	0%	0%
		Employer size (small, medium, large)	0	0
	Ride-share program	Employees eligible (%)	0%	0%
Shared Mobility	Car share	Car share project setting (Urban, Suburban, All Other)	0	0
	Bike share	Within 600 feet of existing bike share station - OR- implementing new bike share station (Yes/No)	0	0
	School carpool program	Level of implementation (Low, Medium, High)	0	0
	(1	cont. on following page	:)	

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.					
Strate	еду Туре	Description	Proposed Project	Mitigations	
	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0	
Bicycle	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	0	Yes	
Infrastructure	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, & repair station (Yes/No)	0	Yes	
Neighborhood Enhancement	Traffic calming	Streets with traffic calming improvements (%)	0%	0%	
	improvements	Intersections with traffic calming improvements (%)	0%	0%	
	Pedestrian network improvements	Included (within project and connecting off- site/within project only)	0	within project and connecting off-site	
CITY OF LOS ANGELES VMT CALCULATOR

Report 3: TDM Outputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

	TDM Adjustments by Trip Purpose & Strategy													
						Place type	: Suburban	Center						
		Ноте Ва	ased Work	Ноте Ва	ised Work	Home Based Other Home Based Other		Non-Home Based Other		Non-Home Based Other				
		Prod	uction Mitigated	Attro	Aitigated	Prod	uction Mitigated	Attro	action Mitigated	Proc	luction Mitigated	Attr	action Mitigated	Source
		Proposed	wiitigateu	Proposed	wiitigated	Proposed	wiitigated	Proposed	wiitigateu	Proposed	wiitigated	Proposed	willigated	
	Reduce parking supply	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_
	Unbundle parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy
Parking	Parking cash-out	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Parking
	Price workplace parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1 - 5
	Residential area parking permits	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
	Reduce transit headways	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Stratogy
Transit	Implement neighborhood shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Transit sections 1 - 3
	Transit subsidies	0%	16%	0%	16%	0%	16%	0%	16%	0%	16%	0%	16%	
Education &	Voluntary travel behavior change program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Education &
Encouragement	Promotions and marketing	0%	4%	0%	4%	0%	4%	0%	4%	0%	4%	0%	0%	Encouragement sections 1 - 2
	Required commute trip reduction program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Commute Trip Reductions	Alternative Work Schedules and Telecommute Program	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Commute Trip
Reductions	Employer sponsored vanpool or shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	sections 1 - 4
	Ride-share program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Car-share	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Shared Mobility	Bike share	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Appendix, Shared
Shared Mobility	School carpool program	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Mobility sections 1 - 3

CITY OF LOS ANGELES VMT CALCULATOR

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 3: TDM Outputs

	TDM Adjustments by Trip Purpose & Strategy, Cont.													
Place type: Suburban Center														
	Home Based Work Hom Production A			Home Bo Attr	e Based Work Home Based Other Attraction Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction		Source	
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
Im on fa	Implement/ Improve on-street bicycle facility	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Bicycle Infrastructure	Include Bike parking per LAMC	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	Appendix, Bicycle Infrastructure
Include parkin	Include secure bike parking and showers	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	sections 1 - 3
Neighborhood Enhancement	Traffic calming improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix,
	Pedestrian network improvements	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	Neighborhood Enhancement sections 1 - 2

Final Combined & Maximum TDM Effect												
Home Based Work Production			Home Ba Attra	Home Based Work Home Based Other Attraction Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction		
	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated
COMBINED TOTAL	0%	22%	0%	22%	0%	22%	0%	22%	0%	22%	0%	19%
MAX. TDM EFFECT	0%	20%	0%	20%	0%	20%	0%	20%	0%	20%	0%	20%

= Minimum (X%, 1-[(1-A)*(1-B)])							
where X%=							
PLACE	urban	75%					
ТҮРЕ	compact infill	40%					
MAX:	suburban center	20%					
	suburban	15%					

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (*Transportation Assessment Guidelines Attachment G*) for further discussion of dampening.

> Report 3: TDM Outputs 10 of 13

CITY OF LOS ANGELES VMT CALCULATOR

Report 4: MXD Methodology

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

MXD Methodology - Project Without TDM									
Unadjusted Trips MXD Adjustment MXD Trips Average Trip Length Unadjusted VMT MXD VMT									
Home Based Work Production	379	-18.5%	309	8.3	3,146	2,565			
Home Based Other Production	1,049	-32.6%	707	5.9	6,189	4,171			
Non-Home Based Other Production	1,358	-6.1%	1,275	7.4	10,049	9,435			
Home-Based Work Attraction	696	-20.5%	553	12.6	8,770	6,968			
Home-Based Other Attraction	2,457	-26.3%	1,810	7.5	18,428	13,575			
Non-Home Based Other Attraction	987	-6.8%	920	9.2	9,080	8,464			

MXD Methodology with TDM Measures

		Proposed Project		Project with Mitigation Measures			
	TDM Adjustment	TDM Adjustment Project Trips Project VMT TDN		TDM Adjustment	Mitigated Trips	Mitigated VMT	
Home Based Work Production	0.0%	309	2,565	-20.0%	247	2,052	
Home Based Other Production	0.0%	707	4,171	-20.0%	566	3,337	
Non-Home Based Other Production	0.0%	1,275	9,435	-20.0%	1,020	7,548	
Home-Based Work Attraction	0.0%	553	6,968	-20.0%	442	5,574	
Home-Based Other Attraction	0.0%	1,810	13,575	-20.0%	1,448	10,860	
Non-Home Based Other Attraction	0.0%	920	8,464	-20.0%	736	6,771	

MXD VMT Methodology Per Capita & Per Employee								
Total Population: 996								
	Total Employees: 480							
	APC: West Los Angeles							
	Proposed Project	Project with Mitigation Measures						
Total Home Based Production VMT	6,736	5,389						
Total Home Based Work Attraction VMT	6,968	5,574						
Total Home Based VMT Per Capita	sed VMT Per Capita 6.8 5.4							
Total Work Based VMT Per Employee	tal Work Based VMT Per Employee 14.5 11.6							

VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr & Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr & Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr & Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr & Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr & Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr & Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr & Peers, or another third party, even if the City or Fehr & Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr & Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

You, the User	
Ву:	Jash
Print Name:	Jason Shender, AICP
Title:	Transportation Planner III
Company:	Linscott, Law & Greenspan, Engineers
Address:	20931 Burbank Boulevard, Suite C Woodland Hills, CA 91367
Phone:	(818) 835-8648
Email Address:	jshender@llgengineers.com
Date:	6/21/2021

APPENDIX F

MANUAL TRAFFIC COUNT DATA

STREET: North/South	Walgrove	Ave/James	Import Dwy					
East/West	Washingt	on Blvd						
Day:	Tuesday	Dat	te:	08/29/2017	Weather:	S	UNNY	
Hours:				Chekr	s: <u>NDS</u>			
School Day:		YES			I/S CO	DE		
DUAL- WHEELED BIKES BUSES	<u>N/B</u> 0 0 0		<u>S/B</u> 12 9 0		E/B 115 59 33		W/B 101 82 41	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN	1	7.00	73	8.15	387	8.45	338	8.45
PM PK 15 MIN	4	16.30	108	17.30	361	15.00	330	17.45
AM PK HOUR	1	7.00	259	8.00	1431	8.00	1241	8.15
PM PK HOUR	10	16.00	377	16.45	1372	17.00	1207	17.00

NORTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	1	0	0	1
8-9	0	0	1	1
9-10	1	0	0	1
15-16	0	0	5	5
16-17	1	0	9	10
17-18	0	0	2	2
TOTAL	3	0	17	20

EASTBOUND Approach

Hours	Lt	Th	Rt	Total	
7-8	362	846	0	1208	
8-9	281	1148	2	1431	
9-10	249	1005	0	1254	
15-16	221	1052	2	1275	
16-17	218	1058	2	1278	
17-18	248	1123	1	1372	
TOTAL	1579	6232	7	7818	

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	2	0	156	158
8-9	13	0	246	259
9-10	20	0	189	209
15-16	41	0	302	343
16-17	40	0	328	368
17-18	49	0	319	368
TOTAL	165	0	1540	1705

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	5	843	145	993
8-9	13	1066	159	1238
9-10	7	1043	121	1171
15-16	3	1096	61	1160
16-17	4	1119	58	1181
17-18	2	1125	80	1207
TOTAL	34	6292	624	6950

TOTAL XING S/L

N-S

TOTAL

Ped	Sch	Ped	Sch
0	0	0	11

XING N/L

159	0	0	9	11
260	0	0	29	32
210	0	0	35	37
348	0	0	28	39
378	0	0	31	34
370	0	0	25	25
1725	0	0	157	178

XING W/L XING E/L

E-W	Ped	Sch	Ped	Sch
2201	0	0	0	0
2669	1	1	0	0
2425	1	1	0	0
2435	0	0	0	0
2459	1	1	0	0
2579	2	2	0	0
14768	5	5	0	0

Walgrove Ave/James Import Dwy & Washington Blvd

Peak Hour Turning Movement Count

National Data & Surveying Services Intersection Turning Movement Count

Location: Walgrove Ave/James Import Dwy & Washington Blvd City: Los Angeles Control: 1-Way Stop(SB)

Project ID: 17-05515-002 Date: 8/29/2017

								10	tai								
NS/EW Streets:	Walgr	rove Ave/Ja	mes Import	Dwy	Walgro	ove Ave/Jar	nes Import	Dwy		Washingt	on Blvd			Washingt	on Blvd		
		NORTH	IBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	0	0	0	0	0	1	0	0	1	2	0	0	0	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	1	0	0	0	0	0	22	0	79	157	0	1	0	149	33	0	442
7:15 AM	0	0	0	0	0	0	36	0	108	186	0	1	0	172	29	2	534
7:30 AM	0	0	0	0	0	0	43	0	93	244	0	0	1	238	51	1	671
7:45 AM	0	0	0	0	2	0	55	0	79	253	0	1	1	276	32	0	699
8:00 AM	0	0	0	0	2	0	44	0	75	272	1	0	1	285	38	4	722
8:15 AM	0	0	0	0	5	0	68	0	64	268	1	1	1	244	37	3	692
8:30 AM	0	0	1	0	1	0	71	0	63	295	0	0	0	242	40	0	713
8:45 AM	0	0	0	0	5	0	63	0	/8	308	0	0	0	290	44	4	792
9:00 AM	0	0	0	0	5	0	38	0	79	254	0	0	0	292	37	1	/06
9:15 AIVI	0	0	0	0	5	0	20	0	52	251	0		0	244	30	3	0/1
9:30 AIVI	1	0	0	0		0	40	0	52	250	0		1	242	27	2	620
9:40 AIVI	1	U	0	0	9	U	51	U	39	244	U	U	1.1	257	22	0	024
	NI	NT	NR	NH	SI	ST	SP	SU	FL	FT	FR	FU	WI	WT	WR	W/H	τοται
TOTAL VOLUMES .	2	0	1	0	35	0	591	0	886	2982	2	6	5	2931	425	20	7886
APPROACH %'s :	66.67%	0.00%	33.33%	0.00%	5.59%	0.00%	94.41%	0.00%	22.86%	76.93%	0.05%	0.15%	0.15%	86.69%	12.57%	0.59%	,000
PEAK HR :		08:00 AM -	09:00 AM		08:00 AM	41	37	48									TOTAL
PEAK HR VOL :	0	0	1	0	13	0	246	0	280	1143	2	1	2	1061	159	11	2919
PEAK HR FACTOR	0.000	0.000	0.250	0.000	0.650	0.000	0.866	0.000	0.007	0 0 2 0	0 500	0.250	0.500	0.915	0.903	0.688	
	0.000	0.000	0.230	0.000	0.030	0.000	0.000	0.000	0.097	0.920	0.500	0.230	0.000	0.715	0.705	0.000	0 0 2 1
- Exact in the form	0.000	0.000	150	0.000	0.050	0.000	37	0.000	0.897	0.928	24	0.230	0.500	0.713	12	0.000	0.921
	0.000	0.000	0.250 250	0.000	0.030	0.000	37	0.000	0.897	0.928	24	0.230	0.300	0.91	12	0.000	0.921
	0.000	0.000 0.2	180UND	0.000	0.030	0.88 SOUTH	BOUND	0.000	0.097	0.928 0.92 EASTB	0.500 24 OUND	0.230	0.300	0.91 WESTE	I2	0.000	0.921
PM	0.000	0.000 0.2 NORTH 0	IBOUND 0	0.000	0.030	0.88 0.88 SOUTH	BOUND 0	0.000	1	0.928 0.92 EASTB 2	0.500 24 OUND 0	0.230	0	0.91 0.91 WESTE		0	0.921
PM	0.000 NL	0.000 0.2 NORTH 0 NT	0.230 250 IBOUND 0 NR	0 NU	0 SL	0.88 SOUTH 1 ST	BOUND 0 SR	0 SU	1 EL	0.928 0.92 EASTB 2 ET	0.300 24 OUND 0 ER	0 EU	0 WL	0.91 WESTE 2 WT	BOUND 0 WR	0 WU	0.921 TOTAL
PM 3:00 PM	0 NL 0	0.000 0.2 NORTH 0 NT 0	0.230 180UND 0 NR 1	0.000 NU 0	0.030 0 SL 10	0.88 SOUTH 1 ST 0	BOUND 0 SR 65	0 SU 0	1 EL 63	0.928 0.92 EASTB 2 ET 296	0.300 0 0 ER 0	0 EU 1	0 WL 0	0.91 0.91 WESTE 2 WT 267	0.703 12 00UND 0 WR 20	0 WU 0	0.921 TOTAL 723
PM 3:00 PM 3:15 PM	0 NL 0	0.000 0.2 NORTH 0 NT 0 0	0.230 180UND 0 NR 1 1	0 NU 0	0 SL 10 9	0.88 SOUTH 1 ST 0 0	BOUND 0 SR 65 76	0 SU 0	1 EL 63 65	0.928 0.92 EASTB 2 ET 296 251	0.300 24 OUND 0 ER 0 0	0 EU 1 0	0.300 WL 0 1	0.91 0.91 WESTE 2 WT 267 287	80UND 0 WR 20 15	0 WU 0	0.921 TOTAL 723 705
PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM	0 NL 0 0 0	0.000 0.2 NORTH 0 NT 0 0 0	0.230 180UND 0 NR 1 1 1	0 NU 0 0	0 SL 10 9	0.88 0.88 SOUTH 1 ST 0 0 0	0.000 BOUND 0 SR 65 76 88 72	0 SU 0 0	1 EL 63 65 44	0.928 0.92 EASTB 2 ET 296 251 247 252	0.300 24 OUND 0 ER 0 0 1	0 EU 1 0 0	0 WL 0 1 0	0.91 0.91 WESTE 2 WT 267 287 264 270	0.303 12 0 0 WR 20 15 11	0 WU 0 0	0.921 TOTAL 723 705 665 474
PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM	0.000 NL 0 0 0	0.000 0.2 NORTH 0 NT 0 0 0 0	0.250 IBOUND 0 NR 1 1 1 2 1	0 NU 0 0 0 0	0 SL 10 9 9 13	0.000 0.88 SOUTHI 1 ST 0 0 0 0	0.000 37 BOUND 0 SR 65 76 88 73 79	0 SU 0 0 0 0	1 EL 63 65 44 47	0.928 0.92 EASTB 2 ET 296 251 247 252 252	0.300 24 0 0 ER 0 0 1 1 1	0 EU 1 0 1	0 WL 0 1 0 2	0.91 WESTE 2 WT 267 287 264 270 270	0.003 12 SOUND 0 WR 20 15 11 15 17	0 WU 0 0 0 0	0.921 TOTAL 723 705 665 676 697
PM 3:00 PM 3:15 PM 3:30 PM 3:30 PM 3:45 PM 4:00 PM 4:00 PM	0.000 NL 0 0 0 0	0.000 0.2 0.2 0 0 0 0 0 0	0.250 1500 1800ND 0 NR 1 1 1 2 2	0 NU 0 0 0 0 0	0 SL 10 9 13 12 12	0.88 0.88 SOUTH 1 ST 0 0 0 0 0 0 0	0.000 37 BOUND 0 SR 65 76 88 73 78 79	0 SU 0 0 0 0 0	1 EL 63 65 44 47 49 53	0.928 0.92 EASTB 2 ET 296 251 247 252 269 259	0.300 24 00UND 0 ER 0 0 1 1 1	0 EU 1 0 1 1	0 WL 0 1 0 2 0	0.91 0.91 WESTE 2 WT 267 287 264 270 270 284	0.000 12 COUND 0 WR 20 15 11 15 17 17 12	0 WU 0 0 0 0 0	0.921 TOTAL 723 705 665 676 697 706
PM 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 4:15 PM 4:15 PM	0.000 0 0 0 0 0 0 0 0 0	0.000 0.2 00000000000000000000000000000	0.230 100000 100000 11 1 1 2 1 2 4	0 NU 0 0 0 0 0 0	0 SL 10 9 9 13 12 13 6	0.88 0.88 SOUTH 1 ST 0 0 0 0 0 0 0 0 0	0.000 37 BOUND 0 SR 65 76 88 73 78 79 90	0 SU 0 0 0 0 0 0	1 EL 63 65 44 47 49 53 66	0.928 0.92 EASTB 2 ET 296 251 247 252 269 259 264	0.300 24 0 0 0 ER 0 0 1 1 0 1 1	0 EU 1 0 0 1 1 0 0	0 WL 0 1 0 2 0 1	0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91	0.000 12 000ND 0 WR 20 15 11 15 17 13 17	0 WU 0 0 0 0 0 1	0.921 TOTAL 723 705 665 676 697 706 723
PM 3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:30 PM 4:30 PM 4:30 PM	0.000 0 0 0 0 0 0 0 0 0 0	0.000 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0	0.230 150 100 1 1 1 1 2 1 2 4 2	0 NU 0 0 0 0 0 0 0	0 SL 10 9 13 12 13 6 9	0.88 0.88 SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 37 BOUND 0 SR 65 76 88 73 78 79 90 81	0 SU 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 49 53 66 49	0.928 0.92 EASTB 2 ET 296 251 247 252 269 259 264 261	0.300 24 OUND 0 ER 0 0 1 1 1 0 1 1 0	0.230 EU 1 0 0 1 1 0 0 0	0 0 0 1 0 2 0 1 0 0 1 0 0	0.91 0.91 WESTE 2 WT 267 287 264 270 270 284 270 284 274 284	0.000 000000 000000 000000 000000 000000	0 WU 0 0 0 0 1 1 1	0.921 TOTAL 723 705 665 676 697 706 723 699
PM 3:00 PM 3:15 PM 3:30 PM 3:345 PM 4:00 PM 4:15 PM 4:30 PM 4:32 PM	0.000 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.230 50 IBOUND 0 NR 1 1 1 2 4 2 4 2 1	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SL 10 9 9 13 12 13 6 9 9	0.88 0.88 SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 37 BOUND 0 SR 65 76 88 73 78 79 90 81 83	0 SU 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 49 53 66 49 67	0.928 0.92 EASTB 2 ET 296 251 247 252 269 259 264 269 259 264 261 278	0.300 24 0 0 0 0 1 1 1 0 1 1 0 0 0	0.230 EU 1 0 0 1 1 0 0 0	0 WL 0 1 0 2 0 1 0 1 0 0 0	0.91 0.91 WESTE 2 WT 267 287 264 270 270 284 270 284 274 284 288	0.000 12 000000 11 15 17 10 10 10 10 10 10 10 10 10 10	0 WU 0 0 0 0 0 1 1 1 1	0.921 TOTAL 723 705 665 676 697 706 723 699 744
PM 3:00 PM 3:15 PM 3:30 PM 3:35 PM 4:00 PM 4:15 PM 4:30 PM 4:30 PM 5:00 PM 5:15 PM	0.000 0 NL 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0	0.230 50 IBOUND 0 NR 1 1 1 2 4 2 4 2 1 0	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SL 10 9 9 13 12 13 6 9 13	0.88 0.88 SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 SR 65 76 88 73 78 79 90 81 83 74	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 53 66 49 67 54	0.928 0.92 EASTB 2 296 251 247 252 269 259 264 261 278 278	0.300 24 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0	0 EU 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.300 WL 0 1 0 2 0 1 0 0 0 0 0 0	0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91	000000 000000 20 15 11 15 17 13 17 13 17 11 16 20	0 WU 0 0 0 0 0 1 1 1 1 1 0	0.921 TOTAL 723 705 665 676 697 706 723 699 744 710
PM 3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:30 PM 4:30 PM 4:35 PM 5:00 PM 5:30 PM	0.000 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.230 50 IBOUND 0 NR 1 1 2 1 2 4 2 1 0 1 1 1 2 4 2 1 1 1 2 4 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0	0.550 0 SL 10 9 13 12 13 6 9 9 13 22	0.80 0.81 SOUTHI 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 SR 65 65 76 88 73 78 79 90 81 83 74 86 86	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 49 53 66 49 67 54 71	0.928 0.92 EASTB 2 2 2 2 2 2 2 2 2 2 2 2 2	0.500 24 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1	0 EU 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0	0.300 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.91 0.91 WESTE 2 WT 267 287 264 270 270 284 270 270 284 274 284 288 271 262	COUND 0 WR 20 15 11 15 17 13 17 11 17 11 16 20 15	0 WU 0 0 0 0 0 1 1 1 1 0 0	0.921 TOTAL 723 705 665 676 723 699 744 710 731
PM 3:00 PM 3:15 PM 3:30 PM 3:345 PM 4:00 PM 4:30 PM 4:30 PM 4:32 PM 5:15 PM 5:30 PM 5:35 PM 5:34 PM	0000 NL 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.2 NORTH 0 0 0 0 0 0 0 0 0 0 0 0 0	IBOUND 0 NR 1 1 1 2 2 4 2 2 1 0 1 0	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 SL 10 9 9 13 12 13 6 9 9 13 22 5	0.88 SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0	87 80 80 65 76 88 73 78 79 90 81 83 74 83 74 86 76	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 49 53 66 49 67 54 71 55	0.928 0.92 EASTB 2 296 251 247 252 269 259 264 261 278 278 273 289	0.500 24 00UND 0 ER 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	0 EU 1 0 0 1 1 0 0 0 0 1 0 0 0 0	0 WL 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	WESTE 2 WT 267 287 267 270 284 284 288 271 262 299	00000 00000 20 15 11 15 17 13 17 11 16 20 15 29	0 WU 0 0 0 0 1 1 1 1 1 0 0 0	0.921 TOTAL 723 705 665 697 706 723 699 706 729 744 710 731 754
PM 3:00 PM 3:15 PM 3:30 PM 3:35 PM 4:00 PM 4:15 PM 4:30 PM 4:30 PM 5:30 PM 5:30 PM 5:30 PM	0 NL 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2000 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0	0.200 50 IBOUND 0 NR 1 1 1 2 4 2 4 2 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 9 9 13 10 9 9 13 10 9 9 13 10 9 9 13 10 9 9 13 10 9 9 13 13 10 9 9 13 13 10 9 9 13 13 13 13 13 13 13 13 13 13	0.88 SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0	87 BOUND 0 0 SR 65 76 88 73 78 79 90 81 83 74 86 76	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 49 53 66 49 67 54 71 55	EASTB 2 ET 296 251 247 252 269 264 269 264 269 264 269 278 278 278 278 278 273 289	0.500 24 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0	0 EU 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 1 0 2 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 2 1 0 1 0 2 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0.91 WESTE 2 WT 267 287 264 270 284 274 284 271 262 299	2) SOUND 0 WR 20 15 11 15 17 13 17 11 16 20 15 29	0 WU 0 0 0 0 1 1 1 1 0 0 0	0.921 TOTAL 723 705 665 676 697 706 723 699 744 710 731 754
PM 3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:30 PM 4:30 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0.000 NL 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.2 NORTH 0 0 0 0 0 0 0 0 0 0 0 0 0	0.200 50 IBOUND 0 NR 1 1 1 2 2 1 2 4 4 2 0 1 0 0 NR	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SL 10 9 9 13 12 13 6 9 9 13 22 5 SL	0.88 SOUTH 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0	87 BOUND 0 5R 65 76 88 73 78 79 90 81 83 74 83 74 86 76 5R	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 53 66 65 49 67 54 71 55 EL	EASTB 2 ET 296 251 247 252 269 259 264 264 264 264 264 278 278 273 289 ET	0.500 24 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0	0 EU 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 1 0 2 0 1 0 0 0 0 0 0 0 1 WL	0.91 WESTE 2 WT 267 267 264 270 270 284 274 284 274 284 271 262 299 WT	WR 20 WR 20 15 17 13 17 12 20 15 17 13 17 11 16 20 15 29 WR	0 WU 0 0 0 0 1 1 1 1 0 0 0 0 WU	0.921 TOTAL 723 705 665 676 697 706 699 744 710 731 754 TOTAL
PM 3:00 PM 3:15 PM 3:30 PM 3:34 FM 4:00 PM 4:30 PM 4:30 PM 5:15 PM 5:30 PM 5:35 PM 5:45 PM TOTAL VOLUMES :	0 NL 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.2 NORTH 0 0 0 0 0 0 0 0 0 0 0 0 0	0.200 50 IBOUND 0 NR 1 1 1 2 4 2 1 0 1 0 NR 16 NR	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SL 10 9 9 13 12 13 6 9 13 22 5 SL 130 130 130 130 130 130 130 130	SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 BOUND 0 0 SR 665 76 88 73 78 79 90 81 83 74 83 74 83 74 83 74 85 86 76	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 53 66 49 67 54 54 71 55 EL 683 683	EASTB 2 EASTB 2 251 247 259 269 259 264 261 278 278 278 278 278 278 278 273 289 ET 3217	0.500 24 0 0 ER 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 5 5	0 EU 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 1 0 1 0 2 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.91 WESTE 2 WT 264 270 284 270 284 270 284 270 284 270 284 270 284 270 284 270 284 270 284 270 284 270 284 270 287 287 287 287 287 287 287 287 287 287	20 OUND 0 WR 20 15 11 15 17 13 17 13 17 16 20 15 29 WR 199	0 WU 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0	0.921 TOTAL 723 705 665 667 706 723 699 744 710 731 754 TOTAL 8533
PM 3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:15 PM 4:30 PM 4:35 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM	0 NL 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.2 NORTH- 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0	0.230 50 180UND 0 NR 1 1 1 2 2 4 2 1 0 0 1 0 0 NR 16 94.12%	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SL 10 9 9 9 13 12 13 6 9 9 13 22 5 SL 130 12.05%	SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 BOUND 0 SR 65 76 88 73 78 79 90 81 83 74 83 74 86 76 83 78 79 90 81 83 74 83 74 86 76 83 83 74 83 84 949 87.95%	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 49 53 66 49 67 54 71 55 EL 683 17.47%	EASTB 2 2 EASTB 2 251 251 252 269 259 264 264 264 278 273 289 ET 3217 82.30%	0.500 24 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EU 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.93 WESTE 2 WT 267 287 264 270 270 270 270 270 274 284 274 284 271 262 299 WT 3320 94.10%	22 20 20 20 0 WR 20 15 11 15 17 17 13 17 17 11 16 20 15 29 WR WR 19 5.64%	0 WU 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0	0.921 TOTAL 723 705 665 676 706 723 699 744 710 731 754 TOTAL 8533
PM 3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:30 PM 4:30 PM 4:30 PM 5:15 PM 5:30 PM 5:30 PM 5:345 PM TOTAL VOLUMES : APPROACH %'s : APPROACH %'s :	0 NL 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.2 NORTHO 0 0 0 0 0 0 0 0 0 0 0 0 0	50 180UND 0 NR 1 1 1 2 4 4 2 1 0 1 0 NR 1 2 4 4 9 4 2 0 1 0 0 NR 1 1 2 2 4 0 0 0 0 0 NR 1 1 1 2 2 4 0 0 0 0 0 NR 1 1 1 2 2 4 0 0 0 0 0 0 NR 1 1 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5L 10 9 13 12 13 6 9 9 13 22 5 5L 130 12.05%	SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOUND 0 SR 65 76 88 73 78 79 90 81 83 74 83 76 58 949 87.95%	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 49 53 66 67 54 49 67 54 67 55 EL 683 17.47%	EASTB 2 EASTB 2 ET 251 247 252 269 259 264 261 278 273 289 ET 3217 82.30%	0.500 24 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 EU 1 0 0 1 1 0 0 0 0 0 EU 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 1 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.91 WESTE 2 287 287 287 284 287 264 270 270 284 288 274 284 288 271 262 299 WT 3320 94.10%	2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	0 WU 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0	0.921 TOTAL 723 705 665 676 697 706 723 699 744 731 754 TOTAL 8533 TOTAL
PM 3:00 PM 3:15 PM 3:30 PM 3:30 PM 4:00 PM 4:30 PM 4:30 PM 4:30 PM 5:15 PM 5:30 PM 5:35 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR 'VOL :	0.000 0 0 0 0 0 0 0 0 0 0 0 0	0.20 NORTH- 0 NT 0 0 0 0 0 0 0 0 0 0 0 0 0	0.200 50 180UND 0 NR 1 1 1 2 2 4 4 2 1 0 1 0 1 0 NR 16 94.12% 0 100 0 NR 2 2 0 2 0 0 0 0 0 0 NR	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SL 10 9 9 13 12 13 6 9 13 22 5 SL 130 12.05% 49	0.000 SOUTH 1 ST 0 0 0 0 0 0 0 0 0 0 0 0 0	37 BOUND 0 SR 65 76 88 73 79 90 81 78 79 90 81 74 83 74 83 74 83 74 83 76 SR 949 87.95%	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 64 44 47 49 53 66 67 54 71 55 EL 683 17.47% 247 247	EASTB 2 2 ET 251 252 269 259 264 264 264 278 278 278 278 278 278 278 278 278 278	0UND 0 0 <u>ER</u> 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0	0 EU 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 WL 5 0.14% 1 0	0.93 WESTE 2 WT 267 267 270 270 270 270 274 284 274 288 271 262 274 284 271 264 270 270 270 270 270 270 270 270	22 20 00UND 0 15 15 15 15 17 17 13 17 17 13 17 17 11 16 20 5.64% 80 0 10 10 10 10 10 10 10 10 10 10 10 10	0 WU 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0	0.921 TOTAL 723 705 665 676 697 706 697 706 697 723 699 744 710 731 754 TOTAL 8533 TOTAL 2939
PM 3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:30 PM 4:30 PM 4:30 PM 5:15 PM 5:15 PM 5:30 PM 5:45 PM 5:345 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR 2007 : PEAK HR FACTOR :	0 NL 0 0 0 0 0 0 0 0 0 0 0 0 0	0.20 0.20 0.20 0 0 0 0 0 0 0 0 0 0 0 0 0	50 180UND 0 NR 1 1 1 2 2 4 2 1 0 1 0 16 94.12% 0.500 PM 2 0.500	0 NU 0 0 0 0 0 0 0 0 0 0 0 0 0	0 SL 10 9 13 12 13 6 9 9 13 22 5 SL 130 12.05% 49 0.557	0.00% 0.88 0.00% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 BOUND 0 SR 65 76 88 73 78 79 90 81 83 74 83 74 86 76 SR 949 87.95% 319 0.927	0 SU 0 0 0 0 0 0 0 0 0 0 0 0 0	1 EL 63 65 44 47 53 66 49 67 54 71 55 EL 683 17.47% 247 0.870	EASTB 2 EASTB 296 251 247 252 269 264 259 264 261 278 278 278 278 273 289 ET 3217 82.30%	0.300 24 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.230 0 EU 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 WL 0 1 0 2 0 1 0 0 0 0 0 0 0 1 WL 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.93 WESTE 2 WT 267 264 270 270 270 284 284 284 284 284 284 284 284	22 20 00UND 20 15 11 15 17 13 17 11 16 20 15 15 29 WR 199 5.64% 80 0.690	0 WU 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0	0.921 TOTAL 723 705 665 676 697 706 723 699 744 710 731 754 TOTAL 8533 TOTAL 2939 0.974

STREET: North/South	Lincoln Blvo	1								
East/West	Marina Poin	te Dr_Maxe	ella Ave							
Day:	Tuesday	Da	te: A	pril 26, 20	016	Weather:	<u>_</u>	SUNNY	_	
Hours: 7-10 &	2 3-6			Ch	ekrs:	NDS				
School Day:	YES	Dis	strict:			I/S CO	DE _			
DUAL- WHEELED BIKES BUSES	N/B 223 31 72		S/B 174 19			E/B 16 48		W	/ <u>B</u> 41 54	
DUSES	N/B	TIME	S/B	TIME		E/B	TIME	W	/B	TIME
AM PK 15 MIN	644	8.45	517	8.00		107	7.30	1	04	9.30
PM PK 15 MIN	598	17.45	600	16.15		81	15.45	1	60	16.30
AM PK HOUR	2481	7.00	1966	7.45		353	7.30	3	62	9.00
PM PK HOUR	2243	17.00	2195	16.15		260	16.45	5	93	16.30

NORTHBOUND Approach

EASTBOUND Approach

Lt

74 73

81

81

72

83

464

Hours

7-8

8-9

9-10

15-16

16-17

17-18

TOTAL

Hours	Lt	Th	Rt	Total
7-8	73	2187	221	2481
8-9	112	1991	266	2369
9-10	110	1985	278	2373
15-16	143	1527	244	1914
16-17	155	1578	287	2020
17-18	186	1725	332	2243
TOTAL	779	10993	1628	13400

Th

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	67	1391	48	1506
8-9	117	1756	57	1930
9-10	113	1514	69	1696
15-16	101	1861	74	2036
16-17	113	1943	103	2159
17-18	100	1980	113	2193
TOTAL	611	10445	464	11520

WESTBOUND Approach

	Rt	Total	Hours	Lt
75	152	301	7-8	126
77	188	338	8-9	176
72	150	303	9-10	177
63	105	249	15-16	302
74	92	238	16-17	295
62	99	244	17-18	308
423	786	1673	TOTAL	1384

Lt	Th	Rt	Total
126	33	87	246
176	37	117	330
177	37	148	362
302	99	160	561
295	98	169	562
308	94	184	586
1384	398	865	2647

547 668 665 810 800 830

4320

E-W

Ped	Sch	Ped	Sch
17	0	17	0
25	0	16	0
35	0	28	0
42	0	42	0
62	0	22	0
62	0	32	1
243	0	157	1

TOTAL XING S/L

XING N/L

N-S	Ped	Sch		Ped	Sch
3987	0	0		58	1
4299	1	0		61	0
4069	0	0		93	1
3950	0	0		103	0
4179	0	0		77	0
4436	2	0	[103	2
24920	3	0	ſ	495	4

TOTAL XING W/L

XING E/L

Ped Sch

ITM Peak Hour Summary

National Data & Surveying Services

Lincoln Blvd and Marina Pointe Dr_Maxella Ave , Los Angeles

Total Volume Per Leg

Project ID:	roject ID: 16-5257-007				τοται s						Day: Tuesday			
City: I	Los Angeles					TOT. AI	ALS VI			Date: 4/26/2016				
NS/EW Streets:	Li	ncoln Blvd		Lincoln Blvd			Marina Pointe Dr_Maxella Ave			Marina Poi	inte Dr_Max	ella Ave		
	NO	ORTHBOUN	D	S	DUTHBOUNI)	EASTBOUND			WESTBOUND				
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	
LANES:	2	3	1	2	4	0	1	1	1	1.5	0.5	1		
7:00 AM	17	566	50	12	233	9	9	7	22	24	11	11	971	
7:15 AM	9	581	39	14	330	21	20	16	42	25	7	25	1129	
7:30 AM	28	516	61	20	380	12	28	26	53	34	6	27	1191	
7:45 AM	19	524	71	21	448	6	17	26	35	43	9	24	1243	
8:00 AM	16	438	67	34	467	16	20	21	46	37	11	28	1201	
8:15 AM	33	506	78	30	420	14	14	25	42	47	8	27	1244	
8:30 AM	24	497	66	33	463	14	23	17	53	42	9	30	1271	
8:45 AM	39	550	55	20	406	13	16	14	47	50	9	32	1251	
9:00 AM	21	487	70	19	381	17	25	25	38	37	7	36	1163	
9:15 AM	15	497	69	35	417	14	16	10	36	46	8	31	1194	
9:30 AM	47	476	65	34	358	13	22	19	41	47	12	45	1179	
9:45 AM	27	525	74	25	358	25	18	18	35	47	10	36	1198	
TOTAL VOLUMES :	NL 295	NT 6163	NR 765	SL 297	ST 4661	SR 174	EL 228	ET 224	ER 490	WL 479	WT 107	WR 352	TOTAL 14235	
APPROACH %'s :	4.08%	85.32%	10.59%	5.79%	90.82%	3.39%	24.20%	23.78%	52.02%	51.07%	11.41%	37.53%		
PEAK HR START TIME :	800 A	M											TOTAL	
PEAK HR VOL :	112	1991	266	117	1756	57	73	77	188	176	37	117	4967	
PEAK HR FACTOR :		0.920			0.933			0.909			0.907		0.977	

Project ID: 7	Project ID: 16-5257-007				τοται s						Day: Tuesday			
City: I	Los Angeles					PI	ALS M			Date: 4/26/2016				
NS/EW Streets:	Li	ncoln Blvd		Lincoln Blvd			Marina Pointe Dr_Maxella Ave			Marina Poi	inte Dr_Max	ella Ave		
	N	DRTHBOUN	D	SC	DUTHBOUN	D	E	ASTBOUND		V	VESTBOUNE)		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	
LANES:	2	3	1	2	4	0	1	1	1	1.5	0.5	1		
3:00 PM	37	392	68	24	465	18	18	12	36	79	24	37	1210	
3:15 PM	31	359	65	30	485	13	17	14	20	73	24	52	1183	
3:30 PM	33	390	49	29	463	14	17	17	17	75	25	34	1163	
3:45 PM	42	386	62	18	448	29	29	20	32	75	26	37	1204	
4:00 PM	30	374	66	29	473	23	16	16	30	78	20	50	1205	
4:15 PM	46	414	81	40	536	24	10	14	14	64	14	32	1289	
4:30 PM	35	383	65	25	475	32	23	24	24	78	35	47	1246	
4:45 PM	44	407	75	19	459	24	23	20	24	75	29	40	1239	
5:00 PM	45	421	79	20	514	27	20	14	26	88	15	48	1317	
5:15 PM	43	412	81	21	494	26	16	16	27	65	20	53	1274	
5:30 PM	48	436	80	23	478	29	29	20	25	88	31	40	1327	
5:45 PM	50	456	92	36	494	31	18	12	21	67	28	43	1348	
·	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	
TOTAL VOLUMES :	484	4830	863	314	5784	290	236	199	296	905	291	513	15005	
APPROACH %'s :	7.84%	78.19%	13.97%	4.92%	90.54%	4.54%	32.28%	27.22%	40.49%	52.95%	17.03%	30.02%		
PEAK HR START TIME :	500 F	M											TOTAL	
PEAK HR VOL :	186	1725	332	100	1980	113	83	62	99	308	94	184	5266	
PEAK HR FACTOR :		0.938			0.977			0.824			0.921		0.977	

STREET: North/South	Del Rey Ave	e						
East/West	Maxella Ave	e						
Day:	Tuesday	Da	ite: A	pril 26, 2016	Weather:	5	SUNNY	
Hours: 7-10 &	3-6			Chekrs:	NDS			
School Day:	YES	Di	strict:		I/S CO	DE _		
DUAL-	N/B		S/B		E/B		W/B	
WHEELED	0		25		35		38	
BIKES	0		19		53		58	
BUSES	0		0		23		12	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN	0	0.00	34	9.45	141	8.15	99	8.45
PM PK 15 MIN	0	0.00	74	17.30	150	17.45	144	16.30
AM PK HOUR	0	0.00	107	9.00	510	7.45	361	8.45
PM PK HOUR	0	0.00	274	16.45	536	17.00	504	16.30

NORTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	0	0	0	0
8-9	0	0	0	0
9-10	0	0	0	0
15-16	0	0	0	0
16-17	0	0	0	0
17-18	0	0	0	0
TOTAL	0	0	0	0

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	133	232	0	365
8-9	152	318	0	470
9-10	140	347	0	487
15-16	65	358	0	423
16-17	95	409	0	504
17-18	78	458	0	536
TOTAL	663	2122	0	2785

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	24	0	41	65
8-9	38	0	63	101
9-10	34	0	73	107
15-16	78	0	147	225
16-17	63	0	163	226
17-18	85	0	182	267
TOTAL	322	0	669	991

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	0	186	39	225
8-9	2	274	73	349
9-10	0	266	79	345
15-16	0	378	90	468
16-17	1	381	91	473
17-18	2	409	78	489
TOTAL	5	1894	450	2349

TOTAL XIN

XING S/L

XING N/L

N-S	Ped	Sch	Ped	Sch
65	0	0	45	7
101	0	0	77	10
107	0	0	91	17
225	0	0	83	21
226	0	0	90	21
267	0	0	99	15
991	0	0	485	91

TOTAL XING W/L

XING E/L

E-W	Ped	Sch	Ped	Sch
590	3	1	1	0
819	5	2	3	1
832	5	1	1	0
891	1	0	2	0
977	7	1	7	1
1025	2	0	2	0
5134	23	5	16	2

ITM Peak Hour Summary Prepared by:

National Data & Surveying Services

Del Rey Ave and Maxella Ave , Los Angeles

Total Volume Per Leg

Project ID:	16-5257-01	13		TOTALS						Day: Tuesday			
City:	Los Angele	s				AN	ALS A			Date: 4/26/2016			
NS/EW Streets:		Del Rey Ave	•	Del Rey Ave			Maxella Ave			Maxella Ave			
	١	NORTHBOUI	ND	SOUTHBOUND		D	EASTBOUND			WESTBOUND			
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WТ	WR	TOTAL
LANES:	0	0	0	0	1	0	1	2	0	0	2	0	
7:00 AM	0	0	0	6	0	11	31	38	0	0	35	10	131
7:15 AM	0	0	0	5	0	8	26	43	0	0	42	6	130
7:30 AM	0	0	0	4	0	7	32	70	0	0	49	10	172
7:45 AM	0	0	0	9	0	15	44	81	0	0	60	13	222
8:00 AM	0	0	0	9	0	14	34	88	0	0	63	19	227
8:15 AM	0	0	0	11	0	19	47	94	0	2	69	12	254
8:30 AM	0	0	0	9	0	15	45	77	0	0	73	12	231
8:45 AM	0	0	0	9	0	15	26	59	0	0	69	30	208
9:00 AM	0	0	0	7	0	18	40	85	0	0	56	18	224
9:15 AM	0	0	0	9	0	12	33	85	0	0	73	21	233
9:30 AM	0	0	0	11	0	16	33	84	0	0	76	18	238
9:45 AM	0	0	0	7	0	27	34	93	0	0	61	22	244
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	0	0	0	96	0	177	425	897	0	2	726	191	2514
APPROACH %'s :	#DIV/0!	#DIV/0!	#DIV/0!	35.16%	0.00%	64.84%	32.15%	67.85%	0.00%	0.22%	79.00%	20.78%	
PEAK HR START TIME :	900	AM											TOTAL
PEAK HR VOL :	0	0	0	34	0	73	140	347	0	0	266	79	939
PEAK HR FACTOR :		0.000			0.787			0.959			0.918		0.962

CONTROL : 1-Way Stop (SB)

Project ID: 16-5257-013										Day: Tuesday			
City:	Los Angele	S				TOTA	ALS A			Date: 4/26/2016			
NS/EW Streets:		Del Rey Ave	ġ	D	el Rey Ave		Maxella Ave			N	laxella Ave		
	١	NORTHBOUI	ND	SC	DUTHBOUN	D	E	EASTBOUND		V	VESTBOUNE)	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WΤ	WR	TOTAL
LANES:	0	0	0	0	1	0	1	2	0	0	2	0	
3:00 PM	0	0	0	12	0	40	16	90	0	0	91	19	268
3:15 PM	0	0	0	18	0	41	18	99	0	0	103	25	304
3:30 PM	0	0	0	25	0	28	21	74	0	0	96	23	267
3:45 PM	0	0	0	23	0	38	10	9 5	0	0	88	23	277
4:00 PM	0	0	0	15	0	39	22	92	0	1	100	21	290
4:15 PM	0	0	0	9	0	32	23	117	0	0	76	18	275
4:30 PM	0	0	0	17	0	44	29	101	0	0	119	25	335
4:45 PM	0	0	0	22	0	48	21	99	0	0	86	27	303
5:00 PM	0	0	0	19	0	48	24	96	0	1	115	19	322
5:15 PM	0	0	0	30	0	33	17	106	0	0	92	20	298
5:30 PM	0	0	0	21	0	53	21	122	0	1	106	23	347
5:45 PM	0	0	0	15	0	48	16	134	0	0	96	16	325
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	0	0	0	226	0	492	238	1225	0	3	1168	259	3611
APPROACH %'s :	#DIV/0!	#DIV/0!	#DIV/0!	31.48%	0.00%	68.52%	16.27%	83.73%	0.00%	0.21%	81.68%	18.11%	
PEAK HR START TIME :	500	PM											TOTAL
PEAK HR VOL :	0	0	0	85	0	182	78	458	0	2	409	78	1292
PEAK HR FACTOR :		0.000			0.902			0.893			0.906		0.931

CONTROL : 1-Way Stop (SB)

STREET: North/South	Hotel Dwy							
East/West	Maxella Ave	e						
Day:	Tuesday	Dat	e:A	April 26, 2016		2	SUNNY	
Hours: 7-10	& 3-6			Chekrs:	NDS			
School Day:	YES	Dist	rict:		I/S CO	DE _		
DUAT	N/B		S/B		E/B		W/B	
DUAL- WHEELED	12		0		27		36	
BIKES BUSES	7 0		0 0		46 23		50 12	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN	34	8.00	0	0.00	100	8.15	85	8.45
PM PK 15 MIN	31	16.00	0	0.00	137	17.45	124	16.30
AM PK HOUR	113	7.45	0	0.00	354	7.45	301	8.45
PM PK HOUR	108	17.00	0	0.00	510	17.00	452	16.30

NORTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	40	0	44	84
8-9	48	0	60	108
9-10	46	0	48	94
15-16	56	0	34	90
16-17	52	0	50	102
17-18	61	0	47	108
TOTAL	303	0	283	586

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	0	0	0	0
8-9	0	0	0	0
9-10	0	0	0	0
15-16	0	0	0	0
16-17	0	0	0	0
17-18	0	0	0	0
TOTAL	0	0	0	0

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	12	160	0	172
8-9	32	267	0	299
9-10	31	260	0	291
15-16	36	359	0	395
16-17	47	382	0	429
17-18	47	377	0	424
TOTAL	205	1805	0	2010

TOTAL XING S/L

TOTAL

XING N/L

N-S	Ped	Sch		Ped	Sch
84	10	1	[0	0
108	30	2		0	0
94	38	2		0	0
90	36	0		0	0
102	26	0		0	0
108	43	2		0	0
586	183	7		0	0

XING W/L

XING E/L

E-W	Ped	Sch	Ped	Sch
402	1	0	20	0
633	4	0	55	3
636	3	0	67	3
825	3	0	131	2
902	4	0	110	0
934	2	0	144	3
4332	17	0	527	11

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	0	202	28	230
8-9	0	293	41	334
9-10	0	294	51	345
15-16	0	366	64	430
16-17	0	394	79	473
17-18	2	422	86	510
TOTAL	2	1971	349	2322

ITM Peak Hour Summary Prepared by:

National Data & Surveying Services

Hotel Dwy and Maxella Ave , Los Angeles

Total Volume Per Leg

Project ID:	16-5257-014									Day: Tuesday			
City:	Los Angeles			AM						Date: 4/26/2016			
NS/EW Streets:	F	lotel Dwy			Hotel Dwy		N	Aaxella Ave		N	laxella Ave		
	NC	DRTHBOUN	D		Southbour	ND	E	EASTBOUND)	V	VESTBOUND)	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	0	1	0	0	0	0	2	0	0	2	0	
7:00 AM	5	0	13	0	0	0	0	29	8	3	37	0	95
7:15 AM	7	0	14	0	0	0	0	42	3	0	32	0	98
7:30 AM	14	0	4	0	0	0	0	54	13	4	42	0	131
7:45 AM	14	0	13	0	0	0	0	77	4	5	49	0	162
8:00 AM	16	0	18	0	0	0	0	73	17	9	62	0	195
8:15 AM	14	0	13	0	0	0	0	91	9	8	63	0	198
8:30 AM	8	0	17	0	0	0	0	74	9	8	64	0	180
8:45 AM	10	0	12	0	0	0	0	55	6	7	78	0	168
9:00 AM	14	0	5	0	0	0	0	75	12	5	58	0	169
9:15 AM	14	0	17	0	0	0	0	71	10	9	70	0	191
9:30 AM	8	0	12	0	0	0	0	77	7	6	68	0	178
9:45 AM	10	0	14	0	0	0	0	71	22	11	64	0	192
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	134	0	152	0	0	0	0	789	120	75	687	0	1957
APPROACH %'s :	46.85%	0.00%	53.15%	#DIV/0!	#DIV/0!	#DIV/0!	0.00%	86.80%	13.20%	9.84%	90.16%	0.00%	
PEAK HR START TIME :	800 A	M											TOTAL
PEAK HR VOL :	48	0	60	0	0	0	0	293	41	32	267	0	741
PEAK HR FACTOR :		0.794			0.000			0.835			0.879		0.936

CONTROL : 1-Way Stop (NB)

Project ID:	16-5257-014			707110							Day: ⊺	uesday	
City:	Los Angeles			PM					Date: 4/26/2016				
NS/EW Streets:	F	lotel Dwy			Hotel Dwy		Ν	laxella Ave		N	/laxella Ave		
	NC	ORTHBOUN	D		SOUTHBOU	ND	E	ASTBOUND		V	VESTBOUND)	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	0	1	0	0	0	0	2	0	0	2	0	
3:00 PM	15	0	8	0	0	0	0	95	17	7	82	0	224
3:15 PM	17	0	7	0	0	0	0	9 0	17	14	99	0	244
3:30 PM	14	0	8	0	0	0	0	79	11	9	9 5	0	216
3:45 PM	10	0	11	0	0	0	0	102	19	6	83	0	231
4:00 PM	13	0	18	0	0	0	0	85	23	7	94	0	240
4:15 PM	8	0	14	0	0	0	0	98	21	15	74	0	230
4:30 PM	14	0	10	0	0	0	0	106	14	11	113	0	268
4:45 PM	17	0	8	0	0	0	0	105	21	14	101	0	266
5:00 PM	14	0	15	0	0	0	1	93	14	8	109	0	254
5:15 PM	15	0	8	0	0	0	0	104	25	11	85	0	248
5:30 PM	18	0	11	0	0	0	0	111	25	11	96	0	272
5:45 PM	14	0	13	0	0	0	1	114	22	17	87	0	268
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	169	0	131	0	0	0	2	1182	229	130	1118	0	2961
APPROACH %'s :	56.33%	0.00%	43.67%	#DIV/0!	#DIV/0!	#DIV/0!	0.14%	83.65%	16.21%	10.42%	89.58%	0.00%	
PEAK HR START TIME :	500 P	M											TOTAL
PEAK HR VOL :	61	0	47	0	0	0	2	422	86	47	377	0	1042
PEAK HR FACTOR :		0.931			0.000			0.931			0.906		0.958

CONTROL : 1-Way Stop (NB)

STREET: North/South	Glencoe Ave	2						
East/West	Maxella Ave	2						
Day:	Tuesday	Date:	А	pril 26, 2016	Weather:		SUNNY	
Hours: 7-10) & 3-6			Chekrs:	NDS			
School Day:	YES	District:	-		I/S CO	DE		
DUAL-	N/B		S/B		E/B		W/B	
WHEELED	57		57		26		19	
BIKES	45		36		38		56	
BUSES	12		9		23		0	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN	225	7.30	182	8.30	94	8.30	72	9.45
PM PK 15 MIN	147	15.15	237	17.30	116	16.30	94	16.30
AM PK HOUR	796	7.30	663	8.15	354	7.45	257	9.00
PM PK HOUR	538	16.30	859	15.15	452	16.30	343	16.30

NORTHBOUND Approach

EASTBOUND Approach

Lt

86

108

103

129

129

132

687

Hours

7-8

8-9

9-10

15-16

16-17

17-18

TOTAL

Hours	Lt	Th	Rt	Total
7-8	62	668	46	776
8-9	103	542	54	699
9-10	101	550	54	705
15-16	101	390	42	533
16-17	116	338	62	516
17-18	112	340	66	518
TOTAL	595	2828	324	3747

Th

66

95

89

96

127

140

613

Rt

86

127

130

186

186

178

893

Total

238

330

322

411

442

450

2193

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	10	276	30	316
8-9	54	506	78	638
9-10	68	417	86	571
15-16	46	676	133	855
16-17	33	678	115	826
17-18	45	659	121	825
TOTAL	256	3212	563	4031

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	48	65	55	168
8-9	56	88	71	215
9-10	55	81	121	257
15-16	85	110	54	249
16-17	104	145	64	313
17-18	87	143	103	333
TOTAL	435	632	468	1535

TOTAL XING S/L XING N/L

N-S	Ped	Sch	Ped	Sch
1092	16	4	26	2
1337	22	3	39	3
1276	28	2	87	1
1388	32	2	37	8
1342	27	2	52	0
1343	91	1	35	6
7778	216	14	276	20

TOTAL XING W/L XING E/L

E-W	Ped	Sch	Ped	Sch
406	16	8	20	1
545	42	6	11	1
579	48	9	33	2
660	46	12	21	0
755	53	16	16	0
783	69	20	25	0
3728	274	71	126	4

ITM Peak Hour Summary Prepared by:

National Data & Surveying Services

Glencoe Ave and Maxella Ave , Los Angeles

Total Volume Per Leg

Project ID:	16-5257-016)									Day: 1	Fuesday	
City:	Los Angeles			AM						Date: 4/26/2016			
NS/EW Streets:	G	lencoe Ave		G	lencoe Ave		N	Aaxella Ave		Ν	laxella Ave		
	NO	DRTHBOUN	D	S	OUTHBOUN	D	E	EASTBOUND)	V	VESTBOUNE)	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	1	1	1	2	0	1	1	1	1	2	0	
7:00 AM	16	129	7	1	49	5	13	11	14	5	18	2	270
7:15 AM	13	156	9	0	55	7	17	11	23	11	10	17	329
7:30 AM	15	193	17	4	78	7	21	19	20	16	18	16	424
7:45 AM	18	190	13	5	94	11	35	25	29	16	19	20	475
8:00 AM	23	133	12	9	120	13	29	24	30	8	26	18	445
8:15 AM	22	150	10	9	119	26	33	26	29	13	20	18	475
8:30 AM	26	132	16	24	136	22	25	25	44	21	11	18	500
8:45 AM	32	127	16	12	131	17	21	20	24	14	31	17	462
9:00 AM	31	138	12	25	126	16	25	25	33	14	18	27	490
9:15 AM	26	117	5	12	95	26	17	26	37	10	21	39	431
9:30 AM	18	127	16	20	95	21	31	18	31	16	22	18	433
9:45 AM	26	168	21	11	101	23	30	20	29	15	20	37	501
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	266	1760	154	132	1199	194	297	250	343	159	234	247	5235
APPROACH %'s :	12.20%	80.73%	7.06%	8.66%	78.62%	12.72%	33.37%	28.09%	38.54%	24.84%	36.56%	38.59%	
PEAK HR START TIME :	815 A	M											TOTAL
PEAK HR VOL :	111	547	54	70	512	81	104	96	130	62	80	80	1927
PEAK HR FACTOR :		0.978			0.911			0.878			0.895		0.964

Project ID:	16-5257-016	b									Day: 1	ſuesday	
City:	Los Angeles					TOTA	ALS A				Date: 4	1/26/2016	_
NS/EW Streets:	G	lencoe Ave		G	lencoe Ave		Ν	Aaxella Ave		N	laxella Ave		
	NO	DRTHBOUN	D	SC	DUTHBOUN	D	E	EASTBOUND		V	/ESTBOUNE)	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	1	1	1	2	0	1	1	1	1	2	0	
3:00 PM	20	93	8	12	165	32	32	28	54	26	25	17	512
3:15 PM	27	109	11	11	168	32	29	15	43	20	43	14	522
3:30 PM	22	92	12	8	177	39	33	26	43	18	26	13	509
3:45 PM	32	96	11	15	166	30	35	27	46	21	16	10	505
4:00 PM	24	85	16	5	179	29	33	31	45	16	31	9	503
4:15 PM	23	83	14	11	166	23	27	21	53	31	34	12	498
4:30 PM	36	86	17	7	168	34	31	37	48	30	43	21	558
4:45 PM	33	84	15	10	165	29	38	38	40	27	37	22	538
5:00 PM	32	82	13	10	160	32	29	35	40	19	43	19	514
5:15 PM	29	91	20	13	147	20	34	30	52	24	33	25	518
5:30 PM	26	83	21	12	194	31	37	32	46	22	33	30	567
5:45 PM	25	84	12	10	158	38	32	43	40	22	34	29	527
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	329	1068	170	124	2013	369	390	363	550	276	398	221	6271
APPROACH %'s :	21.00%	68.16%	10.85%	4.95%	80.33%	14.72%	29.93%	27.86%	42.21%	30.84%	44.47%	24.69%	
PEAK HR START TIME :	445 F	M											TOTAL
PEAK HR VOL :	120	340	69	45	666	112	138	135	178	92	146	96	2137
PEAK HR FACTOR :		0.945			0.868			0.972			0.971		0.942

STREET: North/South	Glencoe Ave	2						
East/West	Mindanao W	⁷ y						
Day:	Tuesday	Date:	А	pril 26, 2016	Weather:	-	SUNNY	
Hours: 7-10 &	2 3-6			Chekrs:	NDS			
School Day:	YES	District	: _		I/S CO	DE		
DUAL-	N/B		S/B		E/B		W/B	
WHEELED	27		48		56		15	
BIKES BUSES	23 0		24 23		29 15		39 26	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN	75	8.00	202	8.30	299	7.45	142	8.00
PM PK 15 MIN	113	17.00	262	17.30	161	16.15	162	17.30
AM PK HOUR	261	7.30	685	8.15	1081	7.30	478	7.45
PM PK HOUR	350	17.00	932	15.30	610	16.15	596	17.00

NORTHBOUND Approach

EASTBOUND Approach

Lt

Hours

7-8

8-9

9-10

15-16

16-17

17-18

TOTAL

Hours	Lt	Th	Rt	Total
7-8	21	177	10	208
8-9	57	179	13	249
9-10	37	187	14	238
15-16	50	149	12	211
16-17	87	169	12	268
17-18	117	207	26	350
TOTAL	369	1068	87	1524

Th

292

Rt

Total

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	41	79	259	379
8-9	74	133	458	665
9-10	73	117	373	563
15-16	113	203	607	923
16-17	123	192	607	922
17-18	128	205	592	925
TOTAL	552	929	2896	4377

WESTBOUND Approach

Hours	Lt	Th	Rt	Total	
7-8	6	283	77	366	
8-9	11	335	96	442	
9-10	17	251	84	352	
15-16	11	331	94	436	
16-17	8	402	89	499	
17-18	10	494	92	596	
TOTAL	63	2096	532	2691	

TOTAL XING

N-S

TOTAL

E-W

S/L	XING N/L

Ped	Sch	Ped	Sch
12	0	28	1
27	1	9	0
29	2	15	0
25	1	17	0
47	4	15	0
25	0	15	0
165	8	99	1
ING	W/L	XING	E/L

XING W/L

Ped Sch Ped Sch

0	11
0	16
4	62

ITM Peak Hour Summary

National Data & Surveying Services

Glencoe Ave and Mindanao Wy , Los Angeles

Total Volume Per Leg

Project ID:	16-5257-017	'									Day:	Fuesday	
City:	Los Angeles					TOT AN	ALS A			Date: 4/26/2016			
NS/EW Streets:	G	lencoe Ave		G	lencoe Ave		M	indanao Wy		Mi	ndanao Wy		
	NO	ORTHBOUNI)	S	OUTHBOUN	D	E	ASTBOUND		V	VESTBOUNE)	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	2	0	1	1	1	1	2	0	1	2	0	
7:00 AM	4	37	2	7	19	45	87	52	8	0	59	14	334
7:15 AM	7	34	0	13	14	55	116	78	11	1	65	16	410
7:30 AM	7	54	6	10	20	71	135	115	12	3	61	17	511
7:45 AM	3	52	2	11	26	88	116	164	19	2	9 8	30	611
8:00 AM	11	60	4	19	39	102	9 0	146	20	2	111	29	633
8:15 AM	15	42	5	22	29	101	108	133	23	1	88	18	585
8:30 AM	14	41	2	18	39	145	98	119	19	3	72	24	594
8:45 AM	17	36	2	15	26	110	101	117	22	5	64	25	540
9:00 AM	11	58	2	25	39	116	9 8	106	29	5	62	19	570
9:15 AM	8	39	3	20	27	77	83	79	15	7	69	23	450
9:30 AM	11	42	6	13	26	101	9 8	73	19	2	64	17	472
9:45 AM	7	48	3	15	25	79	126	84	11	3	56	25	482
	NL	NT	NR	SL	ST	SR	EL 105 (ET	ER	WL	WT	WR	TOTAL
APPROACH %'s :	115 16 55%	543 78 13%	37 5.32%	188	329 20.47%	1090 67 83%	1256 46.01%	1266 46.37%	208	34 2.93%	869 74 91%	257 22.16%	6192
	1010070	/0110/0	0.0270	1111070	2011770	0710070	1010170	1010770	1.0270	2.7070	/ 11/1/0	22.1070	
PEAK HR START TIME :	745 A	M											TOTAL
PEAK HR VOL :	43	195	13	70	133	436	412	562	81	8	369	101	2423
PEAK HR FACTOR :		0.837			0.791			0.882			0.842		0.957

Project ID:	16-5257-017	1									Day:	Fuesday	
City:	Los Angeles			PM						Date: 4/26/2016			
NS/EW Streets:	G	lencoe Ave		G	lencoe Ave		М	indanao Wy		Mi	indanao Wy		
	NO	ORTHBOUN	D	SC	DUTHBOUN	D	E	EASTBOUND		V	VESTBOUNE)	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	2	0	1	1	1	1	2	0	1	2	0	
3:00 PM	16	30	5	22	55	149	65	59	11	4	69	20	505
3:15 PM	6	38	3	29	45	152	78	57	9	2	85	25	529
3:30 PM	12	37	3	34	52	163	53	5 9	10	4	96	27	550
3:45 PM	16	44	1	28	51	143	76	75	9	1	81	22	547
4:00 PM	20	36	8	27	45	153	58	60	10	1	99	23	540
4:15 PM	21	39	1	35	45	156	68	82	11	1	100	22	581
4:30 PM	27	51	2	27	56	150	58	86	12	5	103	25	602
4:45 PM	19	43	1	34	46	148	68	64	5	1	100	19	548
5:00 PM	54	52	7	32	50	133	54	87	15	1	112	30	627
5:15 PM	27	56	5	28	55	127	59	77	7	3	130	18	592
5:30 PM	18	53	7	30	54	178	45	94	11	4	134	24	652
5:45 PM	18	46	7	38	46	154	58	74	10	2	118	20	591
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	254	525	50	364	600	1806	740	874	120	29	1227	275	6864
APPROACH %'s :	30.64%	63.33%	6.03%	13.14%	21.66%	65.20%	42.68%	50.40%	6.92%	1.89%	80.14%	17.96%	
PEAK HR START TIME :	500 F	M											TOTAL
PEAK HR VOL :	117	207	26	128	205	592	216	332	43	10	494	92	2462
PEAK HR FACTOR :		0.774			0.883			0.947			0.920		0.944

STREET: North/South	SR-90 WB F	Ramps						
East/West	Mindanao W	/y						
Day:	Tuesday	Date:	A	pril 26, 2016	Weather:	5	SUNNY	
Hours: 7-3	10 & 3-6			Chekrs:	NDS			
School Day:	YES	Distr	ict:		I/S CO	DE _		
DUAL	N/B		S/B		E/B		W/B	
WHEELED BIKES	182 2		0 1		32 27		53 28	
BUSES	4		0		14		23	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN	715	8.45	0	0.00	145	7.45	228	8.30
PM PK 15 MIN	474	17.15	0	0.00	131	17.00	355	17.30
AM PK HOUR	2547	8.30	0	0.00	546	7.30	851	8.00
PM PK HOUR	1813	17.00	0	0.00	479	16.15	1380	17.00

NORTHBOUND Approach

EASTBOUND Approach

Lt

7

12

16 32

16

87

Hours

7-8

8-9

9-10

15-16

16-17

17-18

TOTAL

Hours	Lt	Th	Rt	Total
7-8	479	1190	649	2318
8-9	639	1218	681	2538
9-10	521	1230	601	2352
15-16	481	856	347	1684
16-17	468	921	332	1721
17-18	530	951	332	1813
TOTAL	3118	6366	2942	12426

Th

434

526

414

386

402

431

2593

Rt

0

0

0

0

0

0

0 2680

Total

438

533

426

402

434

447

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	0	0	0	0
8-9	0	0	0	0
9-10	0	0	0	0
15-16	0	0	0	0
16-17	0	0	0	0
17-18	0	0	0	0
TOTAL	0	0	0	0

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	0	566	12	578
8-9	0	829	22	851
9-10	0	674	20	694
15-16	0	1054	29	1083
16-17	0	1240	38	1278
17-18	0	1340	40	1380
TOTAL	0	5703	161	5864

TOTAL XING S/L

N-S

2318

2538 2352

1684

1721 1813

12426

XING N/L

Ped	Sch	_	Ped	Sch
0	0	Γ	3	0
0	0		8	0
0	0		2	0
0	0		7	0
0	0		23	0
0	0		12	0
		_		
0	0		55	0
		_		
		_		

TOTAL XING W/L

XING E/L

E-W	Ped	Sch	Ped	Sch
1016	8	0	4	0
1384	21	0	7	0
1120	21	1	15	0
1485	22	0	12	0
1712	18	2	13	0
1827	21	0	14	0
8544	111	3	65	0

ITM Peak Hour Summary

National Data & Surveying Services

SR-90 WB Ramps and Mindanao Wy , Los Angeles

Total Volume Per Leg

Project ID:	16-5257-018	3									Day: T	uesday	
City:	City: Los Angeles										Date: 4/26/2016		
NS/EW Streets:	SR-9	90 WB Ram	ps	SR	-90 WB Rar	nps	М	indanao Wy		M	indanao Wy		
	NO	ORTHBOUN	D		Southboui	ND	E	ASTBOUND		V	VESTBOUND	i	-
LANES:	NL 1.5	NT 1.5	NR 1	SL 0	ST 0	SR 0	EL 1	ET 2	ER 0	WL 0	WT 3	WR	TOTAL
												-	
7:00 AM	118	249	115	0	0	0	1	75	0	0	117	4	679
7:15 AM	86	295	153	0	0	0	1	87	0	0	130	1	753
7:30 AM	118	323	175	0	0	0	1	128	0	0	140	5	890
7:45 AM	157	323	206	0	0	0	1	144	0	0	179	2	1012
8:00 AM	144	264	175	0	0	0	2	125	0	0	207	6	923
8:15 AM	150	278	172	0	0	0	2	143	0	0	203	6	954
8:30 AM	170	321	149	0	0	0	1	125	0	0	225	3	994
8:45 AM	175	355	185	0	0	0	2	133	0	0	194	7	1051
9:00 AM	126	291	166	0	0	0	3	113	0	0	188	10	897
9:15 AM	154	320	135	0	0	0	0	99	0	0	148	2	858
9:30 AM	111	287	141	0	0	0	5	91	0	0	189	2	826
9:45 AM	130	332	159	0	0	0	4	111	0	0	149	6	891
TOTAL VOLUMES :	NL 1639	NT 3638	NR 1031	SL	ST	SR	EL 23	ET 1374	ER	WL	WT	WR	TOTAL
APPROACH %'s :	22.74%	50.47%	26.79%	#DIV/0!	#DIV/0!	#DIV/0!	1.65%	98.35%	0.00%	0.00%	97.46%	2.54%	10720
PEAK HR START TIME :	800 A	M											TOTAL
PEAK HR VOL :	639	1218	681	0	0	0	7	526	0	0	829	22	3922
PEAK HR FACTOR :		0.887			0.000			0.919			0.933		0.933

Project ID:	16-5257-018	3									Day: ⊺	uesday	
City:	Los Angeles			PM						Date: 4/26/2016			
NS/EW Streets:	SR-9	0 WB Ram	ps	SR	-90 WB Rar	nps	Mi	indanao Wy		Mi	indanao Wy		
	NO	DRTHBOUN	D		SOUTHBOU	ND	E	EASTBOUND	-	V	VESTBOUND		
LANES:	NL 1.5	NT 1.5	NR 1	SL 0	ST 0	SR 0	EL 1	ET 2	ER 0	WL 0	WT 3	WR 0	TOTAL
3:00 PM	115	208	84	0	0	0	4	99	0	0	239	6	755
3:15 PM 3:30 PM	124 124	189 231	83 88	0	0	0	5 1	99 86	0	0	251 293	7 9	758 832
3:45 PM	118	228	92	0	0	0	6	102	0	0	271	7	824
4:00 PM 4:15 PM	117 107	206 230	73 78	0	0	0	5 10	81 117	0	0	321 317	9 5	812 864
4:30 PM 4:45 PM	124 120	241 244	100 81	0 0	0 0	0 0	5 12	99 105	0 0	0 0	312 290	9 15	890 867
5:00 PM	113 140	205 256	83 78	0	0	0	4	127 94	0	0	331 318	14 10	877 899
5:30 PM	142	239	88	0	0	0	6	116 94	0	0	346 345	9 7	946 918
	133	231	05	U	0	U	5	74	0	0	545	'	910
TOTAL VOLUMES : APPROACH %'s :	NL 1479 28.34%	NT 2728 52.28%	NR 1011 19.38%	SL 0 #DIV/0!	ST 0 #DIV/0!	SR 0 #DIV/0!	EL 64 4.99%	ET 1219 95.01%	ER 0 0.00%	WL 0 0.00%	WT 3634 97.14%	WR 107 2.86%	TOTAL 10242
PEAK HR START TIME :	500 F	M											TOTAL
PEAK HR VOL :	530	951	332	0	0	0	16	431	0	0	1340	40	3640
PEAK HR FACTOR :		0.956			0.000			0.853			0.972		0.962

STREET: North/South	SR-90 EB R	amps						
East/West	Mindanao W	/y						
Day:	Tuesday	E	Date: A	pril 26, 2016	Weather:	5	SUNNY	
Hours: 7-10	& 3-6			Chekrs	NDS			
School Day:	YES	D	District:		I/S CO	DE _		
DUAL-	N/B		S/B		E/B		W/B	
WHEELED	0		126		49		73	
BIKES	0		0		28		31	
BUSES	0		1		14		20	
	N/B	TIME	S/B	TIME	E/B	TIME	W/B	TIME
AM PK 15 MIN	0	0.00	314	8.45	329	8.15	387	8.30
PM PK 15 MIN	0	0.00	314	17.15	298	17.00	502	17.30
AM PK HOUR	0	0.00	1226	8.00	1241	7.45	1470	8.00
PM PK HOUR	0	0.00	1168	16.30	1111	16.45	1858	17.00

NORTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	0	0	0	0
8-9	0	0	0	0
9-10	0	0	0	0
15-16	0	0	0	0
16-17	0	0	0	0
17-18	0	0	0	0
TOTAL	0	0	0	0

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	0	437	568	1005
8-9	0	506	723	1229
9-10	0	386	616	1002
15-16	0	386	614	1000
16-17	0	437	634	1071
17-18	0	415	636	1051
TOTAL	0	2567	3791	6358

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	18	879	7	904
8-9	29	1178	19	1226
9-10	26	971	15	1012
15-16	18	1090	17	1125
16-17	20	1108	12	1140
17-18	14	1119	20	1153
TOTAL	125	6345	90	6560

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	298	733	0	1031
8-9	468	1002	0	1470
9-10	382	816	0	1198
15-16	567	960	0	1527
16-17	678	1048	0	1726
17-18	733	1125	0	1858
TOTAL	3126	5684	0	8810

TOTAL

XING S/L XING N/L

N-S	Ped	Sch	Ped	Sch
904	0	0	0	0
1226	0	0	0	0
1012	0	0	0	0
1125	0	0	0	0
1140	0	0	0	0
1153	1	0	0	0
6560	1	0	0	0

TOTAL XING W/L XING E/L

E-W	Ped	Sch	Ped	Sch
2036	6	0	4	0
2699	17	0	7	0
2200	17	0	8	0
2527	23	2	14	1
2797	14	0	13	0
2909	18	0	7	0
15168	95	2	53	1

ITM Peak Hour Summary Prepared by:

National Data & Surveying Services

SR-90 EB Ramps and Mindanao Wy , Los Angeles

Total Volume Per Leg

Project ID:	16-5257-01	19									Day: ⊺	uesday	
City:		TOTALS					Date: 4/26/2016						
NS/EW Streets:	SR	-90 EB Ran	nps	SR-90 EB Ramps Mindanao Wy				Mindanao Wy					
	NORTHBOUND		D SOUTHBOUND		EASTBOUND		WESTBOUND						
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	0	0	0	1	2	0	0	1.5	1.5	2	2	0	
7:00 AM	0	0	0	2	140	1	0	68	119	78	159	0	567
7:15 AM	0	0	0	6	218	0	0	91	119	52	155	0	641
7:30 AM	0	0	0	3	247	4	0	134	150	66	197	0	801
7:45 AM	0	0	0	7	274	2	0	144	180	102	222	0	931
8:00 AM	0	0	0	5	292	5	0	111	172	124	240	0	949
8:15 AM	0	0	0	8	292	1	0	129	200	119	245	0	994
8:30 AM	0	0	0	7	294	8	0	126	179	119	268	0	1001
8:45 AM	0	0	0	9	300	5	0	140	172	106	249	0	981
9:00 AM	0	0	0	9	249	1	0	9 5	160	121	204	0	839
9:15 AM	0	0	0	5	241	2	0	94	159	71	223	0	795
9:30 AM	0	0	0	6	254	7	0	93	153	98	210	0	821
9:45 AM	0	0	0	6	227	5	0	104	144	92	179	0	757
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	0	0	0	73	3028	41	0	1329	1907	1148	2551	0	10077
APPROACH %'s :	#DIV/0!	#DIV/0!	#DIV/0!	2.32%	96.37%	1.30%	0.00%	41.07%	58.93%	31.04%	68.96%	0.00%	
PEAK HR START TIME :	800	AM											TOTAL
PEAK HR VOL :	0	0	0	29	1178	19	0	506	723	468	1002	0	3925
PEAK HR FACTOR :		0.000			0.976			0.934			0.950		0.980
Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID:	16-5257-01	19									Day: ⊺	uesday		
City:	City: Los Angeles				PM						Date: 4/26/2016			
NS/EW Streets:	SR	-90 EB Ram	nps	SR-	90 EB Ramp	os	М	indanao Wy		Mi	ndanao Wy			
	١	NORTHBOUI	ND	SC	DUTHBOUNI	D	E	EASTBOUND		V	VESTBOUND			
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	
LANES:	0	0	0	1	2	0	0	1.5	1.5	2	2	0		
3:00 PM	0	0	0	4	267	3	0	107	167	146	217	0	911	
3:15 PM	0	0	0	7	276	3	0	89	131	139	223	0	868	
3:30 PM	0	0	0	4	271	7	0	83	181	155	275	0	976	
3:45 PM	0	0	0	3	276	4	0	107	135	127	245	0	897	
4:00 PM	0	0	0	3	276	5	0	86	174	190	260	0	994	
4:15 PM	0	0	0	10	293	1	0	121	157	165	243	0	990	
4:30 PM	0	0	0	3	274	4	0	99	162	167	281	0	990	
4:45 PM	0	0	0	4	265	2	0	131	141	156	264	0	963	
5:00 PM	0	0	0	2	294	6	0	108	190	178	256	0	1034	
5:15 PM	0	0	0	5	305	4	0	99	179	179	273	0	1044	
5:30 PM	0	0	0	6	267	5	0	119	144	186	316	0	1043	
5:45 PM	0	0	0	1	253	5	0	89	123	190	280	0	941	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	
TOTAL VOLUMES :	0	0	0	52	3317	49	0	1238	1884	1978	3133	0	11651	
APPROACH %'s :	#DIV/0!	#DIV/0!	#DIV/0!	1.52%	97.05%	1.43%	0.00%	39.65%	60.35%	38.70%	61.30%	0.00%		
PEAK HR START TIME :	445	PM											TOTAL	
PEAK HR VOL :	0	0	0	17	1131	17	0	457	654	699	1109	0	4084	
PEAK HR FACTOR :		0.000			0.928			0.932			0.900		0.978	

CONTROL : Signalized

City Of Los Angeles Department Of Transportation MANUAL TRAFFIC COUNT SUMMARY

STREET: North/South	Mindanao W	⁄ay											
East/West	La Villa Ma	La Villa Marina											
Day:	Wednesday	I	Date: Fe	bruary 1, 20	17	Weather:	-	SUNNY					
Hours: 7-10) & 3-6			Chekı	rs:	NDS							
School Day:	YES	Ι	District:			I/S CO	DE _						
DUAL-	N/B		<u>S/B</u>			E/B		_	W/B				
WHEELED BIKES	47 20		49 32			11			8 10				
BUSES	15		27			1			0				
	N/B	TIME	S/B	TIME		E/B	TIME		W/B	TIME			
AM PK 15 MIN	298	8.15	259	8.15		20	7.15		66	8.30			
PM PK 15 MIN	275	17.00	305	17.15		20	17.15		37	16.30			
AM PK HOUR	1121	7.45	1022	7.45		47	7.00		219	8.00			
PM PK HOUR	1035	17.00	1194	16.45		56	16.30		127	16.15			

NORTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	26	756	41	823
8-9	15	1026	52	1093
9-10	19	841	58	918
15-16	21	896	71	988
16-17	16	870	63	949
17-18	23	940	72	1035
TOTAL	120	5329	357	5806

SOUTHBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	30	756	23	809
8-9	62	931	25	1018
9-10	49	831	13	893
15-16	76	749	6	831
16-17	89	825	8	922
17-18	123	1052	12	1187
TOTAL	429	5144	87	5660

WESTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	41	2	113	156
8-9	69	0	150	219
9-10	48	1	130	179
15-16	42	0	77	119
16-17	51	2	61	114
17-18	49	1	65	115
TOTAL	300	6	596	902

TOTAL XINO

N-S

1632

2111

1811

1819 1871 2222

11466

G S/L	XING N/L

Ped	Sch	Ped	Sch
11	0	7	0
6	0	13	0
8	0	20	0
14	0	18	0
17	0	27	2
20	0	13	0
76	0	98	2

TOTAL XING W/L XING E/L

E-W	Ped	Sch	Ped	Sch
203	7	0	1	0
244	6	0	0	0
196	15	0	0	0
170	10	0	1	0
157	17	0	0	0
161	9	0	0	0
1131	64	0	2	0

EASTBOUND Approach

Hours	Lt	Th	Rt	Total
7-8	27	2	18	47
8-9	13	1	11	25
9-10	6	0	11	17
15-16	26	1	24	51
16-17	15	1	27	43
17-18	20	0	26	46
TOTAL	107	5	117	229

ITM Peak Hour Summary

National Data & Surveying Services

<u> Mindanao Way and La Villa Marina , Marina Del Rey</u>

Total Volume Per Leg

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID:	17-5060-006	5				тот	u.e				Day: V	Vednesday	1	
City: 1	Marina Del F	ley		TOTALS							Date: 2/1/2017			
-						AN	1						1	
NS/EW Streets:	Mir	ndanao Way		Mir	ndanao Way	,	La	Villa Marina	a La Villa Marina					
	NO	ORTHBOUNI		SC	DUTHBOUNI		E	ASTBOUND		V	VESTBOUND)		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	
LANES:	1	2	0	1	2	0	0	1	0	0	1	0		
7:00 AM	6	142	12	3	144	13	4	0	3	13	0	25	365	
7:15 AM	3	165	9	3	174	2	13	2	5	8	2	19	405	
7:30 AM	6	189	6	10	205	2	5	0	6	8	0	30	467	
7:45 AM	11	260	14	14	233	6	5	0	4	12	0	39	598	
8:00 AM	1	234	13	17	229	8	1	0	2	17	0	41	563	
8:15 AM	8	282	8	15	238	6	3	0	3	11	0	27	601	
8:30 AM	2	271	17	13	237	6	7	1	1	22	0	44	621	
8:45 AM	4	239	14	17	227	5	2	0	5	19	0	38	570	
9:00 AM	3	213	18	12	221	2	2	0	1	13	0	44	529	
9:15 AM	6	218	14	13	210	4	2	0	2	8	0	27	504	
9:30 AM	4	180	13	13	190	4	0	0	3	6	1	29	443	
9:45 AM	6	230	13	11	210	3	2	0	5	21	0	30	531	
TOTAL VOLUMES: APPROACH %'s:	NL 60 2.12%	NT 2623 92.55%	NR 151 5.33%	SL 141 5.18%	ST 2518 92.57%	SR 61 2.24%	EL 46 51.69%	ET 3 3.37%	ER 40 44.94%	WL 158 28.52%	WT 3 0.54%	WR 393 70.94%	TOTAL 6197	
PEAK HR START TIME :	745 A	M											TOTAL	
PEAK HR VOL :	22	1047	52	59	937	26	16	1	10	62	0	151	2383	
PEAK HR FACTOR :		0.940			0.986			0.750			0.807		0.959	

CONTROL : Signalized

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID:	17-5060-006	5		TOTALS							Day: Wednesday			
City: 1	Marina Del F	Rey					ALS				Date: 2	2/1/2017		
NS/EW Streets:	Mi	ndanao Way	/	Mi	ndanao Way	, FI	La	Villa Marina	1	La	Villa Marina	1		
	N	ORTHBOUN	D	S	OUTHBOUN)	E	ASTBOUND		V	VESTBOUND)		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	wт	WR	TOTAL	
LANES:	1	2	0	1	2	0	0	1	0	0	1	0		
3:00 PM	6	201	21	22	184	2	8	0	3	10	0	19	476	
3:15 PM	4	222	21	15	200	2	0	1	7	15	0	14	501	
3:30 PM	5	248	11	21	169	2	11	0	8	11	0	18	504	
3:45 PM	6	225	18	18	196	0	7	0	6	6	0	26	508	
4:00 PM	3	224	15	22	205	0	5	0	4	9	0	11	498	
4:15 PM	3	210	14	23	178	1	2	0	5	10	0	16	462	
4:30 PM	4	211	16	17	174	2	4	0	7	19	1	17	472	
4:45 PM	6	225	18	27	268	5	4	1	11	13	1	17	596	
5:00 PM	6	254	15	35	250	2	5	0	4	16	1	16	604	
5:15 PM	11	214	13	23	278	4	7	0	13	8	0	15	586	
5:30 PM	3	236	16	40	260	2	3	0	7	11	0	22	600	
5:45 PM	3	236	28	25	264	4	5	0	2	14	0	12	593	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL	
TOTAL VOLUMES :	60	2706	206	288	2626	26	61	2	77	142	3	203	6400	
APPROACH %'s :	2.02%	91.05%	6.93%	9.80%	89.32%	0.88%	43.57%	1.43%	55.00%	40.80%	0.86%	58.33%		
PEAK HR START TIME :	445 F	РМ											TOTAL	
PEAK HR VOL :	26	929	62	125	1056	13	19	1	35	48	2	70	2386	
		525			1000			-				. 5	2000	
PEAK HR FACTOR :		0.925			0.979			0.688			0.909		0.988	

CONTROL : Signalized

APPENDIX G

DETAILED PLANS, PROGRAMS, ORDINANCES, AND POLICIES REVIEW OPTION A

The worksheet provides a structured approach to evaluate the threshold T-1 question below, that asks whether a project conflicts with a program, plan, ordinance or policy addressing the circulation system. The intention of the worksheet is to streamline the project review by highlighting the most relevant plans, policies and programs when assessing potential impacts to the City's circulation system.

Threshold T-1: Would the project conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities?

This worksheet does not include an exhaustive list of City policies, and does not include community plans, specific plans, or any area-specific regulatory overlays. The Department of City Planning project planner will need to be consulted to determine if the project would obstruct the City from carrying out a policy or program in a community plan, specific plan, streetscape plan, or regulatory overlay that was adopted to support multimodal transportation options or public safety. LADOT staff should be consulted if a project would lead to a conflict with a mobility investment in the Public Right of Way (PROW) that is currently undergoing planning, design, or delivery. This worksheet must be completed for all projects that meet the Section I. Screening Criteria. For description of the relevant planning documents, **see Attachment D.1**.

For any response to the following questions that checks the box in bold text ((i.e. Yes or No), further analysis is needed to demonstrate that the project does not conflict with a plan, policy, or program.

I. SCREENING CRITERIA FOR POLICY ANALYSIS

If the answer is 'yes' to any of the following questions, further analysis will be required:

Does the project require a discretionary action that requires the decision maker to find that the project would substantially conform to the purpose, intent and provisions of the General Plan?

× Yes No

Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety?

Yes X No

Is the project required to or proposing to make any voluntary modifications to the public right-of-way (i.e., dedications and/or improvements in the right-of-way, reconfigurations of curb line, etc.)?

× Yes 📃 No

II. PLAN CONSISTENCY ANALYSIS

A. Mobility Plan 2035 PROW Classification Standards for Dedications and Improvements

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.1 – Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

Mobility Plan 2035 Policy 2.3 – Pedestrian Infrastructure. Recognize walking as a component of every trip, and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

Mobility Plan 2035 Policy 3.2 – *People with Disabilities. Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way.*

Mobility Plan 2035 Street Designations and Standard Roadway Dimensions

A.1 Does the project include additions or new construction along a street designated as a Boulevard I, and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone? Yes No

A.2 If **A.1 is yes**, is the project required to make additional dedications or improvements to the Public Right of Way as demonstrated by the street designation.

A.3 If **A.2** is yes, is the project making the dedications and improvements as necessary to meet the designated dimensions of the fronting street (Boulevard I, and II, or Avenue I, II, or III)?

× Yes No N/A

If the answer is to **A.1 or A.2 is NO, or to A.1, A.2 and A.3. is YES**, then the project does not conflict with the dedication and improvement requirements that are needed to comply with the Mobility Plan 2035 Street Designations and Standard Roadway Dimensions.

A.4 If the answer to **A.3. is NO**, is the project applicant asking to waive from the dedication standards?

Lists any streets subject to dedications or voluntary dedications and include existing roadway and sidewalk widths, required roadway and sidewalk widths, and proposed roadway and sidewalk width or waivers.

Frontage 1 Existing PROW'/Curb' : Existing _	70'/54'	_Required	72'/46'	_Proposed	73'/54'
Maxella Avenue: Avenue III					
Frontage 2 Existing PROW'/Curb' : Existing _	90'/70'	_Required	66'/40'	_Proposed	93'/70'
Glencoe Avenue: Collector					
Frontage 3 Existing PROW'/Curb' : Existing _		_Required		_Proposed	
Frontage 4 Existing PROW'/Curb' : Existing _		_Required		_Proposed	

If the answer to **A.4 is NO**, the project is inconsistent with Mobility Plan 2035 street designations and must file for a waiver of street dedication and improvement.

If the answer to **A.4 is YES**, additional analysis is necessary to determine if the dedication and/or improvements are necessary to meet the City's mobility needs for the next 20 years. The following factors may contribute to determine if the dedication or improvement is necessary:

Is the project site along any of the following networks identified in the City's Mobility Plan?

- Transit Enhanced Network
- Bicycle Enhanced Network
- Bicycle Lane Network
- Pedestrian Enhanced District
- Neighborhood Enhanced Network

To see the location of the above networks, see Transportation Assessment Support Map.¹

Is the project within the service area of Metro Bike Share, or is there demonstrated demand for micromobility services?

If the project dedications and improvements asking to be waived are necessary to meet the City's mobility needs, the project may be found to conflict with a plan that is adopted to protect the environment.

B. Mobility Plan 2035 PROW Policy Alignment with Project-Initiated Changes

B.1 Project-Initiated Changes to the PROW Dimensions

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.1 – Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

Mobility Plan 2035 Policy 2.3 – Pedestrian Infrastructure. Recognize walking as a component of every trip, and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

Mobility Plan 2035 Policy 3.2 – *People with Disabilities. Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way.*

Mobility Plan 2035 Policy 2.10 – *Loading Areas. Facilitate the provision of adequate on and offsite street loading areas.*

Mobility Plan 2035 Street Designations and Standard Roadway Dimensions

¹ LADOT Transportation Assessment Support Map <u>https://arcg.is/fubbD</u>

B.1 Does the project physically modify the curb placement or turning radius and/or physically alter the sidewalk and parkways space that changes how people access a property?

Examples of physical changes to the public right-of-way include:

- widening the roadway,
- narrowing the sidewalk,
- adding space for vehicle turn outs or loading areas,
- removing bicycle lanes, bike share stations, or bicycle parking
- modifying existing bus stop, transit shelter, or other street furniture
- paving, narrowing, shifting or removing an existing parkway or tree well

Yes X No

B.2 Driveway Access

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.10 – *Loading Areas. Facilitate the provision of adequate on and offsite street loading areas.*

Mobility Plan 2035 Program PL.1. Driveway Access. Require driveway access to buildings from non-arterial streets or alleys (where feasible) in order to minimize interference with pedestrian access and vehicular movement.

Citywide Design Guidelines - Guideline 2: Carefully incorporate vehicular access such that it does not degrade the pedestrian experience.

Site Planning Best Practices:

- Prioritize pedestrian access first and automobile access second. Orient parking and driveways toward the rear or side of buildings and away from the public right-of-way. On corner lots, parking should be oriented as far from the corner as possible.
- Minimize both the number of driveway entrances and overall driveway widths.
- Do not locate drop-off/pick-up areas between principal building entrances and the adjoining sidewalks.
- Orient vehicular access as far from street intersections as possible.
- Place drive-thru elements away from intersections and avoid placing them so that they create a barrier between the sidewalk and building entrance(s).
- Ensure that loading areas do not interfere with on-site pedestrian and vehicular circulation by separating loading areas and larger commercial vehicles from areas that are used for public parking and public entrances.

B.2 Does the project add new driveways along a street designated as an Avenue or a Boulevard that conflict with LADOT's Driveway Design Guidelines (See Sec. 321 in the Manual of Policies and Procedures) by any of the following:

- locating new driveways for residential properties on an Avenue or Boulevard, and access is otherwise possible using an alley or a collector/local street, or
- locating new driveways for industrial or commercial properties on an Avenue or Boulevard and access is possible along a collector/local street, or

- the total number of new driveways exceeds 1 driveway per every 200 feet² along on the Avenue or Boulevard frontage, or
- locating new driveways on an Avenue or Boulevard within 150 feet from the intersecting street, or
- locating new driveways on a collector or local street within 75 feet from the intersecting street, or
- locating new driveways near mid-block crosswalks, requiring relocation of the mid-block crosswalk

Yes	х	No
-----	---	----

If the answer to **B.1 and B.2 are both NO**, then the project would not conflict with a plan or policies that govern the PROW as a result of the project-initiated changes to the PROW.

Impact Analysis

If the answer to either **B.1 or B.2 are YES**, City plans and policies should be reviewed in light of the proposed physical changes to determine if the City would be obstructed from carrying out the plans and policies. The analysis should pay special consideration to substantial changes to the Public Right of Way that may either degrade existing facilities for people walking and bicycling (e.g., removing a bicycle lane), or preclude the City from completing complete street infrastructure as identified in the Mobility Plan 2035, especially if the physical changes are along streets that are on the High Injury Network (HIN). The analysis should also consider if the project is in a Transit Oriented Community (TOC) area, and would degrade or inhibit trips made by biking, walking and/ or transit ridership. The streets that need special consideration are those that are included on the following networks identified in the Mobility Plan 2035, or the HIN:

- Transit Enhanced Network
- Bicycle Enhanced Network
- Bicycle Lane Network
- Pedestrian Enhanced District
- Neighborhood Enhanced Network
- High Injury Network

To see the location of the above networks, see Transportation Assessment Support Map.³

Once the project is reviewed relevant to plans and policies, and existing facilities that may be impacted by the project, the analysis will need to answer the following two questions in concluding if there is an impact due to plan inconsistency.

B.2.1 Would the physical changes in the public right of way or new driveways that conflict with LADOT's Driveway Design Guidelines degrade the experience of vulnerable roadway users such as modify, remove, or otherwise negatively impact existing bicycle, transit, and/or pedestrian infrastructure?

² for a project frontage that exceeds 400 feet along an Avenue or Boulevard, the incremental additional driveway above 2 is more than 1 driveway for every 400 additional feet.

³ LADOT Transportation Assessment Support Map <u>https://arcg.is/fubbD</u>

B.2.2 Would the physical modifications or new driveways that conflict with LADOT's Driveway Design Guidelines preclude the City from advancing the safety of vulnerable roadway users?

Yes No X N/A

If either of the answers to either **B.2.1 or B.2.2 are YES**, the project may conflict with the Mobility Plan 2035, and therefore conflict with a plan that is adopted to protect the environment. If either of the answers to both **B.2.1. or B.2.2. are NO**, then the project would not be shown to conflict with plans or policies that govern the Public Right-of-Way.

C. Network Access

C. 1 Alley, Street and Stairway Access

These questions address potential conflict with:

Mobility Plan Policy 3.9 Increased Network Access: Discourage the vacation of public rights-ofway.

C.1.1 Does the project propose to vacate or otherwise restrict public access to a street, alley, or public stairway?

Yes × No

C.1.2 If the answer to C.1.1 is Yes, will the project provide or maintain public access to people walking and biking on the street, alley or stairway?

Yes No X N/A

C.2 New Cul-de-sacs

These questions address potential conflict with:

Mobility Plan 2035 Policy 3.10 Cul-de-sacs: Discourage the use of cul-de-sacs that do not provide access for active transportation options.

C.2.1 Does the project create a cul-de-sac or is the project located adjacent to an existing cul-de-sac? Yes X No

C.2.2 If yes, will the cul-de-sac maintain convenient and direct public access to people walking and biking to the adjoining street network?

Yes No X N/A

If the answers to either C.1.2 or C.2.2 are YES, then the project would not conflict with a plan or policies that ensures access for all modes of travel. If the answer to either C.1.2 or C.2.2 are NO, the project may conflict with a plan or policies that governs multimodal access to a property. Further analysis must assess to the degree that pedestrians and bicyclists have sufficient public access to the transportation network.

D. Parking Supply and Transportation Demand Management

These questions address potential conflict with:

Mobility Plan 2035 Policy 3.8 – Bicycle Parking, Provide bicyclists with convenient, secure and well maintained bicycle parking facilities.

Mobility Plan 2035 Policy 4.8 – Transportation Demand Management Strategies. Encourage greater utilization of Transportation Demand Management Strategies to reduce dependence on single-occupancy vehicles.

Mobility Plan 2035 Policy 4.13 – Parking and Land Use Management: Balance on-street and offstreet parking supply with other transportation and land use objectives.

D.1 Would the project propose a supply of onsite parking that exceeds the baseline amount⁴ as required in the Los Angeles Municipal Code or a Specific plan, whichever requirement prevails?

Yes X No

D.2 If the answer to D.1. is YES, would the project propose to actively manage the demand of parking by independently pricing the supply to all users (e.g. parking cash-out), or for residential properties, unbundle the supply from the lease or sale of residential units?

Yes No X N/A

If the answer to **D.2.** is **NO** the project may conflict with parking management policies. Further analysis is needed to demonstrate how the supply of parking above city requirements will not result in additional (induced) drive-alone trips as compared to an alternative that provided no more parking than the baseline required by the LAMC or Specific Plan. If there is potential for the supply of parking to result in induced demand for drive-alone trips, the project should further explore transportation demand management (TDM) measures to further off-set the induced demands of driving and vehicle miles travelled (VMT) that may result from higher amounts of on-site parking. The TDM measures should specifically focus on strategies that encourage dynamic and context-sensitive pricing solutions and ensure the parking is efficiently allocated, such as providing real time information. Research has demonstrated that charging a user cost for parking or providing a 'cash-out' option in return for not using it is the most effective strategy to reduce the instances of drive-alone trips and increase non-auto mode share to further reduce VMT. To ensure the parking is efficiently managed and reduce the need to build parking for future uses, further strategies should include sharing parking with other properties and/or the general public.

D.3. Would the project provide the minimum on and off-site bicycle parking spaces as required by Section 12.21 A.16 of the LAMC?

× Yes No

⁴ The baseline parking is defined here as the default parking requirements in section 12.21 A.4 of the Los Angeles Municipal Code or any applicable Specific Plan, whichever prevails, for each applicable use not taking into consideration other parking incentives to reduce the amount of required parking.

D.4. Does the Project include more than 25,000 square feet of gross floor area construction of new non-residential gross floor?

x Yes No

D.5 If the answer to D.4. is YES, does the project comply with the City's TDM Ordinance in Section 12.26 J of the LAMC?

× Yes No N/A

If the answer to **D.3. or D.5. is NO** the project conflicts with LAMC code requirements of bicycle parking and TDM measures. If the project includes uses that require bicycle parking (Section 12.21 A.16) or TDM (Section 12.26 J), and the project does not comply with those Sections of the LAMC, further analysis is required to ensure that the project supports the intent of the two LAMC sections. To meet the intent of bicycle parking requirements, the analysis should identify how the project commits to providing safe access to those traveling by bicycle and accommodates storing their bicycle in locations that demonstrates priority over vehicle access.

Similarly, to meet the intent of the TDM requirements of Section 12.26 J of the LAMC, the analysis should identify how the project commits to providing effective strategies in either physical facilities or programs that encourage non-drive alone trips to and from the project site and changes in work schedule that move trips out of the peak period or eliminate them altogether (as in the case in telecommuting or compressed work weeks).

E. Consistency with Regional Plans

This section addresses potential inconsistencies with greenhouse gas (GHG) reduction targets forecasted in the Southern California Association of Governments (SCAG) Regional Transportation Plan (RTP) / Sustainable Communities Strategy (SCS).

E.1 Does the Project or Plan apply one the City's efficiency-based impact thresholds (i.e. VMT per capita, VMT per employee, or VMT per service population) as discussed in Section 2.2.3 of the TAG?

× Yes No

E.2 If the Answer to E.1 is YES, does the Project or Plan result in a significant VMT impact? Yes X No N/A

E.3 If the Answer to E.1 is NO, does the Project result in a net increase in VMT?

Yes No X N/A

If the Answer to E.2 or E.3 is NO, then the Project or Plan is shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS.

E.4 If the Answer to E.2 or E.3 is YES, then further evaluation would be necessary to determine whether such a project or land use plan would be shown to be consistent with VMT and GHG reduction goals of the SCAG RTP/SCS. For the purpose of making a finding that a project is consistent with the GHG reduction targets forecasted in the SCAG RTP/SCS, the project analyst should consult Section 2.2.4 of the Transportation Assessment Guidelines (TAG). Section 2.2.4 provides the methodology for evaluating a land use project's cumulative impacts to VMT, and the appropriate reliance on SCAG's most recently adopted RTP/SCS in reaching that conclusion.

The analysis methods therein can further support findings that the project is consistent with the general use designation, density, building intensity, and applicable policies specified for the project area in either a sustainable communities strategy or an alternative planning strategy for which the State Air Resources Board, pursuant to Section 65080(b)(2)(H) of the Government Code, has accepted a metropolitan planning organization's determination that the sustainable communities strategy or the alternative planning strategy would, if implemented, achieve the greenhouse gas emission reduction targets.

References

BOE Street Standard Dimensions S-470-1 http://eng2.lacity.org/techdocs/stdplans/s-400/S-470-1 20151021 150849.pdf

LADCP <u>Citywide Design Guidelines</u>. <u>https://planning.lacity.org/odocument/f6608be7-d5fe-4187-bea6-</u>20618eec5049/Citywide Design Guidelines.pdf

LADOT Transportation Assessment Support Map https://arcg.is/fubbD

Mobility Plan 2035 <u>https://planning.lacity.org/odocument/523f2a95-9d72-41d7-aba5-1972f84c1d36/Mobility_Plan_2035.pdf</u>

SCAG. Connect SoCal, 2020-2045 RTP/SCS, https://www.connectsocal.org/Pages/default.aspx

ATTACHMENT D.1: CITY PLAN, POLICIES AND GUIDELINES

<u>The Transportation Element of the City's General Plan, Mobility Plan 2035</u>, established the "Complete Streets Design Guide" as the City's document to guide the operations and design of streets and other public rights-of-way. It lays out a vision for designing safer, more vibrant streets that are accessible to people, no matter what their mode choice. As a living document, it is intended to be frequently updated as City departments identify and implement street standards and experiment with different configurations to promote complete streets. The guide is meant to be a toolkit that provides numerous examples of what is possible in the public right-of-way and that provides guidance on context-sensitive design.

The <u>Plan for A Healthy Los Angeles</u> (March 2015) includes policies directing several City departments to develop plans that promote active transportation and safety.

The <u>City of Los Angeles Community Plans, which make up the Land Use Element of the City's General Plan</u>, guide the physical development of neighborhoods by establishing the goals and policies for land use. The 35 Community Plans provide specific, neighborhood-level detail for land uses and the transportation network, relevant policies, and implementation strategies necessary to achieve General Plan and community-specific objectives.

The stated goal of <u>Vision Zero</u> is to eliminate traffic-related deaths in Los Angeles by 2025 through a number of strategies, including modifying the design of streets to increase the safety of vulnerable road users. Extensive crash data analysis is conducted on an ongoing basis to prioritize intersections and corridors for implementation of projects that will have the greatest effect on overall fatality reduction. The City designs and deploys <u>Vision Zero Corridor Plans</u> as part of the implementation of Vision Zero. If a project is proposed whose site lies on the High Injury Network (HIN), the applicant should consult with LADOT to inform the project's site plan and to determine appropriate improvements, whether by funding their implementation in full or by making a contribution toward their implementation.

The <u>Citywide Design Guidelines</u> (October 24, 2019) includes sections relevant to development projects where improvements are proposed within the public realm. Specifically, Guidelines one through three provide building design strategies that support the pedestrian experience. The Guidelines provide best practices in designing that apply in three spatial categories of site planning, building design and public right of way. The Guidelines should be followed to ensure that the project design supports pedestrian safety, access and comfort as they access to and from the building and the immediate public right of way.

The City's <u>Transportation Demand Management (TDM) Ordinance (LA Municipal Code 12.26.J)</u> requires certain projects to incorporate strategies that reduce drive-alone vehicle trips and improve access to destinations and services. The ordinance is revised and updated periodically and should be reviewed for application to specific projects as they are reviewed.

The City's <u>LAMC Section 12.37 (Waivers of Dedication and Improvement)</u> requires certain projects to dedicate and/or implement improvements within the public right-of-way to meet the street designation standards of the Mobility Plan 2035.

The Bureau of Engineering (BOE) <u>Street Standard Dimensions S-470-1</u> provides the specific street widths and public right of way dimensions associated with the City's street standards.

Detailed Responses in Support of General Consistency with Transportation-Related Plans, Programs, Ordinances, or Policies (Adapted from Attachment D in *LADOT Transportation Assessment Guidelines*, July 2020)

The items below correspond with the TAG Attachment D: Plan, Policy, and Program Consistency Worksheet. Defined terms below have the same meanings as in the Transportation Assessment.

A. MOBILITY PLAN 2035 (MP 2035) PROW CLASSIFICATION STANDARDS FOR DEDICATIONS AND IMPROVEMENTS

MP 2035 Policy 2.1 – Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

• Option A is required to make dedications or improvements to the public right-of way. Specifically, a three-foot street dedication is required for Maxella Avenue and Glencoe Avenue along the Project Site. Option A will not alter adjacent streets or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

MP 2035 Policy 2.3 – Pedestrian Infrastructure. Recognize walking as a component of every trip and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

• Option A will not alter pedestrian infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. Option A prioritizes pedestrian access and connectivity, consistent with Maxella Avenue's designation as a Pedestrian Enhanced District (PED). Option A will make a three-foot street dedication on Maxella Avenue and Glencoe Avenue along the Project Site. Once the dedications are provided, the City will be free to install modifications along Maxella Avenue as part of the PED network. Option A includes a paved pedestrian paseo internal to the Project Site, which provides safe connections to the various buildings on the Project Site. Additionally, the pedestrian paseo will provide connections to the sidewalk along the Project Site's Glencoe Avenue frontage, as well as the Project Site's Ocean Way frontage.

MP 2035 Policy 3.2 – People with Disabilities. Accommodate the needs of people with disabilities when modifying of installing infrastructure within the public right-of-way.

• Option A will not alter existing ADA infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

MP 2035 Street Designations and Standard Roadway Dimensions

• Option A proposes new construction along a street designated as a Boulevard I and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone. Maxella Avenue is designated as an Avenue III under the MP 2035 Street Standards Plan. Glencoe

Avenue is designated as a Collector under the MP 2035 Street Standards Plan. The Project Site is zoned [Q]M1-1 per LAMC.

MP 2035 Networks

- The Project Site has frontage along the following networks in MP 2035:
 - Pedestrian Enhanced District: Maxella Avenue (See analysis of MP Policy 2.3 above).
 - Neighborhood Enhanced Network: Maxella Avenue and Glencoe Avenue

MP 2035 Policy 2.4 – Neighborhood Enhanced Network. Provide a slow speed network of locally serving streets.

• Maxella Avenue and Glencoe Avenue have been designated within the City's Neighborhood Enhanced Netowork (NEN). Option A will make the required three-foot street dedication along Maxella Avenue and Glencoe Avenue to comply with MP 2035. Once the dedication is provided, the City will be free to install modifications such as shared laned markings as part of the NEN. Option A will not modify Maxella Avenue or Glencoe Avenue in a way that would substantially increase travel speed.

B. MOBILITY PLAN 2035 (MP 2035) PROW POLICY ALIGNMENT WITH PROJECT-INITIATED CHANGES

B.1. Project-Initiated Changes to the PROW Dimensions

MP 2035 Policy 2.1 – Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

• Option A is required to make dedications or improvements to the public right-of way. Specifically, a three-foot street dedication is required for Maxella Avenue and Glencoe Avenue along the Project Site. Option A is not proposing any additional dedications or improvements to the public right-of-way. Option A will not alter adjacent streets or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

MP 2035 Policy 2.3 – Pedestrian Infrastructure. Recognize walking as a component of every trip and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

• Option A will not alter pedestrian infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. Option A prioritizes pedestrian access and connectivity, consistent with Maxella Avenue's designation as a Pedestrian Enhanced District (PED). Option A will make a three-foot street dedication on Maxella Avenue and Glencoe Avenue along the Project Site. Once the dedications are provided, the City will be free to install modifications along Maxella Avenue as part of the

PED network. Option A includes a paved pedestrian paseo internal to the Project Site, which provides safe connections to the various buildings on the Project Site. Additionally, the pedestrian paseo will provide connections to the sidewalk along the Project Site's Glencoe Avenue frontage, as well as the Project Site's Ocean Way frontage.

MP 2035 *Policy* 3.2 – *People with Disabilities. Accommodate the needs of people with disabilities when modifying of installing infrastructure within the public right-of-way.*

• Option A will not alter existing ADA infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

MP 2035 *Policy* 2.10 – *Loading Areas. Facilitate the provision of on and off-site street loading areas.*

• All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations, trash collection and Waste Management for Option A will occur along the south side of the westerly residential building and the south side of the southerly residential building (i.e., at the westerly and southeasterly portions of the Project Site). Service and delivery vehicles will utilize the northerly and southerly Glencoe Avenue driveways to access Option A's service areas.

MP 2035 Street Designations and Standard Roadway Dimensions

• Option A does include additions or new construction along a street designated as a Boulevard I and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone. Maxella Avenue is designated as an Avenue III under the MP 2035 Street Standards Plan. Glencoe Avenue is designated as a Collector under the MP 2035 Street Standards Plan. The Project Site is zoned [Q]M1-1 per LAMC.

B.2. Driveway Access

MP 2035 *Policy* 2.10 – *Loading Areas. Facilitate the provision of on and off-site street loading areas.*

• All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations, trash collection and Waste Management for Option A will occur along the south side of the westerly residential building and the south side of the southerly residential building (i.e., at the westerly and southeasterly portions of the Project Site). Service and delivery vehicles will utilize the northerly and southerly Glencoe Avenue driveways to access Option A's service areas.

MP 2035 Program PL.1. Driveway Access. Require driveway access to buildings from nonarterial streets or alleys (where feasible) in order to minimize interference with pedestrian access and vehicular movement.

• Driveway access to the Project Site will be provided via Ocean Way, a private driveway, Maxella Avenue, an Avenue III, and Glencoe Avenue, a Collector. While the existing Maxella Avenue driveway will be shifted approximately 101 feet to the east, the overall number of curb cuts on Maxella Avenue adjacent to the Project Site will not change. The number of driveways on Glencoe Avenue adjacent to the Project Site will be reduced from two to one, and the northerly Glencoe Avenue driveway will be shifted approximately 113 feet south of the existing driveway, further south from the Glencoe Avenue / Maxella Avenue intersection. Option A has been designed to minimize interference with pedestrian access and vehicular movement.

Citywide Design Guidelines – Guideline 2. Carefully incorporate vehicular access such that it does not degrade the pedestrian experience.

- Prioritize pedestrian access first and automobile access second. Orient parking and driveways toward the rear or side of buildings and away from the public right-of-way. On corner lots, parking should be oriented as far from the corner as possible.
 - Option A prioritizes pedestrian access first. Option A will reduce the number of curb cuts along Glencoe Avenue from three to two. Vehicular access to the Project Site's parking garages from the Ocean Way and Glencoe Avenue access points will be provided on the sides of buildings, away from the public-right-of-way. While vehicular access to one of the onsite parking garages will be provided along Maxella Avenue, Option A will not add additional curb cuts to the Maxella Avenue public right-of-way. The Maxella Avenue driveway will be located approximately 154 feet west of the Glencoe Avenue / Maxella Avenue intersection. The northerly Glencoe Avenue / Maxella Avenue intersection.
- Minimize both the number of driveway entrances and overall driveway widths.
 - Option A proposes driveway entrances from the public right-of-way at the Ocean Way / Maxella Avenue intersection, along Maxella Avenue approximately 154 feet west of the Glencoe Avenue / Maxella Avenue intersection, along Glencoe Avenue approximately 272 feet south of the Glencoe Avenue / Maxella Avenue intersection, and at the existing southerly Glencoe Avenue driveway. Option A will reduce the number of curb cuts along the Project Site's frontage from two to one. All driveways will be constructed in accordance with City Standards.

- Do not locate drop-off/pick-up areas between principal building entrances and the adjoining sidewalks.
 - A passenger loading area is proposed internal to the Project Site with the westerly residential building's parking garage.
- Orient vehicular access as far from street intersections as possible.
 - The Maxella Avenue driveway will be located approximately 154 feet west of the Glencoe Avenue / Maxella Avenue intersection. The northerly Glencoe Avenue driveway will be located approximately 272 feet south of the Glencoe Avenue / Maxella Avenue intersection.
- Place drive-through elements away from intersections and avoid placing them so that they create a barrier between the sidewalk and building entrance(s).
 - Option A does not propose any drive-through elements.
- Ensure that loading areas do not interfere with onsite pedestrian and vehicular circulation by separating loading areas and larger commercial vehicles from areas that are used for public parking and public entrances.
 - All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations, trash collection and Waste Management for Option A will occur along the south side of the westerly residential building and the south side of the southerly residential building (i.e., at the westerly and southeasterly portions of the Project Site), away from access points to parking and public entrances. Service and delivery vehicles will utilize the northerly and southerly Glencoe Avenue driveways to access Option A's service areas.

C. NETWORK ACCESS

C.1. Alley, Street and Stairway Access

MP 2035 Policy 3.9 – Increased Network Access. Discourage the vacation of public rights-ofway.

• Option A will not vacate any public rights-of-way.

C.2. New Cul-de-sacs

 $MP \ 2035 \ Policy \ 3.10 - Cul-de-sacs$. Discourage the use of cul-de-sacs that do not provide access for active transportation options.

• The Project Site is not located on a cul-de-sac.

D. PARKING SUPPLY AND TRANSPORTATION DEMAND MANAGEMENT

MP 2035 Policy 3.8 – Bicycle Parking. Provide bicyclists with convenient, secure, and wellmaintained bicycle parking facilities.

• Option A is required to provide 79 short-term and 672 long-term bicycle parking spaces in accordance with LAMC. Option A will provide the LAMC-required number of short-term and long-term bicycle parking spaces. Secure bicycle parking will be provided on all levels of the onsite parking garages.

MP 2035 Policy 4.8 – Transportation Demand Management Strategies. Encourage greater utilization of Transportation Demand Management Strategies to reduce dependance on single-occupancy vehicles.

• The Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance, referred to in the LAMC Section 12.26.J) and the other requirements per the City's Municipal Code, as well as the TDM requirements of the Coastal Transportation Corridor Specific Plan.

MP 2035 Policy 4.13 – Parking and Land Use Management. Balance on-street and off-street parking supply with other transportation and land use objectives.

• Option A will provide a total of 1,217 vehicle parking spaces will be provided onsite upon completion. The Project Site will provide vehicle parking spaces in accordance with LAMC. Additionally, the Project will provide the LAMC-required number of short-term and long-term bicycle parking spaces. Additionally, Option A is within convenient walking distance to public transit routes along Maxella Avenue and Glencoe Avenue.

E. CONSISTENCY WITH REGIONAL PLANS

Option A applies one of the City's efficiency-based impact thresholds (i.e., VMT per Capita and VMT per Employee) as discussed in Section 4.2 of the Transportation Assessment. The VMT analysis concludes that Option A will not result in a significant VMT impact. As Option A will not result in a significant VMT impact. As Option A will greenhouse gas (GHG) goals of the Southern California Association of Governments (SCAG) Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS).

Additional Review

The following provides a review of the transportation-related goals listed in the Plan for a Healthy Los Angeles (Healthy LA).

• Option A supports the transportation-related goals listed in Healthy LA. Option A is designed in a manner that facilitates travel on foot between the Project Site and nearby transit facilities and commercial destination. Option A will provide the LAMC-required

number of bicycle parking spaces. Option A would not conflict with, limit, or preclude the City's ability to implement programs and policies in furtherance of Healthy LA.

The following provides a review of the transportation-related goals listed in the Palms-Mar Vista-Del Rey Community Plan. The Palms-Mar Vista-Del Rey Community Plan was adopted in 1997. While an updated Community Plan is currently under development, the plan from 1997 is currently in effect and forms the basis for this review of conflicts relating to the transportation system.

From a transportation perspective, the Community Plan offers the following goals and objectives related to Option A.

Objective 10-2: To increase the work trips and non-work trips made on public transit.

• Option A is located within convenient walking distance to many public transit lines along Maxella Avenue and Glencoe Avenue.

Objective 11-1: To pursue transportation management strategies that can maximize vehicle occupancy, minimize average trip length, and reduce the number of vehicle trips.

Policy 11-1.1: Encourage non-residential development to provide employee incentives for utilizing alternatives to the automobile, such as carpools, vanpools, buses, flex time, bicycles, and walking.

Policy 11-1.2: Encourage the use of multiple-occupancy vehicle programs for shopping and other activities to reduce midday traffic.

• The Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance, referred to in the LAMC Section 12.26.J) and the other requirements per the City's Municipal Code, as well as the TDM requirements of the Coastal Transportation Corridor Specific Plan.

Objective 12-1: To promote an adequate system of bikeways for commuter, school, and recreational use.

Policy 12-1.4: Encourage the provision of changing rooms, showers, and bicycle storage at new and existing non-residential developments and public places.

• Option A is required to provide 79 short-term and 672 long-term bicycle parking spaces in accordance with LAMC. Option A will provide the LAMC-required number of short-term and long-term bicycle parking spaces. Secure bicycle parking will be provided on all levels of the onsite parking garages.

Objective 12-2: To promote pedestrian oriented mobility and utilization of the bicycle for commuter, school, recreational use, economic activity, and access to transit facilities.

• Option A includes a paved pedestrian paseo internal to the Project Site, which provides safe connections to the various buildings on the Project Site. Additionally, the pedestrian paseo will provide connections to the sidewalk along the Project Site's Glencoe Avenue frontage, as well as the Project Site's Ocean Way frontage. Option A is required to provide 79 short-term and 672 long-term bicycle parking spaces in accordance with the LAMC. Option A will provide the LAMC-required number of short-term and long-term bicycle parking spaces. Secure bicycle parking will be provided on all levels of the onsite parking garages.

Objective 13-1: To provide parking in appropriate locations in accordance with Citywide standards and community needs.

Policy 13-1.1: *Consolidate parking where appropriate, to minimize the number of ingress and egress points onto arterials.*

Policy 13-1.2: New parking lots and garages shall be developed in accordance with design standards.

• Parking will be provided onsite in accordance with LAMC. Vehicular access to the Project Site's Ocean Way access points from Maxella Avenue will be maintained. The existing Maxella Avenue driveway will be shifted approximately 101 feet east of the existing driveway location. Option A will reduce the number of curb cuts along the Project Site's Glencoe Avenue frontage from two to one and will shift the existing northerly Glencoe Avenue driveway approximately 113 feet to the south to provide a greater distance between the driveway and the Glencoe Avenue / Maxella Avenue intersection to the north. The onsite parking garages will be developed in accordance with City standards.

APPENDIX H

DETAILED PLANS, PROGRAMS, ORDINANCES, AND POLICIES REVIEW OPTION B

The worksheet provides a structured approach to evaluate the threshold T-1 question below, that asks whether a project conflicts with a program, plan, ordinance or policy addressing the circulation system. The intention of the worksheet is to streamline the project review by highlighting the most relevant plans, policies and programs when assessing potential impacts to the City's circulation system.

Threshold T-1: Would the project conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities?

This worksheet does not include an exhaustive list of City policies, and does not include community plans, specific plans, or any area-specific regulatory overlays. The Department of City Planning project planner will need to be consulted to determine if the project would obstruct the City from carrying out a policy or program in a community plan, specific plan, streetscape plan, or regulatory overlay that was adopted to support multimodal transportation options or public safety. LADOT staff should be consulted if a project would lead to a conflict with a mobility investment in the Public Right of Way (PROW) that is currently undergoing planning, design, or delivery. This worksheet must be completed for all projects that meet the Section I. Screening Criteria. For description of the relevant planning documents, **see Attachment D.1**.

For any response to the following questions that checks the box in bold text ((i.e. Yes or No), further analysis is needed to demonstrate that the project does not conflict with a plan, policy, or program.

I. SCREENING CRITERIA FOR POLICY ANALYSIS

If the answer is 'yes' to any of the following questions, further analysis will be required:

Does the project require a discretionary action that requires the decision maker to find that the project would substantially conform to the purpose, intent and provisions of the General Plan?

× Yes No

Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety?

Yes X No

Is the project required to or proposing to make any voluntary modifications to the public right-of-way (i.e., dedications and/or improvements in the right-of-way, reconfigurations of curb line, etc.)?

× Yes 📃 No

II. PLAN CONSISTENCY ANALYSIS

A. Mobility Plan 2035 PROW Classification Standards for Dedications and Improvements

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.1 – Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

Mobility Plan 2035 Policy 2.3 – Pedestrian Infrastructure. Recognize walking as a component of every trip, and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

Mobility Plan 2035 Policy 3.2 – *People with Disabilities. Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way.*

Mobility Plan 2035 Street Designations and Standard Roadway Dimensions

A.1 Does the project include additions or new construction along a street designated as a Boulevard I, and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone? X Yes No

A.2 If **A.1 is yes**, is the project required to make additional dedications or improvements to the Public Right of Way as demonstrated by the street designation.

A.3 If **A.2** is yes, is the project making the dedications and improvements as necessary to meet the designated dimensions of the fronting street (Boulevard I, and II, or Avenue I, II, or III)?

× Yes No N/A

If the answer is to **A.1 or A.2 is NO, or to A.1, A.2 and A.3. is YES**, then the project does not conflict with the dedication and improvement requirements that are needed to comply with the Mobility Plan 2035 Street Designations and Standard Roadway Dimensions.

A.4 If the answer to **A.3. is NO**, is the project applicant asking to waive from the dedication standards?

Lists any streets subject to dedications or voluntary dedications and include existing roadway and sidewalk widths, required roadway and sidewalk widths, and proposed roadway and sidewalk width or waivers.

Frontage 1 Existing PROW'/Curb' : Existing _	70'/54'	_Required	72'/46'	Proposed	73'/54'
Maxella Avenue: Avenue III					
Frontage 2 Existing PROW'/Curb' : Existing _	90'/70'	_Required	66'/40'	Proposed	93'/70'
Glencoe Avenue: Collector					
Frontage 3 Existing PROW'/Curb' : Existing _		_Required		_Proposed	
Frontage 4 Existing PROW'/Curb' : Existing _		_Required		_Proposed	

If the answer to **A.4 is NO**, the project is inconsistent with Mobility Plan 2035 street designations and must file for a waiver of street dedication and improvement.

If the answer to **A.4 is YES**, additional analysis is necessary to determine if the dedication and/or improvements are necessary to meet the City's mobility needs for the next 20 years. The following factors may contribute to determine if the dedication or improvement is necessary:

Is the project site along any of the following networks identified in the City's Mobility Plan?

- Transit Enhanced Network
- Bicycle Enhanced Network
- Bicycle Lane Network
- Pedestrian Enhanced District
- Neighborhood Enhanced Network

To see the location of the above networks, see Transportation Assessment Support Map.¹

Is the project within the service area of Metro Bike Share, or is there demonstrated demand for micromobility services?

If the project dedications and improvements asking to be waived are necessary to meet the City's mobility needs, the project may be found to conflict with a plan that is adopted to protect the environment.

B. Mobility Plan 2035 PROW Policy Alignment with Project-Initiated Changes

B.1 Project-Initiated Changes to the PROW Dimensions

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.1 – Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

Mobility Plan 2035 Policy 2.3 – Pedestrian Infrastructure. Recognize walking as a component of every trip, and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

Mobility Plan 2035 Policy 3.2 – *People with Disabilities. Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way.*

Mobility Plan 2035 Policy 2.10 – *Loading Areas. Facilitate the provision of adequate on and offsite street loading areas.*

Mobility Plan 2035 Street Designations and Standard Roadway Dimensions

¹ LADOT Transportation Assessment Support Map <u>https://arcg.is/fubbD</u>

B.1 Does the project physically modify the curb placement or turning radius and/or physically alter the sidewalk and parkways space that changes how people access a property?

Examples of physical changes to the public right-of-way include:

- widening the roadway,
- narrowing the sidewalk,
- adding space for vehicle turn outs or loading areas,
- removing bicycle lanes, bike share stations, or bicycle parking
- modifying existing bus stop, transit shelter, or other street furniture
- paving, narrowing, shifting or removing an existing parkway or tree well

Yes X No

B.2 Driveway Access

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.10 – *Loading Areas. Facilitate the provision of adequate on and offsite street loading areas.*

Mobility Plan 2035 Program PL.1. Driveway Access. Require driveway access to buildings from non-arterial streets or alleys (where feasible) in order to minimize interference with pedestrian access and vehicular movement.

Citywide Design Guidelines - Guideline 2: Carefully incorporate vehicular access such that it does not degrade the pedestrian experience.

Site Planning Best Practices:

- Prioritize pedestrian access first and automobile access second. Orient parking and driveways toward the rear or side of buildings and away from the public right-of-way. On corner lots, parking should be oriented as far from the corner as possible.
- Minimize both the number of driveway entrances and overall driveway widths.
- Do not locate drop-off/pick-up areas between principal building entrances and the adjoining sidewalks.
- Orient vehicular access as far from street intersections as possible.
- Place drive-thru elements away from intersections and avoid placing them so that they create a barrier between the sidewalk and building entrance(s).
- Ensure that loading areas do not interfere with on-site pedestrian and vehicular circulation by separating loading areas and larger commercial vehicles from areas that are used for public parking and public entrances.

B.2 Does the project add new driveways along a street designated as an Avenue or a Boulevard that conflict with LADOT's Driveway Design Guidelines (See Sec. 321 in the Manual of Policies and Procedures) by any of the following:

- locating new driveways for residential properties on an Avenue or Boulevard, and access is otherwise possible using an alley or a collector/local street, or
- locating new driveways for industrial or commercial properties on an Avenue or Boulevard and access is possible along a collector/local street, or

- the total number of new driveways exceeds 1 driveway per every 200 feet² along on the Avenue or Boulevard frontage, or
- locating new driveways on an Avenue or Boulevard within 150 feet from the intersecting street, or
- locating new driveways on a collector or local street within 75 feet from the intersecting street, or
- locating new driveways near mid-block crosswalks, requiring relocation of the mid-block crosswalk

Yes	х	No
-----	---	----

If the answer to **B.1 and B.2 are both NO**, then the project would not conflict with a plan or policies that govern the PROW as a result of the project-initiated changes to the PROW.

Impact Analysis

If the answer to either **B.1 or B.2 are YES**, City plans and policies should be reviewed in light of the proposed physical changes to determine if the City would be obstructed from carrying out the plans and policies. The analysis should pay special consideration to substantial changes to the Public Right of Way that may either degrade existing facilities for people walking and bicycling (e.g., removing a bicycle lane), or preclude the City from completing complete street infrastructure as identified in the Mobility Plan 2035, especially if the physical changes are along streets that are on the High Injury Network (HIN). The analysis should also consider if the project is in a Transit Oriented Community (TOC) area, and would degrade or inhibit trips made by biking, walking and/ or transit ridership. The streets that need special consideration are those that are included on the following networks identified in the Mobility Plan 2035, or the HIN:

- Transit Enhanced Network
- Bicycle Enhanced Network
- Bicycle Lane Network
- Pedestrian Enhanced District
- Neighborhood Enhanced Network
- High Injury Network

To see the location of the above networks, see Transportation Assessment Support Map.³

Once the project is reviewed relevant to plans and policies, and existing facilities that may be impacted by the project, the analysis will need to answer the following two questions in concluding if there is an impact due to plan inconsistency.

B.2.1 Would the physical changes in the public right of way or new driveways that conflict with LADOT's Driveway Design Guidelines degrade the experience of vulnerable roadway users such as modify, remove, or otherwise negatively impact existing bicycle, transit, and/or pedestrian infrastructure?

² for a project frontage that exceeds 400 feet along an Avenue or Boulevard, the incremental additional driveway above 2 is more than 1 driveway for every 400 additional feet.

³ LADOT Transportation Assessment Support Map <u>https://arcg.is/fubbD</u>

B.2.2 Would the physical modifications or new driveways that conflict with LADOT's Driveway Design Guidelines preclude the City from advancing the safety of vulnerable roadway users?

Yes No X N/A

If either of the answers to either **B.2.1 or B.2.2 are YES**, the project may conflict with the Mobility Plan 2035, and therefore conflict with a plan that is adopted to protect the environment. If either of the answers to both **B.2.1. or B.2.2. are NO**, then the project would not be shown to conflict with plans or policies that govern the Public Right-of-Way.

C. Network Access

C. 1 Alley, Street and Stairway Access

These questions address potential conflict with:

Mobility Plan Policy 3.9 Increased Network Access: Discourage the vacation of public rights-ofway.

C.1.1 Does the project propose to vacate or otherwise restrict public access to a street, alley, or public stairway?

Yes × No

C.1.2 If the answer to C.1.1 is Yes, will the project provide or maintain public access to people walking and biking on the street, alley or stairway?

Yes No X N/A

C.2 New Cul-de-sacs

These questions address potential conflict with:

Mobility Plan 2035 Policy 3.10 Cul-de-sacs: Discourage the use of cul-de-sacs that do not provide access for active transportation options.

C.2.1 Does the project create a cul-de-sac or is the project located adjacent to an existing cul-de-sac? Yes X No

C.2.2 If yes, will the cul-de-sac maintain convenient and direct public access to people walking and biking to the adjoining street network?

Yes No X N/A

If the answers to either C.1.2 or C.2.2 are YES, then the project would not conflict with a plan or policies that ensures access for all modes of travel. If the answer to either C.1.2 or C.2.2 are NO, the project may conflict with a plan or policies that governs multimodal access to a property. Further analysis must assess to the degree that pedestrians and bicyclists have sufficient public access to the transportation network.

D. Parking Supply and Transportation Demand Management

These questions address potential conflict with:

Mobility Plan 2035 Policy 3.8 – Bicycle Parking, Provide bicyclists with convenient, secure and well maintained bicycle parking facilities.

Mobility Plan 2035 Policy 4.8 – Transportation Demand Management Strategies. Encourage greater utilization of Transportation Demand Management Strategies to reduce dependence on single-occupancy vehicles.

Mobility Plan 2035 Policy 4.13 – Parking and Land Use Management: Balance on-street and offstreet parking supply with other transportation and land use objectives.

D.1 Would the project propose a supply of onsite parking that exceeds the baseline amount⁴ as required in the Los Angeles Municipal Code or a Specific plan, whichever requirement prevails?

× Yes No

D.2 If the answer to D.1. is YES, would the project propose to actively manage the demand of parking by independently pricing the supply to all users (e.g. parking cash-out), or for residential properties, unbundle the supply from the lease or sale of residential units?

🛛 Yes 🗴 No 📃 N/A

If the answer to **D.2.** is **NO** the project may conflict with parking management policies. Further analysis is needed to demonstrate how the supply of parking above city requirements will not result in additional (induced) drive-alone trips as compared to an alternative that provided no more parking than the baseline required by the LAMC or Specific Plan. If there is potential for the supply of parking to result in induced demand for drive-alone trips, the project should further explore transportation demand management (TDM) measures to further off-set the induced demands of driving and vehicle miles travelled (VMT) that may result from higher amounts of on-site parking. The TDM measures should specifically focus on strategies that encourage dynamic and context-sensitive pricing solutions and ensure the parking is efficiently allocated, such as providing real time information. Research has demonstrated that charging a user cost for parking or providing a 'cash-out' option in return for not using it is the most effective strategy to reduce the instances of drive-alone trips and increase non-auto mode share to further reduce VMT. To ensure the parking is efficiently managed and reduce the need to build parking for future uses, further strategies should include sharing parking with other properties and/or the general public.

D.3. Would the project provide the minimum on and off-site bicycle parking spaces as required by Section 12.21 A.16 of the LAMC?

× Yes No

⁴ The baseline parking is defined here as the default parking requirements in section 12.21 A.4 of the Los Angeles Municipal Code or any applicable Specific Plan, whichever prevails, for each applicable use not taking into consideration other parking incentives to reduce the amount of required parking.

D.4. Does the Project include more than 25,000 square feet of gross floor area construction of new non-residential gross floor?

x Yes No

D.5 If the answer to D.4. is YES, does the project comply with the City's TDM Ordinance in Section 12.26 J of the LAMC?

× Yes No N/A

If the answer to **D.3. or D.5. is NO** the project conflicts with LAMC code requirements of bicycle parking and TDM measures. If the project includes uses that require bicycle parking (Section 12.21 A.16) or TDM (Section 12.26 J), and the project does not comply with those Sections of the LAMC, further analysis is required to ensure that the project supports the intent of the two LAMC sections. To meet the intent of bicycle parking requirements, the analysis should identify how the project commits to providing safe access to those traveling by bicycle and accommodates storing their bicycle in locations that demonstrates priority over vehicle access.

Similarly, to meet the intent of the TDM requirements of Section 12.26 J of the LAMC, the analysis should identify how the project commits to providing effective strategies in either physical facilities or programs that encourage non-drive alone trips to and from the project site and changes in work schedule that move trips out of the peak period or eliminate them altogether (as in the case in telecommuting or compressed work weeks).

E. Consistency with Regional Plans

This section addresses potential inconsistencies with greenhouse gas (GHG) reduction targets forecasted in the Southern California Association of Governments (SCAG) Regional Transportation Plan (RTP) / Sustainable Communities Strategy (SCS).

E.1 Does the Project or Plan apply one the City's efficiency-based impact thresholds (i.e. VMT per capita, VMT per employee, or VMT per service population) as discussed in Section 2.2.3 of the TAG?

× Yes No

E.2 If the Answer to E.1 is YES, does the Project or Plan result in a significant VMT impact? Yes X No N/A

E.3 If the Answer to E.1 is NO, does the Project result in a net increase in VMT?

Yes No X N/A

If the Answer to E.2 or E.3 is NO, then the Project or Plan is shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS.

E.4 If the Answer to E.2 or E.3 is YES, then further evaluation would be necessary to determine whether such a project or land use plan would be shown to be consistent with VMT and GHG reduction goals of the SCAG RTP/SCS. For the purpose of making a finding that a project is consistent with the GHG reduction targets forecasted in the SCAG RTP/SCS, the project analyst should consult Section 2.2.4 of the Transportation Assessment Guidelines (TAG). Section 2.2.4 provides the methodology for evaluating a land use project's cumulative impacts to VMT, and the appropriate reliance on SCAG's most recently adopted RTP/SCS in reaching that conclusion.

The analysis methods therein can further support findings that the project is consistent with the general use designation, density, building intensity, and applicable policies specified for the project area in either a sustainable communities strategy or an alternative planning strategy for which the State Air Resources Board, pursuant to Section 65080(b)(2)(H) of the Government Code, has accepted a metropolitan planning organization's determination that the sustainable communities strategy or the alternative planning strategy would, if implemented, achieve the greenhouse gas emission reduction targets.

References

BOE Street Standard Dimensions S-470-1 http://eng2.lacity.org/techdocs/stdplans/s-400/S-470-1 20151021 150849.pdf

LADCP <u>Citywide Design Guidelines</u>. <u>https://planning.lacity.org/odocument/f6608be7-d5fe-4187-bea6-</u>20618eec5049/Citywide Design Guidelines.pdf

LADOT Transportation Assessment Support Map https://arcg.is/fubbD

Mobility Plan 2035 <u>https://planning.lacity.org/odocument/523f2a95-9d72-41d7-aba5-1972f84c1d36/Mobility_Plan_2035.pdf</u>

SCAG. Connect SoCal, 2020-2045 RTP/SCS, https://www.connectsocal.org/Pages/default.aspx

ATTACHMENT D.1: CITY PLAN, POLICIES AND GUIDELINES

<u>The Transportation Element of the City's General Plan, Mobility Plan 2035</u>, established the "Complete Streets Design Guide" as the City's document to guide the operations and design of streets and other public rights-of-way. It lays out a vision for designing safer, more vibrant streets that are accessible to people, no matter what their mode choice. As a living document, it is intended to be frequently updated as City departments identify and implement street standards and experiment with different configurations to promote complete streets. The guide is meant to be a toolkit that provides numerous examples of what is possible in the public right-of-way and that provides guidance on context-sensitive design.

The <u>Plan for A Healthy Los Angeles</u> (March 2015) includes policies directing several City departments to develop plans that promote active transportation and safety.

The <u>City of Los Angeles Community Plans, which make up the Land Use Element of the City's General Plan</u>, guide the physical development of neighborhoods by establishing the goals and policies for land use. The 35 Community Plans provide specific, neighborhood-level detail for land uses and the transportation network, relevant policies, and implementation strategies necessary to achieve General Plan and community-specific objectives.

The stated goal of <u>Vision Zero</u> is to eliminate traffic-related deaths in Los Angeles by 2025 through a number of strategies, including modifying the design of streets to increase the safety of vulnerable road users. Extensive crash data analysis is conducted on an ongoing basis to prioritize intersections and corridors for implementation of projects that will have the greatest effect on overall fatality reduction. The City designs and deploys <u>Vision Zero Corridor Plans</u> as part of the implementation of Vision Zero. If a project is proposed whose site lies on the High Injury Network (HIN), the applicant should consult with LADOT to inform the project's site plan and to determine appropriate improvements, whether by funding their implementation in full or by making a contribution toward their implementation.

The <u>Citywide Design Guidelines</u> (October 24, 2019) includes sections relevant to development projects where improvements are proposed within the public realm. Specifically, Guidelines one through three provide building design strategies that support the pedestrian experience. The Guidelines provide best practices in designing that apply in three spatial categories of site planning, building design and public right of way. The Guidelines should be followed to ensure that the project design supports pedestrian safety, access and comfort as they access to and from the building and the immediate public right of way.

The City's <u>Transportation Demand Management (TDM) Ordinance (LA Municipal Code 12.26.J)</u> requires certain projects to incorporate strategies that reduce drive-alone vehicle trips and improve access to destinations and services. The ordinance is revised and updated periodically and should be reviewed for application to specific projects as they are reviewed.

The City's <u>LAMC Section 12.37 (Waivers of Dedication and Improvement)</u> requires certain projects to dedicate and/or implement improvements within the public right-of-way to meet the street designation standards of the Mobility Plan 2035.

The Bureau of Engineering (BOE) <u>Street Standard Dimensions S-470-1</u> provides the specific street widths and public right of way dimensions associated with the City's street standards.

Detailed Responses in Support of General Consistency with Transportation-Related Plans, Programs, Ordinances, or Policies (Adapted from Attachment D in *LADOT Transportation Assessment Guidelines*, July 2020)

The items below correspond with the TAG Attachment D: Plan, Policy, and Program Consistency Worksheet. Defined terms below have the same meanings as in the Transportation Assessment.

A. MOBILITY PLAN 2035 (MP 2035) PROW CLASSIFICATION STANDARDS FOR DEDICATIONS AND IMPROVEMENTS

MP 2035 Policy 2.1 – Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

• Option B is required to make dedications or improvements to the public right-of way. Specifically, a three-foot street dedication is required for Maxella Avenue and Glencoe Avenue along the Project Site. Option B will not alter adjacent streets or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

MP 2035 Policy 2.3 – Pedestrian Infrastructure. Recognize walking as a component of every trip and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

• Option B will not alter pedestrian infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. Option B prioritizes pedestrian access and connectivity, consistent with Maxella Avenue's designation as a Pedestrian Enhanced District (PED). Option B will make a three-foot street dedication on Maxella Avenue and Glencoe Avenue along the Project Site. Once the dedications are provided, the City will be free to install modifications along Maxella Avenue as part of the PED network.

MP 2035 Policy 3.2 – People with Disabilities. Accommodate the needs of people with disabilities when modifying of installing infrastructure within the public right-of-way.

• Option B will not alter existing ADA infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

MP 2035 Street Designations and Standard Roadway Dimensions

• Option B proposes new construction along a street designated as a Boulevard I and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone. Maxella Avenue is designated as an Avenue III under the MP 2035 Street Standards Plan. Glencoe Avenue is designated as a Collector under the MP 2035 Street Standards Plan. The Project Site is zoned [Q]M1-1 per LAMC.
MP 2035 Networks

- The Project Site has frontage along the following networks in MP 2035:
 - Pedestrian Enhanced District: Maxella Avenue (See analysis of MP Policy 2.3 above).
 - Neighborhood Enhanced Network: Maxella Avenue and Glencoe Avenue

MP 2035 Policy 2.4 – Neighborhood Enhanced Network. Provide a slow speed network of locally serving streets.

• Maxella Avenue and Glencoe Avenue have been designated within the City's Neighborhood Enhanced Network (NEN). Option B will make the required three-foot dedication along Maxella Avenue and Glencoe Avenue to comply with MP 2035. Once the dedication is provided, the City will be free to install modifications such as shared laned markings as part of the NEN. Option B will not modify Maxella Avenue or Glencoe Avenue in a way that would substantially increase travel speed.

B. MOBILITY PLAN 2035 (MP 2035) PROW POLICY ALIGNMENT WITH PROJECT-INITIATED CHANGES

B.1. Project-Initiated Changes to the PROW Dimensions

MP 2035 Policy 2.1 – Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

• Option B is required to make dedications or improvements to the public right-of way. Specifically, a three-foot street dedication is required for Maxella Avenue and Glencoe Avenue along the Project Site. Option B is not proposing any additional dedications or improvements to the public right-of-way. Option B will not alter adjacent streets or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

MP 2035 Policy 2.3 – Pedestrian Infrastructure. Recognize walking as a component of every trip and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

• Option B will not alter pedestrian infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. Option B prioritizes pedestrian access and connectivity, consistent with Maxella Avenue's designation as a Pedestrian Enhanced District (PED). Option B will make a three-foot dedication on Maxella Avenue and Glencoe Avenue along the Project Site. Once the dedications are provided, the City will be free to install modifications along Maxella Avenue as part of the PED network.

MP 2035 *Policy* 3.2 – *People with Disabilities. Accommodate the needs of people with disabilities* when modifying of installing infrastructure within the public right-of-way.

• Option B will not alter existing ADA infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

MP 2035 *Policy* 2.10 – *Loading Areas. Facilitate the provision of on and off-site street loading areas.*

• All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations, trash collection and Waste Management for the Project will occur along the northwest and south-central portions of the Project Site. Service and delivery vehicles will utilize the northerly Ocean Way access points, Maxella Avenue driveway, and Glencoe Avenue driveway to access the loading zones and trash/recycling areas located within the at-grade level of the onsite parking garage. Additionally, a passenger drop-off/pick-up area is provided along east side of Ocean Way, internal to the Project Site.

MP 2035 Street Designations and Standard Roadway Dimensions

 Option B does include additions or new construction along a street designated as a Boulevard I and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone. Maxella Avenue is designated as an Avenue III under the MP 2035 Street Standards Plan. Glencoe Avenue is designated as a Collector under the MP 2035 Street Standards Plan. The Project Site is zoned [Q]M1-1 per LAMC.

B.2. Driveway Access

MP 2035 *Policy* 2.10 – *Loading Areas. Facilitate the provision of on and off-site street loading areas.*

• All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations, trash collection and Waste Management for the Project will occur along the northwest and south-central portions of the Project Site. Service and delivery vehicles will utilize the northerly Ocean Way access points, Maxella Avenue driveway, and Glencoe Avenue driveway to access the loading zones and trash/recycling areas located within the at-grade level of the onsite parking garage. Additionally, a passenger drop-off/pick-up area is provided along east side of Ocean Way, internal to the Project Site.

MP 2035 Program PL.1. Driveway Access. Require driveway access to buildings from nonarterial streets or alleys (where feasible) in order to minimize interference with pedestrian access and vehicular movement.

• Driveway access to the Project Site will be provided via Ocean Way, a private driveway, Maxella Avenue, an Avenue III, and Glencoe Avenue, a Collector. While the existing Maxella Avenue driveway will be shifted two feet to the west, the overall number of curb cuts on Maxella Avenue adjacent to the Project Site will not change. The Glencoe Avenue driveway providing access to the Project Site is located adjacent to the Project Site, and the existing driveways along the Project Site's Glencoe Avenue frontage will be removed. Option B has been designed to minimize interference with pedestrian access and vehicular movement.

Citywide Design Guidelines – Guideline 2. Carefully incorporate vehicular access such that it does not degrade the pedestrian experience.

- Prioritize pedestrian access first and automobile access second. Orient parking and driveways toward the rear or side of buildings and away from the public right-of-way. On corner lots, parking should be oriented as far from the corner as possible.
 - Option B prioritizes pedestrian access first. Option B will reduce the number of curb cuts along the Project Site's Glencoe Avenue frontage from two to zero. Vehicular access to the Project Site's parking garage from the Ocean Way and Glencoe Avenue access points will be provided on the sides of buildings, away from the public-right-of-way. While vehicular access to the Option B onsite parking garage will be provided along Maxella Avenue, Option B will not add additional curb cuts to the Maxella Avenue public right-of-way. The Maxella Avenue driveway will be located approximately 263 feet west of the Glencoe Avenue / Maxella Avenue intersection.
- Minimize both the number of driveway entrances and overall driveway widths.
 - Option B proposes driveway entrances from the public right-of-way at the Ocean Way / Maxella Avenue intersection, along Maxella Avenue approximately 263 feet west of the Glencoe Avenue / Maxella Avenue intersection and at the existing Glencoe Avenue driveway adjacent to the Project Site. As the existing Glencoe Avenue driveway is adjacent to the Project Site, Option B will remove all curb cuts along the Project Site's Glencoe Avenue frontage. All driveways will be constructed in accordance with City Standards.
- Do not locate drop-off/pick-up areas between principal building entrances and the adjoining sidewalks.
 - A passenger loading area is proposed along the east side of Ocean Way, along the westerly portion of the Project Site.

- Orient vehicular access as far from street intersections as possible.
 - The Maxella Avenue driveway will be located 263 feet west of the Glencoe Avenue / Maxella Avenue intersection.
- Place drive-through elements away from intersections and avoid placing them so that they create a barrier between the sidewalk and building entrance(s).
 - Option B does not propose any drive-through elements.
- Ensure that loading areas do not interfere with onsite pedestrian and vehicular circulation by separating loading areas and larger commercial vehicles from areas that are used for public parking and public entrances.
 - All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations, trash collection and Waste Management for the Project will occur along the northwest and south-central portions of the Project Site. Service and delivery vehicles will utilize the northerly Ocean Way access points, Maxella Avenue driveway, and Glencoe Avenue driveway to access the loading zones and trash/recycling areas located within the at-grade level of the onsite parking garage. Additionally, a passenger drop-off/pick-up area is provided along east side of Ocean Way, internal to the Project Site.

C. NETWORK ACCESS

C.1. Alley, Street and Stairway Access

MP 2035 Policy 3.9 – Increased Network Access. Discourage the vacation of public rights-ofway.

• Option B will not vacate any public rights-of-way.

C.2. New Cul-de-sacs

 $MP \ 2035 \ Policy \ 3.10 - Cul-de-sacs$. Discourage the use of cul-de-sacs that do not provide access for active transportation options.

• The Project Site is not located on a cul-de-sac.

D. PARKING SUPPLY AND TRANSPORTATION DEMAND MANAGEMENT

MP 2035 Policy 3.8 – Bicycle Parking. Provide bicyclists with convenient, secure, and wellmaintained bicycle parking facilities.

• Option B is required to provide 48 short-term and 219 long-term bicycle parking spaces in accordance with LAMC. Option B will provide the LAMC-required number of short-term and long-term bicycle parking spaces. Additionally, Option B will provide end-of-trip

bicycle facilities, including secure bicycle parking and showers, to support safe and comfortable bicycle travel. Secure bicycle parking will be provided on all levels within the onsite parking garage.

MP 2035 Policy 4.8 – Transportation Demand Management Strategies. Encourage greater utilization of Transportation Demand Management Strategies to reduce dependance on single-occupancy vehicles.

- As stated in Section 2.9 of the Transportation Assessment, Option B will implement the following TDM strategies as mitigation measures:
 - Transit Subsidies;
 - Promotions and Marketing;
 - Alternative Work Schedules and Telecommuting Program;
 - Include Bicycle Parking per LAMC;
 - Include Secure Bicycle Parking and Showers; and
 - Pedestrian Network Improvements.
- Additionally, the Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance, referred to in the LAMC Section 12.26.J) and the other requirements per the City's Municipal Code, as well as the TDM requirements of the Coastal Transportation Corridor Specific Plan.

MP 2035 Policy 4.13 – Parking and Land Use Management. Balance on-street and off-street parking supply with other transportation and land use objectives.

• The Project would not conflict with the portion of Policy 4.13 that discourages utilizing land for parking that could have been used for other valuable uses since most of the onsite parking will be located below grade.

While Option B would provide parking in excess of the minimum requirements as determined by the LAMC, it would include features to encourage walking and bicycling and LAMC-required bicycle parking spaces. As discussed in Section 4.2 of the Transportation Assessment, the Project would be consistent with the applicable goals and objectives of the SCAG 2016–2040 RTP/SCS and 2020–2045 RTP/SCS to locate jobs and housing in infill locations served by public transportation. Therefore, Option B would not undermine broader regional goals of creating vibrant public spaces and a robust multi-modal transportation system.

Under CEQA, a project is considered consistent with an applicable plan if it is consistent with the overall intent of the plan and would not preclude the attainment of its primary goals. A project does not need to be in perfect conformity with each and every policy. Therefore, even though the Option B's parking may exceed the minimum requirements as determined by LAMC, the Project is consistent with the overall intent of Policy 4.13 and MP 2035.

Moreover, any inconsistency with an applicable policy, plan, or regulation is only a significant impact under CEQA if the policy, plan, or regulation were adopted for the purpose of avoiding or mitigating an environmental effect and the inconsistency itself would result in a direct physical impact on the environment. The above policy is intended to implement broader regional goals, not to mitigate an environmental effect. Therefore, even if the amount of parking provided by Option B was conservatively considered to be inconsistent with Policy 4.13, such inconsistency would not be considered to be a significant impact under CEQA.

E. CONSISTENCY WITH REGIONAL PLANS

Option B applies one of the City's efficiency-based impact thresholds (i.e., VMT per Capita and VMT per Employee) as discussed in Section 4.2 of the Transportation Assessment. It is noted that Option B will incorporate TDM measures as mitigation measures, as described in Section 2.9 of the Transportation Assessment. The implementation of the TDM measures results in a Daily Household VMT per Capita impact that is less than significant. However, the maximum work based TDM reduction is achieved, and no further TDM measures can be implemented to reduce the Daily Work VMT per Employee below 11.1 Daily Work VMT per Employee.

While the Option B Daily Work VMT per Employee is greater than the West Los Angeles APC significance threshold of 11.1 Daily Work VMT per Employee, LLG has proposed an alternative assessment of the VMT impacts for Option B. As stated in Section 4.2.2 of the Transportation Assessment, the Daily Household VMT per Capita for the residential component of Option B is calculated to be 5.4 Daily Household VMT per Capita with implementation of the recommended mitigation measures, which is well below the threshold for the West Los Angeles APC of 7.4 Daily Household VMT per Capita. For the office component of Option B, the Daily Work VMT per Employee value is calculated to be reduced from 14.5 to 11.6 with consideration of TDM measures. While the Daily Work VMT per Employee value after application of TDM measures is greater than the threshold of 11.1 Daily Work VMT per Employee, a finding of a less than significant impact is made related to the Daily Work VMT per Employee for Option B in consideration of the "excess" mitigation provided by the TDM measures recommended for Option B. The resulting Daily Household VMT per Capita for the residential component is substantially less than the threshold of significance for the West Los Angeles APC and therefore is deemed to offset the unmitigated portion of the Daily Work VMT per Employee related to the office component. As the VMT impacts related to Option B have been shown to be mitigated, Option B is shown to be consistent with the VMT and greenhouse gas (GHG) goals of the Southern California Association of Governments (SCAG) Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS).

Additional Review

The following provides a review of the transportation-related goals listed in the Plan for a Healthy Los Angeles (Healthy LA).

• Option B supports the transportation-related goals listed in Healthy LA. Option B is designed in a manner that facilitates travel on foot between the Project Site and nearby transit facilities and commercial destination. Option B will provide the LAMC-required number of bicycle parking spaces. Option B would not conflict with, limit or preclude the City's ability to implement programs and policies in furtherance of Healthy LA.

The following provides a review of the transportation-related goals listed in the Palms-Mar Vista-Del Rey Community Plan. The Palms-Mar Vista-Del Rey Community Plan was adopted in 1997. While an updated Community Plan is currently under development, the plan from 1997 is currently in effect and forms the basis for this review of conflicts relating to the transportation system.

From a transportation perspective, the Community Plan offers the following goals and objectives related to the Project.

Objective 10-2: To increase the work trips and non-work trips made on public transit.

• Option B is located within convenient walking distance to many public transit lines along Maxella Avenue and Glencoe Avenue.

Objective 11-1: To pursue transportation management strategies that can maximize vehicle occupancy, minimize average trip length, and reduce the number of vehicle trips.

Policy 11-1.1: Encourage non-residential development to provide employee incentives for utilizing alternatives to the automobile, such as carpools, vanpools, buses, flex time, bicycles, and walking.

Policy 11-1.2: Encourage the use of multiple-occupancy vehicle programs for shopping and other activities to reduce midday traffic.

- As stated in Section 2.9 of the Transportation Assessment, Option B will implement the following TDM strategies as mitigation measures:
 - Transit Subsidies;
 - Promotions and Marketing;
 - Alternative Work Schedules and Telecommuting Program;

- Include Bicycle Parking per LAMC;
- Include Secure Bicycle Parking and Showers; and
- Pedestrian Network Improvements.
- Additionally, the Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance, referred to in the LAMC Section 12.26.J) and the other requirements per the City's Municipal Code, as well as the TDM requirements of the Coastal Transportation Corridor Specific Plan.

Objective 12-1: To promote an adequate system of bikeways for commuter, school, and recreational use.

Policy 12-1.4: Encourage the provision of changing rooms, showers, and bicycle storage at new and existing non-residential developments and public places.

• Option B is required to provide 48 short-term and 219 long-term bicycle parking spaces in accordance with LAMC. Option B will provide the LAMC-required number of short-term and long-term bicycle parking spaces. Additionally, Option B will provide end-of-trip bicycle facilities, including secure bicycle parking and showers, to support safe and comfortable bicycle travel Secure bicycle parking will be provided on all levels within the onsite parking garage.

Objective 12-2: To promote pedestrian oriented mobility and utilization of the bicycle for commuter, school, recreational use, economic activity, and access to transit facilities.

• Option B will provide connections to the sidewalks along the Project Site's Maxella Avenue and Glencoe Avenue frontages, as well as the Project Site's Ocean Way frontage. Option B is required to provide 48 short-term and 219 long-term bicycle parking spaces in accordance with the LAMC. Option B will provide the LAMC-required number of short-term and long-term bicycle parking spaces. Secure bicycle parking will be provided on all levels within the onsite parking garage.

Objective 13-1: To provide parking in appropriate locations in accordance with Citywide standards and community needs.

Policy 13-1.1: Consolidate parking where appropriate, to minimize the number of ingress and egress points onto arterials.

Policy 13-1.2: New parking lots and garages shall be developed in accordance with design standards.

• Option B will provide a total of 1,287 vehicle parking spaces onsite. While Option B will provide parking in excess of LAMC requirements, Option B will implement TDM

strategies to encourage travel to and from the Project Site by alternative modes of transportation. The TDM strategies are described in detail in Section 2.9 of the Transportation Assessment. The Option B onsite parking garage will be developed in accordance with City standards.

APPENDIX I

VEHICLE MILES TRAVELED ANALYSIS FOR MIXED-USE PROJECTS – LADOT APPROVED METHODOLOGY FOR MITIGATION OF VMT IMPACTS

MEMORANDUM

Subject:	Vehicle Miles Traveled Analysis for Mixe Alternative Methodology for Mitigation o Passo Marine Project 13400 Maxelle Ave	d-Use Pi of VMT	rojects Impacts TC20 109212	
From:	David S. Shender, P.E. Linscott, Law & Greenspan, Engineers	LLG Ref:	5-16-0265-1	
To:	Eddie Guerrero Los Angeles Department of Transportation	Date:	January 28, 2021	

This memorandum has been prepared by Linscott, Law & Greenspan, Engineers (LLG) to request consideration from the Los Angeles Department of Transportation (LADOT) for an alternative methodology related to mitigation of impacts at mixeduse development projects identified through the Vehicle Miles Traveled (VMT) methodology. For this analysis, we have referenced the proposed Paseo Marina project located at 13400 Maxella Avenue in the Marina del Rey area of Los Angeles.

Paseo Marina Project Description

A Transportation Assessment for the Paseo Marina project is currently in preparation based on LADOT's Transportation Assessment Guidelines¹ (the "Guidelines"). The Transportation Assessment will evaluate the transportation effects of two development options proposed by the project applicant:

- Option A
 - 592 market-rate residential units
 - o 66 affordable residential units
 - o 13,650 square feet of restaurant floor area
 - o 13,650 square feet of retail floor
- Option B
 - o 382 market-rate residential units
 - 43 affordable residential units
 - 20,000 square feet of restaurant floor area
 - o 20,000 square feet of retail floor area
 - o 90,000 square feet of office floor area

An LADOT Memorandum of Understanding was prepared and executed for both Option A and Option B, although the transportation effects of each development option will be evaluated within a single Transportation Assessment document. The Transportation Assessment will be incorporated into a Recirculated Draft Environmental Impact Report (Draft EIR) to be prepared for the Paseo Marina project.

LINSCOTT LAW & GREENSPAN

engineers

Engineers & Planners Traffic Transportation Parking

Linscott, Law & Greenspan, Engineers

20931 Burbank Boulevard Suite C Woodland Hills, CA 91367 818.835.8648 T 818.835.8649 F www.llgengineers.com

Pasadena Irvine San Diego Woodland Hills

¹ Transportation Assessment Guidelines, LADOT, July 2020.

SB 743/OPR Background

The LADOT Guidelines reference Senate Bill 743 (SB 743), which requires the use of "...a transportation performance metric that promotes: the reduction of greenhouse gas emissions, the development of multi modal networks, and access to diverse land uses..." when evaluating the potential transportation effects of development projects under the California Environmental Quality Act (CEQA). Further, the Guidelines note that the Governor's Office of Planning and Research (OPR) has provided technical guidance² to jurisdictions in California for purposes of implementing SB 743, including the recommendation that VMT be used to quantify the transportation effects of development projects.

Additionally, OPR provided two additional recommendations with respect to implementing SB 743:

- VMT for residential projects and commercial projects should be quantified on a VMT per capita and VMT per employee basis, respectively; and
- A project per capita or per employee VMT that is 15% below that of current conditions is a reasonable threshold of significance for purposes of assessing the relative transportation impacts of development projects.

For development projects that are calculated to exceed the 15% below current VMT standard, OPR states that measures such as implementation of transportation demand management (TDM) measures would be a valid mitigation of VMT impacts. OPR acknowledges that while there are a variety of State legislative mandates and adopted policies related to greenhouse gas (GHG) emissions, the intent of SB 743 is to reduce *all* GHG emissions, and not a specific emission related to a particular type of land use. Thus, a TDM measure that eliminates one vehicle mile traveled for a residential project component would have the same benefit in reducing GHG emissions as a TDM measure that eliminates one vehicle mile traveled for a commercial project component.

The LADOT Guidelines incorporate the OPR recommendations by: 1) Calculating per capita VMT for residential projects and per employee VMT for commercial projects; 2) Adopting the significance threshold whereby a significant impact is determined if the project's calculated VMT per capita and/or VMT per employee is greater than a corresponding value that is 15% less than the existing local Area Planning Commission (APC) VMT per capita and/or VMT per employee; and 3) Considering the quantitative effects of TDM measures as mitigation measures for purposes of reducing the calculated project-related VMT values to a level below the thresholds of significance.

² Technical Advisory on Evaluating Transportation Impacts in CEQA, OPR, December 2018.

It is noted that the LADOT Guidelines also adopted the OPR recommendation that commercial retail projects providing less than 50,00 square feet of building floor area are assumed to be local-serving in nature and therefore presumed to result in a less than significant VMT impact.

LADOT VMT Calculator

LADOT has developed a VMT Calculator for purposes of calculating per capita VMT values for residential projects and per employee VMT values for commercial projects. For mixed-use development projects that feature both types of land uses (such as the Paseo Marina project), the VMT Calculator produces both VMT values: a per capita VMT for the residential component and a per employee VMT for the commercial component.

The resultant VMT values provided by the VMT Calculator are compared to the applicable thresholds of significance based on the project's location in the City of Los Angeles. The Paseo Marina project, for example, is located within the City's West Los Angeles APC where the VMT thresholds of significance are 7.4 VMT per capita and 11.1 VMT per employee, both of which are 15% below the existing VMT values in the APC. It is noted that for some mixed-use projects, the VMT Calculator may identify a significant VMT impact related to one project component (e.g., residential), while the calculated VMT impact for the other component (e.g., commercial) may be less than significant.

The VMT Calculator also includes a menu of TDM measures, which, when applied to a project, have the effect of reducing the calculated per capita and/or per employee VMT values. Some TDM measures are applicable only to commercial projects (such as parking cash-out), while other measures are applicable only to residential projects (such as unbundled parking). Also, there are TDM measures that are applicable to both commercial and residential projects (such as promotions and marketing). We understand that the relative quantitative effectiveness of the TDM in reducing the VMT values within the VMT Calculator is primarily based on references published by the California Air Pollution Control Officers Association (CAPCOA).

An additional feature of the LADOT VMT Calculator is that it "caps" the overall effectiveness of the TDM measures in reducing the per capita and per employee VMT values. The cap is based on the development project's "place type" as determined by LADOT. The place types vary from urban, compact infill, suburban center, and suburban. Presumably, much of Downtown Los Angeles would be considered urban and the VMT Calculator permits up to a 75% reduction in VMT values due to TDM measures while portions of the San Fernando Valley are likely considered suburban and the VMT Calculator caps the effectiveness of TDM measures at 15%.

According to the LADOT VMT Calculator, the Paseo Marina project is in a suburban center place type for which the TDM effectiveness is capped at 20%. Thus, for example, as the thresholds of significance applicable to the Paseo Marina project are 7.4 VMT per capita for the residential component and 11.1 VMT per employee for the commercial component, a calculated VMT exceeding either threshold by more than 20% (i.e., 9.3 VMT per capita or greater for residential and 13.9 VMT per employee or greater for commercial) cannot be completely mitigated within the VMT Calculator, as the effectiveness of the available TDM measures is capped.

Paseo Marina VMT Calculation

The Paseo Marina Option A and Option B projects were evaluated through the LADOT VMT Calculator. *Table 1* below provides the results of the VMT values calculated for the residential and commercial components of the two development options prior to consideration of mitigation (i.e., TDM measures), which would reduce the resultant VMT values.

Paseo Marina	Threshold of	Calculated Per Capita and Per Employee VMT Without Mitigation		
Component	Significance	Option A	Option B	
Residential	7.4 VMT	6.9 VMT	6.8 VMT	
Commercial	11.1 VMT	N/A [a]	14.5 VMT	

Table 1Paseo Marina VMT Calculation

[a] VMT for commercial component is not calculated because it is less than 50,000 square feet in size and therefore considered as local-serving and presumed to result in a less than significant VMT impact.

XXX Bold values denote a significant impact.

As shown in *Table 1*, the residential and commercial components of the Paseo Marina Option A project would result in a less than significant impact because the residential VMT per capita value is less than the City's threshold of significance, while the commercial component (retail and restaurant uses) is presumed to be local-serving because it is proposed to provide less than 50,000 square feet in floor area. Therefore, no mitigation measures (e.g., TDM measures) are required for Option A.

For the Paseo Marina Option B project, *Table 1* shows that while the VMT per capita value for the residential component is less than the threshold of significance, the commercial component (which includes 90,000 square feet of proposed office floor area and 40,000 square feet of retail/restaurant floor area) is calculated at 14.5 VMT per employee, which exceeds the City's threshold of significance of 11.1 VMT per employee. Of further note is the calculated VMT value of 14.5 is more than 30% higher than the 11.1 VMT threshold of significance, which means that the Option B project's VMT per employee value cannot be reduced to a level below the significance threshold because the VMT Calculator will only permit a menu of TDM measures that is capped at a 20% level of effectiveness. Thus, the project's VMT per employee can only be reduced with TDM measures by 20% to a value of 11.6 VMT, which still exceeds the significance threshold of 11.1 VMT, and therefore would be considered a significant and unmitigated impact based on current LADOT policy.

Proposed Alternative Assessment of VMT Impacts for Mixed-Use Projects

LLG believes the current City process for assessing the significance of VMT impacts at mixed-use projects does not consider the SB 743 mandate of encouraging development projects that reduce *all* GHG emissions. Therefore, this section outlines an alternative assessment of VMT impacts utilizing the current calculation procedures and output provided by LADOT's VMT Calculator.

In review, *Table 1* shows the Paseo Marina Option B project without TDM measures would have a calculated VMT per capita that is less than the applicable LADOT threshold of significance, but a per employee VMT that exceeds the threshold of significance. Further, the per employee VMT cannot be fully reduced to a level below the significance threshold with the application of TDM measures because of the "place type" limitations provided in the VMT Calculator.

As previously stated, the intent of SB 743 is to reduce *all* GHG emissions related to development projects. A mixed-use project's total GHG emissions is not considered under the current LADOT methodology for determining VMT impacts, as the methodology provides separate assessments of impacts for residents and employees. Therefore, an alternative assessment is proposed that considers the effects of the *total* VMT for a mixed-use project, and not an individual component (residential or commercial).

Table 2 below has been prepared to evaluate VMT impacts for the Paseo Marina Option B project, a mixed-use development, using total VMT, and not separately the per capita VMT or per employee VMT related to the project components. This assessment of total VMT utilizes the data and calculations already provided by LADOT's VMT Calculator. A copy of the VMT Calculator report prepared for the Paseo Marina Option B project is attached to this memorandum for reference.

engineers

Table 2Proposed Alternative Approach for Assessing Significant VMT ImpactPaseo Marina Option B Project

		[1] Project V	MT	[2] Significar Thresholds Ba Total Project	nce ased on VMT	[3] Project V With Mitig Allowed in L VMT Calcu	MT ation ADOT ılator
Paseo Marina Component	Population	VMT Per Capita or Employee	Total VMT	VMT Per Capita or Employee [a]	Total VMT	VMT Per Capita or Employee	Total VMT
Residential	996	6.8	6,736	7.4	7,089	5.4	5,389
Commercial	480	14.5	6,968	11.1	5,524	11.6 [c]	5,574
Tota	al		13,704		12,417 [b]		10,963 [d]

[a] West LA APC per capita and per employee thresholds used to calculate total VMT threshold of significance.[b] Derived total VMT threshold of significance based on project population values and APC per capita VMT and per employee VMT thresholds of significance.

[c] VMT per employee exceeds target of 11.1 VMT per employee.

[d] However, total VMT (10,998) with mitigation is less than proposed total VMT (12,417) threshold of

significance. Thus, overall VMT impact of project is less than significant.

As shown in *Table 2*, per the LADOT VMT Calculator, the residential component of the Option B project is estimated to have 996 residents while the commercial component is estimated to have 480 employees. Further, as shown in column [1] of *Table 2*, based on the per capita and per employee VMT values produced by the VMT Calculator, the Option B project is calculated to generate 6,736 VMT and 6,968 VMT, respectively, or a total VMT of 13,704 generated by the residents and employees.

Column [2] in *Table 2* provides the next step which is the calculation of a total VMT threshold of significance for the project using the current per capita and per employee VMT thresholds related to the West Los Angeles APC. As shown in *Table 2*, the project's residential and employee population values derived from the VMT Calculator are applied to APC thresholds of significance to derive a total project VMT of 12,417. As shown in *Table 2*, this alternative significance threshold is less than the initial calculation of 13,704 total VMT for the Paseo Marina Option B project, meaning that a significant impact related to VMT is calculated prior to consideration of TDM measures that would reduce the project's total VMT value.

Finally, column [3] of *Table 2* illustrates the effect of implementing TDM measures to the Option B project through the VMT Calculator. As previously discussed, the VMT Calculator limits the effect of the TDM measures to a 20% reduction in the VMT values due its place type, and therefore the project's per employee VMT can only be reduced to 11.6 VMT, which exceeds the 11.1 VMT per employee threshold for the West Los Angeles APC. It is noted that several of the TDM measures applied in the VMT Calculator also reduce the calculated VMT per capita (i.e., for the residential component) even though the baseline VMT value was already below the applicable threshold of significance.

However, it is of note in column [3] of *Table 2* that the total VMT related to residents and employees is calculated at 10,963 VMT, which is well below the 12,417 total VMT of both of the project's resident and employee populations attained through the corresponding per capita and per employee threshold values. Thus, the Option B project with the suggested menu of TDM measures implemented through the VMT Calculator results in less total VMT (and fewer GHG emissions) than what would otherwise be provided if both residential and commercial elements met their respective per capita and per employee VMT targets. Accordingly, it is reasonable and appropriate to conclude that the transportation effects of the Paseo Marina Option B project, as analyzed through the City's VMT Calculator, is mitigated to less than significant with implementation of TDM measures.

Conclusion and Recommendation

The City of Los Angeles has implemented SB 743 through its new Transportation Assessment Guidelines and VMT Calculator. As recommended by OPR, LADOT's VMT Calculator evaluates VMT for development projects by producing a per capita VMT for residential projects and a per employee VMT for commercial projects. The output is compared to VMT thresholds of significance that are generally 15% current VMT levels in the local APC. TDM measures are included in the VMT Calculator to reduce calculated VMT values in instances where the initial VMT value exceeds the threshold of significance.

LLG believes the VMT Calculator does not correctly consider the VMT effects of mixed-use development projects within the mandate of SB 743. This is because the VMT Calculator separately calculates the per capita and per employee VMT values for residential and commercial components of a project, resulting in the possibility that one of the two values may exceed the applicable threshold of significance and thereby resulting in a finding of an overall significant impact. This methodology, however, does not consider the total VMT related to the project, which in fact may be less than desired 15% local threshold even though one of the project components may exceed its target value.

Accordingly, for mixed-use development projects, it is recommended that LADOT permit consideration of the total VMT value attributed to the project's residents and employees when assessing the overall VMT effects. The total VMT value can be established for a specific project by: 1) Determining the project's resident and employee populations estimated through the VMT Calculator; 2) Multiplying the respective resident and employee populations by the local APC per capita and per employee local thresholds of significance; and 3) Summing the resident and employee VMT values to determine the project's total VMT threshold of significance.

cc: File

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Existing Land Use

Project Information

Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

O No

• Yes

Land Use Type		Value	Unit	
Retail General Retail	-	100.781	ksf	•
Retail General Retail		100.781	ksf	

Click here to add a single custom land use type (will be included in the above list)

Proposed Project Land Use

Land Use Type		Value	Unit	
Office General Office	-	90	ksf	+
Housing Multi-Family		382	DU	
Housing Affordable Housing - Family		43	DU	
Retail High-Turnover Sit-Down Restaurant	t	20	ksf	
Retail General Retail		20	ksf	
Office General Office		90	ksf	

Project Screening Summary

Existing Land Use	Propos Proje	ed ct		
3,595 Daily Vehicle Trips	5,574 Daily Vehicle Trips			
29,609 Daily VMT	45,17 Daily VI	78 MT		
Tier 1 Scree	ning Criteria			
Project will have less reside to existing residential units mile of a fixed-rail station.	ntial units compa & is within one-h	red alf		
The net increase in daily tri	ps < 250 trips	1,979 Net Daily Trips		
The net increase in daily VM	/IT ≤ 0	15,569 Net Daily VMT		
The proposed project consi land uses ≤ 50,000 square f	sts of only retail eet total.	40.000 ksf		
The proposed project is required to perform VMT analysis.				

Click here to add a single custom land use type (will be included in the above list)

CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	382	DU
Housing Affordable Housing - Family	43	DU
Retail High-Turnover Sit-Down Restaurant	20	ksf
Retail General Retail	20	ksf
Office General Office	90	ksf

TDM Strategies - Max Mitigation Reduction

Use 🗹 to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Select each section to show individual strategies

Analysis Results

Max Home Based TDM Ac Max Work Based TDM Ac	chieve hieve	Prop ed? d?	osed Project No No	With Mitigation Yes Yes	
A		Parking			
Reduce Parking Supply	100	city code parking	g provision for th	e project site	
Proposed Prj Mitigation	74	actual parking p			
Proposed Prj Mitigation	175	monthly parking site	g cost (dollar) for	the project	
Parking Cash-Out	100	percent of emplo	oyees eligible		
Price Workplace Parking	6.00 100	daily parkir percent of emplo parking	ng charge (dollar) oyees subject to p	priced	
Residential Area Parking Permits Proposed Prj Mitigation	200	cost (dollar) of annual perm	it	
B		Transit			
C Educa	tion	& Encoura	gement		
D Com	mute	e Trip Redu	ictions		
E	Shar	ed Mobilit	у		
F Bi	cycle	Infrastruct	ture		
G Neigh	Neighborhood Enhancement				

Proposed Project	With Mitigation
5,574	4,459
Daily Vehicle Trips	Daily Vehicle Trips
45,178	36,142
Daily VMT	Daily VMT
6.8	5.4
Houseshold VMT per Capita	Houseshold VMT per Capita
14.5	11.6
Work VMT	Work VMT
per Employee	per Employee
Significant	VMT Impact?
Household: No	Household: No
Threshold = 7.4	Threshold = 7.4
1370 Delow AFC	15% below Ar c
Work: Yes	Work: Yes
Threshold = 11.1	Threshold = 11.1
15% Below APC	15% Below APC

Report 1: Project & Analysis Overview

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Project Information			
Land	Use Type	Value	Units
	Single Family	0	DU
	Multi Family	382	DU
Housing	Townhouse	0	DU
	Hotel	0	Rooms
	Motel	0	Rooms
	Family	43	DU
Affordable Housing	Senior	0	DU
Allordable Housing	Special Needs	0	DU
	Permanent Supportive	0	DU
	General Retail	20.000	ksf
	Furniture Store	0.000	ksf
	Pharmacy/Drugstore	0.000	ksf
	Supermarket	0.000	ksf
	Bank	0.000	ksf
	Health Club	0.000	ksf
Datall	High-Turnover Sit-Down	20.000	1.0
Retail	Restaurant	20.000	KST
	Fast-Food Restaurant	0.000	ksf
	Quality Restaurant	0.000	ksf
	Auto Repair	0.000	ksf
	Home Improvement	0.000	ksf
	Free-Standing Discount	0.000	ksf
	Movie Theater	0	Seats
Office	General Office	90.000	ksf
Office	Medical Office	0.000	ksf
	Light Industrial	0.000	ksf
Industrial	Manufacturing	0.000	ksf
	Warehousing/Self-Storage	0.000	ksf
	University	0	Students
	High School	0	Students
School	Middle School	0	Students
	Elementary	0	Students
	Private School (K-12)	0	Students
Other		0	Trips

Project and Analysis Overview

Report 1: Project & Analysis Overview

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

	Analysis Res	sults				
	Total Employees:	480				
	Total Population:	996				
Propose	ed Project	With Mi	tigation			
5,574	Daily Vehicle Trips	4,459	Daily Vehicle Trips			
45,178	Daily VMT	36,142	Daily VMT			
6.0	Household VMT	5.4	Household VMT per			
6.8	per Capita	5.4	Capita			
	Work VMT		Work VMT per			
14.5	per Employee	11.6	Employee			
	Significant VMT	Impact?				
	APC: West Los A	Angeles				
	Impact Threshold: 15% Belo	ow APC Average				
	Household = 7	7.4				
	Work = 11.1	L				
Propose	Proposed Project With Mitigation					
VMT Threshold	Impact	VMT Threshold	Impact			
Household > 7.4	No	Household > 7.4	No			
Work > 11.1	Yes	Work > 11.1	Yes			

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

Reduce parking supply Unbundle parking	Description City code parking provision (spaces) Actual parking provision (spaces) Monthly cost for parking (\$)	Proposed Project 0 0 0	Mitigation: 0 0
Reduce parking supply Unbundle parking	City code parking provision (spaces) Actual parking provision (spaces) Monthly cost for parking (\$)	0 0	0
Unbundle parking	Actual parking provision (spaces) Monthly cost for parking (\$)	0	0
Unbundle parking	Monthly cost for parking (\$)		
Parking cash-out	parting (9)	\$0	\$0
	Employees eligible (%)	0%	0%
Price workplace parking	Daily parking charge (\$)	\$0.00	\$0.00
	Employees subject to priced parking (%)	0%	0%
Residential area parking permits	Cost of annual permit (\$)	\$0	\$0
(cont. on following page	:)	
	Price workplace parking Residential area parking permits	Price workplace parking (\$) Employees subject to priced parking (%) Residential area parking permits permit (\$) (cont. on following page	Price workplace parkingDaily parking charge (\$)\$0.00Employees subject to priced parking (%)0%Residential area parking permitsCost of annual permit (\$)\$0\$0\$0(cont. on following page)

Report 2: TDM Inputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Strate	еду Туре	Description	Proposed Project	Mitigations	
		Reduction in headways (increase in frequency) (%)	0%	0%	
R h Transit Ir	Reduce transit headways	Existing transit mode share (as a percent of total daily trips) (%)	0%	0%	
		Lines within project site improved (<50%, >=50%)	0	0	
	Implement neighborhood shuttle	Degree of implementation (low, medium, high)	0	0	
		Employees and residents eligible (%)	0%	0%	
		Employees and residents eligible (%)	0%	100%	
Transit subsidies		Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$2.98	
Education &	Voluntary travel behavior change program	Employees and residents participating (%)	0%	0%	
Encouragement	Promotions and marketing	Employees and residents participating (%)	0%	100%	

Report 2: TDM Inputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

TDM Strategy Inputs, Cont.						
Strate	gy Туре	Description	Proposed Project	Mitigations		
	Required commute trip reduction program	Employees participating (%)	0%	0%		
	Alternative Work	Employees participating (%)	0%	5%		
Schedules and Telecommute Program Commute Trip Reductions Employer sponsored vanpool or shuttle	Type of program	0	1.5 days of telecommuting per week			
	Degree of implementation (low, medium, high)	0	0			
	Employer sponsored vanpool or shuttle	Employees eligible (%)	0%	0%		
		Employer size (small, medium, large)	0	0		
	Ride-share program	Employees eligible (%)	0%	0%		
	Car share	Car share project setting (Urban, Suburban, All Other)	0	0		
Shared Mobility Bike share	Bike share	Within 600 feet of existing bike share station - OR- implementing new bike share station (Yes/No)	0	0		
	School carpool program	Level of implementation (Low, Medium, High)	0	0		
	(1	cont. on following page	:)			

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.							
Strate	Strategy Type		Proposed Project	Mitigations			
	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0			
Bicycle	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	0	Yes			
Infrastructure	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, & repair station (Yes/No)	0	Yes			
	Traffic calming	Streets with traffic calming improvements (%)	0%	0%			
Neighborhood	improvements	Intersections with traffic calming improvements (%)	0%	0%			
Ennancement	t Pedestrian network improvements	Included (within project and connecting off- site/within project only)	0	within project and connecting off-site			

Report 3: TDM Outputs

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

TDM Adjustments by Trip Purpose & Strategy														
						Place type	: Suburban	Center						
		Ноте Ва	ased Work	Ноте Ва	ised Work	Home Bo	ised Other	Ноте Вс	ased Other	Non-Home	Based Other	Non-Home	Based Other	
		Prod	uction Mitigated	Attro	Aitigated	Prod	uction Mitigated	Attro	action Mitigated	Proc	luction Mitigated	Attr	action Mitigated	Source
		Proposed	wiitigateu	Proposed	wiitigated	Proposed	wiitigated	Proposed	wiitigateu	Proposed	wiitigated	Proposed	willigated	
	Reduce parking supply	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	_
	Unbundle parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy
Parking	Parking cash-out	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Parking
	Price workplace parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1 - 5
	Residential area parking permits	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
	Reduce transit headways	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Stratogy
Transit	Implement neighborhood shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Transit sections 1 - 3
	Transit subsidies	0%	16%	0%	16%	0%	16%	0%	16%	0%	16%	0%	16%	-
Education &	Voluntary travel behavior change program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Education &
Encouragement	Promotions and marketing	0%	4%	0%	4%	0%	4%	0%	4%	0%	4%	0%	0%	Encouragement sections 1 - 2
	Required commute trip reduction program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Commute Trip Reductions	Alternative Work Schedules and Telecommute Program	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Commute Trip
	Employer sponsored vanpool or shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Reductions sections 1 - 4
	Ride-share program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Car-share	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Shared Mobility	Bike share	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Appendix, Shared
	School carpool program	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Mobility sections 1 - 3

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

Report 3: TDM Outputs

TDM Adjustments by Trip Purpose & Strategy, Cont.														
Place type: Suburban Center														
		Home Bo Prod	ased Work luction	Home Bo Attr	ased Work action	Home Bo Proc	ased Other luction	Home Bo Attr	ased Other action	Non-Home Prod	Based Other luction	Non-Home Attr	Based Other	Source
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
	Implement/ Improve on-street bicycle facility	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Bicycle Infrastructure	Include Bike parking per LAMC	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	Appendix, Bicycle Infrastructure
	Include secure bike parking and showers	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	0.0%	0.6%	sections 1 - 3
Neighborhood	Traffic calming improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix,
Enhancement	Pedestrian network improvements	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	0.0%	2.0%	Neighborhood Enhancement sections 1 - 2

Final Combined & Maximum TDM Effect												
	Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction	
	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated
COMBINED TOTAL	0%	22%	0%	22%	0%	22%	0%	22%	0%	22%	0%	19%
MAX. TDM EFFECT	0%	20%	0%	20%	0%	20%	0%	20%	0%	20%	0%	20%

= Min	= Minimum (X%, 1-[(1-A)*(1-B)])						
where X%=							
PLACE	urban	75%					
ТҮРЕ	compact infill	40%					
MAX:	suburban center	20%					
	suburban	15%					

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (*Transportation Assessment Guidelines Attachment G*) for further discussion of dampening.

> Report 3: TDM Outputs 10 of 13

Report 4: MXD Methodology

Date: June 21, 2021 Project Name: Paseo Marina Project Scenario: Option B Project Address: 13400 W MAXELLA AVE, 90292

MXD Methodology - Project Without TDM								
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT		
Home Based Work Production	379	-18.5%	309	8.3	3,146	2,565		
Home Based Other Production	1,049	-32.6%	707	5.9	6,189	4,171		
Non-Home Based Other Production	1,358	-6.1%	1,275	7.4	10,049	9,435		
Home-Based Work Attraction	696	-20.5%	553	12.6	8,770	6,968		
Home-Based Other Attraction	2,457	-26.3%	1,810	7.5	18,428	13,575		
Non-Home Based Other Attraction	987	-6.8%	920	9.2	9,080	8,464		

MXD Methodology with TDM Measures

		Proposed Project		Project with Mitigation Measures			
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT	
Home Based Work Production	0.0%	309	2,565	-20.0%	247	2,052	
Home Based Other Production	0.0%	707	4,171	-20.0%	566	3,337	
Non-Home Based Other Production	0.0%	1,275	9,435	-20.0%	1,020	7,548	
Home-Based Work Attraction	0.0%	553	6,968	-20.0%	442	5,574	
Home-Based Other Attraction	0.0%	1,810	13,575	-20.0%	1,448	10,860	
Non-Home Based Other Attraction	0.0%	920	8,464	-20.0%	736	6,771	

MXD VMT Methodology Per Capita & Per Employee								
Total Population: 996								
	Total Employees: 480							
APC: West Los Angeles								
	Proposed Project	Project with Mitigation Measures						
Total Home Based Production VMT	6,736	5,389						
Total Home Based Work Attraction VMT	6,968	5,574						
Total Home Based VMT Per Capita	6.8	5.4						
Total Work Based VMT Per Employee	14.5	11.6						

VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr & Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr & Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr & Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr & Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr & Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr & Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr & Peers, or another third party, even if the City or Fehr & Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr & Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

You, the User	
By:	Jash
Print Name:	Jason Shender, AICP
Title:	Transportation Planner III
Company:	Linscott, Law & Greenspan, Engineers
Address:	20931 Burbank Boulevard, Suite C Woodland Hills, CA 91367
Phone:	(818) 835-8648
Email Address:	jshender@llgengineers.com
Date:	6/21/2021

APPENDIX J

HCM AND LEVELS OF SERVICE EXPLANATION HCM DATA WORKSHEETS – WEEKDAY AM AND PM PEAK HOURS OPTION A

LEVEL OF SERVICE FOR SIGNALIZED INTERSECTIONS

In the *Highway Capacity Manual (HCM)*, published by the Transportation Research Board, 2010, level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, in the absence of geometric delay, in the absence of incidents, and when there are no other vehicles on the road. Only the portion of total delay attributed to the control facility is quantified. This delay is called *control delay*. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for traffic signals are stated in terms of the average control delay per vehicle. Delay is a complex measure and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group in question.

Level of Service Criteria for Signalized Intersections						
Level of Service	Control Delay (Sec/Veh)					
А	≤ 10					
В	> 10 and ≤ 20					
С	> 20 and ≤ 35					
D	$> 35 \text{ and} \le 55$					
E	> 55 and ≤ 80					
F	> 80					

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize *HCM* criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle. This level of service occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay values.

LOS B describes operations with control delay greater than 10 and up to 20 seconds per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

LOS C describes operations with control delay greater than 20 and up to 35 seconds per vehicle. These higher delays may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

LOS D describes operations with control delay greater than 35 and up to 55 seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LOS E describes operations with control delay greater than 55 and up to 80 seconds per vehicle. This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences.

LOS F describes operations with control delay in excess of 80 seconds per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors to such delay levels.

LEVEL OF SERVICE FOR UNSIGNALIZED INTERSECTIONS

In the *Highway Capacity Manual (HCM)*, published by the Transportation Research Board, 2010, level of service for unsignalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, in the absence of incidents, control, traffic, or geometric delay. Only the portion of total delay attributed to the traffic control measures, either traffic signals or stop signs, is quantified. This delay is called *control delay*. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for unsignalized intersections are stated in terms of the average control delay per vehicle. The level of service is determined by the computed or measured control delay and is defined for each minor movement. Average control delay for any particular minor movement is a function of the service time for the approach and the degree of utilization. (Level of service is not defined for the intersection as a whole for two-way stop controlled intersections.)

Level of Service Criteria for TWSC/AWSC Intersections									
Level of Service	Average Control Delay (Sec/Veh)								
А	≤ 10								
В	$> 10 \text{ and } \le 15$								
С	> 15 and ≤ 25								
D	> 25 and ≤ 35								
Е	$>$ 35 and \leq 50								
F	> 50								

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize *HCM* criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle.

LOS B describes operations with control delay greater than 10 and up to 15 seconds per vehicle.

LOS C describes operations with control delay greater than 15 and up to 25 seconds per vehicle.

LOS D describes operations with control delay greater than 25 and up to 35 seconds per vehicle.

LOS E describes operations with control delay greater than 35 and up to 50 seconds per vehicle.

LOS F describes operations with control delay in excess of 50 seconds per vehicle. For two-way stop controlled intersections, LOS F exists when there are insufficient gaps of suitable size to allow side-street demand to safely cross through a major-street traffic stream. This level of service is generally evident from extremely long control delays experienced by side-street traffic and by queuing on the minor-street approaches.

HCS7 Two-Way Stop-Control Report General Information Site Information Analyst JAS Intersection Walgrove / Washington

Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	8/12/2020	East/West Street	Washington Boulevard
Analysis Year	2020	North/South Street	Walgrove Avenue
Time Analyzed	Existing - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

Approach		Fasth	ound		Westbound					North	bound		Southbound				
Approach		Lastu	т	D		vvesti	т	D									
Movement	U	L	1	К	U	L	1	К	U	L	1	ĸ	U	L	1	К	
Priority	10	1	2	3	40	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	290	1180				1107	164						13		254	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)	1													()		
Right Turn Channelized																	
Median Type Storage				Left	Only						5						
Critical and Follow-up Headways																	
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)		315													290		
Capacity, c (veh/h)		487													323		
v/c Ratio		0.65													0.90		
95% Queue Length, Q ₉₅ (veh)		4.5													8.6		
Control Delay (s/veh)		25.0													64.4		
Level of Service (LOS)		С													F		
Approach Delay (s/veh)	4.9									64.4							
Approach LOS														I	-		

Copyright © 2020 University of Florida. All Rights Reserved.

General InformationSite InformationAnalystJASIntersectionWalgrove / WashingtonAgency/Co.Linscott, Law & GreenspanJurisdictionCity of Culver CityDate Performed8/12/2020East/West StreetWashington BoulevardAnalysis Year2020North/South StreetWalgrove AvenueTime AnalyzedExisting + Project - AMPeak Hour Factor0.92Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25Project DescriptionPaseo MarinaHour HactorHour Hactor	HCS7 Two-Way Stop-Control Report											
AnalystJASIntersectionWalgrove / WashingtonAgency/Co.Linscott, Law & GreenspanJurisdictionCity of Culver CityDate Performed8/12/2020East/West StreetWashington BoulevardAnalysis Year2020North/South StreetWalgrove AvenueTime AnalyzedExisting + Project - AMPeak Hour Factor0.92Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25Project DescriptionPaseo MarinaStreetStreet	General Information		Site Information									
Agency/Co.Linscott, Law & GreenspanJurisdictionCity of Culver CityDate Performed8/12/2020East/West StreetWashington BoulevardAnalysis Year2020North/South StreetWalgrove AvenueTime AnalyzedExisting + Project - AMPeak Hour Factor0.92Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25Project DescriptionPaseo MarinaStreetStreet	Analyst	JAS	Intersection	Walgrove / Washington								
Date Performed8/12/2020East/West StreetWashington BoulevardAnalysis Year2020North/South StreetWalgrove AvenueTime AnalyzedExisting + Project - AMPeak Hour Factor0.92Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25Project DescriptionPaseo Marina	Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City								
Analysis Year2020North/South StreetWalgrove AvenueTime AnalyzedExisting + Project - AMPeak Hour Factor0.92Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25Project DescriptionPaseo MarinaStreet Street Stre	Date Performed	8/12/2020	East/West Street	Washington Boulevard								
Time AnalyzedExisting + Project - AMPeak Hour Factor0.92Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25Project DescriptionPaseo MarinaEast-WestEast-West	Analysis Year	2020	North/South Street	Walgrove Avenue								
Intersection Orientation East-West Analysis Time Period (hrs) 0.25 Project Description Paseo Marina Second Sec	Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.92								
Project Description Paseo Marina	Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
	Project Description	Paseo Marina										

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound		Westbound					North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	290	1211				1120	164						13		254
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)												0)	
Right Turn Channelized																
Median Type Storage				Left	Only							ł	5			
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		315													290	
Capacity, c (veh/h)		481													317	
v/c Ratio		0.66													0.92	
95% Queue Length, Q ₉₅ (veh)		4.7													8.9	
Control Delay (s/veh)		25.6													68.2	
Level of Service (LOS)		D													F	
Approach Delay (s/veh)	5.0										68.2					
Approach LOS														F		

Copyright © 2020 University of Florida. All Rights Reserved.
HCS7 Two-Way Stop-Control Report

General Information		Site Information							
Analyst	JAS	Intersection	Walgrove / Washington						
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City						
Date Performed	8/12/2020	East/West Street	Washington Boulevard						
Analysis Year	2026	North/South Street	Walgrove Avenue						
Time Analyzed	Future - AM	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Paseo Marina								

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound		Westbound					North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	308	1290				1191	174						14		270	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)														()		
Right Turn Channelized																	
Median Type Storage				Left	Only				5								
Critical and Follow-up He	adway	ys															
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		335													309		
Capacity, c (veh/h)		444													271		
v/c Ratio		0.75													1.14		
95% Queue Length, Q ₉₅ (veh)		6.3													13.4		
Control Delay (s/veh)		33.9													138.1		
Level of Service (LOS)		D													F		
Approach Delay (s/veh)		6.	5										138.1				
Approach LOS														F			

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	8/12/2020	East/West Street	Washington Boulevard
Analysis Year	2026	North/South Street	Walgrove Avenue
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		
Lanes			

La

Vehicle Volumes and Adjustments

Approach		Eastbound Westbound					North	bound		Southbound							
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	308	1321				1204	174						14		270	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)														()		
Right Turn Channelized																	
Median Type Storage				Left	Only				5								
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		335													309		
Capacity, c (veh/h)		439													264		
v/c Ratio		0.76													1.17		
95% Queue Length, Q ₉₅ (veh)		6.5													13.9		
Control Delay (s/veh)		35.1													149.2		
Level of Service (LOS)		E													F		
Approach Delay (s/veh)		6	.6										149.2				
Approach LOS														I	=		

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	8/12/2020	East/West Street	Washington Boulevard
Analysis Year	2020	North/South Street	Walgrove Avenue
Time Analyzed	Existing - PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

,-																
Approach		Eastb	ound			Westb	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	256	1153				1156	82						51		329
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)												0				
Right Turn Channelized																
Median Type Storage		Left Only									!	5				
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		264													392	
Capacity, c (veh/h)		534													323	
v/c Ratio		0.49													1.21	
95% Queue Length, Q ₉₅ (veh)		2.7													17.2	
Control Delay (s/veh)		18.1													155.5	
Level of Service (LOS)		С													F	
Approach Delay (s/veh)		3	.3										155.5			
Approach LOS													F			

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	8/12/2020	East/West Street	Washington Boulevard
Analysis Year	2020	North/South Street	Walgrove Avenue
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

 																		
Approach		Eastb	ound			West	bound			North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0		
Configuration		L	Т				Т	TR							LR			
Volume (veh/h)	0	256	1152				1169	82						51		329		
Percent Heavy Vehicles (%)	3	3												3		3		
Proportion Time Blocked																		
Percent Grade (%)														()			
Right Turn Channelized																		
Median Type Storage		Left Only								5								
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)		4.1												7.5		6.9		
Critical Headway (sec)		4.16												6.86		6.96		
Base Follow-Up Headway (sec)		2.2												3.5		3.3		
Follow-Up Headway (sec)		2.23												3.53		3.33		
Delay, Queue Length, and	Leve	of Se	ervice															
Flow Rate, v (veh/h)		264													392			
Capacity, c (veh/h)		528													320			
v/c Ratio		0.50													1.23			
95% Queue Length, Q_{95} (veh)		2.8													17.4			
Control Delay (s/veh)		18.4													160.8			
Level of Service (LOS)	C														F			
Approach Delay (s/veh)		3	.4										160.8					
Approach LOS														ſ				

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	8/12/2020	East/West Street	Washington Boulevard
Analysis Year	2026	North/South Street	Walgrove Avenue
Time Analyzed	Future - PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	272	1258				1281	87						54		349	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)												0					
Right Turn Channelized																	
Median Type Storage	Left Only								5								
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		280													415		
Capacity, c (veh/h)		474													271		
v/c Ratio		0.59													1.53		
95% Queue Length, Q ₉₅ (veh)		3.8													24.4		
Control Delay (s/veh)		23.0													291.2		
Level of Service (LOS)		С													F		
Approach Delay (s/veh)		4	.1										291.2				
Approach LOS													F				

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	8/12/2020	East/West Street	Washington Boulevard
Analysis Year	2026	North/South Street	Walgrove Avenue
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		
Lanos			

Vehicle Volumes and Adjustments

·																	
Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	272	1257				1294	87						54		349	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)														()		
Right Turn Channelized																	
Median Type Storage	Left Only							5									
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		280													415		
Capacity, c (veh/h)		469													268		
v/c Ratio		0.60													1.55		
95% Queue Length, Q ₉₅ (veh)		3.8													24.8		
Control Delay (s/veh)		23.5													300.0		
Level of Service (LOS)		С													F		
Approach Delay (s/veh)		4.	2										300.0				
Approach LOS													F				

		Linscott, Law & Greenspan		nanze	su mu	51360		163	unto c	Jun	Innary	y				
General Inform	nation								Inter	sect	ion Info	ormatio	on	K	***	ι I _a
Agency	lation	Linscott, Law & Gre	enspan	Fnain	eers				Durat	tion.	h	0.250			╡↓↓↓└	<u>ل</u>
Analyst		JAS		Analys	sis Date		7 2020		Area	Type	 د	Other		 		۲. ۲.
Jurisdiction		City of Los Angeles		Time F		Fxistir	$n_{\rm r} = \Delta M$		PHF	Type	, 	0 98		→ _* ->	w∔e	*_ <u>}</u> ≁_∲
Urban Street		Lincoln Boulevard		Analys	sis Year	2020	ig - 7 (W		Analy	vsis F	Period	1> 8.0	00	¥ 7		
Intersection		Lincoln / Maxella		File N	ame	02AM	- Existi	na vi	is is	y 010 1	onou	11 0.0				<u>_</u> _
Project Descrip	tion	Paseo Marina						ig.nu						-	1) 1 1 4 1 4 1 1 1	ſ * ſ*
T TOJECT Descrip																
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	T	R	L		Т	R	L	T	R	L	Т	R
Demand (v), v	eh/h			76	80	196	183	3	39 1	122	117	2072	277	122	1827	59
				1		b 116	_					_				
Signal Informa	tion				245	< <mark>∎4</mark> ¥∎			E	_7		ļ		rta		
Cycle, s	130.0	Reference Phase	2		ľ	517	*	2	2 F	₹			1			♣ 4
Offset, s	0	Reference Point	End	Green	18.9	19.6	19.1	18	3.9 2	23.9	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.	6 3	3.6	0.0		<u>ר</u> ן א			Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	5 2	2.5	0.0	1	5	6	7	8
Timer Peculta				EDI	_	EDT	\//D		\//D ⁻	т	NDI		NDT	CDI		ерт
Assigned Phase	0			EDI			VVD		VVD	<u> </u>	5		2	301		6
Assigned Phase	U			<u> </u>		4		\rightarrow	0		10		2	10	<u> </u>	0
Case Number					_	9.0		-	9.0		25.0		3.0	1.2		4.0
Charge Duration				<u> </u>		SU.U		\rightarrow	25.0	,	25.0	<u> </u>	50.0	25.0		50.0
Change Period	, (Y+R	c), S), S			6.1		-	6.1	-	5.9		5.9	6.1	_	5.4
Max Allow Head	dway(/	VIAH), S	H), s g s), s			4.4		-	4.3		3.1	_	0.0	3.1	_	0.0
Queue Clearan		e (g s), s	<u> </u>		14.3	<u> </u>	_	10.3	3	2.0			5.3	\rightarrow		
Green Extensio	n lime	(ge), s		<u> </u>		1.0		_	0.9		7.8		0.0	0.2		0.0
Phase Call Pro	bability					1.00	<u> </u>		1.00)	1.00)		1.00	<u></u>	
Max Out Proba	bility					0.09			0.13	3	0.26	5		0.00	,	
Movement Gro	oup Res	sults			EB			W	В		_	NB			SB	
Approach Move	ement			L	Т	R	L	Т	F	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	1	8	5	2	12	1	6	16
Adjusted Flow I	Rate (<i>v</i>), veh/h		78	82	200	125	10	1 12	24	119	2114	283	124	1451	473
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	184	15 16	610	1757	1725	1610	1757	1900	1857
Queue Service	Time (g s), s		4.8	4.8	12.3	8.3	6.	57.	.7	0.0	44.1	14.3	3.3	29.2	29.2
Cycle Queue C	learanc	e Time (<i>g c</i>), s		4.8	4.8	12.3	8.3	6.	57.	.7	0.0	44.1	14.3	3.3	29.2	29.2
Green Ratio (g	/C)			0.18	0.18	0.33	0.15	0.1	5 0.2	29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	/eh/h	4:- (X)		333	349	533	263	26	8 46	68	6/6	1/56	780	622	1956	637
Volume-to-Capa		$\frac{100(X)}{100(X)}$		0.233	104.4	0.376	0.476	120	10 0.2	200	72.0	1.204	0.362	0.200	0.742	0.742
Back of Queue	(Q), IU	in (95 in percentile)		99.5	104.4	140.9	1/5	138	1.Z 14	41	13.9	1225. 2	234.3	02.7	495.7	511.9
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.0	4.2	5.6	7.0	5.0	6 5.	.6	3.0	49.0	9.4	2.5	19.7	20.5
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.0	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), s	/veh		45.2	45.2	6.7	51.0	50.	.2 35	5.4	44.6	43.0	20.9	33.7	37.6	37.6
Incremental De	lay (<i>d</i> 2	e), s/veh		0.4	0.3	0.4	1.3	0.9	90.	.3	0.0	97.6	1.3	0.1	2.6	7.6
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		45.6	45.6	7.1	52.3	51.	.1 35	5.7	44.6	140.5	22.2	33.8	40.2	45.3
Level of Service	e (LOS)			D	D	A	D	D		D	D	F	С	С	D	D
Approach Delay	y, s/veh	/ LOS		24.2	2	С	46.1	1	D		122.	7	F	41.0)	D
Intersection De	lay, s/ve	eh / LOS				79	9.2							E		
Multiment	a							144	D						0.0	
Nuttimodal Re	SUITS	11.00		0.07	- EB	0	0.07	7			0.00	NB		0.00	SB	
Pedestrian LOS	Score	/ LUS		2.97			2.87		C		2.32		В	2.32		в
BICYCIE LOS SC	ore / LC	72		1.08	5	А	1.07		А		1.87		В	1.33)	А

												,				
General Inform	nation								Intors	octic	on Info	rmatio	n		****	۰ ل <u>ـ</u>
	lation	Linscott Law & Gre	onenan	Engine	ore				Durati	on h		0 250	///		4 + + + L	L.
Apolyot			enspan				7 2020			511, 11 5400	1	Othor		1		<u>گ</u>
Analysi		City of Los Angeles		Time	oriod	Fixiatin	7, 2020			ype				→_*	w1=	~ _}_ ★
Junsaiction		City of Los Angeles		Time F	Period	Projec	t - AM					0.96		14 M		
Urban Street		Lincoln Boulevard		Analys	sis Year	2020			Analys	sis P	eriod	1> 8:0	00		55 + + +	~
Intersection		Lincoln / Maxella		File Na	ame	02AM	- Existi	ng wi	th Proje	ect.xu	us			5	4 1 4 Y 1	۳ ۲
Project Descrip	tion	Paseo Marina														
Demand Inform	nation		_		EB	_		W	/B			NB	_		SB	
Approach Move	ement			L	Т	R	L		T F	र	L	Т	R	L	Т	R
Demand (v), v	eh/h			76	80	196	195	3	9 13	34	117	2072	291	127	1827	59
Signal Informa	tion				215					7			Ĺ		_	
Cycle, s	130.0	Reference Phase	2		P		-	2	1	o €				$\mathbf{\Psi}$		÷
Offset, s	0	Reference Point	End	Green	18.9	19.6	19 1	18	39 2	39	0.0		1	_ ∠	3	X 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.0	6 3.	.6	0.0					\rightarrow
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	5 2.	5	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT		NBL		NBT	SBI	-	SBT
Assigned Phase	e					4			8		5		2	1		6
Case Number						9.0			9.0		1.3		3.0	1.2		4.0
Phase Duration	uration, s Period,(Y+Rc), s					30.0			25.0		25.0		50.0	25.0) :	50.0
Change Period,	eriod, (Y+R c), s Headway (<i>MAH</i>), s					6.1			6.1		5.9		5.9	6.1		5.4
Max Allow Head	e Period, (Y+R c), s ow Headway (MAH), s					4.4			4.3		3.1		0.0	3.1		0.0
Queue Clearan	Ige Period, (Y+R c), s Allow Headway (<i>MAH</i>), s ie Clearance Time (<i>g</i> s), s					14.3			10.8		2.0			5.4		
Green Extensio	n Time	(ge),s				1.0			0.9		7.8		0.0	0.2		0.0
Phase Call Prol	ange Period, ($Y+R c$), s k Allow Headway (MAH), s eue Clearance Time ($g s$), s en Extension Time ($g e$), s ase Call Probability (Out Brobability					1.00			1.00		1.00			1.00)	
Max Out Proba	nge Period, ($Y+R_c$), s Allow Headway (MAH), s ue Clearance Time (g_s), s en Extension Time (g_e), s se Call Probability Out Probability					0.09			0.18		0.27			0.00)	
	,															
Movement Gro	oup Res	sults			EB			WE	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R		L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18		5	2	12	1	6	16
Adjusted Flow F	Rate(<i>v</i>), veh/h		78	82	200	133	105	5 137	7	119	2114	297	130	1451	473
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	184	4 161	0	1757	1725	1610	1757	1900	1857
Queue Service	Time (g	g s), S		4.8	4.8	12.3	8.8	6.7	7 8.6	;	0.0	44.1	15.1	3.4	29.2	29.2
Cycle Queue C	learanc	e Time (<i>g c</i>), s		4.8	4.8	12.3	8.8	6.7	7 8.6	;	0.0	44.1	15.1	3.4	29.2	29.2
Green Ratio (g	/C)			0.18	0.18	0.33	0.15	0.1	5 0.2	9	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	/eh/h			333	349	533	263	268	3 468	3	676	1756	780	622	1956	637
Volume-to-Capa	acity Ra	itio(X)		0.233	0.234	0.376	0.507	0.39	0.29	92 0	0.177	1.204	0.381	0.208	0.742	0.742
Back of Queue	(Q), ft/	/In (95 th percentile)		99.3	104.4	140.9	187.8	145	.1 156	.2	73.9	1225. 2	245.9	65.4	493.7	511.9
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.0	4.2	5.6	7.5	5.8	3 6.2	2	3.0	49.0	9.8	2.6	19.7	20.5
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.0	0	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1). s	/veh		45.2	45.2	6.7	51.2	50.4	4 35.	7	44.6	43.0	21.2	33.8	37.6	37.6
Incremental De	lav (d 2), s/veh		0.4	0.3	0.4	1.6	0.9	0.3	3	0.0	97.6	1.4	0.1	2.6	7.6
Initial Queue De	elav (d	3), s/veh		0.0	0.0	0.0	0.0	0.0) 0.0)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		45.6	45.6	7.1	52.8	51	3 36	1	44.6	140.5	22.6	33.8	40.2	45.3
Level of Service				D	D	Α	D		D		D	F	C	C	D	D
Approach Delay	()	/ LOS		24.2	2	C	46.3		D		122.2	2	F	41.0)	D_
Intersection De	lav, s/ve	eh / LOS				- 78	3.9							E		-
Multimodal Re	sults				EB			WE	3			NB			SB	
Pedestrian LOS	S Score	/LOS		2.97	7	С	2.87	7	С		2.32		В	2.32	2	В
Bicycle LOS Sc	ore / LC	DS		1.08	3	Α	1.11		А		1.88		В	1.33	3	А

		1100	i olg	nanze	a mi	61366		103	unts c	Jun	Innary	y				
General Inforn	nation								Inters	secti	ion Info	ormatio	on	K	4741	ι I _a
Agency		Linscott, Law & Gre	enspan	Engine	ers				Durat	tion.	h	0.250			╡↓↓↓└	4
Analyst		JAS	onopun	Analys	sis Date		7 2020		Area	Type	د 	Other		- - 1 - 4		<u>گ</u>
Jurisdiction		City of Los Angeles		Time F	Period	Future	- AM		PHF	1990	, 	0.98		→ _* * →	w∔e	*_ <u>}</u> ≁_∲
Urban Street		Lincoln Boulevard		Analys	sis Year	2026	5 7 11		Analy	vsis F	Period	1> 8.0	0	* ~		
Intersection		Lincoln / Maxella		File Na	ame	02AM	- Future		, and y	,010 1	onou	11 0.0		┤҇─┓		<u>~</u> ⊂
Project Descrip	tion	Paseo Marina				02/ (1/1	- i uture	J.Auc	,					-	1	۲ ۲ ۲
r reject Becchip																
Demand Inform	nation				EB			۷	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			81	85	208	262	4	11 1	135	124	2213	304	132	1964	63
					b 111						_	_				1
Signal Informa	ation				215	s etter			Ę	7		Į	L	-+-		_
Cycle, s	130.0	Reference Phase	2		ľ	1 <u>51</u>	* 1 2 SA	7	- ^e F	₹			1		* 📑 -	€ ₄
Offset, s	0	Reference Point	End	Green	18.9	19.6	19.1	18	8.9 2	23.9	0.0				-	<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.	.6 3	3.6	0.0	'	く 4			
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	.5 2	2.5	0.0	↓	5	6	7	8
Timer Desults						EDT				T I			NDT	0.01		ODT
Assigned Dhee				EBI		EBI	VVB		VVB	-	NBL	-	NBI	SBL	-	5B1
Assigned Phase	e					4	<u> </u>	\rightarrow	0	-	2		2	10		0
Case Number						9.0		-	9.0		25.0		3.0	1.2		4.0
Change Duration			s			SU.U	<u> </u>	\rightarrow	25.0	, I	25.0		50.0	25.0	, ;	50.0
Change Period	, (Y+R	c), S), s			0.1		-	0.1	-	5.9		5.9	0.1		5.4
Max Allow Heat	dway (<i>1</i>	MAH), S	H), s g s), s			4.4		-	4.3	_	3.1		0.0	3.1		0.0
Queue Clearan		e (gs), s			15.2			14.2	<u> </u>	2.0		0.0	5.6		0.0	
Green Extensio	n lime	(ge), s			+	1.0	<u> </u>	\rightarrow	0.8		8.6		0.0	0.2		0.0
Phase Call Pro		(MAH), s ne (g s), s e (g e), s				1.00	<u> </u>		1.00	-	1.00			1.00	,	
Max Out Proba	DIIITY					0.15			0.85	>	0.32			0.00)	
Movement Gro	oup Res	sults			EB			W	В	Т		NB			SB	
Approach Move	ement			L	Т	R	L	Т	F	र	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	1	8	5	2	12	1	6	16
Adjusted Flow I	Rate (v	′), veh/h		83	87	212	179	13	0 13	38	127	2258	310	135	1560	508
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	183	39 16	10	1757	1725	1610	1757	1900	1858
Queue Service	Time (g s), s		5.1	5.1	13.2	12.2	8.	5 8.	.6	0.0	44.1	16.0	3.6	32.2	32.2
Cycle Queue C	learanc	e Time (<i>g c</i>), s		5.1	5.1	13.2	12.2	8.	58.	.6	0.0	44.1	16.0	3.6	32.2	32.2
Green Ratio (g	ı/C)			0.18	0.18	0.33	0.15	0.1	5 0.2	29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	/eh/h			333	349	533	263	26	7 46	68	660	1756	780	622	1956	637
Volume-to-Cap	acity Ra	atio (X)		0.248	0.248	0.399	0.681	0.4	87 0.2	294	0.192	1.286	0.398	0.217	0.798	0.798
Back of Queue	(Q), ft	/In (95 th percentile)		106.2	111.3	150.2	254.3	182	2.3 157	7.5	78.4	1459. 9	257	68	540.5	564.8
Back of Queue	(Q), v	eh/In (95 th percenti	le)	4.2	4.5	6.0	10.2	7.3	3 6.	.3	3.1	58.4	10.3	2.7	21.6	22.6
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d 1), s	/veh		45.4	45.4	6.8	52.7	51.	.1 35	5.8	46.0	43.0	21.4	33.8	38.6	38.6
Incremental De	lay (<i>d</i> 2	e), s/veh		0.4	0.4	0.5	7.0	1.4	4 0.	.3	0.1	133.2	1.5	0.1	3.5	10.0
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/v	eh		45.8	45.7	7.2	59.6	52.	.5 36	6.1	46.0	176.2	22.9	33.9	42.1	48.7
Level of Service	e (LOS)			D	D	A	Е	D		2	D	F	С	С	D	D
Approach Delay	y, s/veh	/LOS		24.3	3	С	50.3	3	D		152.4	4	F	43.1		D
Intersection De	lay, s/ve	eh / LOS				93	3.9							F		
Multimodal De	eulte				ED			\^/	B			NP			SD	
Pedestrian LOS	Score	/1.05		2.07	7	C	2.87	7		-	2 3 3		B	2 20		B
Ricycle I OS Sc				2.97	,	Δ	1.07	2	^	\rightarrow	1.07		B	1 10	-	Δ
Dicycle LOS SC				1.12	-	Л	1.20	,	А		1.97		U	1.40	,	Λ

												,				
General Inform	nation								Intor	react	ion Info	ormatio	n		**	۰ ل <u>ـ</u>
	lation	Linscott Law & Gre	onenan	Engine	ore				Dura	ation	b	0 250	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4 + + + L	L.
Apolyot			enspan				7 2020		Aroo		<u></u>	Othor		1		<u>گ</u>
		JAS City of Los Angeles		Times		Future	7,2020		Area	атуре -	5				w1 =	×_ }_
Jurisaiction		City of Los Angeles			Period	Projec	e with ct - AM			-		0.98		14 1/2 14	8	± 1
Urban Street		Lincoln Boulevard		Analys	sis Year	2026			Anal	lysis l	Period	1> 8:0	00		<u> </u>	<u>م</u>
Intersection		Lincoln / Maxella		File Na	ame	02AM	- Future	e with	n Proje	ect.xı	ıs			5	4 1 4 7 1	▼
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move	ement			L	Т	R	L	T	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			81	85	208	274	4	1	147	124	2213	318	137	1964	63
-					_		_	<u> </u>		-					<u> </u>	
Signal Informa	tion				215				\exists	7		l	Ĺ	-+-		_
Cycle, s	130.0	Reference Phase	2		ľ	1 5th	- 12 SA	2		Ř.				Y	Ľ⊢;-	-€ ₄
Offset, s	0	Reference Point	End	Green	18.9	19.6	19.1	18	3.9	23.9	0.0	_			•	K
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.	6	3.6	0.0	^	く 2			
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	5	2.5	0.0	ļ	5	6	7	8
										_		_			_	
Timer Results				EBI	-	EBT	WB		WB	3T	NBL	-	NBT	SBL		SBT
Assigned Phase	e					4		_	8		5		2	1		6
Case Number						9.0		\rightarrow	9.0	0	1.3		3.0	1.2		4.0
Phase Duration	n, s I, (Y+R c), s					30.0		\rightarrow	25.0	.0	25.0		50.0	25.0) ;	50.0
Change Period,	, (Y+R)	/+R c), s y (MAH), s				6.1			6.1	1	5.9		5.9	6.1		5.4
Max Allow Head	d, (Y+R c), s adway (<i>MAH</i>), s ince Time (<i>q</i> s), s					4.4		\rightarrow	4.3	3	3.1		0.0	3.1		0.0
Queue Clearan	adway (MAH), s ance Time (g_s), s					15.2			14.8	.8	2.0			5.7		
Green Extensio	v Headway (<i>MAH</i>), s earance Time (<i>g</i> _s), s tension Time (<i>g</i> _e), s					1.0			0.8	8	8.6		0.0	0.2		0.0
Phase Call Prol	e Duration, s ge Period, ($Y+Rc$), s Nlow Headway (MAH), s e Clearance Time (gs), s n Extension Time (ge), s e Call Probability Dut Probability					1.00			1.00	00	1.00			1.00)	
Max Out Proba	adway (<i>MAH</i>), s ance Time (<i>g</i> s), s ion Time (<i>g</i> e), s robability pability					0.15			1.00	00	0.33			0.00)	
Movement Gre					ED			\٨/٢	D	_		ND	_		S P	
Approach Move	mont	Suits			ED	D			5	D	1		D		зы	D
Approach Move	mont				1	14		0		10	L 5	ו ר	12		6	16
Adjusted Flow) yoh/h		1	4	14	3 107	0	1 1	10	107	2	12	140	1560	509
Adjusted Flow r	tion Flo), ven/n	n	03	0/	212	107	102	+ I	610	121	4705	324	140	1000	1050
Adjusted Satura			n	1010	1900	1010	1010	103		010	1757	1725	1010	1/5/	1900	1000
Queue Service	Time (g	gs), s a Tima (a) a		5.1	5.1	13.2	12.8	8.7	7 9 7 0	9.5	0.0	44.1	10.9	3.7	32.2	32.2
		e filme (<i>g</i> c), s		5.1 0.40	0.10	13.2	12.0	0.1		9.5	0.0	44.1	10.9	3.7	32.2	32.2
Green Ratio (g	/C)			0.18	0.18	0.33	0.15	0.1	5 U. 7 4	1.29	0.28	0.34	0.48	0.31	0.34	0.34
Valume to Con	en/n	tio (X)		333	349	0.200	203	20	$\frac{7}{2}$	220	000	1/00	780	022	1956	037
Volume-to-Capa		llio (X) //n (OE the nemeratile)		0.248	0.248	0.399	0.712	0.50	JZ U.	.320	0.192	1.280	0.416	0.225	0.798	0.798
Back of Queue	(Q), II/	in (95 in percentile)		106.2	111.3	150.2	208.1	188	.5 17	72.9	78.4	1459. 9	208.8	70.8	540.5	504.8
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.2	4.5	6.0	10.7	7.5	5 6	6.9	3.1	58.4	10.8	2.8	21.6	22.6
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), s	/veh		45.4	45.4	6.8	53.0	51.	2 3	86.1	46.0	43.0	21.6	33.9	38.6	38.6
Incremental De	lay (<i>d</i> 2), s/veh		0.4	0.4	0.5	8.7	1.5	5 0	0.4	0.1	133.2	1.6	0.1	3.5	10.0
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0) (0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		45.8	45.7	7.2	61.7	52.	7 3	86.4	46.0	176.2	23.3	33.9	42.1	48.7
Level of Service	e (LOS)			D	D	A	Е	D		D	D	F	С	С	D	D
Approach Delay	, s/veh	/LOS		24.3	3	С	51.1	1	D)	151.8	3	F	43.1		D
Intersection De	lay, s/ve	eh / LOS				93	3.5							F		
Multimodal Re	sults				EB			W	В –			NB	_		SB	_
Pedestrian LOS	Score	/LOS		2.97		С	2.87	<u> </u>	С		2.32		В	2.32	2	В
Bicycle LOS Sc	ore / LC	JS		1.12	2	А	1.27		A	۱.	1.98		В	1.40)	А

		inscott, Law & Greenspan, Er		nanze	u mu	61360		163	untə	Juli	mai	y				
O an a sel la fa se	4!								Inte	4				T D		T.
General Inforn	hation			<u> </u>					Inte	ersect		ormatio	on	- 1	╡↓↓↓└	Ļ
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Dur	ration,	n	0.250				R
Analyst		JAS		Analys	sis Date	Aug 2	7, 2020		Are	ea Type	e	Other	•	××		~ _
Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng - PM		PHI	F		0.98			w+e 8	
Urban Street		Lincoln Boulevard		Analys	sis Year	2020			Ana	alysis	Period	1> 17	:00	ار الح		7 7
Intersection		Lincoln / Maxella		File Na	ame	02PM	- Existi	ng.xı	ls						<u>11111</u>	7
Project Descrip	tion	Paseo Marina												1	শ 1 প শ 1	<u>" "</u>
Domand Inform	nation				ED			V			<u>, </u>	ND			CD.	
Approach Move	ment				Т	R		V	т	R	1		R	1 1	Т	R
Demand (v) v	oh/h			86	65	103	321		1	102	10/	1705	346	104	2060	118
Demand (V), V	en/n			00	05	105	521		0	192	134	1790	540	104	2000	110
Signal Informa	tion				UL.				3				1			
Cvcle, s	130.0	Reference Phase	2	1	12 V 3			_	F	B.				*		
Offset, s	0	Reference Point	End		40.0				7			_	1	2	3	Y 4
Uncoordinated	No	Simult, Gap E/W	On	Green	18.9	19.6	19.1	18	3.9 6	23.9	0.0	_				\rightarrow
Force Mode	Fixed	Simult, Gap N/S	On	Red	2.2	1.0	2.3	2	5	2.5	0.0	-7	5	6	7	8
			-		1			Щ		1 -						
Timer Results				EBL	-	EBT	WB	L	W	/BT	NBL	-	NBT	SBL	-	SBT
Assigned Phas	e					4			8	8	5		2	1		6
Case Number						9.0			9.	.0	1.3		3.0	1.2		4.0
Phase Duration	. S					30.0			25	5.0	25.0		50.0	25.0) :	50.0
Change Period	. (Y+R)	c). S	s			6.1			6.	.1	5.9		5.9	6.1		5.4
Max Allow Hea	dwav (/	иАН), s	s			4.3			4.	.3	3.1		0.0	3.1		0.0
Queue Clearan	ce Time	e (q s), S	s			8.1		-	17	7.3	3.6			4.8		
Green Extensio	n Time	(ge),s	s			0.8			0.	.5	6.7		0.0	0.2		0.0
Phase Call Pro	bability					1.00			1.0	00	1.00			1.00)	
Max Out Proba	bility					0.00			1.0	00	0.25			0.00	,	
	,															
Movement Gro	oup Res	ults			EB	-		W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8		18	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h		88	66	105	219	20	8	196	198	1832	353	106	1683	540
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	185	53 1	1610	1757	1725	1610	1757	1900	1827
Queue Service	Time (g	g ₅), s		5.4	3.8	6.1	15.3	14.	.1 1	12.8	1.6	44.1	18.8	2.8	35.8	35.8
Cycle Queue C	learanc	e Time (<i>g c</i>), s		5.4	3.8	6.1	15.3	14.	.1 1	12.8	1.6	44.1	18.8	2.8	35.8	35.8
Green Ratio (g	/C)			0.18	0.18	0.33	0.15	0.1	5 (0.29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	/eh/h			333	349	533	263	26	9 4	468	645	1756	780	622	1956	627
Volume-to-Cap	acity Ra	tio(X)		0.264	0.190	0.197	0.834	0.7	72 0).418	0.307	1.043	0.452	0.171	0.861	0.861
Back of Queue	(Q), ft/	In (95 th percentile)		113.1	84	71.9	332.5	302	.4 2	223.3	122.9	814	293.7	53.2	598.6	627.2
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.5	3.4	2.9	13.3	12.	.1	8.9	4.9	32.6	11.7	2.1	23.9	25.1
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d 1), s	/veh		45.5	44.9	6.3	54.0	53.	.5 3	37.2	47.1	43.0	22.1	33.6	39.8	39.8
Incremental De	lay (<i>d</i> 2), s/veh		0.4	0.3	0.2	20.1	12.	.9	0.6	0.1	33.7	1.9	0.0	5.2	14.5
Initial Queue D	elay (<i>d</i>	з), s/veh		0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		45.9	45.1	6.5	74.1	66.	.4 3	37.8	47.2	76.7	24.0	33.6	45.0	54.3
Level of Service	e (LOS)			D	D	A	E	E		D	D	F	С	С	D	D
Approach Dela	y, s/veh	/LOS		29.7	7	С	60.1		E	E	66.4		E	46.7		D
Intersection De	lay, s/ve	h / LOS				55	5.8							E		
Multimodal Re	sults	// 00			EB			W	В			NB	_		SB	_
Pedestrian LOS	Score	/ LOS		2.97		C	2.87		C	;	2.32		В	2.32		В
Bicycle LOS So	ore / LC)S		0.92	2	A	1.52	2	E	В	1.80		В	1.45		A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

		nee	. eig			01000			anto	oun		,				
Gonoral Inform	nation								Inte	oreact	ion Infr	ormatio	n		4.14.1	× L.
	ation	Linscott Law & Gre	onenan	Engin	ore					ration	h	0 250			4 + + + L	L.
Apolyot			enspan				7 2020		Aro		<u>.</u>	Othor		1		<u>گ</u>
Analysi		JAO City of Loo Angoloo		Time	oriod	Fixiati	7, 2020			за туре п	3			^	w↓ F	₹ }-
Junsalction		City of Los Angeles			enou	Projec	t - PM					0.90				
Urban Street		Lincoln Boulevard		Analys	sis Year	· 2020			Ana	alysis l	Period	1> 17	:00		5 5 6 6 6	<u>م</u>
Intersection		Lincoln / Maxella		File Na	ame	02PM	- Existi	ng wi	ith Pr	roject.;	kus			5	ব ↑�Y1	× (*
Project Descrip	tion	Paseo Marina														
				_												
Demand Inform	nation				EB			V	VB			NB		<u> </u>	SB	
Approach Move	ement			<u> </u>	Т	R			Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			86	65	103	320	9	98	191	194	1795	5 360	109	2060	118
Signal Informa	tion				F III		Г			-			†		1	
Cycle s	130.0	Reference Phase	2		642			_#	Ē			ļ	╮┗╴	572		~
Offset s	0	Reference Point	End	L		5 1i	~ P 51		2	Fi.			1	2		Y 4
Uncoordinated	No	Simult Cap E/W	On	Green	18.9	19.6	19.1	18	3.9	23.9	0.0	_				A
Earoo Mada	Fixed	Simult Cop N/S	On	Yellow	3.9	4.4	3.6	3.	6 5	3.6	0.0	— —	∕ੇ ¦≚		7	¥ .
Force Mode	Fixed	Simult. Gap N/S	On	Rea	2.2	1.0	2.3	Ζ.	5	2.5	0.0	•	5	6	1	0
Timer Results				EBI		EBT	WB	L	W	/BT	NBL	_	NBT	SBL		SBT
Assigned Phase	Э					4			8	8	5		2	1		6
Case Number	lumber Duration s					9.0		\neg	9.	.0	1.3		3.0	1.2		4.0
Phase Duration	Duration, s					30.0			25	5.0	25.0)	50.0	25.0) :	50.0
Change Period,	Duration, s Period, (Y+R c), s					6.1			6.	.1	5.9		5.9	6.1		5.4
Max Allow Head	dway (/	<i>MAH</i>), s				4.3			4.	.3	3.1		0.0	3.1		0.0
Queue Clearan	e Period, (Y+R c), s ow Headway (MAH), s Clearance Time (g s), s					8.1		\rightarrow	17	7.3	3.6			4.9		
Green Extensio	n Time	(ge),s				0.8			0.	.5	6.7		0.0	0.2		0.0
Phase Call Prol	bability					1.00			1.0	00	1.00)		1.00		
Max Out Probal	bility					0.00			1.0	00	0.26	;		0.00	,	
Movement Gro	oup Res	sults			EB	1 -		W	B			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8		18	5	2	12	1	6	16
Adjusted Flow F	Rate (v), veh/h		88	66	105	219	20	8	195	198	1832	367	111	1683	540
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1810	1900	1610	1810	185	53 1	1610	1757	1725	1610	1757	1900	1827
Queue Service	Time (g	g s), s		5.4	3.8	6.1	15.3	14.	0 '	12.7	1.6	44.1	19.8	2.9	35.8	35.8
	learanc	e Time (g c), s		5.4	3.8	6.1	15.3	14.	0 '	12.7	1.6	44.1	19.8	2.9	35.8	35.8
Green Ratio (g.	/C)			0.18	0.18	0.33	0.15	0.1	5 (0.29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	en/n	tio (X)		333	349	533	203	26	9 ⁴	468	045	1/50	780	622	1956	627
Pook of Ououo		(0) (λ)		0.204	0.190	71.0	0.032	201	0 0	J.4 10	122.0	014	206 5	0.179	0.001	0.001
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	ah/ln (95 th percentie)	(ما	115.1	04 3./	20	13.2	12	.0 Z	80	122.9	32.6	12.3	22	23.0	027.2 25.1
	Ratio (RO (95 th percent		4.5	0.00	2.9	0.00	12.		0.9	4.9	0.00	0.00	0.00	23.9	20.1
Uniform Delay (45.5	11 9	6.3	54.0	53	5 (37.2	<i>1</i> 7 1	13.0	22.4	33.6	30.8	30.8
	$\left[\frac{u}{d} \right], \frac{u}{d}$				03	0.3	19.7	12	8	0.6	0.1	33.7	22.4	0.1	52	14.5
Initial Queue De	elav (d	3) s/veh		0.4	0.0	0.0	0.0	0.0	บ า	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d) s/v	eh		45.9	45.1	6.5	73.7	66	3 (37.8	47.2	76.7	24.4	33.7	45.0	54.3
Level of Service				D	D	Δ	F	F			D	F	<u> </u>	C	D	D
Approach Delay	/ s/voh	/105		20.7	, ,	C	60.0			F	66.2		F	46.6		
Intersection Delay		h/10S		23.1		5	57	,		_	00.2		-	F		-
														_		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/ LOS		2.97	7	С	2.87	7	C	С	2.32	2	В	2.32	2	В
Bicycle LOS Sc	ore / LC	DS		0.92	2	А	1.51		E	В	1.81		В	1.45	;	А

	nee	r org	nanzo	a int	.01300		100	unt	Jour	innai j	,				
General Information		ott, Law & Greenspan, Eng Anal						In	torsoct	tion Inf	ormati	20		4	× l <u>.</u>
	Lincott Low & Gro	onenan	Engin	ore					uration	b	0.250			4 ↓ ↓ ↓ ↓	L.
Agency		enspan			Aug 2	7 2020				<u></u>	Othou	,	1		۲_ ۲_
Analyst	JAS City of Los Annalas		Times			7,2020			еатур	e				wî e	₹ }_
Jurisaiction	City of Los Angeles		Time F	erioa	Future	9 - PIVI		Pr		Daniad	0.98				× * *
Urban Street			Analys	sis rea	r 2026	E. A.		Ar	naiysis	Period	> /	:00			к. К.
	Lincoln / Maxella		File Na	ame	02PM	- Future	e.xus	S					_	<u> </u>	ſ
Project Description	Paseo Marina													4 1 44 1 1	*
Demand Information	1			EB			V	NB		T	NB			SB	
Approach Movement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			91	69	109	382	1	04	209	206	200	1 411	116	2241	125
														1	
Signal Information				215			Τ	2				Ĺ			
Cycle, s 130.0	Reference Phase	2		P	- R.	. N S 10	2	Ù	. ¥				Ψ		÷
Offset, s 0	Reference Point	End	Green	18.0	19.6	10 1	1	<u>/</u> 8 0	¹ 3	0.0	_	1	2	3	
Uncoordinated No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3	.6	3.6	0.0		< 🛛			\rightarrow
Force Mode Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2	.5	2.5	0.0		5	6	7	8
Timer Results			EBL	-	EBT	WB	L	۷	VBT	NBL	-	NBT	SBI	-	SBT
Assigned Phase					4				8	5		2	1		6
Case Number					9.0			ę	9.0	1.3		3.0	1.2		4.0
Phase Duration, s					30.0			2	25.0	25.0		50.0	25.0) ;	50.0
Change Period, (Y+	₹ c), s	s			6.1			(6.1	5.9		5.9	6.1		5.4
Max Allow Headway	(<i>MAH</i>), s	s H), s a s) s			4.3			4	4.3	3.1		0.0	3.1		0.0
Queue Clearance Tin	ne (g s), s	AH), s g s), s			8.5			2	20.7	4.5			5.1		
Green Extension Time	e (ge), s	(gs), s (ge), s			0.9			(0.0	7.5		0.0	0.2		0.0
Phase Call Probability	/				1.00			1	.00	1.00	,		1.00)	
Max Out Probability					0.00			1	.00	0.37	·		0.00)	
Movement Group Re	esults			EB			W	/B			NB			SB	
Approach Movement			L	Т	R	L	Т	-	R	L	Т	R	L	Т	R
Assigned Movement			7	4	14	3	8	3	18	5	2	12	1	6	16
Adjusted Flow Rate (<i>v</i>), veh/h		93	70	111	261	23	35	213	210	2042	419	118	1827	587
Adjusted Saturation F	low Rate (s), veh/h/l	n	1810	1900	1610	1810	18	50	1610	1757	1725	1610	1757	1900	1829
Queue Service Time	(gs), s		5.7	4.1	6.5	18.7	16	.1	14.1	2.5	44.1	23.6	3.1	40.3	40.4
Cycle Queue Clearan	ice Time (<i>g ₀</i>), s		5.7	4.1	6.5	18.7	16	.1	14.1	2.5	44.1	23.6	3.1	40.3	40.4
Green Ratio (g/C)			0.18	0.18	0.33	0.15	0.1	15	0.29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), veh/h			333	349	533	263	26	69	468	632	1756	780	622	1956	627
Volume-to-Capacity F	Ratio (X)		0.279	0.202	0.209	0.993	0.8	73	0.456	0.333	1.163	0.537	0.190	0.934	0.936
Back of Queue (Q),	ft/ln (95 th percentile))	120	89.5	76.2	457.8	363	3.3	241.4	130.4	1111.2	355.3	59.5	684.3	732.8
Back of Queue (Q),	veh/In (95 th percenti	le)	4.8	3.6	3.0	18.3	14	.5	9.7	5.2	44.4	14.2	2.4	27.4	29.3
Queue Storage Ratio	(RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1),	s/ven		45.6	45.0	6.3	55.5	54	.4	31.1	47.7	43.0	23.3	33.7	41.3	41.3
Incremental Delay (a	2), s/ven		0.5	0.3	0.2	53.4	25	.4	0.7	0.1	80.0	2.6	0.1	9.8	23.3
	u 3), s/ven		0.0	0.0	0.0	0.0	0.	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/	ven		46.1	45.2	6.5	108.8	/9	.8	38.4	47.8	123.0	26.0	33.7	51.1	64.6
Level of Service (LOS	5) / 00		D		A	F	Ē	:	0	D	F		C	U	E
Approach Delay, s/ve	n/LOS		29.8	5	C	78.0	ו		E	101.8	5	F	53.4		D
Intersection Delay, s/	/en / LOS				76	5.1							E		
Multimodal Results				FR			\٨/	/B			NR			SB	
Pedestrian LOS Scor	e/10S		2 07	,	C	2.87	7		С	2 32		В	2 32		В
Bicycle LOS Score / I	_OS		0.94		A	1.66	3		B	1.96		B	1.53	3	B

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

		nee	. eig	indin 20	a ma	.01000			anto	oun	inner j	,				
Gonoral Inform	nation								Inte	oreact	ion Inf	ormatic	n n		4.14.1	× L.
	ation	Linscott Law & Gre	onenan	Engin	ore					ration	b	0 250		-	4 + + + L	L.
Apolyot			enspan				7 2020		Are			Othor		1		<u>ل</u>
Analyst		JAS City of Los Angelos		Time	ors Date	= Aug Z	7, 2020			затур п	8			→× >	w↓ F	₹ }-
Junsalction		City of Los Angeles		I Ime i	enou	Projec	t - PM					0.90				
Urban Street		Lincoln Boulevard		Analys	sis Yea	r 2026			Ana	alysis	Period	1> 17	:00			×
Intersection		Lincoln / Maxella		File Na	ame	02PM	- Future	e with	ו Pro	oject.xu	JS			1	ব ↑ ক• Y [*] 1	* *
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB		<u> </u>	N	VB T	-	<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L		R	L			R	L		R	L		R
Demand (v), v	eh/h			91	69	109	381	1	04	208	206	2001	425	121	2241	125
Signal Informa	tion			<u> </u>	БЛU	. UL	Г			•			†			
Cycle s	130.0	Reference Phase	2	1	642			_	F	Ŀ		ļ		512		
Offset s	0	Reference Point	End			``î î	<u>```````</u>		2	Þ.			1	2	3	Y 4
Uncoordinated	No	Simult Gan E/W	On	Green	18.9	19.6	19.1	18	3.9	23.9	0.0	_				ð-
Force Mode	Fixed	Simult, Gap N/S	On	Red	3.9	4.4	3.0	3.	6 5	3.0	0.0		ो ⁵∣⊾₁	6	7	₹ 8
T OICE MODE	TIXEU	Sindit. Gap N/S	OII	Reu	2.2	1.0	2.5	Ζ.	5	2.5	0.0	•		0	,	
Timer Results				EBI	_	EBT	WB	L	W	/BT	NBL	_	NBT	SBL	-	SBT
Assigned Phase	e					4			6	8	5		2	1		6
Case Number						9.0			9.	.0	1.3		3.0	1.2		4.0
Phase Duration	e Duration, s					30.0			25	5.0	25.0)	50.0	25.0) :	50.0
Change Period,	(Y+R	c), S				6.1			6	5.1	5.9		5.9	6.1		5.4
Max Allow Head	dway (/	MAH), s				4.3			4.	.3	3.1		0.0	3.1		0.0
Queue Clearan	ge Period, (Y+R c), s Allow Headway (<i>MAH</i>), s le Clearance Time (<i>g</i> s), s					8.5			20	0.7	4.5			5.3		
Green Extensio	n Time	(ge), s				0.9			0.	.0	7.5		0.0	0.2		0.0
Phase Call Prol	e Number se Duration, s nge Period, ($Y+R c$), s Allow Headway (MAH), s ue Clearance Time ($g s$), s en Extension Time ($g e$), s se Call Probability Out Probability rement Group Results					1.00			1.0	.00	1.00)		1.00)	
Max Out Probal	nge Period, ($Y+R c$), s Allow Headway (MAH), s ue Clearance Time ($g s$), s en Extension Time ($g e$), s se Call Probability Out Probability					0.00			1.0	.00	0.38	}		0.00)	
Manager							_	14/	_						00	
Movement Gro	oup Res	sults		<u> </u>	EB				R	-		NB			SB	
Approach Move	ment				1	R			+	10	L E	1	К 10		I G	
Adjusted Flow	ment Poto (v	() yeb/b		1	4	14	3 260	0	1	10	5 210	2042	12	102	1007	10 597
Adjusted Flow r), ven/n w Rate (s) veb/b/l	n	93	1000	1610	1810	185	4 50 /	212	210	1725	434	125	1027	1820
	Time (/	α_{c}) s		57	4 1	65	18.7	16	1	14.0	25	44 1	24.7	33	40.3	40.4
Cycle Queue C	learanc	e Time (<i>a</i> c), s		5.7	4.1	6.5	18.7	16.	1	14.0	2.5	44.1	24.7	3.3	40.3	40.4
Green Ratio (g	/C)	• · · · · · • (9 •), •	_	0.18	0.18	0.33	0.15	0.1	5 (0.29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), y	/eh/h			333	349	533	263	26	9	468	632	1756	780	622	1956	627
Volume-to-Capa	acity Ra	atio (X)		0.279	0.202	0.209	0.990	0.87	71 0	0.453	0.333	1.163	0.556	0.199	0.934	0.936
Back of Queue	(Q), ft	/In (95 th percentile))	120	89.5	76.2	455.2	362	.5 2	240.3	130.4	1111.2	369.4	62.2	684.3	732.8
Back of Queue	(Q), ve	eh/ln (95 th percenti	le)	4.8	3.6	3.0	18.2	14.	5	9.6	5.2	44.4	14.8	2.5	27.4	29.3
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		45.6	45.0	6.3	55.5	54.	4 :	37.7	47.7	43.0	23.6	33.7	41.3	41.3
Incremental De	lay (<i>d</i> 2	2), s/veh		0.5	0.3	0.2	52.6	25.	2	0.7	0.1	80.0	2.8	0.1	9.8	23.3
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		46.1	45.2	6.5	108.1	79.	6	38.3	47.8	123.0	26.5	33.8	51.1	64.6
Level of Service	e (LOS)			D	D	Α	F	E		D	D	F	С	С	D	Е
Approach Delay	/, s/veh	/LOS		29.8	3	С	77.7	7	E	E	101.	5	F	53.4		D
Intersection Del	lay, s/ve	eh / LOS				75	5.9							E		
Navia:								1.4.1							05	
Nultimodal Re	SUITS	/1.02		0.07	EB	6	0.07	7	В		0.00	NB	P	0.00	SB	
Biovolo LOS So				2.97		^	2.87		С г	B	2.32	-	B	2.32	· .	B
	UIG / L			0.94	-	А	1.05	,		0	1.90	,	U	1.03		U

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Del Rey Avenue
Time Analyzed	Existing - AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

 																
Approach		Eastb	ound			Westb	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	146	361				277	82						35		76
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage		Left Only										2	2			
Critical and Follow-up He	adwa	Left Only ways														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		152													116	
Capacity, c (veh/h)		1174													645	
v/c Ratio		0.13													0.18	
95% Queue Length, Q_{95} (veh)		0.4													0.6	
Control Delay (s/veh)		8.5													11.8	
Level of Service (LOS)		А													В	
Approach Delay (s/veh)		2.	5											11	.8	
Approach LOS														E	3	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Del Rey Avenue
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westk	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	146	380				300	82						35		76
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage				Left	Only							2	2			
Critical and Follow-up He	adway	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		152													116	
Capacity, c (veh/h)		1150													632	
v/c Ratio		0.13													0.18	
95% Queue Length, Q ₉₅ (veh)		0.5													0.7	
Control Delay (s/veh)		8.6													12.0	
Level of Service (LOS)		А													В	
Approach Delay (s/veh)		2	.4											12	0	
Approach LOS														E	3	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Del Rey Avenue
Time Analyzed	Future - AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25

Project Description

Vehicle Volumes and Adjustments

Paseo Marina

	Eastb	ound			Westk	ound			North	bound		Southbound			
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
0	1	2	0	0	0	2	0		0	0	0		0	1	0
	L	Т				Т	TR							LR	
0	155	395				319	86						55		129
3	3												3		3
										0					
Left Only							2								
adway	ys														
	4.1												7.5		6.9
	4.16												6.86		6.96
	2.2												3.5		3.3
	2.23												3.53		3.33
Leve	of Se	ervice													
	161													192	
	1127													620	
	0.14													0.31	
	0.5													1.3	
	8.7													13.4	
	А													В	
	2.	5										13.4			
												В			
	U 1U 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Eastb U I 1U 1 1U 1 0 1 1U 1 1 0 1 1 0 155 3 3 3 4 155 3 4 155 3 2 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1	EastburdULT1U1201201201301553953333333310155395331015539533101553953310155104.161102.231102.231101611112711100.142100.51108.7110A110A1	Eastburger U I R 1U 1 2 3 1 1 1 1 1 155 395 1 0 155 395 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>FastburdULTRU1U1234U1U1234U012001200101200012001331133111111111111111111111111211</td> <td>Fastbund West U L R U L 1U 1 2 3 4U 4 0 1 2 0 0 0 1U 1 2 0 0 0 1U 1 2 0 0 0 0 1 2 0 0 0 0 1 2 0 0 0 0 15 395 4 0 1 0 155 395 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 Idew Hatter Idew Hatte</td> <td>Image: static structureULTRULT1U1234U4501200021U1200021U1200021U1200021U1200021120002113951133331111333111<</td> <td>Vertication of the section of the sect</td> <td>EastburdIRULTRU11234U45611U1234U4561012000201120002011112011711112000201112011111333111111331111111331111111133111111111111111111411</td> <td>VerturnNorthiULTRUL1U1234U456701200020001U1200020001U1200020001U1200020001U1200020001120001210101015395111111111010101010115539511<</td> <td>Note the set of the set of</td> <td>VertexNorthermation (Colspan="4">Northermation (Colspan="4")ULTRULTRULTR1U1234U456G78901200020G0001U12000201078901120002010000117R1010101010101010117R10101010101010101033310101010101010101010103310101010101010101010101033101010101010101010101010331010101010101010101010101111111111111111111111111111111111</td> <td>UUUUUTRULTRULTRU11234U456107891011234U456107891011200020101010101011200017R1010101011200017R1010101011200011110101010101010333111<</td> <td>Lestburger Image: Normal and the sector of the sector</td> <td>U L T R U L T R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R I R I R I R I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></td>	FastburdULTRU1U1234U1U1234U012001200101200012001331133111111111111111111111111211	Fastbund West U L R U L 1U 1 2 3 4U 4 0 1 2 0 0 0 1U 1 2 0 0 0 1U 1 2 0 0 0 0 1 2 0 0 0 0 1 2 0 0 0 0 15 395 4 0 1 0 155 395 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 Idew Hatter Idew Hatte	Image: static structureULTRULT1U1234U4501200021U1200021U1200021U1200021U1200021120002113951133331111333111<	Vertication of the section of the sect	EastburdIRULTRU11234U45611U1234U4561012000201120002011112011711112000201112011111333111111331111111331111111133111111111111111111411	VerturnNorthiULTRUL1U1234U456701200020001U1200020001U1200020001U1200020001U1200020001120001210101015395111111111010101010115539511<	Note the set of	VertexNorthermation (Colspan="4">Northermation (Colspan="4")ULTRULTRULTR1U1234U456G78901200020G0001U12000201078901120002010000117R1010101010101010117R10101010101010101033310101010101010101010103310101010101010101010101033101010101010101010101010331010101010101010101010101111111111111111111111111111111111	UUUUUTRULTRULTRU11234U456107891011234U456107891011200020101010101011200017R1010101011200017R1010101011200011110101010101010333111<	Lestburger Image: Normal and the sector of the sector	U L T R U L T R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R I R I R I R I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Del Rey Avenue
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		
2005			

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	155	414				342	86						55		129	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)											0						
Right Turn Channelized																	
Median Type Storage	Left Only							2									
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		161													192		
Capacity, c (veh/h)		1104													608		
v/c Ratio		0.15													0.32		
95% Queue Length, Q ₉₅ (veh)		0.5													1.3		
Control Delay (s/veh)		8.8													13.6		
Level of Service (LOS)		А													В		
Approach Delay (s/veh)		2	.4											13.6			
Approach LOS													В				

	HCS7 Two-Way Stop	top-Control Report									
General Information		Site Information									
Analyst	JAS	Intersection	Del Rey / Maxella								
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles								
Date Performed	8/12/2020	East/West Street	Maxella Avenue								
Analysis Year	2020	North/South Street	Del Rey Avenue								
Time Analyzed	Existing - PM	Peak Hour Factor	0.93								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								

Project Description

Vehicle Volumes and Adjustments

Paseo Marina

·																
Approach		Eastb	ound			West	ound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	81	477				428	81						89		189
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage	Left Only							2								
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		87													299	
Capacity, c (veh/h)		1011													596	
v/c Ratio		0.09													0.50	
95% Queue Length, Q ₉₅ (veh)		0.3													2.8	
Control Delay (s/veh)		8.9													17.0	
Level of Service (LOS)		А													С	
Approach Delay (s/veh)		1.	.3										17.0			
Approach LOS											C					

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Del Rey Avenue
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

	Jastinents																	
Approach		Eastb	ound			Westk	bound			North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0		
Configuration		L	Т				Т	TR							LR			
Volume (veh/h)	0	81	496				427	81						89		189		
Percent Heavy Vehicles (%)	3	3												3		3		
Proportion Time Blocked																		
Percent Grade (%)											0							
Right Turn Channelized																		
Median Type Storage		Left Only							2									
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)		4.1												7.5		6.9		
Critical Headway (sec)		4.16												6.86		6.96		
Base Follow-Up Headway (sec)		2.2												3.5		3.3		
Follow-Up Headway (sec)		2.23												3.53		3.33		
Delay, Queue Length, and	Leve	l of Se	ervice															
Flow Rate, v (veh/h)		87													299			
Capacity, c (veh/h)		1012													594			
v/c Ratio		0.09													0.50			
95% Queue Length, Q ₉₅ (veh)		0.3													2.8			
Control Delay (s/veh)		8.9													17.0			
Level of Service (LOS)		А													С			
Approach Delay (s/veh)		1.	2										17.0					
Approach LOS								С										

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Del Rey Avenue
Time Analyzed	Future - PM	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

 																
Approach		Eastb	ound			West	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	98	545				490	104						97		210
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)												0				
Right Turn Channelized																
Median Type Storage	Left Only							2								
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		105													330	
Capacity, c (veh/h)		934													543	
v/c Ratio		0.11													0.61	
95% Queue Length, Q ₉₅ (veh)		0.4													4.0	
Control Delay (s/veh)		9.3													21.4	
Level of Service (LOS)		А													С	
Approach Delay (s/veh)		1.4										21.4				
Approach LOS									С							

Copyright © 2020 University of Florida. All Rights Reserved.

_

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Del Rey Avenue
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

,																	
Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	98	564				489	104						97		210	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)												0					
Right Turn Channelized																	
Median Type Storage	Left Only							2									
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		105													330		
Capacity, c (veh/h)		935													541		
v/c Ratio		0.11													0.61		
95% Queue Length, Q ₉₅ (veh)		0.4													4.1		
Control Delay (s/veh)		9.3													21.5		
Level of Service (LOS)		А													С		
Approach Delay (s/veh)		1.	.4										21.5				
Approach LOS									С								

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	JAS	Intersection	Ocean Way / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Ocean Way
Time Analyzed	Existing - AM	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

Approach Eactbound Westbound Northbound Southbound																
Approach		Eastb	ound			Westb	bound			North	oound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			305	43	0	33	278			50		62				
Percent Heavy Vehicles (%)					3	3				3		3				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized										N	0					
Median Type Storage				Undi	vided											
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.16				6.86		6.96				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)						35				53		66				
Capacity, c (veh/h)						1178				439		822				
v/c Ratio						0.03				0.12		0.08				
95% Queue Length, Q ₉₅ (veh)						0.1				0.4		0.3				
Control Delay (s/veh)						8.2				14.3		9.8				
Level of Service (LOS)						А				В		А				
Approach Delay (s/veh)						0	.9			11	.8					
Approach LOS										E	3					

		1100	r eigi	nanzo	u mit	01000				iiiiiia	,				
General Inform	nation								Intorso	ction Inf	ormat	ion	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>له لړ</u>
	lation	Linscott Law & Gre	enenan	Engine	ore				Duratio	n h	0 25				
Apolyet			chopan		ic Data		3 2020			n, n	Othc		<u>_</u>		۲_ الح
Jurisdiction		City of Los Angeles		Time E		Evictir	3, 2020			he	0.04	51	⇒→	w∔e	↓ ↓
Junsaletion		City of Los Angeles			enou	Projec	t - AM				0.94		A A		
Urban Street		Maxella Avenue		Analys	is Year	2020			Analysi	s Period	1> 8	:00		5.8	
Intersection		Ocean Way/Maxella	à	File Na	ime	04AM	- Existi	ng wit	h Projec	t.xus			٦ ۲	ৰ ↑ কণ্শ	1* (*
Project Descrip	tion	Paseo Marina											1		
				_											
Demand Inform	nation				EB			W	В		NE	3		SB	
Approach Move	ement			L	Т	R	L	Т	R		Т	R	L	Т	R
Demand (v), v	eh/h				307	60	36	27	8	73		85			
	41a.a			1		-	-			_		1			1
	co o	Deference Dhace	2		. 🕈	-	6								
Cycle, s	60.0	Reference Phase	2		5 .	.[≞i	7					1	2	3	4
Offset, s	0	Reference Point	Ena	Green	24.8	24.9	0.0	0.0) 0.0	0.0					
Uncoordinated	NO	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.0) 0.0	0.0	_		→		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.0	0.0	0.0		5	Y 6	7	8
Timor Poculto				EDI	_	ERT	\//R			NR		NRT	SBI		SBT
Assigned Phase	signed Phase					EDT 6	VVD		2	IND	-		300		301
Case Number	case Number					80		\rightarrow	6.0	-		90			
Phase Duration	Phase Duration, s					30.0			30.0			30.0			
Change Period	hase Duration, s					52	<u> </u>	\rightarrow	5.2			5 1			
Max Allow Hear		(), S (AH) s				0.0			0.0			3.1			
	away (n	$(\boldsymbol{\alpha})$			-	0.0		+	0.0	-	+	1.1			
Green Extensio	n Time	$(g_s), s$				0.0		-	0.0			4.1			
Phase Call Pro	hahility	(ge), s		<u> </u>		0.0		\rightarrow	0.0	-		1.00			
Max Out Proba	hility		_		-			-				0.00			
	onity											0.00			
Movement Gro	oup Res	ults			EB			WE	;		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				6	16	5	2		3		18			
Adjusted Flow F	Rate (v), veh/h			199	192	38	296	-	78	-	90		_	
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1900	1792	1009	180	9	1810		1610			
Queue Service	Time (g	y s), S			4.1	4.2	1.6	3.1		1.6		2.1			
Cycle Queue C	learance	e Time (<i>g c</i>), s			4.1	4.2	5.8	3.1		1.6		2.1			
Green Ratio (g	/C)				0.41	0.41	0.41	0.41		0.42		0.42			
Capacity (c), v	/h				785	741	466	149	5	751		668			
Volume-to-Capa	acity Ra	tio(X)			0.253	0.259	0.082	0.19	8	0.103		0.135			
Back of Queue	(Q), ft/	In (95 th percentile))		78.5	76.3	16.9	54.2	2	28.5		34.1			
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		3.1	3.1	0.7	2.2		1.1	-	1.4			
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00	0.00	0.00	0.00)	0.00		0.00			
Uniform Delay ((d 1), s/	/veh			11.5	11.6	13.5	11.2	2	10.7	-	10.9			
Incremental De	lay (<i>d</i> 2), s/veh			0.8	0.8	0.3	0.3		0.3		0.4			
Initial Queue De	nitial Queue Delay (<i>d</i> ₂), s/veh				0.0	0.0	0.0	0.0		0.0		0.0			
Control Delay (<i>d</i>), s/veh					12.3	12.4	13.8	11.5	5	11.0		11.3			
Level of Service (LOS)					В	В	В	В		В		В			
Approach Delay, s/veh / LOS				12.4		В	11.8	3	В	11.2	2	В	0.0		
Intersection Delay, s/veh / LOS						11	.9						B		
Multimodal Re	Iultimodal Results				EB			WE	3		NB			SB	
Pedestrian LOS	Score	/LOS		1.92		В	0.72	2	Α	2.28	3	В	2.11		В
Bicycle LOS Sc	ore / LC)S		0.81		А	0.76	6	А			F			

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	JAS	Intersection	Ocean Way / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Ocean Way
Time Analyzed	Future - AM	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

Approach Easthound Westhound Northbound Southbound																		
Approach		Eastb	ound			West	bound			North	oound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0		
Configuration			Т	TR		L	Т			L		R						
Volume (veh/h)			351	49	0	38	307			65		77						
Percent Heavy Vehicles (%)					3	3				3		3						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized										N	0							
Median Type Storage				Undi	vided													
Critical and Follow-up He																		
Base Critical Headway (sec)						4.1				7.5		6.9						
Critical Headway (sec)						4.16				6.86		6.96						
Base Follow-Up Headway (sec)						2.2				3.5		3.3						
Follow-Up Headway (sec)						2.23				3.53		3.33						
Delay, Queue Length, and	Leve	l of Se	ervice															
Flow Rate, v (veh/h)						40				69		82						
Capacity, c (veh/h)						1123				389		789						
v/c Ratio						0.04				0.18		0.10						
95% Queue Length, Q ₉₅ (veh)						0.1				0.6		0.3						
Control Delay (s/veh)						8.3				16.2		10.1						
Level of Service (LOS)						А				С		В						
Approach Delay (s/veh)						0	.9			12	.9							
Approach LOS										E	3							

					or inte	01000				em	iiiiai y					
General Inform	nation								Inters	ecti	ion Info	rmati	on	2	4 가 수 †	↓× l <u>×</u>
Agency		Linscott Law & Gre	ensnan	Engine	Pers				Durati	ion	h	0 250)			
Apolyet			chopan		vie Date		2 2020		Area	Type		Otho	r	1		۲. ا
Jurisdiction		City of Los Angeles		Time	Poriod	Euture	2, 2020		DHE	туре		0 04		⇒→	w↓e	↓ ↓
Junsaletion		City of Los Angeles			enou	Projec	t - AM		1 1 11			0.94				÷ →
Urban Street		Maxella Avenue		Analys	sis Year	2026			Analy	sis F	Period	1> 8:	00		к л	
Intersection		Ocean Way/Maxella	а	File Na	ame	04AM	- Future	e with	Projec	ct.xu	IS	1		<u>۴</u>	1 ↑ 4+ Y	fr (*
Project Descrip	tion	Paseo Marina												1		
		•		-												
Demand Inform	nation				EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L			R	L	Т	R	L	Т	R
Demand (v), v	eh/h				353	66	41	30)7		88		100			
	41 o 10			1		-	-						1			
Signal Informa	colo	Deference Dhees	2	1	. :	-										
Cycle, s	60.0	Reference Phase	2		E .	[Si	7						1	2	3	4
Offset, s			Ena	Green	24.8	24.9	0.0	0.0) ()	0.0	0.0					
Uncoordinated	NO	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.0) ()	.0	0.0	-		→		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.0) 0	0.0	0.0		5	6	7	8
Timor Pooulto				EDI		EDT	\ \ /D	1		-	NDI		NDT	SDI		SPT
Assigned Phase	ed Phase				·	6	VVD		2	-	NDL	-	8	3DL		301
Case Number	se Number					80		-	6.0	-		+	9.0			
Phase Duration	hase Duration, s					30.0		-	30.0			-	30.0			
Change Period	hase Duration, s hange Period (Y+R c), s					52		-	5.2	+		+	5 1			
Max Allow Hear		(), S (/// H) e				0.0		-	0.0				3.1			
	away (<i>T</i>	(α)		<u> </u>	-	0.0		-	0.0	-		-	1.5		-	
Groop Extensio	n Timo	$(g_s), s$				0.0		-	0.0	-			4.5			
Bhase Cell Brok		(<i>g</i> , s		<u> </u>		0.0	<u> </u>	-	0.0	-		-	1.00		-	
Max Out Brobal								-		-			0.00			
	Jiiity												0.00			
Movement Gro	up Res	sults			EB			WE	3			NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	:	L	Т	R	L	Т	R
Assigned Move	ment				6	16	5	2			3		18			
Adjusted Flow F	Rate (v), veh/h			227	218	44	327	·		94		106			
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n		1900	1796	959	180	9		1810		1610			
Queue Service	Time (g	g s), S			4.8	4.9	1.9	3.5			1.9		2.5			
Cycle Queue C	learanc	e Time (<i>g c</i>), s			4.8	4.9	6.8	3.5			1.9		2.5			
Green Ratio (g	/C)				0.41	0.41	0.41	0.41			0.42		0.42			
Capacity (<i>c</i>), v	eh/h				785	742	439	149	5		751		668		_	
Volume-to-Capa	acity Ra	itio(X)			0.289	0.294	0.099	0.21	8	Т	0.125		0.159			
Back of Queue	(Q), ft/	/In (95 th percentile))		91.5	88.8	19.9	60.5	5		31.7	_	36.8		_	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)		3.7	3.6	0.8	2.4			1.3		1.5			
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00	0.00	0.00	0.00)		0.00		0.00			
Uniform Delay (d 1), s	/veh			11.7	11.8	14.0	11.4	1		10.8		11.0		_	
Incremental De	lay (d 2), s/veh			0.9	1.0	0.5	0.3			0.0		0.0			
Initial Queue De	nitial Queue Delay ($d z$), s/veh				0.0	0.0	0.0	0.0			0.0		0.0			
Control Delay (<i>d</i>), s/veh					12.7	12.8	14.5	11.7	7		10.9		11.0			
Level of Service (LOS)					В	В	В	В			В		В			
Approach Delay, s/veh / LOS				12.7	7	В	12.0		В		10.9		В	0.0		
Intersection Delay, s/veh / LOS						12	2.1							В		
Multimodal Re	Iultimodal Results				EB			WE	3			NB			SB	
Pedestrian LOS	Score	/LOS		1.92	2	В	0.72	2	Α		2.28		В	2.11		В
Bicycle LOS Sc	ore / LC	DS		0.86	6	А	0.79		Α				F			

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	JAS	Intersection	Ocean Way / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Ocean Way
Time Analyzed	Existing - PM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

- -																
Approach		Eastb	ound			West	ound			North	oound			South	oound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			441	90	0	49	392			64		49				
Percent Heavy Vehicles (%)					3	3				3		3				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized										N	0					
Median Type Storage				Undi	vided											
Critical and Follow-up He																
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.16				6.86		6.96				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)						51				67		51				
Capacity, c (veh/h)						1006				299		718				
v/c Ratio						0.05				0.22		0.07				
95% Queue Length, Q ₉₅ (veh)						0.2				0.8		0.2				
Control Delay (s/veh)						8.8				20.5		10.4				
Level of Service (LOS)						А				С		В				
Approach Delay (s/veh)						1	.0			16	5.1					
Approach LOS										(2					

				Indineo		01000				un	innar y	, 				
General Inform	nation								Intore	ecti	ion Info	rmati	on	2	석 가 추 ↑	₽ L
	lation	Lincott Low & Gro	onenan	Enging	ore				Durat	ion		0 250				
Agency			enspan			Aug 1	2 2020		Durat	1011, Turne		0.250) r	_*		۲_ ۲_
Analyst				Analys	as Date	Aug T	3, 2020		Area	туре	;			→	N w↑r	
Jurisdiction		City of Los Angeles		I Ime F	riod	Proied	t - PM		PHF			0.96		**	8	v~ <mark>↓</mark>
Urban Street		Maxella Avenue		Analys	is Year	2020			Analy	sis F	Period	1> 17	7:00	- <mark></mark>	K A	<u> </u>
Intersection		Ocean Way/Maxella	3	File Na	ame	04PM	- Existin	ng wit	h Proj	ect.x	us			1	☆ ↑ 4 * Y	יז יז <i>י</i> י
Project Descrip	tion	Paseo Marina												1		
		•														
Demand Inform	nation				EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т	·	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				443	107	52	39	2	_	63		48			
Signal Informa	tion			<u> </u>		"i	Γ		1		_				, ,	
	60.0	Reference Phase	2		L 🕯		8									
Offect s	00.0	Reference Point	End			51	7						1	2	3	4
Uncoordinated	No	Simult Con E/M	On	Green	24.8	24.9	0.0	0.0) (0.0	0.0	_				
	Tixed	Simult Cap N/S	On	Yellow	3.6	3.6	0.0	0.0		0.0	0.0	-	_	र	-	
Force Mode	Fixed	Simult. Gap N/S	On	Rea	1.0	1.5	0.0	0.0) [0	0.0	0.0		5		1	8
Timer Results				FBI		FBT	WB		WBT	- 1	NBI		NBT	SBI		SBT
Assigned Phase	e		_			6			2				8			
Case Number	-					8.0		-	6.0	-		+	9.0		+	
Phase Duration	hase Duration, s					30.0			30.0				30.0			
Change Period	hase Duration, s hange Period, (Y+R c), s					5.2		-	5.2	+			5 1		+	
Max Allow Hear		MAH) s				0.0		-	0.0	-			3.1			
		$(a_{\alpha}) \in $				0.0			0.0	+			33			
Green Extensio	n Time	$(g_{s}), s$			-	0.0	-		0.0	-			0.2		+-	
Phase Call Prot	hability	(ge), s				0.0			0.0	-			1.00		-+-	
Max Out Proba	bility							-		-			0.00			
	onity												0.00		a de la come	
Movement Gro	oup Res	sults			EB			WB	;	Т		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	2	L	Т	R	L	Т	R
Assigned Move	ment				6	16	5	2			3		18			
Adjusted Flow F	Rate (v), veh/h			295	278	54	408			66		50		-	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1900	1772	853	1809	9		1810		1610			
Queue Service	Time (g	g s), S			6.4	6.6	2.8	4.5			1.3		1.1			
Cycle Queue C	learanc	e Time (<i>g c</i>), s			6.4	6.6	9.4	4.5		Т	1.3		1.1			
Green Ratio (g	/C)				0.41	0.41	0.41	0.41		Т	0.42		0.42			
Capacity (c), v	/eh/h				785	733	379	1495	5		751	_	668			
Volume-to-Capa	acity Ra	itio(X)			0.375	0.380	0.143	0.27	3	Т	0.087		0.075			
Back of Queue	(Q), ft/	/In (95 th percentile)			125.1	119	27	77.7	7		23.9	-	18.3			
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		5.0	4.8	1.1	3.1			1.0		0.7		-	
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00	0.00	0.00	0.00)		0.00		0.00			
Uniform Delay ((d 1), s	/veh			12.2	12.2	15.5	11.6	;		10.7		10.6			
Incremental De	lay (<i>d</i> 2), s/veh			1.4	1.5	0.8	0.5			0.2		0.2			
Initial Queue De	nitial Queue Delay (<i>d z</i>), s/veh				0.0	0.0	0.0	0.0			0.0		0.0			
Control Delay (d), s/veh					13.6	13.7	16.3	12.1		Т	10.9		10.8			
Level of Service (LOS)					В	В	В	В			В		В			
Approach Delay, s/veh / LOS				13.7	·	В	12.6	;	В		10.9		В	0.0		-
Intersection Delay, s/veh / LOS						12	2.9							B		
Multimodal Re	lultimodal Results				EB			WB	}			NB			SB	
Pedestrian LOS	Score	/ LOS		1.92	2	В	0.72	2	Α		2.28		В	2.11		В
Bicycle LOS Sc	ore / LC	DS		0.96	;	А	0.87	,	Α				F			

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	JAS	Intersection	Ocean Way / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Ocean Way
Time Analyzed	Future - PM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

									_							
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0
Configuration			Т	TR		L	Т			L		R				
Volume (veh/h)			496	110	0	64	463			75		59				
Percent Heavy Vehicles (%)					3	3				3		3				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized										N	0					
Median Type Storage				Undi	vided											
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.16				6.86		6.96				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.53		3.33				
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)						67				78		61				
Capacity, c (veh/h)						940				239		677				
v/c Ratio						0.07				0.33		0.09				
95% Queue Length, Q ₉₅ (veh)						0.2				1.4		0.3				
Control Delay (s/veh)						9.1				27.2		10.8				
Level of Service (LOS)						А				D		В				
Approach Delay (s/veh)						1	.1			20	0.0					
Approach LOS										(2					

										<i>-</i>						
General Inform	nation								Intor	sort	ion Info	rmati	20	2	4 년 4 1	₽ L
	lation	Lincott Low & Gro	onenan	Enging	ore				Dura	tion		0.250				
Agency			enspan			Aug 1	2 2020		Dura	Turne		0.250				۲_ ۲_
Analyst				Analys	as Date	Aug T	3, 2020		Area	туре	;	Other				← <u>}</u>
Jurisdiction		City of Los Angeles		I Ime F	riod	Proiec	e with ct - PM		PHF			0.96			6 6	↓ ↓
Urban Street		Maxella Avenue		Analys	is Year	2026			Analy	ysis I	Period	1> 17	2:00	-		e e e
Intersection		Ocean Way/Maxella	a	File Na	ame	04PM	- Future	e with	Proje	ect.xu	IS			- 1	 ব † ቁጥ	۲
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т	·	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h				498	127	67	46	63		74		58			
	tion			<u> </u>						-						
Signal morma	co o	Deference Dhees	2		. 🛨	-										
Cycle, s	60.0	Reference Phase	2		5	[Si	7						1	2	3	4
Offset, s	0	Reference Point	End	Green	24.8	24.9	0.0	0.0) (0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.0) (0.0	0.0	_		→		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.0) (0.0	0.0		5	6	7	8
Timor Pooulto				EDI		EDT	\//D		\//D	т	NDI		NDT	CDI		SPT
Assigned Dhoor				EDL	-	ED I			200	·	INDL			SBL		301
Assigned Phase	9					0		\rightarrow	2			_	0		+	
Case Number						8.0		\rightarrow	0.0			_	9.0		\rightarrow	
Phase Duration	nase Duration, s					30.0		\rightarrow	30.0	,		_	30.0		\rightarrow	
Change Period,	Change Period,(Y+R c), s					5.2		\rightarrow	5.2				5.1		+	
Max Allow Head	dway(/	MAH), s				0.0		\rightarrow	0.0				3.4		\rightarrow	
Queue Clearan	ce Time	e (g s), s						\rightarrow					3.6		\rightarrow	
Green Extensio	n Time	(g _e), s				0.0		\rightarrow	0.0				0.3		\rightarrow	
Phase Call Prol	bability							\rightarrow					1.00			
Max Out Proba	bility												0.00			
Movement Gro	un Res	ults			FB			WE	2			NB			SB	_
Approach Move	mont				Т	R	1		, 	R	1	т	R	1	т	R
Assigned Move	ment				6	16	5	2	+ '		3		18			
Adjusted Flow	Poto (v) voh/h			336	215	70	492	,		77		60			
Adjusted Flow P		y, ven/n	n		1000	1766	702	1900			1910		1610			
	Time ()				7.5	7.6	/ 1	5.4	5		16		1/			
Cycle Queue C	learanc	e Time (a_c) s			7.5	7.6	11.8	5.4	+-		1.0		1.4		-	
Green Ratio (a	/C)	o milo (g o), o			0.41	0.41	0.41	0.41	1		0.42		0.42			
Capacity (c) y	/eh/h				785	730	347	149	5		751		668		-	
Volume-to-Cap	acity Ra	itio (X)			0.428	0.431	0.201	0.32	3		0 103		0.090			
Back of Queue	(Ω) ft	(In (95 th percentile)			147 4	139.4	37.5	94 3	2		28.3	-	22.2			
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	h/ln (95 th percenti	le)		59	5.6	15	3.8			1 1		0.9			
	Ratio (RO (95 th percent	ile)		0.0	0.00	0.00	0.0			0.00		0.00			
Uniform Delay ((d_1) s	/veh			12.5	12.6	16.8	11 9	2		10.7		10.7			
Incremental De	av (<i>d</i> 2), s/veh			1.7	1.9	1.3	0.6			0.3		0.3			
Initial Queue De	ncremental Delay (d ₂), s/veh				0.0	0.0	0.0	0.0	+-		0.0		0.0			
Control Delay (d 3), s/ven					14.2	14.4	18.1	12 5	5		11.0		10.9		_	
Level of Service (LOS)					R	R	R	R			B		- 0.0 B			$ \rightarrow $
Approach Delay, s/veh / LOS				1/ 3		B	13.0		R		11 0		B	0.0		
Intersection Delay, s/ven / LOS				14.0		19	3.5	-			11.0			0.0 B		
mersection Delay, s/ven / LOS													1	_		
Multimodal Re	Aultimodal Results				EB			WE	3			NB			SB	
Pedestrian LOS	Score	/ LOS		1.92	2	В	0.72	2	А		2.28		В	2.11		В
Bicycle LOS Sc	ore / LC	DS		1.02	2	А	0.94	1	А				F			

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	JAS	Intersection	Maxella Dwy / Maxella											
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles											
Date Performed	8/13/2020	East/West Street	Maxella Avenue											
Analysis Year	2020	North/South Street	Maxella Avenue Driveway											
Time Analyzed	Existing - AM	Peak Hour Factor	0.92											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Paseo Marina													

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0		
Configuration			Т	TR			Т					R						
Volume (veh/h)			342	1			283					1						
Percent Heavy Vehicles (%)												3						
Proportion Time Blocked																		
Percent Grade (%)									()								
Right Turn Channelized								N	0									
Median Type Storage		Undivided																
Critical and Follow-up He	adwa	dways																
Base Critical Headway (sec)												6.9						
Critical Headway (sec)												6.96						
Base Follow-Up Headway (sec)												3.3						
Follow-Up Headway (sec)												3.33						
Delay, Queue Length, and	Leve	of Se	ervice															
Flow Rate, v (veh/h)												1						
Capacity, c (veh/h)												821						
v/c Ratio												0.00						
95% Queue Length, Q_{95} (veh)												0.0						
Control Delay (s/veh)												9.4						
Level of Service (LOS)												А						
Approach Delay (s/veh)									9.4									
Approach LOS									A									

HCS7 Two-Way Stop-Control Report													
General Information		Site Information											
Analyst	JAS	Intersection	Maxella Dwy / Maxella										
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles										
Date Performed	8/13/2020	East/West Street	Maxella Avenue										
Analysis Year	2020	North/South Street	Maxella Avenue Driveway										
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Paseo Marina												
Lanes													

Vehicle Volumes and Adjustments

remere rolumes and Auje																	
Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0	
Configuration			Т	TR			Т					R					
Volume (veh/h)			365	3			286					9					
Percent Heavy Vehicles (%)												3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										N	0						
Median Type Storage				Undiv	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)												6.9					
Critical Headway (sec)												6.96					
Base Follow-Up Headway (sec)												3.3					
Follow-Up Headway (sec)												3.33					
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)												10					
Capacity, c (veh/h)												804					
v/c Ratio												0.01					
95% Queue Length, Q ₉₅ (veh)												0.0					
Control Delay (s/veh)												9.5					
Level of Service (LOS)												А					
Approach Delay (s/veh)									9.5								
Approach LOS										A	A						

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Maxella Dwy / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Maxella Avenue Driveway
Time Analyzed	Future - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0	
Configuration			Т	TR			Т					R					
Volume (veh/h)			401	1			315					1					
Percent Heavy Vehicles (%)												3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										N	lo						
Median Type Storage				Undi	vided												
Critical and Follow-up He	adway	ys															
Base Critical Headway (sec)												6.9					
Critical Headway (sec)												6.96					
Base Follow-Up Headway (sec)												3.3					
Follow-Up Headway (sec)												3.33					
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)												1					
Capacity, c (veh/h)												783					
v/c Ratio												0.00					
95% Queue Length, Q ₉₅ (veh)												0.0					
Control Delay (s/veh)												9.6					
Level of Service (LOS)												А					
Approach Delay (s/veh)									9.6								
Approach LOS									A								

HCS7 Two-Way Stop	o-Control Report	
	Site Information	
JAS	Intersection	Maxella Dwy / Maxella
Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
8/13/2020	East/West Street	Maxella Avenue
2026	North/South Street	Maxella Avenue Driveway
Future + Project - AM	Peak Hour Factor	0.92
East-West	Analysis Time Period (hrs)	0.25
Paseo Marina		
	HCS7 Two-Way Stop JAS Linscott, Law & Greenspan 8/13/2020 2026 Future + Project - AM East-West Paseo Marina	HCS7 Two-Way Stop-Control ReportSite InformationJASIntersectionLinscott, Law & GreenspanJurisdiction8/13/2020East/West Street2026North/South StreetFuture + Project - AMPeak Hour FactorEast-WestAnalysis Time Period (hrs)Paseo MarinaHour Factor

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0
Configuration			Т	TR			Т					R				
Volume (veh/h)			424	3			318					9				
Percent Heavy Vehicles (%)												3				
Proportion Time Blocked																
Percent Grade (%)										(C					
Right Turn Channelized										N	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.96				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.33				
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)												10				
Capacity, c (veh/h)												767				
v/c Ratio												0.01				
95% Queue Length, Q ₉₅ (veh)												0.0				
Control Delay (s/veh)												9.8				
Level of Service (LOS)												А				
Approach Delay (s/veh)									9.8							
Approach LOS										/	4					

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	JAS	Intersection	Maxella Dwy / Maxella											
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles											
Date Performed	8/13/2020	East/West Street	Maxella Avenue											
Analysis Year	2020	North/South Street	Maxella Avenue Driveway											
Time Analyzed	Existing - PM	Peak Hour Factor	0.92											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Paseo Marina													

Vehicle Volumes and Adjustments

Venicie Volumes and Adja																		
Approach		Eastb	ound			Westb	bound			North	oound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0		
Configuration			Т	TR			Т					R						
Volume (veh/h)			464	3			394					6						
Percent Heavy Vehicles (%)												3						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized										N	0							
Median Type Storage				Undiv	vided				· · · · · · · · · · · · · · · · · · ·									
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)												6.9						
Critical Headway (sec)												6.96						
Base Follow-Up Headway (sec)												3.3						
Follow-Up Headway (sec)												3.33						
Delay, Queue Length, and	Leve	of Se	ervice															
Flow Rate, v (veh/h)												7						
Capacity, c (veh/h)												743						
v/c Ratio												0.01						
95% Queue Length, Q ₉₅ (veh)												0.0						
Control Delay (s/veh)												9.9						
Level of Service (LOS)												А						
Approach Delay (s/veh)										9.	9							
Approach LOS										A	4							

HCS7 Two-Way Stop-Control Report													
General Information		Site Information											
Analyst	JAS	Intersection	Maxella Dwy / Maxella										
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles										
Date Performed	8/13/2020	East/West Street	Maxella Avenue										
Analysis Year	2020	North/South Street	Maxella Avenue Driveway										
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Paseo Marina												
Lanes													

Vehicle Volumes and Adjustments

remere rolumes and Auje																	
Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0	
Configuration			Т	TR			Т					R					
Volume (veh/h)			463	5			397					6					
Percent Heavy Vehicles (%)												3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized									N	0							
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)												6.9					
Critical Headway (sec)												6.96					
Base Follow-Up Headway (sec)												3.3					
Follow-Up Headway (sec)												3.33					
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)												7					
Capacity, c (veh/h)												742					
v/c Ratio												0.01					
95% Queue Length, Q ₉₅ (veh)												0.0					
Control Delay (s/veh)												9.9					
Level of Service (LOS)												А					
Approach Delay (s/veh)									9.9								
Approach LOS									A								

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Maxella Dwy / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Maxella Avenue Driveway
Time Analyzed	Future - PM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		
Lawaa			

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0
Configuration			Т	TR			Т					R				
Volume (veh/h)			528	3			477					6				
Percent Heavy Vehicles (%)												3				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized										N	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.96				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.33				
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)												7				
Capacity, c (veh/h)												705				
v/c Ratio												0.01				
95% Queue Length, Q ₉₅ (veh)												0.0				
Control Delay (s/veh)												10.2				
Level of Service (LOS)												В				
Approach Delay (s/veh)										10).2					
Approach LOS										E	3					

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Maxella Dwy / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Maxella Avenue Driveway
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		
Lanes			

Vehicle Volumes and Adjustments

	Stiffe															
Approach		Eastb	ound			Westb	bound			North	oound			South	oound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0
Configuration			Т	TR			Т					R				
Volume (veh/h)			527	5			480					6				
Percent Heavy Vehicles (%)												3				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized										N	0					
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.96				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.33				
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)												7				
Capacity, c (veh/h)												704				
v/c Ratio												0.01				
95% Queue Length, Q ₉₅ (veh)												0.0				
Control Delay (s/veh)												10.2				
Level of Service (LOS)												В				
Approach Delay (s/veh)										10	.2					
Approach LOS										E	3					

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

			J -									,				
General Inform	nation								In	tersect	tion Inf	ormatio	on	2	*	بد لي
Agency		Linscott, Law & Greenso	an, Eng	neers	\$				D	uration	h	0.250			444	
Analyst		JAS	Ana	vsis [- Date	Aug 1	3 2020			rea Tvp	e	Other		 		ار ک
Jurisdiction		City of Los Angeles	Time	Peri	od	Fxistir	na - AM		P	HF	•	0.96		→ <u></u> ^*	w∔e	≮_ ↓
Urban Street		Glencoe Avenue	Ana	vsis V	/ear	2020	19 7 101			nalvsis	Period	1> 8	15			
Intersection		Glencoe/Maxella	File	Vame		06AM	- Existin	יא אי		naryolo		1. 0.	10		* * *	<u> </u>
Project Descript	tion	Paseo Marina		Vanno				ig.n	45					- 5]][[]]][[]]]]]]]]]]]]]]]]]]]]]]]]]]]]	× (*
T Toject Descrip																·
Demand Inform	nation				EB			٧	VB		T	NB			SB	
Approach Move	ement		L		Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h		108	; 1	100	135	65	8	83	83	116	569	56	73	533	84
													<u> </u>		<u> </u>	
Signal Informa	tion					215								<u>A</u>		
Cycle, s	60.0	Reference Phase 2				- 542	7						4	¥ _	2	(† x
Offset, s	0	Reference Point En	d Gree	n 24	4 8	24.9	00	0	0	0.0	0.0	_		2	3	4
Uncoordinated	No	Simult. Gap E/W Or	Vello	w 3.	6	3.6	0.0	0.	.0	0.0	0.0			<u> </u>		512
Force Mode	Fixed	Simult. Gap N/S Or	Red	1.	6	1.5	0.0	0.	.0	0.0	0.0		5	Y 6	7	8
														0		
Timer Results			E	3L		EBT	WB	L	V	WBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	Э					6				2			8			4
Case Number						5.0				6.0			5.0			6.0
Phase Duration	, S				3	30.0			3	30.0			30.0			30.0
Change Period,	(Y+R	c), S				5.2				5.2			5.1			5.1
Max Allow Head	dway(<i>N</i>	<i>MAH</i>), s				0.0		$ \rightarrow$		0.0			3.4			3.4
Queue Clearan	ce Time	(gs), s											17.9			23.0
Green Extensio	n Time	(ge), s				0.0		$ \rightarrow$		0.0			2.6			1.0
Phase Call Prol	bability												1.00			1.00
Max Out Probal	bility												0.54			1.00
Movement Gro	un Res	ults		F	-R			Ŵ	'R			NB	_		SB	_
Approach Move	ment			T	-D T	R		Т	.	R		Т	R		Т	R
Assigned Move	ment		1		6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h	113	1	04	141	68	- 86	3	86	121	593	58	76	328	314
Adjusted Satura	ation Flo	w Rate (s), veh/h/ln	123	19	900	1610	1310	190	20	1610	799	1900	1610	837	1900	1809
Queue Service	Time (o	7 s). S	3.7	2	2.0	3.4	2.0	1.	7	2.0	7.6	15.9	1.3	5.1	7.3	7.4
Cvcle Queue C	learance	e Time (<i>q</i> _c), s	5.7	2	.0	3.4	4.1	1.	7	2.0	14.9	15.9	1.3	21.0	7.3	7.4
Green Ratio (g	/C)		0.4	0.	41	0.41	0.41	0.4	11	0.41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), y	/eh/h		588	7	85	666	617	78	5	666	353	789	668	245	789	751
Volume-to-Capa	acity Ra	tio(X)	0.19	1 0.1	133	0.211	0.110	0.1	10	0.130	0.342	0.752	0.087	0.310	0.416	0.419
Back of Queue	(Q), ft/	In (95 th percentile)	47.9	38	8.6	55.2	27.5	31	.7	32.5	59.4	280.9	19.5	44.2	128.1	122.7
Back of Queue	(Q), ve	eh/ln (95 th percentile)	1.9	1	.5	2.2	1.1	1.3	3	1.3	2.4	11.2	0.8	1.8	5.1	4.9
Queue Storage	Ratio (RQ) (95 th percentile)	0.00	0.	.00	0.00	0.00	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh	12.7	· 1(0.9	11.3	12.2	10	.8	10.9	17.7	14.9	10.7	23.9	12.4	12.4
Incremental De	lay (d 2), s/veh	0.7	0	.4	0.7	0.4	0.	3	0.4	0.2	3.6	0.0	0.3	0.1	0.1
Initial Queue De	elay (d	3), s/veh	0.0	0	.0	0.0	0.0	0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh	13.4	. 11	1.3	12.0	12.5	11.	.1	11.3	17.9	18.6	10.7	24.1	12.5	12.6
Level of Service	e (LOS)		В		В	В	В	В	;	В	В	В	В	С	В	В
Approach Delay	, s/veh	/LOS	12	.2		В	11.6	;	-	В	17.9)	В	13.8	3	В
Intersection Del	lay, s/ve	h / LOS				14	.8							B		
Multimodal Re	sults			E	ΞB			W	Β			NB			SB	
Pedestrian LOS	Score	/LOS	2.	28		В	2.11			В	2.11		В	2.28	3	В
Bicycle LOS Sc	ore / LC	DS	1.	28		А	0.69)		А	1.76	6	В	1.08	3	А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

		-	- 5							-	,				
General Inform	nation								Interse	ction Inf	ormatio	on		*	× l <u>x</u>
Agency		Linscott. Law & Gre	enspan	. Engine	ers				Duratio	n. h	0.250			444	
Analyst		JAS		Analys	sis Date	e Aua 1	3. 2020		Area Tv	pe	Other		 		<i>د</i>
Jurisdiction		City of Los Angeles		Time F	Period	Existir	ng with		PHF		0.96			w‡e s	↓ ↓ ↓
Linkan Otreat				Analys		Projec	ct - AM		Analysi	Devied	1> 0.	4 5			र २
		Glencoe Avenue			as rea	2020	Eviati		Analysis		12 0.	15		ግ ተ ሰ	
Intersection	4°	Giencoe/Maxella		File Na	ame	UGAIVI	- Existi	ng wi	in Projec	L.XUS			- "	A ↑ 47 Y 1	× (*
Project Descrip	tion	Paseo Marina													
Demand Inform	nation				FB			W	/B		NB			SB	
Approach Move	ment				Т	R	1 1	-	T R		Т	R	1 1	Т	R
Demand (v) , v	eh/h			126	106	143	65	8	6 83	116	597	56	73	552	84
Signal Informa	tion					215							<u>A</u>		\mathbf{L}
Cycle, s	60.0	Reference Phase	2		i 😫 🧯	 ∿∆⊘	7								(T)
Offset, s	0	Reference Point	End	Green	24.8	24.9	0.0	0	0 00	0.0		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.	0.0	0.0	_		A		512
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.	0 0.0	0.0		5	Y 6	7	8
							_								
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phase	e					6		_	2			8			4
Case Number					\rightarrow	5.0			6.0			5.0			6.0
Phase Duration	, S		s H), s			30.0		_	30.0	<u> </u>		30.0		_	30.0
Change Period,	(Y+R)	c), S	s H), s			5.2		_	5.2			5.1			5.1
Max Allow Head	dway(<i>N</i>	ИАН), s	s H), s g s), s			0.0		\rightarrow	0.0		_	3.4	<u> </u>		3.4
Queue Clearan	ce lime	(gs), s				0.0	<u> </u>	\rightarrow	0.0			19.1			24.4
Green Extensio	n nme	(ge), s				0.0		\rightarrow	0.0	-		2.5		_	0.3
Max Out Brobal	bility							-				0.67			1.00
	onity											0.07			1.00
Movement Gro	oup Res	ults			EB			W	3		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	4	14
Adjusted Flow F	Rate (<i>v</i>), veh/h		131	110	149	68	90	86	121	622	58	76	338	324
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1228	1900	1610	1303	190	0 1610	785	1900	1610	815	1900	1812
Queue Service	Time (g	g s), s		4.5	2.2	3.6	2.0	1.7	7 2.0	7.8	17.1	1.3	5.4	7.6	7.6
Cycle Queue C	learance	e Time (<i>g c</i>), s		6.5	2.2	3.6	4.2	1.7	7 2.0	15.4	17.1	1.3	22.4	7.6	7.6
Green Ratio (g	/C)			0.41	0.41	0.41	0.41	0.4	1 0.41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	/eh/h			587	785	666	611	78	5 666	346	789	668	226	789	752
Volume-to-Capa	acity Ra	itio (X)		0.224	0.141	0.224	0.111	0.11	4 0.130	0.350	0.789	0.087	0.336	0.429	0.431
Back of Queue	(Q), ft/	In (95 th percentile)		57.2	41.1	59	27.6	32.	9 32.5	60.2	304.6	19.5	45.5	132.9	127.4
Back of Queue	(Q), Ve	eh/In (95 th percenti	le)	2.3	1.6	2.4	1.1	1.3	3 1.3	2.4	12.2	0.8	1.8	5.3	5.1
		KQ) (95 in percent	lie)	0.00	11.0	11.4	12.2	10	0 0.00	19.00	15.2	10.00	0.00	12.5	12.5
Incremental Delay	$(u_1), s_1$			0.0	0.4	0.8	0.4		8 0.4	0.2	5.0	0.0	25.0	0.1	12.5
Initial Queue De	ay (uz), s/ven		0.9	0.4	0.0	0.4	0.0	0.4	0.2	0.0	0.0	0.0	0.1	0.1
Control Delay (d) elve	-h		13.8	11 3	12.2	12.6	11	, 0.0 1 11 3	18.2	20.2	10.7	25.3	12.6	12.6
Level of Service			_	R	R	R	R	R	R	R	<u> </u>	B	20.0 C.	R	R
Approach Delay	(_00)	/105		12 5		B	11 6		B	19		B	13 0)	B
Intersection Del	av. s/ve	h / LOS		12.0		15	5.4		5	10.	_		B		5
	., e, te														
Multimodal Re	sults				EB			W	3		NB			SB	
Pedestrian LOS	Score	/LOS		2.28	3	В	2.11		В	2.1	1	В	2.28	3	В
Bicycle LOS Sc	ore / LC	DS		1.13	3	А	0.69)	А	1.8	1	В	1.10)	А

			- 3									,				
General Inform	nation								Inte	ersect	ion Info	ormatio	on		*	بد لي
Agency		Linscott, Law & Greens	span	Engine	ers				Du	ration.	h	0.250			444	
Analyst		JAS		Analys	is Dat	e Aug 1	3 2020		Are	a Typ	 е	Other		 		ار ک
Jurisdiction		City of Los Angeles		Time F	Period	Future	e, <u>e</u> e <u>e</u>		PH	IF	-	0.96		→ <u>_</u> * + →	w‡e	▲↓ ↓
Urban Street		Glencoe Avenue		Analys	is Yea	r 2026	,		Ana	alvsis I	Period	1> 8	15	* *		+ *
Intersection		Glencoe/Maxella		File Na	me	06AM	- Future			aryoro		. 0.			K # 2	<u>~</u>
Project Descript	tion	Paseo Marina		1 110 110		00/ 11	- duar	5.77610						5	 1 (나라 1 (1 (1 (1 (1 (1 (1 (1 (1 (1	× (*
r reject becomp																
Demand Inform	nation				EB			٧	VB		Γ	NB			SB	
Approach Move	ement			L	Т	R	L	T ·	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			126	116	160	69	Ę	93	90	124	620	59	79	586	98
											<u> </u>					
Signal Informa	tion													Ð-		\mathbf{L}
Cycle, s	60.0	Reference Phase	2		Ħ'	് ഉഹ	7						1	2	3	4
Offset, s	0	Reference Point E	nd	Green	24.8	24.9	0.0	0.	.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	Dn	Yellow	3.6	3.6	0.0	0.	.0	0.0	0.0			<u> </u>		√
Force Mode	Fixed	Simult. Gap N/S	Dn	Red	1.6	1.5	0.0	0.	.0	0.0	0.0		5	6	7	8
												_			_	
Timer Results				EBL	· -	EBT	WB		W	/BT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	9		_		_	6		\rightarrow	2	2		\rightarrow	8			4
Case Number			_			5.0		_	6	5.0			5.0			6.0
Phase Duration	, S		_		_	30.0		_	30	0.0			30.0			30.0
Change Period,	(Y+R)	c), S				5.2		_	5	0.2			5.1			5.1
Max Allow Head	dway(A	<i>ИАН</i>), s	_		_	0.0		_	0	0.0			3.5			3.5
Queue Clearan		(gs), s			_			\rightarrow					20.1	<u> </u>		26.2
Green Extensio	n lime	(ge), s	e), S		_	0.0		-	0	0.0			2.3	<u> </u>	_	0.0
Phase Call Pro	Dability	1 e), S						_		_			1.00			1.00
Max Out Probal	bility												0.82			1.00
Movement Gro	oup Res	ults			EB	_		W	В	_		NB			SB	
Approach Move	ement			L	T	R	L	Т	- -	R	L	T	R	L	T	R
Assigned Move	ment			1	6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		131	121	167	72	97	7	94	129	646	61	82	365	348
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/ln		1211	1900	1610	1291	190	00 ·	1610	749	1900	1610	797	1900	1805
Queue Service	Time (g	7 s), S		4.5	2.4	4.1	2.2	1.9	9	2.2	9.1	18.1	1.4	6.1	8.3	8.4
Cycle Queue C	learance	e Time (g c), s		6.7	2.4	4.1	4.6	1.9	9	2.2	17.4	18.1	1.4	24.2	8.3	8.4
Green Ratio (g	/C)			0.41	0.41	0.41	0.41	0.4	1	0.41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	/eh/h			577	785	666	602	78	5	666	326	789	668	211	789	749
Volume-to-Capa	acity Ra	tio (X)		0.228	0.154	0.250	0.119	0.12	23 0	0.141	0.396	0.819	0.092	0.391	0.463	0.464
Back of Queue	(Q), ft/	In (95 th percentile)		57.6	45.3	66.9	29.6	35.	.7	35.4	67.2	327	20.6	51.1	145.6	139.3
Back of Queue	(Q), ve	eh/In (95 th percentile)		2.3	1.8	2.7	1.2	1.4	4	1.4	2.7	13.1	0.8	2.0	5.8	5.6
Queue Storage	Ratio (RQ) (95 th percentile)		0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		13.1	11.0	11.5	12.5	10.	.9	11.0	19.0	15.6	10.7	26.3	12.7	12.7
Incremental De	lay (d 2), s/veh		0.9	0.4	0.9	0.4	0.3	3	0.4	0.3	6.4	0.0	0.4	0.2	0.2
Initial Queue De	elay (d	₃), s/veh		0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		14.0	11.4	12.4	12.9	11.	.2	11.4	19.3	21.9	10.7	26.7	12.9	12.9
Level of Service	e (LOS)			В	В	В	В	В		В	В	С	В	С	В	В
Approach Delay	, s/veh	/LOS		12.6		В	11.7	7	Ē	В	20.7	·	С	14.3	;	В
Intersection Del	lay, s/ve	h / LOS				16	6.0							B		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/ LOS		2.28		В	2.11		E	В	2.11		В	2.28		В
Bicycle LOS Sc	ore / LC)S		1.18		А	0.70)	ŀ	A	1.87		В	1.14		А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

		_	J									,				
General Inform	nation								Inter	rsect	ion Infe	ormatio	on	2	4741	4 L <u>4</u>
Agency		Linscott. Law & Gre	enspan	. Engine	eers				Dura	ation.	h	0.250			444	
Analyst		JAS		Analys	sis Date	e Aua 1	3. 2020		Area		e	Other		 		<i>د</i> 4
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PHF	:		0.96		\Rightarrow \rightarrow	w∱e	
		, ,				Projec	ct - AM		<u> </u>			<u> </u>				
Urban Street		Glencoe Avenue		Analys	sis Yea	r 2026			Anal	lysis l	Period	1> 8:	15		ካተr	
Intersection		Glencoe/Maxella		File Na	ame	06AM	- Future	e with	n Proje	ect.xu	JS			5	1 1 4 Y 1	* /*
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				FB			١٨	/B			NB			SB	
Approach Move	ment				Т	R	1	-	т	R	1	T	R	1 1	Т	R
Demand (v) v	eh/h			144	122	168	69	0	96	90	124	648	59	79	605	98
	011/11				TEE	100	00			00	121	010	00	10	000	00
Signal Informa	tion						Γ							<u> </u>		I
Cycle, s	60.0	Reference Phase	2			- 5	2								•	Φ
Offset, s	0	Reference Point	End	Green	24.8	24 9	1		0	0.0	0.0	_	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.	0	0.0	0.0			x		512
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.	0	0.0	0.0		5	Y 6	7	8
							_								_	
Timer Results				EBL	-	EBT	WB	L	WB	3T	NBL	-	NBT	SBL	-	SBT
Assigned Phase	e					6		_	2				8			4
Case Number						5.0			6.0	0			5.0			6.0
Phase Duration	, S					30.0		_	30.0	.0		_	30.0		_	30.0
Change Period,	, (Y+R)	c), S				5.2			5.2	2			5.1			5.1
Max Allow Head	dway(/	MAH), s				0.0		_	0.0	0			3.5			3.5
Queue Clearan		e (gs), s					<u> </u>	_		_			21.3	<u> </u>		26.9
Green Extensio		(ge), s		<u> </u>		0.0	<u> </u>	\rightarrow	0.0	0			1.9			0.0
Phase Call Pro								\rightarrow		_			1.00			1.00
Max Out Proba	biiity												0.99			1.00
Movement Gro	oup Res	ults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т	I	R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2	1	12	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		150	127	175	72	100	0 9	94	129	675	61	82	375	358
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1208	1900	1610	1283	190	0 16	610	735	1900	1610	776	1900	1807
Queue Service	Time (g	g s), S		5.3	2.5	4.3	2.2	2.0) 2	2.2	9.3	19.3	1.4	5.6	8.6	8.7
Cycle Queue C	learanc	e Time (<i>g c</i>), s		7.5	2.5	4.3	4.8	2.0) 2	2.2	18.0	19.3	1.4	24.9	8.6	8.7
Green Ratio (g	/C)			0.41	0.41	0.41	0.41	0.4	1 0.).41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	/eh/h			575	785	666	597	78	5 6	666	319	789	668	192	789	750
Volume-to-Capa	acity Ra	itio(X)		0.261	0.162	0.263	0.120	0.12	27 0.´	.141	0.405	0.856	0.092	0.429	0.475	0.477
Back of Queue	(Q), ft/	In (95 th percentile)		67.3	47.9	70.8	29.9	37	35	85.5	68.1	359.7	20.6	53	150.6	144.2
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.7	1.9	2.8	1.2	1.5	5 1	1.4	2.7	14.4	0.8	2.1	6.0	5.8
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		13.3	11.1	11.6	12.6	10.	9 11	1.0	19.4	15.9	10.7	27.6	12.8	12.8
Incremental De	lay (<i>d</i> 2), s/veh		1.1	0.4	1.0	0.4	0.3	3 0	0.4	0.3	8.8	0.0	0.6	0.2	0.2
Initial Queue De	elay (d	3), s/veh		0.0	0.0	0.0	0.0	0.0) 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (a), s/ve	en		14.4	11.5	12.5	13.0	11.	2 11	1.4 D	19.7	24.7	10.7	28.1	13.0	13.0
Level of Service	e (LUS)	/1.00		B	В	L R	В			в	В		В	C AA F	B	В
Approach Delay	y, s/ven	100		12.9)	B 47	11.8		В	·	23.0		U	14.5 D		В
mersection De	iay, S/VE	m / LU3					J.Ə									
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	S Score	/LOS		2.28	3	В	2.11		В		2.11		В	2.28		В
Bicycle LOS Sc	ore / LC	DS		1.23	3	А	0.71		А		1.92	2	В	1.16	;	А

			9						und (,				
General Inform	nation								Inf	torsact	tion Inf	ormati	n	T	4 7 4 1 1	به لي
	lation	Linscott Law & Green	enan	Engine	oore					uration	b	0 250			414	
Apolyot			ispan				2 2020		Δr		<u></u>	Othou		1		<u>گ</u>
Analyst				Times		E Aug I	3, 2020			чатур	e			→×	w1∈	→ <mark>→</mark>
Jurisdiction				Analyse			ig - Pivi				Dariad	1 10.94				¥
Urban Street		Giencoe Avenue		Analys	sis rea	IF 2020	E. J. Al		An	alysis	Period	1> 10	:45			к. К.
		Giencoe/Maxella		File Na	ame	06PM	- Existi	ng.xı	us					_	ጎተሰ	- 4
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			144	141	185	96	1	52	100	125	354	72	47	693	117
Signal Informa	tion							Τ						<u> </u>		
Cycle, s	60.0	Reference Phase	2	1		- 54	2								 	Φ
Offset, s	0	Reference Point	End	Croop		24.0	100		0	0.0		_	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.	.0	0.0	0.0	_		X		st2
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.	.0	0.0	0.0		5	F 6	7	8
Timer Results				EBL	-	EBT	WB	L	V	VBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	э					6				2			8			4
Case Number						5.0			6	6.0			5.0			6.0
Phase Duration	, S					30.0			3	0.0			30.0			30.0
Change Period	(Y+R	c), S				5.2			5	5.2			5.1			5.1
Max Allow Head	dway (<i>I</i>	/АН), s				0.0			(0.0			3.5			3.5
Queue Clearan	ce Time	(g s), s	g s), S I e), S										24.4			12.9
Green Extensio	n Time	(ge), s	e), S			0.0			(0.0			0.3			3.5
Phase Call Pro	bability		e), S										1.00			1.00
Max Out Proba	bility												1.00			0.24
			te													
Movement Gro	oup Res	ults			EB			W	'B			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		153	150	197	102	13	9	129	133	377	77	50	442	420
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/ln		1129	1900	1610	1257	190	00	1655	652	1900	1610	1022	1900	1804
Queue Service	Time (g	ys), S		6.0	3.0	4.9	3.4	2.	8	3.0	11.7	8.7	1.8	2.3	10.6	10.6
Cycle Queue C	learanc	e Time (<i>g c</i>), s		9.0	3.0	4.9	6.4	2.	8	3.0	22.4	8.7	1.8	10.9	10.6	10.6
Green Ratio (g	/C)			0.41	0.41	0.41	0.41	0.4	11	0.41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	eh/h			530	785	666	576	78	5	684	275	789	668	396	789	749
Volume-to-Capa	acity Ra	tio (X)		0.289	0.19	0.296	0.177	0.1	76	0.189	0.484	0.478	0.115	0.126	0.560	0.561
Back of Queue	(Q), ft/	In (95 th percentile)		72.3	57.2	81	44.7	52	.6	50.1	77.2	151.8	25.9	22.7	189.4	180.2
Back of Queue	(Q), Ve	eh/ln (95 th percentile))	2.9	2.3	3.2	1.8	2.	1	2.0	3.1	6.1	1.0	0.9	7.6	7.2
Queue Storage	Ratio (RQ) (95 th percentile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((01), S	ven	_	14.1	11.2	11.8	13.2	11.	.1	11.2	21.9	12.8	10.8	16.8	13.4	13.4
	iay (a 2), s/ven		1.4	0.5	1.1	0.7	0.	5	0.6	0.5	0.2	0.0	0.1	0.6	0.6
	elay (d	3), S/Ven		0.0	0.0	0.0	0.0	0.	U C	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (a), s/ve	en		15.4	11.8	12.9	13.9	11.	.6	11.8	22.4	13.0	10.8	16.8	13.9	14.0
Level of Service	e (LUS)	11.00		В	В		B	L B	5	В	C	В	В	В	В	В
Approach Delay	/, s/veh	105		13.3	5	В	12.3	5		В	14.8	5	В	14.1		В
Intersection De	ay, s/ve	n / LOS				1:	3.8							В		
Multimodal Po	sulte				EP			10/	'B			NR			SR	
Pedestrian LOS	Score	/105		2.25	20	B	2 11		0	B	2 11		B	2.29		B
Bicycle I OS Sc	ore / I C)S		1.31		A	0.70	,		A	1 45	;	A	1 24	_	A
		-					5.10	-		· ·						

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

Intersection Intersectintersectinterintersection Intersection Intersection Intersectio				J								-	,				
Agency Luncolt, Law & Greenspan. Engineers Duration. In 0.200 Analysid JAS Analysis Date kurg 13, 2020 Area Type Other Other Jurisdiction City of Los Angeles Time Period Exclurg with Project 2:exclurg PHF 0.019 I<>10:16:15: I	General Inform	nation								Inte	ersect	ion Infe	ormatio	on	2	444,	به لي
Analysis JAS Analysis Date Aug 13, 220 Area Type Other Other <thother< th=""> <thother< th=""> <thother< td=""><td>Agency</td><td></td><td>Linscott. Law & Gre</td><td>enspan</td><td>. Engine</td><td>eers</td><td></td><td></td><td></td><td>Dura</td><td>ation.</td><td>h</td><td>0.250</td><td></td><td></td><td>4</td><td></td></thother<></thother<></thother<>	Agency		Linscott. Law & Gre	enspan	. Engine	eers				Dura	ation.	h	0.250			4	
Jurisdiction Oky of Los Angeles Time Period Existing with Project Destription PHF 0.94 Image Period 1>16.45 Unan Street Glencoe Avenue Analysis Year 2020 Analysis Period 1>16.45 Image Period 1>16.45 Project Destription Pase Marina Image Period 1>16.45 Image Period 1>16.45 Image Period 1>16.45 Approach Movement L T R L T	Analyst		JAS		Analys	sis Date	e Aua 1	3, 2020		Area	a Type	e	Other		 		₹
Internation Glencoe Avenue Analysis Vera Analysis	Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng with		PHF	F	-	0.94		ראיץ ק † [ז	w ^N ∉ E	↓ ↓ ↓
Intersection Demone/Maxelia File Name 06PM - Existing with Project.vus Demone/Maxelia	Urban Street		Glencoe Avenue		Analys	sis Year	· 2020	л - Pivi		Ana	alysis	Period	1> 16	:45	- 12	5 4 2	1
Project Description Passeo Marina VI R L T R L R L R L R L R L R L R L R R R R R R R R R R R R R R R R R R R	Intersection		Glencoe/Maxella		File Na	ame	06PM	- Existi	ng wi	th Pro	oject.	xus				- 	۳) ۲
Demand Information L T R	Project Descrip	tion	Paseo Marina								-				1 7		
Demand InformationEBWBIITRLT			•														
Approach Movement L T R <thl< th=""> <thl< th=""> <tht< th=""></tht<></thl<></thl<>	Demand Inform	nation				EB		\vdash	N	/B			NB			SB	
Demand (\u01et), veh/h 143 140 143 140 155 100 125 352 72 47 71.2 117 Signal Information Cycle, s 0.0 Reference Phase Green 24.8 24.9 0.0<	Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Signal information Cycle, s 60.0 Reference Plant Croce Croce Reference Plant Status	Demand (<i>v</i>), v	eh/h			143	140	185	96	1	55	100	125	352	72	47	712	117
Cycle. s 0 Reference Phase 2 Offset. s 0 Reference Pinte End 0	Signal Informa	tion					"	Γ			Γ				ĸ		
Offset O Reference Point End Green 24.8 24.9 0.0	Cycle s	60.0	Reference Phase	2			242									1	<u> </u>
Number Construint	Offset s	0	Reference Point	- End			<u> </u>							1	2	3	4
Proce Mode Fixed Simult. Gap NS On Red 1.5 1.5 0.0	Uncoordinated	No	Simult, Gap F/W	On	Green	24.8	24.9	0.0	0.	0	0.0	0.0	-		_		-+-
Timer Results EBL EBT WBL WBT NBL NBT SBL SBT Assigned Phase - 60 - 2 - 8 - 4 Case Number - 5.0 6.0 - 5.0 6.0 - 30.0 Change Period (Y+R c).s - 5.2 - 5.1 - 5.1 Green Extension Time (g e).s - 0.0 0.0 0.0 3.5 - 3.6 Phase Call Probability - - 0.0 0.0 0.0 0.0 - 2.5 Movement Group Results - - - - 1.00 - 2.5 Assigned Movement 1 6 16 5 2 1.00 - 2.5 Assigned Movement 1 6 16 5 2 1.00 - 2.5 Assigned Movement 1 6 16 5 12 13 3.7 7 5 4 14 Adjusted Flow Rate (v), veh/h 152	Force Mode	Fixed	Simult, Gap N/S	On	Red	1.6	1.5	0.0	0.	0	0.0	0.0	_	5	€₀	7	Y.
Timer ResultsEBLEBLEBFWBLWBTNBLNBTSBLSBTAsigned PhaseCase Number $$ 5.0 $$ 6.0 $$ 8.0 $$ 8.0 $$ 8.0 $$ 8.0 $$ 8.0 $$ 8.0 $$ 8.0 $$ 8.0 $$ 8.0 $$ $$ 8.0 $$ $$ $$ $$					<u></u>	1	1.11			- ,			,				
Assigned Phase Image 6 Image 7 8 1mage 4 Case Number Image 5.0 Image 30.0 Image Image 30.0 Image Im	Timer Results				EBI	-	EBT	WB	L	WE	BT	NBL	-	NBT	SBI	-	SBT
Case Number F.0	Assigned Phase	е					6			2	2			8			4
Phase Duration, s Image Paried, (YHR c), s Image Paried, (YHR c)	Case Number						5.0			6.0	0			5.0			6.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Phase Duration	l, S					30.0			30.	.0			30.0			30.0
Max Allow Headway (MAH), s $\end{lemands}$ $\$	Change Period,	, (Y+R	c), S				5.2			5.2	2			5.1			5.1
Queue Clearance Time ($g \circ$), s Image of the section Time (g	Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s				0.0			0.0	0			3.5			3.5
Green Extension Time ($g \circ$), s Image: Ima	Queue Clearan	ce Time	e (g s), s											25.1			13.0
Phase Call Probability Image: Im	Green Extensio	n Time	(g _e), s				0.0			0.0	0			0.0			3.6
Max Out Probability Image: Image	Phase Call Prol	bability												1.00			1.00
Movement Group ResultsImage: Control of the control of	Max Out Proba	bility												1.00			0.25
Involument Group Results L T R R L T R R R<	Movement Cre	un Dee				ГР			\\\/				ND			00	
Approach involvementII	Approach Move	mont	Suits			ED	D	<u> </u>		<u>ь</u>	Б	1		D		ор Т	D
Adjusted flow Rate (v), veh/h 17 190 180 190 180 180 180 190 180	Assigned Move	ment			1	6	16	5	2	+	12	2	8	18	7	1	14
Adjusted Fight ratio (V), forming (V),	Adjusted Flow F	Rate (v) veh/h		152	1/0	107	102	1/1	n 1	12	133	37/	77	50	452	430
Answer of antities (e), rotation (e), solution (figs), s forestime (figs), s forestim (figs), s forestime (figs),	Adjusted Satura	ation Flo), ven/n w Rate (s) veh/h/l	n	1126	1900	1610	1258	190		658	639	1900	1610	1024	1900	1806
Construction of the field of the second	Queue Service	Time ((γ_{s}) s		6.0	3.0	4.9	3.4	28	3 3	3.0	12.1	8.6	18	22	11 0	11 0
Green Ratio (g/C) 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42 0	Cvcle Queue C	learanc	e Time (9.0	3.0	4.9	6.4	2.8	3 3	3.0	23.1	8.6	1.8	10.9	11.0	11.0
Capacity (c), veh/h 529 785 666 577 785 685 269 789 668 398 789 749 Volume-to-Capacity Ratio (X) 0.288 0.190 0.296 0.177 0.179 0.191 0.495 0.475 0.115 0.126 0.573 0.574 Back of Queue (Q), tf/ln (95 th percentile) 72 56.8 81 44.5 53.3 50.7 78.2 150.5 25.9 22.7 194.3 186.5 Back of Queue (Q), veh/ln (95 th percentile) 2.9 2.3 3.2 1.8 2.1 2.0 3.1 6.0 1.0 0.9 7.8 7.55 Queue Storage Ratio (RQ) (95 th percentile) 0.00	Green Ratio (g	/C)			0.41	0.41	0.41	0.41	0.4	1 0	0.41	0.42	0.42	0.42	0.42	0.42	0.42
Volume-to-Capacity Ratio (X)0.2880.1900.2960.1770.1770.1910.4950.4750.1150.1260.5730.574Back of Queue (Q), ft/ln (95 th percentile)7256.88144.553.350.778.2150.525.922.7194.3186.5Back of Queue (Q), veh/ln (95 th percentile)2.92.33.21.82.12.03.16.01.00.97.87.5Queue Storage Ratio (RQ) (95 th percentile)0.000.	Capacity (c), v	/ /eh/h			529	785	666	577	78	5 6	685	269	789	668	398	789	749
Back of Queue (Q), ft/ln (95 th percentile)7256.88144.553.350.778.215.525.922.719.3186.5Back of Queue (Q), veh/ln (95 th percentile)2.92.33.21.82.12.03.16.01.00.97.87.5Queue Storage Ratio (RQ) (95 th percentile)0.00<	Volume-to-Capa	acity Ra	itio(X)		0.288	0.190	0.296	0.177	0.17	79 0.	.191	0.495	0.475	0.115	0.126	0.573	0.574
Back of Queue (Q), veh/ln (95 th percentile)2.92.33.21.82.12.03.1 $\overline{6} \cdot \overline{0}$ 1.0 0.9 $\overline{7} \cdot \overline{3}$ $\overline{7} \cdot \overline{3}$ Queue Storage Ratio (RQ) (95 th percentile)0.00 $\overline{0} \cdot \overline{0}$ 0.00 $\overline{0} \cdot \overline{0}$ <	Back of Queue	(Q), ft	/In (95 th percentile))	72	56.8	81	44.5	53.	35	50.7	78.2	150.5	25.9	22.7	194.3	186.5
Queue Storage Ratio (RQ) (95 th percentile)0.00	Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.9	2.3	3.2	1.8	2.1	1 2	2.0	3.1	6.0	1.0	0.9	7.8	7.5
Uniform Delay (d 1), s/veh14.111.211.813.211.111.222.312.810.816.713.513.5Incremental Delay (d 2), s/veh1.4 0.5 1.1 0.7 0.5 0.6 0.5 0.2 0.0 0.1 0.7 0.7 Initial Queue Delay (d 3), s/veh 0.0 <td>Queue Storage</td> <td>Ratio (</td> <td>RQ) (95 th percent</td> <td>ile)</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.0</td> <td>0 0</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Incremental Delay (d 2), s/veh1.4 0.5 1.1 0.7 0.5 0.6 0.5 0.2 0.0 0.1 0.7 0.7 Initial Queue Delay (d 3), s/veh 0.0 <t< td=""><td>Uniform Delay (</td><td>(d1), s</td><td>/veh</td><td></td><td>14.1</td><td>11.2</td><td>11.8</td><td>13.2</td><td>11.</td><td>1 1</td><td>11.2</td><td>22.3</td><td>12.8</td><td>10.8</td><td>16.7</td><td>13.5</td><td>13.5</td></t<>	Uniform Delay ((d1), s	/veh		14.1	11.2	11.8	13.2	11.	1 1	11.2	22.3	12.8	10.8	16.7	13.5	13.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Incremental De	lay (<i>d</i> 2), s/veh		1.4	0.5	1.1	0.7	0.5	5 (0.6	0.5	0.2	0.0	0.1	0.7	0.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0) (0.0	0.0	0.0	0.0	0.0	0.0	0.0
Level of Service (LOS)BBBBBBCBBBBBBApproach Delay, s/veh / LOS13.3B12.3B14.9B14.3BIntersection Delay, s/veh / LOS 13.3 B 12.3 B 14.9 B 14.3 BIntersection Delay, s/veh / LOS 13.3 B 12.3 B 14.9 B 14.3 B Multimodal Results 2.28 B 2.11 B 2.11 B 2.12 B 2.28 B Pedestrian LOS Score / LOS 2.28 B 2.11 B 2.14 B 2.28 B Bicycle LOS Score / LOS 1.31 A 0.80 A 1.45 A 1.26 A	Control Delay (d), s/ve	əh		15.4	11.7	12.9	13.9	11.	6 1	11.8	22.9	13.0	10.8	16.8	14.1	14.2
Approach Delay, s/veh / LOS13.3B12.3B14.9B14.3BIntersection Delay, s/veh / LOSImage: Strategy of the section Delay, s/veh / LOSImage: Strategy of the section Delay, s/veh / LOSMultimodal ResultsImage: Strategy of the section Delay, s/veh / LOSImage: Strategy of the section Delay, s/veh / LOSPedestrian LOS Score / LOS2.28B2.11B2.11Bioxide LOS Score / LOS1.31A0.80A1.45A	Level of Service	e (LOS)			В	В	В	В	В		В	С	В	В	В	В	В
Intersection Delay, s/veh / LOS13.9BMultimodal Results $\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}\mathbb{E}$ $\mathbb{E}\mathbb{E}$	Approach Delay	, s/veh	/LOS		13.3	3	В	12.3	3	В	3	14.9		В	14.3	3	В
Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.28 B 2.11 B 2.11 B 2.28 B Bicycle LOS Score / LOS 1.31 A 0.80 A 1.45 A 1.26 A	Intersection De	lay, s/ve	eh / LOS				13	3.9							В		
Multimodal results EB WB NB SB Pedestrian LOS Score / LOS 2.28 B 2.11 B 2.11 B 2.28 B Bicycle LOS Score / LOS 1.31 A 0.80 A 1.45 A 1.26 A	Multimedul	oultr				50			10.0	D			NID			00	
Fedesulari Los Score / LOS 2.20 D 2.11 D 2.11 D 2.20 B Bicycle LOS Score / LOS 1.31 A 0.80 A 1.45 A 1.26 A	Redestrian LOS	Suits	/1.08		2.20		P	0.44		D D	2	0.11	INB	B	2.20	20	B
	Bicycle I OS Sc	ore / I C)S		1.31	,	A	0.80	,	Δ		1 45	;	A	1.20	, }	A

			<u>g</u>								,				
General Inform	nation							Inters	sort	ion Inf	ormatio	n		*	x l <u>x</u>
Agency	lation	Linscott Law & Greensn	an Engir	eers				Durat	tion	h	0 250			414	
Apolyet					to Aug 1	3 2020		Area	Type		Other		_3 _3		<u>ئ</u> ے ا
Jurisdiction		City of Los Angolos	Timo	Doriod		5, 2020			туре	6	0.04		→ <u></u> _*	w↓e	
Jurisaiction		City of Los Angeles	Apoly		r 2026	5 - F IVI		Analy		Poriod	1 16	.45	- ⁴		
Intersection		Glencoe/Maxella	Filo N			Eutur		Analy	515 1	renou	1-10	.45			<u> </u>
Project Descrip	tion		File IN	ame		- Futur	e.xus	•					- 4		× (*
Project Descrip	lion														
Demand Inform	nation			EE	3		V	VB			NB			SB	
Approach Move	ement		L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h		169	16	5 201	102	1	80 1	108	151	393	76	54	762	145
						<u> </u>							<u> </u>	<u> </u>	
Signal Informa	tion				N.	_							Ð−		\mathbf{k}
Cycle, s	60.0	Reference Phase 2		HE -	* ¶ s⊕	2						1	2	3	4
Offset, s	0	Reference Point End	Greer	1 24.8	3 24.9	0.0	0.	.0 0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W On	Yellov	v 3.6	3.6	0.0	0.	.0 0	0.0	0.0			<u>a</u>		N
Force Mode	Fixed	Simult. Gap N/S On	Red	1.6	1.5	0.0	0.	.0 0	0.0	0.0		5	Y 6	7	8
			_	_											
Timer Results			EB		EBT	WB		WBT	r	NBL	-	NBT	SBI	-	SBT
Assigned Phase	e		-		6		_	2	_			8			4
Case Number			-		5.0			6.0				5.0			6.0
Phase Duration	, S				30.0			30.0				30.0			30.0
Change Period	, (Y+R)	c), S			5.2			5.2				5.1			5.1
Max Allow Head	dway(/	<i>ИАН</i>), s			0.0			0.0				3.6			3.6
Queue Clearan	ce Time	(gs), s										26.9			14.7
Green Extensio	n Time	(ge), s			0.0		_	0.0				0.0			3.9
Phase Call Pro	bability											1.00			1.00
Max Out Proba	bility											1.00			0.42
Movement Gro	oup Res	ults	_	FB			W	'B			NB			SB	
Approach Move	ement		1.1	Т	R	1	Т	· R	२	1	Т	R	1	Т	R
Assigned Move	ment		1	6	16	5	2	1	2	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h	180	176	214	109	15	9 14	18	161	418	81	57	496	469
Adjusted Satura	ation Flo	w Rate (s), veh/h/ln	1090	1900	0 1610	1228	190	00 16	67	592	1900	1610	984	1900	1794
Queue Service	Time (g	7 s), S	7.6	3.6	5.4	3.8	3.2	2 3.	.4	12.5	9.9	1.9	2.8	12.4	12.4
Cycle Queue C	learanc	e Time (<i>q</i> c), s	11.1	3.6	5.4	7.3	3.2	2 3.	.4	24.9	9.9	1.9	12.7	12.4	12.4
Green Ratio (g	/C)		0.41	0.41	0.41	0.41	0.4	1 0.4	41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	/ veh/h		508	785	666	554	78	5 68	39	243	789	668	366	789	744
Volume-to-Cap	acity Ra	tio(X)	0.354	0.22	4 0.321	0.196	0.2	02 0.2	14	0.661	0.530	0.121	0.157	0.629	0.629
Back of Queue	(Q), ft/	In (95 th percentile)	90.4	68.3	8 89.5	48.9	61	1 57	'.8	116.9	174.9	27.4	27.4	218	208.9
Back of Queue	(Q), ve	eh/In (95 th percentile)	3.6	2.7	3.6	2.0	2.4	4 2.	.3	4.7	7.0	1.1	1.1	8.7	8.4
Queue Storage	Ratio (RQ) (95 th percentile)	0.00	0.00	0.00	0.00	0.0	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh	14.9	11.4	11.9	13.7	11.	.3 11	.3	25.2	13.2	10.8	17.9	13.9	13.9
Incremental De	lay (<i>d</i> 2), s/veh	1.9	0.7	1.3	0.8	0.0	6 0.	.7	5.2	0.3	0.0	0.1	1.2	1.3
Initial Queue De	elay(d	₃), s/veh	0.0	0.0	0.0	0.0	0.0	0 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh	16.8	12.0) 13.2	14.5	11.	.8 12	2.0	30.5	13.5	10.8	18.0	15.1	15.2
Level of Service	e (LOS)		В	В	В	В	В	E	3	С	В	В	В	В	В
Approach Delay	, s/veh	/LOS	14.	0	В	12.6	3	В		17.3		В	15.3	3	В
Intersection De	lay, s/ve	h / LOS			15	5.1							В		
Multimodal Re	sults			EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS	2.2	8	В	2.11		В		2.11		В	2.28	3	В
Bicycle LOS Sc	ore / LC	DS	1.4	3	А	0.83	3	А		1.58		В	1.33	3	A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

											,				
General Information								Inter	rsect	ion Inf	ormatio	on	2	***	بد لي
Agency	Linscott. Law & Gre	enspan	. Engine	ers				Dura	ation.	h	0.250			444	
Analvst	JAS		Analys	is Date	e Aua 1	3. 2020		Area	a Tvpe	е	Other		 		<i>د</i> 4
Jurisdiction	City of Los Angeles		Time F	Period	Future	e with		PHF	=		0.94		1 + L	W + E	4 ↓ ↓ ↓ ↓
Urban Street	Glencoe Avenue		Analys	sis Year	· 2026			Anal	lysis l	Period	1> 16	:45		5 ተ ፖ	
Intersection	Glencoe/Maxella		File Na	ame	06PM	- Future	e with	n Proje	ect.xı	JS			ň	111 41471	× ا ^م
Project Description	Paseo Marina														
			_	_		_									
Demand Information				EB			N	/B			NB		<u> </u>	SB	
Approach Movement			L	T	R	L		T	R	L	T	R	L	T	R
Demand (v), veh/h			168	164	201	102	18	83	108	151	391	76	54	781	145
Signal Information			<u> </u>			Г							ĸ		
Cvcle. s 60.0	Reference Phase	2			2043 2043								\mathbf{r}	•	<u> </u>
Offset, s 0	Reference Point	End						_				1	2	3	4
Uncoordinated No	Simult, Gap E/W	On	Green	24.8	24.9	0.0	0.	0	0.0	0.0	-				-
Force Mode Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.	0	0.0	0.0	-	5	\$	7	Y
	· ·													L	
Timer Results			EBL	-	EBT	WB	L	WB	3T	NBL	-	NBT	SBL	-	SBT
Assigned Phase					6			2				8			4
Case Number					5.0			6.0	0			5.0			6.0
Phase Duration, s					30.0			30.0	.0			30.0			30.0
Change Period, (Y+R	c), S				5.2			5.2	2			5.1			5.1
Max Allow Headway (A	<i>MAH</i>), s				0.0			0.0	0			3.6			3.6
Queue Clearance Time	(g s), s											26.9			14.8
Green Extension Time	(ge), s				0.0			0.0	0			0.0			4.0
Phase Call Probability												1.00			1.00
Max Out Probability												1.00			0.43
Movement Group Bes	ulte			ER			\٨/٢	D	-					S B	
Approach Movement	Juits			Т	R	1			R	1	Т	R		Т	R
Assigned Movement			1	6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow Rate (v) veh/h		179	174	214	109	16	0 1	149	161	416	81	57	506	479
Adjusted Saturation Flo	ow Rate (s), veh/h/li	n	1087	1900	1610	1229	190	0 16	669	580	1900	1610	986	1900	1796
Queue Service Time (d	7 s). S		7.6	3.6	5.4	3.8	3.2	2 3	3.5	12.1	9.8	1.9	2.8	12.8	12.8
Cycle Queue Clearance	e Time (<i>g</i> c), s		11.1	3.6	5.4	7.3	3.2	2 3	3.5	24.9	9.8	1.9	12.6	12.8	12.8
Green Ratio (g/C)			0.41	0.41	0.41	0.41	0.4	1 0.).41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), veh/h			507	785	666	555	78	56	690	237	789	668	367	789	745
Volume-to-Capacity Ra	tio(X)		0.353	0.222	0.321	0.195	0.20	0.2	.216	0.676	0.528	0.121	0.156	0.642	0.642
Back of Queue (Q), ft/	In (95 th percentile)		89.9	67.7	89.5	48.9	61.	7 58	6.8	119.3	173.3	27.4	27.3	224	214.8
Back of Queue (Q), ve	eh/In (95 th percenti	le)	3.6	2.7	3.6	2.0	2.5	5 2	2.3	4.8	6.9	1.1	1.1	9.0	8.6
Queue Storage Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1), s	/veh		14.9	11.4	11.9	13.7	11.	3 1 [.]	1.3	25.6	13.1	10.8	17.9	14.0	14.0
Incremental Delay (d 2), s/veh		1.9	0.7	1.3	0.8	0.6	3 0	0.7	6.2	0.3	0.0	0.1	1.4	1.5
Initial Queue Delay (d	3), s/veh		0.0	0.0	0.0	0.0	0.0) (0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		16.8	12.0	13.2	14.5	11.	9 12	2.1	31.7	13.5	10.8	17.9	15.4	15.5
Level of Service (LOS)			В	В	B	В	В		В	С	В	В	В	В	В
Approach Delay, s/veh	/LOS		14.0)	В	12.6	6	В		17.6	5	В	15.6		В
Intersection Delay, s/ve	h / LOS				15	5.3							В		
Multimodal Results				FR			\//	B			NR			SR	
Pedestrian LOS Score	/1.05		2.29		B	2 11		R		2 11		В	2.29		В
Bicycle LOS Score / LO)S		1.42	2	A	0.83	3	A		1.57	-	B	1.35	;	A

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastbound Westbound					North	bound		Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											741				733	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

		o control hepoirt	
General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

j.																	
Approach		Eastb	ound			Westb	ound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	1		0	0	0	0	1	2	0	0	0	2	0	
Configuration				R						L	Т				Т	TR	
Volume (veh/h)				51					0	19	769				741	18	
Percent Heavy Vehicles (%)				3					3	3							
Proportion Time Blocked																	
Percent Grade (%)		()														
Right Turn Channelized		N	о														
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)				6.9						4.1							
Critical Headway (sec)				6.96						4.16							
Base Follow-Up Headway (sec)				3.3						2.2							
Follow-Up Headway (sec)				3.33						2.23							
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)				55						21							
Capacity, c (veh/h)				586						795							
v/c Ratio				0.09						0.03							
95% Queue Length, Q ₉₅ (veh)				0.3						0.1							
Control Delay (s/veh)				11.8						9.7							
Level of Service (LOS)				В						А							
Approach Delay (s/veh)		11	.8						0.2								
Approach LOS		E	3														

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastbound Westbound					North	bound		Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											804				815	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

,																	
Approach		Eastb	ound			West	ound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	1		0	0	0	0	1	2	0	0	0	2	0	
Configuration				R						L	Т				Т	TR	
Volume (veh/h)				51					0	19	832				823	18	
Percent Heavy Vehicles (%)				3					3	3							
Proportion Time Blocked																	
Percent Grade (%)		()														
Right Turn Channelized		N	0														
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)				6.9						4.1							
Critical Headway (sec)				6.96						4.16							
Base Follow-Up Headway (sec)				3.3						2.2							
Follow-Up Headway (sec)				3.33						2.23							
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)				55						21							
Capacity, c (veh/h)				548						735							
v/c Ratio				0.10						0.03							
95% Queue Length, Q ₉₅ (veh)				0.3						0.1							
Control Delay (s/veh)				12.3						10.0							
Level of Service (LOS)				В						В							
Approach Delay (s/veh)		12	2.3						0.2								
Approach LOS		E	3														

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											551				974	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

		e control hepoirt	
General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

,-											-						
Approach		Eastb	ound			Westb	ound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	1		0	0	0	0	1	2	0	0	0	2	0	
Configuration				R						L	Т				Т	TR	
Volume (veh/h)				34					0	34	549				945	32	
Percent Heavy Vehicles (%)				3					3	3							
Proportion Time Blocked																	
Percent Grade (%)		()														
Right Turn Channelized		N	0														
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)				6.9						4.1							
Critical Headway (sec)				6.96						4.16							
Base Follow-Up Headway (sec)				3.3						2.2							
Follow-Up Headway (sec)				3.33						2.23							
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)				37						37							
Capacity, c (veh/h)				490						646							
v/c Ratio				0.08						0.06							
95% Queue Length, Q ₉₅ (veh)				0.2						0.2							
Control Delay (s/veh)				12.9						10.9							
Level of Service (LOS)				В						В							
Approach Delay (s/veh)		12	2.9						0.6								
Approach LOS		I	3														

		e control hepoirt	
General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			West	ound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0	
Configuration											Т				Т		
Volume (veh/h)											620				1065		
Percent Heavy Vehicles (%)																	
Proportion Time Blocked																	
Percent Grade (%)																	
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)																	
Critical Headway (sec)																	
Base Follow-Up Headway (sec)																	
Follow-Up Headway (sec)																	
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)																	
Capacity, c (veh/h)																	
v/c Ratio																	
95% Queue Length, Q ₉₅ (veh)																	
Control Delay (s/veh)																	
Level of Service (LOS)																	
Approach Delay (s/veh)																	
Approach LOS																	

	11037 1100 1103 510	o control hepoirt	
General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

· · · · · · · · · · · · · · · · · · ·	,															
Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	1		0	0	0	0	1	2	0	0	0	2	0
Configuration				R						L	Т				Т	TR
Volume (veh/h)				34					0	34	618				1036	32
Percent Heavy Vehicles (%)				3					3	3						
Proportion Time Blocked																
Percent Grade (%)		()													
Right Turn Channelized		N	о													
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)				6.9						4.1						
Critical Headway (sec)				6.96						4.16						
Base Follow-Up Headway (sec)				3.3						2.2						
Follow-Up Headway (sec)				3.33						2.23						
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)				37						37						
Capacity, c (veh/h)				455						592						
v/c Ratio				0.08						0.06						
95% Queue Length, Q ₉₅ (veh)				0.3						0.2						
Control Delay (s/veh)				13.6						11.5						
Level of Service (LOS)				В						В						
Approach Delay (s/veh)		13	8.6							0.	.6					
Approach LOS		E	3													

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

	J															
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		13		6		10		10	0	14	718	3	0	3	714	16
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(C			(C									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			21				22			15				3		
Capacity, c (veh/h)			175				219			817				824		
v/c Ratio			0.12				0.10			0.02				0.00		
95% Queue Length, Q_{95} (veh)			0.4				0.3			0.1				0.0		
Control Delay (s/veh)			28.3				23.2			9.5				9.4		
Level of Service (LOS)			D				С			А				А		
Approach Delay (s/veh)		28	3.3			23	3.2			0.	.2			0	.0	
Approach LOS		[)			(C									

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			Westk	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		41		27		10		10	0	18	734	3	0	3	766	26
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(C			()									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			74				22			20				3		
Capacity, c (veh/h)			168				195			770				811		
v/c Ratio			0.44				0.11			0.03				0.00		
95% Queue Length, Q ₉₅ (veh)			2.0				0.4			0.1				0.0		
Control Delay (s/veh)			42.3				25.8			9.8				9.5		
Level of Service (LOS)			E				D			А				А		
Approach Delay (s/veh)		42	2.3			25	5.8			0.	2			0	.0	
Approach LOS			E			[)									

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			West	oound			North	oound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		14		6		11		11	0	15	779	3	0	3	795	17
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(0			(C									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			22				24			16				3		
Capacity, c (veh/h)			140				185			756				778		
v/c Ratio			0.15				0.13			0.02				0.00		
95% Queue Length, Q ₉₅ (veh)			0.5				0.4			0.1				0.0		
Control Delay (s/veh)			35.3				27.3			9.9				9.6		
Level of Service (LOS)			E				D			А				А		
Approach Delay (s/veh)		35	5.3			27	7.3			0.	2			0	.0	
Approach LOS		I	E			[)									

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

	J															
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		42		27		11		11	0	19	795	3	0	3	847	27
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		()			()									
Right Turn Channelized																
Median Type Storage				Undiv	vided											
Critical and Follow-up He	adway	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			75				24			21				3		
Capacity, c (veh/h)			136				163			712				766		
v/c Ratio			0.55				0.15			0.03				0.00		
95% Queue Length, Q_{95} (veh)			2.7				0.5			0.1				0.0		
Control Delay (s/veh)			59.8				30.8			10.2				9.7		
Level of Service (LOS)			F				D			В				А		
Approach Delay (s/veh)		59	9.8			30).8			0.	2			0	.0	
Approach LOS		I	-			[)									

		псэ	/ Sig	nanze	ume	FISEC		lesu	115 31		ar y	/			_	
	_													T		T
General Inform	nation	C							Interse	ection	Info	ormatic	on	- 6	4 4 4 + + + + + + + + + + + + + + + + +	× 1, <u>x</u>
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duratio	n, h		0.250				۴_
Analyst		JAS		Analys	is Date	Oct 7,	2020		Area T	уре		Other		<u>⊅</u> →		<u>∧</u> 2-
Jurisdiction		City of Los Angeles		Time F	Period	Future	with		PHF			0.92		**	w ‡ e €	
						Projec	t - AM							الا 14		* ~
Lirban Stroot		Cloncoo Avonuo		Analys	ie Voor	2026	vemen	.5)	Analys	ic Dori	od	1 > 7./	15		514	
Interportion			/ Dun/	File Ne		2020	Eutur	- with	Droigot		ou	1 > 1.4	-J	- 1	* 1 ******	* /*
Draiget Deserin	tion	Beene Marine	/ Dwy	File Na	ame	UOAIVI	- Future		FIOJECI	(impr	over	nems).	xus	-		
Project Descrip	lion	Paseo Marina														
Demand Inform	nation				FB			W	B			NB		T	SB	
Approach Move	ement				Т	R	1.1	ТТ	· F		1	Т	R	1 1	Т	R
Demand (v) v	eh/h			42	0	27	11) 1	1	19	795	3	3	847	27
Bolhana (V), V	011/11			12	Ū	21			, , ,		10	100		Ū	UII	21
Signal Informa	tion				JE.	5	_									
Cycle, s	90.0	Reference Phase	2	1											_	
Offset, s	0	Reference Point	End			40.7	0.0					_	1	2	3	Y 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	00.0 3.7	3.6	0.0	0.0).U) ()	-		rta		\rightarrow
Force Mode	Fixed	Simult, Gap N/S	On	Red	0.7	1.7	0.0	0.0) 0.).0).0		5		7	8
						1				- 1						
Timer Results	ner Results					EBT	WB	L	WBT		NBL		NBT	SBL		SBT
Assigned Phase				4			8				6			2		
Case Number						8.0		-	8.0				6.0			6.0
Phase Duration	Case Number Phase Duration is				5	25.0			25.0				65 0			65 0
Change Period	(Y+R)	c). S			-	5.3		-	5.3	-			4.4			4.4
Max Allow Hear	dway (/	MAH)s				3.3		-	3.3				0.0			0.0
Queue Clearan	ce Time	$\alpha(\alpha_s)$ s				5.5		-	3.0	-			0.0			0.0
Green Extensio	n Time	(g;),c				0.0			0.0				0.0			0.0
Phase Call Pro	hability	(ge), s				1.00		-	1.00	-		_	0.0			0.0
Max Out Proba	bility			<u> </u>		00		-	0.00	-						
Max Out 100a	onity					5.00			0.00							
Movement Gro	oup Res	ults			EB			WE	}			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R		-	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	1		6	16	5	2	12
Adjusted Flow I	Rate (v), veh/h			75			24	<u> </u>	2	1	434	433	3	478	472
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1510			153	2	60	0	1900	1897	648	1900	1879
Queue Service	Time (g	g s), S			2.2			0.0		1.	4	8.7	8.7	0.2	9.9	9.9
Cycle Queue C	learanc	e Time (q c), s			3.5			1.0		11	.3	8.7	8.7	8.9	9.9	9.9
Green Ratio (g	/C)				0.22			0.22	2	0.6	67	0.67	0.67	0.67	0.67	0.67
Capacity (c), v	/eh/h				395			395	;	41	8	1279	1278	454	1279	1265
Volume-to-Cap	acitv Ra	itio (X)			0.190			0.06	0	0.0	49	0.339	0.339	0.007	0.373	0.373
Back of Queue	(Q), ft/	/In (95 th percentile))		60			18.5	5	8.	9	145.5	145.3	1.3	165.6	163.9
Back of Queue	(Q), ve	eh/ln (95 th percenti	le)		2.4			0.7		0.	4	5.8	5.8	0.1	6.6	6.6
	Ratio (RQ) (95 th percent	tile)		0.00			0.00)	0.0	0	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d_1) s	/veh			28.8			27.8	2	8	a l	6.2	6.2	8.1	6.4	6.4
Incremental De	lav (d o) s/veh			0.1			0.0	·	0.	2	0.7	0.7	0.0	0.4	0.4
Initial Oueue Da			0.1			0.0	-	0.	0	0.0	0.0	0.0	0.0	0.0		
Control Delay (28.8			27 (2	0.	1	6.0	6.0	8.1	73	73		
Level of Service (LOS)					20.0			21.3	,	9.		0.9 A	0.9 A	0.1 A	A 1.5	1.5 A
Approach Delay, s/yeb / LOS				20 0		C	27.0		<u> </u>		7.0	A		A 70	A	
Approach Delay, s/veh / LOS				20.0		0	27.8		U		1.0		А	/.3 ^		A
intersection Delay, s/veh / LOS						8	.∠							H		
Vultimodal Results					FR				3			NR			SR	
Multimodal Results Pedestrian LOS Score / LOS				2 20		B	2.20		R	-	1 72		B	1 70		B
Ricycle I OS So				0.61		Δ	0.53	2	Δ	-	1.72		Δ	1.72		Δ
				0.01		~	0.00	·	Л				~	1.27		~

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		71		32		6		6	0	41	474	10	0	10	913	51
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		()			(C									
Right Turn Channelized																
Median Type Storage				Undiv	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			112				13			45				11		
Capacity, c (veh/h)			126				232			654				1030		
v/c Ratio			0.89				0.06			0.07				0.01		
95% Queue Length, Q_{95} (veh)			5.7				0.2			0.2				0.0		
Control Delay (s/veh)			118.5				21.4			10.9				8.5		
Level of Service (LOS)			F				С			В				А		
Approach Delay (s/veh)		11	8.5			21	1.4			0.	.9			0	.1	
Approach LOS		I	F			(2									

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	9/1/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		69		31		6		6	0	38	498	10	0	10	910	64
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		()			()									
Right Turn Channelized																
Median Type Storage				Undiv	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			109				13			41				11		
Capacity, c (veh/h)			124				227			648				1007		
v/c Ratio			0.88				0.06			0.06				0.01		
95% Queue Length, Q_{95} (veh)			5.5				0.2			0.2				0.0		
Control Delay (s/veh)			116.7				21.9			10.9				8.6		
Level of Service (LOS)			F				С			В				А		
Approach Delay (s/veh)		11	6.7			21	.9			0.	8			0	.1	
Approach LOS		I	F			(2									

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		75		34		6		6	0	44	538	11	0	11	1000	54
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(C			(C									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			118				13			48				12		
Capacity, c (veh/h)			99				188			600				969		
v/c Ratio			1.19				0.07			0.08				0.01		
95% Queue Length, Q ₉₅ (veh)			8.0				0.2			0.3				0.0		
Control Delay (s/veh)			230.9				25.5			11.5				8.8		
Level of Service (LOS)			F				D			В				А		
Approach Delay (s/veh)		23	0.9			25	5.5			0	.9			0	.1	
Approach LOS		I	F			[)									

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		73		33		6		6	0	41	562	11	0	11	997	67
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		()			()									
Right Turn Channelized																
Median Type Storage				Undiv	vided											
Critical and Follow-up He	adway	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			115				13			45				12		
Capacity, c (veh/h)			98				184			594				947		
v/c Ratio			1.18				0.07			0.08				0.01		
95% Queue Length, Q_{95} (veh)			7.7				0.2			0.2				0.0		
Control Delay (s/veh)			227.0				26.1			11.5				8.8		
Level of Service (LOS)			F				D			В				А		
Approach Delay (s/veh)		22	7.0			26	5.1			0.	.8			0	.1	
Approach LOS		I	-			[)									

		псэ	7 Sig	nanze	a me	1360		lesu	its Sui	iiiiai	У				
									• .					ter die Kerdier Ve	
General Inform	nation							\rightarrow	Intersec	tion Inf	ormatic	on		4444	¦≫ l _{sk}
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Duration	, h	0.250		-		R_
Analyst		JAS		Analys	is Date	Oct 7,	2020		Area Typ	e	Other		<u>⊅</u> →		<u>≯</u>
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PHF		0.92		**	w‡e 8	
						Projec	ct - PM	te)					الم 14		*
Lirban Street		Glencoe Avenue		Analys	ie Voar	2026	venien	.3)	Analysis	Period	1> 17	·00		ግተኮ	
Intersection		Glencoe/N Dwy-V/				08PM	- Eutur	a with	Project (I	mprove	mente)	.00 VIIS		াৰ্শ ↑ 💠 পশ 1	* 1
Project Descrip	tion	Paseo Marina	, DWy	The The			- T dtdiv			mprove	monto).	703	-		
T Toject Descrip	lion														
Demand Inform	nation				EB			WE	3		NB		T	SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			73	0	33	6	0	6	41	562	11	11	997	67
								1.							
Signal Informa	tion				14		_								
Cycle, s	90.0	Reference Phase	2		542	i∰ è	- T							_	-
Offset, s	0	Reference Point	End	Green	60.6	19.7	0.0	0.0	0.0	0.0	_		2	3	<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.6	0.0	0.0	0.0	0.0			512		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.7	1.7	0.0	0.0	0.0	0.0		5	6	7	8
				0						0					
Timer Results		EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT		
Assigned Phase				4			8			6			2		
Case Number				8.0			8.0			6.0			6.0		
Phase Duration	, S					25.0			25.0			65.0			65.0
Change Period	, (Y+R)	c), S				5.3			5.3			4.4			4.4
Max Allow Head	dway(A	<i>MAH</i>), s				3.3			3.3			0.0			0.0
Queue Clearan	ce Time	e (g s), s				7.7			2.5						
Green Extensio	n Time	(g _e), s				0.2			0.2			0.0			0.0
Phase Call Pro	bability				·	1.00			1.00						
Max Out Proba	bility				(0.00			0.00						
Movement Gra	un Boo	ulto			ED			\//D			ND			CD.	
Approach Move	mont	ouits			ED	P		T	P	1		P	1	т	P
Approach Move	mont				1	14	2	0	19	1	6	16	5 5	- 1	12
Adjusted Flow F	Rate (v) veh/h		- /	115	14		13	10	1	312	310	12	585	572
Adjusted Satur	tion Ele	y, ven/n	n		1/07			15/1		40/	1000	1887	81/	1000	1857
	Time ((π_{α}) s			1497			0.0		434	5.8	5.8	0.5	13.1	13.1
	learance	$a = Time(a_c) = s$			5.7			0.5		17.3	5.8	5.8	6.3	13.1	13.1
Green Ratio (a	\sqrt{C}	c mic (g c), s	_		0.7			0.0		0.67	0.67	0.67	0.67	0.67	0.67
Capacity (c)	/eh/h				395			397		341	1279	1271	576	1279	1251
Volume-to-Cap	acity Ra	tio (X)			0 291			0.033	3	0 131	0 244	0 244	0.021	0.457	0.457
Back of Queue	(Q) ft/	(In (95 th percentile)			95.1			10	,	23	96.3	95.8	4.2	212 7	209.4
Back of Queue	(Q) ve	eh/In (95 th percenti	le)		3.8			0.4		0.9	3.9	3.8	0.2	8.5	84
	Ratio (RO) (95 th percent	tile)		0.00			0.00		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d_1) s	/veh			29.6		<u> </u>	27.7		11.0	5.7	5.7	7.0	6.9	6.9
Incremental De	lav (d 2) s/veh			0.2		<u> </u>	0.0		0.8	0.5	0.5	0.1	1.2	1.2
Initial Queue De			0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (29.8			27.7		11.8	6.2	6.2	7.0	8.1	8.1		
Level of Service (LOS)					_0.0			C		B	A	A	A	A	A
Approach Delay, s/veh / LOS				29.8		С	27 7		C	66		A	81		A
Intersection Delay, s/ven / LOS				20.0		<u>م</u>	.0		<u> </u>	5.0			A		
intersection Delay, siven / LOG						5							•		
Multimodal Results					EB			WB			NB			SB	
Pedestrian LOS	Pedestrian LOS Score / LOS)	В	2.29)	В	1.72	2	В	1.72	2	В
Bicycle LOS Sc	edestrian LOS Score / LOS icycle LOS Score / LOS				3	А	0.51		А	1.04		А	1.45	5	А

			Ū									,				
General Inform	nation								Inte	ersect	ion Info	ormatio	on		~ ~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	× l <u>a</u>
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Du	ration,	h	0.250		1	4+7	
Analyst		JAS		Analys	is Date	Aug 1	3, 2020		Are	ea Typ	е	Other		4		<u>∼</u>
Jurisdiction		City of Los Angeles		Time F	Period	Existir	ng - AM		PH	IF		0.96		$\Rightarrow - $	w	
Urban Street		Mindanao Way		Analys	is Yea	r 2020	0		Ana	alysis	Period	1> 7:4	45			
Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Existi	ng.xu	JS						545	
Project Descrip	tion	Paseo Marina						<u> </u>							▲ ↑ 4 * 171	× (*
Demand Inform	nation				EB			٧	VB			NB			SB	
Approach Move	ement				Т	R	L		Т	R	L	Т	R		Т	R
Demand (<i>v</i>), v	eh/h			73	138	454	45	2	03	14	429	585	84	8	384	105
Signal Informa	tion					-								K		
		Poforonco Phaso	2			eta.	в							\rightarrow		ት
Offset s	90.0	Reference Point	Z End				7						1	2	3	4
Uncoordinated	No	Simult Gap E/W	On	Green	44.6	34.9	0.0	0.	0	0.0	0.0	_		_		
Eorce Mode	Fixed	Simult. Gap N/S	On	Ped	3.6	3.7	0.0	0.	0	0.0	0.0	-	_	Ð "	7	Y.
T OFCE MODE	TIXCU	olindit. Cap N/C	OII	Ticu	1.0	1.7	0.0	10.	0	0.0	0.0		Ŭ		,	
Timer Results				EBL	_	EBT	WB	L	W	/BT	NBL		NBT	SBI		SBT
Assigned Phase	e					6			2	2			8			4
Case Number						5.0		\neg	6	6.0			6.0			6.0
Phase Duration, s						50.0			50	0.0			40.0			40.0
Change Period, ($Y+Rc$), s						5.4			5	5.4			5.1			5.1
Max Allow Head	dway (<i>I</i>	MAH), s				0.0			0	0.0			3.5			3.5
Queue Clearan	ce Time	e (<i>g</i> s), s											36.9			15.5
Green Extensio	n Time	(ge), s				0.0			0).0			0.0			4.8
Phase Call Pro	bability												1.00			1.00
Max Out Proba	bility												1.00			0.11
Manager		- 14 -		_	ED		_	14/	P	_		ND			00	
Approach Mayo	oup Res	suits			EB	D	1	VV T	в	Р			Р		5B T	Р
Approach Move	mont				6	16		2	+	12	L 2	Q	19		1	<u>к</u>
Adjusted Flow) voh/h		76	111	10	47	2 11	1	12	3	356	2/1	7	4	247
Adjusted Flow I		y, ven/n	n	1172	1000	473	47	100	4)0 /	1957	447 004	1000	1916	760	1000	1760
	Time (/	π_{α}) s		31	37	18.9	1204	20	a	2.9	904 25.9	12 7	12 7	0.8	8.8	9.0
	learance	$g = Time(\alpha_{a}) = s$		63	3.7	18.9	5.6	2.	a	2.0	34.0	12.7	12.7	13.5	8.8	9.0
Green Ratio (e fille (<i>g c</i>), s		0.5	0.50	0.50	0.50	0.5	9 10	0.50	0 39	0.39	0.39	0.39	0.0	9.0 0.39
Capacity (c) y	/O) /eh/h			623	942	798	654	94	2	920	340	737	704	267	737	682
Volume-to-Can	acity Ra	tio (X)		0.122	0 153	0.593	0.072	0.13	21 (0 122	1 313	0 483	0 484	0.031	0.356	0.362
Back of Queue	(Q), ft/	(In (95 th percentile)		42.5	73.6	295.3	25.8	57	7	56.7	892.7	233	225.5	6.1	171.2	161.9
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	1.7	2.9	11.8	1.0	2.3	3	2.3	35.7	9.3	9.0	0.2	6.8	6.5
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh	,	13.9	12.4	16.2	13.9	12.	2	12.2	35.1	20.8	20.8	25.9	19.6	19.6
Incremental De	lay (<i>d</i> 2), s/veh		0.4	0.3	3.2	0.2	0.3	3	0.3	160.4	0.2	0.2	0.0	0.1	0.1
Initial Queue De	elay (d	у), s/veh		0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				14.3	12.7	19.4	14.1	12.	.4	12.5	195.5	20.9	21.0	25.9	19.7	19.7
Level of Service (LOS)				В	В	В	В	В		В	F	С	С	С	В	В
Approach Delay, s/veh / LOS				17.5	5	В	12.7	7	Ē	В	89.2	2	F	19.8		В
Intersection Delay, s/veh / LOS						48	3.7							D		
Multimodal Re	Aultimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		2.30		В	2.30)	E	В	2.13		В	2.30		В
Bicycle LOS So	ore / LC	DS		1.63	5	В	0.71		ŀ	A	1.43		А	0.91		A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

			5								,				
General Inform	nation								Interse	ction In	formati	on	K	*	به اي
Agency	lation	Linscott Law & Gre	ensnan	Engine	opre				Duratio	n h	0 250)		444	
Analyst			enopun		is Date		3 2020			ne	Othe	, r	 		₹
Jurisdiction		City of Los Angeles		Time	Pariod	Evictir	3, 2020			pe	0.06		→ _^ +>	w‡e	▲ ↓ ◆
Junsaletion					enou	Projec	t - AM				0.90				
Urban Street		Mindanao Way		Analys	sis Year	2020			Analys	s Period	1> 7:	45		K & Ł	<u>~</u>
Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Existi	ng wi	th Proje	t.xus				/ /	*) *
Project Descrip	tion	Paseo Marina											1		
		^ 													
Demand Inform	nation				EB			N	/B		NB			SB	
Approach Move	ment			L	Т	R	L		T R	L	Т	R	L	Т	R
Demand (v), v	eh/h			85	146	508	45	2	06 14	442	2 585	84	8	384	110
Cignal Informa	tion			. <u> </u>		- 6 :	Ē		1	_			-	1	
		Reference Dhase	2		1.7 3	213	6						\rightarrow		ተ
Cycle, s	90.0	Reference Priase	Z			- SA	2					1	2	3	4
Uliset, s		Reference Point	Ena	Green	44.6	34.9	0.0	0.	0 0.0	0.0					
Uncoordinated		Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	0 0.0	0.0			A		Ŷ
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	0 0.0	0.0	_	5	Y 6	7	8
Timor Posults		EBI		EBT	W/B		W/BT	NIE		NBT	SBI		SBT		
Accigned Phase			-	6		-	2		<u>"_</u>		30	-	4		
Caso Number				5.0		-	6.0	-		6.0			4		
Bhose Duration				50.0		\rightarrow	50.0			40.0			0.0		
Phase Duration	, s (V D			<u> </u>	_	50.0	<u> </u>	\rightarrow	50.0	-		40.0	<u> </u>		40.0
Change Period,	(Y+R	c), S				5.4		-	5.4			5.1		_	5.1
	iway (7	ИАН), S			_	0.0		\rightarrow	0.0	-	_	3.0		_	3.0
Queue Clearan		e (g s), s			_	0.0	<u> </u>	-	0.0			36.9	<u> </u>		15.5
Green Extensio		(ge), s		<u> </u>	_	0.0		\rightarrow	0.0	-		0.0	<u> </u>	_	4.9
Phase Call Pro	Dability			<u> </u>	_		<u> </u>	-				1.00	<u> </u>		1.00
Max Out Probal	oility											1.00			0.12
Movement Gro	up Res	sults			EB			W	3		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		89	152	529	47	11:	5 114	460	356	341	8	265	249
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1170	1900	1610	1255	190	0 1857	900	1900	1816	760	1900	1755
Queue Service	Time (d	q s), S		4.0	4.0	22.2	1.9	2.9	3.0	25.8	12.7	12.7	0.8	8.9	9.1
Cycle Queue C	learanc	e Time (g c), s		6.9	4.0	22.2	5.9	2.9	3.0	34.9	12.7	12.7	13.5	8.9	9.1
Green Ratio (g	/C)			0.50	0.50	0.50	0.50	0.5	0 0.50	0.39	0.39	0.39	0.39	0.39	0.39
Capacity (c), v	eh/h			621	942	798	647	942	2 920	338	737	704	267	737	680
Volume-to-Capa	acity Ra	atio(X)		0.143	0.162	0.663	0.072	0.12	22 0.12	1.363	0.483	0.484	0.031	0.360	0.366
Back of Queue	(Q), ft	/In (95 th percentile))	50.1	78.3	341.4	26	58	57.5	970.9	233	225.5	6.1	173.5	163.7
Back of Queue	(Q), Ve	eh/In (95 th percenti	le)	2.0	3.1	13.7	1.0	2.3	3 2.3	38.8	9.3	9.0	0.2	6.9	6.5
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1), s	/veh		14.1	12.4	17.1	14.1	12.	2 12.2	35.2	20.8	20.8	25.9	19.6	19.7
Incremental De	lay (<i>d</i> 2	e), s/veh		0.5	0.4	4.3	0.2	0.3	3 0.3	181.4	0.2	0.2	0.0	0.1	0.1
Initial Queue Delay (<i>d</i> 3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/veh				14.5	12.8	21.4	14.3	12.	5 12.5	216.5	20.9	21.0	25.9	19.7	19.8
Level of Service (LOS)				В	В	С	В	В	В	F	С	С	С	В	В
Approach Delay, s/veh / LOS				18.9)	В	12.8	3	В	98	8	F	19.8	3	В
Intersection Del	Intersection Delay, s/veh / LOS					52	2.4						D		
Multimodal Re	Iultimodal Results				EB			W	3		NB			SB	
Pedestrian LOS	Score	/ LOS		2.30)	В	2.30)	В	2.1	3	В	2.30		В
Bicycle LOS Sc	ore / LC	DS		1.76	6	В	0.72	2	А	1.4	4	А	0.92	2	А

			Ū								-	,					
General Inform	nation								Int	tersect	ion Info	ormatio	on	2	4241	s l <u>s</u>	
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Du	iration.	h	0.250			₄↓५		
Analvst		JAS	<u> </u>	Analys	is Dat	te Aua 1	3. 2020		Are	ea Tvp	e	Other				₹	
Jurisdiction		City of Los Angeles		Time F	Period	Future	e - AM		PH	IF		0.96		\rightarrow \rightarrow	whe		
Urban Street		Mindanao Way		Analys	sis Yea	ar 2026			An	Analysis Period			45				
Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Future	ə.xus	3	,					5 4 17	<u>~</u> _	
Project Descrip	tion	Paseo Marina												- 5	[1 1 1 1 1	* /*	
, ,																	
Demand Inform	nation				EB			۷	WB			NB			SB		
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R	
Demand (v), v	eh/h			87	159	9 496	50	2	18	15	467	624	96	9	419	113	
Signal Informa	tion					245	_							Ð−		\mathbf{A}	
Cycle, s	90.0	Reference Phase 2			Ħ٧	1 SA	7						1	▲ 2	3		
Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.	.0	0.0	0.0			~		~	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	.0	0.0	0.0			<u> </u>		N	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	.0	0.0	0.0		5	6	7	8	
				1								_				_	
Timer Results			EBL	-	EBT	WB	L	W	VBT	NBL	-	NBT	SBL		SBT		
Assigned Phase				\rightarrow	6		$ \rightarrow$		2			8	<u> </u>		4		
Case Number						5.0			6	5.0			6.0			6.0	
Phase Duration	, S				\rightarrow	50.0		_	50	0.0			40.0		<u>_</u> _	40.0	
Change Period	, (Y+R	c), S				5.4				5.4			5.1			5.1	
Max Allow Head	dway(/	MAH), s			\rightarrow	0.0			0).0		3.6				3.6	
Queue Clearan	ce Time	e (g s), s											36.9			16.9	
Green Extensio	n Time	(ge),s				0.0			0).0			0.0			5.4	
Phase Call Pro	bability												1.00			1.00	
Max Out Proba	bility												1.00			0.19	
Movement Gro		aulte			EB			\٨/	'B			NB	_		SB	_	
Approach Move	mont	Suits			Т	P	1	vv	·	P	1	Т	P	1	т	P	
Assigned Move	ment			1	6	16	5	2	+	12	L 3	8	18		1	14	
Adjusted Flow F	Pote (v) veh/h		01	166	517	52	12	2	12	186	38/	366	7		268	
Adjusted Satur	tion Ele), vch/hl w Rate (s) veh/h/l	n	1155	100	1610	1230	100	2	1857	868	1000	1811	723	1000	1761	
	Time ()	σ_{s}) s		4 1	43	21.5	22	3	1	3.2	25.0	1300	14.0	0.9	9.8	99	
	learanc	g(x)		73	43	21.5	6.5	3	1	3.2	34.9	13.9	14.0	14.9	9.8	9.0	
Green Ratio (a	$\frac{1}{2}$	e fille (g t), s		0.50	0.50	0.50	0.50	0.5	50	0.50	0 3 9	0.39	0.39	0.39	0.39	0.0	
Capacity (c)	/eh/h			612	942	798	634	94	2	920	321	737	702	248	737	683	
Volume-to-Can	acity Ra	utio (X)		0.148	0 176	3 0 648	0.082	0.1	2 30 (0 131	1.516	0.521	0.522	0.038	0.388	0.393	
Back of Queue	(Q) ft	(In (95 th percentile)		51.8	86	330.7	29.3	61	.6	61	1182	251.8	243	7	189.3	178.3	
Back of Queue	(Q), V	eh/ln (95 th percenti	le)	2.1	3.4	13.2	1.2	2	5	2.4	47.3	10.1	9.7	0.3	7.6	7.1	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0)0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delav	(d1).s	/veh	,	14.2	12.5	16.9	14.3	12	.2	12.2	35.6	21.1	21.1	26.9	19.9	19.9	
Incremental Delay (d 2), s/veh			0.5	0.4	4.0	0.3	0.1	3	0.3	247.5	0.3	0.3	0.0	0.1	0.1		
Initial Queue Delay (<i>d</i> ₂), s/veh			0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (<i>d</i> 3), s/veh			14.7	13.0	20.9	14.6	12	.5	12.5	283.1	21.4	21.5	26.9	20.0	20.0		
Level of Service (LOS)			В	B	C	В	B		В	F	C	C	C	B	C		
Approach Delay s/veh / LOS				- 18.5	5	В	12.9			B	124 4	1	F	20.1		C	
Intersection De	lav, s/ve	h / LOS		10.0		- 63	3.9			-			•	E		-	
													L				
Multimodal Re	sults				EB			W	B			NB	NB		SB		
Pedestrian LOS	Score	/ LOS		2.30)	В	2.30		В		2.13		В	2.30)	В	
Bicycle LOS Sc	ore / LC	DS		1.76	;	В	0.73	3		A	1.51		В	0.95	5	А	

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

											-	,							
General Inform	nation								Inte	ersect	tion Infe	ormatio	on	2	474+1	⊾ Ļ_			
Agency		Linscott. Law & Gre	enspan	. Engine	eers				Du	ration.	h	0.250			444				
Analyst		JAS		Analys	sis Dat	e Aua 1	3, 2020		Are	a Tvp	e	Other		 		<u>₹</u>			
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PH	IF		0.96		ראייץ + ר	W + E	≮ ↓ ↓			
Urban Street		Mindanao Way		Analys	sis Yea	r 2026	st - Aivi		Ana	alysis	Period	1> 7:4	45	- ⁻	K & L	<u>م</u> م			
Intersection		Mindanao/Glencoe		File Na	ile Name 09AM - Future with Project.xus									ካ ተ የተተኛ ሶ					
Project Descrip	tion	Paseo Marina		J															
Demand Inform	nation				EB			N	∕B			NB			SB				
Approach Move	ement			L	Т	R	L	-	Т	R	L	Т	R	L	Т	R			
Demand (v), v	eh/h			99	167	550	50	2	21	15	480	624	96	9	419	118			
																_			
Signal Informa	tion					-215								Ð_					
Cycle, s	90.0	Reference Phase 2			HE !	1 54	7						1	¥ _	3	(† x			
Offset, s	0	Reference Point End		Green	44.6	34.9	0.0	0.	0	0.0	0.0	_		2	5				
Uncoordinated	No	Simult. Gap E/W On		Yellow	3.6	3.7	0.0	0.	0	0.0	0.0			<u> </u>		512			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	0	0.0	0.0		5	Y 6	7	8			
Timer Results				EBI	-	EBT	WB	L	W	/BT	NBL	-	NBT	SBL	-	SBT			
Assigned Phase	е					6			2	2			8			4			
Case Number						5.0			6.	5.0			6.0			6.0			
Phase Duration	, S					50.0			50	0.0			40.0		4	40.0			
Change Period	, (Y+R)	c), S				5.4			5.	5.4		5.1				5.1			
Max Allow Head	dway(/	<i>MAH</i>), s				0.0				0.0			3.6			3.6			
Queue Clearan	ce Time	e (<i>g</i> s), s											36.9			16.9			
Green Extensio	n Time	(g e), s				0.0			0.	0.0			0.0			5.5			
Phase Call Pro	bability												1.00			1.00			
Max Out Proba	bility												1.00			D.19			
Movement Gro	oup Res	ults			EB			W	В			NB			SB				
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R			
Assigned Move	ment			1	6	16	5	2		12	3	8	18	7	4	14			
Adjusted Flow I	Rate(<i>v</i>), veh/h		103	174	573	52	124	4	122	500	384	366	9	289	271			
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1152	1900	1610	1230	190	0 1	1857	864	1900	1811	723	1900	1756			
Queue Service	Time (g	g s), S		4.8	4.6	25.1	2.2	3.2	2	3.2	24.9	13.9	14.0	0.9	9.9	10.0			
Cycle Queue C	learance	e Time (<i>g c</i>), s		8.0	4.6	25.1	6.8	3.2	2	3.2	34.9	13.9	14.0	14.9	9.9	10.0			
Green Ratio (g	/C)			0.50	0.50	0.50	0.50	0.5	0	0.50	0.39	0.39	0.39	0.39	0.39	0.39			
Capacity (c), v	/eh/h			610	942	798	627	942	2	920	319	737	702	248	737	681			
Volume-to-Cap	acity Ra	tio(X)		0.169	0.185	0.718	0.083	0.13	31 0	0.133	1.569	0.521	0.522	0.038	0.392	0.397			
Back of Queue	(Q), ft/	In (95 th percentile)		59.9	90.8	381.3	29.4	62.	4	62	1264. 2	251.8	243	7	191.2	180.1			
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.4	3.6	15.3	1.2	2.5	5	2.5	50.6	10.1	9.7	0.3	7.6	7.2			
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Uniform Delay ((d1), s	/veh	,	14.4	12.6	17.8	14.5	12.	2	12.3	35.7	21.1	21.1	26.9	19.9	19.9			
Incremental Delay (d_{2}) , s/veh				0.6	0.4	5.5	0.3	0.3	3	0.3	271.0	0.3	0.3	0.0	0.1	0.1			
Initial Queue Delay (d_2), siven			0.0	0.0	0.0	0.0	0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Control Delay (<i>d</i>), s/veh			15.0	13.0	23.3	14.7	12.	5	12.6	306.7	21.4	21.5	26.9	20.0	20.1				
Level of Service (LOS)			В	В	С	В	В	+	В	F	С	С	С	С	С				
Approach Delay, s/veh / LOS				20.2		С	12.9		E	В	135.	5	F	20.2	2	С			
Intersection De	lav. s/ve	h / LOS				68	3.1							20.2 C					
						5.									_				
Multimodal Re	sults				EB			W	В			NB	NB		SB				
Pedestrian LOS	S Score	/ LOS		2.30)	В	2.30)	E	В	2.13	;	В)	В			
Bicycle LOS Sc	ore / LC)S		1.89)	В	0.73	3	ŀ	A	1.52		В	0.96	;	А			

 $Copyright @ {\tt 2020} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

		1103	7 Sig	nanze	u mu	ersec		1631	111.5	Sun	iiiiai	y			_		
												F = 5					
General Inform	nation	<u></u>							Inte	ersect	ion Info	ormatio	on	- 1		× 1.4	
Agency		Linscott, Law & Gre	enspan	i, Engine	eers				Dura	ation,	h	0.250				R_	
Analyst		JAS		Analys	sis Date	• Oct 6,	2020		Area	а Тур	e	Other		×		Å	
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PHF	F		0.96			w∔e s	- + + 	
						(Impro	ovemeni	ts)						ار الح		국 고	
Urban Street		Mindanao Way		Analys	sis Year	2026		,	Anal	alvsis	Period	1> 7:4	15		ግተዮ		
Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Future	e with	Proie	iect (l	mprove	ments)	xus	- 1		× (*	
Project Descrip	tion	Paseo Marina		1 110 110		007 111	- ddar	o ma		Joor (II	mprovo	inorito).	Ado	-			
T Tojoot Booonp																	
Demand Inform	nation				EB		Т	N	/B			NB			SB		
Approach Move	ement			L	Т	R	L	Τ-	Г	R	L	Т	R	L	Т	R	
Demand (v), v	eh/h			99	167	550	50	22	21	15	480	624	96	9	419	118	
										1					Ê.	_	
Signal Information							215							Ð-	K .	\mathbf{L}	
Cycle, s	Cycle, s 90.0 Reference Phase 2				HE *	N 511	z sa	2					1	¥ _	ו (ו	(† X	
Offset, s	0	Reference Point	Green	36.0	21.6	17.9	0.0	0	0.0	0.0							
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	4.0	3.7	0.	0	0.0	0.0			2		N	
Force Mode	Fixed	Simult. Gap N/S	Red	1.8	0.0	1.4	0.	0	0.0	0.0		5	6	7	8		
				_	_		_					_	_			_	
Timer Results					-	EBT	WB	L	WB	BT	NBL	-	NBT	SBL		SBT	
Assigned Phase	e					6			2	2	3		8			4	
Case Number						5.0		_	6.0	0	1.0		4.0			6.3	
Phase Duration	, S					41.4			41.	.4	25.6		48.6			23.0	
Change Period	, (Y+R -	c), S				5.4			5.4		4.0		5.1			5.1	
Max Allow Head	dway(/	<i>MAH</i>), s				0.0			0.0	0	3.2		3.2			3.2	
Queue Clearan	ce Time	e (g s), s									20.5		13.8			15.1	
Green Extensio	n Time	(ge),s				0.0		_	0.0	0	1.1		2.8			2.8	
Phase Call Pro	bability										1.00		1.00			1.00	
Max Out Proba	bility										0.00		0.00			0.00	
Movement Gro	un Res	aults			FB			W/F	3			NB			SB		
Approach Move	ement			1	Т	R	1	Т		R	1	Т	R		Т	R	
Assigned Move	ment			1	6	16	5	2		12	3	8	18	7	4	14	
Adjusted Flow F	Rate (v) veh/h		103	174	573	52	124	1 1	122	500	384	366	9	289	271	
Adjusted Satura	ation Flo	w Rate (s) veh/h/l	n	1152	1900	1610	1230	190	0 18	857	1810	1900	1811	723	1900	1756	
Queue Service	Time (a	σ_s) s		5.7	5.4	17.9	2.6	3.8		3.8	18.5	11.8	11.8	0.9	12.9	13.1	
Cvcle Queue C	learanc	e Time (a c), s		9.5	5.4	17.9	8.1	3.8		3.8	18.5	11.8	11.8	0.9	12.9	13.1	
Green Ratio (g	/C)	- ····· (3 ·), -	_	0.40	0.40	0.64	0.40	0.4	0 0	0.40	0.46	0.48	0.48	0.20	0.20	0.20	
Capacity (c), y	/eh/h			492	759	1030	497	759	97	742	560	919	876	224	379	350	
Volume-to-Cap	acitv Ra	ntio(X)		0.210	0.229	0.556	0.105	0.16	63 0.	.165	0.893	0.417	0.418	0.042	0.762	0.773	
Back of Queue	(Q), ft/	/In (95 th percentile))	74.3	113	259.1	36.5	77.	7 7	77.2	303.4	211.3	204	7.4	249	237.5	
Back of Queue	(Q). Ve	eh/In (95 th percenti	le)	3.0	4.5	10.4	1.5	3.1	3	3.1	12.1	8.5	8.2	0.3	10.0	9.5	
Queue Storage	Ratio (RQ) (95 th percent	;ile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay	(d1). s	/veh	,	20.4	17.8	9.1	20.5	17.	3 1	17.4	20.0	15.0	15.0	29.2	34.0	34.1	
Incremental Delay (d_2) s/veh				1.0	0.7	2.2	0.4	0.5	5 (0.5	2.1	0.1	0.1	0.0	1.2	1.4	
Initial Queue Delay (d_3), siveh					0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh					18.6	11.2	20.9	17.	8 1	17.8	22.1	15.1	15.2	29.3	35.2	35.5	
Level of Service (LOS)				С	В	В	С	В	-	В	С	В	В	С	D	D	
Approach Delay, s/veh / LOS				14.0)	B	18,4	1	В	3	17.9		B	35.3	-	D	
Intersection De	lay, s/ve	h / LOS				20).2							C			
Multimodal Re	sults				EB			W	WB			NB			SB		
Pedestrian LOS	Score	/LOS		2.30)	В	2.30)	В		2.13		В	2.30)	В	
Bicycle LOS Sc	ore / LC	DS		1.89)	В	0.73	3	А	1	1.52		В	0.96	;	А	

			Ū								-	,						
General Inform	ation								Int	tersect	tion Infe	ormatio	on		4241	يد لي		
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Du	uration.	h	0.250)		444			
Analvst		JAS		Analys	is Da	te Aua 1	3. 2020		Are	ea Tvp	e	Other	-			<i>د</i> 4		
Jurisdiction		City of Los Angeles		Time F	Period	Existin	Existing - PM			HF //		0.94		\rightarrow \rightarrow	WÌE			
Urban Street		Mindanao Way		Analys	sis Yea	ar 2020	2020				Period	1> 17	2:00					
Intersection		Mindanao/Glencoe		File Na	ame	09PM	- Existi	na xi	IS			<u> </u>			KAL			
Project Descript	tion	Paseo Marina						.9						 ካ ∢ ነ∳ቀነኘ ኩ /*				
· · · · · · · · · · · · · · · · · · ·																		
Demand Inform	nation			E		;		٧	WB		T	NB		T	SB	3B		
Approach Move	ment			L	Т	R	L		Т	R	L	Т	R	L	Т	R		
Demand (v), ve	eh/h			133	213	3 616	122	2	15	27	225	346	45	10	514	96		
Signal Informa	tion					245								Ð-		\mathbf{L}		
Cycle, s	90.0	Reference Phase 2		😫		* 1 54	2	,					1	2	3	4		
Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.	0	0.0	0.0				-			
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	0	0.0	0.0			<u>a</u>		√ >		
Force Mode	Fixed	Simult. Gap N/S	Red	1.8	1.4	0.0	0.	0	0.0	0.0		5	6	7	8			
					1		_	_		_		_						
Timer Results			EBL	-	EBT	WB	L	W	VBT	NBL	-	NBT	SBL	-	SBT			
Assigned Phase				_	6				2			8			4			
Case Number						5.0			6	5.0			6.0			6.0		
Phase Duration	, S					50.0			50	0.0			40.0		·	40.0		
Change Period,	(Y+R	c), S				5.4				5.4						5.1		
Max Allow Head	dway(<i>I</i>	ИАН), s				0.0			0	0.0		3.5				3.5		
Queue Clearand	ce Time	e (<i>g</i> s), s											36.9			13.8		
Green Extension	n Time	(ge),s			_	0.0		\rightarrow	0	0.0			0.0			3.5		
Phase Call Prob	bability												1.00			1.00		
Max Out Probat	oility												1.00			0.03		
Movement Gro		ulte			EB			\٨/	B			NB	_		SB	_		
Approach Move	mont				Т	R	1	Т		R		Т	R		Т	R		
Assigned Move	ment			1	6	16	5	2	+	12	3	8	18	7	4	14		
Adjusted Flow F	Rate (v) veh/h		141	227	655	130	13	0	128	239	211	205	, 11	333	316		
Adjusted Satura	tion Flo	w Rate (s) veh/h/li	1	1140	1900	1610	1172	190	0	1826	795	1900	1823	986	1900	1796		
Queue Service	Time ((γ_{s}) s		6.9	6 1	31.2	6.4	3	3	3.4	23.1	6.9	7.0	0.7	11 7	11.8		
Cycle Queue Cl	earanc	e Time (a_c) s		10.3	6.1	31.2	12.6	3	3	3.4	34.9	6.9	7.0	7.7	11.7	11.8		
Green Ratio (a	/C.)	o milo (g c), o		0.50	0.50	0.50	0.50	0.5	0	0.50	0.39	0.39	0.39	0.39	0.39	0.39		
Capacity (c) y	eh/h			602	942	798	581	94	2	905	284	737	707	386	737	696		
Volume-to-Capa	acity Ra	tio (X)		0.235	0.24	1 0 821	0.223	0.1	- 38 (0 141	0.842	0.286	0.290	0.028	0 451	0.454		
Back of Queue	(Q), ft/	(In (95 th percentile)		86.1	122.	1 473.9	83	66	3	64.9	276.3	133.3	129.9	7	218.4	210		
Back of Queue	(Q), ve	eh/ln (95 th percentil	e)	3.4	4.9	19.0	3.3	2	6	2.6	11.1	5.3	5.2	0.3	8.7	8.4		
Queue Storage	Ratio (RQ) (95 th percent	le)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Uniform Delay (d 1), s	/veh	/	15.1	13.0	19.3	16.6	12	.3	12.3	35.1	19.0	19.0	21.6	20.4	20.5		
Incremental Delay (d 2) s/veh			0.9	0.6	9.3	0.9	0.3	3	0.3	19.0	0.1	0.1	0.0	0.2	0.2			
Initial Queue Delay (d_3), s/veh			0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Control Delay (d 3), s/veh			16.0	13.6	28.6	17.5	12	.6	12.6	54.1	19.1	19.1	21.7	20.6	20.6			
Level of Service (LOS)				B	B	C	В	B	-	В	D	В	В	С	C	C		
Approach Delay s/veh / LOS				23.5	;	C	14 2			B	31.9)	C	20.6		C		
Intersection Del	av. s/ve	h / LOS		20.0		- 23	3.5			-	0110		-	C		-		
						20								-				
Multimodal Results					EB			W	В			NB	NB		SB			
Pedestrian LOS	Score	/LOS		2.30)	В	2.30)		В	2.13	3	В	2.30		В		
Bicycle LOS Sc	ore / LC)S		2.18	3	В	0.8			A	1.03	3	А	1.03	;	А		

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

General Inform	nation								Inter	rsect	ion Infe	ormatio	on	2	*7**1	يد لي		
Agency		Linscott. Law & Gre	enspan	. Engine	eers				Dura	ation.	h	0.250			417			
Analyst		JAS		Analys	sis Dat	e Aua 1	3, 2020		Area		e	Other		 		₹		
Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng with		PHF		-	0.94		ראיץ קייאיץ קייאיץ	W + E			
Urban Street		Mindanao Way		Analys	sis Yea	r 2020	CL - PIM		Anal	lysis	Period	1> 17	:00	- ⁻	5 4 6	* *		
Intersection		Mindanao/Glencoe		File Na	ame	09PM	- Existi	ng wi	th Pro	ject.	xus				1	× (*		
Project Descrip	tion	Paseo Marina						-										
Demand Inform	nation				EB	_		W	′B			NB	_	T	SB			
Approach Move	ement			L	Т	R	L	Τ-	-	R		Т	R	L	Т	R		
Demand (v), v	eh/h			132	213	613	122	2'	19	27	238	346	45	10	514	101		
Signal Informa	tion													<u> </u>				
Cycle, s	90.0	Reference Phase		HE P	- •	2							Y		ф Т			
Offset, s	0	Reference Point	End	Green		34.9				0.0			1	2	3	4		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.0)	0.0	0.0					512		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.0	-)	0.0	0.0		5	7 6	7	8		
Timer Results				EBI	-	EBT	WB	L	WB	BT	NBL	-	NBT	SBL		SBT		
Assigned Phase	e					6			2				8			4		
Case Number						5.0			6.0)			6.0			6.0		
Phase Duration	, S					50.0			50.0	0			40.0			40.0		
Change Period,	(Y+R	c), S				5.4				1		5.1				5.1		
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s				0.0				0.0		3.5				3.5		
Queue Clearan	ce Time	e (g s), s											36.9			13.9		
Green Extensio	n Time	(ge), s				0.0			0.0)			0.0			3.6		
Phase Call Prob	bability												1.00			1.00		
Max Out Probal	bility												1.00			0.03		
		-		1						_						_		
Movement Gro	oup Res	sults			EB	1 -		WE	3	_		NB			SB			
Approach Move	ement			L		R	L		H	R	L	I	R			R		
Assigned Move	ment			1	6	16	5	2	1	12	3	8	18	7	4	14		
Adjusted Flow F	Rate (v), veh/h		140	227	652	130	132	2 13	30	253	211	205	11	336	318		
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1135	1900	1610	1172	190	0 18	827	791	1900	1823	986	1900	1791		
Queue Service	lime (g	g s), s — ())		6.9	6.1	30.9	6.4	3.4	. 3	3.5	23.0	6.9	7.0	0.7	11.8	11.9		
Cycle Queue C		e Time (<i>g c</i>), s		10.4	6.1	30.9	12.6	3.4	3	5.5	34.9	6.9	7.0	1.1	11.8	11.9		
Green Ratio (g	/C)			0.50	0.50	0.50	0.50	0.50	J U.	.50	0.39	0.39	0.39	0.39	0.39	0.39		
Capacity (c), v	eh/h	·· · /) /)		599	942	798	581	942	2 90	05	282	737	707	386	/3/	695		
Volume-to-Capa	acity Ra			0.234	0.241	0.817	0.223	0.14	0 0.1	143	0.898	0.286	0.290	0.028	0.456	0.459		
Back of Queue	(Q),π/	/in (95 th percentile)		85.5	122.1	469.8	83	67.	1 60	6.2	309.6	133.3	129.9	/	220.3	211.4		
Back of Queue	(Q), Ve	PO(95 th percent)	ile)	3.4	4.9	18.8	3.3	2.7	2	2.0	12.4	5.3	5.2	0.3	0.0	0.0		
Queue Storage		(95 in percent	lie)	15 1	12.0	10.00	16.6	12	J = 0.	.00	25.0	10.00	10.00	0.00	0.00	0.00		
Unitorm Delay (d 1), s/veh					0.6	0.1	0.0	0.3		2.5	28.2	0.1	0.1	21.0	20.3	20.3		
Initial Queue Delay (d 2), s/ven				0.0	0.0	0.0	0.0	0.0		0	0.0	0.1	0.1	0.0	0.2	0.2		
Control Delay (d) s/veh				16.1	13.6	28.3	17.5	12.0	3 10	27	64 1	10.0	10.0	21.7	20.7	20.7		
Level of Service (LOS)					13.0 P	20.3	R R			2.7 R	64.1 E	R	19.1 R	21.1 C	20.1	20.1 C		
Level of Service (LUS)						<u> </u>	14.0			J	26.1							
Approach Delay, s/veh / LOS						0	15	-	D		30.1			20.7 C				
Intersection Delay, s/ven / LOS						24	T.U	l.5										
Multimodal Re	sults				EB			WE	/B			NB			SB			
Pedestrian LOS	Score	/ LOS		2.30)	В	2.30)	В		2.13	;	В	2.30		В		
Bicycle LOS Sc	ore / LC)S		2.17	7	В	0.81		А		1.04		А	1.04		А		

		_	5									,								
General Inform	nation								Int	tersect	ion Info	ormatio	2	4244	بد لي					
Agency		Linscott. Law & Gree	nspan	. Engine	ers				Du	uration.	h	0.250			444					
Analyst		JAS		Analys	is Dat	te Aua 1	3 2020		Are	ea Tvo	e	Other		 		<u>₹_</u> &_				
Jurisdiction		City of Los Angeles		Time F	Period	Future	e, 2020		PH	HF	-	0.94		→ <u>_</u> * + →	w‡e	▲ ↓ ↓				
Urban Street		Mindanao Way		Analys	sis Yea	ar 2026			An	nalvsis	Period	1> 17	·00			+ *				
Intersection		Mindanao/Glencoe		File Na	File Name 09PM - Future.xus										KAL	<u>~</u>				
Project Descrip	tion	Paseo Marina		1 110 110			- acar	0.7(0)						<u>ነ</u> ነ ተቀጥፉ ለ						
· · •j••••																				
Demand Inform	nation			E				V				NB		SE						
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R				
Demand (v), v	eh/h			147	233	3 673	140	2	42	30	251	385	54	12	561	112				
							_	_		11	_									
Signal Informa	tion					245								$\overline{\bullet}$		\mathbf{A}				
Cycle, s	90.0	Reference Phase 2			B.	`	7						1	2	3	4				
Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.	.0	0.0	0.0									
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	.0	0.0	0.0			4		_ √ Z				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	.0	0.0	0.0	_	5	Y 6	7	8				
			_		_							_								
Timer Results				EBL	-	EBT	WB		N	VBT	NBL	-	NBT	SBL		SBT				
Assigned Phase	9				\rightarrow	6		_		2			8		\rightarrow	4				
Case Number						5.0			6	5.0			6.0			6.0				
Phase Duration	, S					50.0		_	5	0.0		_	40.0			40.0				
Change Period,	(Y+R	c), S				5.4				5.4			5.1		5.1					
Max Allow Head	dway(/	ИАН), s			\rightarrow	0.0			C	0.0		3.6			\rightarrow	3.6				
Queue Clearan	ce Time	e (g s), S			\rightarrow								36.9			15.3				
Green Extensio	n Time	(ge), s			\rightarrow	0.0		_	C	0.0			0.0		\rightarrow	4.1				
Phase Call Prol	bability				+								1.00			1.00				
Max Out Proba	bility												1.00			0.07				
Movement Gro	oup Res	ults			EB			W	'B			NB			SB					
Approach Move	ment		_	L	Т	R	L	Т	· T	R	L	Т	R	L	Т	R				
Assigned Move	ment			1	6	16	5	2	2	12	3	8	18	7	4	14				
Adjusted Flow F	Rate (v), veh/h	_	156	248	716	149	14	-6	143	267	237	230	13	368	348				
Adjusted Satura	ation Flo	w Rate (s), veh/h/ln		1107	1900) 1610	1150	190	00	1827	747	1900	1818	940	1900	1790				
Queue Service	Time (g	g s), S	_	8.1	6.8	36.3	7.8	3.	8	3.9	21.6	7.9	8.0	0.9	13.2	13.3				
Cycle Queue C	learanc	e Time (g c), s		12.0	6.8	36.3	14.6	3.	8	3.9	34.9	7.9	8.0	8.8	13.2	13.3				
Green Ratio (g	/C)		_	0.50	0.50	0.50	0.50	0.5	50	0.50	0.39	0.39	0.39	0.39	0.39	0.39				
Capacity (c), v	/eh/h			581	942	798	563	94	2	905	259	737	705	361	737	694				
Volume-to-Capa	acity Ra	tio(X)		0.269	0.263	3 0.897	0.265	0.1	55	0.158	1.030	0.322	0.326	0.035	0.499	0.501				
Back of Queue	(Q), ft/	(In (95 th percentile)		98.6	135.4	4 567.3	99.3	74	.8	73.7	397.3	152.4	147.9	8.6	240.8	230.8				
Back of Queue	(Q), ve	eh/In (95 th percentile)	3.9	5.4	22.7	4.0	3.	0	2.9	15.9	6.1	5.9	0.3	9.6	9.2				
Queue Storage	Ratio (RQ) (95 th percentile	e)	0.00	0.00	0.00	0.00	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Uniform Delay (d 1), s	/veh		15.7	13.2	20.6	17.4	12	.4	12.4	37.5	19.3	19.3	22.4	20.9	20.9				
Incremental Delay (d 2), s/veh			1.1	0.7	14.9	1.1	0.4	4	0.4	63.9	0.1	0.1	0.0	0.2	0.2					
Initial Queue Delay (<i>d z</i>), s/veh			0.0	0.0	0.0	0.0	0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Control Delay (<i>d</i>), s/veh				16.8	13.9	35.5	18.5	12	.8	12.8	101.4	19.4	19.4	22.4	21.1	21.2				
Level of Service (LOS)				В	В	D	В	В	;	В	F	В	В	С	С	С				
Approach Delay, s/veh / LOS				28.1		С	14.7	7		В	49.2	2	D	21.2	2	С				
Intersection De	lay, s/ve	h / LOS			_	29	9.6							С						
Multimodal Re	sults				EB			W	WB			NB	NB		SB					
Pedestrian LOS	Score	/ LOS		2.30)	В	2.30)	В		2.13		В	2.30)	В				
Bicycle LOS Sc	ore / LC	DS		2.34	1	В	0.85	5		A	1.09		А	1.09)	А				
			Ū									,								
-----------------------------------	-----------------------------------	----------------------------------	--------	----------	----------	---------	----------	---------------	-----------------	-----------	----------	---------	-------	------------	---------------------------	----------------				
General Inform	nation								Inter	rsect	ion Inf	ormatio	on	2	4241	s l <u>s</u>				
Agency		Linscott. Law & Gre	enspan	. Engine	eers				Durat	ation.	h	0.250		1	444					
Analyst		JAS		Analys	sis Date	e Aua 1	3. 2020		Area		9	Other		 		~				
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PHF			0.94			w ‡ e	↓ ↓ ↓ ↓				
Urban Street		Mindanao Way		Analys	sis Year	· 2026			Analy	lysis I	Period	1> 17	:00		ኻቀቱ	<u>بر</u> م				
Intersection		Mindanao/Glencoe		File Na	ame	09PM	- Future	e with	n Proje	ect.xu	IS			1	[국 1 다 약 1	* (*				
Project Descrip	tion	Paseo Marina																		
Demand Inform	nation				EB			W	/B			NB			SB					
Approach Move	ement			L	Т	R	L	T -	Г	R	L	Т	R	L	Т	R				
Demand (v), v	eh/h			146	233	670	140	24	46	30	264	385	54	12	561	117				
Signal Informa	tion					215							~	A-						
Cycle, s	90.0	Reference Phase	2		₩*	1 sa	2						1	¥ 2	3	(† x				
Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.	0 0	0.0	0.0	_		~						
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	0 (0.0	0.0			<u>a</u>		512				
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	0 (0.0	0.0		5	Y 6	7	8				
										_		_	_		_					
Timer Results				EBI	-	EBT	WB		WB ⁻	BT	NBL	-	NBT	SBL	-	SBT				
Assigned Phase	e					6		_	2				8			4				
Case Number						5.0			6.0)			6.0			6.0				
Phase Duration	, S					50.0		\rightarrow	50.0	0			40.0		·	40.0				
Change Period,	, (Y+R	c), S				5.4			5.4	1			5.1			5.1				
Max Allow Head	dway(/	VAH), s				0.0			0.0)			3.6			3.6				
Queue Clearan	ce Time	e (g s), s											36.9			15.4				
Green Extensio	n Time	(ge), s				0.0			0.0)			0.0			4.2				
Phase Call Prol	bability												1.00			1.00				
Max Out Proba	bility												1.00			0.08				
Movement Gra		ulte			EB			\٨/٢	2	_		NR			S B					
Approach Move	mont	Suits		1	ED T	D			,	D	1		D		т	D				
Assigned Move	mont			1	6	16	5	2	1	12	2	Q	10		1	14				
Adjusted Flow	Doto (v) voh/h		155	249	712	140	- 2	2 1/	12	0 201	227	230	12	4	350				
Adjusted Flow P	tion Ele), ven/n w Rate (s) veh/h/l	n	1103	1000	1610	149	100	0 18	4J 828	7/3	1000	1818	040	1000	1786				
	Time ()			8 1	6.8	36.1	7.8	3.8	2 3	320	21.5	7 0	8.0	0 9	13.0	13.4				
	learanc	e Time (a_c) s		12.0	6.8	36.1	14.6	3.6	3 3	39	34.9	7.9	8.0	8.8	13.4	13.4				
Green Ratio (a	/C)	o milo (g o), o		0.50	0.50	0.50	0.50	0.5	0 0.	.50	0.39	0.39	0.39	0.39	0.39	0.39				
Capacity (c) , y	/eh/h			578	942	798	563	942	2 90	06	257	737	705	361	737	692				
Volume-to-Cap	acity Ra	atio (X)		0.269	0.263	0.893	0.265	0.15	57 0.1	160	1.092	0.322	0.326	0.035	0.504	0.506				
Back of Queue	(Q), ft	/In (95 th percentile)		98.1	135.4	561.7	99.3	76.	1 74	4.8	453.8	152.4	147.9	8.6	242.9	232.5				
Back of Queue	(Q), v	eh/ln (95 th percenti	le)	3.9	5.4	22.5	4.0	3.0) 3.	3.0	18.2	6.1	5.9	0.3	9.7	9.3				
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.0	.00	0.00	0.00	0.00	0.00	0.00	0.00				
Uniform Delay ((d1), s	/veh	,	15.7	13.2	20.5	17.4	12.	4 12	2.4	37.6	19.3	19.3	22.4	21.0	21.0				
Incremental De	ncremental Delay (d_2), s/veh				0.7	14.5	1.1	0.4	I 0.).4	82.9	0.1	0.1	0.0	0.2	0.2				
Initial Queue De	nitial Queue Delay (d ȝ), s/veh				0.0	0.0	0.0	0.0) 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Control Delay (<i>d</i>), s/veh				16.9	13.9	35.0	18.5	12.	8 12	2.8	120.5	19.4	19.4	22.4	21.2	21.2				
Level of Service (LOS)				В	В	D	В	В	E	В	F	В	В	С	С	С				
Approach Delay, s/veh / LOS				27.8	3	С	14.7	7	В		57.4		E	21.2	2	С				
Intersection Delay, s/veh / LOS						31	1.6							С						
Multimodal Re	timodal Results				EB			W	3			NB			SB					
Pedestrian LOS	Score	/ LOS		2.30)	В	2.30)	В		2.13	;	В	2.30		В				
Bicycle LOS Sc	ore / LC	DS		2.33	3	В	0.85	5	Α		1.10)	А	1.09		А				

		псэ	/ Sig	nalize	amu	ersec		test	iiis a	Sun	nmar	y				
									1							
General Inforn	nation								Inter	rsect	ion Inf	ormatio	on	_	4 24 44 1 1	ايد ايد
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Dura	ation,	h	0.250		_	7 * 4	<u></u> ₹_
Analyst		JAS		Analys	sis Date	e Oct 7,	2020		Area	а Тур	е	Other				≛ _55
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PHF	-		0.94		\Rightarrow	W = E	←
						Projec	t - PM	ta)						14		*
Linken Otre et				Anabia	ie Veer		overnen	ls)	Anal	husia	Denied	45.47	.00		ኻተቅ	
Urban Street		Mindanao Way			sis rear	2026	F		Anai		Period	> /	:00	- 1	41491	*) *
		Mindanao/Giencoe		File Na	ame	U9PM	- Future	e witr	n Proje	ect (I	mprove	ments).	xus	-		
Project Descrip	tion	Paseo Marina													_	
Domand Inform	nation				ER			١٨	/B		1	NR		T	SB	
Approach Move	mont				Т	R	1 1	-		R		Т	R	1	Т	R
Demand (v) v	oh/h			146	233	670	140	2	16	30	264	385	54	12	561	117
Demand (V), V	en/n			140	233	070	140	2.	+0	50	204	505	54	12	301	117
Signal Informa	ation					п					T			ĸ		
Cvcle, s	90.0	Reference Phase	2	1	4 2		7 FA							┢─	<u>, </u>	Φ
Offset, s	0	Reference Point	End					ĨĻ,	_			_	1	2 .	J 3	4
Uncoordinated	No	Simult, Gap F/W	On	Green	41.7	12.5	21.3	0.		0.0	0.0	-		_		-+-
Force Mode	Fixed	Simult Gap N/S	On	Red	1.8	0.0	1.4	0.	0	0.0	0.0	-	5	€ 。	7	Y
	Тіхоч	onnuit. Oup 11/0	on	- tou	1.0	0.0		0.		0.0	0.0			-		
Timer Results	_			FBI		FBT	WB		WB	3T	NBI		NBT	SBI		SBT
Assigned Phase	e					6		-	2		3		8	000	-	4
Case Number	<u> </u>					5.0		-	6.0	n	1.0		4 0			63
Phase Duration						17 1	-	-	17	1	16.5		42.0			26.4
Change Period	(V+R)	a) e			54		\rightarrow	5.4	1	10.0	, ,	5 1		<u> </u>	5 1	
Max Allow Hear	$\frac{1}{2}$	(), S (/// H) e			0.0		-	0.0		3.2		3.2			3.7	
	co Timo	y(MAH),s ïme(as)s				0.0		-	0.0		12 0		0.6			J.Z
Croop Extensio	ce fille	$(g_s), s$		<u> </u>		0.0		\rightarrow	0.0	0	0.5	,	9.0			2.5
Green Extensio		(<i>g</i> e), s		<u> </u>	_	0.0	<u> </u>	\rightarrow	0.0		0.5		2.5		\rightarrow	2.5
Phase Call Pro								-		_	1.00	,	1.00			1.00
Max Out Proba	DIIILY										0.00)	0.00			0.00
Movement Gro	oup Res	ults			EB			W	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2	1	12	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		155	248	713	149	148	3 1	145	281	237	230	13	371	350
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1103	1900	1610	1150	190	0 18	828	1810	1900	1818	940	1900	1786
Queue Service	Time (d	(s). S		8.6	7.2	28.4	8.3	4.1	4	4.2	10.0	7.5	7.6	0.9	16.7	16.8
Cvcle Queue C	learanc	e Time (q c). s		12.8	7.2	28.4	15.5	4.1	4	4.2	10.0	7.5	7.6	0.9	16.7	16.8
Green Ratio (o	/C)	(3)		0.46	0.46	0.60	0.46	0.4	6 0.	.46	0.40	0.42	0.42	0.24	0.24	0.24
Capacity (c), y	/eh/h			540	881	970	520	88	1 8	347	369	797	763	302	449	422
Volume-to-Cap	acity Ra	itio (X)	_	0.288	0.281	0.735	0.286	0.16	. c	172	0.762	0.298	0.301	0.042	0.826	0.830
Back of Queue	(Q) ft	(In (95 th percentile)		105.9	146 7	398.8	107.3	82	2 E	81	187.2	142.5	138.3	9.5	305	291.8
Back of Queue	$(\mathbf{Q}), \mathbf{R}$	eh/In (95 th percenti	le)	4 2	5.9	16.0	4.3	3.3	3	32	7.5	5.7	5.5	0.4	12.2	11 7
	Ratio (RO (95 th percent	ilo)	0.00	0.0	0.00	0.00	0.0		0.2	0.00	0.0	0.0	0.00	0.00	0.00
Uniform Delay	ue Storage Ratio (<i>RQ</i>) (95 th percentile)				1/ 0	12.8	10.00	1/		1 1	22.0	17.3	17.3	26.6	32.6	32.6
Incremental De	niform Delay (d ː), s/veh				0.8	12.0	1.1	0.		I 0. 4	1.2	0.1	0.1	20.0	1.5	1.6
Incremental Delay (d ₂), s/veh				0.0	0.0	4.9	0.0	0.2		0.4	0.0	0.1	0.1	0.0	0.0	0.0
Control Delay (d), s/veh				10.0	15.7	17.7	21.1	14	5 1	4.5	0.0	17.4	17.4	26.6	3/ 1	34.2
Level of Service (LOS)				19.1 P	13.7 P	П./ Р	21.1	14. P	5 12	4.5 D	23.3	17.4 P	17.4 P	20.0	04.1	54.5
Level of Service (LOS)				B 47.4	В	Р	40-			в		В	В			
Approach Delay, s/veh / LOS				17.4		D	16.7		В		19.6)	D	34.1		U
Intersection Delay, s/veh / LOS						2'	1.9					_				
Multimodal Results					FR			\//	3			NB			SB	
Pedestrian I OG	Itimodal Results					B	230		R		2 1 3		В	2 30		В
Bicycle LOS Sc	core / I C)5	.05			B	0.85	, ;	Δ		1 10	, ,	A	1 00	, — —	A
				2.00		_	5.50			-			••			••

										0 0111		,				
General Inform	nation								Inter	react	ion Inf	ormatio	n			ية ل <u>ي</u>
	ation	Linecott Law & Gre	onenan	Engine	ore				Dura	tion	h	0 250	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4 1 1	
Agency			enspan			Aug 2	1 2020		Araa			Othor		<u>_</u>		۲. ۲.
			1	Analys		Aug 3	1, 2020		Area	атуре	9	Other				
Jurisdiction		City of Los Angeles Caltrans	/	Time F	eriod	Existii	ng - AM		РНЕ			0.93		1 41 Pres	8 W+F	ז זיי זי≰ זיי
Urban Street		SR-90 Westbound		Analys	is Year	2020			Anal	lysis I	Period	1> 8:0	00		5 † †	
Intersection		Mindanao/SR-90 W	′В	File Na	ame	10AM	- Existi	ng.xı	IS					Υ.	 숙 ↑ 슉 딱 1	* (*
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			V	/B			NB			SB	
Approach Move	ement			L	Т	R	L	Τ.	Г	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h						665	12	268	709	7	547			863	23
					_											
Signal Informa	ation					11	5							•		<u>A</u>
Cycle, s	90.0	Reference Phase	2		54	•	Ŭ,							T		×.
Offset, s	0	Reference Point	End	Green	1/ 0	24.8	33.7		0	0.0	0.0	_	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.	0	0.0	0.0			_		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	0	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WB	BT	NBL	-	NBT	SBI	-	SBT
Assigned Phas	е								4		5		2			6
Case Number									9.0)	2.0		4.0			8.3
Phase Duration	1, S								40.0	0	20.0)	50.0			30.0
Change Period	, (Y+ R	c), S							6.3	3	5.1		5.2			5.2
Max Allow Hea	ax Allow Headway (<i>MAH</i>), s								3.0)	3.2		0.0			0.0
Queue Clearan	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>g</i> s), s								35.7	7	2.3					
Green Extensio	on Time	(ge),s							0.0)	0.0		0.0			0.0
Phase Call Pro	bability								1.00	0	1.00)				
Max Out Proba	bility								1.00	0	0.00)				
Manager 4 Ore								10/	<u> </u>	_					0.0	
Approach Move	oup Res	Suits			EB	D			5	D	1		D		<u>5в</u>	D
Approach Move	ement			<u> </u>	1	ĸ					L F	1	ĸ	<u> </u>		<u>к</u>
Assigned wove	ement Dete ()	·					/	4		14	5	2			0	10
Adjusted Flow I	Rale (V), ven/n				<u> </u>	479	159		6Z	8	588			038	315
Adjusted Satura		bw Rate (s), ven/n/i	n				1810	188		010	1810	1809	<u> </u>		1900	1874
Queue Service	Time (🤅	gs), s a Tima (a) a			_		20.3	33.	1 3. 7 31	3.1	0.3	8.8			13.2	13.2
		e filme (<i>g</i> c), s					20.3	33.	7 0	3.7	0.3	0.0		<u> </u>	13.2	13.2
Green Ralio (g	$\frac{1}{0}$				_		678	1/1	7 U. 3 G	.37	200	1901	<u> </u>		0.20	0.20 516
Volume-to-Cap	acity Ra	atio (X)					070	141	$\frac{3}{22}$ 1 (264	0.025	0 327			0.609	0.610
Back of Queue	(Ω) ft	/In (95 th percentile)			_		330	969	8 12	204	6.2	158	<u> </u>		257.8	267.8
	(((), 10						000	505	.0 12	5	0.2	100			207.0	207.0
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				13.2	38.	8 50	0.0	0.2	6.3			10.3	10.7
Queue Storage	Ratio (RQ) (95 th percent	tile)				0.00	0.0	0 0.	.00	0.00	0.00			0.00	0.00
Uniform Delay	Uniform Delay (<i>d</i> 1), s/veh						24.0	28.	2 28	8.2	31.5	13.6			28.4	28.4
Incremental Delay (<i>d</i> ₂), s/veh					_		2.9	68.	8 13	31.9	0.0	0.5			2.6	5.3
Initial Queue Delay (d_3), s/veh							0.0	0.0) 0	0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/veh							26.8	97.	0 16	60.0	31.5	14.0			31.0	33.7
Level of Service (LOS)							С	F		F	С	В			С	С
Approach Delay, s/veh / LOS				0.0			102.	1	F		14.3	5	В	31.9)	С
Intersection Delay, s/veh / LOS						74	4.9							E		
Multimodal Results					FB			W/	В			NB			SB	
Pedestrian I OS	Iultimodal Results					B	230)	R		2 13		B	1 70)	В
Bicycle I OS Sc	core / I C)S		2.70		5	2.83	3	C C		0.98	;	A	1.01		A
2.0, 3.0 200 00							2.00	-	~		0.00			1.0		

		-	J								,				
General Inform	nation								Intersed	tion Inf	ormatio	on		4241	يد لي
Agency		Linscott. Law & Gre	enspan	. Enaine	ers				Duration	. h	0.250			-4 ↓ ↓	
Analyst		JAS		Analys	sis Dat	e Aua 3	31, 2020		Area Tvr)e	Other		 		د_ گ
Jurisdiction		City of Los Angeles	/	Time F	Period	Existi	ng with		PHF		0.93		1 7 4 4 7	w ∔ e e	┑╅ ┙╵┿┿┞╹
Urban Street		SR-90 Westbound		Analys	sis Yea	ar 2020			Analysis	Period	1> 8:0	00			<u>م</u>
Intersection		Mindanao/SR-90 W	В	File Na	ame	10AN	1 - Existi	ng wi	th Project	.xus]]]] 지수야 []]	× (*
Project Descrip	tion	Paseo Marina											1 7		
		•													
Demand Inform	nation				EB			Ν	/B		NB			SB	
Approach Move	ement			L	Т	R	L	-	T R	L	Т	R	L	Т	R
Demand (v), v	eh/h						665	12	277 718	7	551			917	23
_				1/	_										
Signal Informa	tion					L		9							ð-
Cycle, s	90.0	Reference Phase	2		51	1	. ₽					1	2	3	
Offset, s	0	Reference Point	End	Green	14.9	24.8	33.7	0.	0 0.0	0.0				5	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.	0 0.0	0.0		$\langle \mathbf{A} \rangle$			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SBL	-	SBT
Assigned Phase	Э								4	5		2			6
Case Number									9.0	2.0		4.0			8.3
Phase Duration	, S								40.0	20.0)	50.0			30.0
Change Period,	nge Period, (Y+R c), s								6.3	5.1		5.2			5.2
Max Allow Head	Allow Headway (<i>MAH</i>), s								3.0	3.2		0.0			0.0
Queue Clearan	ce Time	e (g s), s							35.7	2.3					
Green Extensio	n Time	(g _e), s							0.0	0.0		0.0			0.0
Phase Call Prol	bability								1.00	1.00)				
Max Out Probal	bility								1.00	0.00)				
Movement Gro	oup Res	sults			EB			W	B		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R		Т	R	L	T	R
Assigned Move	ment						7	4	14	5	2			6	16
Adjusted Flow F	Rate (<i>v</i>), veh/h					479	160	9 772	8	592			677	334
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n				1810	188	1610	1810	1809			1900	1875
Queue Service	Time (g	gs), s					20.3	33.	7 33.7	0.3	8.9			14.1	14.1
Cycle Queue C	learanc	e Time (<i>g c</i>), s					20.3	33.	7 33.7	0.3	8.9			14.1	14.1
Green Ratio (g	/C)						0.37	0.3	7 0.37	0.17	0.50			0.28	0.28
Capacity (<i>c</i>), v	eh/h						678	141	3 603	300	1801			1047	517
Volume-to-Capa	acity Ra	itio(X)					0.707	1.13	39 1.281	0.025	0.329			0.646	0.647
Back of Queue	(Q), ft/	In (95 th percentile)					330	990	.5 1296. 3	6.2	159.6			274.1	286.2
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				13.2	39.	6 51.9	0.2	6.4			11.0	11.4
Queue Storage	Ratio (RQ) (95 th percent	ile)		_		0.00	0.0	0 0.00	0.00	0.00			0.00	0.00
Uniform Delay ((d1), s	/veh					24.0	28.	2 28.2	31.5	13.6			28.7	28.7
Incremental De	ncremental Delay ($d r$), s/veh						2.9	71.	6 138.6	0.0	0.5			3.1	6.1
Initial Queue Delay (d 3), s/veh							0.0	0.0	0.0	0.0	0.0			0.0	0.0
Control Delay (<i>d</i>), s/veh							26.8	99.	7 166.8	31.5	14.1			31.8	34.9
Level of Service	Level of Service (LOS)						С	F	F	С	В			С	С
Approach Delay, s/veh / LOS				0.0			105.	6	F	14.3	3	В	32.8	3	С
Intersection Delay, s/veh / LOS						7	6.9						E		
,															
Multimodal Re	Multimodal Results				EB			W	В		NB			SB	
Pedestrian LOS	Score	/LOS		2.46	6	В	2.30)	В	2.13	3	В	1.70)	В
Bicycle LOS Sc	ore / LC	DS					2.85	5	С	0.98	3	А	1.04	-	A

		nee	r olg	nanzo		01000				innai j	y				
General Inform	nation								Intersec	tion Inf	ormatio	n		**	<u>د اړ</u>
	lation	Linscott Law & Gre	onenan	Engine	ore				Duration	b	0 250	///		4 4 4	
Apolyet			enspan		ic Date		1 2020			, 11	Othor		1		<u>گ</u>
Jurisdiction		City of Los Angeles	1	Time P	Period	Future	e - AM		PHF		0.93		- → 	w ∔ E	
Lirban Streat		Caltrans		Analya	ia Vaar	2026		_	Analysia	Dariad	1 > 0.0	0	- 4		ب به د
Urban Street		SR-90 Westbourid			is rear	2020	F t		Analysis	Penou	12 0.0	0		511	
		Windanao/SR-90 W	В	File Na	ime	TUAIM	- Future	e.xus					-	4 1 47 17 1	× [₩]
Project Descrip	tion	Paseo Marina													
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h						720	13	55 762	7	592			943	24
Signal Informa	tion			<u> </u>	Γ	IJ									ĸ
Cycle s	90.0	Reference Phase	2	1		*	E P	7					1		
Offset s	0	Reference Point	End	<u> </u>	<u> </u>	<u>1</u>	8					1	2	3	4
Uncoordinated	No	Simult Gap E/W	On	Green	14.9	24.8	33.7	0.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	3.0	3.7	4.8	0.0		0.0	_	` 」₅ ≝◀	6	7	8
T OFCE MODE	TIXCU	oindit. Oup N/O	OII	Tteu	1.0	1.0	1.0	10.0	0.0	0.0			-		-
Timer Results				EBL		EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Assigned Phas	е								4	5		2			6
Case Number									9.0	2.0		4.0			8.3
Phase Duration	i, s								40.0	20.0)	50.0			30.0
Change Period	, (Y+R	c), S							6.3	5.1		5.2			5.2
Max Allow Hea	x Allow Headway (<i>MAH</i>), s								3.0	3.2		0.0			0.0
Queue Clearan	ax Allow Headway (<i>MAH</i>), s ieue Clearance Time (<i>g</i> s), s								35.7	2.3					
Green Extensio	n Time	(ge),s							0.0	0.0		0.0			0.0
Phase Call Pro	bability								1.00	1.00)				
Max Out Proba	bility								1.00	0.00)				
Movement Gro		ulte			EB			\//F	1		NB			SB	
Approach Move	ement	Suits			T	R			R		T	R		Т	R
Assigned Move	ment			_			7	4	14	5	2		_	6	16
Adjusted Flow I	Rate (v) veh/h					519	171:	2 819	8	637			696	344
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n				1810	188	7 1610	1810	1809			1900	1875
Queue Service	Time (d	7 s) S					22.6	33 7	33.7	0.3	97			14.6	14.6
Cycle Queue C	learanc	e Time (<i>q</i> c), s					22.6	33.7	33.7	0.3	9.7			14.6	14.6
Green Ratio (g	/C)						0.37	0.37	0.37	0.17	0.50			0.28	0.28
Capacity (c), v	/eh/h						678	1413	3 603	300	1801			1047	517
Volume-to-Cap	acity Ra	itio(X)					0.766	1.21	2 1.359	0.025	0.353			0.665	0.665
Back of Queue	(Q), ft/	/In (95 th percentile))		_		369.5	1222 9	2. 1525. 8	6.2	174			282.9	295.5
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				14.8	48.9	61.0	0.2	7.0			11.3	11.8
Queue Storage	Ratio (RQ) (95 th percent	tile)		_		0.00	0.00	0.00	0.00	0.00			0.00	0.00
Uniform Delay	(d 1), s	/veh					24.7	28.2	2 28.2	31.5	13.8			28.9	28.9
Incremental Delay (<i>d</i> ₂), s/veh							4.7	102.	3 172.1	0.0	0.5			3.3	6.6
Initial Queue Delay (<i>d</i> ₃), s/veh							0.0	0.0	0.0	0.0	0.0			0.0	0.0
Control Delay (<i>d</i>), s/veh							29.4	130.	4 200.3	31.5	14.3			32.2	35.6
Level of Service (LOS)							С	F	F	С	В			С	D
Approach Delay, s/veh / LOS				0.0			132.	0	F	14.5	5	В	33.3	3	С
Intersection Delay, s/veh / LOS						94	1.4						F		
Multimodal Results					EP									QP	
Pedestrian LOS	Multimodal Results					B	230		R	2 13		B	1 70		B
Bicycle I OS Sc	core / I C)S		2.40		5	3.00	· +	C.	1.03	, ,	A	1.00	, }	A
210,010 200 00							0.00		5	1.02	-	· · ·	1.00		

		-	- 5								,				
General Inform	nation								Intersec	tion Inf	ormatio	on	*	***	بد آير
Agency		Linscott, Law & Gre	enspan	Engine	ers				Duration	. h	0.250			-4 ↓ ↓	
Analyst		JAS		Analys	is Date	e Aug 3	1.2020		Area Tvp	e	Other		 		<u>,</u>
Jurisdiction		City of Los Angeles	/	Time F	Period	Future	e with	_	PHF		0.93		<u></u> ₩₩ 1	W ↓ E e	1 1 1 1 4 1
Urban Street		SR-90 Westbound		Analys	is Year	· 2026			Analysis	Period	1> 8:(00		* * *	<u>د</u>
Intersection		Mindanao/SR-90 W	В	File Na	ame	10AM	- Future	e with	Project.x	us)]]]] Tatata	× (*
Project Descrip	tion	Paseo Marina											1 -		
, , ,															
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h						720	13	64 771	7	596			997	24
							_			_					
Signal Informa	tion					14		<u> </u>					•		ð-
Cycle, s	90.0	Reference Phase	2		51	1 t	2	Γ				1	2	3	4
Offset, s	0	Reference Point	End	Green	14.9	24.8	33.7	0.0	0.0	0.0	_		• •		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.0	0.0	0.0		< 🛛			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8
										_					
Timer Results				EBL	-	EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Assigned Phase	e								4	5		2			6
Case Number									9.0	2.0		4.0			8.3
Phase Duration	, S								40.0	20.0)	50.0			30.0
Change Period,	nge Period, (Y+R c), s								6.3	5.1		5.2			5.2
Max Allow Head	Allow Headway (<i>MAH</i>), s								3.0	3.2		0.0			0.0
Queue Clearan	ce Time	e (g s), s							35.7	2.3					
Green Extensio	n Time	(ge),s							0.0	0.0		0.0			0.0
Phase Call Prol	bability								1.00	1.00)				
Max Out Proba	bility								1.00	0.00)				
Margaret Or									`	_				0.0	
Movement Gro	oup Res	SUITS					1		5 D	_		Р		SB T	Р
Approach Move	mont			<u> </u>	1	ĸ		1	<u></u> П		- 1	ĸ	<u> </u>	6	16
Adjusted Flow)			_		7	4	14	5	2			705	10
Adjusted Flow F	kale (V), ven/n					519	1/2	2 829	8	041			1000	303
Aujusted Satura			n				1010	100	7 1010	1010	1609			1900	1070
Queue Service	Time (g	ys), s a Tima (a) a					22.0	33.1	7 33.7	0.3	9.7			15.0	15.0
		e filme (<i>g</i> c), s					22.0	33.1	7 0.07	0.3	9.7			15.0	15.0
Green Ralio (g	/C)						679	141	0.37	200	1901			1047	0.28
Volume to Con	en/n	tio (X)					070	141	0 1 275	300	0.256			0 702	0 702
Pook of Quoup		$(10 (\Lambda))$			_		260.5	1.21	9 1.375	6.2	175.0		<u> </u>	200.2	215.1
Dack of Queue	(Q), II/	in (95 in percentile)					309.5	124	6 1573. 6	0.2	175.2			300.2	315.1
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				14.8	49.8	3 62.9	0.2	7.0			12.0	12.6
Queue Storage	Ratio (RQ) (95 th percent	ile)				0.00	0.00	0.00	0.00	0.00			0.00	0.00
Uniform Delay ((d1), s	/veh					24.7	28.2	2 28.2	31.5	13.8			29.3	29.3
Incremental De	ncremental Delay ($d z$), s/veh						4.7	105.	2 179.1	0.0	0.6			3.9	7.8
nitial Queue Delay (<i>d</i> ₃), s/veh							0.0	0.0	0.0	0.0	0.0			0.0	0.0
Control Delay (<i>d</i>), s/veh							29.4	133.	3 207.2	31.5	14.3			33.2	37.0
Level of Service (LOS)							С	F	F	С	В			С	D
Approach Delay, s/veh / LOS				0.0			135.	7	F	14.5	5	В	34.5	5	С
Intersection Delay, s/veh / LOS						90	5.3						F		
Multimodal Results					EB			WE	3		NB			SB	
Pedestrian LOS	trian LOS Score / LOS					В	2.30)	В	2.13	3	В	1.70)	В
Bicycle LOS Sc	ore / LC	DS				3.02	2	С	1.02	2	А	1.09)	А	

			, eig		• •		tion			men	,				
Gonoral Inform	nation								Intersor	tion Inf	ormatic	n		4,44,4	þ. lu
	lation	Linscott Law & Gre	onenan	Engine	ore				Duration	b	0 250	<i>/</i> //		411	
Agency			enspan			Aug 2	1 2020			, 11	Othor		1		۲. ۲.
Analyst		JAO City of Los Angelos	1	Time D		Evicti	DA DM							w Ťe	
Junsalction		Caltrans	/		enou	Existi	ig - Pivi		PHF		0.90		4 4		⁴ 1 ~
Urban Street		SR-90 Westbound		Analys	is Year	2020			Analysis	Period	1> 17	:00		5 † †	<u></u> _
Intersection		Mindanao/SR-90 W	'B	File Na	me	10PM	- Existi	ng.xu	s					। । । । ব ↑ क Ÿ ′	۳ <u></u> ۲
Project Descrip	tion	Paseo Marina											7		
		•													
Demand Inform	nation				EB			W	/B		NB			SB	
Approach Move	ement			L	Т	R	L		r R	L	Т	R	L	Т	R
Demand (v), v	eh/h						552	99	90 346	17	449			1394	42
	tion			1	1										_
Signal morma		Deference Dhase	2			14	E St	Ħ					Ť		\rightarrow
Cycle, s	90.0	Reference Phase	Z		17	1 1	×					1	2	3	4
	0		End	Green	14.9	24.8	33.7	0.0	0.0	0.0		_			
Uncoordinated	NO	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.0	0.0	0.0	_	\ <	l		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.0	0 0.0	0.0		5	6	7	8
Timer Results				EBI		EBT	W/B		WBT	NB		NRT	SB		SBT
Assigned Phase	<u>م</u>				-				4	5	-	2			6
Case Number	<u> </u>			<u> </u>	-			\rightarrow	9.0	2.0		4.0			83
Phase Duration									40.0	2.0		50.0		_	30.0
Change Duration	nge Period, ($Y+R_c$), s				-			\rightarrow	40.0	20.0	,	5.2			50.0
Max Allow Hoo	nge Period, (Y+R c), s Allow Headway (<i>MAH</i>), s						<u> </u>	\rightarrow	2.0	2.1		0.0	<u> </u>	_	0.0
	uway (<i>1</i>	иап), s		<u> </u>			<u> </u>	\rightarrow	3.0	3.2		0.0	<u> </u>		0.0
Queue Clearan	ce Time	$(g_s), s$			_			\rightarrow	28.9	2.7		0.0		_	0.0
Green Extensio		(<i>g</i> e), s		<u> </u>	_		<u> </u>	\rightarrow	2.0	0.0		0.0	<u> </u>		0.0
Max Out Droke					_				0.75	1.00	, ,			_	
Max Out Proba	DIIILY								0.75	0.00)				
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment						7	4	14	5	2			6	16
Adjusted Flow I	Rate (v), veh/h					385	122	1 360	18	468			1002	493
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n				1810	188	6 1610	1810	1809			1900	1870
Queue Service	Time (g	g s), s					15.2	26.	9 16.2	0.7	6.7			23.4	23.4
Cycle Queue C	learanc	e Time (g c), s					15.2	26.	9 16.2	0.7	6.7			23.4	23.4
Green Ratio (g	/C)						0.37	0.3	7 0.37	0.17	0.50			0.28	0.28
Capacity (c), v	/eh/h						678	141	2 603	300	1801			1047	515
Volume-to-Cap	acity Ra	itio(X)			-		0.569	0.86	5 0.598	0.059	0.260			0.957	0.957
Back of Queue	(Q), ft/	(In (95 th percentile))				251.9	442	.1 243.7	14.6	120.6			478.2	520.3
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				10.1	17.	7 9.7	0.6	4.8			19.1	20.8
Queue Storage	Ratio (RQ) (95 th percent	, tile)				0.00	0.0	0 0.00	0.00	0.00			0.00	0.00
Uniform Delay ((d1), s	/veh					22.4	26.	0 22.7	31.6	13.0			32.1	32.1
ncremental Delay ($d z$), s/veh							0.7	5.6	5 1.1	0.0	0.4			19.3	30.4
Initial Queue De	nitial Queue Delay (d ȝ), s/veh						0.0	0.0) 0.0	0.0	0.0			0.0	0.0
Control Delay (<i>d</i>), s/veh							23.1	31.	6 23.8	31.7	13.4			51.3	62.4
Level of Service (LOS)							С	С	С	С	В			D	E
Approach Delay, s/veh / LOS				0.0			28.5	5	С	14.1	1	В	55.0)	E
Intersection Delay, s/veh / LOS						36	5.8						D		
Multimodal Re	Aultimodal Results				EB			WE	3		NB			SB	
Pedestrian LOS	S Score	/ LOS		2.46		В	2.30)	В	2.13	3	В	1.70)	В
Bicycle LOS Sc	ore / LC	DS					2.11		В	0.89)	А	1.31	1	A

			- 5									,				
General Inform	nation								Inter	rsect	ion Infe	ormatio	on		1424t,	يه اي
Agency		Linscott Law & Gre	ensnan	Engine	ers				Durat	ation	h	0 250			4 4 4	
Analyst			chopan		ie Date		1 2020		Area	Type		Other	-	 		. *
Jurisdiction		City of Los Angeles	1	Time D		Fvicti	n, 2020			турс		0.06		→ 	N w∔e	~_ ↓ ↓
Junsaletion		Caltrans	1		enou	Projec	t - PM					0.90		4 4		* ↓
Urban Street		SR-90 Westbound		Analys	is Year	2020			Analy	ysis F	Period	1> 17	2:00		5 4 4	
Intersection		Mindanao/SR-90 W	В	File Na	me	10PM	- Existi	ng wi	th Proj	ject.>	kus				 1 ↑ ↓ ↓ ↓ ↓	*) *
Project Descript	tion	Paseo Marina												7		
		•									_					
Demand Inform	nation				EB			N	/B			NB			SB	
Approach Move	ement			L	Т	R	L		Г	R	L	Т	R	L	Т	R
Demand (v), v	eh/h						552	10	00 3	356	17	452			1391	42
	4 1010			r	1			<u> </u>		_	_					_
Signal Informa		Deference Dhees	0			14)						†		\rightarrow
Cycle, s	90.0	Reference Phase	2		17	1 1	×						1	2	3	4
Offset, s	0	Reference Point	End	Green	14.9	24.8	33.7	0.	0 (0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.	0 (0.0	0.0		$ \leq \boldsymbol{\zeta} $	1		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	0 (0.0	0.0	_	5	6	7	8
Timer Desults				EDI		FDT		1	\A/D	т	NDI		NDT	CD		ODT
Assisted Dhase				EDL		EDI	VVD			1		-		30	-	
Assigned Phase	9				_		<u> </u>	\rightarrow	4		5	_	2		_	6
					_		<u> </u>	-	9.0)	2.0		4.0	<u> </u>	_	8.3
Phase Duration	, S	```		<u> </u>	_		<u> </u>	-	40.0	0	20.0		50.0		_	30.0
Change Period,	je Period, (Y+R c), s llow Headway (MAH), s							_	6.3	3	5.1		5.2			5.2
Max Allow Head	dway(/	MAH), s						_	3.0)	3.2		0.0			0.0
Queue Clearan	ce Time	e (g s), s						_	29.3	3	2.7					
Green Extensio	n Time	(ge), s						_	2.4		0.0		0.0			0.0
Phase Call Prob	bability							_	1.00	0	1.00					
Max Out Probal	bility								0.80	0	0.00					
Movement Gro	un Res	aults			FB			\//F	3	_		NB			SB	
Approach Move	ment			1	т	R	1	Т	F	R	1	Т	R	1	Т	R
Assigned Move	ment						7	4	1	14	5	2			6	16
Adjusted Flow F	Rate (v) veh/h				<u> </u>	385	123	1 37	71	18	471			1000	492
Adjusted Satura	ation Flo), ven/n w Rate (s) veh/h/l	n			<u> </u>	1810	188	6 16	310	1810	1809			1900	1870
	Time ((σ_{s}) s					15.2	27	3 16	6.8	0.7	6.8			23.3	23.3
Cycle Queue Cl	learanc	e Time (a c), s					15.2	27	3 16	6.8	0.7	6.8			23.3	23.3
Green Ratio (a	/C)						0.37	0.3	7 0.3	.37	0.17	0.50			0.28	0.28
Capacity (c), y	/eh/h					<u> </u>	678	141	2 60	03	300	1801			1047	515
Volume-to-Capa	acitv Ra	ntio(X)				<u> </u>	0.569	0.87	2 0.6	615	0.059	0.261			0.955	0.955
Back of Queue	(Q), ft/	/In (95 th percentile)					251.9	449	9 25	52.5	14.6	121.7			476.1	518
Back of Queue	(Q), ve	eh/ln (95 th percenti	le)			<u> </u>	10.1	18.	0 10	0.1	0.6	4.9	-		19.0	20.7
Queue Storage	Ratio (RQ) (95 th percent	ile)				0.00	0.0	0 0.0	.00	0.00	0.00			0.00	0.00
Uniform Delay (d 1). s	/veh					22.4	26.	1 22	2.9	31.6	13.0			32.1	32.1
Incremental Del	ncremental Delay (d_2), s/ven						0.7	6.0) 1.	.4	0.0	0.4			18.9	30.0
Initial Queue De	nitial Queue Delay (d 3), s/veh						0.0	0.0) 0.	0.0	0.0	0.0			0.0	0.0
Control Delay (<i>d</i>), s/veh						<u> </u>	23.1	32.	1 24	4.3	31.7	13.4			51.0	62.0
Level of Service (LOS)						<u> </u>	C	С	(С	С	B			D	E
Approach Delay, s/veh / LOS				0.0			28.9		C	-	14.1	_	В	54 6	3	
Intersection Delay, s/veh / LOS				0.0		36	5.8						_	D		_
				II			-									
Multimodal Re	Multimodal Results				EB			W	3			NB			SB	
Pedestrian LOS	LOS Score / LOS					В	2.30)	В		2.13		В	1.70)	В
Bicycle LOS Sc	ore / LC	DS					2.13	3	В		0.89		А	1.3	1	А

		nee	r olg	nunze	u int	01000		1050		innai j	,				
General Inform	nation								Intersec	tion Inf	ormatio	n		at 22 ata 1 .	به لړ
	lation	Lincott Low & Cro	ononon	Enging	oro				Duration	<u>ь</u>	0 250	<i></i>	- 1	4 4 4	
Agency		LINSCOLL, LAW & GIE	enspan	, Engine		A	1 0000			, 11	0.250				K
Analyst		JAS City of Los Annalas	1		is Dale	Aug 3	T, 2020		Агеа тур	e	Other			wÌr	
Jurisaiction		City of Los Angeles Caltrans	/	l lime P	erioa	Future	e - Pivi		PHF		0.96		4 4 4	** T = 8	* <mark>*</mark> *
Urban Street		SR-90 Westbound		Analys	is Year	2026			Analysis	Period	1> 17	:00		<u> </u>	
Intersection		Mindanao/SR-90 W	'B	File Na	ime	10PM	- Future	e.xus						414Y	* 1 *
Project Descrip	tion	Paseo Marina													
				_			_		-	-			_		
Demand Inform	nation				EB		<u> </u>	W	B	<u>.</u>	NB			SB	
Approach Move	ement			<u> </u>		R	L		R	L	1	R		1	R
Demand (v), v	eh/h						635	112	20 384	18	496			1521	47
Signal Informa	tion					IJ	1		Γ						ĸ
Cvcle, s	90.0	Reference Phase	2	1	.		E E	7					1		7
Offset, s	0	Reference Point	End		<u> </u>	L T	<u> </u>					1	2	3	4
Uncoordinated	No	Simult, Gap F/W	On	Green	14.9	24.8	33.7	0.0		0.0	_				
Force Mode	Fixed	Simult Gap N/S	On	Red	1.5	1.5	4.0	0.0		0.0	_	5	6	7	8
	TIXOU	olinial. Cup 14/C	on		1.0	1.0	1.0	0.0	0.0	0.0					
Timer Results	_			EBL	.	EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Assigned Phase	e								4	5		2			6
Case Number									9.0	2.0		4.0			8.3
Phase Duration	, S								40.0	20.0)	50.0			30.0
Change Period,	nge Period, (Y+R c), s								6.3	5.1		5.2			5.2
Max Allow Head	Allow Headway (MAH), s								3.0	3.2		0.0			0.0
Queue Clearan	ce Time	e (g s), s							34.7	2.8					
Green Extensio	n Time	(ge), s							0.0	0.0		0.0			0.0
Phase Call Prol	bability								1.00	1.00)				
Max Out Proba	bility								1.00	0.00)				
			_												
Movement Gro	oup Res	sults		<u> </u>	EB		<u> </u>	WB		<u> </u>	NB		<u> </u>	SB	
Approach Move	ement				1	R			R			R	<u> </u>	1	R
Assigned Move	ment	<u> </u>			_	ļ	7	4	14	5	2			6	16
Adjusted Flow I	Rate (v	'), veh/h				<u> </u>	443	1385	5 400	19	517			1095	539
Adjusted Satura		ow Rate (s), ven/n/i	n			<u> </u>	1810	1886	5 1610 7 10 0	1810	1/18		<u> </u>	1900	1869
Queue Service	learanc	g_s , s					10.3	32.7	10.0	0.0	0.0 8.0			20.4	24.0 24.8
Green Ratio (a		e nine (<i>g</i> ;), s					0.37	0.37	10.0 2 0.37	0.0	0.0			0.28	0.28
							678	1/11	2 603	300	1711			1047	515
Volume to Can	acity Ra	atio (X)					0.654	0.08	1 0 663	0.063	0.302			1 045	1.046
Back of Oueue	(0) ft	/In (95 th percentile)					207.5	594	9 277	15 /	136.0			607	650.1
Back of Queue	(Q), R	eh/ln (95 th percenti	le)				11 9	23.8	3 277	0.6	5.5			24.3	26.0
Queue Storage	Ratio (RQ) (95 th percent	tile)				0.00	0.00	0.00	0.00	0.00			0.00	0.00
Uniform Delay (Queue Storage Ratio (<i>RQ</i>) (95 th percentile)						23.3	27.8	3 23.4	31.7	13.4			32.6	32.6
Incremental Delay ($d = 1$), siven							1.8	19.4	2.2	0.0	0.5			40.4	52.1
Initial Queue Delay (d 3), s/veh							0.0	0.0	0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/veh							25.1	47.2	2 25.6	31.7	13.8			73.0	84.7
Level of Service	Level of Service (LOS)						С	D	С	С	В			F	F
Approach Delay, s/veh / LOS				0.0			38.9		D	14.4	1	В	76.9)	E
Intersection Delay, s/veh / LOS						50).0						D		
Multimodal Results					EB			WB			NB			SB	
Pedestrian LOS	strian LOS Score / LOS					В	2.30)	В	2.13	3	В	1.70)	В
Bicycle LOS Sc	ore / LC	DS					2.33	3	В	0.93	3	А	1.39)	А

		_	- 5									,					
General Inform	nation								Inters	secti	ion Infe	ormatio	on		J.	4241	s L
Agency		Linscott, Law & Gre	enspan	Engine	ers				Durati	ion.	h	0.250)			4 1 1	
Analyst		JAS		Analys	is Date	Aug 3	1 2020		Area T	Tvpe	<i>د</i> 	Other	-				بر ک ^ر
Jurisdiction		City of Los Angeles	/	Time P	eriod	Future	e with		PHF	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	0.96				w ^N €	↓ ↓ ↓ ↓
Lirban Street		Caltrans		Analys	ie Voar	Projec	ct - PM		Analy	ie E	Pariod	1> 17	·•00	ر الح			چ ج
		Mindonao/SD 00 W			is real	2020	E utur	o veritk	Droiod	SIS F		1-11	.00	_		<u>5</u> ††	
Dreis et Deserini	4:	Deese Marine	D	File Na	me	TUPIN	- Future		rFiojec	ci.xu	15			_	ľ	*1 1 ***Y11	۲ (۲
Project Descrip	uon	Paseo Marina															
Demand Inform	nation				FB			M	/B			NB				SB	
Approach Move	ment			1	Т	R		-	т	R		Т	R		1	Т	R
Demand (v) v	eh/h				<u> </u>		635	11	30 3	394	18	499		+	-	1518	47
Bomana (V), V	UN/II						000		00 0		10	100				1010	17
Signal Informa	tion					11	5				Τ						<u>×</u>
Cycle, s	90.0	Reference Phase	2	1	54	1 A	l 2	7						1			
Offset, s	0	Reference Point	End	Croon	14.0		227		0 0	0	0.0	_	1		2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	37	4.8	0.		0.0	0.0	_		1			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	0 0).0	0.0		5	•	6	7	8
		· · · · · · · · · · · · · · · · · · ·		R.													
Timer Results				EBL		EBT	WB	L	WBT	Г	NBL	-	NBT		SBL		SBT
Assigned Phase	Э								4		5		2				6
Case Number									9.0		2.0		4.0				8.3
Phase Duration	uration, s Period (Y+R c) s								40.0		20.0)	50.0				30.0
Change Period,	e Period, (Y+R c), s								6.3		5.1		5.2				5.2
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s							3.0		3.2		0.0				0.0
Queue Clearan	ce Time	e (g s), s							35.1		2.8						
Green Extensio	n Time	(ge),s							0.0		0.0		0.0				0.0
Phase Call Pro	bability								1.00		1.00)					
Max Out Probal	bility								1.00		0.00)					
				1	= 0				_							0.0	
Movement Gro	oup Res	sults		<u> </u>	EB		<u> </u>		5			NB		╇		SB	-
Approach Move	ement				1	R			R	<	L	1	R	┢	L	1	R
Assigned Move	ment	<u> </u>					7	4	14	4	5	2		╇		6	16
Adjusted Flow H	Rate (v), veh/h					443	139	15 41	0	19	520		┢		1093	538
Adjusted Satura		w Rate (s), veh/h/l	n				1810	188		10	1810	1/18		┢		1900	1869
Queue Service	Time (g	g s), S a Tima (a.) a					18.3	33.	1 19.	.3	0.8	8.1		┢	_	26.3	24.8
Cycle Queue C		e nme (<i>g c</i>), s					18.3	33.	1 19. 7 0.2	.3	0.8	8.1		┢		20.3	24.8
Green Ralio (g.	/C)						0.37	0.3	1 0.3	57	0.17	0.50		┢	_	0.28	0.28
Capacity (c), v	en/n	tic (X)					678	141	2 60	04	300	1711		⊢		1047	515
Volume-to-Capa		llio (X) //n (OE the nemeratile)					0.654	0.98		81	0.063	0.304		┢		1.043	1.044
Back of Queue	(Q),π/	in (95 th percentile)					297.5	609	.9 280	5.4	15.4	138.1		┢		003.5	646.8
Back of Queue	(Q), Ve	RO) (95 th percent	ie) ile)				0.00	24.4	4 11.	.5 10	0.0	5.5		┢		24.1	25.9
Uniform Delay ((d_1) s	/veh	lic)				23.3	27	9 23	6	31.7	13.4		t		32.6	32.6
Incremental Del	niform Delay (d 1), s/veh cremental Delay (d 2), s/veh						1.8	21.	0 2.6	6	0.0	0.5		┢		39.8	51.5
Initial Queue De	itial Queue Delay (<i>d</i> ₂), s/veh						0.0	0.0) 0.0	0	0.0	0.0		T		0.0	0.0
Control Delay (<i>d</i>), s/veh							25.1	48	9 26	.2	31.7	13.8		+		72.4	84.1
_evel of Service (LOS)							C	D	C		С	B				F	F
Approach Delay, s/veh / LOS				0.0			40 1				14 5		B	┢	76.3	·	F
Intersection Delay, s/ven / LOS				0.0		50).3			+	11.0			D	10.0		-
							-			أي				-			
Multimodal Re	imodal Results				EB			W	В			NB		T		SB	
Pedestrian LOS	Score	/ LOS	2.46		В	2.30)	В		2.13	;	В		1.70		В	
Bicycle LOS Sc	ore / LC	DS					2.34	1	В	T	0.93	;	А	Г	1.38		А

		or org	manze	a m	000			anto	oun	innar <u>-</u>	,				
General Information	n							Inte	ersecti	ion Infe	ormatio	on		4741	s l <u>s</u>
Agency	Linscott, Law & 0	Greenspan	. Engine	ers				Du	ration.	h	0.250			++ L L	
Analyst	JAS		Analys	is Date	e Sep 1	2020		Are	a Type	<i>د</i> 	Other		 		ار ا
Jurisdiction	City of Los Angel	es/	Time F	Period	Existi	ng - AM		PH	IF		0.98		1 ↓ ↓ 1 ↓ ↓	w∔e s	4.4
Urban Street	SR-90 Eastboun	d	Analys	is Yea	r 2020			Ana	alvsis F	Period	1> 8:0	00			
Intersection	Mindanao/SR-90	EB	File Na	ame	11AM	- Existir	ıa.xı	JS						기지 [
Project Description	Paseo Marina		1										1 "		
, ,													1		
Demand Informatio	n			EB			۷	VB			NB			SB	
Approach Movemen	t		L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			30	1226	5 20						527	752	487	1043	
			1-	_					-						
Signal Information					17	a					l		+ -		_
Cycle, s 90.	0 Reference Phas	e 2		ľ 🕇	7	Ŕ						>	2	3	€ ₄
Offset, s 0	Reference Point	End	Green	14.8	24.8	33.7	0	.0	0.0	0.0	_				
Uncoordinated No	Simult. Gap E/W	/ On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0					
Force Mode Fixe	ed Simult. Gap N/S	On	Red	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
				_							_				
Timer Results			EBL		EBI	WBI	-	VV	ві	NBL	-	NBI	SBL	-	SBI
Assigned Phase				\rightarrow	4		_		_			2	1		6
Case Number					10.0				_			7.4	2.0		4.0
Phase Duration, s					40.0				_			20.0	30.0) :	50.0
Change Period, (Y+	-R c), s			\rightarrow	6.3						\rightarrow	5.2	5.2	_	5.2
Max Allow Headway	w Headway (<i>MAH</i>), s Clearance Time (<i>q</i> s) s				3.0				_			0.0	3.2	_	0.0
Queue Clearance III	ue Clearance Time (g_s), s				30.4	<u> </u>					_	0.0	12.7	/	0.0
Green Extension Tin	ne (ge), s			+	1.2		_		-		+	0.0	3.9	<u> </u>	0.0
Phase Call Probabili	ly				1.00								1.00	,	
Max Out Probability					0.93								0.10		
Movement Group R	Results			EB			W	'B			NB			SB	
Approach Movemen	t		L	Т	R	L	Т	·	R	L	Т	R	L	Т	R
Assigned Movement	t		7	4	14						2	12	1	6	
Adjusted Flow Rate	(<i>v</i>), veh/h		31	637	634		_				791	514	497	1064	
Adjusted Saturation	Flow Rate (s), veh	/h/ln	1810	1900	1889						1807	1610	1757	1809	
Queue Service Time	e (g s), s		1.0	28.4	28.4						14.8	14.8	10.7	18.8	
Cycle Queue Cleara	nce Time (<i>g c</i>), s		1.0	28.4	28.4						14.8	14.8	10.7	18.8	
Green Ratio (g/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), veh/h			678	711	707						594	265	968	1801	
Volume-to-Capacity	Ratio (X)		0.045	0.896	0.896						1.331	1.942	0.513	0.591	
Back of Queue (Q)	, ft/ln (95 th percent	ile)	17.3	518.7	517.7						760.8	1498. 1	197.3	304.5	
Back of Queue (Q)	, veh/ln (95 th perce	entile)	0.7	20.7	20.7						30.4	59.9	7.9	12.2	
Queue Storage Ratio	o(<i>RQ</i>)(95 th perc	entile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay (d 1)		17.9	26.5	26.5						37.6	37.6	27.5	16.1		
Incremental Delay (0.0	13.6	13.8						160.2	437.3	0.2	1.4		
Initial Queue Delay (d ₃), s/veh			0.0	0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (<i>d</i>), s/veh			17.9	40.1	40.3						197.8	474.9	27.7	17.5	
Level of Service (LO		В	D	D						F	F	С	В		
Approach Delay, s/v		39.7		D	0.0				307.	0	F	20.8	3	С	
Intersection Delay, s				11	6.3							F			
Multimodal Results			FR			\/\/	′B			NR			SB		
Pedestrian I OS Sco	Itimodal Results				B	2 47	,	-	B	1 70		В	1 94		В
Bicycle LOS Score /	LOS	.0S			B	,				1.56		B	1.78	3	B

 $Copyright @ {\tt 2020} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

		nee	. e.g						anto	ean	iiiiai j	,				
General Inform	nation								Inte	arsact	ion Inf	ormativ	n		***	، ل <u>،</u>
Agency	lation	Linscott Law & Gre	ensnan	Engine	aars				Dur	ration	h	0 250	<i></i>		++ , ,	
Apolyet			спэрап		ie Dat	o Son 1	2020		Aro	a Type		Other		_3 _3		<u>م</u>
lurisdiction		City of Los Angeles	/	Time F	Deriod	E Sep i Evisti	, 2020		PHI	атурс Е	-	0 98		→ <u></u> _* ->	N w‡e	<u>}</u> ∳
		Caltrans			chou	Proje	ct - AM		L			0.30		1 4 M		7 4 1
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2020			Ana	alysis I	Period	1> 8:	00		141	
Intersection		Mindanao/SR-90 El	3	File Na	ame	11AM	- Existir	ng wi	th Pr	oject.x	us			ĥ	* 1 ***** 1	۲ ۲ ۳
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			٧	٧B			NB			SB	
Approach Move	ement			L	Т	R	L	Τ	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			30	1226	3 20						531	752	531	1052	
Signal Informa	tion				1 I	16	7					l				_
Cycle, s	90.0	Reference Phase	2		1 1	~ ľ	Ŕ								3	-€ ₄
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0.	0	0.0	0.0				5	—
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0.	0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	0	0.0	0.0		5	6	7	8
				_											_	
Timer Results				EBL	-	EBT	WBI	-	W	BT	NBL	-	NBT	SBL	-	SBT
Assigned Phas	e					4	<u> </u>	_					2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	i, s					40.0							20.0	30.0		50.0
Change Period	, (Y+ R	c), S				6.3							5.2	5.2		5.2
Max Allow Hea	Headway (<i>MAH</i>), s arance Time (a s) s					3.0							0.0	3.2		0.0
Queue Clearan	e Clearance Time (g s), s					30.4								13.9		
Green Extensio	n Time	(ge), s				1.2							0.0	3.9		0.0
Phase Call Pro	bability					1.00								1.00		
Max Out Proba	bility					0.93								0.21		
Mayamant Cra	un Dee				ГР			\\/	D			ND			CD.	
Approach Move	mont	Suits			ED	D		VV T		D	1		D		о Т	D
Assigned Move	ment				1	14		1		IX I	<u> </u>	2	12	L 1	6	IX.
Adjusted Flow	Pato (v) voh/h		7	637	634						705	514	542	1073	
Adjusted Flow I	tion Ele), ven/n w Poto (c) vob/b/l	n	1910	1000	1990			-			190	1610	1757	1900	
			11	1010	28.4	28.4						14.9	14.9	11.0	1003	
	learance	g(x), s		1.0	28.4	20.4			-			14.0	14.0	11.9	19.1	
Green Ratio (c mile (<i>gt</i>), 3		0.37	0.37	0.37				-		0.16	0.16	0.28	0.50	
	/oh/h			678	711	707			-			505	265	968	1801	
Volume-to-Cap	acity Ra	atio (X)		0/0	0.896	0.896				-		1 337	1 9/2	0.560	0 596	
Back of Oueue	(0) ft	/In (95 th percentile)		17.3	518.7	517.7						770 1	1/08	21/ 8	307.3	
Dack of Queue	(((), 11/	in (95 in percentile)		17.5	510.7	517.7						770.1	1490.	214.0	507.5	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	0.7	20.7	20.7						30.8	59.9	8.6	12.3	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay (d_1), s/veh				17.9	26.5	26.5						37.6	37.6	27.9	16.1	
Incremental Delay (<i>d</i> ₂), s/veh				0.0	13.6	13.8						163.0	437.3	0.4	1.5	
Initial Queue Delay (d 3), s/veh				0.0	0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (d), s/veh				17.9	40.1	40.3						200.6	474.9	28.4	17.6	
Level of Service (LOS)				В	D	D						F	F	С	В	
Approach Delay, s/veh / LOS				39.7	7	D	0.0				308.	3	F	21.2		С
Intersection Delay, s/veh / LOS						11	5.8							F		
Multimodal Re	Aultimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	S Score	/ LOS	2.32	2	В	2.47	·	E	3	1.70		В	1.94		В	
Bicycle LOS Sc	ore / LC	DS	OS								1.57		В	1.82		В

		1100	i oig	nanze	a m			103	unto	oun	innar <u>.</u>	y				
General Inform	nation								Inte	ersect	ion Inf	ormatio	on	k	4241.	× l _a
Agency		Linscott. Law & Gre	enspan	. Engine	eers				Du	ration.	h	0.250			+ + L L	
Analyst		JAS		Analys	sis Dat	e Sep 1	2020		Are	a Type	<u>,</u>	Other		- <u>-</u> 7 - 4		<u>بر</u>
Jurisdiction		City of Los Angeles	/	Time F	Period	Futur	e - AM		PH	IF		0.98		→ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	w ‡ e	***
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2026			Ana	alvsis I	Period	1> 8:(00			
Intersection		Mindanao/SR-90 El	В	File Na	ame	11AM	- Future	e.xus	<u> </u>						۱۴۲ ۱۳۴۰ ۲	× (*
Project Descrip	tion	Paseo Marina												1		
Demand Inform	nation				EB			٧	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			36	1348	3 21						567	808	534	1131	
Cinnel Informe				. <u> </u>	5 1	<u> </u>	Г	-		1	_					
		Reference Dhase	2		+	10	2					Ļ		ta		X
Offect o	90.0	Reference Pridse	Z End		1	7	R						1	2	3	
Uncoordinated	No	Simult Con E/W	On	Green	14.8	24.8	33.7	0	.0	0.0	0.0					
	Tixed	Simult Cap N/S	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0	-			-	0
Force Mode	Fixed	Simult. Gap N/S	Un	Rea	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	1	8
Timer Results				EBL	-	EBT	WB	L	W	/BT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	i, S					40.0							20.0	30.0)	50.0
Change Period	ange Period, (Y+R c), s					6.3							5.2	5.2		5.2
Max Allow Head	ax Allow Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
Queue Clearan	ax Allow Headway (<i>MAH</i>), s Jeue Clearance Time (<i>g</i> s), s					34.9								14.0)	
Green Extensio	n Time	(ge), s				0.0							0.0	4.1		0.0
Phase Call Pro	bability					1.00								1.00)	
Max Out Proba	bility					1.00								0.24		
Movement Gro		sulte			ER			١٨/	'R	-		NB			SB	
Approach Move	ement	Suits			Т	R		Т	·	R	1	T	R	<u> </u>	Т	R
Assigned Move	ment			7	4	14	_		+		_	2	12	1	6	
Adjusted Flow F	Rate (v) veh/h		.37	700	697			-			851	552	545	1154	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1810	1900	1890			-			1807	1610	1757	1809	
Queue Service	Time (a	α_s) s		1.2	32.8	32.9					_	14.8	14.8	12.0	21.2	
Cycle Queue C	learanc	e Time (<i>q</i> _c), s		1.2	32.8	32.9			+			14.8	14.8	12.0	21.2	
Green Ratio (g	/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						594	265	968	1801	
Volume-to-Cap	acity Ra	atio(X)		0.054	0.984	0.985						1.431	2.086	0.563	0.641	
Back of Queue	(Q), ft/	/In (95 th percentile))	20.9	668.3	668.1			Τ			902.7	1683. 9	215.8	336.3	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	0.8	26.7	26.7						36.1	67.4	8.6	13.5	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay ((d1), s	/veh		18.0	27.9	27.9						37.6	37.6	28.0	16.7	
Incremental Delay (d 2), s/veh				0.0	29.6	29.9						203.6	501.5	0.5	1.8	
Initial Queue Delay (d ȝ), s/veh				0.0	0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (<i>d</i>), s/veh				18.0	57.4	57.8						241.2	539.1	28.4	18.4	
Level of Service		В	Е	E						F	F	С	В			
Approach Delay, s/veh / LOS				56.6	6	Е	0.0				358.	5	F	21.6	6	С
Intersection Delay, s/veh / LOS						13	6.9							F		
Multimodal Ba			ED			10	'B			NP			Q P			
Pedestrian LOS		2.20		P	2.47	,	יי	B	1 70		B	1.04	36	B		
Ricycle I OS So	destrian LOS Score / LOS				7	B	2.47		E		1.70		B	1.94		B
2.0,000000				1.07							1.00		-	1.00		-

		nee	l eig	Indineo	or inte	01000			anto	ean	innar j	,				
General Inform	nation								Inte	orsact	ion Inf	ormatio	n n		***	۰ L
	auon	Lincott Low & Gro	onenan	Engin	ore					ration		0 250	<i></i>		↓↓↓↓	
Apolyot			enspan			Son 1	2020		Are			Othor		1		۲ <u>.</u> ۲
Analyst		City of Los Angeles	1	Time	oriod		, 2020			за туре	;			→_^ *	w↓e	2-
Junsaiction		Caltrans		Time F	Penod	Proje	e with ct - AM					0.96		4 M		1 1 1
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2026			Ana	alysis I	Period	1> 8:0	00		1 10 7	×
Intersection		Mindanao/SR-90 El	3	File Na	ame	11AM	- Future	e witl	h Pro	oject.xu	s			ĥ	4 1 4 17 1	▼ [₹]
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R	L	Г	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			36	1348	8 21						571	808	578	1140	
					1											1
Signal Informa	ation				I I	17		Τ		Γ						
Cycle, s	90.0	Reference Phase	2			, 	ĸ							P	_	-
Offset, s	0	Reference Point	End	Green	14 8	24.8	33.7	0	0	0.0	0.0	_	1	2	3	¥ 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	W	/BT	NBL	-	NBT	SBL	-	SBT
Assigned Phas	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	1, S					40.0							20.0	30.0) :	50.0
Change Period	ige Period, (Y+ <i>R c</i>), s Allow Headway (<i>MAH</i>), s					6.3							5.2	5.2		5.2
Max Allow Hea	Allow Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
Queue Clearan	x Allow Headway (<i>MAH</i>), s eue Clearance Time (<i>g</i> s), s					34.9								15.2	2	
Green Extensio	ieue Clearance Time (g s), s een Extension Time (g e), s					0.0							0.0	4.0		0.0
Phase Call Pro	bability					1.00								1.00)	
Max Out Proba	bility					1.00								0.32	2	
Movement Gro	oup Res	sults			EB			W	'B			NB			SB	
Approach Move	ement			L	Т	R	L	Т	·	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow I	Rate(<i>v</i>), veh/h		37	700	697						855	552	590	1163	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890						1808	1610	1757	1809	
Queue Service	Time (g	g s), S		1.2	32.8	32.9						14.8	14.8	13.2	21.4	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		1.2	32.8	32.9						14.8	14.8	13.2	21.4	
Green Ratio (g	ı/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						595	265	968	1801	
Volume-to-Cap	acity Ra	itio(X)		0.054	0.984	0.985						1.438	2.086	0.609	0.646	
Back of Queue	(Q), ft/	/In (95 th percentile)		20.9	668.3	668.1						912.2	1683. 9	233.9	339.2	
Back of Queue	(Q) Ve	eh/In (95 th percenti	le)	0.8	26.7	26.7						36.5	67.4	94	13.6	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00		_	+			0.00	0.00	0.00	0.00	
Uniform Delay	(d_1) s	/veh		18.0	27.9	27.9			-			37.6	37.6	28.4	16.7	
Incremental De	$(\mathbf{d}_{1}), \mathbf{d}_{2}$) s/veh		0.0	29.6	29.9			-			206.4	501.5	0.8	1.8	
Initial Queue D	Incremental Delay (d ₂), s/veh			0.0	0.0	0.0		_				0.0	0.0	0.0	0.0	
Initial Queue Delay (d 3), s/veh				18.0	57.4	57.8						244 0	539 1	29.2	18.5	
Level of Service (LOS)				R	F	57.0 F		_		_		E	F	20.2 C	R	
Level of Service (LOS) Approach Delay, s/yeb / LOS				56.6		F	0.0				350	ч Э	F	22.1		C
Approach Delay, s/veh / LOS				00.0		12	63		_	_	009.		1	F		0
	ntersection Delay, s/veh / LOS					13	5.0									
Multimodal Re	lultimodal Results				EB			W	'B			NB			SB	
Pedestrian LOS	destrian LOS Score / LOS				2	В	2.47	,	E	в	1.70		В	1.94		В
Bicycle LOS So	odal Results ian LOS Score / LOS LOS Score / LOS				/	В					1.65		В	1.93		В

										• •		,				
General Inform	nation								Inte	orsocti	ion Infr	ormatio	n		**	s l <u>s</u>
	ation	Linscott Law & Gre	onenan	Engine	ore					ration	b	0 250			++ L L	
Apolyot			спэрап			Son 1	2020		Are		\	Othor		1		۲. ۲.
Analyst		City of Los Angeles	/	Time		Evicti	, 2020			атуре ⊏	5			**	w↓e	2- *
Junsaiction		Caltrans			Penod	Exisu	ig - Pivi			г 		0.96		14 Yr		1 1
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2020			Ana	alysis F	Period	1> 16	:45		1 10 7	
Intersection		Mindanao/SR-90 El	3	File Na	ame	11PM	- Existir	ıg.xı	ls					1	1 1 1 4 1 1 1	* (*
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			18	1177	18						476	681	727	1154	
				1											- 0.	
Signal Informa	ation				↓	16	7									_
Cycle, s	90.0	Reference Phase	2		1 🕇	, 1	ĸ							N	-	- € ,
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0.	.0	0.0	0.0	_				
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0.	.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	.0	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WBI	-	W	BΤ	NBL	-	NBT	SBI	-	SBT
Assigned Phas	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	1, S					40.0							20.0	30.0)	50.0
Change Period	nange Period, (Y+R c), s					6.3							5.2	5.2		5.2
Max Allow Hea	ax Allow Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
Queue Clearan	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>g</i> s), s					28.7								19.4	L I	
Green Extensio	n Time	(ge),s				1.5							0.0	3.0		0.0
Phase Call Pro	bability					1.00								1.00)	
Max Out Proba	bility					0.57								0.72	2	
Movement Gro	oup Res	ults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow I	Rate(<i>v</i>), veh/h		18	611	608						715	466	742	1178	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890						1807	1610	1757	1809	
Queue Service	Time (g	gs), s		0.6	26.7	26.7						14.8	14.8	17.4	21.8	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		0.6	26.7	26.7						14.8	14.8	17.4	21.8	
Green Ratio (g	ı∕C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						594	265	968	1801	
Volume-to-Cap	acity Ra	itio(X)		0.027	0.859	0.859						1.203	1.758	0.766	0.654	
Back of Queue	(Q), ft/	/In (95 th percentile)		10.3	474.6	473						587.7	1261. 5	303.4	344.5	
Back of Queue	(Q). Ve	eh/In (95 th percenti	le)	0.4	19.0	18.9			-			23.5	50.5	12.1	13.8	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00		_	+			0.00	0.00	0.00	0.00	
Uniform Delay	(d_1) s	/veh		17.8	26.0	26.0				_		37.6	37.6	29.9	16.8	
Incremental De	lav (<i>d</i> 2) s/veh		0.0	99	10.0			+			106.8	356.4	34	19	
Initial Queue D	_	0.0	0.0	0.0			+		_	0.0	0.0	0.0	0.0			
Control Delay (d), s/veh				17.8	35.0	35.0						144 /	394.0	33.3	18.7	
Level of Sorvior		R	- 00.9	- л						г тт.4 Е	55 4 .0	°	R			
Approach Dolog		25.6			0.0				242	2	F	24.3		C		
Approach Delay, s/veh / LOS				35.0	,	0	7.0				242.0	5	F	24.3 E	,	U
Intersection Delay, s/veh / LOS						ð								1		
Multimodal Re			EB			W	В			NB			SB			
Pedestrian LOS	edestrian LOS Score / LOS					В	2.47	·	E	3	1.70		В	1.94	-	В
Bicycle LOS So	ore / LC	DS		1.51		В					1.46		А	2.07	7	В

			- 5		-							,				
General Inform	nation								Inte	ersect	ion Info	ormatio	on		4 7 40 1 1	ι L _k
Agency		Linscott Law & Gre	enspan	Engin	eers				Dur	ration	h	0 250)		∔∔⊾⊾	
Analyst		JAS	onopun	Analys	sis Dat	e Sen í	2020		Are	a Type	ر ۱۰	Othe	- -	 24		<u>بر</u> لا
Jurisdiction		City of Los Angeles	1	Time F	Period	Existi	ng with		PH	F	,	0.98		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	w ∲ E	↓ ↓ ↓
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2020	UL - FIVI		Ana	alysis I	Period	1> 16	6:45	- <u>-</u>		1
Intersection		Mindanao/SR-90 El	3	File Na	ame	11PM	- Existir	na w	ith Pr	roiect.x	us			-		₹ (*
Proiect Descrip	tion	Paseo Marina						5		,				1 "		
····,····																
Demand Inform	nation				EB			٧	VB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			18	1177	7 18						479	681	725	1154	
															<u> </u>	
Signal Informa	tion		_		1	II.	2	Т								
Cycle, s	90.0	Reference Phase	2		1	,	ĸ							N	_	÷
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0	0	0.0	0.0	_	1		3	X 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WBI	-	W	'BT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	i, s					40.0							20.0	30.0) :	50.0
Change Period	eriod, (Y+R c), s Headway (MAH) s					6.3							5.2	5.2		5.2
Max Allow Head	v Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
Queue Clearan	Allow Headway (<i>MAH</i>), s ue Clearance Time (<i>g</i> s), s					28.7								19.4		
Green Extensio	n Time	(ge), s				1.5							0.0	3.0		0.0
Phase Call Pro	bability					1.00								1.00)	
Max Out Proba	bility					0.57								0.71		
Movement Gro	oup Res	sults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т	·	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow I	Rate(<i>v</i>), veh/h		18	611	608						718	466	740	1178	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890						1807	1610	1757	1809	
Queue Service	Time (🤉	g s), s		0.6	26.7	26.7						14.8	14.8	17.4	21.8	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		0.6	26.7	26.7						14.8	14.8	17.4	21.8	
Green Ratio (g	/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						594	265	968	1801	
Volume-to-Cap	acity Ra	atio(X)		0.027	0.859	0.859						1.208	1.758	0.764	0.654	
Back of Queue	(Q), ft	/In (95 th percentile)		10.3	474.6	473						594.2	1261. 5	302.5	344.5	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	0.4	19.0	18.9						23.8	50.5	12.1	13.8	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay ((d1).s	/veh	,	17.8	26.0	26.0						37.6	37.6	29.9	16.8	
Incremental De	Jniform Delay (d 1), s/veh			0.0	9.9	10.0			+			108.7	356.4	3.3	1.9	
Initial Queue De	ncremental Delay (d ₂), s/veh nitial Queue Delay (d ȝ), s/veh			0.0	0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (<i>d</i>), s/veh				17.8	35.9	35.9						146.3	394.0	33.2	18.7	
Level of Service (LOS)				В	D	D		_				F	F	С	В	
Approach Delay, s/veh / LOS				35.6			0.0				243	7	F	24.3	-	С
Intersection Delay, s/ven / LOS						8	7.4						-	F		-
	tersection Delay, s/ven / LOS					5										
Multimodal Re	Iltimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	n LOS Score / LOS				2	В	2.47	'	E	3	1.70		В	1.94		В
Bicycle LOS Sc	ore / LC	DS		1.51	1	В					1.46	;	А	2.07	· _	В

		nee	r org	manize		.01000		00	unto	oun	iiiiai j	,				
Gonoral Inform	nation								Int	orcoct	ion Infr	ormativ	nn -		4.441	يد لي
	ation	Lincott Low & Gro	onenan	Engin	ore					ration		0 250			11 L L	
Apolyot			enspan			Son 1	2020		Arc			Othor		1		۲. بر
Analyst		JAO City of Loo Angoloo	1	Time	oriod		, 2020			за туре	;				w↓e	
Junsaiction		Caltrans	/		enou	Fulur						0.90		***		4 → 12
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2026			Ana	alysis F	Period	1> 16	:45		44.8	
Intersection		Mindanao/SR-90 El	В	File Na	ame	11PM	l - Future	e.xus	3					5	 1 야 []	* (*
Project Descrip	tion	Paseo Marina												1		
		•		0												
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R			Т	R		Т	R	L	Т	R
Demand (v), v	eh/h			20	1280) 19						523	772	794	1297	
	4 1010			. <u> </u>	N	5 11				1						
Signal Informa		Deference Dhase	2		•	10	2					ļ		tz.		~
Cycle, s	90.0	Reference Priase	Z End		1	7	F						1	2	3	4
Unseed stad	U	Simult Can 5/M	Enu	Green	14.8	24.8	33.7	0	.0	0.0	0.0					
	INO Fixed	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0	_			_	0
Force Mode	Fixed	Simult. Gap N/S	On	Rea	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
Timer Results				FBI		FBT	WB		W	/BT	NBI		NBT	SBI		SBT
Assigned Phase						4		-					2	1	-	6
Case Number						10.0							74	2.0		4.0
Phase Duration	s			<u> </u>		40.0							7. 4 20.0	30.0		-4.0 50.0
Change Period	hange Period, ($Y+R_c$), s					63	-						5.2	5.2		5.2
Max Allow Hear	hange Period, ($Y+Rc$), s ax Allow Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
	ax Allow Headway (<i>MAH</i>), s					32.3							0.0	21.5		0.0
Green Extensio	n Time	(ge), s				0.6							0.0	2.2		0.0
Phase Call Prol	babilitv	(3)				1.00								1.00	,	
Max Out Proba	bilitv					1.00								0.99	,	
-	,															
Movement Gro	oup Res	sults			EB	-		W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow F	Rate(<i>v</i>), veh/h		20	664	661						794	528	810	1323	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890						1805	1610	1757	1809	
Queue Service	Time (g	g s), S		0.6	30.3	30.3						14.8	14.8	19.5	26.1	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		0.6	30.3	30.3						14.8	14.8	19.5	26.1	
Green Ratio (g	/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (<i>c</i>), v	reh/h			678	711	708						594	265	968	1801	
Volume-to-Capa	acity Ra	itio(X)		0.030	0.934	0.934						1.337	1.993	0.837	0.735	
Back of Queue	(Q), ft/	In (95 th percentile)		11.5	574.1	573.4						768.5	1564.	343.2	403.2	
Back of Output	(0)	ah/In (95 th paraanti	(ما	0.5	23.0	22.0			-			30.7	62.6	13.7	16.1	
	Patio (PO(0.5 th percent)		0.0	23.0	22.9			-	_		0.00	02.0	0.00	0.00	
Liniform Delay (/veb		17.8	27.1	27.1			-			37.6	37.6	30.7	17.0	
Incremental De		0.0	10.1	10.3						162.8	460.2	6.1	27			
Initial Queue De		0.0	0.0	19.5			-			0.0	400.2	0.1	2.7			
Control Delay (17.8	46.2	46.3			_			200 /	407 R	36.8	20.6			
Level of Service		R	-70.2			_		_		200.4	-57.0	л П	20.0 C			
Approach Delay		15 9			0.0				310 (2	F	26.9		C		
Intersection Do		40.0	,	11	2.6				019.4	-	1	20.0 F		0		
Intersection Delay, s/ven / LOS							2.0									
Multimodal Re			EB			W	В			NB			SB			
Pedestrian LOS	Pedestrian LOS Score / LOS					В	2.47	,	E	в	1.70		В	1.94		В
Bicycle LOS Sc	ore / LC	DS		1.60)	В					1.58		В	2.25	;	В

			- 5									,				
General Inform	nation								Int	ersect	ion Info	ormatio	on		474+1	× l <u>x</u>
Agency		Linscott Law & Gre	ensnan	Engine	ers					iration	h	0 250			↓↓↓↓	
Analyst		JAS	onopun	Analys	sis Date	Sen 1	2020		Are	ea Tyne	ر ۱۰	Other		 25		۲. ۲.
Jurisdiction		City of Los Angeles	1	Time F	Period	Future	e with		PH	IF	,	0.98		ר ק ק ק ק ק ק	w ∲ E	2
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2026	JL - F IVI		An	alysis F	Period	1> 16	:45	- ^x		7
Intersection		Mindanao/SR-90 El	3	File Na	ame	11PM	- Future	e wit	h Pro	j piect.xu	s					- ([₹]
Proiect Descrip	tion	Paseo Marina								,				1 -		
· · · · · · · · · · · · · · · · · · ·														1		
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			20	1280) 19						526	772	792	1297	
							-					_				
Signal Informa	ation		-		↓ ↓	12	2					ļ		†		
Cycle, s	90.0	Reference Phase	2		Î 🕇	7	R						1	2	3	♣ ₄
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0	.0	0.0	0.0			•		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
Timer Results				EBI		FRT	W/BI	1	١٨	/BT	NRI		NRT	SBI		SBT
Assigned Phase	0				-			-			NDL		2	1	-	6
Case Number	6					10.0						+	7.4	2.0		4.0
Phase Duration						40.0				-			20.0	2.0		4.0 50.0
Change Duration	(V+D	-) C				63		-		-		+	20.0 5.2	50.0	, <u> </u>	50.0
Max Allow Heat	nange Period, (Y+ <i>R c</i>), s ax Allow Headway (<i>MAH</i>), s					3.0				-			0.0	3.2		0.0
Queue Clearan	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>q</i> s), s					32.3							0.0	21.5	5	0.0
Green Extensio	n Time	(ge), s				0.6							0.0	2.2		0.0
Phase Call Pro	bability					1.00								1.00)	
Max Out Proba	bility					1.00								0.98	3	
Movement Gro	oup Res	sults			EB			W	'B			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14			\rightarrow			2	12	1	6	
Adjusted Flow I	Rate (v), veh/h		20	664	661			\rightarrow			797	528	808	1323	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890			\rightarrow			1805	1610	1757	1809	
Queue Service	Time (g	g s), s		0.6	30.3	30.3						14.8	14.8	19.5	26.1	
Cycle Queue C	learanc	e Time (g c), s		0.6	30.3	30.3						14.8	14.8	19.5	26.1	
Green Ratio (g	ı/C)			0.37	0.37	0.37			\rightarrow			0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708			\rightarrow	_		594	265	968	1801	
Volume-to-Cap	acity Ra	atio (X)		0.030	0.934	0.934			\rightarrow			1.342	1.993	0.835	0.735	
Back of Queue	(Q), ft/	/In (95 th percentile)		11.5	574.1	573.4						775.4	1564. 6	341.7	403.2	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	0.5	23.0	22.9						31.0	62.6	13.7	16.1	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay	(d1), s	/veh		17.8	27.1	27.1						37.6	37.6	30.7	17.9	
Incremental Delay (<i>d</i> 1), s/ven				0.0	19.1	19.3						164.9	460.2	6.0	2.7	
Initial Queue Delay (d 3), s/veh				0.0	0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (17.8	46.2	46.3						202.5	497.8	36.7	20.6			
Level of Service		В	D	D						F	F	D	С			
Approach Dela		45.8	3	D	0.0				320.2	2	F	26.7	·	С		
Intersection De				11	3.0							F				
Multimodal Re			EB			W	B			NB			SB			
Pedestrian LOS	S Score	/LOS		2.32	2	В	2.47	'		В	1.70		В	1.94		В
Bicycle LOS Sc	core / LC	DS		1.60)	В					1.58		В	2.25	5	В

			Ŭ								,				
General Inform	nation								Interse	ction Inf	ormati	on	2	4241	× Ļ
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duration	ո, h	0.250)		444	
Analvst		JAS	<u> </u>	Analvs	is Date	Aug 1	4. 2020		Area Tv	pe	Othe	~			۲. ا
Jurisdiction		City of Los Angeles		Time F	Period	Existir	na - AM		PHF		0.96		-> -\$-\$	whe	
Urban Street		Mindanao Way		Analys	is Yea	2020	.9 /		Analysis	Period	1> 7:	45			 ₹
Intersection		, Mindanao/La Villa N	Iarina	File Na	ame	12AM	- Existir	na.xu	s					5 4 17	
Project Descrip	tion	Paseo Marina				1							- 5	11r বাকপা	* (*
, ,															
Demand Inform	nation				EB			W	/B		NB			SB	
Approach Move	ement			L	Т	R	L		r r	L	Т	R	L	Т	R
Demand (v), v	eh/h			17	1	10	64	() 150	6 23	1079	9 54	61	965	27
				1 					1						
Signal Informa	tion				215	el l'a	. 3 4	4							_
Cycle, s	90.0	Reference Phase	2		•	51	Ř					1	2	3	€ ₄
Offset, s	0	Reference Point	End	Green	10.1	50.6	14.7	0.0	0.0	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.0	0.0	0.0			∇		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7	1.7	0.0	0.0	0.0		5	6	7	8
										I				_	
Timer Results				EBL	-	EBT	WB		WBT	NB		NBT	SBL		SBT
Assigned Phase	e					4		\rightarrow	8			6	5		2
Case Number						8.0		\rightarrow	8.0			6.3	1.0		4.0
Phase Duration	, S					20.0		\rightarrow	20.0			55.0	15.0)	70.0
Change Period,	nge Period, (Y+R c), s : Allow Headway (<i>MAH</i>), s					5.3		\rightarrow	5.3			4.4	4.9		4.4
Max Allow Head	IX Allow Headway (MAH), s					3.4		\rightarrow	3.4			0.0	3.2		0.0
Queue Clearan	ueue Clearance Time (g_s), s					3.3		_	14.8				3.0		
Green Extensio	n Time	(ge), s				0.5		\rightarrow	0.0			0.0	0.0		0.0
Phase Call Prol	bability					1.00		\rightarrow	1.00				1.00)	
Max Out Proba	bility					0.00			1.00				0.00)	_
Movement Gro	un Res	aults			FB			V/F	3		NB	_		SB	
Approach Move	ment				Т	R		Т	R	1	Т	R		Т	R
Assigned Move	ment			7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow F	Rate (v) veh/h		· ·	29			229	3	. 24	595	585	64		514
Adjusted Satura	ation Flo	w Rate (s) veh/h/l	n		1168			157	4	555	1900	1868	1810	1900	1881
Queue Service	Time ((γ_{s}) s			0.0			10	3	1.8	18.0	18.0	10	92	92
Cycle Queue C	learanc	e Time (a_c) s			1.3			12	8	1.8	18.0	18.0	1.0	9.2	9.2
Green Ratio (g	/C)	5 mile (g c), c			0.16			0.1	6	0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c) y	/eh/h				255			309	2 7	392	1068	1050	458	1385	1371
Volume-to-Cap	acitv Ra	tio (X)			0,114			0.74	12	0.061	0.557	0.557	0.139	0.375	0.375
Back of Queue	(Q) ft/	(In (95 th percentile)			24.6			236	.9	10.6	302.9	299.3	14.1	139.4	138.1
Back of Queue	(Q) ve	eh/In (95 th percenti	le)		1.0			9.5	5	0.4	12.1	12.0	0.6	5.6	5.5
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.0	0	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1).s	/veh	,		32.0			36.	8	9.0	12.6	12.6	6.8	4.6	4.6
Incremental De	lay (d 2), s/veh			0.1			8.2	2	0.3	2.1	2.1	0.1	0.8	0.8
Initial Queue De	Incremental Delay (d ₂), s/veh Initial Queue Delay (d ȝ), s/veh				0.0			0.0)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/veh					32.1			45.	0	9.3	14.7	14.7	6.9	5.3	5.3
Level of Service (LOS)					С			D		Α	В	В	Α	Α	A
Approach Delay, s/veh / LOS				32.1		С	45.0		D	14.0	3	В	5.4		A
Intersection Delay, s/ven / LOS						13	3.6		_				B		
							-								
Multimodal Re	Iultimodal Results				EB			WE	3		NB			SB	
Pedestrian LOS	Score	/ LOS		2.30		В	2.30)	В	1.7	1	В	1.71		В
Bicycle LOS Sc	ore / LC	DS		0.54		А	0.87	'	А	1.48	3	А	1.39)	A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

General Inform	nation									Intersec	tion Inf	ormati	on	2	4441	× Ļ
Agency		Linscott, Law & Gre	enspan	, Engine	ers					Duration	, h	0.250)		4 + 4	
Analyst		JAS		Analys	is Dat	e Aug '	14, 2	2020		Area Typ	e	Othe	-	4		4
Jurisdiction		City of Los Angeles		Time F	Period	Existi Proje	ing w ct - A	vith AM		PHF		0.96		4 1 4	w∔e 8	∲ ∲ *
Urban Street		Mindanao Way		Analys	is Yea	r 2020				Analysis	Period	1> 7:	45		K A A .	
Intersection		Mindanao/La Villa N	<i>l</i> arina	File Na	ame	12AN	1 - E	xistin	g wit	h Project	.xus				<u>]</u>]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	* (*
Project Descrip	tion	Paseo Marina							-					1		
		•														
Demand Inform	nation				EB				W	В		NB			SB	
Approach Move	ement			L	Т	R		L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			17	1	10		64	0	156	23	1083	3 54	61	974	27
	4!				F 111	E DE			_							
Signal Informa		Deference Dhase	0	1	245	¥¥	B	a≩	=							
Cycle, s	90.0	Reference Phase	Z		[- [<u>5</u> 1	rt.	3					1	2	3	↔ 4
Unseerdingtod	U	Simult Cap 5/M	Ena	Green	10.1	50.6	1	4.7	0.0	0.0	0.0					5
Uncoordinated	INO Fixed	Simult. Gap E/W	On	Yellow	3.6	3.7	3	3.6	0.0	0.0	0.0	_	Y	Ψ.	_	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7		./	0.0	0.0	0.0		5	6	1	8
Timer Results				EBL		EBT		WBL		WBT	NBI	-	NBT	SBL	-	SBT
Assigned Phase	Э					4	Г			8			6	5		2
Case Number						8.0	Г			8.0			6.3	1.0		4.0
Phase Duration	, S					20.0				20.0			55.0	15.0) .	70.0
Change Period,	nge Period, ($Y+Rc$), s					5.3	T			5.3			4.4	4.9		4.4
Max Allow Head	nge Period,(Y+R c), s : Allow Headway(<i>MAH</i>), s					3.4	Г			3.4			0.0	3.2		0.0
Queue Clearan	ce Time	e (gs), s				3.3	\square			14.8				3.0		
Green Extensio	n Time	(ge),s				0.5	Г			0.0			0.0	0.0		0.0
Phase Call Pro	bability					1.00				1.00				1.00)	
Max Out Probal	bility					0.00				1.00				0.00)	
		•					_							1		_
Movement Gro	oup Res	sults			EB				WB	5	<u> </u>	NB			SB	
Approach Move	ement				1	R		L	1	R			R	L		R
Assigned Move	ment	<u> </u>		/	4	14	-	3	8	18	1	6	16	5	2	12
Adjusted Flow F), ven/n			29		⊢	-	229	4	24	597	587	64	524	519
Adjusted Satura			n		1168		⊢	-	1574	4	550	1900	1868	1810	1900	1882
Queue Service	Time (g	J_{s}), S			1.2		⊢		10.3		1.8	10.1	10.1	1.0	9.3	9.3
Croop Patia (a		e fille (<i>g c</i>), s			0.16	+	H	-	0.16	2	0.56	10.1	0.56	1.0	9.3	9.3
Green Ralio (g	/C)				0.10		⊢		200		0.50	1069	1050	0.70	0.73	0.73
Valume to Car	en/n	tio (X)			255		⊢	-	309	2	389	0.550	1050	457	1385	1372
Back of Oueue	(0) ft	$(10 (\Lambda))$			24.6		⊢	-	236 (2 0	10.6	303.8	300.7	14 1	140.7	130.5
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	ah/In (95 th percentie)	(ما		1.0		H	-	250.	3	0.4	12.2	12.0	0.6	5.6	5.6
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00		H		0.00)	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d_1) s	/veh			32.0	-	t		36.8	3	9.0	12.6	12.6	6.9	4.6	4.6
Incremental De	Uniform Delay (d 1), s/veh					-	t		8.2	,	0.3	2.1	2.2	0.1	0.8	0.8
Initial Queue De	ncremental Delay (d 2), s/ven nitial Queue Delay (d 3), s/veh					-	t		0.0	-	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (Control Delay (<i>d</i>), s/veh					-	t		45.0)	9.3	14.7	14.7	6.9	5.4	5.4
Level of Service			C				D		A	В	В	A	A	A		
Approach Delay		32.1	Ť	С		45.0		D	14.6	}	B	5.4		A		
Intersection Delay, s/veh / LOS						- 1	3.6			_				B		
	The section Delay, siven / LOS						-									
Multimodal Re	ultimodal Results								WB	3		NB			SB	
Pedestrian LOS	Score	/LOS		2.30		В		2.30		В	1.71		В	1.71		В
Bicycle LOS Sc	ore / LC	DS		0.54		А		0.87		А	1.48	3	A	1.40)	A

			Ŭ									,				
General Inform	nation								Int	tersect	ion Infe	ormatio	on		4441	يه لي
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Du	uration,	h	0.250		1	444	
Analyst		JAS		Analys	is Dat	e Aug	14, 2020)	Are	ea Typ	е	Other				<u>ل</u>
Jurisdiction		City of Los Angeles		Time F	Period	Futur	e - AM		PH	-IF		0.96		♦	W↓E	
Urban Street		Mindanao Way		Analys	is Yea	ır 2026			An	nalysis	Period	1> 7:4	15	4		
Intersection		Mindanao/La Villa N	<i>l</i> larina	File Na	ame	12AN	1 - Futu	e.xus	;						ኻተቱ	
Project Descrip	tion	Paseo Marina												5	414991	× (*
				_												
Demand Inform	nation				EB			V	VB			NB			SB	1
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			18	1	11	68		0	166	24	1163	57	65	1048	29
Signal Informa	tion				b	b 115	_	5		1						
		Deference Dhase	2		215	■4.7	8	¥.								
	90.0	Reference Phase	Z End			- 1	r E						1	2	3	
Unseerdingtod	No	Simult Con E/M	On	Green	10.1	50.6	14.7	0.	0	0.0	0.0	_ [A
Earco Modo	Fixed	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.	0	0.0	0.0	_ `		\mathbf{Y}_{i}	7	¥.
Porce Mode	Fixed	Simult. Gap N/S	OII	Reu	1.5	0.7	1.7	0.	0	0.0	0.0		3	0	1	
Timer Results				FBI		FRT	W/F	RI 🛛	١٨	VBT	NBI		NRT	SBI		SBT
Assigned Phase	<u></u>		_		-	4				8		-	6	5		2
Case Number	<u> </u>				+	8.0		-	8	3.0			63	1.0		4.0
Phase Duration	s					20.0	-	-	20	0.0			55.0	15.0) .	70.0
Change Period	(Y+R)	c). S				5.3	-		5	5.3			4.4	4.9		4.4
Max Allow Head	x Allow Headway (<i>MAH</i>), s					3.4			3	3.4			0.0	3.2		0.0
Queue Clearan	ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>g</i> s), s					3.4			1:	5.8				3.1		
Green Extensio	n Time	(ge), s				0.5			0	0.0			0.0	0.0		0.0
Phase Call Pro	bability					1.00			1.	.00				1.00)	
Max Out Proba	bility					0.00			1.	.00				0.00)	
Movement Gro	oup Res	ults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т	\downarrow	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8		18	1	6	16	5	2	12
Adjusted Flow I	Rate (v), veh/h			31		<u> </u>	24	4		25	640	631	68	564	558
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1122			157	/2		510	1900	1868	1810	1900	1882
Queue Service	Time (g	g s), S			0.0		<u> </u>	11.	5		2.0	20.0	20.1	1.1	10.3	10.3
Cycle Queue C	learance	e Tîme (<i>g c</i>), s			1.4			13.	.8		2.0	20.0	20.1	1.1	10.3	10.3
Green Ratio (g	/C)				0.16			0.1	6		0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c), v	/eh/h				247			30	8		367	1068	1050	433	1385	1372
Volume-to-Cap	acity Ra	tio (X) //= (05 the second section)			0.126)		0.7	90		0.068	0.599	0.600	0.156	0.407	0.407
Back of Queue	$(Q), \pi/$	iii (95 in percentile)			20.4		-	20			11.2	332.4	328.7	15.1	100.3	155
Back of Queue	(Q), Ve	PO(05 th percent)	ie)		1.1			10.	.4		0.4	13.3	13.1	0.0	0.3	0.2
Queue Storage			lie)		0.00	+		27	2	_	0.00	12.0	12.0	0.00	0.00	0.00
	u 1), S/				JZ. I		-	12			9.1	13.U 2 E	13.U 2.E	1.0	4.7	4 .7
ncremental Delay (d 2), s/veh					0.1			12.	0	_	0.4	2.5	2.5	0.1	0.9	0.9
Initial Queue Delay (d ₃), s/veh Control Delay (d), s/veh					32.4	+		40	2		0.0	15.5	15.6	7.6	5.6	5.6
Level of Service (LOS)					JZ.1	-	-	49.	~		9.4 Δ	R	13.0 R	Δ	Δ	Δ
Approach Delay, s/veh / LOS				32.1		C	10	2		D	15 /		B	57		
Intersection Delay, s/ven / LOS				52.1		1	4.4	-		5	13.4			B. 3.7		
Intersection Delay, s/ven / LOS						1	<i></i>									
Multimodal Re	Multimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	edestrian LOS Score / LOS					В	2.3	0		В	1.71		В	1.71		В
Bicycle LOS Sc	ore / LC)S		0.54		А	0.8	9		A	1.56	;	В	1.47	,	Α

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

General Inform	nation									Interse	ction In	format	ion	×		× L
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Î	Duration	ո, h	0.25	0		4+4	
Analyst		JAS		Analys	is Dat	e Aug	14,	2020		Area Ty	ре	Othe	er	4		4 *
Jurisdiction		City of Los Angeles		Time F	Period	Futur Proje	e w ct -	vith - AM		PHF		0.96	i	4 4 4	w∔e 8	↓ + + *
Urban Street		Mindanao Way		Analys	is Yea	r 2026				Analysis	Period	1> 7	:45			<u>_</u>
Intersection		Mindanao/La Villa N	<i>l</i> arina	File Na	ame	12AN	/1 - F	Future	with	Project.	kus				<u>]</u>]] 	* (*
Project Descrip	tion	Paseo Marina												1 -		
		•														
Demand Inform	nation				EB				W	В		NE	3		SB	
Approach Move	ement			L	Т	R		L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			18	1	11		68	0	166	5 24	116	57 57	65	1057	29
					F 111	F 11 2					_	_		-		
Signal Informa	tion				215	_ <u>2</u> 45										_
Cycle, s	90.0	Reference Phase	2		ľ	1 51	2	Ë.					1	2	3	╋ ₄
Offset, s	0	Reference Point	End	Green	10.1	50.6		14.7	0.0	0.0	0.0					<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	\square	3.6	0.0	0.0	0.0			$\mathbf{\nabla}$		Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7		1.7	0.0	0.0	0.0	_	5	6	7	8
T . D . K				EDI	Ĩ	EDT				MOT			NDT	0.01		ODT
Timer Results				EBL	-	EBI	⊢	VVBL	-	WBI	NB		NBI	SBI		SBI
Assigned Phase	9					4	┢		_	8	<u> </u>	_	6	5		2
Case Number						8.0	╇			8.0	<u> </u>		6.3	1.0		4.0
Phase Duration	, S				20.0	⊢		_	20.0			55.0	15.0)	70.0	
Change Period,	Period, (Y+R c), s					5.3	+			5.3			4.4	4.9		4.4
Max Allow Head	dway(<i>I</i>	MAH), s				3.4	⊢			3.4			0.0	3.2		0.0
Queue Clearan	ce Time	e (g s), s				3.4	⊢			15.8				3.1		
Green Extensio	n Time	(ge),s				0.5				0.0			0.0	0.0		0.0
Phase Call Prol	bability					1.00				1.00				1.00)	
Max Out Proba	bility					0.00				1.00				0.00)	
Manager 4 Ora							-			`					0.0	
Movement Gro	oup Res	Suits			EB		⊢				<u> </u>				SB	D
Approach Move	ement				1	R	┢		1	R			R	L E	1	R
Assigned wove	ment	> 1.0		1	4	14	┢	3	8	18	1	6	16	5	2	12
Adjusted Flow F), ven/n			31		┢		244		25	642	633	68	568	563
Adjusted Satura		bw Rate (s), ven/n/i	n		1122		⊢		1572	2	505	1900	1868	1810	1900	1882
Queue Service	Time (g	Js), S - Time ()			0.0		┢		11.5		2.0	20.1	20.2	1.1	10.4	10.4
	learanc	e Time (<i>g c</i>), s			1.4		┢		13.8	3	2.1	20.1	20.2	1.1	10.4	10.4
Green Ratio (g	/C)				0.16		┢		0.16		0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c), v	eh/h	·· · /) /)			247		┢		308	0	364	1068	1050	432	1385	1372
Volume-to-Capa	acity Ra				0.126		┢		0.79	0	0.069	0.60	0.602	0.157	0.410	0.410
Back of Queue	(Q),π/	in (95 th percentile)) 		26.4		⊢		260		11.2	333.	1 330.2	15.1	158.4	157.1
Back of Queue	(Q), Ve	$\frac{1}{2}$	ie)		1.1	-	⊢		10.4	+	0.4	13.4	13.2	0.0	0.3	0.3
Queue Storage		KQ) (95 in percent	lie)		0.00		⊢		27.0	,	0.00	12.00	12.0	0.00	0.00	0.00
Uniform Delay ($(u_1), s_1$				32.1	-	┢		37.2	<u> </u>	9.1	13.0	13.0	7.5	4.7	4.7
Incremental De	cremental Delay (d 2), s/veh				0.1		⊢		12.0	,	0.4	2.5	2.0	0.1	0.9	0.9
Control Dates (hitial Queue Delay (d ȝ), s/veh				0.0		╞		0.0	,	0.0		0.0	0.0	0.0	0.0
Control Delay (control Delay (d), s/veh				32.1		┡		49.2	-	9.4	15.5	15.6	7.6	0.0	0.0
Level of Service	evel of Service (LOS)				C		╞	40.0	U		A	B	L B	A = -	A	A
Approach Delay	Approach Delay, s/veh / LOS					C		49.2		D	15.	4	В	5.7		A
Intersection De	ersection Delay, s/veh / LOS					1	4.4	-						В		
Multimodal Po	I Results				ER					3		NP			SR	
Pedestrian LOS	Score		2 20		R	┢	2 30		R	17		R	1 74		B	
Biovola LOS So			LOS				┢	2.00 0.90		^	1.7	6	B	1.7	2	
Dicycle LOG 30				0.54		~		0.09		~	1.5		J	1.40	,	Л

			Ŭ								,				
General Inform	nation								Intersec	tion Inf	ormatio	on		4441	þa ly
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Duration	, h	0.250		1	4 + 5	
Analyst		JAS	•	Analys	sis Dat	e Aug 1	4, 2020		Area Typ	e	Other		4		<u>∼</u>
Jurisdiction		City of Los Angeles		Time F	Period	Existi	ng - PM		PHF		0.99			W = E	
Urban Street		Mindanao Way		Analys	sis Yea	ır 2020			Analysis	Period	1> 16	:45	4		+ *
Intersection		Mindanao/La Villa N	larina	File Na	ame	12PM	- Existi	ng.xu	s					ኻተቱ	¥
Project Descript	tion	Paseo Marina		л				•					1	414441	א א
· · ·															
Demand Inform	nation				EB			W	Β		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			20	1	36	50	2	2 72	27	957	64	129	1088	13
						- 112					_			1	
Signal Informa	tion				215	_ <mark>s2↓</mark> 3a	- 3 S	1							
Cycle, s	90.0	Reference Phase	2		ľ	<u>ੈ 51</u>	ŗ₿_"					1	2	3	← ₄
Offset, s	0	Reference Point	End	Green	10.1	50.6	14.7	0.0	0.0	0.0					<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.0	0.0	0.0		>	$\mathbf{\nabla}$		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7	1.7	0.0	0.0	0.0	_	5	6	7	8
					_										
Timer Results				EBI		EBT	WB		WBT	NBI	-	NBT	SBL	-	SBT
Assigned Phase	e					4		_	8		_	6	5		2
Case Number						8.0		_	8.0			6.3	1.0		4.0
Phase Duration	, S				\rightarrow	20.0		_	20.0			55.0	15.0)	70.0
Change Period,	nge Period, (Y+R c), s Allow Headway (<i>MAH</i>), s					5.3		\rightarrow	5.3			4.4	4.9		4.4
Max Allow Head	x Allow Headway (<i>MAH</i>), s					3.4		_	3.4			0.0	3.2		0.0
Queue Clearan	ce Time	e (g s), S			\rightarrow	4.6		\rightarrow	8.4				4.1	_	
Green Extensio	n Time	(ge), s			\rightarrow	0.3		_	0.2			0.0	0.1		0.0
Phase Call Prob	bability			<u> </u>	\rightarrow	1.00		\rightarrow	1.00				1.00)	
Max Out Proba	bility					0.00			0.06				0.04	•	
Movement Gro	up Res	sults			FB			WF	3		NB			SB	
Approach Move	ement				Т	R	1	Т	R	1	Т	R	1	Т	R
Assigned Move	ment			7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow F	Rate (v), veh/h	_		58			125	5	27	521	510	130	557	555
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1586			155	8	515	1900	1858	1810	1900	1892
Queue Service	Time (d	as). S			0.0			3.5		2.2	14.9	14.9	2.1	10.1	10.1
Cycle Queue Cl	learance	e Time (2.6			6.4		2.2	14.9	14.9	2.1	10.1	10.1
Green Ratio (a	/C)	- ····· (3 ·), -			0.16	-		0.16	3	0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c), y	/ reh/h				313			311		369	1068	1044	503	1385	1379
Volume-to-Capa	acitv Ra	tio(X)			0.184			0.40	3	0.074	0.488	0.488	0.259	0.402	0.402
Back of Queue	(Q), ft/	(In (95 th percentile)			49.3			112.	5	12.3	258.9	254.6	30.1	153.7	153.1
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		2.0			4.5		0.5	10.4	10.2	1.2	6.1	6.1
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.00)	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), s	/veh	,		32.6			34.1	1	9.1	11.9	11.9	6.5	4.7	4.7
Incremental Del	Jniform Delay (d 1), s/veh				0.1			0.3		0.4	1.6	1.6	0.1	0.9	0.9
nitial Queue Delay (<i>d</i> 3), s/veh					0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/veh					32.7			34.4	1	9.5	13.5	13.5	6.6	5.6	5.6
Level of Service (LOS)					С			С		A	В	В	Α	Α	A
Approach Delay, s/veh / LOS				32.7	7	С	34.4	1	С	13.4	1	В	5.7		A
Intersection Delay, s/veh / LOS						- 1	1.0		-				B		
Multimodal Re	Iultimodal Results				EB			WE	3		NB			SB	
Pedestrian LOS	destrian LOS Score / LOS)	В	2.30)	В	1.71	1	В	1.71		В
Bicycle LOS Sc	ore / LC	DS		0.58	3	А	0.69)	А	1.36	3	А	1.51		В

General Inform	nation								Inter	rsect	tion Infe	ormatio	on	<u>,</u>	4444	× l <u>x</u>
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Dura	ation,	h	0.250			4+4	
Analyst		JAS		Analys	is Date	e Aug 1	4, 2020		Area	а Тур	е	Other		4		4
Jurisdiction		City of Los Angeles		Time F	Period	Existi	ng with ct - PM		PHF			0.99		* * *	w∔e	** **
Urban Street		Mindanao Way		Analys	is Yea	2020			Anal	lysis	Period	1> 16	:45		K A A .	
Intersection		Mindanao/La Villa N	<i>l</i> larina	File Na	ame	12PM	l - Existii	ng wi	th Pro	oject.	xus			- -	 	* /*
Project Descrip	tion	Paseo Marina												1		
				-												
Demand Inform	nation				EB			N	/B			NB			SB	
Approach Move	ement			L	Т	R	L		Г	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			20	1	36	50		2	72	27	960	64	129	1088	13
Cignal Informa	tion				6 111	6 11:			_	_			1			
Signal informa		Poforonao Dhaga	2		245	¥¥	B. 2 S	1								~
Offect s	90.0	Reference Priase	Z End			- 5 1							1	2	3	
Uncoordinated	No	Simult Cap E/W	On	Green	10.1	50.6	14.7	0.	0	0.0	0.0	_ l				Ð-
Earco Modo	Fixed	Simult. Gap E/W	On	Pod	3.6	3.7	3.6	0.	0	0.0	0.0	_	5	$\mathbf{\Psi}$	7	¥.
Porce Mode	Fixed	Simult. Gap N/S	OII	Reu	1.5	0.7	1.7	0.	0	0.0	0.0		3		1	
Timer Results				EBL	-	EBT	WB	L	WB	BT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	е					4			8				6	5		2
Case Number						8.0			8.0)			6.3	1.0		4.0
Phase Duration	, s					20.0			20.0	0			55.0	15.0) .	70.0
Change Period,	ange Period, ($Y+Rc$), s					5.3			5.3	3			4.4	4.9		4.4
Max Allow Head	ange Period,(Y+ <i>R c</i>), s x Allow Headway(<i>MAH</i>), s					3.4			3.4	1			0.0	3.2		0.0
Queue Clearan	ce Time	e (g s), s				4.6		\rightarrow	8.4	1				4.1		
Green Extensio	n Time	(ge), s				0.3			0.2	2			0.0	0.1		0.0
Phase Call Prol	bability					1.00			1.00	0				1.00)	
Max Out Probal	bility					0.00			0.0	6				0.04	L .	
			_													
Movement Gro	oup Res	ults			EB			W	3	_		NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	T	R	L	Т	R
Assigned Move	ment	<u> </u>		7	4	14	3	8	- 1	18	1	6	16	5	2	12
Adjusted Flow H	Rate (v), veh/h			58	<u> </u>		12	5	_	27	523	511	130	557	555
Adjusted Satura		w Rate (s), ven/n/l	n		1586			155	- 8	_	515	1900	1858	1810	1900	1892
Queue Service	Time (g	J s , S			0.0			3.0)	_	2.2	15.0	15.0	2.1	10.1	10.1
Croop Patia (a		e fille (<i>g c</i>), s			2.0			0.4	+	-	2.2	0.56	15.0	2.1	0.72	0.72
Green Ratio (g	/C)				212			21/	1	_	260	1069	1044	502	1205	1270
Volume to Can	en/n	tio (X)			0 1 9/			0.40	1	-	309	1000	0.400	0.250	1305	1379
Back of Oueue		llio (10.104			112	5	_	12.3	260	255.7	30.1	0.40Z	153.1
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	h/ln (95 th percentie)	(ما		49.3			112		_	0.5	10.4	10.2	1.2	6.1	6.1
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.0	0		0.0	0.00	0.00	0.00	0.0	0.0
Uniform Delay ((d_1) s	/veh			32.6			34	1		9.1	11.9	11.9	6.6	4 7	4 7
Incremental De	av (<i>d</i> 2), s/veh	_		0.1			0.3	3		0.4	1.6	1.6	0.1	0.9	0.9
Initial Queue De			0.0	1		0.0)		0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (d), s/veh					32.7			34	4		9.5	13.5	13.5	6.7	5.6	5.6
Level of Service (LOS)					C			C	-		A	B	B	A	A	A
Approach Delay, s/veh / LOS				32.7		С	34.4		C		13.4		В	5.7		A
Intersection Delay, s/veh / LOS						- 1'	1.0						_	B		
Intersection Delay, s/ven/ LOS																
Multimodal Re	Iultimodal Results				EB			W	3			NB			SB	
Pedestrian LOS	Score	/LOS		2.30		В	2.30)	В		1.71		В	1.71		В
Bicycle LOS Sc	ore / LC	DS		0.58		А	0.69)	A		1.36	6	А	1.51		В

			Ū								,					
General Inform	nation								Intersec	tion Inf	ormatio	on		4441	þa ly	
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duration	, h	0.250			417		
Analyst		JAS		Analys	is Dat	e Aug 1	4, 2020		Area Typ	e	Other		- <u>-</u>		۲. ا	
Jurisdiction		City of Los Angeles		Time F	Period	Future	e - PM		PHF		0.99		*	W↓E		
Urban Street		Mindanao Way		Analys	is Yea	r 2026			Analysis	Period	1> 16	:45	4		+ *	
Intersection		Mindanao/La Villa N	/larina	File Na	ame	12PM	- Future	e.xus						ኻተቱ	¥	
Project Descrip	tion	Paseo Marina		л									5	। । । ব ↑ ф \ 1	*] *	
Demand Inform	nation				EB		W		′B		NB			SB		
Approach Move	ement			L	Т	R	L		r R	L	Т	R	L	Т	R	
Demand (<i>v</i>), v	eh/h			21	1	38	53	2	2 76	29	1082	2 68	137	1227	14	
				1	b 111	b 115										
Signal Informa	tion		-		215	_ ∠ ↓s		1					\mathbf{k}			
Cycle, s	90.0	Reference Phase	2		ľ	- ¹ 51	B.					1	2	3	♣ 4	
Offset, s	0	Reference Point	End	Green	10.1	50.6	14.7	0.0	0.0	0.0					<u> </u>	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.0	0.0	0.0		>	$\mathbf{\nabla}$		Y	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7	1.7	0.0	0.0	0.0	_	5	6	7	8	
			_													
Timer Results				EBL	-	EBI	WB		WBI	NBI	-	NBT	SBL	-	SBI	
Assigned Phase	e			<u> </u>		4	<u> </u>	\rightarrow	8	<u> </u>		6	5	_	2	
Case Number				<u> </u>	_	8.0	<u> </u>		8.0	<u> </u>	_	6.3	1.0		4.0	
Phase Duration	ase Duration, s ange Period $(Y+R_c)$ s					20.0	<u> </u>	\rightarrow	20.0	<u> </u>		55.0	15.0	,	70.0	
Change Period				5.3	<u> </u>	\rightarrow	5.3	<u> </u>		4.4	4.9		4.4			
Max Allow Head						-+	3.4		0.0		3.2		0.0			
Queue Clearan				4.8			8.8			0.0	4.3	_	0.0			
Green Extensio	h n nme	(<i>g</i> e), s		<u> </u>		0.3	<u> </u>			<u> </u>	0.0		1.00		0.0	
Max Out Broke						0.00	<u> </u>		0.10	<u> </u>			1.00			
Max Out Proba	onity					0.00			0.10				0.05)		
Movement Gro	oup Res	ults			EB			WE	3		NB			SB		
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Move	ment			7	4	14	3	8	18	1	6	16	5	2	12	
Adjusted Flow I	Rate (v), veh/h			61			132	2	29	587	575	138	628	626	
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n		1589	1		155	6	450	1900	1860	1810	1900	1892	
Queue Service	Time (g	y s), S			0.0			3.9)	2.7	17.6	17.6	2.3	12.0	12.1	
Cycle Queue C	learance	e Time (<i>g c</i>), s			2.8	1		6.8	;	2.7	17.6	17.6	2.3	12.0	12.1	
Green Ratio (g	/C)	i			0.16	1		0.10	3	0.56	0.56	0.56	0.70	0.73	0.73	
Capacity (c), v	/eh/h				313			310)	333	1068	1046	463	1385	1379	
Volume-to-Cap	acity Ra	itio(X)			0.193			0.42	6	0.088	0.549	0.550	0.299	0.453	0.454	
Back of Queue	(Q), ft/	In (95 th percentile)			52			119.	6	13.6	297.6	293.1	32.1	183.4	182.8	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		2.1			4.8	;	0.5	11.9	11.7	1.3	7.3	7.3	
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.0	C	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay ((d1), s/	/veh			32.7			34.2	2	9.2	12.5	12.5	7.5	4.9	4.9	
Incremental De	lay (<i>d</i> 2), s/veh			0.1			0.3	;	0.5	2.0	2.1	0.1	1.1	1.1	
Initial Queue De	tial Queue Delay ($d z$), s/veh				0.0			0.0)	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (Control Delay (d), s/veh				32.8			34.6	6	9.7	14.5	14.6	7.6	6.0	6.0	
Level of Service (LOS)					С			С		Α	В	В	Α	A	A	
Approach Delay, s/veh / LOS			32.8	5	С	34.6	3	С	14.4	l I	В	6.2		А		
Intersection De	lay, s/ve	h / LOS				1	1.6						В			
Multimodal Re	sults				EB		WE		3		NB			SB		
Pedestrian LOS	Score	/LOS		2.30		В	2.30		В	1.71		В	1.71		В	
Bicycle LOS Sc	ore / LC	DS		0.59		А	0.71		А	1.47	7	А	1.64	-	В	

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

Interaction to motion																
Agency Linescot, Law & Greenepan. Engineers Duration, h 0.250 Diration, h	General Inform	nation								Interse	ction Inf	ormatio	on	2	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ι Ļ
Analysis JAS Analysis Date Analysis Date Analysis Date Other Other Other Jurisdiction Olity of Los Angelos Project 200 Analysis Previde 1>16.3 0.39<	Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duratio	ո, h	0.250	1		4+4	
Jurisdiction City of Los Angeles Time Period Future with project - PM PHF 0.39 0.30 0.41<	Analyst		JAS		Analys	is Date	Aug 1	4, 2020		Area Ty	ре	Other		4		4 *
Urban Street Mindanao Way Analysis Year 2026 Analysis Period 1> 16:45 Intersection Paseo Marina TERM 12PM - Future with Project.xus Image Construction Image Cons	Jurisdiction		City of Los Angeles		Time F	Period	Future	e with ct - PM		PHF		0.99		***	w ‡ e	÷
Intersection Mindanaolla Ville Marina File Name 12PM - Future with Project.xus Image: Construct on the second of the sec	Urban Street		Mindanao Way		Analys	is Year	2026		_	Analysis	Period	1> 16	:45		5 4 4	<u> </u>
Project Description Paseo Marina Demand Information EB WB NB SB Approach Movement L T R	Intersection		Mindanao/La Villa N	/larina	File Na	ame	12PM	- Future	e with	Project.	xus			1	111 141471	* [*
Demand Information L T R L C T	Project Descrip	tion	Paseo Marina											1		
Demand Information L T R					-											
Approach Movement L T R	Demand Inform	nation				EB			W	Β		NB			SB	
Demand (v), veh/h 21 1 38 53 2 76 29 1085 68 137 1227 14 Signal information Cycle, s 90.0 Reference Phase 2 1 38 53 2 76 29 1085 68 137 1227 14 Signal information Force Mode No Reference Phase 2 1 60.6 137 0.0	Approach Move	ement			L	Т	R	L	ר	R	L	Т	R	L	Т	R
Signal Information Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Phase 2 Offset, s 0 Reference Phase 2 Orfset, s 0 Reference Phase 2 Force Mode Fixed Simult. Gap EW 0 6 37.36 0.0 </td <td>Demand (v), v</td> <td>eh/h</td> <td></td> <td></td> <td>21</td> <td>1</td> <td>38</td> <td>53</td> <td>2</td> <td>2 76</td> <td>29</td> <td>1085</td> <td>5 68</td> <td>137</td> <td>1227</td> <td>14</td>	Demand (v), v	eh/h			21	1	38	53	2	2 76	29	1085	5 68	137	1227	14
Signal information Cycle, s 00.0 Reference Phase Creen 10.1 50.6 14.7 0.0 0																
Cycle, s 00.0 Reference Print Control Control <thcontrol< th=""> Control Contro<td>Signal Informa</td><td>tion</td><td></td><td></td><td></td><td>215</td><td>- Alta</td><td>3 4</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></thcontrol<>	Signal Informa	tion				215	- Alta	3 4	4							_
Offset O Reference Point End Willow 3.6 Sold H.7 O	Cycle, s	90.0	Reference Phase	2		•	51	×R °					1	2	3	$\mathbf{+}$
$ \begin{array}{ $	Offset, s	0	Reference Point	End	Green	10.1	50.6	14.7	0.0	0.0	0.0					<u> </u>
Force Mode Fixed Simult. Gap N/S On Red 1.3 0.7 1.7 0.0 0.0 I<	Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.0	0.0	0.0			N		7
Immer Results EBL EBL EBT WBL WBT NBL NBT SBL SBT Assigned Phase 4 8.0 6 5 2 Case Number 8.0 8.0 6.0 5.0 10.0 4.0 Phase Duration, s 5.3 5.3 4.4 4.9 4.4 Max Allow Headway (MAH), s 3.4 3.4 3.4 0.0 3.2 0.0 Queue Clearance Time (g ., s 4.8 8.8 4.3 - 4.3 - 1.00 0.0 <t< td=""><td>Force Mode</td><td>Fixed</td><td>Simult. Gap N/S</td><td>On</td><td>Red</td><td>1.3</td><td>0.7</td><td>1.7</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td>5</td><td>6</td><td>7</td><td>8</td></t<>	Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7	1.7	0.0	0.0	0.0		5	6	7	8
Time Results EBL EBL EBT WBL WBT NBL NBT SBL SBT Assigned Phase 4 8 6 5 2 Case Number 8.0 8.0 8.0 6 5 7.0 Change Period, (YHR c), S 5.3 20.0 55.0 15.0 70.0 Change Period, (YHR c), S 3.4 3.4 0.0 3.2 0.0 Queue Clearance Time (g s), S 4.8 8.8 4.4 9.0 1.00 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Max Out Probability 0.00 0.00 0.10 0.0 0.01 0.0 Max Out Probability 0.00 0.00 0.00 0.01 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00									_			_				
Assigned Phase 4 8 6 5 2 Case Number 8.0 8.0 8.0 6.3 1.0 4.0 Phase Duration, s 20.0 20.0 5.3 6.3 1.0 4.0 Phase Duration, s 3.4 3.4 3.4 0.0 3.2 0.0 Change Period, (Y+R c), s 3.4 3.4 0.0 0.2 4.4 4.9 4.4 Max Allow Headway (MAH), s 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Queue Clearance Time (g e), s 0.3 0.2 0.0 0.1 0.0 0.0 0.1 0.0 Max Out Probability 1.00	Timer Results				EBL		EBT	WBI	L	WBT	NB	-	NBT	SBL	· -	SBT
Case Number 8.0 8.0 6.3 1.0 4.0 Phase Duration, s 20.0 20.0 55.0 15.0 70.0 Change Period, (Y+R c), s 5.3 5.3 5.3 4.4 4.9 4.4 Max Allow Headway (MAH), s 3.4 3.4 0.0 3.2 0.0 Queue Clearance Time (g c), s 4.8 8.8 4.8 4.3 4.3 4.4 Max Out Probability 1.00 1.00 0.0 0.1 0.0 0.1 0.0 Max Out Probability 0.00 0.00 0.10 0.0 0.0 1.00	Assigned Phase	Э					4			8			6	5		2
Phase Duration, s 20.0 20.0 55.0 15.0 70.0 Change Period, (Y+R c), s 5.3 <	Case Number						8.0			8.0			6.3	1.0		4.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Phase Duration	, S				20.0			20.0			55.0	15.0		70.0	
Max Allow Headway (MAH), s 3.4 3.4 0.0 3.2 0.0 Queue Clearance Time (g s), s 4.8 8.8 4.3 4.3 4.3 4.3 4.3	Change Period,				5.3			5.3			4.4	4.9		4.4		
Queue Clearance Time ($g \circ$), s 4.8 8.8 Image: Clearance Time ($g \circ$), s 4.8 8.8 Image: Clearance Time ($g \circ$), s 1.00 1.00 0.2 0.0 0.1 0.0 Phase Call Probability 1.00 1.00 1.00 1.00 0.0	Max Allow Head	dway(A	<i>MAH</i>), s				3.4			3.4			0.0	3.2		0.0
Green Extension Time (ge), s0.30.20.20.00.10.0Phase Call Probability1.00 <td>Queue Clearan</td> <td>ce Time</td> <td>e (g s), s</td> <td></td> <td></td> <td></td> <td>4.8</td> <td colspan="2"></td> <td>8.8</td> <td></td> <td colspan="2"></td> <td>4.3</td> <td></td> <td></td>	Queue Clearan	ce Time	e (g s), s				4.8			8.8				4.3		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Green Extensio	n Time	(g _e), s				0.3			0.2			0.0			0.0
Max Out Probability 0.00 0.10 Image: transmitted integral and transmi	Phase Call Prol	bability					1.00			1.00						
Movement Group Results Image: Im	Max Out Proba	bility					0.00			0.10				0.05		
Approach MovementLTR </td <td>Movement Gra</td> <td>un Boo</td> <td></td> <td></td> <td></td> <td>ED</td> <td></td> <td></td> <td>\\//</td> <td>></td> <td></td> <td>ND</td> <td>_</td> <td></td> <td><u>e</u>p</td> <td></td>	Movement Gra	un Boo				ED			\\//	>		ND	_		<u>e</u> p	
Approach WovementTTT </td <td>Approach Move</td> <td>oup Res</td> <td>Suits</td> <td></td> <td></td> <td>ED T</td> <td>D</td> <td></td> <td></td> <td>» </td> <td></td> <td></td> <td>D</td> <td></td> <td><u>эр</u></td> <td>B</td>	Approach Move	oup Res	Suits			ED T	D			» 			D		<u>эр</u>	B
Assigned wovenent1414361616667212Adjusted Flow Rate (v), veh/h616113829588576138628626Adjusted Saturation Flow Rate (s), veh/h/ln1589155645019001800181019001892Queue Service Time ($g \cdot s$), s0.015893.92.717.717.72.312.012.1Cycle Queue Clearance Time ($g \cdot s$), s2.82.86.82.717.717.72.312.012.1Green Ratio (g/C)0.160.160.160.560.560.560.700.730.73Capacity (c), veh/h3130.1930.4260.0880.5510.5510.2990.4530.454Back of Queue (Q), ft/ln (95 th percentile)52119.6119.613.629.829.332.1183.4182.8Back of Queue (Q), veh/ln (95 th percentile)5219.0119.613.629.829.432.118.4182.8Back of Queue (Q), veh/ln (95 th percentile)2.10.000.000.000.000.000.000.000.000.00Uniform Delay ($d \cdot$), s/veh3.2/432.7134.29.212.512.57.54.94.9Incremental Delay ($d \cdot$), s/veh0.00.00.00.000.000.000.000.000.000.000.0	Approach Move	mont				1	K		0	10		I C	Г. 16	E	1	12
Adjusted Flow Rate (V), verification Flow Rate (s), verification Flow	Adjusted Flow)		- /	4	14	3	0	10	1	0	10	5	2	12
Adjusted Saturation Prov Rate (S), vertified136913691360	Adjusted Flow F), ven/n	n		1590			152	<u> </u>	29	200	370	1010	020	020
Curve Service Time (g s), sImage: g s) sImage: g s), s </td <td>Aujusteu Satura</td> <td></td> <td></td> <td></td> <td></td> <td>1309</td> <td></td> <td></td> <td>2.0</td> <td>0</td> <td>430</td> <td>177</td> <td>17.7</td> <td>2.2</td> <td>12.0</td> <td>1092</td>	Aujusteu Satura					1309			2.0	0	430	177	17.7	2.2	12.0	1092
Cycle dudie clearatice time (g *), s2.82.82.80.82.81.71.72.31.2.01.2.1Green Ratio (g/C)0.160.160.160.560.560.560.700.730.73Capacity (c), veh/h31331303103331068104646213851379Volume-to-Capacity Ratio (X)0.19300.4260.0880.5510.5510.2990.4530.454Back of Queue (Q), th/n (95 th percentile)520119.613.6298.8294.332.1183.4182.8Back of Queue (Q), veh/ln (95 th percentile)2.104.80.512.011.81.37.37.3Queue Storage Ratio (RQ) (95 th percentile)2.10.00.000.000.000.000.000.000.000.000.00Uniform Delay (d 1), s/veh32.74.34.24.34.29.212.512.57.54.94.9Incremental Delay (d 2), s/veh0.00.00.00.00.00.00.00.00.00.0Control Delay (d), s/veh32.8C34.64.89.714.514.67.66.06.0Level of Service (LOS)C32.8C34.6C14.4B6.2AApproach Delay, s/veh / LOS32.8C34.6C14.4B6.2AIntersection Delay, s/veh / LOS32.8 <td< td=""><td></td><td></td><td>g(s), S</td><td></td><td></td><td>2.0</td><td></td><td></td><td>5.9</td><td></td><td>2.1</td><td>17.7</td><td>17.7</td><td>2.3</td><td>12.0</td><td>12.1</td></td<>			g(s), S			2.0			5.9		2.1	17.7	17.7	2.3	12.0	12.1
Capacity (c), veh/h 313 0.16 0.36 0.36 0.36 0.73 0.73 0.73 Capacity (c), veh/h 0.193 0 313 10 333 1068 1068 462 1385 1379 Volume-to-Capacity Ratio (X) 0.193 0 0.426 0.088 0.551 0.591 0.299 0.453 0.454 Back of Queue (Q), ft/ln (95 th percentile) 52 0 119.6 13.6 298.8 294.3 32.1 183.4 182.8 Back of Queue (Q), veh/ln (95 th percentile) 2.1 I 4.8 0.5 12.0 11.8 1.3 7.3 7.3 Queue Storage Ratio (RQ) (95 th percentile) 0.00 <td< td=""><td>Croop Datia (a</td><td></td><td>e fille (<i>g</i> c), s</td><td></td><td></td><td>2.0</td><td></td><td></td><td>0.0</td><td>2</td><td>2.1</td><td>0.56</td><td>0.56</td><td>2.3</td><td>12.0</td><td>12.1</td></td<>	Croop Datia (a		e fille (<i>g</i> c), s			2.0			0.0	2	2.1	0.56	0.56	2.3	12.0	12.1
Capacity (c), verifyIndex313Index313Index104646213531379Volume-to-Capacity Ratio (X) $0 \cdot 193$ $0 \cdot 193$ $0 \cdot 193$ $0 \cdot 25$ $0 \cdot 088$ $0 \cdot 55$ $0 \cdot 551$ $0 \cdot 299$ $0 \cdot 453$ $0 \cdot 454$ Back of Queue (Q), th/ln (95 th percentile) $2 \cdot 1$ $2 \cdot 1$ $119 \cdot 6$ 13.6 $29 \cdot 8$ 294.3 32.1 $18 \cdot 34$ 182.8 Back of Queue (Q), veh/ln (95 th percentile) $2 \cdot 1$ 100 $4 \cdot 8$ $0 \cdot 5$ $0 \cdot 50$ $12 \cdot 5$ 118.3 1.33 7.3 7.3 Queue Storage Ratio (RQ) (95 th percentile) $0 \cdot 0 \cdot 0$ $0 \cdot 0$	Green Ratio (g	/C)				0.10			240))	0.50	1069	1046	462	1205	1270
Notice to Capacity Ratio (X) 0 <t< td=""><td>Volume to Con</td><td>en/n</td><td>tio (X)</td><td></td><td></td><td>0 102</td><td></td><td></td><td>0.42</td><td>6</td><td>0.000</td><td>0.551</td><td>0.551</td><td>402</td><td>1303</td><td>0.454</td></t<>	Volume to Con	en/n	tio (X)			0 102			0.42	6	0.000	0.551	0.551	402	1303	0.454
Back of Queue (Q), wh/ln (95 th percentile) $2 \cdot 1$ $3 \cdot 2 \cdot 1$ $19 \cdot 3$ $29 \cdot 3$ $29 \cdot 3$ $32 \cdot 1$ $18 \cdot 4$ $162 \cdot 3$ Back of Queue (Q), wh/ln (95 th percentile) $2 \cdot 1$ $4 \cdot 8$ $4 \cdot 8$ $0 \cdot 5$ $12 \cdot 0$ $11 \cdot 8$ 1.3 7.3 7.3 Queue Storage Ratio (RQ) (95 th percentile) $0 \cdot 0 \cdot 0$ $0 \cdot 0 \cdot 0 \cdot 0$ $0 \cdot 0 \cdot 0 \cdot 0$ $0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$ $0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$ $0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$ $0 \cdot 0 \cdot 0$ $0 \cdot 0 \cdot$	Rock of Oucuo		$(0 (\Lambda))$			52			110	6	12.6	200 0	204.2	0.299	102 4	102.0
Back of Queue (Q), verial (95 th percentile) $I = 0$ <	Back of Queue	$(Q), \Pi$	h (95 th percentile)			20			119.	0	13.0	290.0	294.3	32.1	103.4	102.0
Incremental Delay (d 1), s/vehImage: delta del	Ducuo Storago	(Q), Ve	PO(05 th percent)	ile)		2.1			4.0		0.5	12.0	0.00	1.3	1.3	7.3
Incremental Delay (d 1), sivenImage: d 2 d 2) 32.7 Image: d 2 d 2) 32.7 12.3 12.3 17.3 14.9 14.9 Incremental Delay (d 2), siven0.10.10.10.20.30.5 2.0 2.1 0.1 1.1 1.1 Initial Queue Delay (d 3), siven0.0 0.0	Uniform Doloy (lie)		22.7			24.0	2	0.00	12.5	12.5	0.00	0.00	0.00
Incremental Delay (d 2), sivenImage: d 2), sivenIm	Incremental De	(u +), s				0.1			03	<u>~</u>	9.2	2.0	2.0	0.1	4.9	4.9
Initial Galace Delay (0.3), sivenIII<	Initial Queue De	ay (U2				0.1			0.3		0.5	2.0	2.1	0.1	0.0	1.1
Level of Service (LOS)CCS4.0F4	Initial Queue Delay (d ₃), s/veh					32.9			2/ 4	3	0.0	14.5	14.6	7.6	6.0	6.0
Approach Delay, s/veh / LOS 32.8 C 34.6 C 14.4 B 6.2 A Intersection Delay, s/veh / LOS 11.7 B B B C	Level of Service (LOS)					JZ.0			04.0 C	,	9.1	14.0 D	14.0 D	7.0 A	0.0 A	0.0
Approach Delay, s/veh / LOS 52.0 C 54.0 C 14.4 B 6.2 A Intersection Delay, s/veh / LOS 11.7 B B C	Approach Delay, s/yeb / LOS				20.0		<u> </u>	24.0			A 44			A	A	A
Intersection Delay, S/Vell / LOS II./ B	Approach Delay, s/veh / LOS				32.8		44	34.0	,	U	14.4	+	D	0.2 P		A
	Intersection Delay, s/veh / LOS						1	.1			1		В			
Multimodal Results EB WB NB SB	Multimodal Re	Multimodal Results				FB		\\/R		3		NB			SB	
Pedestrian LOS Score / LOS 2.30 B 2.30 B 1.71 B 1.71 B	Pedestrian LOS	Score	/LOS		2.30		B)	В	1.7		B			В
Bicycle LOS Score / LOS 0.59 A 0.71 A 1.47 A 1.64 B	Bicycle LOS Sc	ore / LC	DS		0.59		А	0.71		А	1.4	7	А	1.64		В

APPENDIX K

HCM AND LEVELS OF SERVICE EXPLANATION HCM DATA WORKSHEETS – WEEKDAY AM AND PM PEAK HOURS OPTION B

LEVEL OF SERVICE FOR SIGNALIZED INTERSECTIONS

In the *Highway Capacity Manual (HCM)*, published by the Transportation Research Board, 2010, level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, in the absence of geometric delay, in the absence of incidents, and when there are no other vehicles on the road. Only the portion of total delay attributed to the control facility is quantified. This delay is called *control delay*. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for traffic signals are stated in terms of the average control delay per vehicle. Delay is a complex measure and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group in question.

Level of Service Criteri	a for Signalized Intersections
Level of Service	Control Delay (Sec/Veh)
А	≤ 10
В	> 10 and ≤ 20
С	> 20 and ≤ 35
D	$> 35 \text{ and} \le 55$
E	> 55 and ≤ 80
F	> 80

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize *HCM* criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle. This level of service occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay values.

LOS B describes operations with control delay greater than 10 and up to 20 seconds per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

LOS C describes operations with control delay greater than 20 and up to 35 seconds per vehicle. These higher delays may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

LOS D describes operations with control delay greater than 35 and up to 55 seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LOS E describes operations with control delay greater than 55 and up to 80 seconds per vehicle. This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences.

LOS F describes operations with control delay in excess of 80 seconds per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors to such delay levels.

LEVEL OF SERVICE FOR UNSIGNALIZED INTERSECTIONS

In the *Highway Capacity Manual (HCM)*, published by the Transportation Research Board, 2010, level of service for unsignalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, in the absence of incidents, control, traffic, or geometric delay. Only the portion of total delay attributed to the traffic control measures, either traffic signals or stop signs, is quantified. This delay is called *control delay*. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for unsignalized intersections are stated in terms of the average control delay per vehicle. The level of service is determined by the computed or measured control delay and is defined for each minor movement. Average control delay for any particular minor movement is a function of the service time for the approach and the degree of utilization. (Level of service is not defined for the intersection as a whole for two-way stop controlled intersections.)

Level of Service Criteria f	or TWSC/AWSC Intersections
Level of Service	Average Control Delay (Sec/Veh)
А	≤ 10
В	$> 10 \text{ and } \le 15$
С	> 15 and ≤ 25
D	> 25 and ≤ 35
Е	$>$ 35 and \leq 50
F	> 50

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize *HCM* criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle.

LOS B describes operations with control delay greater than 10 and up to 15 seconds per vehicle.

LOS C describes operations with control delay greater than 15 and up to 25 seconds per vehicle.

LOS D describes operations with control delay greater than 25 and up to 35 seconds per vehicle.

LOS E describes operations with control delay greater than 35 and up to 50 seconds per vehicle.

LOS F describes operations with control delay in excess of 50 seconds per vehicle. For two-way stop controlled intersections, LOS F exists when there are insufficient gaps of suitable size to allow side-street demand to safely cross through a major-street traffic stream. This level of service is generally evident from extremely long control delays experienced by side-street traffic and by queuing on the minor-street approaches.

HCS7 Two-Way Stop-Control Report General Information Site Information Analyst JAS Intersection Walgrove / Washington

Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	8/12/2020	East/West Street	Washington Boulevard
Analysis Year	2020	North/South Street	Walgrove Avenue
Time Analyzed	Existing - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastbound				Wosth	ound	-		North	bound		Southbound			
Approach		Lastu	т	D		vvesti	т	D		NOITH	T	D		Journ	T	D
Movement	U	L	1	К	U	L	1	К	U	L	1	ĸ	U	L	1	К
Priority	10	1	2	3	40	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	290	1180				1107	164						13		254
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)													()		
Right Turn Channelized																
Median Type Storage				Left Only 5												
Critical and Follow-up He																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		315													290	
Capacity, c (veh/h)		487													323	
v/c Ratio		0.65													0.90	
95% Queue Length, Q ₉₅ (veh)		4.5													8.6	
Control Delay (s/veh)		25.0													64.4	
Level of Service (LOS)		С													F	
Approach Delay (s/veh)		4	.9								64	.4				
Approach LOS														I	-	

		e control hepoirt	
General Information		Site Information	
Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	12/1/2020	East/West Street	Washington Boulevard
Analysis Year	2020	North/South Street	Walgrove Avenue
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	290	1204				1131	164						13		254	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)											0						
Right Turn Channelized																	
Median Type Storage			Left Only 5														
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)		315													290		
Capacity, c (veh/h)		476													314		
v/c Ratio		0.66													0.92		
95% Queue Length, Q ₉₅ (veh)		4.8													9.1		
Control Delay (s/veh)		26.2													70.7		
Level of Service (LOS)		D													F		
Approach Delay (s/veh)		5	.1										70.7				
Approach LOS														I			

Copyright © 2020 University of Florida. All Rights Reserved.

Generated: 12/1/2020 2:13:19 PM

General Information		Site Information	
Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	8/12/2020	East/West Street	Washington Boulevard
Analysis Year	2026	North/South Street	Walgrove Avenue
Time Analyzed	Future - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westk	ound			North	bound		Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0			
Configuration		L	Т				Т	TR							LR				
Volume (veh/h)	0	308	1290				1191	174						14		270			
Percent Heavy Vehicles (%)	3	3												3		3			
Proportion Time Blocked																			
Percent Grade (%)													0						
Right Turn Channelized																			
Median Type Storage	Left Only									5									
Critical and Follow-up He																			
Base Critical Headway (sec)		4.1												7.5		6.9			
Critical Headway (sec)		4.16												6.86		6.96			
Base Follow-Up Headway (sec)		2.2												3.5		3.3			
Follow-Up Headway (sec)		2.23												3.53		3.33			
Delay, Queue Length, and	Leve	of Se	ervice																
Flow Rate, v (veh/h)		335													309				
Capacity, c (veh/h)		444													271				
v/c Ratio		0.75													1.14				
95% Queue Length, Q ₉₅ (veh)		6.3													13.4				
Control Delay (s/veh)		33.9													138.1				
Level of Service (LOS)		D													F				
Approach Delay (s/veh)	6.5												138.1						
Approach LOS												F							

General Information		Site Information	
Analyst	JAS	Intersection	Walgrove / Washington
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City
Date Performed	12/1/2020	East/West Street	Washington Boulevard
Analysis Year	2026	North/South Street	Walgrove Avenue
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westb	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	308	1314				1215	174						14		270	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)													0				
Right Turn Channelized																	
Median Type Storage		Left Only										ļ	5				
Critical and Follow-up He																	
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		335													309		
Capacity, c (veh/h)		434													260		
v/c Ratio		0.77													1.19		
95% Queue Length, Q ₉₅ (veh)		6.6													14.2		
Control Delay (s/veh)		36.1													156.3		
Level of Service (LOS)		E													F		
Approach Delay (s/veh)	6.9							156.3									
Approach LOS														F	-		

· · · · · · · · · · · · · · · · · · ·												
General Information		Site Information										
Analyst	JAS	Intersection	Walgrove / Washington									
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City									
Date Performed	8/12/2020	East/West Street	Washington Boulevard									
Analysis Year	2020	North/South Street	Walgrove Avenue									
Time Analyzed	Existing - PM	Peak Hour Factor	0.97									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Paseo Marina											

Lanes

Vehicle Volumes and Adjustments

Approach		Eastbound Westbound						North	bound		Southbound								
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0			
Configuration		L	Т				Т	TR							LR				
Volume (veh/h)	0	256	1153				1156	82						51		329			
Percent Heavy Vehicles (%)	3	3												3		3			
Proportion Time Blocked																			
Percent Grade (%)													0						
Right Turn Channelized																			
Median Type Storage				Left	Only							!	5						
Critical and Follow-up Headways																			
Base Critical Headway (sec)		4.1												7.5		6.9			
Critical Headway (sec)		4.16												6.86		6.96			
Base Follow-Up Headway (sec)		2.2												3.5		3.3			
Follow-Up Headway (sec)		2.23												3.53		3.33			
Delay, Queue Length, and	Leve	of Se	ervice																
Flow Rate, v (veh/h)		264													392				
Capacity, c (veh/h)		534													323				
v/c Ratio		0.49													1.21				
95% Queue Length, Q ₉₅ (veh)		2.7													17.2				
Control Delay (s/veh)		18.1													155.5				
Level of Service (LOS)		С													F				
Approach Delay (s/veh)		3	.3										155.5						
Approach LOS														I					

nesi iwo way stop control teport											
General Information		Site Information									
Analyst	JAS	Intersection	Walgrove / Washington								
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City								
Date Performed	12/1/2020	East/West Street	Washington Boulevard								
Analysis Year	2020	North/South Street	Walgrove Avenue								
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.97								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Paseo Marina - Option B										

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound Westbound						North	bound		Southbound							
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	256	1158				1163	82						51		329	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)													0				
Right Turn Channelized																	
Median Type Storage				Left	Only							ł	5				
Critical and Follow-up Headways																	
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)		264													392		
Capacity, c (veh/h)		531													321		
v/c Ratio		0.50													1.22		
95% Queue Length, Q ₉₅ (veh)		2.7													17.3		
Control Delay (s/veh)		18.3													158.9		
Level of Service (LOS)		С													F		
Approach Delay (s/veh)		3	.3						158.9					8.9			
Approach LOS														I	=		

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	JAS	Intersection	Walgrove / Washington								
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City								
Date Performed	8/12/2020	East/West Street	Washington Boulevard								
Analysis Year	2026	North/South Street	Walgrove Avenue								
Time Analyzed	Future - PM	Peak Hour Factor	0.97								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Paseo Marina										

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound Westbound						North	bound		Southbound							
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0	
Configuration		L	Т				Т	TR							LR		
Volume (veh/h)	0	272	1258				1281	87						54		349	
Percent Heavy Vehicles (%)	3	3												3		3	
Proportion Time Blocked																	
Percent Grade (%)													0				
Right Turn Channelized																	
Median Type Storage				Left	Only							!	5				
Critical and Follow-up Headways																	
Base Critical Headway (sec)		4.1												7.5		6.9	
Critical Headway (sec)		4.16												6.86		6.96	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.23												3.53		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		280													415		
Capacity, c (veh/h)		474													271		
v/c Ratio		0.59													1.53		
95% Queue Length, Q ₉₅ (veh)		3.8													24.4		
Control Delay (s/veh)		23.0													291.2		
Level of Service (LOS)		С													F		
Approach Delay (s/veh)		4	.1										291.2				
Approach LOS													F				
General Information		Site Information															
--------------------------	---------------------------	----------------------------	-----------------------														
Analyst	JAS	Intersection	Walgrove / Washington														
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Culver City														
Date Performed	12/1/2020	East/West Street	Washington Boulevard														
Analysis Year	2026	North/South Street	Walgrove Avenue														
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.97														
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25														
Project Description	Paseo Marina - Option B																

Lanes

Vehicle Volumes and Adjustments

,	-															
Approach		Eastb	ound			Westk	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	272	1263				1288	87						54		349
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage				Left	Only							ļ	5			
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		280													415	
Capacity, c (veh/h)		471													269	
v/c Ratio		0.59													1.54	
95% Queue Length, Q ₉₅ (veh)		3.8													24.6	
Control Delay (s/veh)		23.2													296.8	
Level of Service (LOS)		С													F	
Approach Delay (s/veh)		4	.1											29	6.8	
Approach LOS														F	-	

Copyright © 2020 University of Florida. All Rights Reserved.

HCS TM TWSC Version 7.8.5 01PM - Future with Project - Option B.xtw Generated: 12/1/2020 2:24:30 PM

		1103	7 Sig	nanze	a mt	51360		163	unto c	Jun	Innary	y				
General Inform	nation								Inter	secti	ion Info	ormatio	on	K	***	ι I _a
Agency	lation	Linscott, Law & Gre	enspan	Fnain	eers				Durat	tion.	h	0.250			╡↓↓↓└	<u>ل</u>
Analyst		JAS		Analys	sis Date		7 2020		Area	Type	 د	Other		 		۲. ۲.
Jurisdiction		City of Los Angeles		Time F		Fxistir	$n_{\rm r} = \Delta M$		PHF	Type	, 	0 98		→ _* ->	w∔e	*_ <u>}</u> ≁_∲
Urban Street		Lincoln Boulevard		Analys	sis Year	2020	ig - 7 (W		Analy	vsis F	Period	1> 8.0	00	¥ 7		
Intersection		Lincoln / Maxella		File N	ame	02AM	- Existi	na vi	is is	y 010 1	onou	11 0.0				<u>_</u> _
Project Descrip	tion	Paseo Marina				02/10		ig.nu							1) 1 1 4 1 4 1 1 1	ſ * ſ*
T TOJECT Descrip																
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	T	R	L		Т	R	L	T	R	L	Т	R
Demand (v), v	eh/h			76	80	196	183	3	39 1	122	117	2072	277	122	1827	59
				1		b 116	_					_				
Signal Informa	tion				245	< <mark>∎4</mark> ¥∎			E	_7		ļ		rta		
Cycle, s	130.0	Reference Phase	2		ľ	517	*	2	2 F	₹			1			♣ 4
Offset, s	0	Reference Point	End	Green	18.9	19.6	19.1	18	3.9 2	23.9	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.	6 3	3.6	0.0	'	<u>ר</u> ן א			Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	5 2	2.5	0.0	1	5	6	7	8
Timer Peculta				EDI	_	EDT	\//D		\//D ⁻	т	NDI		NDT	CDI		ерт
Assigned Phase	0			EDI			VVD		VVD	<u> </u>	5		2	301		6
Assigned Phase	U			<u> </u>		4		\rightarrow	0		10		2	10	<u> </u>	0
Case Number						9.0		-	9.0		25.0		3.0	1.2		4.0
Charge Duration				<u> </u>		SU.U	<u> </u>	\rightarrow	25.0	,	25.0	<u> </u>	50.0	25.0		50.0
Change Period	, (Y+R	Y+R c), s vay (MAH), s				6.1		-	6.1	-	5.9		5.9	6.1	_	5.4
Max Allow Head	eadway (<i>MAH</i>), s rance Time (<i>g</i> s), s			<u> </u>		4.4		-	4.3		3.1	_	0.0	3.1	_	0.0
Queue Clearan	Headway (MAH), s earance Time (g s), s			<u> </u>		14.3	<u> </u>	_	10.3	3	2.0			5.3	\rightarrow	
Green Extensio	rance Time ($g s$), s sion Time ($g e$), s			<u> </u>		1.0		_	0.9		7.8		0.0	0.2		0.0
Phase Call Pro	bability					1.00	<u> </u>	_	1.00)	1.00)		1.00	<u></u>	
Max Out Proba	bility					0.09			0.13	3	0.26	5		0.00	,	
Movement Gro	oup Res	sults			EB			W	В		_	NB			SB	
Approach Move	ement			L	Т	R	L	Т	F	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	1	8	5	2	12	1	6	16
Adjusted Flow I	Rate (<i>v</i>), veh/h		78	82	200	125	10	1 12	24	119	2114	283	124	1451	473
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	184	15 16	610	1757	1725	1610	1757	1900	1857
Queue Service	Time (g s), s		4.8	4.8	12.3	8.3	6.	57.	.7	0.0	44.1	14.3	3.3	29.2	29.2
Cycle Queue C	learanc	e Time (<i>g c</i>), s		4.8	4.8	12.3	8.3	6.	57.	.7	0.0	44.1	14.3	3.3	29.2	29.2
Green Ratio (g	/C)			0.18	0.18	0.33	0.15	0.1	5 0.2	29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	/eh/h	4:- (X)		333	349	533	263	26	8 46	68	6/6	1/56	780	622	1956	637
Volume-to-Capa		$\frac{100(X)}{100(X)}$		0.233	104.4	0.376	0.476	120	10 0.2	200	72.0	1.204	0.362	0.200	0.742	0.742
Back of Queue	(Q), IU	in (95 in percentile)		99.5	104.4	140.9	1/5	138	1.Z 14	41	13.9	1225. 2	234.3	02.7	495.7	511.9
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.0	4.2	5.6	7.0	5.0	6 5.	.6	3.0	49.0	9.4	2.5	19.7	20.5
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.0	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), s	/veh		45.2	45.2	6.7	51.0	50.	.2 35	5.4	44.6	43.0	20.9	33.7	37.6	37.6
Incremental De	lay (<i>d</i> 2	e), s/veh		0.4	0.3	0.4	1.3	0.9	90.	.3	0.0	97.6	1.3	0.1	2.6	7.6
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		45.6	45.6	7.1	52.3	51.	.1 35	5.7	44.6	140.5	22.2	33.8	40.2	45.3
Level of Service	e (LOS)			D	D	A	D	D		D	D	F	С	С	D	D
Approach Delay	y, s/veh	/ LOS		24.2	2	С	46.1	1	D		122.	7	F	41.0)	D
Intersection De	lay, s/ve	eh / LOS				79	9.2							E		
Multiment	a							144	D						0.0	
Nuttimodal Re	SUITS	11.00		0.07	- EB	0	0.07	7			0.00	NB		0.00	SB	
Pedestrian LOS	Score	/ LUS		2.97			2.87		C		2.32		В	2.32		в
BICYCIE LOS SC	ore / LC	72		1.08	5	А	1.07		А		1.87		В	1.33)	А

		-	- 5							-		,				
General Inform	nation								Inters	ecti	ion Info	ormatio	on	2	474+1	⊾ Ļ_
Agency		Linscott. Law & Gre	enspan	. Enain	eers				Durati	ion. I	h	0.250			4 † † † † ¢	4
Analyst		JAS		Analys	sis Date	Dec 1	2020		Area 1	Tvne	<i>د</i> 	Other		 		₹
Jurisdiction		City of Los Angeles		Time F	Period	Fxisti	, <u></u> na - AM		PHF	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.98		→ _^	w‡e	*_ } •
Urban Street		Lincoln Boulevard		Analy	sis Year	2020	19 7 111		Analys	sis F	Period	1> 8.0	0	* ~		
Intersection		Lincoln / Maxella		File N	ame	02AM	- Existi	na wi	ith Proje	ect -	Ontion			┤҇─┓		<u>∽</u>
Project Description	tion	Paseo Marina - On	ion B	1 10 14		02/ 11/	Exioti	ig w		501	option	D.Xuo		-	4 1 4 Y 1	ן ד ר ^{יי}
Trojoot Booonp																
Demand Inform	nation				EB			V	VB			NB		Γ	SB	
Approach Move	ement			L	Т	R	L	T ·	ТІ	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			76	80	196	192	3	39 1	31	117	2072	2 303	131	1827	59
-				10											<u>.</u>	
Signal Informa	tion				215					7			Ĺ	_		_
Cycle, s	130.0	Reference Phase	2		B	1 S.1	- 51	2	1	ŝ				Y	×⊢+-	÷
Offset, s	0	Reference Point	End	Green	18.9	19.6	19.1	18	3.9 2	3.9	0.0	_				<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.	6 3	.6	0.0	^	くる			
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	5 2	.5	0.0		5	6	7	8
										_						
Timer Results				EBI	-	EBT	WB	L	WBT	-	NBL	-	NBT	SBI	-	SBT
Assigned Phase	e					4		\rightarrow	8	_	5		2	1		6
Case Number						9.0			9.0	4	1.3		3.0	1.2		4.0
Phase Duration	, S					30.0		$ \rightarrow $	25.0	_	25.0		50.0	25.0) :	50.0
Change Period,	ge Period, (Y+ <i>R</i> c), s Allow Headway (<i>MAH</i>), s					6.1			6.1		5.9		5.9	6.1		5.4
Max Allow Head	Allow Headway (<i>MAH</i>), s ue Clearance Time (<i>q</i> s), s					4.4			4.3		3.1		0.0	3.1		0.0
Queue Clearan	c Allow Headway (<i>MAH</i>), s eue Clearance Time (<i>g</i> s), s					14.3			10.7		2.0			5.5		
Green Extensio	n Time	(ge), s				1.0			0.9		7.9		0.0	0.2		0.0
Phase Call Prol	bability					1.00			1.00		1.00)		1.00)	
Max Out Proba	e Clearance Time (<i>g</i> _s), s n Extension Time (<i>g</i> _e), s e Call Probability Dut Probability					0.09			0.17		0.27	,		0.00)	
Movement Gro	un Res	sults			FB			W	R	1		NB			SB	
Approach Move	ement			1	Т	R	1	Т	R		1	Т	R	1	Т	R
Assigned Move	ment			7	4	14	3	8	18	3	5	2	12	1	6	16
Adjusted Flow F	Rate (v) veh/h		78	. 82	200	131	10	4 134	4	119	2114	309	134	1451	473
Adjusted Satura	ation Flo), veh/h/l	n	1810	1900	1610	1810	184	4 161	10	1757	1725	1610	1757	1900	1857
Queue Service	Time (α_s) s		4.8	4.8	12.3	87	6	7 83	3	0.0	44 1	15.9	3.5	29.2	29.2
Cycle Queue C	learanc	e Time (a c), s		4.8	4.8	12.3	8.7	6.7	7 8.3	3	0.0	44.1	15.9	3.5	29.2	29.2
Green Ratio (g	/C)	cc (g c), c	_	0.18	0.18	0.33	0.15	0.1	5 0.2	29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	/eh/h			333	349	533	263	26	8 46	8	676	1756	780	622	1956	637
Volume-to-Cap	acity Ra	atio (X)		0.233	0.234	0.376	0.499	0.39	90 0.28	86	0.177	1.204	0.396	0.215	0.742	0.742
Back of Queue	(Q), ft	/In (95 th percentile))	99.3	104.4	140.9	184.5	143	.7 152	2.3	73.9	1225.	256	67.5	493.7	511.9
												2				
Back of Queue	(Q), v	eh/In (95 th percenti	le)	4.0	4.2	5.6	7.4	5.7	7 6.1	1	3.0	49.0	10.2	2.7	19.7	20.5
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0	0 0.0	0	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		45.2	45.2	6.7	51.2	50.	3 35.	.7	44.6	43.0	21.4	33.8	37.6	37.6
Incremental De	lay (<i>d</i> 2	e), s/veh		0.4	0.3	0.4	1.5	0.9	9 0.3	3	0.0	97.6	1.5	0.1	2.6	7.6
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/v	eh		45.6	45.6	7.1	52.6	51.	2 36.	.0	44.6	140.5	22.9	33.9	40.2	45.3
Level of Service	e (LOS)			D	D	A	D	D	D		D	F	С	С	D	D
Approach Delay	y, s/veh	/LOS		24.2	2	С	46.2	2	D		121.	7	F	41.0)	D
Intersection De	lay, s/ve	eh / LOS				78	3.7							E		
Multimedal D	oulte				FD			10.0	D			NID			00	
Nuttimodal Re	SUITS	/1.02		0.07	- EB	<u> </u>	0.07	7		-	0.00	NB	P	0.00	SB	
Pieuestrian LOS				2.9		^	2.01	\rightarrow		\rightarrow	2.32	-	D	2.32	-	
Dicycle LUS SC	UIE / LC			1.08	, c	А	1.10	,	A		1.89		D	1.34		А

		1100	i olg	nanze	a mi	61366		103	unts c	Jun	Innary	y				
General Inforn	nation								Inters	secti	ion Info	ormatio	on	K	4741	ι I _a
Agency		Linscott, Law & Gre	enspan	Engine	ers				Durat	tion.	h	0.250			╡↓↓↓└	<u>ل</u>
Analyst		JAS	onopun	Analys	sis Date		7 2020		Area	Type	د 	Other		- - 1 - 4		<u>گ</u>
Jurisdiction		City of Los Angeles		Time F	Period	Future	- AM		PHF	1990	, 	0.98		→ _* * →	w∔e	*_ <u>}</u> ≁_∲
Urban Street		Lincoln Boulevard		Analys	sis Year	2026	5 7 11		Analy	vsis F	Period	1> 8.0	0	* ~		
Intersection		Lincoln / Maxella		File Na	ame	02AM	- Future		, and y	,010 1	onou	11 0.0		┤҇─┓		<u>~</u> ⊂
Project Descrip	tion	Paseo Marina				02/ (1/1	- i uture	J.Auc	,					-	1	۲ ۲ ۲
r reject Becchip																
Demand Inform	nation				EB			۷	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			81	85	208	262	4	11 1	135	124	2213	304	132	1964	63
					b 111						_	_				1
Signal Informa	ation				215	s etter			Ę	7		Į	L	-+-		_
Cycle, s	130.0	Reference Phase	2		ľ	1 <u>51</u>	* 1 2 SA	7	- ^e F	₹			1		* 📑 -	€ ₄
Offset, s	0	Reference Point	End	Green	18.9	19.6	19.1	18	8.9 2	23.9	0.0				-	<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.	.6 3	3.6	0.0	'	く 4			
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	.5 2	2.5	0.0	↓	5	6	7	8
Timer Desults						EDT				T I			NDT	0.01		ODT
Assigned Dhas				EBI		EBI	VVB		VVB	-	NBL	-	NBI	SBL	-	5B1
Assigned Phase	e					4	<u> </u>	\rightarrow	0	-	2		2	10		0
Case Number						9.0		-	9.0		25.0		3.0	1.2		4.0
Change Duration		(<i>HAH</i>) s				SU.U	<u> </u>	\rightarrow	25.0	, I	25.0		50.0	25.0	, ;	50.0
Change Period	, (Y+R	Y+R c), s vay (MAH), s				0.1		-	0.1	-	5.9		5.9	0.1		5.4
Max Allow Heat	dway (<i>1</i>				4.4		-	4.3	_	3.1		0.0	3.1		0.0	
Queue Clearan	Headway (MAH), s earance Time (g_s), s ension Time (g_s), s					15.2			14.2	<u> </u>	2.0		0.0	5.6		0.0
Green Extensio	ance Time (<i>g</i> _s), s sion Time (<i>g</i> _e), s				+	1.0	<u> </u>	\rightarrow	0.8		8.6		0.0	0.2		0.0
Phase Call Pro					1.00	<u> </u>		1.00	-	1.00			1.00	,		
Max Out Proba	DIIITY					0.15			0.85)	0.32			0.00)	
Movement Gro	oup Res	sults			EB			W	В	Т		NB			SB	
Approach Move	ement			L	Т	R	L	Т	F	र	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	1	8	5	2	12	1	6	16
Adjusted Flow I	Rate (v	′), veh/h		83	87	212	179	13	0 13	38	127	2258	310	135	1560	508
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	183	39 16	10	1757	1725	1610	1757	1900	1858
Queue Service	Time (g s), s		5.1	5.1	13.2	12.2	8.	5 8.	.6	0.0	44.1	16.0	3.6	32.2	32.2
Cycle Queue C	learanc	e Time (<i>g c</i>), s		5.1	5.1	13.2	12.2	8.	58.	.6	0.0	44.1	16.0	3.6	32.2	32.2
Green Ratio (g	ı/C)			0.18	0.18	0.33	0.15	0.1	5 0.2	29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	/eh/h			333	349	533	263	26	7 46	68	660	1756	780	622	1956	637
Volume-to-Cap	acity Ra	atio (X)		0.248	0.248	0.399	0.681	0.4	87 0.2	294	0.192	1.286	0.398	0.217	0.798	0.798
Back of Queue	(Q), ft	/In (95 th percentile)		106.2	111.3	150.2	254.3	182	2.3 157	7.5	78.4	1459. 9	257	68	540.5	564.8
Back of Queue	(Q), v	eh/In (95 th percenti	le)	4.2	4.5	6.0	10.2	7.3	3 6.	.3	3.1	58.4	10.3	2.7	21.6	22.6
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d 1), s	/veh		45.4	45.4	6.8	52.7	51.	.1 35	5.8	46.0	43.0	21.4	33.8	38.6	38.6
Incremental De	lay (<i>d</i> 2	e), s/veh		0.4	0.4	0.5	7.0	1.4	4 0.	.3	0.1	133.2	1.5	0.1	3.5	10.0
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/v	eh		45.8	45.7	7.2	59.6	52.	.5 36	6.1	46.0	176.2	22.9	33.9	42.1	48.7
Level of Service	e (LOS)			D	D	A	Е	D		2	D	F	С	С	D	D
Approach Delay	y, s/veh	/LOS		24.3	3	С	50.3	3	D		152.4	4	F	43.1		D
Intersection De	lay, s/ve	eh / LOS				93	3.9							F		
Multimodal De	eulte				ED			\^/	B			NP			SD	
Pedestrian LOS	Score	/1.05		2.07	7	C	2.87	7		-	2 3 3		B	2 20		B
Ricycle I OS Sc				2.97	,	Δ	1.07	2	^	\rightarrow	1.07		B	1 10	-	Δ
Dicycle LOS SC				1.12	-	Л	1.20	,	A		1.97		U	1.40	,	Λ

General Inform	nation								Interse	ction	Info	ormatic	on	k	**	د ل <u>د</u>
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Duratio	n, h		0.250		1	4 + + + /	<u>د</u>
Analyst		JAS		Analys	sis Date	Dec 1	, 2020		Area T	/pe		Other		4		4
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with ct - AM		PHF			0.98		4 \ \ \ \ \	w ∲ E	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Urban Street		Lincoln Boulevard		Analys	sis Year	2026			Analys	is Peri	od	1> 8:0	00			~
Intersection		Lincoln / Maxella		File Na	ame	02AM	- Future	e with	Project	- Opti	on E	3.xus			*	۲ ۲ (۲
Project Descrip	tion	Paseo Marina - Opt	ion B											1		
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move	ement			L	Т	R	L		Г Б		L	Т	R	L	Т	R
Demand (v), v	eh/h			81	85	208	271	4	1 14	4 1	24	2213	330	141	1964	63
				1									•			
Signal Informa	tion				215	d ulli a i						l	Ĺ			_
Cycle, s	130.0	Reference Phase	2		ľ	l Str	- 51	2	- Æ					Y	Ľr;-	- € ₄
Offset, s	0	Reference Point	End	Green	18.9	19.6	19.1	18	3.9 23	.9 (0.0			-	•	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.0	6 3.	6 (0.0		$\langle \mathbf{A} \rangle$			
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	5 2.	5 (0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WBT		NBL		NBT	SBL	-	SBT
Assigned Phase	Э					4			8		5		2	1		6
Case Number						9.0			9.0		1.3		3.0	1.2		4.0
Phase Duration	, S					30.0			25.0	2	25.0		50.0	25.0) !	50.0
Change Period,	ange Period, (Y+R c), s					6.1			6.1		5.9		5.9	6.1		5.4
Max Allow Head	x Allow Headway (<i>MAH</i>), s					4.4			4.3		3.1		0.0	3.1		0.0
Queue Clearan	x Allow Headway (<i>MAH</i>), s leue Clearance Time (<i>g s</i>), s					15.2			14.7		2.0			5.8		
Green Extensio	n Time	(ge), s				1.0			0.8		8.6		0.0	0.2		0.0
Phase Call Prol	bability					1.00			1.00	·	1.00			1.00)	
Max Out Proba	bility					0.15			1.00	(0.33			0.00)	
Movement Gro	un Ros	ulte			EB			\//F	3			NB			SB	
Approach Move	ment				Т	R		T	, R			Т	R		Т	R
Assigned Move	ment			7	1	14	3	8	18			2	12	1	6	16
Adjusted Flow	Poto (v) voh/h		1	97	212	195	123	1/7	10	,)7	2	12	144	1560	508
Adjusted Satura	tion Ele), ven/n w Rate (s) veh/h/l	n	1810	1000	1610	1810	183	8 161	17	57	1725	1610	1757	1000	1858
			1	5 1	5 1	12.2	1010	9 7	7 03		0	1125	17.7	2.9	32.2	22.2
		g s , s		5.1	5.1	13.2	12.7	8.7	9.3 7 Q 3	0.	0	44.1	17.7	3.0	32.2	32.2
Green Ratio (a		c mile (g ;), 3		0.18	0.18	0.33	0.15	0.7	5 0.20		28	0.34	0.48	0.31	0.34	0.34
Capacity (c) w	/0) /eh/h			333	349	533	263	267	7 468	66	50	1756	780	622	1956	637
Volume-to-Cap	acity Ra	tio (X)		0.248	0.248	0.399	0 704	0.49	0.31	4 0 1	92	1 286	0.432	0.231	0 798	0 798
Back of Queue	(Ω) ft/	(In (95 th percentile)		106.2	111.3	150.2	264.5	187	7 169	78	4	1459	279.5	72.9	540.5	564.8
Duck of Queue	(100.2	111.0	100.2	204.0			10		9	210.0	12.0	040.0	004.0
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.2	4.5	6.0	10.6	7.5	5 6.8	3.	1	58.4	11.2	2.9	21.6	22.6
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.00	0.0	00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), si	/veh		45.4	45.4	6.8	52.9	51.	2 36.0	46	.0	43.0	21.8	33.9	38.6	38.6
Incremental De	lay (<i>d</i> 2), s/veh		0.4	0.4	0.5	8.2	1.4	0.4	0.	1	133.2	1.7	0.1	3.5	10.0
Initial Queue De	elay (<i>d</i>	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		45.8	45.7	7.2	61.1	52.	6 36.4	46	.0	176.2	23.6	34.0	42.1	48.7
Level of Service	e (LOS)			D	D	Α	Е	D	D	C)	F	С	С	D	D
Approach Delay	/, s/veh	/LOS		24.3	3	С	50.9)	D	1	51.2	2	F	43.1		D
Intersection De	lay, s/ve	h / LOS				93	3.4							F		
Multi					50				_			NID			05	
Nultimodal Re	SUITS	11.00		0.07	EB	0	0.07		5		2.00	NB	P	0.07	SB	
Pedestrian LOS	Score	/ LUS		2.97			2.87		C A		2.32		В	2.32	<u> </u>	В
BICYCIE LOS SC	ore / LC	15		1.12	<u> </u>	A	1.26)	A		1.98		В	1.40		A

 $\label{eq:copyright} Copyright @ 2020 \ University \ of \ Florida, \ All \ Rights \ Reserved.$

		1103	/ Sig	nanze	u mu	61360		163	untə	Juli	mai	y				
O an a sel la fa se	4!								Inte	4				T D		T.
General Inforn	hation			<u> </u>					Inte	ersect		ormatio	on	- 1	╡↓↓↓└	Ļ
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Dur	ration,	n	0.250				R
Analyst		JAS		Analys	sis Date	Aug 2	7, 2020		Are	ea Type	e	Other	•	××		~ _
Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng - PM		PHI	F		0.98			w+e 8	
Urban Street		Lincoln Boulevard		Analys	sis Year	2020			Ana	alysis	Period	1> 17	:00	ار الح		1
Intersection		Lincoln / Maxella		File Na	ame	02PM	- Existi	ng.xı	ls						<u>11111</u>	7
Project Descrip	tion	Paseo Marina												1	শ 1 প শ 1	<u>" "</u>
Domand Inform	nation				ED			V			<u>, </u>	ND			CD.	
Approach Move	ment				Т	R		V	т	R	1		R	1 1	Т	R
Demand (v) v	oh/h			86	65	103	321		1	102	10/	1705	346	104	2060	118
Demand (V), V	en/n			00	05	105	521		0	192	134	1790	540	104	2000	110
Signal Informa	tion				UL.				3				1			
Cvcle, s	130.0	Reference Phase	2	1	12 V 3			_	F	B.				V		
Offset, s	0	Reference Point	End		40.0				7			_	1	2	3	Y 4
Uncoordinated	No	Simult, Gap E/W	On	Green	18.9	19.6	19.1	18	3.9 6	23.9	0.0	_				\rightarrow
Force Mode	Fixed	Simult, Gap N/S	On	Red	2.2	1.0	2.3	2	5	2.5	0.0	-7	5	6	7	8
			-		1			Щ		1 -						
Timer Results				EBL	-	EBT	WB	L	W	/BT	NBL	-	NBT	SBL	-	SBT
Assigned Phas	e					4			8	8	5		2	1		6
Case Number						9.0			9.	.0	1.3		3.0	1.2		4.0
Phase Duration	. S					30.0			25	5.0	25.0		50.0	25.0) :	50.0
Change Period	. (Y+R)	c). S	, s \H), s			6.1			6.	.1	5.9		5.9	6.1		5.4
Max Allow Hea	dwav (/	иАН), s	, s AH), s a s) s			4.3			4.	.3	3.1		0.0	3.1		0.0
Queue Clearan	ce Time	e (q s), S			8.1		-	17	7.3	3.6			4.8			
Green Extensio	n Time	(ge),s			0.8			0.	.5	6.7		0.0	0.2		0.0	
Phase Call Pro	bability					1.00			1.0	00	1.00			1.00)	
Max Out Proba	bility					0.00			1.0	00	0.25			0.00	,	
	,															
Movement Gro	oup Res	ults			EB	-		W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8		18	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h		88	66	105	219	20	8	196	198	1832	353	106	1683	540
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	185	53 1	1610	1757	1725	1610	1757	1900	1827
Queue Service	Time (g	g s), s		5.4	3.8	6.1	15.3	14.	.1 1	12.8	1.6	44.1	18.8	2.8	35.8	35.8
Cycle Queue C	learanc	e Time (<i>g c</i>), s		5.4	3.8	6.1	15.3	14.	.1 1	12.8	1.6	44.1	18.8	2.8	35.8	35.8
Green Ratio (g	/C)			0.18	0.18	0.33	0.15	0.1	5 (0.29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	/eh/h			333	349	533	263	26	9 4	468	645	1756	780	622	1956	627
Volume-to-Cap	acity Ra	tio(X)		0.264	0.190	0.197	0.834	0.7	72 0).418	0.307	1.043	0.452	0.171	0.861	0.861
Back of Queue	(Q), ft/	In (95 th percentile)		113.1	84	71.9	332.5	302	.4 2	223.3	122.9	814	293.7	53.2	598.6	627.2
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.5	3.4	2.9	13.3	12.	.1	8.9	4.9	32.6	11.7	2.1	23.9	25.1
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d 1), s	/veh		45.5	44.9	6.3	54.0	53.	.5 3	37.2	47.1	43.0	22.1	33.6	39.8	39.8
Incremental De	lay (<i>d</i> 2), s/veh		0.4	0.3	0.2	20.1	12.	.9	0.6	0.1	33.7	1.9	0.0	5.2	14.5
Initial Queue D	elay (<i>d</i>	з), s/veh		0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		45.9	45.1	6.5	74.1	66.	.4 3	37.8	47.2	76.7	24.0	33.6	45.0	54.3
Level of Service	e (LOS)			D	D	A	E	E		D	D	F	С	С	D	D
Approach Dela	y, s/veh	/LOS		29.7	7	С	60.1		E	E	66.4		E	46.7		D
Intersection De	lay, s/ve	h / LOS				55	5.8							E		
Multimodal Re	sults	// 00			EB			W	В			NB	_		SB	_
Pedestrian LOS	Score	/ LOS		2.97		C	2.87		C	;	2.32		В	2.32		В
Bicycle LOS So	ore / LC)S		0.92	2	A	1.52	2	E	В	1.80		В	1.45		A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

												, 				
General Inform	nation								Inters	sect	ion Info	ormatio	on	2	* 7 4 1	بد لي
Agency		Linscott. Law & Gre	enspan	. Engine	ers				Durat	tion.	h	0.250			4 + + + /	Ļ.
Analyst		JAS		Analys	sis Date	Dec 1	2020		Area	Type	<i>.</i> .	Other		 		<i>د</i> لا
Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng with		PHF	.) P -	-	0.98		<u>ן</u> ↓ ל	w∔s	ע קיין קיין קיין קיין
Urban Street		Lincoln Boulevard		Analys	sis Year	2020			Analy	ysis F	Period	1> 17	:00		5 5 6 6 6	¥ م
Intersection		Lincoln / Maxella		File Na	ame	02PM	- Existi	ng wi	th Proj	ject -	Option	B.xus		ň	ব ↑ ব্দম্প 1	× ا ^م
Project Descrip	tion	Paseo Marina - Opt	ion B													
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move	ement			L	Т	R	L L		г	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			86	65	103	322	9	8 1	193	194	1795	354	107	2060	118
					E III	F 112	_				_					
Signal Informa	tion		-		215	< <mark>∠↓</mark> a				7		ļ	L	-+-		_
Cycle, s	130.0	Reference Phase	2		ľ	51	*	2	۶F	₹			1		Ĕ ┌─ ⋛─	♣ 4
Offset, s	0	Reference Point	End	Green	18.9	19.6	19.1	18	3.9 2	23.9	0.0				-	<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3.	63	3.6	0.0	^	く IA			
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2.	5 2	2.5	0.0	1	5	6	7	8
Timer Results				FBI		FBT	WB		WB1	т	NBI		NBT	SBI		SBT
Assigned Phase	<u>0</u>				-	4		-	8	<u> </u>	5	-	2	1		6
Case Number	<u> </u>			<u> </u>		9.0		\rightarrow	9.0	-	13		20	12		4.0
Phase Duration						30.0	-	-	25.0		25.0		50.0	25.0		50.0
Change Period	(V+P)			<u> </u>		6 1		-	6.1	, I	5.0		5.0	6.1		5 1
Max Allow Hear	, (7 .7. (A	μ(), 3 ΜΔΗ) s			-	0.1 1 3	-	-	/ 3	-	3.1	-	0.0	3.1		0.0
	co Timo	(α_{r}) s				4.J Q 1		-	17 /	1	3.1		0.0	1.0		0.0
Green Extensio	n Time	$(g_s), s$				0.8			0.5	-	6.7		0.0	4.3		0.0
Phase Call Pro	bability	(3,),-				1.00		-	1.00)	1.00			1.00		
Max Out Proba	bility					0.00			1.00)	0.25			0.00		
Movement Gro	oup Res	ults			EB			WE	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т	F	२	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	8	5	2	12	1	6	16
Adjusted Flow F	Rate (v), veh/h		88	66	105	220	208	3 19	97	198	1832	361	109	1683	540
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	185	3 16	510 N 0	1757	1725	1610	1757	1900	1827
	lime (g	js), S e Time (a.c.) s		5.4 5.4	3.8	0.1 6.1	15.4	14.	1 12 1 12	2.8	1.0	44.1	19.4 10.4	2.9	35.8	35.8
Green Ratio (a		e fille (<i>g c</i>), s		0.18	0.18	0.1	0.15	0.1	5 0 3	20	0.28	0.3/	0.48	0.31	0.34	0.34
Capacity (c) y	/O) /eh/h			333	349	533	263	269	a 46	38	645	1756	780	622	1956	627
Volume-to-Can	acity Ra	tio (X)	_	0.264	0 1 9 0	0 197	0.837	0.77	74 0 4	121	0 307	1 043	0.463	0.176	0.861	0.861
Back of Queue	(Ω) ft/	(In (95 th percentile)		113 1	84	71 9	334	303	1 224	44	122.9	814	301.1	54.7	598.6	627.2
Back of Queue	(Q), 10	eh/In (95 th percenti	le)	4.5	3.4	2.9	13.4	12.	1 9.	.0	4.9	32.6	12.0	2.2	23.9	25.1
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.0	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), si	/veh		45.5	44.9	6.3	54.0	53.	5 37	7.3	47.1	43.0	22.3	33.6	39.8	39.8
Incremental De	lay (<i>d</i> 2), s/veh		0.4	0.3	0.2	20.4	13.	1 0.	.6	0.1	33.7	2.0	0.0	5.2	14.5
Initial Queue De	elay (<i>d</i>	з), s/veh		0.0	0.0	0.0	0.0	0.0) 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/ve	eh		45.9	45.1	6.5	74.5	66.	6 37	7.9	47.2	76.7	24.2	33.6	45.0	54.3
Level of Service	e (LOS)			D	D	A	E	E		2	D	F	С	С	D	D
Approach Delay	, s/veh	/LOS		29.7	/	С	60.3	3	Е		66.3		Е	46.6		D
Intersection De	lay, s/ve	eh / LOS				55	5.8							E		
Multimodal Re	sults				EB			W	3			NB			SB	
Pedestrian I OS	S Score	/ LOS		2.97	,	С	2.87	7	С		2.32		В	2.32		В
Bicycle LOS Sc	ore / LC	DS		0.92	2	А	1.52	2	В		1.80		В	1.45		А

	nee	r org	nanzo	a iii	.01300		100	unt	Jour	innai j	,				
General Information								In	torsoct	tion Inf	ormati	20		4	× l <u>.</u>
	Lincott Low & Gro	onenan	Engin	ore					uration	b	0.250			4 ↓ ↓ ↓ ↓	L.
Agency		enspan			Aug 2	7 2020				<u></u>	Othou	,	1		۲_ ۲_
Analyst	JAS City of Los Annalas		Times			7,2020			еатур	e				wî e	₹ }_
Jurisaiction	City of Los Angeles		Time F	erioa	Future	9 - PIVI		Pr		Daniad	0.98				× * *
Urban Street			Analys	sis rea	r 2026	E. A.		Ar	naiysis	Period	> /	:00			к. К.
	Lincoln / Maxella		File Na	ame	02PM	- Future	e.xus	S					_	<u> </u>	ſ
Project Description	Paseo Marina													4 1 44 1 1	*
Demand Information	1			EB			V	NB		T	NB			SB	
Approach Movement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			91	69	109	382	1	04	209	206	200	1 411	116	2241	125
														1	
Signal Information				215			Τ	2				Ĺ			
Cycle, s 130.0	Reference Phase	2		P	- R.	. N S 10	2	Ù	. ¥				Ψ		÷
Offset, s 0	Reference Point	End	Green	18.0	19.6	10 1	1	<u>/</u> 8 0	² 3	0.0	_	1	2	3	
Uncoordinated No	Simult. Gap E/W	On	Yellow	3.9	4.4	3.6	3	.6	3.6	0.0		< 🛛			\rightarrow
Force Mode Fixed	Simult. Gap N/S	On	Red	2.2	1.0	2.3	2	.5	2.5	0.0		5	6	7	8
Timer Results			EBL	-	EBT	WB	L	۷	VBT	NBL	-	NBT	SBI	-	SBT
Assigned Phase					4				8	5		2	1		6
Case Number					9.0			ę	9.0	1.3		3.0	1.2		4.0
Phase Duration, s					30.0			2	25.0	25.0		50.0	25.0) ;	50.0
Change Period, (Y+	₹ c), s			6.1			(6.1	5.9		5.9	6.1		5.4	
Max Allow Headway	ү+к с), s ay (<i>MAH</i>), s Time (g s), s				4.3			4	4.3	3.1		0.0	3.1		0.0
Queue Clearance Tin	ay (<i>MAH</i>), s Time (<i>g</i> s), s				8.5			2	20.7	4.5			5.1		
Green Extension Time	Time (g s), s Fime (g e), s				0.9			(0.0	7.5		0.0	0.2		0.0
Phase Call Probability	Headway (<i>MAH</i>), s arance Time (<i>g</i> _s), s ension Time (<i>g</i> _e), s Probability				1.00			1	.00	1.00	,		1.00)	
Max Out Probability					0.00			1	.00	0.37	·		0.00)	
Movement Group Re	esults			EB			W	/B			NB			SB	
Approach Movement			L	Т	R	L	Т	-	R	L	Т	R	L	Т	R
Assigned Movement			7	4	14	3	8	3	18	5	2	12	1	6	16
Adjusted Flow Rate (<i>v</i>), veh/h		93	70	111	261	23	35	213	210	2042	419	118	1827	587
Adjusted Saturation F	low Rate (s), veh/h/l	n	1810	1900	1610	1810	18	50	1610	1757	1725	1610	1757	1900	1829
Queue Service Time	(gs), s		5.7	4.1	6.5	18.7	16	.1	14.1	2.5	44.1	23.6	3.1	40.3	40.4
Cycle Queue Clearan	ice Time (<i>g ₀</i>), s		5.7	4.1	6.5	18.7	16	.1	14.1	2.5	44.1	23.6	3.1	40.3	40.4
Green Ratio (g/C)			0.18	0.18	0.33	0.15	0.1	15	0.29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), veh/h			333	349	533	263	26	69	468	632	1756	780	622	1956	627
Volume-to-Capacity F	Ratio (X)		0.279	0.202	0.209	0.993	0.8	73	0.456	0.333	1.163	0.537	0.190	0.934	0.936
Back of Queue (Q),	ft/ln (95 th percentile))	120	89.5	76.2	457.8	363	3.3	241.4	130.4	1111.2	355.3	59.5	684.3	732.8
Back of Queue (Q),	veh/In (95 th percenti	le)	4.8	3.6	3.0	18.3	14	.5	9.7	5.2	44.4	14.2	2.4	27.4	29.3
Queue Storage Ratio	(RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1),	s/ven		45.6	45.0	6.3	55.5	54	.4	31.1	47.7	43.0	23.3	33.7	41.3	41.3
Incremental Delay (a	2), s/ven		0.5	0.3	0.2	53.4	25	.4	0.7	0.1	80.0	2.6	0.1	9.8	23.3
	u 3), s/ven		0.0	0.0	0.0	0.0	0.	U	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/	ven		46.1	45.2	6.5	108.8	/9	.8	38.4	47.8	123.0	26.0	33.7	51.1	64.6
Level of Service (LOS	5) / 00		D		A	F	Ē	:	0	D	F		C	U	E
Approach Delay, s/ve	n/LOS		29.8	5	C	78.0	ו		E	101.8	5	F	53.4		D
Intersection Delay, s/	/en / LOS				76	5.1							E		
Multimodal Results				FR			\٨/	/B			NR			SB	
Pedestrian LOS Scor	e/10S		2 07	,	C	2.87	7		С	2 32		В	2 32		В
Bicycle LOS Score / I	_OS		0.94		A	1.66	3		B	1.96		B	1.53	3	B

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

			Ū								-	,				
General Inform	nation								Int	tersect	ion Infe	ormatio	on	2	***	⊾ Ļ_
Agency		Linscott. Law & Gre	enspan	. Engine	eers				Du	uration.	h	0.250			41117	4
Analyst		JAS		Analys	sis Date	Dec 1	2020		Ar	ea Typ	 е	Other		 		بر 4
Jurisdiction		City of Los Angeles		Time F	Period	Future	with		PH	HF		0.98		<u>↓</u> ↓ ↓ ↓	W ^N E 8	*_ <u>↓</u> *_ ↓
Urban Streat		Lincoln Boulovard		Apolyc		Projec	t - PM		۸n		Poriod	1 > 17	.00			۲. ۲
Interportion				File N			Eutur	o varitk		aiysis voigot	Ontion I		.00	- 1	<u> </u>	7
Braiget Desering	tion	LINCOIT / Maxella	ion P	File ING	ame		- Future		IFI	ojeci -	Option	J.XuS		-	4 1 4 Y I	<u>• (*</u>
Project Descrip	uon	Paseo Marina - Opt														
Demand Inform	nation				EB			V	٧B			NB			SB	
Approach Move	ement			L	T	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			91	69	109	383	1	04	210	206	2001	419	119	2241	125
Signal Informa	tion			. <u> </u>	5 111	F 113	-				-		↑	1	1	
	130.0	Reference Phase	2		242		8	в	Ě	12		ļ	ୢ⊢	sta		~
Offect o	130.0	Reference Philase	End			- 5 1	~ ^ 1	7	2				1	2	3	4
Uncoordinated	No	Simult Con E/W	On	Green	18.9	19.6	19.1	18	3.9	23.9	0.0	_				A
Earco Modo	Eivod	Simult. Gap L/W	On	Pod	3.9	4.4	3.6	3.	6	3.6	0.0	— —) ₌ ►₁		7	¥ .
Force Mode	Fixed	Simult. Gap N/S	On	Rea	Z.Z	1.0	2.3	Ζ.	5	2.5	0.0	•	5	6	1	0
Timer Results	_			EBI	-	EBT	WB	L	V	VBT	NBL	-	NBT	SBL		SBT
Assigned Phase	e					4				8	5		2	1		6
Case Number						9.0			ç	9.0	1.3		3.0	1.2		4.0
Phase Duration	, S					30.0			2	5.0	25.0	,	50.0	25.0) :	50.0
Change Period.	(Y+R)	c). S				6.1		\rightarrow	6	6.1	5.9		5.9	6.1		5.4
Max Allow Head	dwav (/	MAH). s				4.3			4	4.3	3.1		0.0	3.1		0.0
Queue Clearan	ce Time	(q_s) , s				8.5		-	2	0.8	4.5			5.2		
Green Extensio	n Time	(ge), s				0.9			C	0.0	7.5		0.0	0.2		0.0
Phase Call Pro	bability					1.00			1	.00	1.00)		1.00)	
Max Out Probal	bility					0.00			1	.00	0.38	;		0.00)	
Movement Gro	oup Res	sults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8		18	5	2	12	1	6	16
Adjusted Flow F	Rate (<i>v</i>), veh/h		93	70	111	262	23	5	214	210	2042	428	121	1827	587
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1810	1900	1610	1810	185	50	1610	1757	1725	1610	1757	1900	1829
Queue Service	Time(g	g s), s		5.7	4.1	6.5	18.8	16.	2	14.2	2.5	44.1	24.2	3.2	40.3	40.4
Cycle Queue C	learanc	e Time (<i>g c</i>), s		5.7	4.1	6.5	18.8	16.	2	14.2	2.5	44.1	24.2	3.2	40.3	40.4
Green Ratio (g	/C)			0.18	0.18	0.33	0.15	0.1	5	0.29	0.28	0.34	0.48	0.31	0.34	0.34
Capacity (c), v	eh/h			333	349	533	263	26	9	468	632	1/56	780	622	1956	627
Volume-to-Capa	acity Ra			0.279	0.202	0.209	0.995	0.8	(4	0.458	0.333	1.163	0.548	0.195	0.934	0.936
Back of Queue	(Q),π/	/in (95 th percentile)		120	89.5	76.2	460.2	364		242.3	130.4	1111.Z		61.1	684.3	732.8
Queue Storage	Ratio (RO) (95 th percent	ile)	4.0	0.00	0.00	0.00	14.	0	9.7	0.00	44.4	14.5	2.4	27.4	29.3
Uniform Delay ((d 1), s	/veh		45.6	45.0	6.3	55.5	54.	4	37.7	47.7	43.0	23.5	33.7	41.3	41.3
Incremental De	lay (d 2), s/veh		0.5	0.3	0.2	54.1	25.	6	0.7	0.1	80.0	2.8	0.1	9.8	23.3
Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		46.1	45.2	6.5	109.6	80.	0	38.4	47.8	123.0	26.3	33.8	51.1	64.6
Level of Service	e (LOS)			D	D	Α	F	F		D	D	F	С	С	D	Е
Approach Dela	, s/veh	/ LOS		29.8	3	С	78.4	1		E	101.	7	F	53.4		D
Intersection Del	lay, s/ve	eh / LOS				76	5.1							E		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/ LOS		2.97	7	С	2.87	7		С	2.32	2	В	2.32	2	В
Bicycle LOS Sc	ore / LC	DS		0.94	1	А	1.66	5		В	1.96	;	В	1.53	3	В

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Del Rey Avenue
Time Analyzed	Existing - AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

 																
Approach		Eastb	ound			Westb	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	146	361				277	82						35		76
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage				Left	Only							2	2			
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		152													116	
Capacity, c (veh/h)		1174													645	
v/c Ratio		0.13													0.18	
95% Queue Length, Q_{95} (veh)		0.4													0.6	
Control Delay (s/veh)		8.5													11.8	
Level of Service (LOS)		А													В	
Approach Delay (s/veh)		2.	5											11	.8	
Approach LOS														E	3	

General Information		Site Information							
Analyst	JAS	Intersection	Del Rey / Maxella						
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles						
Date Performed	12/1/2020	East/West Street	Maxella Avenue						
Analysis Year	2020	North/South Street	Del Rey Avenue						
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.96						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Paseo Marina - Option B								

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	146	396				295	82						35		76
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage		Left Only 2														
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		152													116	
Capacity, c (veh/h)		1155													632	
v/c Ratio		0.13													0.18	
95% Queue Length, Q ₉₅ (veh)		0.5													0.7	
Control Delay (s/veh)		8.6													12.0	
Level of Service (LOS)		А													В	
Approach Delay (s/veh)		2	.3									12.0				
Approach LOS														E	3	

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	JAS	Intersection	Del Rey / Maxella							
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles							
Date Performed	8/12/2020	East/West Street	Maxella Avenue							
Analysis Year	2026	North/South Street	Del Rey Avenue							
Time Analyzed	Future - AM	Peak Hour Factor	0.96							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							

Project Description

Vehicle Volumes and Adjustments

Paseo Marina

	Eastb	ound			Westk	ound			North	bound		Southbound				
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
0	1	2	0	0	0	2	0		0	0	0		0	1	0	
	L	Т				Т	TR							LR		
0	155	395				319	86						55		129	
3	3												3		3	
													()		
			Left	Only							ž	2				
adway	ys															
	4.1												7.5		6.9	
	4.16												6.86		6.96	
	2.2												3.5		3.3	
	2.23												3.53		3.33	
Leve	of Se	ervice														
	161													192		
	1127													620		
	0.14													0.31		
	0.5													1.3		
	8.7													13.4		
	А													В		
	2.	5									13.4					
													E	3		
	U 1U 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Eastb U I 1U 1 1U 1 0 1 1U 1 1 0 1 1 0 155 3 3 3 4 155 3 4 155 3 2 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1	EastburdULT1U1201201201301553953333333310155395331015539533101553953310155104.161102.231102.231101611112711100.142100.51108.7110A110A1	Eastburger U I R 1U 1 2 3 1U 1 2 3 0 1 2 0 1 1 2 3 0 1 2 0 1 1 1 1 0 15 395 1 0 155 395 1 0 155 395 1 1 3 1 1 0 155 395 1 1 150 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FastburdULTRU1U1234U1U1234U012001200101200133113311	Fastbund West U L R U L 1U 1 2 3 4U 4 0 1 2 0 0 0 1U 1 2 0 0 0 1U 1 2 0 0 0 1U 1 2 0 0 0 0 1 2 0 0 0 0 15 395 4 0 1 0 155 395 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>Image: static strain s</td> <td>Vertication of the section of the sect</td> <td>EastburdIRULTRU11234U45611U1234U4561012000201120002011112011711112000201112011111333111111331111111331111111133111111111111111111411</td> <td>VerturnNorthiULTRUL1U1234U456701200020001U1200020001U1200020001U1200020001U120002000112000121010011539511111111015539511<td>Note the set of the set of</td><td>VertexNorthermation (Colspan="4">Northermation (Colspan="4")ULTRULTRULTR1U1234U456G78901200020G0001U12000201078901120002010000117R1010101010101010117R10101010101010101033310101010101010101010103310101010101010101010101033101010101010101010101010331010101010101010101010101111111111111111111111111111111111</td><td>UUUUUTRULTRULTRU11234U456107891011234U456107891011200020101010101011200017R1010101011200017R1010101011200011110101010101010333111<</td><td>Lestburger Image: Normal and the sector of the sector</td><td>U L T R U L T R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R I R I R I R I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></td></td>	Image: static strain s	Vertication of the section of the sect	EastburdIRULTRU11234U45611U1234U4561012000201120002011112011711112000201112011111333111111331111111331111111133111111111111111111411	VerturnNorthiULTRUL1U1234U456701200020001U1200020001U1200020001U1200020001U120002000112000121010011539511111111015539511 <td>Note the set of the set of</td> <td>VertexNorthermation (Colspan="4">Northermation (Colspan="4")ULTRULTRULTR1U1234U456G78901200020G0001U12000201078901120002010000117R1010101010101010117R10101010101010101033310101010101010101010103310101010101010101010101033101010101010101010101010331010101010101010101010101111111111111111111111111111111111</td> <td>UUUUUTRULTRULTRU11234U456107891011234U456107891011200020101010101011200017R1010101011200017R1010101011200011110101010101010333111<</td> <td>Lestburger Image: Normal and the sector of the sector</td> <td>U L T R U L T R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R I R I R I R I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></td>	Note the set of	VertexNorthermation (Colspan="4">Northermation (Colspan="4")ULTRULTRULTR1U1234U456G78901200020G0001U12000201078901120002010000117R1010101010101010117R10101010101010101033310101010101010101010103310101010101010101010101033101010101010101010101010331010101010101010101010101111111111111111111111111111111111	UUUUUTRULTRULTRU11234U456107891011234U456107891011200020101010101011200017R1010101011200017R1010101011200011110101010101010333111<	Lestburger Image: Normal and the sector of the sector	U L T R U L T R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R U I R I R I R I R I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>	

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	JAS	Intersection	Del Rey / Maxella					

Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	12/1/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Del Rey Avenue
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	155	430				337	86						55		129
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage	Left Only							2	2							
Critical and Follow-up He	adway	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		161													192	
Capacity, c (veh/h)		1109													608	
v/c Ratio		0.15													0.32	
95% Queue Length, Q ₉₅ (veh)		0.5													1.3	
Control Delay (s/veh)		8.8													13.6	
Level of Service (LOS)		А													В	
Approach Delay (s/veh)		2	.3								13.6					
Approach LOS														E	3	

HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	JAS	Intersection	Del Rey / Maxella						
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles						
Date Performed	8/12/2020	East/West Street	Maxella Avenue						
Analysis Year	2020	North/South Street	Del Rey Avenue						
Time Analyzed	Existing - PM	Peak Hour Factor	0.93						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						

Project Description

Vehicle Volumes and Adjustments

Paseo Marina

Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	81	477				428	81						89		189
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage	Left Only						ź	2								
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		87													299	
Capacity, c (veh/h)		1011													596	
v/c Ratio		0.09													0.50	
95% Queue Length, Q ₉₅ (veh)		0.3													2.8	
Control Delay (s/veh)		8.9													17.0	
Level of Service (LOS)		А													С	
Approach Delay (s/veh)		1.	.3											17	.0	
Approach LOS														(2	

nest two way stop control hepoin									
General Information		Site Information							
Analyst	JAS	Intersection	Del Rey / Maxella						
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles						
Date Performed	12/1/2020	East/West Street	Maxella Avenue						
Analysis Year	2020	North/South Street	Del Rey Avenue						
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.93						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Paseo Marina - Option B								

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	81	488				432	81						89		189
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage				Left	Only							:	2			
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		87													299	
Capacity, c (veh/h)		1008													593	
v/c Ratio		0.09													0.50	
95% Queue Length, Q ₉₅ (veh)		0.3													2.8	
Control Delay (s/veh)		8.9													17.1	
Level of Service (LOS)		А													С	
Approach Delay (s/veh)		1	.3									17.1				
Approach LOS														(2	

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	JAS	Intersection	Del Rey / Maxella						
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles						
Date Performed	8/12/2020	East/West Street	Maxella Avenue						
Analysis Year	2026	North/South Street	Del Rey Avenue						
Time Analyzed	Future - PM	Peak Hour Factor	0.93						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Paseo Marina								

Vehicle Volumes and Adjustments

Approach	Eastbound Westbound								North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	98	545				490	104						97		210
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage	Left Only											2	2			
Critical and Follow-up He	adways															
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23											3.53 3.33			
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		105													330	
Capacity, c (veh/h)		934													543	
v/c Ratio		0.11													0.61	
95% Queue Length, Q ₉₅ (veh)		0.4													4.0	
Control Delay (s/veh)		9.3													21.4	
Level of Service (LOS)		А													С	
Approach Delay (s/veh)	1.4								21.4							
Approach LOS													(2		

Copyright © 2020 University of Florida. All Rights Reserved.

_

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Del Rey / Maxella

Analyst	JAS	Intersection	Del Rey / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	12/1/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Del Rey Avenue
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Vehicle Volumes and Adjustments

Approach		Eastbound Westbound								North	oound			South	oound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	1	0
Configuration		L	Т				Т	TR							LR	
Volume (veh/h)	0	98	556				494	104						97		210
Percent Heavy Vehicles (%)	3	3												3		3
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage		Left Only										ź	2			
Critical and Follow-up He	adways															
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.16												6.86		6.96
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		105													330	
Capacity, c (veh/h)		931													540	
v/c Ratio		0.11													0.61	
95% Queue Length, Q ₉₅ (veh)		0.4													4.1	
Control Delay (s/veh)		9.4													21.6	
Level of Service (LOS)		А												С		
Approach Delay (s/veh)		1.4												21	.6	
Approach LOS								с								

General Information		Site Information	
Analyst	JAS	Intersection	Ocean Way / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Ocean Way
Time Analyzed	Existing - AM	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westb	bound			North	oound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0	
Configuration			Т	TR		L	Т			L		R					
Volume (veh/h)			305	43	0	33	278			50		62					
Percent Heavy Vehicles (%)					3	3				3		3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										N	0						
Median Type Storage				Undi	vided												
Critical and Follow-up He	adways																
Base Critical Headway (sec)						4.1				7.5		6.9					
Critical Headway (sec)						4.16				6.86		6.96					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.23				3.53		3.33					
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)						35				53		66					
Capacity, c (veh/h)						1178				439		822					
v/c Ratio						0.03				0.12		0.08					
95% Queue Length, Q ₉₅ (veh)						0.1				0.4		0.3					
Control Delay (s/veh)						8.2				14.3		9.8					
Level of Service (LOS)						А				В		А					
Approach Delay (s/veh)						0	.9			11	.8						
Approach LOS										E	3						

									J							
General Inform	nation								Inters	secti	ion Info	rmatio	on	2	444	. Ja l <u>a</u>
Agency		Linscott, Law & Gre	enspan	Engine	ers				Durat	ion.	h	0.250)			
Analyst		JAS	onopun	Analys	is Date	Dec 1	2020		Area	Tvne		Othe	- -	 		<u>بر</u> ج
Jurisdiction		City of Los Angeles		Time F	Period	Existin	na with		PHF	Type	, 	0.94			w – E	← ↓ ↓
						Projec	t - AM									
Urban Street		Maxella Avenue		Analys	is Year	2020			Analy	sis F	Period	1> 8:	00		ን ሰ	
Intersection		Ocean Way/Maxella	a	File Na	ame	04AM	- Existi	ng wit	th Proj	ect -	Option	B.xus		5	*1 1 ***	* * *
Project Descript	tion	Paseo Marina - Opt	ion B													
Demand Inform	nation				FD			10	D			ND			CD.	
Approach Move	mation						+	VV	- -	П				<u> </u>	<u>эр</u> т	
	oh/h			<u> </u>	200	75	20	27	70	R	L 69		R 00	<u> </u>		
Demand (V), V	en/n				308	75	30	21	0		00		80			
Signal Informa	tion				-	"	T	T	Г							
Cycle, s	60.0	Reference Phase	2	1	L, 2											
Offset, s	0	Reference Point	End	Croon		24.0					0.0	_	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	24.0	3.6	0.0	0.0		0.0	0.0	_				K 2
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.0		0.0	0.0		5	7 6	7	Ϋ́.
				~												
Timer Results				EBL	-	EBT	WB	-	WBT	·	NBL	NBT		SBL		SBT
Assigned Phase	e					6			2				8			
Case Number						8.0			6.0				9.0			
Phase Duration	, S				30.0			30.0	_			30.0				
Change Period,	(Y+R				5.2			5.2	4			5.1				
Max Allow Head	dway(/	ИАН), s			0.			_	0.0	4			3.4			
Queue Clearan	ce Time	e (g s), s						_		-		4.0			_	
Green Extensio		(ge), s				0.0		_	0.0	-			0.3	<u> </u>	_	
Phase Call Prot								-		-			1.00		-	
Max Out Proba	biiity												0.00			
Movement Gro	oup Res	ults			EB			WE	3	Т		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	2	L	Т	R	L	Т	R
Assigned Move	ment				6	16	5	2		Ť	3		18			
Adjusted Flow F	Rate (<i>v</i>), veh/h			208	199	40	296	3		72	_	85			
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1900	1772	993	180	9		1810		1610			
Queue Service	Time (g	g s), S			4.3	4.5	1.7	3.1			1.5		2.0			
Cycle Queue Cl	learanc	e Time (<i>g c</i>), s			4.3	4.5	6.1	3.1			1.5		2.0			
Green Ratio (g	/C)				0.41	0.41	0.41	0.4	1	_	0.42		0.42			
Capacity (<i>c</i>), v	reh/h				785	732	457	149	5	_	751	-	668		_	
Volume-to-Capa	acity Ra	itio (X)			0.265	0.272	0.088	0.19	8	4	0.096		0.127			
Back of Queue	(Q), ft/	In (95 th percentile))		82.9	80	18	54.2	2	-	26.5		32		_	
Back of Queue	(Q), Ve	en/in (95 th percenti	le)		3.3	3.2	0.7	2.2		-	1.1		1.3			
Queue Storage		KQ) (95 in percent	lie)		0.00	0.00	0.00	0.00))	+	10.7		0.00			
Incremental Del	$(u_1), s_1$				0.8	0.0	0.4	03	<u><</u>	+	0.3		0.4			
	ay (u 2	3) s/veh			0.0	0.9	0.4	0.3		-	0.0		0.4			
Control Delay (al Queue Delay (d ₃), s/veh trol Delay (d) s/veh				12.4	12 5	14.0	11	5		10.9		11.2			
l evel of Service	control Delay (<i>d</i>), s/veh				R	- <u>2</u> .5	R	R			B		B			
Approach Delay	evel of Service (LOS)					B	11.8		B		11 1		B	0.0		
Intersection Delay, s/ven / LOS						- 12	2.0						-	B		
Multimodal Re	sults				EB			WE	3			NB			SB	
Pedestrian LOS	Score	/LOS		1.92		В	0.72	2	А		2.28		В	2.11		В
Bicycle LOS Sc	ore / LC	DS		0.82		А	0.76	;	A				F			

General Information		Site Information	
Analyst	JAS	Intersection	Ocean Way / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/12/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Ocean Way
Time Analyzed	Future - AM	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	oound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0	
Configuration			Т	TR		L	Т			L		R					
Volume (veh/h)			351	49	0	38	307			65		77					
Percent Heavy Vehicles (%)					3	3				3		3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										N	0						
Median Type Storage				Undi	vided												
Critical and Follow-up He	adways																
Base Critical Headway (sec)						4.1				7.5		6.9					
Critical Headway (sec)						4.16				6.86		6.96					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.23				3.53		3.33					
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)						40				69		82					
Capacity, c (veh/h)						1123				389		789					
v/c Ratio						0.04				0.18		0.10					
95% Queue Length, Q ₉₅ (veh)						0.1				0.6		0.3					
Control Delay (s/veh)						8.3				16.2		10.1					
Level of Service (LOS)						А				С		В					
Approach Delay (s/veh)						0	.9			12	.9						
Approach LOS									В								

			- 5								,				
General Inform	nation								Intersed	tion Info	ormati	on	2	4 가 야 †	the lat
Agency		Linscott Law & Gre	ensnan	Engine	ers				Duration	h	0.25	0			
Analyst			enopun		is Data	Dec 1	2020			n, m ne	Othe	or	 		<u>ئ</u> ے ک
Jurisdiction		City of Los Angeles		Time E		Euture	, 2020			50	0 04	•1	- → +	w‡e	← ↓ ↓
Junsaletion					enou	Projec	t - AM				0.94				
Urban Street		Maxella Avenue		Analvs	is Year	2026			Analysis	Period	1> 8	:00			<u>د</u>
Intersection		Ocean Wav/Maxella	3	File Na	ime	04AM	- Future	e with	Project -	Option E	3.xus			<u>ী</u> (অক্ষেম্প	17 1
Project Descrip	tion	Paseo Marina - Opt	ion B	1		1			j				1 "		
r reject becomp															
Demand Inform	nation				EB			W	В		NB	;		SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				354	81	43	30	7	83	-	95			
													1		
Signal Informa	tion					"									
Cycle, s	60.0	Reference Phase	2	1											
Offset, s	0	Reference Point	End	Croon			•			0.0	_	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	24.0	3.6	0.0	0.0	0.0	0.0	-10				K 2
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.0	0.0	0.0		5	7 6	7	Ύ.
/		· · ·													
Timer Results				EBL		EBT	WB	L	WBT	NBL	NBT		SBL		SBT
Assigned Phase	Э					6			2			8			
Case Number						8.0		+	6.0		+	9.0			
Phase Duration	S					30.0			30.0			30.0			
Change Period	(Y+R)	c) S			52		+	52		+	5.1				
Max Allow Head	dway (/	MAH)s				0.0			0.0			3.4			
	ce Time	(a_s) s			0.0			+	0.0		+	4.4			
Green Extensio	n Time	(q_{s}) , s				0.0		-	0.0	<u> </u>	-	0.4			
Phase Call Prot	hability	(90), 3				0.0		-	0.0	<u> </u>	+	1.00			
Max Out Probal	bility			-				-		-	-	0.00			
	Shity											0.00			
Movement Gro	oup Res	sults			EB			WE	;		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment				6	16	5	2		3		18			
Adjusted Flow F	Rate (v), veh/h			237	226	46	327		88		101			
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1900	1778	944	1809	9	1810		1610			
Queue Service	Time (d	q s), S			5.0	5.1	2.1	3.5		1.8		2.4			
Cycle Queue C	learanc	e Time (<i>q</i> c), s			5.0	5.1	7.2	3.5		1.8		2.4		_	
Green Ratio (g	/C)				0.41	0.41	0.41	0.41		0.42		0.42			
Capacity (c), y	/eh/h				785	735	430	149	5	751		668			
Volume-to-Cap	acity Ra	atio (X)			0.302	0.307	0.106	0.21	8	0.118		0.151			
Back of Queue	(Q) ft/	(In (95 th percentile)			96.2	92.6	21.1	60.5	5	29.9		34.8			
Back of Queue	(Q) ve	eh/In (95 th percenti	le)		3.8	37	0.8	24	-	12		14			
	Ratio (BO (95 th percent	tile)		0.00	0.00	0.00	0.00		0.00		0.00			
Liniform Delay ($d_1)$				11.8	11.8	14.2	11 /	,	10.8		11 0			
Incremental De	$\left[\frac{u}{d} \right]$				1.0	11.0	0.5	0.3		0.0		0.0			
Initial Quoup Do	ay (u 2				0.0	1.1	0.0	0.5		0.0	_	0.0		_	
Control Dolay (al Queue Delay (<i>d</i> ₃), s/veh				12.0	12.0	14.7	11 7	,	10.0		11.0			
Control Delay (d), s/veh					12.0 P	12.9 P	14.1 P	D		P 10.0		П.0 В			
Level of Service (LOS)				40.0											1
Approach Delay, s/veh / LOS				12.8		D	12.1		В	10.9		D	0.0 P		
ntersection Delay, s/veh / LOS						12	<u></u>		В						
Multimodal Po	limodal Desulte				FR				2		NR			SR	
Pedestrian LOS	Score	/1.05		1 0 2		B	0.70		Δ	2 20		R	2 11	00	B
Ricycle I OS So				1.92		Δ	0.72	- +	<u>_</u>	2.20		F	2.11		5
DICYCIE LOS SC				0.07			0.78	,	А			L, L			

	11037 1100 1103 5101		
General Information		Site Information	
Analyst	JAS	Intersection	Ocean Way / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Ocean Way
Time Analyzed	Existing - PM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

- -																	
Approach	Eastbound Westbound U L T R U L T R 111 1 2 3 411 4 5 6									North	oound			South	oound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0	
Configuration			Т	TR		L	Т			L		R					
Volume (veh/h)			441	90	0	49	392			64		49					
Percent Heavy Vehicles (%)					3	3				3		3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										N	0						
Median Type Storage				Undi	vided												
Critical and Follow-up He	adways																
Base Critical Headway (sec)						4.1				7.5		6.9					
Critical Headway (sec)						4.16				6.86		6.96					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.23				3.53		3.33					
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)						51				67		51					
Capacity, c (veh/h)						1006				299		718					
v/c Ratio						0.05				0.22		0.07					
95% Queue Length, Q ₉₅ (veh)						0.2				0.8		0.2					
Control Delay (s/veh)						8.8				20.5		10.4					
Level of Service (LOS)						А				С		В					
Approach Delay (s/veh)						1	.0			16	5.1						
Approach LOS									с								

General Inform							Inters	octi	on Info	rmati	on	2	역 Y 약 †	Ja l <u>a</u>		
	ation	Linscott Law & Gre	onenan	Engine	ore				Durati	on k		0 250				
Apolyot			enspan			Dec 1	2020		Arool	011, 1 5/00	I	Othou	,	<u>*</u>		۲. ۲.
Analyst		JAO City of Los Angolos		Time			, 2020			lype				- <u>→</u> -→	w1r	← <mark>}-</mark>
Junsaiction		City of Los Angeles		I Ime F	renou	Proied	t - PM		РПГ			0.90				¥ -
Urban Street		Maxella Avenue		Analys	is Year	2020			Analys	sis P	eriod	1> 17	2:00		K X	Ē
Intersection		Ocean Way/Maxella	a	File Na	ame	04PM	- Existi	ng wit	h Proje	ect -	Option	B.xus		- 1	1 1 4 4	14
Project Descrip	tion	Paseo Marina - Opt	ion B											1		
Demand Inform	nation				EB			W	В			NB			SB	
Approach Move	ment			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Demand (v), v	eh/h				442	100	51	39	2		68		53			
											_				_	1
Signal Informa	tion		0		5	_								—		
Cycle, s	60.0	Reference Phase	2		= _*	l Si	7						1	2	3	4
Offset, s	0	Reference Point	End	Green	24.8	24.9	0.0	0.0) 0	.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.0) ()	.0	0.0			→		\sim
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.0	0 0	.0	0.0		5	6	7	8
			_	501		EDT			MOT				NET	0.01		0.0.7
Timer Results				EBL		EBI	WBI		WBI	+	NBL		NBI	SBL	_	SBI
Assigned Phase	9					6			2	_			8			
Case Number						8.0			6.0				9.0			
Phase Duration	, S					30.0			30.0	_			30.0			
Change Period,	Change Period, (Y+R c), s					5.2			5.2				5.1			
Max Allow Head	Max Allow Headway (<i>MAH</i>), s					0.0			0.0			3.4				
Queue Clearan	ce Time	e (g s), s											3.4			
Green Extensio	n Time	(ge),s				0.0			0.0				0.2			
Phase Call Pro	oability												1.00			
Max Out Probal	oility												0.00			
	_	•								_			_			
Movement Gro	oup Res	sults			EB			WB	3	+		NB			SB	
Approach Move	ement			L		R	L		R	_			R	L		R
Assigned Move	ment				6	16	5	2		+	3		18			
Adjusted Flow F	Rate (v), veh/h			290	275	53	408		_	71		55			
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1900	1779	859	1809	9	_	1810		1610			
Queue Service	Time (g	g s), S			6.3	6.4	2.7	4.5	_	_	1.4		1.2			
Cycle Queue C	learanc	e lime (<i>g</i> c), s			6.3	6.4	9.2	4.5		_	1.4		1.2			
Green Ratio (g	/C)				0.41	0.41	0.41	0.41			0.42		0.42		_	
Capacity (<i>c</i>), v	eh/h				785	735	383	1495	5	_	751	-	668			
Volume-to-Capa	acity Ra	itio(X)			0.369	0.373	0.139	0.27	3	(0.094		0.083			
Back of Queue	(Q), ft/	In (95 th percentile)			122.6	117	26.3	77.7	7	_	25.9		20.3			
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		4.9	4.7	1.1	3.1		_	1.0		0.8			
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00	0.00	0.00	0.00)		0.00		0.00			
Uniform Delay (d 1), s	/veh			12.2	12.2	15.4	11.6	;		10.7		10.6			
Incremental De	lay (<i>d</i> 2), s/veh			1.3	1.5	0.8	0.5			0.2		0.2			
Initial Queue De	elay(d	з), s/veh			0.0	0.0	0.0	0.0			0.0		0.0			
Control Delay (d), s/veh					13.5	13.7	16.1	12.1			10.9		10.9			
Level of Service (LOS)					В	В	В	В			В		В			
Approach Delay	/, s/veh	/ LOS		13.6	;	В	12.6	6	В		10.9		В	0.0		
Intersection Delay, s/veh / LOS						12	2.9							В		
Multimodal Re	imodal Results				EB			WB	8			NB			SB	
Pedestrian LOS	Score	/LOS		1.92	2	В	0.72	2	Α		2.28		В	2.11		В
Bicycle LOS Sc	ore / LC	DS		0.95	;	А	0.87	'	А				F			

General Information		Site Information	
Analyst	JAS	Intersection	Ocean Way / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Ocean Way
Time Analyzed	Future - PM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Vehicle Volumes and Adjustments

									Northbaurd Coutbbaurd								
Approach	Eastbound Westbound U L T R U L T 1U 1 2 3 4U 4 5						bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	1	2	0		1	0	1		0	0	0	
Configuration			Т	TR		L	Т			L		R					
Volume (veh/h)			496	110	0	64	463			75		59					
Percent Heavy Vehicles (%)					3	3				3		3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										N	0						
Median Type Storage				Undi	vided												
Critical and Follow-up He	eadways																
Base Critical Headway (sec)						4.1				7.5		6.9					
Critical Headway (sec)						4.16				6.86		6.96					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.23				3.53		3.33					
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)						67				78		61					
Capacity, c (veh/h)						940				239		677					
v/c Ratio						0.07				0.33		0.09					
95% Queue Length, Q ₉₅ (veh)						0.2				1.4		0.3					
Control Delay (s/veh)						9.1				27.2		10.8					
Level of Service (LOS)						А				D		В					
Approach Delay (s/veh)						1	.1		20.0								
Approach LOS									с								

General Inform	nation								Inters	ectio	on Info	rmati	on	2	*	, be l <u>e</u>
Agency		Linscott, Law & Gre	enspan	. Engine	ers				Durati	on. h) 1	0.250)			
Analyst		JAS	onopun	Analys	is Date	Dec 1	2020		Area T	Tvne		Othe	- -	 		<u>بر</u> ج
Jurisdiction		City of Los Angeles		Time F	Period	Future	with		PHE	JPO		0.96		→ ∻ →	w ^N ∓e	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Julisalolion					chou	Projec	t - PM					0.00		T T		v v
Urban Street		Maxella Avenue		Analys	is Year	2026			Analys	sis P	eriod	1> 17	':00			<u> </u>
Intersection		Ocean Way/Maxella	a	File Na	ame	04PM	- Future	e with	Projec	:t - O	ption E	3.xus		-	 ব ↑ কՒ	1 to (*
Project Descrip	tion	Paseo Marina - Opt	ion B											1		
, , ,		- 1														
Demand Inform	nation				EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	٦	- F	र	L	Т	R	L	Т	R
Demand (v), v	eh/h				497	120	66	46	63		79		63			
								1								
Signal Informa	tion						Т									
Cycle, s	60.0	Reference Phase	2]	le ²									Y		
Offset, s	0	Reference Point	End	Green	24.8	24.9	• • • • •	0.0		0	0.0	_	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.0) 0	.0	0.0	-				к 2
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.0) 0.	.0	0.0		5	7 6	7	Y [∗]
Timer Results				EBL	-	EBT	WB	L	WBT	Т	NBL		NBT	SBL		SBT
Assigned Phase	e					6			2				8			
Case Number						8.0			6.0				9.0			
Phase Duration	. S					30.0			30.0				30.0			
Change Period.	hange Period, ($Y+R_c$), s					5.2		\rightarrow	5.2				5.1			
Max Allow Head				0.0			0.0				3.4					
Queue Clearan	ce Time	(q_s)							0.0				3.7		+	
Green Extensio	n Time	(ge),s				0.0			0.0				0.3			
Phase Call Pro	bability	(9 °), °				0.0		-	0.0				1.00		+	
Max Out Proba	bility												0.00			
	onney						1						0.00		a de la com	
Movement Gro	oup Res	sults			EB			WE	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R		L	Т	R	L	Т	R
Assigned Move	ment				6	16	5	2			3		18			
Adjusted Flow F	Rate (v), veh/h			331	311	69	482	2		82		66			
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1900	1772	799	180	9	Ī	1810		1610			
Queue Service	Time (g	q s), S			7.4	7.5	4.0	5.4			1.7		1.5			
Cycle Queue C	learanc	e Time (<i>q</i> c), s			7.4	7.5	11.5	5.4			1.7		1.5			
Green Ratio (g	/C)				0.41	0.41	0.41	0.4	1		0.42		0.42			
Capacity (c), y	, eh/h				785	732	350	149	5		751	-	668			
Volume-to-Cap	acitv Ra	atio (X)			0.422	0.425	0.196	0.32	3		0.110		0.098			
Back of Queue	(Q) ft	/In (95 th percentile)			144.7	137.2	36.7	94.3	3		30.3		24.3			
Back of Queue	(Q), R	eh/In (95 th percenti	le)		5.8	5.5	1.5	3.8	-		12		10			
	Ratio (RO) (95 th percent	tile)		0.00	0.00	0.00	0.0)		0.00		0.00			+
Liniform Delay ((d_1) e				12.5	12.5	16.6	11 0	2		10.8		10.7			+
Incremental De	(u r), s				12.5	12.5	10.0	0.6	,		0.3		0.3			+
	ay (u 2				1.7	1.0	1.2	0.0		+	0.0		0.3			+
	ial Queue Delay (d 3), s/veh				14.2	14.2	17.0	12		+	11 1		11.0			+
Control Delay (d), s/veh					14.Z	14.3 D	П.9 П		,	-	п. і р		П.U В			+
Level of Service (LOS)				44.0	В		B 40.0			+						
Approach Delay, s/veh / LOS				14.2		В	13.2		В		11.0		В	0.0		
Intersection Delay, s/veh / LOS						13	0.4		В							
Multimodel Be	Multimodel Peculte				ED			١٨/٢	2			ND			e D	
Podostrian I OC	Soore	/1.05	1.00		P	0.70		, ^	-	2.20	DI	B	0 44		P	
Riovela LOS C-				1.92	-	Δ	0.72	1	A	+	2.20		D E	2.11	\rightarrow	U
DICYCIE LOS SC	UIE / L			1.02	-	A	0.94	t	А				-			

HCS7 Two-Way Stop-Control Report													
General Information		Site Information											
Analyst	JAS	Intersection	Maxella Dwy / Maxella										
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles										
Date Performed	8/13/2020	East/West Street	Maxella Avenue										
Analysis Year	2020	North/South Street	Maxella Avenue Driveway										
Time Analyzed	Existing - AM	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Paseo Marina												

Vehicle Volumes and Adjustments

Approach	Eastbound Westbound U L T R U L T R								North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0	
Configuration			Т	TR			Т					R					
Volume (veh/h)			342	1			283					1					
Percent Heavy Vehicles (%)												3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										N	0						
Median Type Storage				Undi	vided												
Critical and Follow-up Headways																	
Base Critical Headway (sec)												6.9					
Critical Headway (sec)												6.96					
Base Follow-Up Headway (sec)												3.3					
Follow-Up Headway (sec)												3.33					
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)												1					
Capacity, c (veh/h)												821					
v/c Ratio												0.00					
95% Queue Length, Q_{95} (veh)												0.0					
Control Delay (s/veh)												9.4					
Level of Service (LOS)									A								
Approach Delay (s/veh)									9.4								
Approach LOS									A								

General Information		Site Information	
Analyst	JAS	Intersection	Maxella Dwy / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	12/1/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Maxella Avenue Driveway
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound Westbound U L T R U L T F								North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0		
Configuration			Т	TR			Т					R						
Volume (veh/h)			360	4			288					7						
Percent Heavy Vehicles (%)												3						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized										N	0							
Median Type Storage				Undi	vided													
Critical and Follow-up Headways																		
Base Critical Headway (sec)												6.9						
Critical Headway (sec)												6.96						
Base Follow-Up Headway (sec)												3.3						
Follow-Up Headway (sec)												3.33						
Delay, Queue Length, and	l Leve	l of Se	ervice															
Flow Rate, v (veh/h)												8						
Capacity, c (veh/h)												807						
v/c Ratio												0.01						
95% Queue Length, Q ₉₅ (veh)												0.0						
Control Delay (s/veh)												9.5						
Level of Service (LOS)												А						
Approach Delay (s/veh)									9.5									
Approach LOS									A									

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Maxella Dwy / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2026	North/South Street	Maxella Avenue Driveway
Time Analyzed	Future - AM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

Assessed Earth and Martha and Neither ad Calible ad																		
Approach	Eastbound Westbound U L T R U L T F								North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0		
Configuration			Т	TR			Т					R						
Volume (veh/h)			401	1			315					1						
Percent Heavy Vehicles (%)												3						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized										N	lo							
Median Type Storage				Undi	vided													
Critical and Follow-up Headways																		
Base Critical Headway (sec)												6.9						
Critical Headway (sec)												6.96						
Base Follow-Up Headway (sec)												3.3						
Follow-Up Headway (sec)												3.33						
Delay, Queue Length, and	Leve	l of Se	ervice															
Flow Rate, v (veh/h)												1						
Capacity, c (veh/h)												783						
v/c Ratio												0.00						
95% Queue Length, Q ₉₅ (veh)												0.0						
Control Delay (s/veh)												9.6						
Level of Service (LOS)												А						
Approach Delay (s/veh)									9.6									
Approach LOS									A									

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	JAS	Intersection	Maxella Dwy / Maxella											
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles											
Date Performed	12/1/2020	East/West Street	Maxella Avenue											
Analysis Year	2026	North/South Street	Maxella Avenue Driveway											
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.92											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Paseo Marina - Option B													

Vehicle Volumes and Adjustments

Approach	Eastbound Westbound U L T R U L T R							North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0	
Configuration			Т	TR			Т					R					
Volume (veh/h)			419	4			320					7					
Percent Heavy Vehicles (%)												3					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										N	0						
Median Type Storage		Undivided															
Critical and Follow-up Headways																	
Base Critical Headway (sec)												6.9					
Critical Headway (sec)												6.96					
Base Follow-Up Headway (sec)												3.3					
Follow-Up Headway (sec)												3.33					
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)												8					
Capacity, c (veh/h)												769					
v/c Ratio												0.01					
95% Queue Length, Q_{95} (veh)												0.0					
Control Delay (s/veh)												9.7					
Level of Service (LOS)												А					
Approach Delay (s/veh)									9.7								
Approach LOS										ļ	4						

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JAS	Intersection	Maxella Dwy / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Maxella Avenue Driveway
Time Analyzed	Existing - PM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Vehicle Volumes and Adjustments

Approach Eastbound Westbound Northbound Southbound																			
Approach		Eastb	ound			Westb	bound			North	oound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0			
Configuration			Т	TR			Т					R							
Volume (veh/h)			464	3			394					6							
Percent Heavy Vehicles (%)												3							
Proportion Time Blocked																			
Percent Grade (%)										()								
Right Turn Channelized									No										
Median Type Storage				Undiv	vided				<u> </u>										
Critical and Follow-up He	adwa	ys																	
Base Critical Headway (sec)												6.9							
Critical Headway (sec)												6.96							
Base Follow-Up Headway (sec)												3.3							
Follow-Up Headway (sec)												3.33							
Delay, Queue Length, and	Leve	of Se	ervice																
Flow Rate, v (veh/h)												7							
Capacity, c (veh/h)												743							
v/c Ratio												0.01							
95% Queue Length, Q ₉₅ (veh)												0.0							
Control Delay (s/veh)												9.9							
Level of Service (LOS)										A									
Approach Delay (s/veh)										9	9								
Approach LOS										A	4								

	11C37 100 Way 3to		
General Information		Site Information	
Analyst	JAS	Intersection	Maxella Dwy / Maxella
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	12/1/2020	East/West Street	Maxella Avenue
Analysis Year	2020	North/South Street	Maxella Avenue Driveway
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Lanes

Vehicle Volumes and Adjustments

Approach Eastbound Westbound Northbound Southbound																			
Approach		Eastb	ound			West	oound			North	bound			South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0			
Configuration			Т	TR			Т					R							
Volume (veh/h)			468	4			396					7							
Percent Heavy Vehicles (%)												3							
Proportion Time Blocked																			
Percent Grade (%)										()								
Right Turn Channelized										No									
Median Type Storage				Undi	vided														
Critical and Follow-up He	adwa	ys																	
Base Critical Headway (sec)												6.9							
Critical Headway (sec)												6.96							
Base Follow-Up Headway (sec)												3.3							
Follow-Up Headway (sec)												3.33							
Delay, Queue Length, and	Leve	l of Se	ervice																
Flow Rate, v (veh/h)												8							
Capacity, c (veh/h)												740							
v/c Ratio												0.01							
95% Queue Length, Q ₉₅ (veh)												0.0							
Control Delay (s/veh)												9.9							
Level of Service (LOS)									A										
Approach Delay (s/veh)				9	.9														
Approach LOS										ļ	4								

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	JAS	Intersection	Maxella Dwy / Maxella											
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles											
Date Performed	8/13/2020	East/West Street	Maxella Avenue											
Analysis Year	2026	North/South Street	Maxella Avenue Driveway											
Time Analyzed	Future - PM	Peak Hour Factor	0.92											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Paseo Marina													
Lawaa														

Vehicle Volumes and Adjustments

Approach Eastbound Westbound Northbound Southbound																		
Approach		Eastbound Westbound								North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0		
Configuration			Т	TR			Т					R						
Volume (veh/h)			528	3			477					6						
Percent Heavy Vehicles (%)												3						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized										No								
Median Type Storage				Undiv	vided													
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)												6.9						
Critical Headway (sec)												6.96						
Base Follow-Up Headway (sec)												3.3						
Follow-Up Headway (sec)												3.33						
Delay, Queue Length, and	Leve	of Se	ervice															
Flow Rate, v (veh/h)												7						
Capacity, c (veh/h)												705						
v/c Ratio												0.01						
95% Queue Length, Q ₉₅ (veh)												0.0						
Control Delay (s/veh)												10.2						
Level of Service (LOS)												В						
Approach Delay (s/veh)										10).2							
Approach LOS										I	3							

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	JAS	Intersection	Maxella Dwy / Maxella											
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles											
Date Performed	12/1/2020	East/West Street	Maxella Avenue											
Analysis Year	2026	North/South Street	Maxella Avenue Driveway											
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.92											
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25											
Project Description	Paseo Marina - Option B													

Vehicle Volumes and Adjustments

Approach Eastbound Westbound Northbound Southbound																		
Approach	Eastbound Westbound U L T R U L T R									North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	2	0	0	0	2	0		0	0	1		0	0	0		
Configuration			Т	TR			Т					R						
Volume (veh/h)			532	4			479					7						
Percent Heavy Vehicles (%)												3						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized									No									
Median Type Storage				Undi	vided			<u>'</u>										
Critical and Follow-up He	adway	ys																
Base Critical Headway (sec)												6.9						
Critical Headway (sec)												6.96						
Base Follow-Up Headway (sec)												3.3						
Follow-Up Headway (sec)												3.33						
Delay, Queue Length, and	Leve	of Se	ervice															
Flow Rate, v (veh/h)												8						
Capacity, c (veh/h)												702						
v/c Ratio												0.01						
95% Queue Length, Q ₉₅ (veh)												0.0						
Control Delay (s/veh)												10.2						
Level of Service (LOS)									В									
Approach Delay (s/veh)										10	.2							
Approach LOS										E	3							

	J ·									,						
General Inform	Seneral Information Jgency Linscott, Law & Green								In	tersect	tion Infe	ormatio	on	2	*	بد لي
Agency		Linscott, Law & Greensr	an, End	inee	rs				Di	uration	h	0.250			444	
Analyst		JAS	Ana	lvsis	Date	Aug 1	3 2020		Ar	rea Tvp	e.	Other		 		ار ک
Jurisdiction		City of Los Angeles	Tim	e Pe	riod	Fxistir	na - AM		P	HF	•	0.96		→ _* ->	w∔e	≮_ ↓
Urban Street		Glencoe Avenue	Ana	lvsis	Year	2020	19 7 111		Ar	nalvsis	Period	1> 8.7	15	4 1 A		
Intersection		Glencoe/Maxella	File	Nam		06AM	- Existi	וא חר	19	laryolo		1. 0.			* * *	<u> </u>
Project Descript	tion	Paseo Marina		Inall				ig.nu	13					- 5	<u>]</u>][[]]]][]]]]]]]]]]]]]]]]]]]]]]]]]]]]	× (*
T Toject Descrip																·
Demand Inform	nation				EB			٧	VB		T	NB			SB	
Approach Move	ement				Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h		10	8	100	135	65	8	33	83	116	569	56	73	533	84
														<u> </u>	·	
Signal Informa	tion					215								<u>A</u>		
Cycle, s	60.0	Reference Phase 2			€ ¥	1 SA2	7						4	¥ _	2	(† x
Offset, s	0	Reference Point En	d Gre	en 2	24 8	24.9	00	0	0	0.0	0.0			2	3	4
Uncoordinated	No	Simult. Gap E/W Or	1 Yell	ow 3	3.6	3.6	0.0	0.	.0	0.0	0.0			<u>a</u>		512
Force Mode	Fixed	Simult. Gap N/S Or	Red	1 1	.6	1.5	0.0	0.	.0	0.0	0.0		5	Y 6	7	8
			S On Red 1.6 1.5 0.0 0.0 0.0 0.0						_							
Timer Results			E	BL		EBT	WB		V	NBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	Э					6				2			8			4
Case Number						5.0				6.0			5.0			6.0
Phase Duration	, S				;	30.0			3	30.0			30.0			30.0
Change Period,	(Y+R c), s					5.2			į	5.2			5.1			5.1
Max Allow Head	ow Headway (<i>MAH</i>), s				_	0.0			(0.0			3.4			3.4
Queue Clearan	ce Time	(gs),s											17.9			23.0
Green Extensio	n Time	(ge), s				0.0			0.0		\vdash		2.6			1.0
Phase Call Prol	bability												1.00			1.00
Max Out Probal	bility												0.54			1.00
Movement Gro	un Res	ults			FB			W	'B			NB			SB	_
Approach Move	ment				т	R		Т	. T	R		Т	R		т	R
Assigned Move	ment		1	+	6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h	11	3	104	141	68	- 86	3	86	121	593	58	76	328	314
Adjusted Satura	ation Flo	w Rate (s), veh/h/ln	123	1 1	900	1610	1310	190	00	1610	799	1900	1610	837	1900	1809
Queue Service	Time (o	7 s). S	3.	7	2.0	3.4	2.0	1.	7	2.0	7.6	15.9	1.3	5.1	7.3	7.4
Cvcle Queue C	learance	e Time (<code>a c</code>), s	5.	,	2.0	3.4	4.1	1.	7	2.0	14.9	15.9	1.3	21.0	7.3	7.4
Green Ratio (g	/C)	- · · · · · (3 -), -	0.4	1 ().41	0.41	0.41	0.4	1	0.41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), y	/eh/h		58	3 .	785	666	617	78	5	666	353	789	668	245	789	751
Volume-to-Capa	acity Ra	tio(X)	0.1	91 0	.133	0.211	0.110	0.1 [·]	10	0.130	0.342	0.752	0.087	0.310	0.416	0.419
Back of Queue	(Q), ft/	In (95 th percentile)	47.	9 3	38.6	55.2	27.5	31.	.7	32.5	59.4	280.9	19.5	44.2	128.1	122.7
Back of Queue	(Q), ve	eh/In (95 th percentile)	1.9)	1.5	2.2	1.1	1.3	3	1.3	2.4	11.2	0.8	1.8	5.1	4.9
Queue Storage	Ratio (RQ) (95 th percentile)	0.0	0 0	0.00	0.00	0.00	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh	12.	7 ′	0.9	11.3	12.2	10.	.8	10.9	17.7	14.9	10.7	23.9	12.4	12.4
Incremental De	lay (d 2), s/veh	0.1	7	0.4	0.7	0.4	0.3	3	0.4	0.2	3.6	0.0	0.3	0.1	0.1
Initial Queue De	elay (d	3), s/veh	0.0)	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (bl Delay (<i>d</i>), s/veh		13.	4 [·]	11.3	12.0	12.5	11.	.1	11.3	17.9	18.6	10.7	24.1	12.5	12.6
Level of Service	evel of Service (LOS)		В		В	В	В	В		В	В	В	В	С	В	В
Approach Delay	Approach Delay, s/veh / LOS			2.2	T	В	11.6	;	1	В	17.9		В	13.8		В
Intersection Del	lay, s/ve	h / LOS				14	1.8							B		
Multimodal Re	sults				EB			W	B			NB			SB	
Pedestrian LOS	Score	/LOS	2	.28		В	2.11			В	2.11		В	2.28		В
Bicycle LOS Sc	ore / LC	DS	1	.08		А	0.69)		А	1.76	;	В	1.08	;	А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

			-								-	-				
General Inform	nation								Inte	ersect	ion Inf	ormatio	on			× l <u>x</u>
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Dur	ration,	h	0.250)	1	444	
Analyst		JAS		Analys	sis Date	e Dec 1	, 2020		Are	a Type	e	Other	-			<u>م</u>
Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng with		PHI	F		0.96		4 1 4 ↓	W ↓ E	₹ ↓ ↑
Urban Street		Glencoe Avenue		Analys	sis Yea	r 2020			Ana	alysis	Period	1> 8:	15		542	e e e
Intersection		Glencoe/Maxella		File Na	ame	06AM	- Existi	ng wi	ith Pr	roject ·	- Optior	n B.xus			1 1 1 4 1 4 1 1 1	× (*
Project Descrip	tion	Paseo Marina - Opt	ion B	,				-		-				1 7		
		•														
Demand Inform	nation				EB	-		V	/B			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			122	105	141	65	8	88	83	116	591	56	73	568	84
	4!			. <u> </u>		-				T				_		
Signal Informa	tion	Deference Dhees	0	1		203								\rightarrow		ተ
Cycle, s	60.0	Reference Phase	Z		E .	151	7						1	2	3	4
Unset, s	U	Reference Point	Ena	Green	24.8	24.9	0.0	0.	0	0.0	0.0					•
	INO	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.	0	0.0	0.0	-		4	_	Ψ.
Force Mode	Fixed	Simult. Gap N/S	On	Rea	1.6	1.5	0.0	0.	0	0.0	0.0		5	Y 6	7	8
Timer Results				EBL	BL EBT WBL WBT NBL I					NBT	SBL	-	SBT			
Assigned Phase	Э					6			2	2			8			4
Case Number						5.0			6.	.0			5.0			6.0
Phase Duration	, S					30.0			30	0.0			30.0			30.0
Change Period,	(Y+R	c), S			5.2			5.	.2			5.1			5.1	
Max Allow Head	dway (<i>I</i>	MAH), s			0.0			0.	.0			3.4			3.4	
Queue Clearan	ce Time	e (g s), s											18.8			24.1
Green Extensio	n Time	(ge),s				0.0		0.0				2.5			0.4	
Phase Call Prob	bability												1.00			1.00
Max Out Probal	bility												0.65			1.00
											NB					_
Movement Gro	oup Res	sults			EB		<u> </u>	W	B	_		NB			SB	
Approach Move	ement			L		R			_	R	L		R	L		R
Assigned Move	ment	<u> </u>		1	6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow F), veh/h		127	109	147	68	92	2	86	121	616	58	76	347	332
Adjusted Satura		bw Rate (s), ven/n/l	n	1225	1900	1610	1304	190	1 00	1610	113	1900	1610	820	1900	1814
Queue Service	Time (g	gs), s a Tima (g) a		4.3	2.2	3.5	2.0	1.0	5	2.0	8.0	16.8	1.3	5.3	7.8	7.9
Cycle Queue C		e filme (<i>g</i> c), s		0.3	2.2	3.5	4.2	1.0) 1 (2.0	15.0	10.0	1.3	22.1	7.0	7.9
Green Ratio (g	/0)			0.41 596	795	666	612	70.4		666	220	790	0.42	220	790	0.42
Volume to Can	en/n	tio (X)		0.217	100	0.00	012	0 11		000	0.356	0 781	000	230	0.440	0.442
Back of Oueue	(0) ft	(In (95 th percentile)		55	40.7	57.9	27.6	33	7 4	32.5	60.7	200 1	19.5	15.3	137 1	131.5
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	hin (35 th percenti	اھ)	22	1.6	23	1 1	1 3	/ ``	13	24	12.0	0.8	1.8	55	53
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), s	/veh		12.9	11.0	11.4	12.3	10.	8 -	10.9	18.2	15.2	10.7	24.8	12.6	12.6
Incremental De	lav (<i>d</i> 2), s/veh		0.8	0.4	0.8	0.4	0.3	3	0.4	0.2	4.6	0.0	0.3	0.1	0.2
Initial Queue De	elav (d	3), s/veh		0.0	0.0	0.0	0.0	0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delav (d), s/ve	eh		13.7	11.3	12.1	12.6	11.	2	11.3	18.5	19.8	10.7	25.1	12.7	12.7
Level of Service	(LOS)			В	В	В	B	В	+	В	В	В	В	С	В	В
Approach Delay	(, s/veh	/LOS		12.4		B	- 11.6	3	F	B	18.9)	B	14.0)	B
Intersection Del	lay, s/ve	eh / LOS				15	5.2							B		
Multimodal Re	sults			EB			W	В			NB			SB		
Pedestrian LOS	Score	/LOS		2.28	3	В	2.11		E	В	2.11		В	2.28	3	В
Bicycle LOS Sc	ore / LC	DS		1.12	2	A	0.69)	Α	Ą	1.80)	В	1.11		A

	- 3									,						
General Inform							Int	tersect	ion Infe	ormatio	on	2	*	بد لي		
Agency		Linscott, Law & Green	span	Engine	ers				Du	uration.	h	0.250			444	
Analyst		JAS		Analys	is Dat	e Aug 1	3 2020		Are	ea Tvo	 е	Other		 		ار ک
Jurisdiction		City of Los Angeles		Time F	Period	Future	- AM		PH	4F		0.96		→ _* ->	w∔e	≮_ ↓
Urban Street		Glencoe Avenue		Analys	is Yea	r 2026	,		An	alvsis	Period	1> 8	15	4		+ *
Intersection		Glencoe/Maxella		File Na	ame	06AM	- Future		3	laryolo		. 0.			K # 2	<u>~</u>
Project Descript	tion	Paseo Marina		1 110 110			- dtart	5.766							 1 (나라 1 (1 (1 (1 (1 (1 (1 (1 (1 (1	× (*
j																
Demand Inform	nation				EB		T	٧	VB		Γ	NB		T	SB	
Approach Move	ement			L	Т	R	L	· ·	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			126	116	160	69	ę	93	90	124	620	59	79	586	98
Signal Informa	tion													ð-		\mathbf{L}
Cycle, s	60.0	Reference Phase	2		₿ !	1 54	7						1	2	3	4
Offset, s	0	Reference Point I	End	Green	24.8	24.9	0.0	0.	.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.	.0	0.0	0.0			<u> </u>		√
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.	.0	0.0	0.0		5	6	7	8
								_								
Timer Results				EBL	· -	EBT	WB	-	W	VBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	9				_	6		\rightarrow	2	2		\rightarrow	8			4
Case Number					_	5.0		_	6	5.0			5.0			6.0
Phase Duration	, S		_		_	30.0		_	30	0.0			30.0			30.0
Change Period,	iod, (Y+R c), s eadway (MAH), s				_	5.2			5	o.2			5.1			5.1
Max Allow Head	x Allow Headway (<i>MAH</i>), s			<u> </u>	_	0.0		_	0.0				3.5	<u> </u>		3.5
Queue Clearan		(gs), s		<u> </u>	_				0.0				20.1	<u> </u>		26.2
Green Extensio	n lime	(ge), s	_	<u> </u>	_	0.0			0.0				2.3	<u> </u>	_	0.0
Phase Call Pro	bability		_					\rightarrow					1.00	<u> </u>		1.00
Max Out Probai	bility												0.82			1.00
Movement Gro	oup Res	ults			EB			W	В			NB			SB	
Approach Move	ement		_	L	Т	R	L	Т	- -	R	L	Т	R	L	Т	R
Assigned Move	ment		_	1	6	16	5	2	+	12	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h	_	131	121	167	72	97	7	94	129	646	61	82	365	348
Adjusted Satura	ation Flo	w Rate (s), veh/h/ln		1211	1900	1610	1291	190	. 0C	1610	749	1900	1610	797	1900	1805
Queue Service	Time (g	g s), S		4.5	2.4	4.1	2.2	1.9	9	2.2	9.1	18.1	1.4	6.1	8.3	8.4
Cycle Queue C	learance	e Time (g c), s		6.7	2.4	4.1	4.6	1.9	9	2.2	17.4	18.1	1.4	24.2	8.3	8.4
Green Ratio (g	/C)			0.41	0.41	0.41	0.41	0.4	1	0.41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	/eh/h			577	785	666	602	78	5	666	326	789	668	211	789	749
Volume-to-Capa	acity Ra	tio(X)		0.228	0.154	0.250	0.119	0.12	23 (0.141	0.396	0.819	0.092	0.391	0.463	0.464
Back of Queue	(Q), ft/	In (95 th percentile)		57.6	45.3	66.9	29.6	35.	.7	35.4	67.2	327	20.6	51.1	145.6	139.3
Back of Queue	(Q), ve	eh/In (95 th percentile)		2.3	1.8	2.7	1.2	1.4	4	1.4	2.7	13.1	0.8	2.0	5.8	5.6
Queue Storage	Ratio (RQ) (95 th percentile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		13.1	11.0	11.5	12.5	10.	.9	11.0	19.0	15.6	10.7	26.3	12.7	12.7
Incremental De	lay (<i>d</i> 2), s/veh		0.9	0.4	0.9	0.4	0.3	3	0.4	0.3	6.4	0.0	0.4	0.2	0.2
Initial Queue De	elay(d	<i>d</i> ₂), s/ven (<i>d</i> ₃), s/veh		0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (control Delay (<i>d</i>), s/veh			14.0	11.4	12.4	12.9	11.	.2	11.4	19.3	21.9	10.7	26.7	12.9	12.9
Level of Service (LOS)				В	В	В	В	В		В	В	С	В	С	В	В
Approach Delay, s/veh / LOS				12.6		В	11.7	'	I	В	20.7	·	С	14.3		В
Intersection Del	lay, s/ve	h / LOS				16	6.0							В		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		2.28		В	2.11		I	В	2.11		В	2.28		В
Bicycle LOS Sc	ore / LC)S		1.18		А	0.70)		A	1.87		В	1.14		А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5
General Inform	nation								Inters	sect	ion Inf	ormatio	on			þa l _a
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Durat	tion,	h	0.250	1	1	417	
Analyst		JAS		Analys	sis Date	e Dec 1	. 2020		Area	Tvpe	e	Other		 		<i>د</i> 4
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PHF			0.96			w∱e	ter
						Projec	ct - AM									۲ ۲ ۲
Urban Street		Glencoe Avenue		Analys	sis Yea	r 2026			Analy	ysis I	Period	1> 8:	15		ካ ተ r	
Intersection		Glencoe/Maxella		File Na	ame	06AM	- Future	e with	Proje	ect - (Option	B.xus		5	* 1 ***	אן א
Project Descript	tion	Paseo Marina - Opt	ion B													
Domand Inform	nation				EB			10	/B			NB			SB	
Approach Move	ment				Т	R	1	7		R		T	R		Т	R
Demand (v) v	eh/h			140	120	166	69	9	8 0	90	124	642	59	79	621	98
	011/11			110	120	100	00	0		00	121	UTZ	00	10	021	00
Signal Informa	tion						Т							<u>⊼_</u>		
Cycle, s	60.0	Reference Phase	2			- •	7								1	Φ
Offset, s	0	Reference Point	End	Green	24.8	24 9	1	0.0		0.0	0.0	_	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.0) (0.0	0.0			x		512
Force Mode	Fixed	Simult. Gap N/S	nult. Gap N/S On			1.5	0.0	0.0) (0.0	0.0		5	Y 6	7	8
							_									
Timer Results				EBL	-	EBT	WB		WBT	Т	NBL	-	NBT	SBL	-	SBT
Assigned Phase	e					6		\rightarrow	2				8			4
Case Number						5.0			6.0				5.0			6.0
Phase Duration	, S					30.0			30.0)			30.0			30.0
Change Period,	(Y+R	c), S				5.2			5.2				5.1			5.1
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s				0.0			0.0				3.5			3.5
Queue Clearan	ce Time	e (g s), s											21.1			26.9
Green Extensio	n Time	(ge),s				0.0			0.0				2.0			0.0
Phase Call Prot	oability							\rightarrow					1.00			1.00
Max Out Probal	oility												0.95			1.00
Movement Gre		aulte			EB			\ \ /F	2			NB			SB	
Approach Move	ment	Juito	_		Т	R		Т	, R	2	1	Т	R		Т	R
Assigned Move	ment			1	6	16	5	2	1	2	3	8	18	7	4	14
Adjusted Flow F	Rate (v) veh/h		146	125	173	72	101	1 9	5	129	669	61	82	383	366
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1206	1900	1610	1286	190	0 16	13	724	1900	1610	780	1900	1809
Queue Service	Time (d	7 s) S		5.1	2.5	4.2	2.2	2.0	2	2	9.6	19.1	1.4	5.8	8.9	8.9
Cvcle Queue Cl	learanc	e Time (7.3	2.5	4.2	4.7	2.0	2.	.2	18.4	19.1	1.4	24.9	8.9	8.9
Green Ratio (g	/C)	(3)		0.41	0.41	0.41	0.41	0.4	1 0.4	41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	, eh/h			574	785	666	598	785	5 66	67	313	789	668	196	789	751
Volume-to-Capa	acity Ra	itio(X)		0.254	0.159	0.260	0.120	0.12	9 0.1	42	0.412	0.848	0.092	0.420	0.486	0.487
Back of Queue	(Q), ft/	/In (95 th percentile)		65.2	47.1	69.7	29.8	37.4	4 35	5.9	68.8	352.3	20.6	52.5	155	148
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.6	1.9	2.8	1.2	1.5	i 1.	.4	2.8	14.1	0.8	2.1	6.2	5.9
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	D.O.C	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1), s	/veh		13.3	11.1	11.6	12.5	10.9	9 11	.0	19.6	15.8	10.7	27.3	12.9	12.9
Incremental Del	lay (d 2), s/veh		1.1	0.4	0.9	0.4	0.3	0.	.4	0.3	8.2	0.0	0.5	0.2	0.2
Initial Queue Delay (<i>d z</i>), s/veh				0.0	0.0	0.0	0.0	0.0	0.	.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				14.3	11.5	12.5	12.9	11.2	2 11	.4	20.0	24.0	10.7	27.8	13.0	13.1
Level of Service (LOS)				В	В	В	В	В	E	3	В	С	В	С	В	В
Approach Delay, s/veh / LOS				12.8	3	В	11.8	3	В		22.5	5	С	14.5	5	В
Intersection Del	Intersection Delay, s/veh / LOS					16	6.7							B		
	, , , , , , , , , , , , , , , , , , ,															
Multimodal Re	sults				EB			WE	3			NB			SB	
Pedestrian LOS	Score	/ LOS		2.28	3	В	2.11		В		2.11		В	2.28		В
Bicycle LOS Sc	ore / LC	DS		1.22	2	А	0.71	1	Α		1.91		В	1.17		A

			9						und (,				
General Inform	nation								Inf	torsact	tion Inf	ormati	n		4 7 4 1 1	به لي
	lation	Linscott Law & Green	enan	Engine	oore					uration	b	0 250			414	
Apolyot			ispan				2 2020		Δr		<u></u>	Othou		1		<u>گ</u>
Analyst				Times		E Aug I	3, 2020			чатур	e			→×	w1∈	<u>↓</u>
Jurisdiction				Analys			ig - Pivi				Dariad	1 10.94				¥
Urban Street		Giencoe Avenue		Analys	sis rea	IF 2020	E. J. Al		An	alysis	Period	1> 10	:45			к. К.
		Giencoe/Maxella		File Na	ame	06PM	- Existi	ng.xı	us					_	ጎተሰ	- 4
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			144	141	185	96	1	52	100	125	354	72	47	693	117
Signal Informa	tion							Τ						<u> </u>		
Cycle, s	60.0	Reference Phase	2	1		- 54	2								 	Φ
Offset, s	0	Reference Point	End	Croop		24.0	100		0	0.0		_	1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.	.0	0.0	0.0	_		X		st2
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.	.0	0.0	0.0		5	F 6	7	8
Timer Results					-	EBT	WB	L	V	VBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	Assigned Phase					6				2			8			4
Case Number	se Number					5.0			6	6.0			5.0			6.0
Phase Duration	hase Duration, s					30.0			3	0.0			30.0			30.0
Change Period, ($Y+Rc$), s						5.2			5	5.2			5.1			5.1
Max Allow Headway (<i>MAH</i>), s						0.0			(0.0			3.5			3.5
Queue Clearance Time (g s), s													24.4			12.9
Green Extension Time ($g e$), s						0.0			(0.0			0.3			3.5
Phase Call Pro	bability												1.00			1.00
Max Out Proba	bility												1.00			0.24
Movement Gro	oup Res	ults			EB			W	'B			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		153	150	197	102	13	9	129	133	377	77	50	442	420
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/ln		1129	1900	1610	1257	190	00	1655	652	1900	1610	1022	1900	1804
Queue Service	Time (g	ys), S		6.0	3.0	4.9	3.4	2.	8	3.0	11.7	8.7	1.8	2.3	10.6	10.6
Cycle Queue C	learanc	e Time (<i>g c</i>), s		9.0	3.0	4.9	6.4	2.	8	3.0	22.4	8.7	1.8	10.9	10.6	10.6
Green Ratio (g	/C)			0.41	0.41	0.41	0.41	0.4	11	0.41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	eh/h			530	785	666	576	78	5	684	275	789	668	396	789	749
Volume-to-Capa	acity Ra	tio (X)		0.289	0.191	0.296	0.177	0.1	76	0.189	0.484	0.478	0.115	0.126	0.560	0.561
Back of Queue	(Q), ft/	In (95 th percentile)		72.3	57.2	81	44.7	52	.6	50.1	77.2	151.8	25.9	22.7	189.4	180.2
Back of Queue	(Q), Ve	eh/ln (95 th percentile))	2.9	2.3	3.2	1.8	2.	1	2.0	3.1	6.1	1.0	0.9	7.6	7.2
Queue Storage	Ratio (RQ) (95 th percentile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((01), S	ven	_	14.1	11.2	11.8	13.2	11.	.1	11.2	21.9	12.8	10.8	16.8	13.4	13.4
Incremental Delay (d 2), s/veh				1.4	0.5	1.1	0.7	0.	5	0.6	0.5	0.2	0.0	0.1	0.6	0.6
Initial Queue Delay (d_3), s/veh				0.0	0.0	0.0	0.0	0.	U C	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				15.4	11.8	12.9	13.9	11.	.6	11.8	22.4	13.0	10.8	16.8	13.9	14.0
Level of Service (LOS)				В	В		B	L B	5	В	C	В	В	В	В	В
Approach Delay, s/veh / LOS				13.3	5	В	12.3	5		В	14.8	5	В	14.1		В
Intersection De	ntersection Delay, s/veh / LOS					1:	3.8							В		
Multimodal Po	Aultimodal Results				EP			10/	'B			NR			SR	
Pedestrian LOS	Score	/1.05		2.25	20	B	2 11		0	B	2 11		B	2.29		B
Bicycle I OS Sc	ore / I C)S		1.31		A	0.70	,		A	1 45	;	A	1 24	_	A
		-					5.10	-		· ·						

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

			-													
General Inform	nation								Inte	ersect	ion Inf	ormatio	on	2		⊨ L <u>⊾</u>
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Dura	ration,	h	0.250		1	444	
Analyst		JAS		Analys	sis Date	e Dec 1	. 2020		Area	a Type	e	Other		4		
Jurisdiction		City of Los Angeles		Time F	Period	Existi	ng with		PHF	F		0.94		4 1 4 1	W ↓ E	1 1 1 1 1 1
Urban Street		Glencoe Avenue		Analys	sis Yea	2020			Ana	alvsis	Period	1> 16	:45			<u> </u>
Intersection		Glencoe/Maxella		File Na	ame	06PM	- Existi	ng wi	th Pr	roject ·	- Optior	B.xus			<u>ो ौ िं</u> च 1 केल	۳ ۲
Project Descript	tion	Paseo Marina - Opt	ion B			_		<u> </u>		<u> </u>				1		
Demand Inform	nation				EB			N	/B			NB			SB	
Approach Move	ment			L	Т	R	<u> </u>		г	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			147	142	186	96	1:	54	100	125	358	72	47	704	117
	<u> </u>						_			Γ				_		
Signal Informa	tion	Defense Dhara	0			215							~	\rightarrow		ሐ
Cycle, s	0.00	Reference Phase	Z			1 51	2						1	2	3	4
Ulisel, s		Simult Cap 5/M	Ena	Green	24.8	24.9	0.0	0.	0	0.0	0.0					•
	Tixed	Simult Cap N/S	On	Yellow	3.6	3.6	0.0	0.	0	0.0	0.0	-		e	-	۲
Force Mode	Fixed	Simult. Gap N/S	On	Rea	1.0	1.5	0.0	0.	0	0.0	0.0		5	X 6	1	8
Timer Results			EBI	-	EBT	WB	L	WE	BT	NBI	-	NBT	SBI	-	SBT	
Assigned Phase	Э					6			2	2			8			4
Case Number						5.0			6.	.0			5.0			6.0
Phase Duration	, S					30.0			30	0.0			30.0			30.0
Change Period,	(Y+R	c), S				5.2			5.2	.2			5.1			5.1
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s				0.0			0.	.0			3.5			3.5
Queue Clearan	ce Time	e (g s), s											24.8			13.1
Green Extensio	n Time	(ge),s				0.0			0.	.0			0.1			3.6
Phase Call Prot	oability												1.00			1.00
Max Out Probal	oility												1.00			0.25
	_		_	_					_							
Movement Gro	up Res	sults			EB				В	_		NB			SB	
Approach Move	ement			L		R	L		_	R	L	I	R			R
Assigned Move) I. //-		1	6	16	5	2		12	3	8	18	1	4	14
Adjusted Flow F	tion L), ven/n	n .	150	151	198	102	140		131	133	381	1610	50	448	420
			n	6.2	1900	1010	2.4	190		2.0	11.0	1900	1010	1010	10.9	1005
	learanc	g(s), S		0.2	3.0	4.9	5.4 6.4	2.0	2	3.0	22.8	0.0	1.0	2.3 11 1	10.0	10.0
Green Ratio (a		e fille (<i>g c</i>), s		0./1	0.41	4.5	0.4	0.4	, , 1 (0.41	0.42	0.0	0.42	0.42	0.42	0.42
	/o/)			520	785	666	575	78	5 6	685	271	780	668	303	789	7/0
Volume-to-Cap	acity Ra	utio (X)		0.296	0 192	0.297	0 177	0.17	78 0	191	0 4 9 0	0.483	0.115	0 127	0.568	0.568
Back of Queue	(Q) ft	(In (95 th percentile)		74.5	57.8	81.5	44.7	53.	1 5	50.5	77.9	154	25.9	22.8	192.1	183.8
Back of Queue	(Q), ve	eh/ln (95 th percenti	le)	3.0	2.3	3.3	1.8	2.1	1	2.0	3.1	6.2	1.0	0.9	7.7	7.4
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1), s	/veh		14.1	11.2	11.8	13.3	11.	1 1	11.2	22.1	12.8	10.8	16.9	13.4	13.4
Incremental Del	lay (d 2), s/veh		1.4	0.5	1.1	0.7	0.5	5	0.6	0.5	0.2	0.0	0.1	0.6	0.6
Initial Queue Delay (<i>d</i> ₃), s/veh				0.0	0.0	0.0	0.0	0.0) (0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/veh				15.5	11.8	12.9	13.9	11.	6 1	11.8	22.7	13.0	10.8	16.9	14.0	14.1
Level of Service (LOS)				В	В	В	В	В		В	С	В	В	В	В	В
Approach Delay, s/veh / LOS				13.4	-	В	12.3	3	В	3	14.9		В	14.2	2	В
Intersection Del	ay, s/ve	h / LOS				1:	3.9							В		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		2.28	3	В	2.11		В	3	2.11		В	2.28	3	В
Bicycle LOS Sc	ore / LC	DS		1.32	2	А	0.79)	A	4	1.46	5	A	1.25	5	A

			<u>g</u>								,				
General Inform	nation							Inters	sort	ion Inf	ormatio	n		*	x l <u>x</u>
Agency	lation	Linscott Law & Greensp	an Engir	eers				Durat	tion	h	0 250			444	
Apolyet					to Aug 1	3 2020		Area	Type		Other		_3 _3		<u>ئ</u> ے ا
Jurisdiction		City of Los Angolos	Timo	Doriod		5, 2020			туре	6	0.04		→ <u></u> _*	w↓e	
Jurisaiction		City of Los Angeles	Apoly		r 2026	5 - F IVI		Analy		Poriod	1 16		- ⁴		
Intersection		Glencoe/Maxella	Filo N			Eutur		Analy	515 1	renou	1-10	.45			<u> </u>
Project Descrip	tion		File IN	ame		- Futur	e.xus	•					- 4		× (*
Project Descrip	lion														
Demand Inform	nation			EE	3		V	VB			NB			SB	
Approach Move	ement		L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h		169	16	5 201	102	1	80 1	108	151	393	76	54	762	145
						<u> </u>							<u> </u>	<u> </u>	
Signal Informa	tion				N.	_							Ð−		\mathbf{k}
Cycle, s	60.0	Reference Phase 2		HE -	* ¶ s⊕	2						1	2	3	4
Offset, s	0	Reference Point End	I Greer	1 24.8	3 24.9	0.0	0.	.0 0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W On	Yellov	v 3.6	3.6	0.0	0.	.0 0	0.0	0.0			<u>a</u>		N
Force Mode	Fixed	Simult. Gap N/S On	Red	1.6	1.5	0.0	0.	.0 0	0.0	0.0		5	Y 6	7	8
				_											
Timer Results			EB		EBT	WB		WBT	r	NBL	-	NBT	SBI	-	SBT
Assigned Phase	signed Phase				6		_	2	_			8			4
Case Number	se Number				5.0			6.0				5.0			6.0
Phase Duration	Phase Duration, s				30.0			30.0				30.0			30.0
Change Period, (Y+R c), s					5.2			5.2				5.1			5.1
Max Allow Headway (<i>MAH</i>), s					0.0			0.0				3.6			3.6
Queue Clearance Time (g_s), s												26.9			14.7
Green Extension Time (g e), s					0.0		_	0.0				0.0			3.9
Phase Call Probability												1.00			1.00
Max Out Proba	bility											1.00			0.42
Movement Gro	oup Res	ults	_	FB			W	'B			NB			SB	
Approach Move	ement		1.1	Т	R	1	Т	· R	२	1	Т	R	1	Т	R
Assigned Move	ment		1	6	16	5	2	1	2	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h	180	176	214	109	15	9 14	18	161	418	81	57	496	469
Adjusted Satura	ation Flo	w Rate (s), veh/h/ln	1090	1900	0 1610	1228	190	00 16	67	592	1900	1610	984	1900	1794
Queue Service	Time (g	7 s), S	7.6	3.6	5.4	3.8	3.2	2 3.	.4	12.5	9.9	1.9	2.8	12.4	12.4
Cycle Queue C	learanc	e Time (<i>q</i> c), s	11.1	3.6	5.4	7.3	3.2	2 3.	.4	24.9	9.9	1.9	12.7	12.4	12.4
Green Ratio (g	/C)		0.41	0.41	0.41	0.41	0.4	1 0.4	41	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	/ veh/h		508	785	666	554	78	5 68	39	243	789	668	366	789	744
Volume-to-Cap	acity Ra	tio (<i>X</i>)	0.354	0.22	4 0.321	0.196	0.2	02 0.2	14	0.661	0.530	0.121	0.157	0.629	0.629
Back of Queue	(Q), ft/	In (95 th percentile)	90.4	68.3	8 89.5	48.9	61	1 57	'.8	116.9	174.9	27.4	27.4	218	208.9
Back of Queue	(Q), ve	eh/In (95 th percentile)	3.6	2.7	3.6	2.0	2.4	4 2.	.3	4.7	7.0	1.1	1.1	8.7	8.4
Queue Storage	Ratio (RQ) (95 th percentile)	0.00	0.00	0.00	0.00	0.0	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh	14.9	11.4	11.9	13.7	11.	.3 11	.3	25.2	13.2	10.8	17.9	13.9	13.9
Incremental De	lay (<i>d</i> 2), s/veh	1.9	0.7	1.3	0.8	0.0	6 0.	.7	5.2	0.3	0.0	0.1	1.2	1.3
Initial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0 0.	.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				12.0) 13.2	14.5	11.	.8 12	2.0	30.5	13.5	10.8	18.0	15.1	15.2
Level of Service (LOS)				В	В	В	В	E	3	С	В	В	В	В	В
Approach Delay, s/veh / LOS				0	В	12.6	3	В		17.3		В	15.3	3	В
Intersection De	ntersection Delay, s/veh / LOS				15	5.1							В		
Multimodal Re	Multimodal Results						W	В			NB			SB	
Pedestrian LOS	Score	/LOS	2.2	8	В	2.11		В		2.11		В	2.28	3	В
Bicycle LOS Sc	ore / LC	DS	1.4	3	А	0.83	3	А		1.58		В	1.33	3	A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

General Inform	nation								Inters	ecti	ion Infe	ormatio	on	*	4444	⊨ T _{at}
Agency		Linscott, Law & Gre	enspan	, Engin	eers				Duratio	on, I	h	0.250		1	4 + 5	
Analyst		JAS		Analys	sis Date	Dec 1	, 2020		Area T	уре	;	Other		4		
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with ct - PM		PHF			0.94		4 1 4 1 1 ↓ ∫	w ^N €	1 + + + + + + + + +
Urban Street		Glencoe Avenue		Analys	sis Year	2026			Analys	sis F	Period	1> 16	:45			
Intersection		Glencoe/Maxella		File Na	ame	06PM	- Future	e with	Proiec	t - C	Dption I	B.xus		-	<u>ो 1 (</u> जनसङ्ख्या	۲. ۲
Project Descript	tion	Paseo Marina - Opt	ion B						,		<u> </u>			1 -		
, ,		- 1														
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move	ment			L	Т	R	L	Τ-	Г F	२	L	Т	R	L	Т	R
Demand (v), v	eh/h			172	166	202	102	18	32 10	28	151	397	76	54	773	145
															<u> </u>	
Signal Informa	tion					215								Δ		
Cycle, s	60.0	Reference Phase	2		1 11 - 1 1	1 sa	2						1	¥ _	2	(† X
Offset, s	0	Reference Point	End	Green	24.8	24.9	0.0	0.0	0.0.	0	0.0			2	5	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.6	0.0	0.	0.	0	0.0			<u> </u>		512
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.6	1.5	0.0	0.	0.	0	0.0		5	6	7	8
							_						_			
Timer Results				EBI	-	EBT	WB	L	WBT	4	NBL	-	NBT	SBI	-	SBT
Assigned Phase	e					6			2	4			8			4
Case Number						5.0			6.0				5.0			6.0
Phase Duration	, S					30.0			30.0				30.0			30.0
Change Period,				5.2			5.2				5.1			5.1		
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s				0.0			0.0				3.6			3.6
Queue Clearan	ce Time	e (g s), s											26.9			14.8
Green Extensio	n Time	(ge), s				0.0			0.0				0.0			4.0
Phase Call Prot	oability												1.00			1.00
Max Out Probal	oility												1.00			0.43
				_	50		_	10.0							0.0	
Movement Gro	up Kes	Sults		<u> </u>	EB				3	+		NB		<u> </u>	SB	
Approach Move	ement			L		R	L C		R 40	+	L	1	R 40		1	R
Assigned Move	meni Dete (i	· //-		1	0	10	5	2			3	8	18	1	4	14
Adjusted Flow F	tion Fla), ven/n	-	183	1//	215	109	160	148	,	101	422	81	57	502	474
Adjusted Satura		bw Rate (s), ven/n/i	n	1088	1900	1610	1227	190		8	585	1900	1610	980	1900	1795
Queue Service	Time ((gs), s a Tima (g) a		1.0	3.0	5.4	3.8	3.2	3.4		12.3	10.0	1.9	2.8	12.0	12.0
Croop Patia (a		e fille (<i>g</i> c), s		0.41	0.41	0.41	0.41	0.4	. 3.4 1 0.4		24.9	0.42	1.9	0.42	0.42	0.42
Conocity (c) y	/C)			507	785	666	553	79/	5 690	<u>'</u>	240	790	669	262	780	745
Volume to Can	city Ra	atio (X)		0.361	0 225	000	0 106	0.20		6	0.670	0.536	000	0 158	0.637	0.637
Back of Ououo	(0) ft	(0, 7)		0.301	68.8	80.0	40	61	5 58	4	110 2	177.5	27.4	27.5	0.007	211.0
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	ah/In (95 th percentie)	(ما	32.4	2.8	3.6	49 20	2 5	2 2 3	+	110.5	7 1	1 1	1 1	8.8	85
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0		, 0	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1). s	/veh		15.0	11.4	11.9	13.8	11.3	3 11.3	3	25.4	13.2	10.8	18.0	14.0	14.0
Incremental Del	lay (d 2), s/veh		2.0	0.7	1.3	0.8	0.6	6 0.7	,	5.8	0.4	0.0	0.1	1.3	1.4
Initial Queue Delay (<i>d</i> ₃), s/veh				0.0	0.0	0.0	0.0	0.0	0.0)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/veh				17.0	12.0	13.2	14.6	11.9	9 12.1	1	31.2	13.6	10.8	18.1	15.3	15.4
Level of Service (LOS)				В	В	В	В	В	В		С	В	В	В	В	В
Approach Delay		14.0)	В	12.6	3	В		17.5	5	В	15.5	5	В		
Intersection Del	Intersection Delay, s/ven / LOS					15	5.2							В		
Multimodal Re	sults				EB			W	3			NB			SB	
Pedestrian LOS	Score	/ LOS		2.28	3	В	2.11		В		2.11		В	2.28	3	В
Bicycle LOS Sc	ore / LC	DS		1.44	+	А	0.83	3	А		1.58	3	В	1.34	-	А

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			Westk	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											741				733	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

	11037 1100 1103 5101		
General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	12/1/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Lanes

Vehicle Volumes and Adjustments

Approach		Facth	ound			Mastk	aund			North	hound			Couth	agund	
Approach		Easto	ouna			west	bound			North	bound			South	Jouna	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											763				774	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina		

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											804				815	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	12/1/2020	East/West Street	Northerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound		Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											826				856	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	ivided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

General Information		Site Information						
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy					
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy					
Analysis Year	2020	North/South Street	Glencoe Avenue					
Time Analyzed	Existing - PM	Peak Hour Factor	0.92					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	Paseo Marina							

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound		Westbound			Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											551				974	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

General InformationSite InformationAnalystJASIntersectionGlencoe/N. Glencoe DwyAgency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed12/1/2020East/West StreetNortherly Glencoe DwyAnalysis Year2020North/South StreetGlencoe AvenueTime AnalyzedExisting + Project - PMPeak Hour Factor0.92Intersection OrientationNorth-SouthAnalysis Time Period (hrs)0.25									
AnalystJASIntersectionGlencoe/N. Glencoe DwyAgency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed12/1/2020East/West StreetNortherly Glencoe DwyAnalysis Year2020North/South StreetGlencoe AvenueTime AnalyzedExisting + Project - PMPeak Hour Factor0.92Intersection OrientationNorth-SouthAnalysis Time Period (hrs)0.25	General Information		Site Information						
Agency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed12/1/2020East/West StreetNortherly Glencoe DwyAnalysis Year2020North/South StreetGlencoe AvenueTime AnalyzedExisting + Project - PMPeak Hour Factor0.92Intersection OrientationNorth-SouthAnalysis Time Period (hrs)0.25	Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy					
Date Performed12/1/2020East/West StreetNortherly Glencoe DwyAnalysis Year2020North/South StreetGlencoe AvenueTime AnalyzedExisting + Project - PMPeak Hour Factor0.92Intersection OrientationNorth-SouthAnalysis Time Period (hrs)0.25	Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Analysis Year 2020 North/South Street Glencoe Avenue Time Analyzed Existing + Project - PM Peak Hour Factor 0.92 Intersection Orientation North-South Analysis Time Period (hrs) 0.25	Date Performed	12/1/2020	East/West Street	Northerly Glencoe Dwy					
Time Analyzed Existing + Project - PM Peak Hour Factor 0.92 Intersection Orientation North-South Analysis Time Period (hrs) 0.25	Analysis Year	2020	North/South Street	Glencoe Avenue					
Intersection Orientation North-South Analysis Time Period (hrs) 0.25	Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.92					
	Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description Paseo Marina - Option B	Project Description	Paseo Marina - Option B							

Lanes

-																
Approach		Eastb	ound		Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											555				971	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

General Information		Site Information						
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy					
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Date Performed	8/13/2020	East/West Street	Northerly Glencoe Dwy					
Analysis Year	2026	North/South Street	Glencoe Avenue					
Time Analyzed	Future - PM	Peak Hour Factor	0.92					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	Paseo Marina							

Lanes

Approach		Eastb	ound		Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											620				1065	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

General Information		Site Information						
Analyst	JAS	Intersection	Glencoe/N. Glencoe Dwy					
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Date Performed	12/1/2020	East/West Street	Northerly Glencoe Dwy					
Analysis Year	2026	North/South Street	Glencoe Avenue					
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.92					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	Paseo Marina - Option B							

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound		Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	0	0	0	2	0	0	0	2	0
Configuration											Т				Т	
Volume (veh/h)											624				1062	
Percent Heavy Vehicles (%)																
Proportion Time Blocked																
Percent Grade (%)																
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)																
Capacity, c (veh/h)																
v/c Ratio																
95% Queue Length, Q ₉₅ (veh)																
Control Delay (s/veh)																
Level of Service (LOS)																
Approach Delay (s/veh)																
Approach LOS																

General Information		Site Information						
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy					
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy					
Analysis Year	2020	North/South Street	Glencoe Avenue					
Time Analyzed	Existing - AM	Peak Hour Factor	0.92					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	Paseo Marina							

Lanes

Approach		Eastb	ound		Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		13		6		10		10	0	14	718	3	0	3	714	16
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)	0 0															
Right Turn Channelized																
Median Type Storage			Undivided													
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			21				22			15				3		
Capacity, c (veh/h)			175				219			817				824		
v/c Ratio			0.12				0.10			0.02				0.00		
95% Queue Length, Q_{95} (veh)			0.4				0.3			0.1				0.0		
Control Delay (s/veh)			28.3				23.2			9.5				9.4		
Level of Service (LOS)			D				С			А				А		
Approach Delay (s/veh)		28	28.3 23.2				0.2				0.0					
Approach LOS		D C														

General Information		Site Information						
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy					
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Date Performed	12/1/2020	East/West Street	Southerly Glencoe Dwy					
Analysis Year	2020	North/South Street	Glencoe Avenue					
Time Analyzed	Existing + Project - AM	Peak Hour Factor	0.92					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	Paseo Marina - Option B							

Lanes

Approach	Eastbound Westbound U L T R U L T									North	oound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		35		64		10		10	0	56	715	3	0	3	713	60
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(C			(C									
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adways															
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			108				22			61				3		
Capacity, c (veh/h)			221				169			784				826		
v/c Ratio			0.49				0.13			0.08				0.00		
95% Queue Length, Q ₉₅ (veh)			2.4				0.4			0.3				0.0		
Control Delay (s/veh)			35.7				29.5			10.0				9.4		
Level of Service (LOS)			E				D			А				А		
Approach Delay (s/veh)		35	5.7			29	9.5			0	7			0	.0	
Approach LOS	E D															

General Information		Site Information											
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy										
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles										
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy										
Analysis Year	2026	North/South Street	Glencoe Avenue										
Time Analyzed	Future - AM	Peak Hour Factor	0.92										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description	Paseo Marina												

Lanes

Approach	Eastbound Westbound U L T R U L T									North	oound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		14		6		11		11	0	15	779	3	0	3	795	17
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(0			(C									
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adways															
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			22				24			16				3		
Capacity, c (veh/h)			140				185			756				778		
v/c Ratio			0.15				0.13			0.02				0.00		
95% Queue Length, Q ₉₅ (veh)			0.5				0.4			0.1				0.0		
Control Delay (s/veh)			35.3				27.3			9.9				9.6		
Level of Service (LOS)			E				D			А				А		
Approach Delay (s/veh)		35	5.3			27	7.3			0.	2			0	.0	
Approach LOS		I	E			[)									

General Information		Site Information											
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy										
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles										
Date Performed	12/1/2020	East/West Street	Southerly Glencoe Dwy										
Analysis Year	2026	North/South Street	Glencoe Avenue										
Time Analyzed	Future + Project - AM	Peak Hour Factor	0.92										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description	Paseo Marina - Option B												

Lanes

Approach	Eastbound Westbound U L T R U L T									North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		36		64		11		11	0	57	776	3	0	3	794	61
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		()			(C									
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adways															
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			109				24			62				3		
Capacity, c (veh/h)			182				140			725				780		
v/c Ratio			0.60				0.17			0.09				0.00		
95% Queue Length, Q ₉₅ (veh)			3.3				0.6			0.3				0.0		
Control Delay (s/veh)			50.7				36.0			10.4				9.6		
Level of Service (LOS)			F				E			В				А		
Approach Delay (s/veh)		50).7			36	5.0			0.	.7			0	.0	
Approach LOS		I	F			I	E									

		1103	/ Sig	nanze	u mu	el sec		lesu	its Sui	iiiiiai j	у				
0				Intersection Information									T n		. T
General Inforn	nation							\rightarrow	Intersec	tion Inf	ormatio	on	- 1	444	* ' <u>*</u>
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duration	, h	0.250				×
Analyst		JAS		Analys	sis Date	Dec 1	, 2020		Area Typ	e	Other				* }_
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PHF		0.92		*	w∓e °	
						(Impro	vement	ts)					ار الح		과 ~
Urban Street		Glencoe Avenue		Analys	sis Year	2026		,	Analysis	Period	1> 7:4	15		ግተዮ	
Intersection		Glencoe/N. Dwy-V\	/ Dwy	File Na	ame	08AM	- Future	e with	Project -	Option	B (Impr	ovem		*I T *** Y F	* [
Project Descrip	tion	Paseo Marina - Opt	ion B						,	•	<u> </u>		1		
, ,		- 1											1		
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			36	0	64	11	0	11	57	776	3	3	794	61
				10					ii-						1
Signal Informa	ition				245a	3									
Cycle, s	90.0	Reference Phase	2		517	"R"						1	2	3	€ ₄
Offset, s	0	Reference Point	End	Green	54.6	25.7	0.0	0.0	0.0	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.6	0.0	0.0	0.0	0.0	_		$\mathbf{\nabla}$		
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.7	1./	0.0	0.0	0.0	0.0		5	6	7	8
Timer Beaulte				EDI		грт				ND		NDT	CDI	_	ODT
Assigned Phase	0			EDI	-		VVD			IND	-	6	361	-	2
Coso Number				<u> </u>		4 0 0	<u> </u>	+	0	<u> </u>		6.0	<u> </u>	_	2
Dhose Number					-	21.0			21.0	<u> </u>		50.0			50.0
Change Period			·	51.0			53			09.0 1 1			39.0 4 4		
	$\frac{1}{1}$	(), S				3.3 3.4			3.0			4.4			4.4
	oo Timo	(α, β)		<u> </u>		5.4 6.5	<u> </u>	+	2.4	<u> </u>		0.0	<u> </u>		0.0
Green Extensio	n Time	$(g_s), s$				0.5		-	2.9			0.0			0.0
Bhase Call Bro	hability	(<i>g</i> , s				0.Z 1.00			1.00	<u> </u>		0.0			0.0
Max Out Proba	bility					0.00			0.00						
Max Out 110ba	onity					0.00			0.00						
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow I	Rate(<i>v</i>), veh/h			109			24		62	424	423	3	471	459
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1561			1502	2	612	1900	1897	661	1900	1852
Queue Service	Time (g	g s), s			0.9			0.0		5.3	10.2	10.2	0.2	11.7	11.7
Cycle Queue C	learanc	e Time (<i>g c</i>), s			4.5			0.9		17.0	10.2	10.2	10.4	11.7	11.7
Green Ratio (g	/C)				0.29			0.29		0.61	0.61	0.61	0.61	0.61	0.61
Capacity (c), v	/eh/h				500			489		372	1153	1151	406	1153	1123
Volume-to-Cap	acity Ra	itio(X)			0.217			0.049	9	0.167	0.368	0.368	0.008	0.408	0.408
Back of Queue	(Q), ft/	In (95 th percentile))		79.8			16.7		36.1	183	182.8	1.6	205.8	202
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		3.2			0.7		1.4	7.3	7.3	0.1	8.2	8.1
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.00		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d1), s	/veh			24.5			23.3		13.7	9.0	9.0	11.6	9.3	9.3
Incremental De	lay (<i>d</i> 2), s/veh			0.1			0.0		1.0	0.9	0.9	0.0	1.1	1.1
Initial Queue Delay (d 3), s/veh					0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/veh					24.6			23.3		14.7	9.9	9.9	11.6	10.3	10.4
Level of Service (LOS)					С			С		В	A	A	В	В	В
Approach Delay, s/veh / LOS				24.6	6	С	23.3	3	С	10.2	2	В	10.3	3	В
Intersection Delay, s/veh / LOS						11	.2						В		
Multimodal Reculta					EP						NID			CD	
Pedestrian LOS	Multimodal Results					B	2.25	3	R	1 7'		B	1 70		B
Bicycle I OS Sc	ore / I C) <u></u>)S		0.67	,	A	0.53	3	A	1.72	-	A	1.72	- ;	A
,00000									-						

General Information		Site Information											
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy										
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles										
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy										
Analysis Year	2020	North/South Street	Glencoe Avenue										
Time Analyzed	Existing - PM	Peak Hour Factor	0.92										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description	Paseo Marina												

Lanes

Approach	Eastbound Westbound U L T R U L T									North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		71		32		6		6	0	41	474	10	0	10	913	51
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		()			(C									
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adways															
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			112				13			45				11		
Capacity, c (veh/h)			126				232			654				1030		
v/c Ratio			0.89				0.06			0.07				0.01		
95% Queue Length, Q_{95} (veh)			5.7				0.2			0.2				0.0		
Control Delay (s/veh)			118.5				21.4			10.9				8.5		
Level of Service (LOS)			F				С			В				А		
Approach Delay (s/veh)		11	8.5			21	1.4			0.	.9			0	.1	
Approach LOS		I	F			(2									

		e control hepoirt	
General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	12/1/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2020	North/South Street	Glencoe Avenue
Time Analyzed	Existing + Project - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Lanes

Approach	Eastbound Westbound								North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		75		77		6		6	0	63	464	10	0	10	878	89
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(C			()									
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adways															
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			165				13			68				11		
Capacity, c (veh/h)			150				201			652				1040		
v/c Ratio			1.10				0.07			0.11				0.01		
95% Queue Length, Q ₉₅ (veh)			8.9				0.2			0.4				0.0		
Control Delay (s/veh)			162.8				24.2			11.2				8.5		
Level of Service (LOS)			F				С			В				А		
Approach Delay (s/veh)		16	2.8			24	1.2			1.	3			0.	.1	
Approach LOS		F C														

General Information		Site Information											
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy										
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles										
Date Performed	8/13/2020	East/West Street	Southerly Glencoe Dwy										
Analysis Year	2026	North/South Street	Glencoe Avenue										
Time Analyzed	Future - PM	Peak Hour Factor	0.92										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description	Paseo Marina												

Lanes

Approach	Eastbound Westbound U L T R U L T									North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		75		34		6		6	0	44	538	11	0	11	1000	54
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(C			(C									
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adways															
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			118				13			48				12		
Capacity, c (veh/h)			99				188			600				969		
v/c Ratio			1.19				0.07			0.08				0.01		
95% Queue Length, Q ₉₅ (veh)			8.0				0.2			0.3				0.0		
Control Delay (s/veh)			230.9				25.5			11.5				8.8		
Level of Service (LOS)			F				D			В				А		
Approach Delay (s/veh)		23	0.9			25	5.5			0	.9			0	.1	
Approach LOS	F D															

		e control hepoirt	
General Information		Site Information	
Analyst	JAS	Intersection	Glencoe/S. Glencoe Dwy
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles
Date Performed	12/1/2020	East/West Street	Southerly Glencoe Dwy
Analysis Year	2026	North/South Street	Glencoe Avenue
Time Analyzed	Future + Project - PM	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Paseo Marina - Option B		

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LR				LR			L	Т	TR		L	Т	TR
Volume (veh/h)		79		79		6		6	0	66	528	11	0	11	965	92
Percent Heavy Vehicles (%)		3		3		3		3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		()			(C									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5		6.9		7.5		6.9		4.1				4.1		
Critical Headway (sec)		7.56		6.96		7.56		6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5		3.3		3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53		3.33		3.53		3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			172				13			72				12		
Capacity, c (veh/h)			118				160			598				978		
v/c Ratio			1.45				0.08			0.12				0.01		
95% Queue Length, Q_{95} (veh)			12.0				0.3			0.4				0.0		
Control Delay (s/veh)			311.3				29.5			11.8				8.7		
Level of Service (LOS)			F				D			В				А		
Approach Delay (s/veh)		31	1.3			29	9.5			1.	.3			0	.1	
Approach LOS			-			[)									

		1103	7 Sig	nanze	u mu	ersec		.est	1113	Sui	iiiiai j	y				
O an and he fam	4'								Inte					T D		. T.
General Inform	hation			<u> </u>					Inte	ersect		ormatic	on	- 1	444	- <u>-</u>
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Dur	ration,	h	0.250				<u>*</u>
Analyst		JAS		Analys	sis Date	Dec 1	, 2020		Area	а Тур	e	Other		<u>→</u>		4 }_
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with		PHF	F		0.92		**	w∓e €	
						(Impro	vement	ts)						الم 14		과 ~
Urban Street		Glencoe Avenue		Analys	sis Year	2026		,	Ana	alvsis	Period	1> 17	:00		ግተዮ	
Intersection		Glencoe/N. Dwy-V\	/ Dwy	File Na	ame	08PM	- Future	e with	n Proj	ject -	Option	B (Impro	ovem	- "	*I T *** Y F	* [
Project Descrip	tion	Paseo Marina - Opt	ion B							,		<u> </u>		1		
· · -,																
Demand Inform	nation				EB			W	/B			NB			SB	
Approach Move	ement			L	Т	R	L		Г	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			79	0	79	6	() (6	66	528	11	11	965	92
				1			_			1	_					
Signal Informa	tion				144	3 4										_
Cycle, s	90.0	Reference Phase	2		512	•R °							1	2	3	€ ₄
Offset, s	0	Reference Point	End	Green	54.6	25.7	0.0	0.0	0	0.0	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.6	0.0	0.0	0	0.0	0.0			*		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.7	1.7	0.0	0.0	0	0.0	0.0		5	6	7	8
			_		_		1	_		_		_	_		_	_
Timer Results				EBI	-	EBT	WB		WE	BT	NBL		NBT	SBL		SBT
Assigned Phase	e					4		_	8	3			6	<u> </u>		2
Case Number						8.0		\rightarrow	8.	.0			6.0			6.0
Phase Duration	ase Duration, s ange Period,(Y+ <i>R</i> c), s					31.0		\rightarrow	31	.0			59.0			59.0
Change Period	nange Period, (Y+R c), s					5.3			5.	.3			4.4			4.4
Max Allow Head	dway(A	MAH), s				3.3			3.	.3			0.0			0.0
Queue Clearan	ce Time	e (g s), s				9.9			2.	.5						
Green Extensio	n Time	(ge),s				0.3			0.	.4			0.0			0.0
Phase Call Pro	bability					1.00			1.0	00						
Max Out Proba	bility					0.00			0.0	00						
Movement Gro	oup Res	ults			EB			WE	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8		18	1	6	16	5	2	12
Adjusted Flow I	Rate (v), veh/h			172			13			72	294	292	12	583	566
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1533			150	5		497	1900	1886	843	1900	1841
Queue Service	Time (g	g s), s			5.9			0.0)		8.6	6.5	6.5	0.6	15.7	15.7
Cycle Queue C	learance	e Time (g c), s			7.9			0.5	5		24.3	6.5	6.5	7.1	15.7	15.7
Green Ratio (g	/C)				0.29			0.29	9		0.61	0.61	0.61	0.61	0.61	0.61
Capacity (c), v	/eh/h				498			490)		295	1153	1144	531	1153	1117
Volume-to-Cap	acity Ra	itio(X)			0.345			0.02	27		0.243	0.255	0.255	0.023	0.506	0.506
Back of Queue	(Q), ft/	/In (95 th percentile))		132.5			9			49.8	116	115.4	5.3	261.7	256
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		5.3			0.4	-		2.0	4.6	4.6	0.2	10.5	10.2
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d1), s	/veh			25.7			23.	1		17.0	8.2	8.2	9.9	10.0	10.0
Incremental De	Uniform Delay (d 1), s/veh							0.0)		2.0	0.5	0.5	0.1	1.6	1.6
Initial Queue De	elay (d	3), s/veh			0.0			0.0)		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (25.9			23.2	2		18.9	8.8	8.8	10.0	11.6	11.7		
Level of Service	e (LOS)				С			С			В	А	Α	Α	В	В
Approach Delay		25.9)	С	23.2	2	C	;	9.9		А	11.6	;	В		
Intersection De				12	2.4							В				
Multimodal Re			EB			WE	3			NB			SB			
Pedestrian LOS	Score	/LOS		2.28	3	В	2.28	3	В	3	1.72	2	В	1.72	2	В
Bicycle LOS Sc	ale LOS Score / LOS					А	0.51		A	۹	1.03	5	А	1.45	5	А

			Ū									,				
General Inform	nation								Inte	ersect	ion Info	ormatio	on		4 사수 + 1	× l <u>x</u>
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Du	ration,	h	0.250		1	444	
Analyst		JAS		Analys	is Date	Aug 1	3, 2020		Are	ea Typ	е	Other		4		<u>∼</u>
Jurisdiction		City of Los Angeles		Time F	Period	Existir	ng - AM		PH	IF		0.96		$\Rightarrow - $	w	
Urban Street		Mindanao Way		Analys	is Yea	r 2020	0		Ana	alysis	Period	1> 7:4	45			
Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Existi	ng.xu	JS						545	
Project Descrip	tion	Paseo Marina						<u> </u>							▲ ↑ 4 * 171	× (*
Demand Inform	nation				EB			٧	VB			NB			SB	
Approach Move	ement				Т	R	L		Т	R	L	Т	R		Т	R
Demand (<i>v</i>), v	eh/h			73	138	454	45	2	03	14	429	585	84	8	384	105
Signal Informa	tion					-								K		
		Poforonco Phaso	2			eta.	в							\rightarrow		ት
Offset s	90.0	Reference Point	Z End				7						1	2	3	4
Uncoordinated	No	Simult Gap E/W	On	Green	44.6	34.9	0.0	0.	0	0.0	0.0	_		_		
Eorce Mode	Fixed	Simult. Gap N/S	On	Ped	3.6	3.7	0.0	0.	0	0.0	0.0	-	_	Ð "	7	·Ψ
T OFCE MODE	TIXCU	olindit. Cap N/C	OII	Ticu	1.0	1.7	0.0	10.	0	0.0	0.0		Ŭ		,	
Timer Results				EBL	_	EBT	WB	L	W	/BT	NBL		NBT	SBI		SBT
Assigned Phase	e					6			2	2			8			4
Case Number						5.0		\neg	6	6.0			6.0			6.0
Phase Duration	, S					50.0			50	0.0			40.0			40.0
Change Period	, (Y+R)	c), S				5.4			5	5.4			5.1			5.1
Max Allow Head	x Allow Headway (<i>MAH</i>), s					0.0			0	0.0			3.5			3.5
Queue Clearan	ueue Clearance Time (g s), s												36.9			15.5
Green Extensio	n Time	(ge),s				0.0			0).0			0.0			4.8
Phase Call Pro	bability												1.00			1.00
Max Out Proba	bility												1.00			0.11
Manager		- 14 -		_	ED		_	14/	P	_					00	
Approach Mayo	oup Res	suits			EB	D	1	VV T	в	Р			Р		5B T	Р
Approach Move	mont				6	16		2	+	12	L 2	Q	19		1	<u>к</u>
Adjusted Flow) voh/h		76	111	10	47	2 11	1	12	3	356	2/1	7	4	247
Adjusted Flow I		y, ven/n	n	1172	1000	473	47	100	4)0 /	1957	447 004	1000	1916	760	1000	1760
	Time (/	π_{α}) s		31	37	18.9	1204	20	a	2.9	904 25.9	12 7	12 7	0.8	8.8	9.0
	learance	$g = Time(\alpha_{a}) = s$		63	3.7	18.9	5.6	2.	a	2.0	34.0	12.7	12.7	13.5	8.8	9.0
Green Ratio (e fille (<i>g c</i>), s		0.5	0.50	0.50	0.50	0.5	9 10	0.50	0 39	0.39	0.39	0.39	0.0	9.0 0.39
Capacity (c) y	/0) /eh/h			623	942	798	654	94	2	920	340	737	704	267	737	682
Volume-to-Can	acity Ra	tio (X)		0.122	0 153	0.593	0.072	0.13	21 (0 122	1 313	0 483	0 484	0.031	0.356	0.362
Back of Queue	(Q), ft/	(In (95 th percentile)		42.5	73.6	295.3	25.8	57	7	56.7	892.7	233	225.5	6.1	171.2	161.9
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	1.7	2.9	11.8	1.0	2.3	3	2.3	35.7	9.3	9.0	0.2	6.8	6.5
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh	,	13.9	12.4	16.2	13.9	12.	2	12.2	35.1	20.8	20.8	25.9	19.6	19.6
Incremental De	lay (<i>d</i> 2), s/veh		0.4	0.3	3.2	0.2	0.3	3	0.3	160.4	0.2	0.2	0.0	0.1	0.1
Initial Queue De	cremental Delay (d ₂), s/veh itial Queue Delay (d ȝ), s/veh			0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (ontrol Delay (d), s/veh			14.3	12.7	19.4	14.1	12.	.4	12.5	195.5	20.9	21.0	25.9	19.7	19.7
Level of Service (LOS)				В	В	В	В	В		В	F	С	С	С	В	В
Approach Delay, s/veh / LOS				17.5	5	В	12.7	7	Ē	В	89.2	2	F	19.8		В
Intersection De				48	3.7							D				
Multimodal Re	Iultimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		2.30		В	2.30)	E	В	2.13		В	2.30		В
Bicycle LOS So	ore / LC	DS		1.63	5	В	0.71		ŀ	A	1.43		А	0.91		А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

			-								-	-				
General Inform	nation								Inters	ecti	ion Info	ormatio	on		~~~~	s La
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Durati	on, l	h	0.250		1	414	
Analyst		JAS		Analys	sis Date	e Dec 2	, 2020		Area 1	Гуре	9	Other		4		
Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng with ct - AM		PHF			0.96			₩ e	
Urban Street		Mindanao Way		Analys	sis Yea	r 2020			Analys	sis F	Period	1> 7:4	45			<u> </u>
Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Existi	ng wi	th Proje	ect -	Option	B.xus			1 / 1 + + + + + +	- ا ^م
Project Descrip	tion	Paseo Marina - Opt	ion B	л										1 7		
		·														
Demand Inform	nation				EB			V	/B			NB			SB	
Approach Move	ement			L	Т	R	L		T I	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			82	144	496	45	2	08 1	4	453	585	84	8	384	114
					·	D C C C	-	_			_	_				-
Signal Informa	tion					<u> </u>								ð-		\mathbf{k}
Cycle, s	90.0	Reference Phase	2		HR •	1 SA	7						1	2	3	
Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.	0 0	.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	0 0	.0	0.0			2		N
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	0 0	.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WBT		NBL	-	NBT	SBL		SBT
Assigned Phase	Э					6			2				8			4
Case Number						5.0			6.0				6.0			6.0
Phase Duration	, S					50.0			50.0				40.0		4	40.0
Change Period,	(Y+R	c), S				5.4			5.4				5.1			5.1
Max Allow Head	ax Allow Headway (<i>MAH</i>), s					0.0			0.0				3.6			3.6
Queue Clearan	ueue Clearance Time (g s), s												36.9			15.5
Green Extensio	n Time	(g e), s				0.0			0.0				0.0			5.0
Phase Call Pro	bability									Т			1.00			1.00
Max Out Probal	bility												1.00		- (0.12
	_		_		==				_	_			_			
Movement Gro	oup Kes	ults			EB	D			5	+	-		Р		SB	Р
Approach Move	ment				I C	К 16	_ L	1	<u>к</u>	_	L 2	0	<u>Г</u> 10		1	<u>к</u>
Assigned Move	ment)		1	0	10	5 47				3	8	18	/	4	14
Adjusted Flow F), ven/n		85	150	517	47	110		5	472	350	341	8	268	251
Adjusted Satura		w Rale (s), ven/n/l	n	1167	1900	1610	1257	190		8	897	1900	1810	760	1900	1/51
Queue Service	Time (g	j s), S Time (3.8	3.9	21.5	1.9	3.0) 3.0		25.7	12.7	12.7	0.8	9.0	9.2
		e Time (<i>g c</i>), s		0.8	3.9	21.5	5.8	3.0) 3.0)	34.9	12.7	12.7	13.5	9.0	9.2
Green Ratio (g.	/C)			0.50	0.50	0.50	0.50	0.5	0 0.5	1	0.39	0.39	0.39	0.39	0.39	0.39
Volume to Con	en/n	tio (X)		020	942	798	049	94	2 92	1	330	131	704	207	131	079
Pook of Ououo		$(0 (\Lambda))$		0.130	0.159	220.7	25.0	50	23 0.12 5 50	20	1.405	0.400	0.404	6.1	175 4	164.9
Dack of Queue	(Q), II/	in (95 in percentile)		40.2	11	330.7	25.9	50.	5 50)	1037. 7	233	225.5	0.1	175.4	104.0
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	1.9	3.1	13.2	1.0	2.3	3 2.3	3	41.5	9.3	9.0	0.2	7.0	6.6
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.0	0	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		14.0	12.4	16.9	14.0	12.	2 12.	2	35.2	20.8	20.8	25.9	19.6	19.7
Incremental De	lay (<i>d</i> 2), s/veh		0.5	0.4	4.0	0.2	0.3	3 0.3	3	199.3	0.2	0.2	0.0	0.1	0.1
Initial Queue De	itial Queue Delay ($d z$), s/veh			0.0	0.0	0.0	0.0	0.0) 0.0)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (Control Delay (<i>d</i>), s/veh			14.5	12.8	20.9	14.2	12.	5 12.	5	234.5	20.9	21.0	25.9	19.7	19.8
Level of Service	Level of Service (LOS)			В	В	С	В	В	В		F	С	С	С	В	В
Approach Delay, s/veh / LOS				18.6	;	В	12.8	3	В		107.2	2	F	19.9		В
Intersection Delay, s/veh / LOS						56	6.2					-		E		
Multimodal Re	/ultimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		2.30)	В	2.30)	В		2.13	;	В	2.30		В
Bicycle LOS Sc	ore / LC		1.73	3	В	0.72	2	А		1.45	;	А	0.92	2	А	

Copyright @ 2020 University of Florida, All Rights Reserved.

Inter=settion Information Analysis Data Aug 13. 2020 Area Type Other Analysis Analysis Data Aug 13. 2020 Area Type Other Discription Interaction Discription Discription Discription				Ū								-	,				
Agency Linecolt, Law & Greenspan, Engineers Duration, h 0.250 Analysis Duration, h 0.270 Analysis Duration, h 0.270 Analysis Duration, h 0.270 Duration, h Du	General Inform	nation								Inte	ersect	tion Info	ormatio	on	2	4241	⊾ Ļ
Analysis UAS Analysis Della Juli 13, 2020 Area Type Other Other <th< td=""><td>Agency</td><td></td><td>Linscott, Law & Gre</td><td>enspan</td><td>, Engine</td><td>eers</td><td></td><td></td><td></td><td>Du</td><td>iration.</td><td>h</td><td>0.250</td><td></td><td></td><td>444</td><td></td></th<>	Agency		Linscott, Law & Gre	enspan	, Engine	eers				Du	iration.	h	0.250			444	
Jurisdiction Off of Los Angeles Time Priod Future - AM PHF D.0.6 Unan Street Mindanao Way Analysis Year 2026 Analysis Period 1>7.45 Infersection Mindanao Glencoe Pisot 1>7.45 1>7.45 1>7.45 Approach Movement L T R L T R L T R T R L </td <td>Analvst</td> <td></td> <td>JAS</td> <td></td> <td>Analys</td> <td>is Dat</td> <td>te Aua 1</td> <td>3. 2020</td> <td></td> <td>Are</td> <td>ea Tvp</td> <td>e</td> <td>Other</td> <td></td> <td>4</td> <td></td> <td>₹</td>	Analvst		JAS		Analys	is Dat	te Aua 1	3. 2020		Are	ea Tvp	e	Other		4		₹
Urban Street Mindana/Gencee Fie Name 2026 Analysis Period 1>7.45 Intersection Mindana/Gencee Fie Name 09AM - Future .xus Umban Street Umban Street <td>Jurisdiction</td> <td></td> <td>City of Los Angeles</td> <td></td> <td>Time F</td> <td>Period</td> <td>Future</td> <td>e - AM</td> <td></td> <td>PH</td> <td>IF</td> <td></td> <td>0.96</td> <td></td> <td>⇒</td> <td>wļe</td> <td></td>	Jurisdiction		City of Los Angeles		Time F	Period	Future	e - AM		PH	IF		0.96		⇒	wļe	
Intersection Mindanao/Gencoe File Name 09AM - Future.xus N N N Demand Information EB WB T R L T R <	Urban Street		Mindanao Way		Analys	sis Yea	ar 2026			Ana	alysis	Period	1> 7:4	45	*		
Project Description Passeo Marina Fill Fill NB NB SB Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R R L T R R L T R R L T R R L T R R L T R R L T R S R S R S R S R S R S R S R S R S R S R S R S R S R	Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Future	e.xus	\$						<u> ኘ ቶ ቱ</u>	
Demand Information L T R L R L	Project Descrip	tion	Paseo Marina												- E		• ا
$ \begin{array}{ c c c c c c } \hline Part or howement is a proper by the $			1					_									
Approach Movement L T R <thl< th=""> <thl< th=""> <tht< th=""></tht<></thl<></thl<>	Demand Inform	nation				EB			۷	VB			NB			SB	
Demand (v), veh/h 87 159 496 50 218 15 467 624 96 9 419 113 Signal Information Cycle, s 00.0 Reference Phase 2 Offset, s 0 Reference Point End Green Mode Kinuit. Gap E/W On Red 18 14 0.0 0.0 0.0 0.0 Force Mode Fixed Simuit. Gap E/W On Red 18 14 0.0 0.0 0.0 0.0 Time Results EBL EBT WBL WBL WBL NBL NBL SBL SBT Assigned Phase EBL EBT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Change Period, (Y+R c), s 5.4 5.4 5.4 5.4 5.1 5.1 Max Out Probability D.0 D.0 D.0 D.0 D.0 D.0 0.0 0.0 Max Out Probability D L T R L T R L T R Agsigned Movement L L T R L T R L T R Agsi	Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Signal Information Cycle, s 0.0 Reference Phate 2 Offset, s 0.0 Reference Phate End Ouncoordinated No Simuit. Gap E/N On Red 1.8 1.4 0.0	Demand (<i>v</i>), v	eh/h			87	159	9 496	50	2	18	15	467	624	96	9	419	113
Signal information Signal information Reference Phase 2 Cree Mode Reference Paine E Cree Mode Reference Paine E Cree Mode Red Signal (Sample A) On Concordinate A A O 0.0<					I										_	1	
Cycle, s 90.0 Neterace Paint Enc. Creen 44.8 34.9 0.0 0	Signal Informa	tion		-		л	205								\rightarrow		\mathbf{A}
Offset N N Herence Pont End Creen A4 6 94 9 0.0	Cycle, s	90.0	Reference Phase	2		B	1 51	2						1	2	3	4
$ \begin{array}{ $	Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.	.0	0.0	0.0					
Proce Mode File File Title Total Total <thtotal< th=""> <</thtotal<>	Uncoordinated	NO	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	.0	0.0	0.0	_		a		₩.
Timer Results EBL EBL WBL WBL NBL NBT SBL SBT Assigned Phase - 6 - 2 8 - 4 Case Number - 5.0 - 6.0 - 6.0 - 6.0 - 6.0 Phase Duration, s - 5.0 - 5.0 - 6.	Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	.0	0.0	0.0		5		7	8
Immer Kesturs LEDI UBL WBL WBL WBL WBL WBL WBL SBI Cold SBI Cold SBI Cold SBI Cold SBI Cold SBI Cold SBI	Timer Deculto						EDT			10/		NDI		NDT	CDI		ODT
Assignment index 0 2 0 2 0 1 4 Case Number 50.0 50.0 50.0 6.0 6.0 6.0 6.0 Phase Duration, s 50.0 50.0 50.0 50.0 40.0 40.0 Max Allow Hadway (MAH), s -5.4 5.4 5.4 5.1 -5.1 -5.1 Queue Clearance Time (g z), s $$	Assigned Dhose				EBL	-	EBI	VVB			уВТ 2	NBL	-		SBL	-	381
Case Multified 3.0 5.0 5.0 4.0 4.0 5.0 Phase Duration, s 5.4 5.4 5.4 5.4 5.4 40.0 40.0 Change Period, $(Y+R_c)$, s 5.4 5.4 5.4 5.4 5.4 5.1 5.1 5.1 Max Allow Headway (MAH), s 0.0 0.0 0.0 0.0 0.0 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 7.6 1.0 5.4 7.6 1.0 7.6	Assigned Phase	e			<u> </u>	-	5.0		\rightarrow	6	2			0	<u> </u>		4
Private Duration, 'S 50.0 90.0 40.0 40.0 40.0 Change Perioda (, Y+R c), s 5.4 5.4 5.4 5.1 5.1 Max Allow Headway (<i>MAH</i>), s 0.0 0.0 0.0 3.6 3.6 Green Extension Time (g s), s 0.0 0.0 0.0 0.0 5.4 Phase Call Probability 0.0 0.0 0.0 1.00 1.00 Max Out Probability 0.0 0.0 0.0 1.00 0.19 Movement Group Results EB WB NB T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R R R R </td <td>Bhase Duration</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>50.0</td> <td></td> <td>-</td> <td>50</td> <td>0.0</td> <td></td> <td></td> <td>0.0 40.0</td> <td><u> </u></td> <td></td> <td>0.0</td>	Bhase Duration					+	50.0		-	50	0.0			0.0 40.0	<u> </u>		0.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Change Duration	(V±D	-) c		<u> </u>	+	50.0		+	50	5.4			40.0 5.1	<u> </u>		+0.0 5 1
Max Autor Trading (Math), is and), is and (Math), is and (Math), is a		Allow Headway (<i>MAH</i>), s					0.0		-	0).4) ()			3.6			3.6
Construct (g +), for the (g +), for the equation of the equatic the equatic the equatic the equation of the equatic the equati		ax Allow Headway (<i>MAH</i>), s ueue Clearance Time (<i>g</i> s), s				-	0.0		+	0				36.9			16 9
Order Lakarian Order Order <thorder< th=""> Order <thorder< th=""></thorder<></thorder<>	Green Extensio	ueue Clearance Time (g_s) , s				-	0.0	-	-	0				0.0			54
Max Out Probability Image of the second conditional structure of the second condit structure of the second conditional structur	Phase Call Pro	bability	(9,0), 3			+	0.0		\rightarrow	0	/.0			1.00	<u> </u>		1 00
Movement Group Results L T R A 14 14 14 14 123 1900 1817 23.3 14.0 0.9 8.8 9.9 0 0 14.0 14.9 9.8 9.9 0 0.39	Max Out Proba	bility									_			1.00) 19
Movement Group ResultsII <t< td=""><td>Max Out Propa</td><td>Sinty</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.00</td><td></td><td></td><td>5.10</td></t<>	Max Out Propa	Sinty			1									1.00			5.10
Approach MovementI.I.I.R.I.T.R.I.I.R.I.I.R.I.	Movement Gro	oup Res	sults			EB			W	В			NB			SB	
Assigned Movement 1 I <thi< th=""> <thi< th=""> <thi< th=""> <</thi<></thi<></thi<>	Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Adjusted Flow Rate (v), veh/h 91 166 517 52 122 121 486 384 366 9 286 200 Adjusted Saturation Flow Rate (s), veh/h/in 1155 9 0 101 123 9 0 187 868 190 181 723 190 73 Queue Service Time (g e), s 4.1 4.3 21.5 2.2 3.1 3.2 28.0 13.9 14.0 0.9 8.8 9.9 Green Ratio (g/C) 0.50	Assigned Move	ment			1	6	16	5	2		12	3	8	18	7	4	14
Adjusted Saturation Flow Rate (s), ven/h/ln 1155 1900 1610 1239 1900 1857 868 1900 1811 723 1900 1761 Queue Service Time (g e), s 4.1 4.3 21.5 2.2 3.1 3.2 25.0 13.9 14.0 0.9 9.8 9.9 Cycle Queue Clearance Time (g c), s 7.3 4.3 21.5 6.5 3.1 3.2 34.9 13.9 14.0 14.9 9.8 9.9 Green Ratio (g/C) 0.50 0.50 0.50 0.50 0.50 0.50 0.39 <td>Adjusted Flow I</td> <td>Rate (<i>v</i></td> <td>), veh/h</td> <td></td> <td>91</td> <td>166</td> <td>517</td> <td>52</td> <td>12</td> <td>2</td> <td>121</td> <td>486</td> <td>384</td> <td>366</td> <td>9</td> <td>286</td> <td>268</td>	Adjusted Flow I	Rate (<i>v</i>), veh/h		91	166	517	52	12	2	121	486	384	366	9	286	268
Queue Service Time (g s), s4.14.321.52.23.13.225.01.3.914.00.99.89.9Cycle Queue Clearance Time (g c), s7.34.321.56.53.13.234.91.3.914.014.99.89.9Green Ratio (g/C)0.500.500.500.500.500.500.39 <td>Adjusted Satura</td> <td>ation Flo</td> <td>ow Rate (<i>s</i>), veh/h/l</td> <td>n</td> <td>1155</td> <td>1900</td> <td>) 1610</td> <td>1239</td> <td>190</td> <td>)0 [,]</td> <td>1857</td> <td>868</td> <td>1900</td> <td>1811</td> <td>723</td> <td>1900</td> <td>1761</td>	Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1155	1900) 1610	1239	190)0 [,]	1857	868	1900	1811	723	1900	1761
Cycle Queue Clearance Time (g c), s 7.3 4.3 21.5 6.5 3.1 3.2 34.9 13.9 14.0 14.9 9.8 9.9 Green Ratio (g/C) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.39 0.30 <t< td=""><td>Queue Service</td><td>Time (</td><td>g s), S</td><td></td><td>4.1</td><td>4.3</td><td>21.5</td><td>2.2</td><td>3.</td><td>1</td><td>3.2</td><td>25.0</td><td>13.9</td><td>14.0</td><td>0.9</td><td>9.8</td><td>9.9</td></t<>	Queue Service	Time (g s), S		4.1	4.3	21.5	2.2	3.	1	3.2	25.0	13.9	14.0	0.9	9.8	9.9
Green Ratio (g/C) 0.50 0.50 0.50 0.50 0.50 0.30 0.39 0.30 0.30 0.30 0.10 <	Cycle Queue C	learanc	e Time (<i>g c</i>), s		7.3	4.3	21.5	6.5	3.	1	3.2	34.9	13.9	14.0	14.9	9.8	9.9
Capacity (c), veh/h 612 942 798 634 942 920 321 737 702 248 737 683 Volume-to-Capacity Ratio (X) 0.148 0.176 0.648 0.082 0.130 0.131 1.516 0.521 0.522 0.038 0.38 0.388 0.393 Back of Queue (Q), th/ln (95 th percentile) 51.8 8 30.7 29.3 61.6 61 1182 251.8 243 7 18.9 178.3 Back of Queue (Q), veh/ln (95 th percentile) 2.0 3.4 13.2 1.2 2.5 2.4 47.3 10.1 9.7 0.3 7.6 7.1 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.0 0.00 0.00	Green Ratio (g	/C)			0.50	0.50	0.50	0.50	0.5	50	0.50	0.39	0.39	0.39	0.39	0.39	0.39
Volume-to-Capacity Ratio (X) 0.148 0.176 0.648 0.082 0.131 1.516 0.521 0.522 0.538 0.388 0.388 0.393 Back of Queu (Q), ft/ln (95 th percentile) 51.8 $\otimes 6$ 30.7 29.3 61.6 61 1182 251.8 243 7 189.3 178.3 Back of Queu (Q), veh/ln (95 th percentile) 2.1 3.4 13.2 1.2 2.5 2.4 47.3 10.1 9.7 0.3 7.6 7.1 Queue Storage Ratio (RQ) (95 th percentile) 0.00 </td <td>Capacity (c), v</td> <td>/eh/h</td> <td></td> <td></td> <td>612</td> <td>942</td> <td>798</td> <td>634</td> <td>94</td> <td>2</td> <td>920</td> <td>321</td> <td>737</td> <td>702</td> <td>248</td> <td>737</td> <td>683</td>	Capacity (c), v	/eh/h			612	942	798	634	94	2	920	321	737	702	248	737	683
Back of Queue (Q), ft/ln (95 th percentile)51.886330.729.361.6611182251.82437189.3178.3Back of Queue (Q), veh/ln (95 th percentile)2.1 3.4 13.21.2 2.5 2.447.3 10.1 9.70.3 7.6 7.1Queue Storage Ratio (RQ) (95 th percentile)0.00 0.0	Volume-to-Cap	acity Ra	itio (X)		0.148	0.176	6 0.648	0.082	0.1	30 0	0.131	1.516	0.521	0.522	0.038	0.388	0.393
Back of Queue (Q), veh/ln (95 th percentile)2.13.413.21.22.52.447.310.19.70.37.67.1Queue Storage Ratio (RQ) (95 th percentile)0.000.00.00.000.	Back of Queue	(Q), ft	In (95 th percentile)		51.8	86	330.7	29.3	61.	.6	61	1182	251.8	243	7	189.3	178.3
Queue Storage Ratio (RQ) (95 th percentile)0.00	Back of Queue	(Q), Ve	eh/In (95 th percenti	le)	2.1	3.4	13.2	1.2	2.	5	2.4	47.3	10.1	9.7	0.3	7.6	7.1
Uniform Delay (d 1), s/veh14.212.516.914.312.212.235.621.121.126.919.919.9Incremental Delay (d 2), s/veh0.50.44.00.30.30.3247.50.30.30.00.10.1Initial Queue Delay (d 3), s/veh0.0 <t< td=""><td>Queue Storage</td><td>Ratio (</td><td>RQ) (95 th percent</td><td>ile)</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.0</td><td>0</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Incremental Delay (d 2), s/veh0.50.44.00.30.30.3247.50.30.30.00.10.1Initial Queue Delay (d 3), s/veh0.0 <td>Uniform Delay (</td> <td>(d1), s</td> <td>/veh</td> <td></td> <td>14.2</td> <td>12.5</td> <td>16.9</td> <td>14.3</td> <td>12.</td> <td>.2</td> <td>12.2</td> <td>35.6</td> <td>21.1</td> <td>21.1</td> <td>26.9</td> <td>19.9</td> <td>19.9</td>	Uniform Delay ((d1), s	/veh		14.2	12.5	16.9	14.3	12.	.2	12.2	35.6	21.1	21.1	26.9	19.9	19.9
Initial Queue Delay (d 3), s/veh0.0	Incremental De	lay (<i>d</i> 2), s/veh		0.5	0.4	4.0	0.3	0.3	3	0.3	247.5	0.3	0.3	0.0	0.1	0.1
Control Delay (d), s/veh14.713.020.914.612.512.5283.121.421.526.920.020.0Level of Service (LOS)BBCBBBBFCCCBCApproach Delay, s/veh / LOS18.5B12.9B124.4F20.1CIntersection Delay, s/veh / LOS18.5B12.9B124.4F20.1CIntersection Delay, s/veh / LOS53.9 -63.9 <td< td=""><td>Initial Queue De</td><td>elay (d</td><td>3), s/veh</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>υ</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	Initial Queue De	elay (d	3), s/veh		0.0	0.0	0.0	0.0	0.0	υ	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Level of Service (LOS)BBCBBFCCCBCBCApproach Delay, s/veh / LOS18.5B12.9B124.4F20.1CIntersection Delay, s/veh / LOS $$	Control Delay (d), s/ve	əh		14.7	13.0	20.9	14.6	12.	.5	12.5	283.1	21.4	21.5	26.9	20.0	20.0
Approach Delay, s/veh / LOS 18.5 B 12.9 B 124.4 F 20.1 C Intersection Delay, s/veh / LOS 63.9 63.9 E <td< td=""><td>Level of Service</td><td colspan="3">evel of Service (LOS)</td><td>В</td><td>B</td><td></td><td>В</td><td>B</td><td></td><td>В</td><td>F</td><td>C</td><td>C</td><td>C</td><td>В</td><td>C</td></td<>	Level of Service	evel of Service (LOS)			В	B		В	B		В	F	C	C	C	В	C
Intersection Delay, s/veh / LOS 63.9 E Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.30 B 2.30 B 2.13 B 2.30 B Biovole LOS Score / LOS 1.76 B 0.73 A 1.51 B 0.95 A	Approach Delay, s/veh / LOS				18.5		В	12.9	1	E	В	124.4	1	F	20.1		С
Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.30 B 2.30 B 2.13 B 2.30 B Biovole LOS Score / LOS 1.76 B 0.73 A 1.51 B 0.95 A	Intersection De	ntersection Delay, s/veh / LOS					63	3.9							E	_	
Pedestrian LOS Score / LOS 2.30 B 2.30 B 0.73 A 1.51 B 0.95 A	Multimodal Ba	ultimodal Posults				ED			\^/	B			ND			CD	
Biovole LOS Score / LOS 1.76 B 0.73 A 1.51 B 0.95 A	Pedestrian LOS	Score	/1.05		2 30		R	230	vv ر		B	2 12		B	2 30		B
	Bicycle LOS Sc	ore / I ()S		1 76	, ;	B	0.73	3		A	1.51		B	0.95		A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

									1-							
General Inform	nation								Inte	ersect	tion Inf	ormatio	on	2	4 7 40 1 1	⊾ L _k
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Du	ration,	h	0.250	1		4+5	
Analyst		JAS		Analys	sis Date	e Dec 2	, 2020		Are	еа Тур	е	Other		×		≛
Jurisdiction		City of Los Angeles		Time F	Period	Future Projec	e with ct - AM		PH	lF		0.96		4 M 4	W = E	↓ ↓ ↓
Urban Street		Mindanao Way		Analys	sis Yea	· 2026			Ana	alysis	Period	1> 7:4	45		5 4 4	<u> </u>
Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Future	e with	n Pro	oject -	Option	B.xus		- 1	1 1 1 + 4 + 7 +	- *
Project Descrip	tion	Paseo Marina - Opt	ion B							-				1 7		
		•														
Demand Inform	nation				EB			٧	VB	12		NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand(<i>v</i>), v	eh/h			96	165	538	50	2	23	15	491	624	96	9	419	122
							_				_					
Signal Informa	tion		-			215							~	\rightarrow		\mathbf{A}
Cycle, s	90.0	Reference Phase	2		B _*	1 50	7						1	2	3	4
Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.	0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	0	0.0	0.0			4		_ • ↓ •
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	0	0.0	0.0		5	Y 6	7	8
					_		14/2			(D T				0.51	_	
Timer Results				EBI		EBI	WB		VV	/BT	NBI		NBT	SBL	-	SBI
Assigned Phase	e				\rightarrow	6		_	2	2			8			4
Case Number						5.0			6	5.0			6.0			6.0
Phase Duration	, S					50.0		_	50	0.0			40.0			40.0
Change Period,	nge Period, (Y+R c), s (Allow Headway (<i>MAH</i>), s					5.4			5	5.4		_	5.1			5.1
Max Allow Head	Allow Headway (MAH), s					0.0		_	0	0.0			3.6			3.6
Queue Clearan	ueue Clearance Time (g_s), s							\rightarrow					36.9			16.9
Green Extensio	n Time	(g _e), s				0.0			0	0.0			0.0			5.6
Phase Call Prol	bability												1.00			1.00
Max Out Probal	bility												1.00			0.20
Movement Gro	oup Res	ults			EB			W	B			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		100	172	560	52	12	5	123	511	384	366	9	291	272
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1150	1900	1610	1232	190)0 ⁻	1858	860	1900	1811	723	1900	1753
Queue Service	Time (g	g s), S		4.6	4.5	24.2	2.2	3.2	2	3.2	24.8	13.9	14.0	0.9	10.0	10.1
Cycle Queue C	learanc	e Time (<i>g c</i>), s		7.9	4.5	24.2	6.7	3.2	2	3.2	34.9	13.9	14.0	14.9	10.0	10.1
Green Ratio (g	/C)			0.50	0.50	0.50	0.50	0.5	0	0.50	0.39	0.39	0.39	0.39	0.39	0.39
Capacity (<i>c</i>), v	/eh/h			609	942	798	629	94	2	921	317	737	702	248	737	680
Volume-to-Capa	acity Ra	itio(X)		0.164	0.183	0.702	0.083	0.13	32 C	0.134	1.615	0.521	0.522	0.038	0.395	0.401
Back of Queue	(Q), ft/	/In (95 th percentile)		57.9	89.5	369.6	29.4	63.	.1	62.5	1333. 7	251.8	243	7	192.7	181.6
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.3	3.6	14.8	1.2	2.	5	2.5	53.3	10.1	9.7	0.3	7.7	7.3
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		14.4	12.6	17.6	14.5	12.	.3	12.3	35.7	21.1	21.1	26.9	19.9	20.0
Incremental De	lay (<i>d</i> 2), s/veh		0.6	0.4	5.1	0.3	0.3	3	0.3	290.9	0.3	0.3	0.0	0.1	0.1
Initial Queue De	itial Queue Delay (d 2), s/veh			0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (Control Delay (<i>d</i>), s/veh			15.0	13.0	22.7	14.7	12.	.5	12.6	326.7	21.4	21.5	26.9	20.0	20.1
Level of Service	Level of Service (LOS)			В	В	С	В	В		В	F	С	С	С	С	С
Approach Delay, s/veh / LOS				19.8	3	В	12.9)	Ē	В	145.	2	F	20.2	2	С
Intersection Delay, s/veh / LOS						72	2.5							E		
,, · · · · ·																
Multimodal Re	Iultimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		2.30)	В	2.30)	E	В	2.13	3	В	2.30		В
Bicycle LOS Sc	ore / LC	DS		1.86	3	В	0.74	ł	ŀ	A	1.53	3	В	0.96	;	А

		1103	/ Sig	nanze	a mu	51360		test	intə t	Sun	mai	y				
Gonoral Inform	ation								Intor	react	ion Inf	ormatio	20		*	s la
	lation	Lincott Low & Gro	onenan	Engin	ore				Dura	ation	b	0 250	<i></i>		444	
Apolyot			enspan				2020		Aroo		<u></u>	Othor		1		۲_ ۲_
Analysi		City of Los Angeles		Time		Eutur	, 2020			атур	6			_ → _*	w↓e	≮_ ↓
Junsaiction		City of Los Angeles			enou	Projec	t - AM		FHF			0.90		4 m		
				<u> </u>		(Impro	ovemen	ts)							KAŁ	<u>~</u>
Urban Street		Mindanao Way		Analys	sis Year	2026			Analy	lysis	Period	1> 7:4	45			∗ ا*
Intersection		Mindanao/Glencoe		File Na	ame	09AM	- Future	e with	Proje	ect - (Option I	B (Impr	ovem	4		
Project Descrip	tion	Paseo Marina - Opt	ion B													
Domand Inform	nation				EB			١٨.	'R		T	NR			SB	
Approach Move	ement				Т	R			-	R		Т	R		Т	R
Demand (v) , v	eh/h			96	165	538	50	22	23	15	491	624	96	9	419	122
(, , ,																
Signal Informa	tion						215							<u>A</u>	-	Υ
Cycle, s	90.0	Reference Phase	2		i∰ è	N 50	z st	2					4	Y _	ו (ר	(TX
Offset, s	0	Reference Point	End	Green	35.4	22.0	18.1	0.0) (0.0	0.0			~ .	↓ Ⅰ °	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	4.0	3.7	0.0) (0.0	0.0			<u>a</u>		N
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	0.0	1.4	0.0) (0.0	0.0		5	Y 6	7	8
				_	_			_					_	1	_	
Timer Results				EBI		EBT	WB	L	WB	BT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	e					6		\rightarrow	2		3		8			4
Case Number	-				_	5.0	<u> </u>	\rightarrow	6.0)	1.0		4.0	<u> </u>		6.3
Change Duration	ase Duration, s ange Period, ($Y+Rc$), s				+	40.8 5.4	<u> </u>	+	40.8	8	20.0	,	49.Z	<u> </u>	-	23.Z
	nange Period, (Y+R c), s ax Allow Headway (<i>MAH</i>), s					0.0	-	-+-	0.0	+ 1	4.0		3.1			3.1
	lax Allow Headway (<i>MAH</i>), s					0.0	-	-	0.0	5	20.0		13.7			15.2
Green Extensio	n Time	$(q_{s}), s$				0.0		-	0.0)	1 1		29			2.8
Phase Call Pro	bability	(9,0), 3				0.0		-+	0.0		1.00	, –	1 00			1 00
Max Out Proba	bility										0.00)	0.00			0.00
	, 															
Movement Gro	oup Res	sults			EB			WE	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т	F	R	L	Т	R	L	Т	R
Assigned Move	ment	· · · ·		1	6	16	5	2	1	12	3	8	18	7	4	14
Adjusted Flow I	Rate (v), veh/h		100	172	560	52	125	5 12	23	511	384	366	9	291	272
Adjusted Satura	ation Fic	w Rate (s), ven/n/l	n	1150	1900	1610	1232	190	0 18	858	1810	1900	1811	723	1900	1753
Queue Service	Time (g	J_s), S		5.0	5.4	17.4	2.0	3.8	3	3.9	18.9	11.0	11.7	0.9	13.0	13.2
Green Ratio (e fille (<i>g c</i>), s		9.4	0.30	0.64	0.1	0.30		3.9	0.47	0.49	0.49	0.9	0.20	0.20
Capacity (c)	/o/) /eh/h			483	748	1028	491	748	3 7:	732	568	930	887	225	381	352
Volume-to-Cap	acity Ra	itio (X)	_	0.207	0.230	0.545	0.106	0.16	7 0.1	169	0.900	0.412	0.413	0.042	0.764	0.774
Back of Queue	(Q), ft/	(In (95 th percentile)		72.7	112.8	252.7	36.9	79.4	1 78	8.9	308.2	209.1	201.8	7.4	250.7	238.7
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.9	4.5	10.1	1.5	3.2	3	3.2	12.3	8.4	8.1	0.3	10.0	9.5
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0) ().	.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d1), s	/veh	,	20.8	18.2	9.0	20.9	17.	7 17	7.7	19.8	14.7	14.7	29.1	34.0	34.0
Incremental Delay (<i>d</i> 2), s/veh				1.0	0.7	2.1	0.4	0.5	0	0.5	2.2	0.1	0.1	0.0	1.2	1.4
Initial Queue Delay (d_3), s/veh				0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				21.8	18.9	11.1	21.3	18.2	2 18	8.2	22.0	14.8	14.8	29.2	35.2	35.4
Level of Service		С	В	В	С	В	E	В	С	В	В	С	D	D		
Approach Dela		14.0)	В	18.7	7	В		17.7	·	В	35.2	2	D		
Intersection De	Intersection Delay, s/veh / LOS					20).2							С		
Multiment						14/5	,						05			
Dedestriar L CC	Aultimodal Results				EB	D	0.00	VVE			0.40	NB	D	0.00	SB	D
Bicycle I OS Sc		/ LU3		2.30	,	B	2.30	1	B		2.13	2	B	2.30	,	Δ
				1.00		0	0.72		~		1.00		U	0.90		~

			Ū								-	,				
General Inform	ation								Int	tersect	tion Infe	ormatio	on		4241	يد لي
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Du	uration.	h	0.250)		444	
Analvst		JAS		Analys	is Da	te Aua 1	3. 2020		Are	ea Tvp	e	Other	-			<i>د</i> 4
Jurisdiction		City of Los Angeles		Time F	Period	Existin	na - PM		РН	HF //		0.94		\rightarrow \rightarrow	WÌE	
Urban Street		Mindanao Way		Analys	sis Yea	ar 2020	.9		An	nalvsis	Period	1> 17	2:00			
Intersection		Mindanao/Glencoe		File Na	ame	09PM	- Existi	na xi	IS			<u> </u>			KAL	
Project Descript	ion	Paseo Marina						.9						- 1	<u>। r</u> च † के फे 1	× (*
· · · · · · · · · · · · · · · · · · ·																
Demand Inform	nation				EB	;		٧	VB		T	NB		T	SB	
Approach Move	ment			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			133	213	3 616	122	2	15	27	225	346	45	10	514	96
Signal Informa	tion					245								ð-		\mathbf{L}
Cycle, s	90.0	Reference Phase	2		Ħ.	* 1 54	2						1	2	3	4
Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.	0	0.0	0.0				-	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.	0	0.0	0.0			<u>a</u>		√ >
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.	0	0.0	0.0		5	6	7	8
					1		_	_		_						
Timer Results				EBL	-	EBT	WB	L	W	VBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	;				_	6				2			8			4
Case Number						5.0			6	5.0			6.0			6.0
Phase Duration	, S					50.0			50	0.0			40.0		·	40.0
Change Period,	ge Period, (Y+R c), s Ilow Headway (MAH), s					5.4			5	5.4			5.1			5.1
Max Allow Head	(Allow Headway (<i>MAH</i>), s					0.0			0).0			3.5			3.5
Queue Clearand	ieue Clearance Time (g_s), s												36.9			13.8
Green Extension	n Time	(ge),s			_	0.0		\rightarrow	0	0.0			0.0			3.5
Phase Call Prob	bability												1.00			1.00
Max Out Probat	oility												1.00			0.03
Movement Gro	un Pos	sulte			EB			\٨/	B			NB	_		SB	_
Approach Move	mont				Т	R	1	Т		R		Т	R		Т	R
Assigned Move	ment			1	6	16	5	2	+	12	3	8	18	7	4	14
Adjusted Flow F	Rate (v) veh/h		141	227	655	130	13	0	128	239	211	205	, 11	333	316
Adjusted Satura	tion Flo	w Rate (s) veh/h/li	1	1140	1900	1610	1172	190	0	1826	795	1900	1823	986	1900	1796
Queue Service	Time (d	γ_{s}) s		6.9	6 1	31.2	6.4	3	3	3.4	23.1	6.9	7.0	0.7	11 7	11.8
Cycle Queue Cl	earance	e Time (a_c) s		10.3	6.1	31.2	12.6	3	3	3.4	34.9	6.9	7.0	7.7	11.7	11.8
Green Ratio (a	/C)	o milo (g c), o		0.50	0.50	0.50	0.50	0.5	0	0.50	0.39	0.39	0.39	0.39	0.39	0.39
Capacity (c) y	eh/h			602	942	798	581	94	2	905	284	737	707	386	737	696
Volume-to-Capa	acity Ra	itio (X)		0.235	0.24	1 0 821	0.223	0.1	- 38 (0 141	0.842	0.286	0.290	0.028	0 451	0.454
Back of Queue	(Q) ft/	(In (95 th percentile)		86.1	122	1 473.9	83	66	3	64.9	276.3	133.3	129.9	7	218.4	210
Back of Queue	(Q), ve	eh/ln (95 th percentil	e)	3.4	4.9	19.0	3.3	2	6	2.6	11.1	5.3	5.2	0.3	8.7	8.4
Queue Storage	Ratio (RQ) (95 th percent	le)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1). s	/veh	,	15.1	13.0	19.3	16.6	12	.3	12.3	35.1	19.0	19.0	21.6	20.4	20.5
Incremental Del	av (d 2), s/veh		0.9	0.6	9.3	0.9	0.3	3	0.3	19.0	0.1	0.1	0.0	0.2	0.2
Initial Queue De	cremental Delay (d ₂), s/veh			0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (itial Queue Delay (d ₃), s/veh			16.0	13.6	28.6	17.5	12	.6	12.6	54.1	19.1	19.1	21.7	20.6	20.6
Level of Service	evel of Service (LOS)			B	B	C	В	B	-	В	D	В	В	С	C	C
Approach Delay	Approach Delay, s/veh / LOS			23.5	;	C	14 2			B	31.9)	C	20.6		C
Approach Delay, s/ven / LOS				20.0		- 23	3.5			-	0110		-	C		-
	ntersection Delay, s/ven / LOS					20								-		
Multimodal Res	lultimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	Score	/ LOS		2.30)	В	2.30)		В	2.13	;	В	2.30		В
Bicycle LOS Sc	ore / LC)S		2.18	3	В	0.81			A	1.03	;	А	1.03	;	А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.8.5

General Inform	nation								Intersec	tion Inf	ormatio	on	2	*	يد لي
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Duration	, h	0.250			4 + 4	
Analyst		JAS		Analys	sis Date	e Dec 2	, 2020		Area Typ	e	Other		4		
Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng with ct - PM		PHF		0.94			W∔E	
Urban Street		Mindanao Way		Analys	sis Yea	2020			Analysis	Period	1> 17	:00			Ē
Intersection		Mindanao/Glencoe		File Na	ame	09PM	- Existi	ng wi	h Project	- Optior	n B.xus			<u>ן ן (</u> המשירה	× (*
Project Descrip	tion	Paseo Marina - Opt	ion B					•	-				1		
				1-											
Demand Inform	nation				EB			W	'B		NB			SB	
Approach Move	ment			L	Т	R	L		R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			134	214	624	122	21	7 27	232	346	45	10	514	99
						-		1							
Signal Informa	tion		0			- etta							\rightarrow		\mathbf{A}
Cycle, s	90.0	Reference Phase	2		B.	1 51	2					1	2	3	4
Offset, s	0	Reference Point	End	Green	44.6	34.9	0.0	0.0	0.0	0.0					
Uncoordinated	NO	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.0	0.0	0.0	_		A		Ψ.
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	1.4	0.0	0.0) 0.0	0.0		5	Y 6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBL	-	SBT
Assigned Phase	Э					6			2			8			4
Case Number						5.0			6.0			6.0			6.0
Phase Duration	, S					50.0			50.0			40.0			40.0
Change Period,	(Y+R	c), S				5.4			5.4			5.1			5.1
Max Allow Head	dway (/	ИАН), s				0.0			0.0			3.5			3.5
Queue Clearan	ce Time	e (g s), s										36.9			13.9
Green Extensio	n Time	(ge),s				0.0			0.0			0.0			3.6
Phase Call Pro	oability											1.00			1.00
Max Out Probal	oility											1.00			0.03
		-								_		_	1		_
Movement Gro	up Res	sults			EB			WE	3	<u> </u>	NB			SB	
Approach Move	ement			L		R			R	L	1	R			R
Assigned Move	ment	<u> </u>		1	6	16	5	2	12	3	8	18	1	4	14
Adjusted Flow F), veh/h		143	228	664	130	131	129	247	211	205	11	335	318
Adjusted Satura		w Rate (s), ven/n/i	n	7138	1900	1610	1171	190	0 1827	792	1900	1823	986	1900	1793
Queue Service	nme (g	J_s), S		10.4	6.2	31.8	0.4	3.4	3.4	23.0	6.9	7.0	0.7	11.8	11.9
Croop Patia (a		e fille (<i>g</i> c), s		0.50	0.2	0.50	12.0	0.5	0.50	0.20	0.9	7.0	0.20	0.20	0.20
Green Ratio (g	$\frac{1}{2}$			600	0.50	708	580	0.5	0.50	0.39	0.39	707	0.39	737	605
Volume to Can	city Ra	tio (X)		0.00	942	0.832	0.224	942	903	203	0.286	0.200	0.028	0.454	0.457
Back of Queue	(O) ft	(In (95 th percentile)		87	122 7	485.7	83	66	5 65 6	293.5	133.3	129.9	7	219.4	211
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	eh/In (95 th percenti	le)	3.5	4 9	19.4	3.3	27	26	11 7	5.3	52	0.3	8.8	84
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.00	1000	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d_1 , s	/veh		15.1	13.0	19.5	16.6	12.3	3 12.3	35.5	19.0	19.0	21.6	20.5	20.5
Incremental De	av (d 2), s/veh		0.9	0.6	9.9	0.9	0.3	0.3	23.6	0.1	0.1	0.0	0.2	0.2
Initial Queue De	itial Queue Delay ($d 3$), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delav (control Delay (d 3), s/ven					29.4	17.5	12.0	3 12.6	59.2	19.1	19.1	21.7	20.6	20.7
Level of Service	evel of Service (LOS)					С	В	В	B	E	В	В	С	С	С
Approach Delay		24.1		C	14.3	3	B	34.0)	C	20.7	7	С		
Intersection Del				24	1.3						С				
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS	Score	/LOS		2.30)	В	2.30)	В	2.13	3	В	2.30)	В
Bicycle LOS Sc	ore / LC	DS		2.19)	В	0.81		A	1.03	3	Α	1.03	3	A

		-	- 5									,				
General Inform	nation								Int	tersect	ion Info	ormatio	on	2	4 24 4 1	u l <u>u</u>
Agency		Linscott. Law & Green	span	. Engine	eers				Du	uration.	h	0.250			414	
Analvst		JAS	<u> </u>	Analys	sis Da	te Aua 1	3. 2020		Ar	rea Tvp	e	Other		 		<i>د</i> 4
Jurisdiction		City of Los Angeles		Time F	Period	Future	e, PM		PH	HF	-	0.94		\rightarrow \rightarrow	w∔e	
Urban Street		Mindanao Way		Analys	sis Yea	ar 2026			Ar	nalvsis	Period	1> 17	:00	* *		 *⊊
Intersection		Mindanao/Glencoe		File Na	ame	09PM	- Futur		\$			<u> </u>			K A 	<u> </u>
Project Descript	tion	Paseo Marina					- atar	o.nac						- 5	111 141411	* /*
i rojoot booonp																
Demand Inform	nation				EB	5		V	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			147	233	3 673	140	2	42	30	251	385	54	12	561	112
0	<u></u>			F			_			_	_			_		-
Signal Informa	tion		0			205								\rightarrow		ሐ
Cycle, s	90.0	Reference Phase	2		E.		2						1	2	3	4
Offset, s	0	Reference Point E	nd	Green	44.6	34.9	0.0	0.	.0	0.0	0.0				ĺ	
Uncoordinated	No	Simult. Gap E/W	Un	Yellow	3.6	3.7	0.0	0.	.0	0.0	0.0	_		4		∇
Force Mode	Fixed	Simult. Gap N/S	Jn	Red	1.8	1.4	0.0	0.	.0	0.0	0.0		5		7	8
Timer Desults			-	EDI		EDT			10		NDI		NDT	CDI		ODT
Timer Results			_	EBL	-	EBI	VVB		V	VBI	NBL		NBI	SBL	-	SBI
Assigned Phase	9		_		\rightarrow	6				2		_	8			4
				<u> </u>	_	5.0	<u> </u>		6	6.0			6.0	<u> </u>		6.0
Phase Duration	, S	\ \	_		\rightarrow	50.0	<u> </u>	\rightarrow	5	50.0		-	40.0	<u> </u>		40.0
Change Period,	ange Period, (Y+ <i>R c</i>), s x Allow Headway (<i>MAH</i>), s				-	5.4	<u> </u>	\rightarrow	5	5.4			5.1			5.1
	ax Allow Headway (<i>MAH</i>), s ieue Clearance Time (<i>g</i> s), s				+	0.0	<u> </u>	\rightarrow		0.0			3.0			3.0 15.3
Green Extensio	Here Clearance Time (g_s) , s				-	0.0	-	-	(0.0			0.0			4 1
Phase Call Prot	bability	(9,0),0			-	0.0				0.0			1.00			1.00
Max Out Proba	bility												1.00			0.07
	j															
Movement Gro	oup Res	sults			EB			W	'B			NB			SB	
Approach Move	ement			L	Т	R	L	Т	·	R	L	Т	R	L	Т	R
Assigned Move	ment			1	6	16	5	2		12	3	8	18	7	4	14
Adjusted Flow F	Rate (<i>v</i>), veh/h		156	248	716	149	14	.6	143	267	237	230	13	368	348
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/ln		1107	1900) 1610	1150	190	00	1827	747	1900	1818	940	1900	1790
Queue Service	Time (g	g s), S		8.1	6.8	36.3	7.8	3.	8	3.9	21.6	7.9	8.0	0.9	13.2	13.3
Cycle Queue C	learanc	e Time (<i>g c</i>), s		12.0	6.8	36.3	14.6	3.	8	3.9	34.9	7.9	8.0	8.8	13.2	13.3
Green Ratio (g	/C)			0.50	0.50	0.50	0.50	0.5	50	0.50	0.39	0.39	0.39	0.39	0.39	0.39
Capacity (<i>c</i>), v	eh/h			581	942	798	563	94	.2	905	259	737	705	361	737	694
Volume-to-Capa	acity Ra	itio (X)		0.269	0.26	3 0.897	0.265	0.1	55	0.158	1.030	0.322	0.326	0.035	0.499	0.501
Back of Queue	(Q), ft/	In (95 th percentile)	_	98.6	135.4	4 567.3	99.3	74	.8	73.7	397.3	152.4	147.9	8.6	240.8	230.8
Back of Queue	(Q), Ve	PO(0.5 th percentile)		3.9	5.4	22.7	4.0	3.	0	2.9	15.9	6.1	5.9	0.3	9.6	9.2
Queue Storage		web)	15.7	13.2	20.6	17.4	12	1	12.4	37.5	10.00	10.00	22.4	20.0	20.0
Incremental Del	(u +), s		_	1.1	0.7	1/ 0	17.4	0.	.4 1	0.4	63.0	0.1	0.1	0.0	20.9	20.9
	cremental Delay (<i>d z</i>), s/veh			1.1	0.7	0.0	1.1	0.	4 0	0.4	00.9	0.1	0.1	0.0	0.2	0.2
Control Delay (d) elu	ah	_	16.8	13.0	35.5	18.5	12	8	12.8	101 /	10.0	10 /	22.4	21.1	21.2
Level of Service	evel of Service (LOS)			R	R	, <u>35.5</u> П	R	R		12.0 R	F	R	R	C.	C.	<u> </u>
Approach Delay	pproach Delay, s/veh / LOS			28.1		6	14 7		·	B	40.2			21.2		C
ntersection Delay, s/ven / LOS				20.1		20	9.6			5	-J.Z			<u> </u>		-
	itersection Delay, s/veh / LOS					2.								<u> </u>		
Multimodal Re	sults				EB			W	'B			NB			SB	
Pedestrian LOS	Score	/LOS		2.30)	В	2.30)		В	2.13		В	2.30)	В
Bicycle LOS Sc	LOS Score / LOS Score / LOS					В	0.85	5		А	1.09		А	1.09)	А

General Inform	nation								Interse	ction I	nforma	tion		14741	te l <u>e</u>
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Duratio	n, h	0.2	50		444	
Analyst		JAS	•	Analys	sis Date	Dec 2	, 2020		Area T	/pe	Otł	er	4		
Jurisdiction		City of Los Angeles		Time F	Period	Future	e with ct - PM		PHF		0.9	4	↓ ↓↓↓	W 1 E	1 1 1 1 1 1
Urban Street		Mindanao Way		Analys	is Yea	2026			Analys	s Perio	d 1>	17:00			Ē
Intersection		Mindanao/Glencoe		File Na	ame	09PM	- Future	e with	Project	- Optio	า B.xu	;		117 141499	۲ r
Project Descript	tion	Paseo Marina - Opt	ion B	л		_				-					
													1		
Demand Inform	nation				EB			W	В		N	В		SB	
Approach Move	ment			L	Т	R	L	Т	R			г R	L	Т	R
Demand (v), v	eh/h			148	234	681	140	24	4 30	25	8 3	35 54	12	561	115
0	<u></u>			. <u> </u>		-	Г		Γ	Г					
Signal Informa	tion	Defense Dhara	0			215							\rightarrow		\mathbf{A}
Cycle, s	90.0	Reference Phase	Z		E .		2					1	2	3	4
Ulisel, s		Simult Cap E/M	Ena	Green	44.6	34.9	0.0	0.0) 0.0) 0.	0				
Uncoordinated	INO Fixed	Simult. Gap E/W	On	Yellow	3.6	3.7	0.0	0.0) 0.0) 0.	0	_	-	_	₩.
Force Mode	Fixed	Simult. Gap N/S	On	Rea	1.8	1.4	0.0	0.0	0 0.0) [0.	0	5		1	8
Timer Results				EBL	-	EBT	WB	L	WBT	N	BL	NBT	SB	L	SBT
Assigned Phase	e					6			2			8			4
Case Number						5.0			6.0			6.0			6.0
Phase Duration	, S					50.0			50.0			40.0			40.0
Change Period,	(Y+R	c), S			5.4			5.4			5.1			5.1	
Max Allow Head	ow Headway (<i>MAH</i>), s					0.0			0.0			3.6			3.6
Queue Clearan	ce Time	e (g s), s										36.9			15.4
Green Extensio	n Time	(ge),s				0.0			0.0			0.0			4.2
Phase Call Prot	oability											1.00			1.00
Max Out Probat	oility											1.00			0.07
Mayamant Cra	un Dee		_					\A/E	,		NI	.	_	S P	
Approach Move	mont	suits			ED	D									D
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	1	14
Adjusted Flow F	Rate (v) veh/h	_	157	249	724	149	147	144	274	23	7 230	13	370	349
Adjusted Satura	ation Flo	w Rate (s) veh/h/l	n	1105	1900	1610	1149	190) 1827	745	190	0 1818	940	1900	1787
Queue Service	Time (a	σ_s) s		8.2	6.8	37.1	7.8	3.8	3.9	21.5	5 7.9	8.0	0.9	13.3	13.4
Cycle Queue Cl	learanc	e Time (<i>q</i> _c), s		12.1	6.8	37.1	14.6	3.8	3.9	34.9	7.9	8.0	8.8	13.3	13.4
Green Ratio (g	/C)			0.50	0.50	0.50	0.50	0.50	0.50	0.39	0.3	9 0.39	0.39	0.39	0.39
Capacity (c), v	, eh/h			580	942	798	562	942	906	258	73	7 705	361	737	693
Volume-to-Capa	acity Ra	itio(X)		0.272	0.264	0.908	0.265	0.15	6 0.15	9 1.06	4 0.32	2 0.32	6 0.035	0.502	0.504
Back of Queue	(Q), ft/	/In (95 th percentile)		99.3	136	583.1	99.3	75.6	6 74.2	427.	1 152	.4 147.9	8.6	242.2	231.6
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.0	5.4	23.3	4.0	3.0	3.0	17.1	6.1	5.9	0.3	9.7	9.3
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00
Uniform Delay (d 1), s	/veh		15.7	13.2	20.8	17.4	12.4	12.4	37.6	i 19.	3 19.3	22.4	20.9	21.0
Incremental Del	lay (<i>d</i> 2), s/veh		1.2	0.7	16.0	1.2	0.4	0.4	73.9	0.1	0.1	0.0	0.2	0.2
Initial Queue De	al Queue Delay (d 3), s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (ontrol Delay (d), s/veh					36.9	18.6	12.8	3 12.8	111.	5 19.	4 19.4	22.4	21.1	21.2
Level of Service	Level of Service (LOS)					D	В	В	В	F	В	В	С	С	С
Approach Delay		29.0)	С	14.7	7	В	53	5.5	D	21.	2	С		
Intersection Del				3′	1.0						С				
Multimodal Re	sults				FB			WF			N	3		SB	
Pedestrian I 0.9	Score	/LOS		2.30)	В	2 30)	B	2	13	B	2.3	0	В
Bicycle LOS Sc	ore / LC)S		2.35	5	B	0.85	5	A	1.	10	A	1.0	9	A

General Inform	nation								Intersed	tion Inf	K	4741	þa l _a					
Agency Linscott Law & Greenspan				. Engine	ers				Duration	h	0.250	0 250		417				
Analyst JAS				Analys	is Date	Dec 2	2020		Area Tvr	,)e	Other		 		<u>بر</u> لا			
lurisdiction City of Los Angeles				Time F	Period	Future	, <u>_o_</u> with		PHF		0.94		→ - [*] ->	w‡e	≮↓ ∳			
builduididin					onou	Projec	ct - PM				0.01		4 M					
					(Impro	ovemen	ts)						K A 4.	<u> </u>				
Urban Street Mindanao Way				Analys	sis Year	2026			Analysis	Period	1> 17	:00		1 1 ****	۳ ₁ ۲			
Intersection		Mindanao/Glencoe		File Na	ame	09PM	- Future	e with	Project -	Option	B (Impr	ovem						
Project Descrip	tion	Paseo Marina - Opt	ion B															
B	41				ED									0.0				
Demand Inform	nation				EB			VV	B	<u> </u>			.		D			
Approach Move	ement			L 140	1	R	L	1	K 20	L	205	R F4	L 12	1	R 115			
Demand (V), V	en/n			148	234	681	140	24	4 30	258	385	54	12	501	115			
Signal Informa	tion												К		I			
Cycle, s	90.0	Reference Phase	2	1	📑 🖥		7 54	7					7_	י <i>ר</i> י	Φ			
Offset, s	0	Reference Point	End							- 0.0		1	2	↓ 3	4			
Uncoordinated	No	Simult. Gap E/W	On	Yellow	42.0	4.0	3.7	0.0		0.0	-				r†a			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.8	0.0	1.4	0.0	0.0	0.0		5	€ 6	7				
			-															
Timer Results				EBI	-	EBT	WB	L	WBT	NB	-	NBT	SBI	-	SBT			
Assigned Phase	e					6			2	3		8			4			
Case Number						5.0			6.0	1.0		4.0			6.3			
Phase Duration	, S					47.4			47.4	16.3		42.6		26.3				
Change Period	, (Y+R)	c), S				5.4			5.4	4.0		5.1			5.1			
Max Allow Headway (MAH), s						0.0			0.0	3.2		3.2			3.2			
Queue Clearance Time (g s), s										11.7	11.7				18.7			
Green Extension Time (g e), s						0.0			0.0	0.5		2.5			2.5			
Phase Call Probability										1.00)	1.00			1.00			
Max Out Proba	bility									0.00)	0.00			0.00			
Movement Gro		ulte	_		FR			\//B			NB			SB	_			
Approach Move	ment			1	Т	R		Т	R	1	Т	R	L T		R			
Assigned Move	ment			1	6	16	5	2	12	3	8	18	7	1	14			
Adjusted Flow F	Rate (v) veh/h		157	249	724	149	147	144	274	237	230	13	370	349			
Adjusted Satura	ation Flo), ven/n	n	1105	1000	1610	11/10	1000	1827	1810	1000	1818	940	1900	1787			
	Time ((σ_{s}) s	•	87	7.2	29.2	82	4 0	4 1	97	7.5	7.6	09	16.6	16.7			
Cvcle Queue C	learanc	e Time (12.8	7.2	29.2	15.5	4.0	4.1	9.7	7.5	7.6	0.9	16.6	16.7			
Green Ratio (g	/C)	- ····· (3 ·), -		0.47	0.47	0.60	0.47	0.47	0.47	0.39	0.42	0.42	0.24	0.24	0.24			
Capacity (c), v	/eh/h			545	887	971	524	887	853	364	791	757	302	448	421			
Volume-to-Cap	acity Ra	itio(X)		0.289	0.281	0.746	0.284	0.16	6 0.169	0.754	0.300	0.303	0.042	0.826	0.829			
Back of Queue	(Q), ft/	/In (95 th percentile)		106.7	146	409.3	106.6	81	79.6	183.2	143.7	139.5	9.5	304.2	290.9			
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	4.3	5.8	16.4	4.3	3.2	3.2	7.3	5.7	5.6	0.4	12.2	11.6			
Queue Storage	Ratio (RQ) (95 th percent	íle)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Uniform Delay ((d1), s	/veh	,	17.6	14.7	12.9	19.5	13.9	13.9	22.2	17.5	17.5	26.7	32.6	32.7			
Incremental De	lay (d 2), s/veh		1.3	0.8	5.2	1.4	0.4	0.4	1.2	0.1	0.1	0.0	1.5	1.6			
Initial Queue Delay (<i>d</i> ₃), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
Control Delay (d), s/veh				18.9	15.5	18.1	20.8	14.3	14.3	23.4	17.6	17.6	26.7	34.1	34.3			
Level of Service (LOS)				В	В	В	С	В	В	С	В	В	С	С	С			
Approach Delay, s/veh / LOS			17.6	5	В	16.5	5	В	19.7 B			34.1		С				
Intersection De	lay, s/ve	h / LOS				21	1.9						С					
Multimodal Re	sults				EB			WB			NB			SB				
Pedestrian LOS	Score	/ LOS		2.30)	В	2.30)	В	2.13	3	В	2.30)	В			
Bicycle LOS Score / LOS				2.35	5	В	0.85	5	А	1.10)	А	1.09)	А			

General Information								Inte	areact	ion Inf		**	<u>د اړ</u>			
Agonov Lincont Low & Croonenen				ore				Duration b 0.250				<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4 4 4		
Agency Linscott, Law & Greenspan,					Aug 2	1 2020					Othor		<u>_</u>		۲. ۲.	
Analyst	Analys	is Dale	Aug 3	1, 2020		Area Type			Other			w ^N r∈				
Caltrans							ling - Alvi				0.93	0.93		8 W + F	ר זיי זיי	
Urban Street	SR-90 Westbound		Analys	is Year	2020			Ana	alysis	Period	1> 8:0	00		5 + +		
Intersection	Mindanao/SR-90 W	'B	File Na	Name 10AM - Existing.xus									Υ.	1 1 1 4 1 1 1	* (*	
Project Description	Paseo Marina															
Demand Information				EB			V	/B			NB			SB		
Approach Movement			L	Т	R	L	Τ.	τТ	R	L	Т	R	L	Т	R	
Demand (v), veh/h						665	12	268	709	7	547			863	23	
Signal Information					11		-								<u> </u>	
Cycle, s 90.0	Reference Phase	2	1	54	•	l é	7						1 I		Y	
Offset, s 0	Reference Point	End	Croon	14.0		227		0	0.0		_	1	2	3	4	
Uncoordinated No	Simult. Gap E/W	On	Yellow	3.6	37	4.8	0.	0	0.0	0.0	_					
Force Mode Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	0	0.0	0.0		5	6	7	8	
			16		-							-				
Timer Results			EBL		EBT	WB	L	W	BT	NBL	-	NBT	SBI	-	SBT	
Assigned Phase								4	1	5		2			6	
Case Number								9.	.0	2.0		4.0			8.3	
Phase Duration, s								40	0.0	20.0)	50.0			30.0	
Change Period, (Y+R	c), S							6.	.3	5.1		5.2			5.2	
Max Allow Headway (I	MAH), s							3.	.0	3.2		0.0			0.0	
Queue Clearance Time	e (g s), s							35	5.7 2.3							
Green Extension Time	(ge),s								.0	0.0		0.0			0.0	
Phase Call Probability						1.0		00	1.00							
Max Out Probability								1.0	00	0.00)					
Meyement Crewn Dee		_	_				10/1	D	_					00		
Approach Movement	suits			EB	D			в	D	1		D		<u>5</u> в	D	
Approach Novement				1	N.		1	+	14	5	ו ר	N.	<u> </u>	6	16	
Adjusted Flow Date ()) vob/b					/	4		14	0	2 500		<u> </u>	629	215	
Adjusted Flow Rate (V), ven/n	-				479	109		102	0	000		<u> </u>	030	315	
		n				1010	100	7 7		1010	1009			1900	10/4	
Queue Service Time ()	g_{s} , s			_		20.3	33. 22	7 3	22.7	0.3	0.0	<u> </u>		12.2	13.2	
Cycle Queue Clearand	e fille (<i>g</i> c), s					20.3	0.2	7 0	0.27	0.3	0.0			0.28	0.28	
Capacity (c) yeh/h				_		678	1/1	3 6	603	300	1801			1047	516	
Volume-to-Capacity Ra	atio (X)			_		0 707	1 13	32 1	264	0.025	0.327			0.609	0.610	
Back of Queue (Q) ft	(In (95 th percentile)					330	969	.8 1	250	6.2	158			257.8	267.8	
									5	0.2					201.0	
Back of Queue (Q), ve	eh/In (95 th percenti	le)				13.2	38.	85	50.0	0.2	6.3			10.3	10.7	
Queue Storage Ratio (RQ) (95 th percent	ile)				0.00	0.0	0 0	0.00	0.00	0.00			0.00	0.00	
Uniform Delay (d 1), s/veh				_		24.0	28.	2 2	28.2	31.5	13.6			28.4	28.4	
Incremental Delay (<i>d</i> ₂), s/veh				-		2.9	68.	8 1	31.9	0.0	0.5			2.6	5.3	
Initial Queue Delay (<i>d</i> ₃), s/veh						0.0	0.0		0.0	0.0	0.0			0.0	0.0	
Control Delay (<i>d</i>), s/veh						26.8	97.	0 1	60.0	31.5	14.0			31.0	33.7	
Level of Service (LOS)						C	F		F	C	В	<u> </u>		C	C	
Approach Delay, s/veh / LOS						102.	1	F	F 14.3		B		31.9)	С	
Intersection Delay, s/ve	en / LOS				74	1.9							E			
Multimodal Results				EB			W	/B			NB		S			
Pedestrian LOS Score	/LOS		2.46		В	2.30		B	3	2.13	;	В	1.70)	В	
Bicycle LOS Score / LO	DS					2.83	3	C	;	0.98	;	А	1.01		А	

General Inform	nation								Interse	ction Inf	ormatio	<i>w</i>	***	× l <u>x</u>			
Agency Linscott, Law & Greenspan				, Engine	ers				Duratio	n, h	0.250	0.250		~{ ↓ ↓			
Analyst JAS				Analys	is Date	Dec 2	, 2020		Area Ty	ре	Other	Other			<u>م</u> گ		
Jurisdiction City of Los Angeles / Caltrans				Time F	Period	Existir Projec	ng with st - AM		PHF		0.93	0.93		w ‡ e	┺┓ ┺ ┺		
Urban Street		SR-90 Westbound		Analys	is Year	2020			Analysi	s Period	1> 8:	00			<u>_</u>		
Intersection		Mindanao/SR-90 W	Έ	File Na	e Name 10AM - Existing with Project - Option B xus										× (*		
Proiect Descrip	tion	Paseo Marina - Opt	ion B					<u> </u>	,				-				
, ,		·															
Demand Inform	nation				EB			W	В		NB			SB			
Approach Move	ement			L	Т	R	L	Г	- R	L	Т	R	L	Т	R		
Demand (v), v	eh/h						665	12	85 72	37	554			905	23		
				1/	_				15								
Signal Informa	tion					14	- K	3					•		Ð-		
Cycle, s	90.0	Reference Phase	2		ST.	t t	Ľ	Γ				1	2	3	¥ 4		
Offset, s	0	Reference Point	End	Green	14.9	24.8	33.7	0.0	0.0	0.0							
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.0) 0.0	0.0		く IA					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.0) 0.0	0.0		5	6	7	8		
Timer Results				EBL	. 1	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT		
Assigned Phase	e								4	5		2			6		
Case Number									9.0	2.0)	4.0			8.3		
Phase Duration	i, s								40.0	20.	0	50.0		30.0			
Change Period	, (Y+R (c), S							6.3	3 5.1		5.2			5.2		
Max Allow Head	dway(A	<i>MAH</i>), s							3.0	3.2	2	0.0			0.0		
Queue Clearan	ce Time	e (<i>g</i> s), s							35.7	2.3	;						
Green Extensio	n Time	(g _e), s							0.0	0.0		0.0			0.0		
Phase Call Probability									1.00	1.0	0						
Max Out Proba	bility								1.00	0.0	0						
Movement Gre					ER			\٨/٢	2		NR			S B			
Approach Move	ment	Suits			т	R			, R	1.1	Т	R		Т	R		
Assigned Move	ment					TX .	7	4	14	5	2			6	16		
Adjusted Flow F	Rate (v) veh/h					479	161	8 781	8	596			668	330		
Adjusted Satura	ation Flo	w Rate (s) veh/h/l	n				1810	188	7 1610	1810	1809			1900	1875		
	Time ((π_{c}) s					20.3	33 7	7 337	0.3	89		<u> </u>	13.0	13.9		
	learance	e Time (a_c) s					20.3	33.7	7 33 7	0.3	8.9			13.9	13.9		
Green Ratio (a	V(C)	5 mile (9 c), c					0.37	0.37	7 0.37	0.17	0.50			0.28	0.28		
Capacity (c)	/eh/h						678	141	3 603	300	1801			1047	517		
Volume-to-Cap	acitv Ra	tio (X)					0.707	1.14	5 1.295	0.025	0.331			0.638	0.639		
Back of Queue	(Q) ft/	(In (95 th percentile)					330	1009). 1337	6.2	160.4			270.7	282.1		
Duck of Quodo	(), 10							1	4	. 0.2				210.1	202.1		
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				13.2	40.4	4 53.5	0.2	6.4			10.8	11.3		
Queue Storage	Ratio (RQ) (95 th percent	ile)				0.00	0.00	0.00	0.00	0.00			0.00	0.00		
Uniform Delay ((d 1), si	/veh					24.0	28.2	2 28.2	31.5	13.6			28.7	28.7		
Incremental Delay (d ₂), s/veh							2.9	74.0) 144.7	0.0	0.5			3.0	5.9		
Initial Queue Delay (d 3), s/veh							0.0	0.0	0.0	0.0	0.0			0.0	0.0		
Control Delay (d), s/veh							26.8	102.	2 172.8	31.5	14.1			31.6	34.6		
Level of Service (LOS)							С	F	F	С	В			С	С		
Approach Delay	y, s/veh	/ LOS		0.0			108.	8	F	14.	3	В	32.6	;	С		
Intersection De	lay, s/ve	h / LOS				79	9.1						E				
Multimodal Re	sults				EB	_		WE	3		NB	-		SB			
Pedestrian LOS	S Score	/LOS		2.46		В	2.30)	В	2.1	3	В	1.70		В		
Bicycle LOS Score / LOS							2.86	5	С	0.9	9	А	1.04		А		

Copyright @ 2020 University of Florida, All Rights Reserved.

General Inform	nation								Intersor	tion Inf	ormatio		****	بد لي			
Agonov Linscott Law & Groonspan				Engine	ore				Duration h 0 250					4 4 4			
Analyst IAS					ic Data		1 2020			on Other			_7 _4		<u>ال</u>		
Jurisdiction City of Los Angeles /				Time F	Period	Future	e - AM		PHF	0.93			- ↑ 	w ∔ E			
Caltrans				Anglugia Vega 2020					Analyzia	Dariad	1 > 0.0	20			یہ کا در ان		
Urban Street		SR-90 Westbourid			is rear	2020	F 1		Analysis	Penou	12 0.0	0	- 7	511			
Dreiset Deserin	t io 10	Decce Marine	D	File INa	Name 10AM - Future.xus								- "	A ↑ \$P\$*Y1	× 1*		
Project Descrip	lion	Paseo Marina															
Demand Inform	nation				EB			W	В		NB			SB			
Approach Move	ement			L	Т	R	L	Т	- R	L	Т	R	<u> </u>	Т	R		
Demand (v), v	reh/h						720	13	55 762	7	592			943	24		
Signal Informa	ation				Γ	IJ									ĸ		
Cycle, s	90.0	Reference Phase	2	1		Ľ.	i ž	7					1		*		
Offset s	0	Reference Point	 End	L	<u> </u>	<u> </u>						1	2	3	4		
Uncoordinated	No	Simult Gap E/W	On	Green	14.9	24.8	33.7	0.0	0.0	0.0	_						
Force Mode	Fixed	Simult Gap N/S	On	Red	3.0	1.5	4.0	0.0	0.0	0.0	_	┓╴	6	7	8		
T OFCE MODE	TIXCU	oindit. Oup N/O	OII	Tteu	1.0	1.0	1.0	10.0	0.0	0.0			-		-		
Timer Results	_			EBL		EBT	WB	L	WBT	NB	L	NBT	SB	-	SBT		
Assigned Phas	е								4	5		2			6		
Case Number									9.0	2.0		4.0			8.3		
Phase Duration	1, S								40.0	20.0		50.0			30.0		
Change Period	, (Y+ R	c), S							6.3	5.1		5.2			5.2		
Max Allow Hea	dway (/	MAH), s							3.0	3.2		0.0		0.0			
Queue Clearan	ce Time	e (g s), s							35.7	2.3							
Green Extensio	n Time	(ge),s							0.0	0.0		0.0			0.0		
Phase Call Pro	bability								1.00	1.00)						
Max Out Proba	bility								1.00	0.00)						
Movement Gro		aulte			EB			\//F	2		NB			SB			
Approach Move	ement	Suits			Т	R			, R		Т	R		Т	R		
Assigned Move	ment			-			7	4	14	5	2			6	16		
Adjusted Flow I	Rate (v) veh/h					519	171	2 819	8	637			696	344		
Adjusted Satura	ation Flo	w Rate (s) veh/h/l	n				1810	188	7 1610	1810	1809			1900	1875		
	Time (($\alpha_{\rm s}$) s					22.6	33 7	7 33 7	0.3	97			14.6	14.6		
Cvcle Queue C	learanc	e Time (<i>q</i> _c). s					22.6	33.7	7 33.7	0.3	9.7		<u> </u>	14.6	14.6		
Green Ratio (o	I/C)						0.37	0.37	7 0.37	0.17	0.50			0.28	0.28		
Capacity (c), v	/eh/h						678	141	3 603	300	1801			1047	517		
Volume-to-Cap	acity Ra	atio (X)					0.766	1.21	2 1.359	0.025	0.353			0.665	0.665		
Back of Queue	(Q), ft/	/In (95 th percentile))		_		369.5	1222 9	2. 1525. 8	6.2	174			282.9	295.5		
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				14.8	48.9	61.0	0.2	7.0			11.3	11.8		
Queue Storage Ratio (RQ) (95 th percentile)					_		0.00	0.00	0.00	0.00	0.00			0.00	0.00		
Uniform Delay (<i>d</i> 1), s/veh							24.7	28.2	2 28.2	31.5	13.8			28.9	28.9		
Incremental Delay (d ₂), s/veh							4.7	102.	3 172.1	0.0	0.5			3.3	6.6		
Initial Queue Delay (d 3), s/veh							0.0	0.0	0.0	0.0	0.0			0.0	0.0		
Control Delay (d), s/veh							29.4	130.	4 200.3	31.5	14.3			32.2	35.6		
Level of Service (LOS)							С	F	F	С	В			С	D		
Approach Delay, s/veh / LOS				0.0			132.	0	F	14.5	5	В	33.3	3	С		
Intersection De	lay, s/ve	eh / LOS				94	4.4					F					
Multimodal Posulta					FR				3		NR		00				
Pedestrian I OS	S Score	/105		2 46		B	2.30		B	2 13	3	В	1 70		В		
Bicycle LOS Sc	core / I C)S		2.70		5	3.00)	C	1.02	2	A	1.06	;	A		
,									-								
General Inform	nation								Intersed	tion Inf	ormatio	on	2	4 244 1	× L		
--------------------------------	---	---------------------------------	--------	----------	---------	------------------	-------------------	----------	---------------	----------	---------	------	-------	---------	-------------		
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duratior	ı, h	0.250			4++			
Analyst		JAS		Analys	is Date	Dec 2	, 2020		Area Ty	с	Other		4		~		
Jurisdiction		City of Los Angeles Caltrans	/	Time P	eriod	Future Projec	e with ct - AM		PHF		0.93		4 4 4	W F E	┺ ┺ ┺		
Urban Street		SR-90 Westbound		Analys	is Year	2026			Analysis	Period	1> 8:0	00			<u>_</u>		
Intersection		Mindanao/SR-90 W	В	File Na	ime	10AM	- Future	e with	Project -	Option	B.xus				* (*		
Proiect Descrip	tion	Paseo Marina - Opt	ion B						,				1 -				
· · ·		· · · ·											1				
Demand Inform	nation				EB			W	В		NB			SB			
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	Т	R		
Demand (v), v	eh/h						720	13	72 779	7	599			985	24		
								m							1		
Signal Informa	tion					14		3					•		ð-		
Cycle, s	90.0	Reference Phase	2		177	1 1	¥	7				1	2	3	4		
Offset, s	0	Reference Point	End	Green	14.9	24.8	33.7	0.0	0.0	0.0							
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.0	0.0	0.0		く IA					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.0	0.0	0.0		5	6	7	8		
					_			_									
Timer Results				EBL		EBT	WB	L	WBT	NB	L	NBT	SBL	-	SBT		
Assigned Phase	Э								4	5		2			6		
Case Number									9.0	2.0		4.0			8.3		
Phase Duration	, S								40.0	20.0)	50.0			30.0		
Change Period	(Y+R	e), S							6.3	5.1		5.2			5.2		
Max Allow Head	ow Headway (<i>MAH</i>), s								3.0	3.2		0.0			0.0		
Queue Clearan	eue Clearance Time (g s), s								35.7	2.3							
Green Extensio	n Time	(ge), s							0.0	0.0		0.0			0.0		
Phase Call Pro	bability								1.00	1.00)						
Max Out Proba	bility								1.00	0.00)						
Movement Gro	oup Res	ults	_		EB			WE	}		NB			SB			
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Assigned Move	ment						7	4	14	5	2			6	16		
Adjusted Flow I	Rate (v), veh/h					519	173	1 838	8	644			726	359		
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n				1810	188	7 1610	1810	1809			1900	1876		
Queue Service	Time (d	7 s), S					22.6	33.7	7 33.7	0.3	9.8			15.4	15.4		
Cycle Queue C	learance	e Time (<i>g</i> c), s					22.6	33.7	7 33.7	0.3	9.8			15.4	15.4		
Green Ratio (g	/C)						0.37	0.37	7 0.37	0.17	0.50			0.28	0.28		
Capacity (c), v	, eh/h						678	141	3 603	300	1801			1047	517		
Volume-to-Cap	acity Ra	tio (X)					0.766	1.22	5 1.389	0.025	0.358			0.694	0.694		
Back of Queue	(Q), ft/	In (95 th percentile)					369.5	1265	5. 1616. 4	6.2	176.5			296.2	310.6		
Back of Queue	(Q). ve	h/ln (95 th percenti	le)		_	_	14.8	50.6	64.7	0.2	7.1			11.8	12.4		
Queue Storage	Ratio (RQ) (95 th percent	ile)				0.00	0.00	0.00	0.00	0.00			0.00	0.00		
Uniform Delay	(d 1), s/	/veh			-		24.7	28.2	28.2	31.5	13.8			29.2	29.2		
Incremental De	niform Delay (d 1), s/veh cremental Delay (d 2), s/veh						4.7	107.	8 185.3	0.0	0.6			3.8	7.5		
Initial Queue De	tial Queue Delay (d_3), s/veh						0.0	0.0	0.0	0.0	0.0			0.0	0.0		
Control Delay (Control Delay (d), s/veh						29.4	135.	9 213.4	31.5	14.4			33.0	36.7		
Level of Service	evel of Service (LOS)						C	F	F	C	B			C	D		
Approach Delay	Approach Delay, s/veh / LOS			0.0			139	0	F	14 (3	В	34.2		C		
ntersection Delay, s/ven / LOS				0.0		QS	3.6	-				-	F		-		
	nersection Delay, siven / LOS																
Multimodal Re	ultimodal Results				EB			WE	3		NB			SB			
Pedestrian LOS	Score	2.46		В	2.30)	В	2.13	3	В	1.70)	В				
Bicycle LOS Sc	ore / LC	DS				3.03	3	С	1.03	3	А	1.08	3	А			

Copyright @ 2020 University of Florida, All Rights Reserved.

			, eig		• •		tion			men	,				
Gonoral Inform	nation								Intersor	tion Inf	ormatic	n		4,44,4	þ. lu
	lation	Linscott Law & Gre	onenan	Engine	ore				Duration	b	0 250	<i>/</i> //		411	
Agency			enspan			Aug 2	1 2020			, 11	Othor		1		۲. ۲.
Analyst		JAO City of Loo Angoloo	1	Time D		Evicti	DA DM						→	w Ťe	
Junsalction		Caltrans	/		enou	Existi	ig - Pivi		PHF		0.90		4 4		⁴ 1 ~
Urban Street		SR-90 Westbound		Analys	is Year	2020			Analysis	Period	1> 17	:00		5 † †	<u></u> _
Intersection		Mindanao/SR-90 W	'B	File Na	me	10PM	- Existi	ng.xu	s					। । । । ব ↑ क Ÿ ′	۳ <u></u> ۲
Project Descrip	tion	Paseo Marina											7		
		•													
Demand Inform	nation				EB			W	/B		NB			SB	
Approach Move	ement			L	Т	R	L		r R	L	Т	R	L	Т	R
Demand (v), v	eh/h						552	99	90 346	17	449			1394	42
	tion			1	1	- II									_
Signal morma		Deference Dhase	2			14	E St	Ħ					Ť		\rightarrow
Cycle, s	90.0	Reference Phase	Z		17	1 1	×					1	2	3	4
	0	Reference Point	End	Green	14.9	24.8	33.7	0.0	0.0	0.0		_			
Uncoordinated	NO	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.0	0.0	0.0	_	\ <	l		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.0	0 0.0	0.0		5	6	7	8
Timer Results				EBI		EBT	W/B		WBT	NB		NRT	SB		SBT
Assigned Phase	<u>م</u>				-				4	5	-	2		-	6
Case Number	<u> </u>			<u> </u>	-			\rightarrow	9.0	2.0		4.0			83
Phase Duration									40.0	2.0		50.0		_	30.0
Change Duration	I, S				-			\rightarrow	40.0	20.0	,	5.2			50.0
Max Allow Hoo	(I + K)	c), S					<u> </u>	\rightarrow	2.0	2.1		0.0		_	0.0
	uway (<i>1</i>	иап), s		<u> </u>			<u> </u>	\rightarrow	3.0	3.2		0.0	<u> </u>		0.0
Queue Clearan	ce Time	$(g_s), s$			_			\rightarrow	28.9	2.7		0.0		_	0.0
Green Extensio		(<i>g</i> e), s		<u> </u>	_		<u> </u>	\rightarrow	2.0	0.0		0.0	<u> </u>		0.0
Max Out Droke					_			-+-	0.75	1.00	, ,		<u> </u>	_	
Max Out Proba	DIIILY								0.75	0.00)				
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment						7	4	14	5	2			6	16
Adjusted Flow I	Rate (v), veh/h					385	122	1 360	18	468			1002	493
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n				1810	188	6 1610	1810	1809			1900	1870
Queue Service	Time (g	g s), s					15.2	26.	9 16.2	0.7	6.7			23.4	23.4
Cycle Queue C	learanc	e Time (g c), s					15.2	26.	9 16.2	0.7	6.7			23.4	23.4
Green Ratio (g	/C)						0.37	0.3	7 0.37	0.17	0.50			0.28	0.28
Capacity (c), v	/eh/h						678	141	2 603	300	1801			1047	515
Volume-to-Cap	acity Ra	itio(X)			-		0.569	0.86	5 0.598	0.059	0.260			0.957	0.957
Back of Queue	(Q), ft/	(In (95 th percentile))				251.9	442	.1 243.7	14.6	120.6			478.2	520.3
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				10.1	17.	7 9.7	0.6	4.8			19.1	20.8
Queue Storage	Ratio (RQ) (95 th percent	, tile)				0.00	0.0	0 0.00	0.00	0.00			0.00	0.00
Uniform Delay (Jniform Delay (d_1), s/veh						22.4	26.	0 22.7	31.6	13.0			32.1	32.1
Incremental De					0.7	5.6	5 1.1	0.0	0.4			19.3	30.4		
Initial Queue De	nitial Queue Delay (d ȝ), s/veh						0.0	0.0) 0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/ve	əh					23.1	31.	6 23.8	31.7	13.4			51.3	62.4
Level of Service	e (LOS)						С	С	С	С	В			D	E
Approach Delay	Approach Delay, s/veh / LOS						28.5	5	С	14.1	1	В	55.0)	E
Intersection De				36	5.8						D				
Multimodal Re	Iultimodal Results				EB			WE	3		NB			SB	
Pedestrian LOS	strian LOS Score / LOS					В	2.30)	В	2.13	3	В	1.70)	В
Bicycle LOS Sc	ore / LC	DS					2.11		В	0.89)	А	1.31	1	A

		_	- 5							-	,				
General Inform	nation								Interse	ction Inf	ormati	on	K	** *** * ·	ja l _a
Agency	lution	Linscott Law & Gre	enspan	Engine	ers				Duratio	h h	0 250)		-↓↓↓	
Analyst			enepan	Δnalvs	is Date	Dec 2	2 2020			ne	Othe	r	 		<u>.</u>
Jurisdiction		City of Los Angeles	1	Time P		Evisti	na with		PHE	<u>pc</u>	0.96		 	w‡e	
Jungaletion		Caltrans	/		chou	Proje	ct - PM				0.30		the free		
Urban Street		SR-90 Westbound		Analys	is Yea	r 2020			Analysi	s Period	1> 17	7:00		5 4 4	×~
Intersection		Mindanao/SR-90 W	'B	File Na	ime	10PN	1 - Existi	ng wi	th Projec	t - Optio	n B.xus				۳ ₁ א
Project Descrip	tion	Paseo Marina - Opt	ion B												
Demand Inform	nation				EB			W	′B		NB			SB	
Approach Move	ement			L	Т	R	L		r R	L	Т	R	L	Т	R
Demand (v), v	eh/h						552	99	96 35	2 17	451			1402	42
Signal Informa	tion				Γ	<u> </u>		,	1	_					
		Poforonco Phaso	2	1		_ ∠ +	E X	Ħ					Ť		\rightarrow
Offect o	90.0	Reference Pridse	Z End		Sî	1						1	2	3	4
Unseerdingtod	U	Simult Can E/M	Enu	Green	14.9	24.8	33.7	0.0	0.0	0.0		-			
		Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.0	0.0	0.0	_	╲╏ ^ĸ	t	_	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.0	J 0.0	0.0		5	6	7	8
Timer Results				EBI		FBT	WB	1	WBT	NB		NBT	SBI		SBT
Assigned Phase									4	5	-	2			6
Case Number	<u> </u>				+		<u> </u>	+	9.0	20		4.0	<u> </u>		83
Phase Duration	e							-	40.0	2.0	, 1	50.0		_	30.0
Change Deried	, 3 (V+D	-) C						\rightarrow	40.0	5.1	5	50.0			5.2
Max Allow Hoor		(c), s						-+-	2.0	3.1	,	0.0			0.0
	oo Timo	(α)					<u> </u>	\rightarrow	20.2	3.2		0.0			0.0
Queue Clearan	ce nine n Timo	$(g_s), s$		<u> </u>	-				29.2	2.1		0.0		_	0.0
Bhase Cell Brok		(ge), s		<u> </u>			<u> </u>	\rightarrow	1.00	1.0	2	0.0	<u> </u>		0.0
Max Out Broba				<u> </u>	-				0.79	1.0	5		<u> </u>	_	
Max Out Proba	onity								0.78	0.0	J				
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment						7	4	14	5	2			6	16
Adjusted Flow F	Rate (v), veh/h					385	122	7 367	18	470			1008	496
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n				1810	188	6 1610	1810	1809			1900	1870
Queue Service	Time (g	g s), S			_		15.2	27.3	2 16.6	0.7	6.7	<u> </u>		23.5	23.5
Cycle Queue C	learance	e Time (<i>g c</i>), s					15.2	27.	2 16.6	0.7	6.7			23.5	23.5
Green Ratio (g	/C)						0.37	0.3	7 0.37	0.17	0.50			0.28	0.28
Capacity (c), v	/eh/h						678	141	2 603	300	1801			1047	515
Volume-to-Capa	acity Ra	atio(X)					0.569	0.86	9 0.608	0.059	0.261			0.963	0.963
Back of Queue	(Q), ft/	/In (95 th percentile))		_		251.9	446.	8 248.7	14.6	121.1			484.8	527.4
Back of Queue	(Q), ve	eh/In (95 th percenti	le)				10.1	17.9	9 9.9	0.6	4.8			19.4	21.1
Queue Storage	Ratio (RQ) (95 th percent	ile)				0.00	0.0	0.00 C	0.00	0.00			0.00	0.00
Uniform Delay ((d1), s	/veh					22.4	26.	1 22.8	31.6	13.0			32.1	32.1
Incremental De	ncremental Delay (<i>d</i> ₂), s/veh						0.7	5.8	1.3	0.0	0.4			20.2	31.4
Initial Queue De	nitial Queue Delay (<i>d</i> ₃), s/veh						0.0	0.0	0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/ve	eh					23.1	31.9	9 24.1	31.7	13.4			52.3	63.5
Level of Service	e (LOS)						С	С	С	С	В			D	E
Approach Delay	Approach Delay, s/veh / LOS						28.8	3	С	14.	1	В	56.0)	Е
Intersection De				3	7.3						D				
Multimodal Re	ultimodal Results							WE	3		NB			SB	
Pedestrian LOS	Score	/LOS		2.46		В	2.30)	В	2.1	3	В	1.70)	В
Bicycle LOS Sc	ore / LC	DS					2.12	2	В	0.8	9	А	1.31		А

		nee	r olg	nunze	u iiit	01000		1050		innai j	,				
General Inform	nation								Intersec	tion Inf	ormatio	n		at 22 ata 1 .	به لړ
	lation	Lincott Low & Cro	ononon	Enging	oro				Duration	<u>ь</u>	0 250	<i></i>	- 1	4 4 4	
Agency		LINSCOLL, LAW & GIE	enspan	, Engine		A	1 0000			, 11	0.250				K
Analyst		JAS City of Los Annalas	1		is Dale	Aug 3	T, 2020		Агеа тур	e	Other			wÌr	
Jurisaiction		City of Los Angeles Caltrans	/	l lime P	erioa	Future	e - Pivi		PHF		0.96		4 4 4	** T = 8	* <mark>*</mark> *
Urban Street		SR-90 Westbound		Analys	is Year	2026			Analysis	Period	1> 17	:00		<u> </u>	
Intersection		Mindanao/SR-90 W	'B	File Na	ime	10PM	- Future	e.xus						414Y	*) *
Project Descrip	tion	Paseo Marina													
				_			_		-	-			_		
Demand Inform	nation				EB		<u> </u>	W	B	<u>.</u>	NB			SB	
Approach Move	ement			<u> </u>		R	L		R	L	1	R		1	R
Demand (v), v	eh/h						635	112	20 384	18	496			1521	47
Signal Informa	tion					IJ	1		Γ						ĸ
Cvcle, s	90.0	Reference Phase	2	1	.		E E	7					1		7
Offset, s	0	Reference Point	End		<u> </u>	L T	<u> </u>					1	2	3	4
Uncoordinated	No	Simult, Gap F/W	On	Green	14.9	24.8	33.7	0.0		0.0	_				
Force Mode	Fixed	Simult Gap N/S	On	Red	1.5	1.5	4.0	0.0		0.0	_	5	6	7	8
	TIXOU	olinial. Cup 14/C	OII		1.0	1.0	1.0	0.0	0.0	0.0					
Timer Results	_			EBL	.	EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Assigned Phase	e								4	5		2			6
Case Number									9.0	2.0		4.0			8.3
Phase Duration	, S								40.0	20.0)	50.0			30.0
Change Period,	, (Y+R	c), S							6.3	5.1		5.2			5.2
Max Allow Head	dway(/	<i>MAH</i>), s							3.0	3.2		0.0			0.0
Queue Clearan	ce Time	e (g s), s							34.7	2.8					
Green Extensio	n Time	(ge), s							0.0	0.0		0.0			0.0
Phase Call Prol	bability								1.00	1.00)				
Max Out Proba	bility								1.00	0.00)				
			_												
Movement Gro	oup Res	sults		<u> </u>	EB		<u> </u>	WB		<u> </u>	NB		<u> </u>	SB	
Approach Move	ement				1	R			R			R	<u> </u>		R
Assigned Move	ment	<u> </u>			_	ļ	7	4	14	5	2			6	16
Adjusted Flow I	Rate (v	'), veh/h				<u> </u>	443	1385	5 400	19	517			1095	539
Adjusted Satura		ow Rate (s), ven/n/i	n			<u> </u>	1810	1886	5 1610 7 10 0	1810	1/18		<u> </u>	1900	1869
Queue Service	learanc	g_s , s					10.3	32.7	10.0	0.0	0.0 8.0			20.4	24.0 24.8
Green Ratio (a		e nine (<i>g</i> ;), s					0.37	0.37	10.0 2 0.37	0.0	0.0			0.28	0.28
							678	1/11	2 603	300	1711			1047	515
Volume to Can	acity Ra	atio (X)					0.654	0.08	1 0 663	0.063	0.302			1 0 4 5	1.046
Back of Oueue	(0) ft	/In (95 th percentile)					207.5	594	9 277	15 /	136.0			607	650.1
Back of Queue	(Q), R	eh/ln (95 th percenti	le)				11 9	23.8	3 277	0.6	5.5			24.3	26.0
Queue Storage	Ratio (RQ) (95 th percent	tile)				0.00	0.00	0.00	0.00	0.00			0.00	0.00
Uniform Delay (Queue Storage Ratio (<i>RQ</i>) (95 th percentile)						23.3	27.8	3 23.4	31.7	13.4			32.6	32.6
Incremental De					1.8	19.4	2.2	0.0	0.5			40.4	52.1		
Initial Queue De	nitial Queue Delay (d ȝ), s/veh						0.0	0.0	0.0	0.0	0.0			0.0	0.0
Control Delay (d), s/ve	eh					25.1	47.2	2 25.6	31.7	13.8			73.0	84.7
Level of Service	e (LOS)						С	D	С	С	В			F	F
Approach Delay	Approach Delay, s/veh / LOS						38.9		D	14.4	1	В	76.9)	E
Intersection De				50).0						D				
Multimodal Re	Aultimodal Results							WB			NB			SB	
Pedestrian LOS	Score	/LOS		2.46		В	2.30)	В	2.13	3	В	1.70)	В
Bicycle LOS Sc	ore / LC	DS					2.33	3	В	0.93	3	А	1.39)	А

			Ū								- The second sec	-				
General Inform	nation								Inte	ersect	ion Infe	ormatio	on			la la
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Dur	ration,	h	0.250			-4↓↓	
Analvst		JAS		Analvs	s Date	e Dec	2. 2020		Are	a Type	e	Other		- ⁻		د. م_ الح
Jurisdiction		City of Los Angeles	/	Time P	eriod	Futur	e with		PHI	F		0.96		<u> </u> 	W + E	14 14 14
Urban Street		SR-90 Westbound		Analys	s Yea	r 2026			Ana	alysis l	Period	1> 17	:00		5 4 4	e e
Intersection		Mindanao/SR-90 W	′B	File Na	me	10PN	1 - Futur	e witł	n Pro	ject - (Option I	B.xus			 + +	ግ ተ
Project Descrip	tion	Paseo Marina - Opt	ion B							-						
Demand Inform	nation				EB			V	∕B			NB			SB	
Approach Move	ement			L	Т	R	L		т	R	L	Т	R	L	T	R
Demand (v), v	eh/h						635	11	26	390	18	498			1529	47
				1e						-1	_					1
Signal Informa	tion		-			14		1						+		Ð-
Cycle, s	90.0	Reference Phase	2		51	1	¥ ۱						1	2	3	4
Offset, s	0	Reference Point	End	Green	14.9	24.8	33.7	0.	0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	4.8	0.	0	0.0	0.0		< ⊻	1		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	0	0.0	0.0		5	6	7	8
Timer Deservice				EDI		EDT			14/	DT	NDI			0.0	. 1	ODT
Timer Results				EBL	_	ERI	VVB	L	VV	BI	NBL		NBI	SB		SBI
Assigned Phase	9				-			\rightarrow	4	4	5	_	2		_	6
				<u> </u>	_				9.	.0	2.0		4.0			8.3
Phase Duration	, S			_		<u> </u>	\rightarrow	40	0.0	20.0)	50.0	-	_	30.0	
Change Period,	(Y+R	c), S					\rightarrow	6.	.3	5.1		5.2	-		5.2	
Max Allow Head	dway(/	ИАН), s			_		<u> </u>	\rightarrow	3.	.0	3.2		0.0		_	0.0
Queue Clearan	ce Time	e (g s), s						\rightarrow	34	1.9	2.8					
Green Extensio	n Time	(ge), s					<u> </u>	\rightarrow	0.	.0	0.0		0.0		_	0.0
Phase Call Pro	bability							\rightarrow	1.0	00	1.00)		<u> </u>		
Max Out Probal	bility								1.(00	0.00)				
Movement Gro		aulte			FB			\٨/	R	_		NB		_	SB	
Approach Move	ment				т	R	1	Т		R	1	Т	R		Т	R
Assigned Move	ment				-		7		+	14	5	2			6	16
Adjusted Flow F	Rate (v) veh/h				-	/	130	1	406	10	510		-	1100	5/1
Adjusted Flow I	tion Ele), ven/n w Rate (s) veh/h/l	n				1810	188	1	1610	1810	1718		-	100	1870
	Time (/		11				18.3	32		10.0	0.8	8.0		-	26.6	24.8
Cycle Queue C	learanc	e Time (a_c) s				-	18.3	32	9 9	19.0	0.8	8.0		<u> </u>	26.6	24.0
Green Ratio (a	/C)	o milo (g o), o					0.37	0.3	7 (0.37	0.17	0.50			0.28	0.28
Capacity (c) y	/eh/h						678	141	2	603	300	1711			1047	515
Volume-to-Cap	acity Ra	itio (X)				-	0.654	0.98	35 0) 674	0.063	0.303			1 051	1 051
Back of Queue	(Q) ft	(In (95 th percentile)				-	297.5	603	6 2	282.6	15.4	137.5			616.3	659.2
Back of Queue	$(\mathbf{Q}), \mathbf{R}$	eh/In (95 th percenti	le)				11.9	24	1	11.3	0.6	5.5			24.7	26.4
Queue Storage	Ratio (RQ) (95 th percent	tile)				0.00	0.0	0 0	0.00	0.00	0.00			0.00	0.00
Uniform Delay (d 1). s	/veh					23.3	27.	9 2	23.6	31.7	13.4		<u> </u>	32.6	32.6
Incremental De	ntal Delay (<i>d</i> 1), s/ven ntal Delay (<i>d</i> 2), s/veh						1.8	20.	3	2.4	0.0	0.5			42.1	53.7
Initial Queue De	I Queue Delay (d 3), s/veh						0.0	0.0)	0.0	0.0	0.0			0.0	0.0
Control Delav (Control Delay (<i>d</i>), s/veh						25.1	48.	2 2	26.0	31.7	13.8			74.7	86.3
Level of Service	e (LOS)						С	D		С	С	В			F	F
Approach Delay	Approach Delay, s/veh / LOS						39.6	;]		-	14.4		В	78	5	E
Intersection Delay, s/veh / LOS				5.0		5	1.0						_	D	-	
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/ LOS	_OS				2.30)	E	3	2.13	;	В	1.7	0	В
Bicycle LOS Sc	ore / LC	DS					2.34	1	E	3	0.93	;	А	1.3	9	А

		or org	manze	a mi	000			anto	oun	innar <u>-</u>	,				
General Information	n							Inte	ersecti	ion Infe	ormatio	on		4741	s l <u>s</u>
Agency	Linscott, Law & 0	Greenspan	. Engine	ers				Du	ration.	h	0.250			++ L L	
Analyst	JAS		Analys	is Date	e Sep 1	2020		Are	a Type	<i>د</i> 	Other		 		ار ا
Jurisdiction	City of Los Angel	es/	Time F	Period	Existi	ng - AM		PH	IF		0.98		1 ↓ ↓ 1 ↓ ↓	w∔e s	4.4
Urban Street	SR-90 Eastboun	d	Analys	is Yea	r 2020			Ana	alvsis F	Period	1> 8:0	00			
Intersection	Mindanao/SR-90	EB	File Na	ame	11AM	- Existir	ıa.xı	JS						기지 [
Project Description	Paseo Marina		1										1 "		
, ,													1		
Demand Informatio	n			EB			۷	VB			NB			SB	
Approach Movemen	t		L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			30	1226	5 20						527	752	487	1043	
			1-	_					-						
Signal Information					17	a					l		+ -		_
Cycle, s 90.	0 Reference Phas	e 2		ľ 🕇	7	Ŕ						>	2	3	€ ₄
Offset, s 0	Reference Point	End	Green	14.8	24.8	33.7	0	.0	0.0	0.0	_				
Uncoordinated No	Simult. Gap E/W	/ On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0					
Force Mode Fixe	ed Simult. Gap N/S	On	Red	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
				_							_				
Timer Results			EBL		EBI	WBI	-	VV	ві	NBL	-	NBI	SBL	-	SBI
Assigned Phase				\rightarrow	4		_		_			2	1		6
Case Number					10.0				_			7.4	2.0		4.0
Phase Duration, s					40.0				_			20.0	30.0) :	50.0
Change Period, (Y+	-R c), s			\rightarrow	6.3						\rightarrow	5.2	5.2	_	5.2
Max Allow Headway	ow Headway (<i>MAH</i>), s				3.0				_			0.0	3.2		0.0
Queue Clearance III	the Clearance Time (g_s) , s				30.4	<u> </u>					_	0.0	12.7	/	0.0
Green Extension Tin	ne (ge), s			+	1.2		_		-		+	0.0	3.9	<u> </u>	0.0
Phase Call Probabili	ly				1.00								1.00	,	
Max Out Probability					0.93								0.10		
Movement Group R	Results			EB			W	'B			NB			SB	
Approach Movemen	t		L	Т	R	L	Т	·	R	L	Т	R	L	Т	R
Assigned Movement	t		7	4	14						2	12	1	6	
Adjusted Flow Rate	(<i>v</i>), veh/h		31	637	634		_				791	514	497	1064	
Adjusted Saturation	Flow Rate (s), veh	/h/ln	1810	1900	1889						1807	1610	1757	1809	
Queue Service Time	e (g s), s		1.0	28.4	28.4						14.8	14.8	10.7	18.8	
Cycle Queue Cleara	nce Time (<i>g c</i>), s		1.0	28.4	28.4						14.8	14.8	10.7	18.8	
Green Ratio (g/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), veh/h			678	711	707						594	265	968	1801	
Volume-to-Capacity	Ratio (X)		0.045	0.896	0.896						1.331	1.942	0.513	0.591	
Back of Queue (Q)	, ft/ln (95 th percent	ile)	17.3	518.7	517.7						760.8	1498. 1	197.3	304.5	
Back of Queue (Q)	, veh/ln (95 th perce	entile)	0.7	20.7	20.7						30.4	59.9	7.9	12.2	
Queue Storage Ratio	o(<i>RQ</i>)(95 th perc	entile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay (d 1)		17.9	26.5	26.5						37.6	37.6	27.5	16.1		
Incremental Delay (0.0	13.6	13.8						160.2	437.3	0.2	1.4		
Initial Queue Delay (0.0	0.0	0.0						0.0	0.0	0.0	0.0		
Control Delay (d), s		17.9	40.1	40.3						197.8	474.9	27.7	17.5		
Level of Service (LO		В	D	D						F	F	С	В		
Approach Delay, s/v		39.7		D	0.0				307.	0	F	20.8	3	С	
Intersection Delay, s				11	6.3							F			
Multimodal Results			FR			\/\/	′B			NR			SB		
Pedestrian I OS Sco	modal Results strian LOS Score / LOS				B	2 47	,	-	B	1 70		В	1 94		В
Bicycle LOS Score /	LOS	.OS			B	,				1.56		B	1.78	3	B

 $Copyright @ {\tt 2020} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

			Ū									,				
General Inform	nation								Int	ersect	ion Info	ormatio	on		47411	a T _{al}
Agency		Linscott. Law & Gre	enspan	. Engine	eers				Du	ration.	h	0.250			↓↓└╷└	
Analyst		JAS		Analys	sis Dat	e Dec 2	. 2020		Are	ea Tvpe	;	Other		 		₹
Jurisdiction		City of Los Angeles/	1	Time F	Period	Existin	ng with		PH	IF		0.98			W € 8	↓ ↓
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2020			An	alysis I	Period	1> 8:0	00			
Intersection		Mindanao/SR-90 E	3	File Na	ame	11AM	- Existin	ıg wi	ith Pi	roject -	Option	B.xus		1 5	T 7 [· (*
Project Descrip	tion	Paseo Marina - Opt	ion B					0		<u>,</u>				1 -		
		· ·														
Demand Inform	nation				EB			۷	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			30	1226	3 20						534	752	522	1050	
				1												
Signal Informa	tion				1↓	16	7									_
Cycle, s	90.0	Reference Phase	2		1	7	ĸ							N	_	÷
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0	0	0.0	0.0				3	*
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0.	.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	.0	0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WBL	-	W	/BT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	, S					40.0							20.0	30.0) (50.0
Change Period,	, (Y+R)	c), S				6.3							5.2	5.2		5.2
Max Allow Head	dway (/	vay (MAH), s				3.0							0.0	3.2		0.0
Queue Clearan	Headway (<i>MAH</i>), s arance Time (<i>g</i> _s), s					30.4								13.6	;	
Green Extensio	ue Clearance Time (g s), s n Extension Time (g e), s					1.2							0.0	3.9		0.0
Phase Call Prol	bability					1.00								1.00)	
Max Out Proba	bility					0.93								0.20)	
Movement Gro	oup Res	ults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow F	Rate(<i>v</i>), veh/h		31	637	634						798	514	533	1071	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1810	1900	1889						1808	1610	1757	1809	
Queue Service	Time (g	g s), S		1.0	28.4	28.4		_				14.8	14.8	11.6	19.0	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		1.0	28.4	28.4						14.8	14.8	11.6	19.0	
Green Ratio (g	/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	707						595	265	968	1801	
Volume-to-Capa	acity Ra	itio(X)		0.045	0.896	0.896						1.342	1.942	0.550	0.595	
Back of Queue	(Q), ft/	/In (95 th percentile)		17.3	518.7	517.7						777	1498. 1	211.2	306.8	
Back of Queue	(Q), ve	eh/ln (95 th percenti	le)	0.7	20.7	20.7						31.1	59.9	8.4	12.3	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay ((d1), s	/veh		17.9	26.5	26.5						37.6	37.6	27.8	16.1	
Incremental De	ntorm Delay (d 1), s/ven cremental Delay (d 2), s/veh			0.0	13.6	13.8						165.1	437.3	0.4	1.5	
Initial Queue De	itial Queue Delay (d_3), s/veh			0.0	0.0	0.0		_				0.0	0.0	0.0	0.0	
Control Delay (Control Delay (<i>d</i>), s/veh			17.9	40.1	40.3						202.7	474.9	28.2	17.6	
Level of Service	Level of Service (LOS)			В	D	D		_				F	F	С	В	
Approach Delay	Approach Delay, s/veh / LOS			39.7	7	D	0.0				309.3	3	F	21.1		С
Intersection Delay, s/ven / LOS						11	6.5		-					F		
Multimodal Re	ultimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	an LOS Score / LOS				2	В	2.47		I	В	1.70		В	1.94		В
Bicycle LOS Sc	ore / LC	DS	1.56	3	В					1.57		В	1.81		В	

Copyright @ 2020 University of Florida, All Rights Reserved.

		1100	i oig	nanze	a m			103	unto	oun	innar <u>.</u>	y				
General Inform	nation								Inte	ersect	ion Inf	ormatio	on	k	4241.	× l _a
Agency		Linscott. Law & Gre	enspan	. Engine	eers				Du	ration.	h	0.250			+ + L L	
Analyst		JAS		Analys	sis Dat	e Sep 1	2020		Are	a Type	<u>,</u>	Other		- <u>-</u> 7 - 4		<u>بر</u> ۲
Jurisdiction		City of Los Angeles	/	Time F	Period	Futur	e - AM		PH	IF		0.98		→ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	w ‡ e	***
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2026			Ana	alvsis I	Period	1> 8:(00			
Intersection		Mindanao/SR-90 El	В	File Na	ame	11AM	- Future	e.xus	<u> </u>						۱۴۲ ۱۳۴۰ ۲	× (*
Project Descrip	tion	Paseo Marina												1		
Demand Inform	nation				EB			٧	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			36	1348	3 21						567	808	534	1131	
Cinnel Informe				. <u> </u>	5 1	<u> </u>	Г	-		1	_					
		Reference Dhase	2		+	10	2					Ļ		tz		X
Offect o	90.0	Reference Pridse	Z End		1	7	R						1	2	3	
Uncoordinated	No	Simult Con E/W	On	Green	14.8	24.8	33.7	0	.0	0.0	0.0					
	Tixed	Simult Cap N/S	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0	-			-	0
Force Mode	Fixed	Simult. Gap N/S	Un	Rea	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	1	8
Timer Results				EBL	-	EBT	WB	L	W	/BT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	i, S					40.0							20.0	30.0)	50.0
Change Period	, (Y+R	c), S				6.3							5.2	5.2		5.2
Max Allow Head	Now Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
Queue Clearan	Allow Headway (MAH), s ue Clearance Time ($g s$), s					34.9								14.0)	
Green Extensio	n Time	(ge), s				0.0							0.0	4.1		0.0
Phase Call Pro	bability					1.00								1.00)	
Max Out Proba	bility					1.00								0.24		
Movement Gro		sulte			ER			١٨/	'R	-		NB			SB	
Approach Move	ement	Suits			Т	R		Т	·	R	1	T	R	<u> </u>	Т	R
Assigned Move	ment			7	4	14	_		+		_	2	12	1	6	
Adjusted Flow F	Rate (v) veh/h		.37	700	697			-			851	552	545	1154	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1810	1900	1890			-			1807	1610	1757	1809	
Queue Service	Time (a	α_s) s		1.2	32.8	32.9					_	14.8	14.8	12.0	21.2	
Cycle Queue C	learanc	e Time (<i>q</i> _c), s		1.2	32.8	32.9			+			14.8	14.8	12.0	21.2	
Green Ratio (g	/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						594	265	968	1801	
Volume-to-Cap	acity Ra	atio(X)		0.054	0.984	0.985						1.431	2.086	0.563	0.641	
Back of Queue	(Q), ft/	/In (95 th percentile))	20.9	668.3	668.1			Τ			902.7	1683. 9	215.8	336.3	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	0.8	26.7	26.7						36.1	67.4	8.6	13.5	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay (Queue Storage Ratio (RQ) (95 th percentile) Uniform Delay ($d \tau$), s/veh				27.9	27.9						37.6	37.6	28.0	16.7	
ncremental Delay (d 2), s/veh				0.0	29.6	29.9						203.6	501.5	0.5	1.8	
nitial Queue Delay (<i>d</i> ₃), s/veh				0.0	0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (<i>d</i>), s/veh				18.0	57.4	57.8						241.2	539.1	28.4	18.4	
Level of Service (LOS)				В	Е	E						F	F	С	В	
Approach Delay, s/veh / LOS				56.6	6	Е	0.0				358.	5	F	21.6	6	С
Intersection Delay, s/veh / LOS						13	6.9							F		
Multimodal Results					ED			10	'B			NP			QP	
Pedestrian LOS	Itimodal Results					P	2.47	,	יי	B	1 70		B	1.04	36	B
Ricycle I OS So	ore /1 C)S	2.32	7	B	2.47		E		1.70		B	1.94		B	
2.0,000000				1.07							1.00		-	1.00		-

			-													
General Inform	nation								Int	tersect	ion Inf	ormati	on		4 7 40 1 1	ι Ļ
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Du	uration,	h	0.250)		++ "	
Analvst		JAS	<u> </u>	Analys	sis Dat	e Dec 2	2. 2020		Ar	ea Type	е	Othe	-	4		<i>د</i> 4
Jurisdiction		City of Los Angeles/ Caltrans	I	Time F	Period	Futur Proie	e with ct - AM		PH	HF		0.98		4 1 4	W ↓ E 8	4 ↓ ↓
Urban Street		SR-90 Eastbound		Analys	sis Yea	ar 2026			Ar	nalvsis l	Period	1> 8:	00			<u> </u>
Intersection		Mindanao/SR-90 El	3	File Na	ame	11AN	I - Futur	e wit	h Pro	oiect - (Option I	3.xus			111	₹ ([₹]
Proiect Descrip	tion	Paseo Marina - Opt	ion B							-j				1 "		
· · · · · · · · · · · · · · · · · · ·																
Demand Inform	nation				EB			١	NB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			36	134	8 21						574	808	569	1138	
Signal Informa	tion					I II.	7									_
Cycle, s	90.0	Reference Phase	2		ľ	<u>7</u>	ĸ							N	-	-€ ₄
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0	.0	0.0	0.0					_ ~
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WE	SL.	V	VBT	NBI	-	NBT	SBL	-	SBT
Assigned Phase	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	I, S					40.0							20.0	30.0) :	50.0
Change Period	, (Y+ R a	c), S				6.3							5.2	5.2		5.2
Max Allow Head	ow Headway (MAH), s Clearance Time (a_s), s					3.0							0.0	3.2		0.0
Queue Clearan	eue Clearance Time (g_s), s					34.9								14.9)	
Green Extensio	eue Clearance Time (g s), s een Extension Time (g e), s					0.0							0.0	4.0		0.0
Phase Call Pro	bability					1.00								1.00		
Max Out Proba	bility					1.00								0.30)	
							_			_				1		_
Movement Gro	oup Res	ults			EB		<u> </u>	W	/B	_		NB			SB	
Approach Move	ement			L	Т	R				R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14		_		_		2	12	1	6	
Adjusted Flow I	Rate (v), veh/h		37	700	697	<u> </u>	-	\rightarrow			858	552	581	1161	
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1810	1900	1890	<u> </u>	<u> </u>	\rightarrow			1808	1610	1757	1809	
Queue Service	Time(g	g s), S		1.2	32.8	32.9	<u> </u>	_	_	_		14.8	14.8	12.9	21.4	
Cycle Queue C	learance	e Tîme (<i>g c</i>), s		1.2	32.8	32.9	<u> </u>	-	_			14.8	14.8	12.9	21.4	
Green Ratio (g	/C)			0.37	0.37	0.37	<u> </u>		\rightarrow			0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						595	265	968	1801	
Volume-to-Cap	acity Ra			0.054	0.984	1 0.985	<u> </u>	-		_		1.443	2.086	0.600	0.645	
Back of Queue	(Q), ft/	In (95 th percentile)		20.9	668.3	668.1						919.4	1683. 9	230.2	338.6	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	0.8	26.7	26.7						36.8	67.4	9.2	13.5	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay ((d 1), si	/veh		18.0	27.9	27.9						37.6	37.6	28.3	16.7	
Incremental De	ncremental Delay (<i>d</i> ₂), s/veh			0.0	29.6	29.9						208.6	501.5	0.7	1.8	
Initial Queue De	initial Queue Delay ($d 3$), s/veh			0.0	0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (<i>d</i>), s/veh				18.0	57.4	57.8						246.2	539.1	29.0	18.5	
Level of Service (LOS)				В	Е	E						F	F	С	В	
Approach Delay, s/veh / LOS				56.6	6	Е	0.0)			360.	9	F	22.0		С
Intersection Delay, s/veh / LOS						13	37.1							F		
3 ,																
Multimodal Re	Iultimodal Results				EB			W	/B			NB			SB	
Pedestrian LOS	S Score	/ LOS	2.32	2	В	2.4	7		В	1.70		В	1.94		В	
Bicycle LOS Sc	ore / LC)S		1.67	7	В					1.65	5	В	1.92	2	В

Copyright © 2020 University of Florida, All Rights Reserved.

										•••		,				
General Inform	nation								Inte	orsocti	ion Infr	ormatio	n		**	s l <u>s</u>
	ation	Linscott Law & Gre	onenan	Engine	ore					ration	b	0 250			++ L L	
Apolyot			спэрап			Son 1	2020		Are		\	Othor		1		۲. ۲.
Analyst		City of Los Angeles	/	Time		Evicti	, 2020			атуре ⊏	5			**	w↓e	2- *
Junsaiction		Caltrans			Penod	Exisu	ig - Pivi			г 		0.96		14 Yr		1 1
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2020			Ana	alysis F	Period	1> 16	:45		1 10 7	
Intersection		Mindanao/SR-90 El	3	File Na	ame	11PM	- Existir	ıg.xı	ls					1	1 1 1 4 1 1 1	* (*
Project Descrip	tion	Paseo Marina														
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			18	1177	18						476	681	727	1154	
				1											- 0.	
Signal Informa	ation				↓	16	7									_
Cycle, s	90.0	Reference Phase	2		1 🕇	, 1	ĸ							N	-	- € ,
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0.	.0	0.0	0.0	_				
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0.	.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	.0	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WBI	-	W	BΤ	NBL	-	NBT	SBI	-	SBT
Assigned Phas	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	1, S					40.0							20.0	30.0)	50.0
Change Period	, (Y+R)	c), S				6.3							5.2	5.2		5.2
Max Allow Hea	Allow Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
Queue Clearan	x Allow Headway (<i>MAH</i>), s eue Clearance Time (g_s), s					28.7								19.4	L I	
Green Extensio	ieue Clearance Time (g_s), s een Extension Time (g_e), s					1.5							0.0	3.0		0.0
Phase Call Pro	bability					1.00								1.00)	
Max Out Proba	bility					0.57								0.72	2	
Movement Gro	oup Res	ults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow I	Rate(<i>v</i>), veh/h		18	611	608						715	466	742	1178	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890						1807	1610	1757	1809	
Queue Service	Time (g	gs), s		0.6	26.7	26.7						14.8	14.8	17.4	21.8	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		0.6	26.7	26.7						14.8	14.8	17.4	21.8	
Green Ratio (g	ı∕C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						594	265	968	1801	
Volume-to-Cap	acity Ra	itio(X)		0.027	0.859	0.859						1.203	1.758	0.766	0.654	
Back of Queue	(Q), ft/	/In (95 th percentile)		10.3	474.6	473						587.7	1261. 5	303.4	344.5	
Back of Queue	(Q). Ve	eh/In (95 th percenti	le)	0.4	19.0	18.9			-			23.5	50.5	12.1	13.8	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00		_	+			0.00	0.00	0.00	0.00	
Uniform Delay	(d_1) s	/veh		17.8	26.0	26.0				_		37.6	37.6	29.9	16.8	
Uniform Delay (d 1), s/veh				0.0	99	10.0			+			106.8	356.4	34	19	
Incremental Delay (d ₂), s/veh				0.0	0.0	0.0			+		_	0.0	0.0	0.0	0.0	
Control Delay (d 3), s/ven				17.8	35.0	35.0						144 /	394.0	33.3	18.7	
Level of Service (LOS)				R	- 00.9	- л						г тт.4 Е	55 4 .0	°	R	
Approach Delay s/yeh / LOS				25.6			0.0				242	2	F	24.3		C
Approach Delay, s/veh / LOS				35.0	,	0	7.0				242.0	5	F	24.3 E	,	U
Intersection Delay, s/ven / LOS						ð								1		
Multimodal Re	Multimodal Results				EB			W	В			NB			SB	
Pedestrian LOS	destrian LOS Score / LOS				2	В	2.47	·	E	3	1.70		В	1.94	-	В
Bicycle LOS So	ore / LC	DS		1.51		В					1.46		А	2.07	7	В

			-								-					
General Inform	nation								In	itersect	ion Info	ormatio	on	2	4244	s l _a
Agency		Linscott. Law & Gre	enspan	. Engine	eers				D	uration.	h	0.250			∔∔⊾⊾	
Analyst		JAS		Analys	sis Dat	e Dec 2	2020		Ar	rea Type	,	Other		 		<u>م</u>
Jurisdiction		City of Los Angeles	1	Time F	Period	Existi	ng with		Pl	HF		0.98			W + E	↓ ↓ ↓
Urban Street		SR-90 Eastbound		Analys	sis Yea	ar 2020			Ar	nalysis l	Period	1> 16	:45			م م
Intersection		Mindanao/SR-90 El	3	File Na	ame	11PM	- Existi	ng w	ith F	Project -	Option	B.xus]¶] 1944 10	▼ ([▼]
Project Descrip	tion	Paseo Marina - Opt	ion B					<u> </u>		,						
, , ,		- 1														
Demand Inform	nation				EB			٧	NΒ			NB			SB	
Approach Move	ement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			18	117	7 18		Τ				478	681	734	1156	[
															<u> </u>	
Signal Informa	ation					- IL	7									_
Cycle, s	90.0	Reference Phase	2		ľ	<mark>7</mark>	ĸ							N	-	- € ₄
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0	.0	0.0	0.0	_		L		1 **
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	۷	WBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration	1, S					40.0							20.0	30.0) :	50.0
Change Period	ge Period, (Y+R c), s Ilow Headway (<i>MAH</i>), s					6.3							5.2	5.2		5.2
Max Allow Head	Allow Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
Queue Clearan	x Allow Headway (<i>MAH</i>), s eue Clearance Time (<i>g</i> s), s					28.7								19.7	,	
Green Extensio	n Time	(ge), s				1.5							0.0	2.9		0.0
Phase Call Pro	bability					1.00								1.00)	
Max Out Proba	bility					0.57								0.75	5	
Movement Gro	oup Res	ults			EB			W	/B			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow I	Rate(<i>v</i>), veh/h		18	611	608						717	466	749	1180	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890						1807	1610	1757	1809	
Queue Service	Time (g	g s), S		0.6	26.7	26.7						14.8	14.8	17.7	21.9	
Cycle Queue C	learance	e Time (<i>g c</i>), s		0.6	26.7	26.7						14.8	14.8	17.7	21.9	
Green Ratio (g	ı/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						594	265	968	1801	
Volume-to-Cap	acity Ra	tio(X)		0.027	0.859	0.859						1.206	1.758	0.773	0.655	
Back of Queue	(Q), ft/	In (95 th percentile)		10.3	474.6	6 473						592	1261. 5	307.3	345.5	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	0.4	19.0	18.9						23.7	50.5	12.3	13.8	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay ((d1), s/	/veh		17.8	26.0	26.0						37.6	37.6	30.0	16.8	
Incremental De	ncremental Delay (<i>d</i> ₂), s/veh			0.0	9.9	10.0						108.1	356.4	3.6	1.9	
nitial Queue Delay ($d 3$), s/veh				0.0	0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (<i>d</i>), s/veh				17.8	35.9	35.9						145.7	394.0	33.6	18.7	
Level of Service (LOS)				В	D	D						F	F	С	В	
Approach Delay, s/veh / LOS				35.6	3	D	0.0				243.4	1	F	24.5	;	С
Intersection Delay, s/ven / LOS						8	7.2							F		
Multimodal Re	Aultimodal Results				EB			W	/B			NB			SB	
Pedestrian LOS	timodal Results				2	В	2.47	7		В	1.70		В	1.94	-	В
Bicycle LOS Sc	rian LOS Score / LOS LOS Score / LOS					В					1.46		А	2.08	3	В

Copyright $\ensuremath{\textcircled{O}}$ 2020 University of Florida, All Rights Reserved.

		nee	r org	manize		.01000		00	unto	oun	iiiiai j	,				
Gonoral Inform	nation								Int	orcoct	ion Infr	ormativ	nn -		4.441	يد لي
	ation	Lincott Low & Gro	onenan	Engin	ore					ration		0 250			↓↓⊾⊾	
Apolyot			enspan			Son 1	2020		Arc			Othor		1		۲. بر
Analyst		JAO City of Loo Angoloo	1	Time	oriod		, 2020			за туре	;				w↓e	
Junsaiction		Caltrans	/		enou	Fulur						0.90		***		4 → 12
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2026			Ana	alysis F	Period	1> 16	:45		44.8	
Intersection		Mindanao/SR-90 El	В	File Na	ame	11PM	l - Future	e.xus	\$					5	 1 야 []	* (*
Project Descrip	tion	Paseo Marina												1		
		•		0												
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R			Т	R		Т	R	L	Т	R
Demand (v), v	eh/h			20	1280) 19						523	772	794	1297	
	4 1010			. <u> </u>	N	5 11				1						
Signal Informa		Deference Dhase	2		•	10	2					ļ		ta		~
Cycle, s	90.0	Reference Priase	Z End		1	7	F						1	2	3	4
Unseed stad	U	Simult Can 5/M	Enu	Green	14.8	24.8	33.7	0	.0	0.0	0.0					
	INO Fixed	Simult. Gap E/W	On	Yellow	3.7	3.7	4.8	0	.0	0.0	0.0	_			_	0
Force Mode	Fixed	Simult. Gap N/S	On	Rea	1.5	1.5	1.5	0	.0	0.0	0.0		5	6	7	8
Timer Results				FBI		FBT	WB		W	/BT	NBI		NBT	SBI		SBT
Assigned Phase						4		-					2	1	-	6
Case Number						10.0							74	2.0		4.0
Phase Duration	s			<u> </u>		40.0							7. 4 20.0	30.0		-4.0 50.0
Change Period	, 3 (V+R	a) e		<u> </u>		63	-						5.2	5.2		5.2
Max Allow Hear	Allow Headway (<i>MAH</i>), s					3.0							0.0	3.2		0.0
	k Allow Headway (<i>MAH</i>), s eue Clearance Time (<i>g</i> s), s					32.3							0.0	21.5		0.0
Green Extensio	eue Clearance Time (g_s), s een Extension Time (g_e), s					0.6							0.0	2.2		0.0
Phase Call Prol	babilitv	(3)				1.00								1.00	,	
Max Out Proba	bilitv					1.00								0.99	,	
-	,															
Movement Gro	oup Res	sults			EB	-		W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow F	Rate(<i>v</i>), veh/h		20	664	661						794	528	810	1323	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890						1805	1610	1757	1809	
Queue Service	Time (g	g s), S		0.6	30.3	30.3						14.8	14.8	19.5	26.1	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		0.6	30.3	30.3						14.8	14.8	19.5	26.1	
Green Ratio (g	/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (<i>c</i>), v	reh/h			678	711	708						594	265	968	1801	
Volume-to-Capa	acity Ra	itio(X)		0.030	0.934	0.934						1.337	1.993	0.837	0.735	
Back of Queue	(Q), ft/	In (95 th percentile)		11.5	574.1	573.4						768.5	1564.	343.2	403.2	
Back of Output	(0)	ah/In (95 th paraanti	(ما	0.5	23.0	22.0			-			30.7	62.6	13.7	16.1	
	Patio (PO(0.5 th percent)		0.0	23.0	22.9			-	-		0.00	02.0	0.00	0.00	
Liniform Delay (/veb		17.8	27.1	27.1			-			37.6	37.6	30.7	17.0	
Uniform Delay (d_1), s/veh				0.0	10.1	10.3						162.8	460.2	6.1	27	
Incremental Delay (d ₂), s/veh				0.0	0.0	19.5			-			0.0	400.2	0.1	2.7	
Control Delay (d), s/veh				17.8	46.2	46.3			_			200 /	407 R	36.8	20.6	
Level of Service (LOS)				R	-70.2 D			_		_		200.4	-57.0	л П	20.0 C	
Approach Delay, s/veh / LOS				15 9			0.0				310 (2	F	26.9		C
Intersection Delay, s/ven / LOS				40.0	,	11	2.6				019.4	-	1	20.0 F		0
Intersection Delay, s/ven / LOS							2.0									
Multimodal Results					EB			W	В			NB			SB	
Pedestrian LOS	OS Score / LOS				2	В	2.47	,	E	в	1.70		В	1.94		В
Bicycle LOS Sc	ore / LC	DS		1.60)	В					1.58		В	2.25	;	В

			-													
General Inform	nation								Inte	ersect	ion Inf	ormatio	on	2	***	s l <u>s</u>
Agency		Linscott, Law & Gre	enspan	, Engin	eers				Dur	ration,	h	0.250		1	++ 5.5	
Analvst		JAS	<u> </u>	Analys	sis Dat	e Dec 2	. 2020		Are	a Type	<u>.</u>	Other		- ^{- 1}		<i>د</i> لا
Jurisdiction		City of Los Angeles, Caltrans	1	Time F	Period	Futur Proie	e with ct - PM		PH	F		0.98		4 1 1	W + E €	7 4 4 4 4 4
Urban Street		SR-90 Eastbound		Analys	sis Yea	r 2026			Ana	alvsis F	Period	1> 16	:45			<u> </u>
Intersection		Mindanao/SR-90 FI	3	File Na	ame	11PN	- Future	e with	n Pro	niect - (Dotion I	B.xus		-	<u>141</u>	* (*
Project Descrip	tion	Paseo Marina - Opt	ion B							,				1 7		
Demand Inform	nation				EB			٧	VB			NB			SB	
Approach Move	ement			L	Т	R	L	T	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			20	128) 19						525	772	801	1299	
												<u> </u>				
Signal Informa	tion				1											
Cycle, s	90.0	Reference Phase	2		1	7	ĸ							N	_	-
Offset, s	0	Reference Point	End	Green	14.8	24.8	33.7	0	0	0.0	0.0	_	1		3	1 4
Uncoordinated	No	Simult. Gap E/W	On	Yellow 3.7		3.7	4.8	0.	0	0.0	0.0					
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	1.5	1.5	0.	0	0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	W	'BT	NBL	-	NBT	SBI	-	SBT
Assigned Phase	е					4							2	1		6
Case Number						10.0							7.4	2.0		4.0
Phase Duration, s						40.0							20.0	30.0)	50.0
Change Period, (Y+R c), s						6.3							5.2	5.2		5.2
Max Allow Headway (<i>MAH</i>), s						3.0							0.0	3.2		0.0
Queue Clearance Time (g_s), s						32.3								21.8	3	
Green Extensio	Gueue Clearance Time (g_s), s Green Extension Time (g_e), s					0.6							0.0	2.1		0.0
Phase Call Prol	bability					1.00		\neg						1.00)	
Max Out Proba	bility					1.00								1.00)	
	,															
Movement Gro	oup Res	sults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14						2	12	1	6	
Adjusted Flow F	Rate(<i>v</i>), veh/h		20	664	661						796	528	817	1326	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1890						1805	1610	1757	1809	
Queue Service	Time (g	g s), S		0.6	30.3	30.3						14.8	14.8	19.8	26.1	
Cycle Queue C	learance	e Time (<i>g c</i>), s		0.6	30.3	30.3						14.8	14.8	19.8	26.1	
Green Ratio (g	/C)			0.37	0.37	0.37						0.16	0.16	0.28	0.50	
Capacity (c), v	/eh/h			678	711	708						594	265	968	1801	
Volume-to-Capa	acity Ra	itio(X)		0.030	0.934	0.934						1.340	1.993	0.844	0.736	
Back of Queue	(Q), ft/	In (95 th percentile)		11.5	574.1	573.4						773.1	1564. 6	348	404.4	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	0.5	23.0	22.9						30.9	62.6	13.9	16.2	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00						0.00	0.00	0.00	0.00	
Uniform Delay ((d1), s	/veh		17.8	27.1	27.1						37.6	37.6	30.8	17.9	
Incremental De	lay (d 2), s/veh		0.0	19.1	19.3			-			164.2	460.2	6.6	2.7	
Initial Queue De	Initial Queue Delay (<i>d</i> ₂), s/veh				0.0	0.0						0.0	0.0	0.0	0.0	
Control Delay (d), s/veh				17.8	46.2	46.3			+			201.8	497.8	37.3	20.6	
Level of Service (LOS)				В	D	D		_				F	F	D	С	
Approach Delay, s/yeh / LOS				45.8	3	D	0.0				319.	8	F	27.0)	С
Intersection Delay, s/ven / LOS						11	2.8							F		
Multimodal Results				EB			W	В			NB			SB		
Pedestrian LOS	strian LOS Score / LOS			2.32	2	В	2.47	7	E	3	1.70)	В	1.94	1	В
Bicycle LOS Sc	ore / LC	DS	.OS			В					1.58	3	В	2.26	3	В

Copyright © 2020 University of Florida, All Rights Reserved.

			Ū								,				
General Inform	nation								Interse	ction Inf	ormati	on	2	4241	× Ļ
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duratio	ո, h	0.250)		444	
Analvst		JAS	<u> </u>	Analys	is Date	e Aua 1	4. 2020		Area Tv	pe	Othe	-			<u>د</u> لا
Jurisdiction		City of Los Angeles		Time F	Period	Existir	na - AM		PHF		0.96		→ 	whe	
Urban Street		Mindanao Way		Analys	is Yea	2020	3		Analysis	Period	1> 7:	45	4		
Intersection		, Mindanao/La Villa N	larina	File Na	ame	12AM	- Existir	na.xu	is ,					5 4 17	
Project Descrip	tion	Paseo Marina						5					- 5	[1 1 1 1 1	* /*
, ,															
Demand Inform	nation				EB			W	/B		NB			SB	
Approach Move	ement			L	Т	R	L		T R	L	Т	R	L	Т	R
Demand (v), v	eh/h			17	1	10	64	(0 150	6 23	1079	9 54	61	965	27
				1 											
Signal Informa	tion		_		215	2Us	3 4	4							_
Cycle, s	90.0	Reference Phase	2		•	1 5tř	Ř					1	2	3	€ ₄
Offset, s	0	Reference Point	End	Green	10.1	50.6	14.7	0.0	0.0	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.0	0 0.0	0.0			∇		7
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7	1.7	0.0	0 0.0	0.0		5	6	7	8
										I				_	
Timer Results				EBL	-	EBT	WB		WBT	NB		NBT	SBL		SBT
Assigned Phase	e					4		\rightarrow	8			6	5		2
Case Number						8.0		\rightarrow	8.0			6.3	1.0		4.0
Phase Duration	, S					20.0		\rightarrow	20.0			55.0	15.0)	70.0
Change Period, (Y+R c), s						5.3		\rightarrow	5.3			4.4	4.9		4.4
Max Allow Headway (<i>MAH</i>), s						3.4		\rightarrow	3.4			0.0	3.2		0.0
Queue Clearan	Queue Clearance Time (<i>g</i> _s), s					3.3		_	14.8				3.0		
Green Extensio	n Time	(g e), s				0.5		\rightarrow	0.0			0.0	0.0		0.0
Phase Call Prol	bability			<u> </u>		1.00		\rightarrow	1.00	<u> </u>			1.00)	
Max Out Proba	bility					0.00			1.00				0.00)	
Movement Gro		ulte			EB			\//F	2		NB	_		SB	
Approach Move	mont	Suits			 	P			- -	1		P	1	Т	P
Assigned Move	ment			 7	1	14	3	8	18	1	6	16	5	2	12
Adjusted Flow F	Rate (v) veh/h			20	14	5	220		24	505	585	64	- <u>-</u> 510	51/
Adjusted Satura	ation Flo	y, ven/n w Rate (s) veh/h/li	n		1168			157	у И	555	1000	1868	1810	1900	1881
	Time ((π_{s}) s			0.0			107	3	1.8	18.0	18.0	10	9.2	9.2
	learance	$a = Time(a_c) s$			13			12	8	1.0	18.0	18.0	1.0	9.2	9.2
Green Ratio (a	\sqrt{C}		_		0.16			0.1	6	0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c) y	/0/) /eh/h				255			309	о а	392	1068	1050	458	1385	1371
Volume-to-Cap	acity Ra	tio (X)			0 114			0.74	12	0.061	0.557	0.557	0 139	0.375	0.375
Back of Queue	(Q) ft/	(In (95 th percentile)			24.6			236	.9	10.6	302.9	299.3	14.1	139.4	138.1
Back of Queue	(Q) ve	eh/ln (95 th percenti	le)		1.0			9.5	5	0.4	12.1	12.0	0.6	5.6	5.5
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.0	0	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1) s	/veh	/		32.0			36	8	9.0	12.6	12.6	6.8	4.6	4.6
Incremental De	lav (<i>d</i> 2) s/veh			0 1			8.2	>	0.3	21	21	0.1	0.8	0.8
Initial Queue De	Incremental Delay (<i>d</i> ₂), s/veh							0.0)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (32.1			45	0	9.3	14.7	14.7	6.9	5.3	5.3		
Level of Service (LOS)					C			 D		0.0 A	B	B	A	A	A
Approach Delay, s/veh / LOS				32 1	Ţ	С	45.0		D	14 (3	B	54		A
Intersection Delay, s/veh / LOS				52.1		19	36			14.		5	B		
Intersection Delay, siven 7 203													-		
Multimodal Results					EB			WE	3		NB			SB	
Pedestrian LOS	Pedestrian LOS Score / LOS					В	2.30)	В	1.7	1	В	1.71		В
Bicycle LOS Sc	edestrian LOS Score / LOS icycle LOS Score / LOS					А	0.87	,	А	1.48	3	А	1.39)	A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

General Inform	nation								Inte	ersect	tion Inf	ormatio	on	<i></i>	4 4 1 1 1	× l <u>x</u>
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Du	ration,	h	0.250		1	4+4	
Analyst		JAS		Analys	is Date	Dec 2	, 2020		Are	еа Тур	е	Other		4		۲. ۲.
Jurisdiction		City of Los Angeles		Time F	Period	Existin	ng with ct - AM		PH	IF		0.96		4 1 4	w∔e €	* - - -
Urban Street		Mindanao Way		Analys	is Year	2020			Ana	alysis	Period	1> 7:4	45			
Intersection		Mindanao/La Villa N	<i>l</i> arina	File Na	ame	12AM	- Existir	ng wi	ith Pr	roject	- Optior	n B.xus			<u>]</u>]]/ ব † কাপ †	* (*
Project Descrip	tion	Paseo Marina - Opt	ion B					-			<u> </u>			1 -		
		· ·														
Demand Inform	nation				EB			V	٧B			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			17	1	10	64		0	156	23	1086	54	61	972	27
					F 111	E III	_				_					
Signal Informa	ation		-		215	24 s		1								
Cycle, s	90.0	Reference Phase	2		ľ	ឹកា	• <u>R</u> "						1	2	3	╋ ₄
Offset, s	0	Reference Point	End	Green	10.1	50.6	14.7	0.	0	0.0	0.0					<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.	0	0.0	0.0		>	$\mathbf{\nabla}$		Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7	1.7	0.	0	0.0	0.0	_	5	6	7	8
T . D . K			_	EDI	_	EDT			14/	(DT	ND		NDT	0.01	_	ODT
Timer Results				EBL		EBI	WB	-	VV	/BT	NBI	-	NBT	SBL	-	SBI
Assigned Phase	е				_	4		\rightarrow	5	8			6	5		2
Case Number				8.0		\rightarrow	8.	.0			6.3	1.0		4.0		
Phase Duration				20.0		\rightarrow	20	0.0			55.0	15.0)	70.0		
Change Period	, (Y+ R ,	c), S				5.3			5.	.3			4.4	4.9		4.4
Max Allow Head	dway(/	<i>ИАН</i>), s				3.4			3.	.4			0.0	3.2		0.0
Queue Clearan	ce Time	e (g s), s				3.3			14	4.8				3.0		
Green Extensio	on Time	(ge),s				0.5			0.	.0			0.0	0.0		0.0
Phase Call Pro	bability					1.00			1.0	.00				1.00)	
Max Out Proba	bility					0.00			1.0	.00				0.00)	
Movement Cre	un Dee		_		ГР			\\/	D	_		ND		1	<u> </u>	_
Approach Move	mont	Suits			ED	D				D			D		ЗБ	в
Approach Move	ment				1	R		 0	+	10		I G	К 16	E	- 1	<u>к</u>
Adjusted Flow	Poto (v) vob/b		_/	4	14	3	0		10	1	500	10	5		1Z 510
Adjusted Flow I	nale (V), ven/n w Poto (c) vob/b/l	n		29			157	9 74	_	24 551	1000	1969	1910	1000	1992
	Time (/				0.0			10	4		1.8	18 1	18 1	1010	03	0.3
	learance	g(s), s			1.3			10.	8		1.0	18.1	10.1	1.0	9.5	9.5
Green Ratio (o		e fille (<i>g c</i>), s			0.16			0.1	6		0.56	0.56	0.56	0.70	9.5	0.73
Green Katio (g	/0) /0h/h				255			20	0	_	200	1069	1050	456	1205	1271
Volume to Cap		ntio (X)			233			0.7	9 12	_	0.061	0.560	0.561	430	0.279	0.379
Back of Ououo		(0, 7)			24.6			236	+2		10.6	205.1	201.5	14.1	140.4	120.2
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	ah/In (95 th percentie)	(ما		24.0			230	5		0.4	12.2	12 1	0.6	5.6	5.6
	Ratio (RO (95 th percent	ile)		0.00			0.0			0.4	0.00	0.00	0.0	0.00	0.00
Uniform Delay	(d_4) s	/veb			32.0			36	8		0.00	12.6	12.6	6.0	4.6	4.6
Incremental De	(u/), s lav (da				0.1			80	2		0.3	2.0	22	0.9	4.0	4.0
Incrementar De			0.1			0.2	2		0.5	2.1	2.2	0.1	0.0	0.0		
			22.1			45	0	_	0.0	14.7	14.9	6.0	5.2	5.4		
Lovel of Samia			JZ.1			40.	U		9.3	14./ D	14.ð	0.9	5.3).4 		
		- 20.4		<u> </u>	45.0				A	В	В	A F 4	A	A		
Approach Delay, s/ven / LOS				32.1		0	45.U		L		14.6)	В	5.4 D		A
Intersection Delay, s/ven / LOS						13	0.0							D		
Multimodal Re			EB			W	B			NB			SB			
Pedestrian LOS	Pedestrian LOS Score / LOS					В	2.30)	F	В	1.71		В	1.71		В
Bicycle LOS Sc	edestrian LOS Score / LOS					А	0.87	,	A	A	1.49	,	А	1.40)	А

·														
General Information								Interse	ction Ir	format	ion	K	*	× l <u>x</u>
Agency	Linscott, Law & Gree	enspan	, Engine	ers				Duratio	n, h	0.25	0		445	
Analyst	JAS		Analys	is Dat	e Aug 1	4, 2020		Area Ty	/pe	Othe	ər	4		۲. ا
Jurisdiction	City of Los Angeles		Time F	Period	Future	e - AM		PHF		0.96	i	*	W = E	
Urban Street	Mindanao Way		Analys	is Yea	r 2026			Analysi	s Perio	1 1> 7	:45	1		
Intersection	Mindanao/La Villa M	arina	File Na	ame	12AM	- Future	ə.xus	a					ኻተቅ	<u>×</u>
Project Description	Paseo Marina												4 1 4 Y	» ا
	÷		_											
Demand Information				EB			W	/B	_	NE	3		SB	
Approach Movement			L	Т	R	<u> </u>		r R		Т	R	<u> </u>	Т	R
Demand (v), veh/h			18	1	11	68	(0 16	6 24	116	3 57	65	1048	29
Signal Information				6		5	, I		_	_				
	Deference Dhase	2		242	×+'×	B2	1							~
Offect c 0	Reference Phase	Z End			- 5 1						1	2	3	
Ulisel, s U		Enu	Green	10.1	50.6	14.7	0.0	0.0) 0.0)				A_
Checological Concological Conco	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.0	0 0.0	0.0)	7	$\mathbf{\Psi}$	-	¥.
	Simult. Gap N/S	On	Rea	1.3	0.7	1.7	0.0	0 0.0	0 0.)	5	6	/	8
Timor Results			EBI		EBT	WB		W/BT	N	31	NBT	SBI		SBT
Assigned Phase				-		VVD		8			6	5	-	2
Case Number					80		\rightarrow	8.0	-		63	1.0	_	4.0
Phase Duration s				20.0		-	20.0	-		55.0	1.0		70.0	
Change Period (V+R				53		-+	53			4.4	4 9	,	4.4	
Max Allow Headway (_			3.4		+	3.4			0.0	3.2		0.0	
Queue Clearance Tim	e (gs), s				3.4		-	15.8				3.1		
Green Extension Time	(ge), s				0.5			0.0			0.0	0.0		0.0
Phase Call Probability					1.00		-	1.00				1.00)	
Max Out Probability					0.00			1.00				0.00)	
Movement Group Re	sults			EB			WE	3		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement			7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Rate (/), veh/h			31	<u> </u>		244	1	25	640	631	68	564	558
Adjusted Saturation Fl	ow Rate (s), veh/h/lr	1		1122			157	2	510	1900	1868	1810	1900	1882
Queue Service Time (g s), s			0.0	<u> </u>		11.	5	2.0	20.0	20.1	1.1	10.3	10.3
Cycle Queue Clearand	ce Time (g c), s			1.4			13.8	8	2.0	20.0	20.1	1.1	10.3	10.3
Green Ratio (g/C)				0.16	<u> </u>		0.10	6	0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c), veh/h				247			308	3	367	1068	1050	433	1385	1372
volume-to-Capacity R				0.126			0.79		0.06	0.599	0.600	0.156	0.407	0.407
Back of Queue (Q), f	i/in (95 th percentile)	-)		26.4			260	J	11.2	332.4	+ 328.7	15.1	156.3	155
Back of Queue (Q), V	en/in (95 th percentil	e)		1.1			10.4	4	0.4	13.3	13.1	0.6	6.3	6.2
Queue Storage Ratio		ie)		0.00		<u> </u>	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d 1), s	s/ven			32.1			37.	2	9.1	13.0	13.0	7.5	4.7	4.7
Incremental Delay (a			0.1		<u> </u>	12.0	0 \	0.4	2.5	2.5	0.1	0.9	0.9	
Initial Queue Delay (a			0.0			0.0	,	0.0	0.0	0.0	0.0	0.0	0.0	
Lovel of Service (LOS			32.1			49.2	۷	9.4	15.5	15.0	0.1 A	0.0	0.0	
Approach Delay sheet		32.1		C	<u>40</u> 2		D	A 15	4	R	A 57			
Intersection Delay, s/Ver		52.1		1.	49.2	-	U	13	.+	J	B. 3.7		~	
					T.H						U			
Multimodal Results	Multimodal Results						WE	3		NB			SB	
Pedestrian LOS Score		2.30)	В	2.30		В	1.	71	В	1.71		В	
Bicycle LOS Score / L	icycle LOS Score / LOS				А	0.89)	А	1.	56	В	1.47	7	А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

General Information									In	tersect	tion Infe	ormatio	on	_		× l <u>x</u>
Agency	Linscott, Law & Gre	enspan	, Engine	ers					Dı	uration,	h	0.250			7 * 4	
Analyst	JAS		Analys	is Dat	e Dec	2,	2020		Ar	rea Typ	e	Other		<u></u> →		<u>≵</u>
Jurisdiction	City of Los Angeles		Time F	Period	Futu Proj	ire ec	with t - AM		Pł	HF		0.96		4 1 4	w ‡ e °	
Urban Street	Mindanao Way		Analys	is Yea	r 202	6			Ar	nalysis	Period	1> 7:4	45		5 A tr	<u>~</u> _
Intersection	Mindanao/La Villa N	larina	File Na	ame	12A	Μ	- Future	e with	h Pr	roject -	Option I	B.xus		5	111 *****1	× ا ^م
Project Description	Paseo Marina - Opt	ion B														
Demand Information				EB			<u> </u>	V	VB		<u> </u>	NB		<u> </u>	SB	
Approach Movement			L		R		L	+	1	R	L		R	L	1	R
Demand (V), ven/n			18	1	11	I	68		0	100	24	1170	57	65	1055	29
Signal Information				ЫU	E.J.R		0			Γ	Γ					
Cvcle. s 90.0	Reference Phase	2		242		×.	1.3 E								_	
Offset, s 0	Reference Point	End		10.1		Ĩ			_			_	1	2	3	4
Uncoordinated No	Simult. Gap E/W	On	Green 10.1 Yellow 3.6		3.7	6	14.7	0.	0	0.0	0.0	- L		-		Ð-
Force Mode Fixed	Simult. Gap N/S	On	Red	1.3	0.7		1.7	0.	.0	0.0	0.0		™ 5		7	8
Timer Results			EBL	-	EBT	٦	WBI	-	V	NBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase					4					8			6	5		2
Case Number					8.0				8	8.0			6.3	1.0		4.0
Phase Duration, s				20.0				2	<u>2</u> 0.0			55.0	15.0) .	70.0	
Change Period, (Y+R	Change Period, ($Y+Rc$), s				5.3				ļ	5.3			4.4	4.9		4.4
Max Allow Headway (I	MAH), s				3.4				;	3.4			0.0	3.2		0.0
Queue Clearance Time	e (g s), s				3.4				1	15.8				3.1		
Green Extension Time	(<i>g</i> e), s				0.5				(0.0			0.0	0.0		0.0
Phase Call Probability					1.00				1	1.00				1.00)	
Max Out Probability					0.00				1	1.00				0.00)	
Movement Group Res	sults			FB		٦		W	B			NB			SB	
Approach Movement		_	L	Т	R	٦	L	Т	- T	R	L	Т	R	L	Т	R
Assigned Movement			7	4	14		3	8	-	18	1	6	16	5	2	12
Adjusted Flow Rate (v), veh/h			31	<u> </u>	٦		24	4		25	644	634	68	567	562
Adjusted Saturation Flo	ow Rate (s), veh/h/l	n		1122				157	72		506	1900	1869	1810	1900	1882
Queue Service Time (g s), s			0.0		٦		11.	.5		2.0	20.2	20.2	1.1	10.4	10.4
Cycle Queue Clearanc	e Time (g c), s			1.4				13.	.8		2.0	20.2	20.2	1.1	10.4	10.4
Green Ratio (g/C)				0.16		٦		0.1	6		0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c), veh/h				247				30	8		365	1068	1051	431	1385	1372
Volume-to-Capacity Ra	atio (X)			0.126				0.79	90		0.069	0.603	0.604	0.157	0.410	0.410
Back of Queue (Q), ft	/In (95 th percentile)			26.4				26	0		11.2	334.7	331.6	15.1	158.1	156.7
Back of Queue (Q), ve	eh/In (95 th percenti	le)		1.1				10.	.4		0.4	13.4	13.3	0.6	6.3	6.3
Queue Storage Ratio (RQ) (95 th percent	ile)		0.00				0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (<i>d</i> 1), s	/veh			32.1				37.	.2		9.1	13.0	13.1	7.6	4.7	4.7
Incremental Delay (d 2	Incremental Delay (d 2), s/veh				<u> </u>			12.	.0		0.4	2.5	2.6	0.1	0.9	0.9
Initial Queue Delay (d			0.0	<u> </u>			0.0	0		0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/v			32.1				49.	.2		9.4	15.6	15.6	7.6	5.6	5.6	
Level of Service (LOS)			С				D			A	В	В	A	A	A	
Approach Delay, s/veh	32.1		С		49.2	2		D	15.5		В	5.7		A		
Intersection Delay, s/ve				14	.4						_	В				
Multimodal Results		FB				\٨/	B			NR			SB			
Pedestrian LOS Score	2.30		B	-	2.30)	5	В	1 71		B	1 71		В		
Bicycle LOS Score / LO	edestrian LOS Score / LOS				A		0.89	,		A	1.56	;	B	1.48	3	A

											-					
General Inform	nation								Inters	sect	ion Infe	ormatio	on	2	* *** * *	s l <u>s</u>
Agency		Linscott, Law & Gre	enspan	, Engine	eers				Durat	tion,	h	0.250		1	417	
Analvst		JAS		Analys	sis Dat	e Aua 1	4. 2020		Area		9	Other		- - 1 - 4		<i>د</i> لا
Jurisdiction		City of Los Angeles		Time F	Period	Existi	na - PM		PHF	21		0.99		⇒ - \$	wţe	
Urban Street		Mindanao Wav		Analys	sis Yea	ar 2020	<u> </u>		Analy	/sis F	Period	1> 16	:45	*		 *
Intersection		, Mindanao/La Villa N	larina	File Na	ame	12PM	- Existi	na.xu	ls s	,					5 4 1	
Project Descrip	tion	Paseo Marina												1	- [ব ↑ ় ় প 1	* /*
		1												<u>.</u>		
Demand Inform	nation				EB			Ν	/B			NB			SB	
Approach Move	ement			L	Т	R	L	-	Г	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			20	1	36	50		2	72	27	957	64	129	1088	13
							_	_	_		_	_				
Signal Informa	tion				215	245a	- 3 K	4								_
Cycle, s	90.0	Reference Phase	2		ľ	1 <u>5</u> 1	∼ ₿ "						1	2	3	€ ₄
Offset, s	0	Reference Point	End	Green	10.1	50.6	14.7	0.	0 0	0.0	0.0					<u> </u>
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.	00	0.0	0.0	_ `		$\mathbf{\nabla}$		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7	1.7	0.	0 0	0.0	0.0	_	5	6	7	8
			_		_					-				0.51	_	
Timer Results				EBL	-	EBT	WB		WBT	T	NBL	-	NBT	SBL	-	SBT
Assigned Phase	e				\rightarrow	4		_	8	_			6	5		2
Case Number Phase Duration is					\rightarrow	8.0		_	8.0				6.3	1.0		4.0
Phase Duration, s					\rightarrow	20.0		-	20.0)			55.0	15.0		70.0
Change Period, (Y+R c), s						5.3	<u> </u>	-	5.3	-			4.4	4.9		4.4
	oo Timo	(α_{r})			+	3.4		\rightarrow	9.4 9.4	-			0.0	3.2		0.0
Groop Extensio	n Timo	$(g_s), s$			-	4.0		-	0.4	-			0.0	4.1	_	0.0
Bhase Call Bro	hability	(<i>g</i> e), s		<u> </u>	+	1.00		\rightarrow	1.00				0.0	1.00		0.0
Max Out Proba	bility				-	0.00			0.06	,				0.04		
Max Out Floba	Dinty					0.00			0.00	,				0.04		
Movement Gro	oup Res	sults			EB			W	3		_	NB			SB	
Approach Move	ement			L	Т	R	L	Т	F	र	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	1	8	1	6	16	5	2	12
Adjusted Flow I	Rate (v), veh/h			58			125	5	T	27	521	510	130	557	555
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1586	;		155	8		515	1900	1858	1810	1900	1892
Queue Service	Time (g	g s), s			0.0			3.5	5		2.2	14.9	14.9	2.1	10.1	10.1
Cycle Queue C	learanc	e Time (g c), s			2.6			6.4	l I		2.2	14.9	14.9	2.1	10.1	10.1
Green Ratio (g	/C)				0.16			0.1	6		0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c), v	/eh/h				313			311	1		369	1068	1044	503	1385	1379
Volume-to-Cap	acity Ra	atio (X)			0.184	1		0.40)3		0.074	0.488	0.488	0.259	0.402	0.402
Back of Queue	(Q), ft	/In (95 th percentile)			49.3			112	.5		12.3	258.9	254.6	30.1	153.7	153.1
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		2.0			4.5	5		0.5	10.4	10.2	1.2	6.1	6.1
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), s	/veh			32.6			34.	1		9.1	11.9	11.9	6.5	4.7	4.7
Incremental De	lay (<i>d</i> 2), s/veh			0.1			0.3	3		0.4	1.6	1.6	0.1	0.9	0.9
Initial Queue De			0.0			0.0)		0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (32.7			34.	4		9.5	13.5	13.5	6.6	5.6	5.6		
Level of Service (LOS)					С			С			А	В	В	Α	А	Α
Approach Delay, s/veh / LOS				32.7	7	С	34.4	1	С		13.4	-	В	5.7		А
Intersection Delay, s/veh / LOS						1	1.0							В		
Multimodal Re	Multimodal Results				EB			WE	3			NB	_		SB	_
Pedestrian LOS	Pedestrian LOS Score / LOS					В	2.30)	B	_	1.71		В	1.71		В
Bicycle LOS Sc	icycle LOS Score / LOS					A	0.69)	A		1.36	j 📃	A	1.51		В

General Inform	nation								Intersed	ction Inf	ormatio	on	2	· · · · · · · · · · · · · · · · · · ·	se l _a
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duratior	ո, h	0.250			*+ + 54	
Analyst		JAS		Analys	is Date	Dec 2	, 2020		Area Ty	ре	Other	•	<u>_</u> ,		*
Jurisdiction		City of Los Angeles		Time F	Period	Existir Projec	ng with ct - PM		PHF		0.99		***	w , E	+ + ↓ ↓
Urban Street		Mindanao Way		Analys	is Yea	2020			Analysis	Period	1> 16	:45		KA 4.	
Intersection		Mindanao/La Villa N	/larina	File Na	ame	12PM	- Existi	ng wi	th Projec	t - Optior	ו B.xus			1 / 1 4 1 1 1	× (*
Project Descrip	tion	Paseo Marina - Opt	ion B	л									1 7		
		•													
Demand Inform	nation				EB	_		N	/B		NB			SB	
Approach Move	ement			L	Т	R	L	-	T R	L	Т	R	L	Т	R
Demand (v), v	eh/h			20	1	36	50		2 72	27	959	64	129	1090	13
				1	6 111	5 16				-					1
Signal Informa		Deference Dhase	2		245	14 ,2	1.2 5	1							7
Cycle, s	90.0	Reference Phase	Z End		ſ	- * 1						1	2	3	
Unseed, s	U No	Simult Con E/W		Green 10.1		50.6	14.7	0.	0 0.0	0.0					A
Earco Modo	Fixed	Simult Cap N/S	On	Pod	3.6	3.7	3.6	0.		0.0	_	5	\mathbf{Y}_{a}	7	¥ .
	Tixed	Sindit. Gap N/S	OII	Reu	1.5	0.7	1.7	0.	0 0.0	0.0		5	•		0
Timer Results				EBL	_	EBT	WB	LI	WBT	NB		NBT	SBL		SBT
Assigned Phase	e		_			4		-	8			6	5		2
Case Number	-					8.0		\rightarrow	8.0			6.3	1.0		4.0
Phase Duration	_			20.0			20.0	-		55.0	15.0	, · ·	70.0		
Change Period. ($Y+R_c$), s				<u> </u>	-	5.3		-	5.3			4.4	4.9		4.4
Max Allow Head	dway (/	<i>MAH</i>), s				3.4			3.4			0.0	3.2		0.0
Queue Clearan	ce Time	e (gs), s				4.6			8.4				4.1		
Green Extensio	n Time	(ge), s				0.3			0.2			0.0	0.1	—	0.0
Phase Call Pro	bability					1.00			1.00				1.00	,	
Max Out Proba	bility					0.00			0.06				0.04		
Movement Gro	oup Res	sults			EB			W	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	Т	R
Assigned Move	ment	· · · ·		7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow I	Rate (v), veh/h			58	<u> </u>		12:		27	522	511	130	558	556
Adjusted Satura		bw Rate (s), ven/n/l	n		1586			155	-	514	1900	1858	1810	1900	1892
Queue Service	Time (g	gs), s a Tima (g) a			0.0			3.5		2.2	14.9	14.9	2.1	10.2	10.2
Cycle Queue C		e filme (<i>g</i> c), s			2.0			0.4	+ 6	2.2	14.9	14.9	2.1	10.2	10.2
Green Ratio (g	/C)				212			21/	1	260	1069	1044	502	1295	1270
Volume-to-Can	acity Ra	atio(X)			0 18/			0.40	13	0.074	0 / 80	0 / 89	0.250	0.403	0.403
Back of Queue	(Ω) ft	/In (95 th nercentile)			49.3			112	5	12.3	259.3	255.5	30.1	154	153.4
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	eh/In (95 th percenti	le)		2.0			4.5	5	0.5	10.4	10.2	12	62	6 1
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.0	0	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d_1) , s	/veh			32.6			34	1	9.1	11.9	11.9	6.5	4.7	4.7
Incremental De	lav (<i>d</i> 2), s/veh			0.1			0.3	3	0.4	1.6	1.6	0.1	0.9	0.9
Initial Queue Delay (d 3), s/veh					0.0			0.0)	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh					32.7			34.	4	9.5	13.5	13.5	6.6	5.6	5.6
Level of Service (LOS)					С			С		Α	В	В	Α	Α	Α
Approach Delay, s/veh / LOS				32.7	·	С	34.4		С	13.4	1	В	5.7		A
Intersection Delay, s/veh / LOS						11	.0						В		
Multimodal Re	Multimodal Results				EB			W	3		NB			SB	
Pedestrian LOS	Pedestrian LOS Score / LOS					В	2.30)	В	1.71	1	В	1.71		В
Bicycle LOS Sc	LOS Score / LOS				;	А	0.69)	A	1.36	6	А	1.51		В

			Ū								,				
General Inform	nation								Intersec	tion Inf	ormatio	on		4441	يه لي
Agency		Linscott, Law & Gre	enspan	, Engine	ers				Duration	, h	0.250		1	444	
Analyst		JAS		Analys	is Dat	e Aug 1	4, 2020		Area Typ	e	Other				<u>ل</u>
Jurisdiction		City of Los Angeles		Time F	Period	Future	e - PM		PHF		0.99		†	W↓E	
Urban Street		Mindanao Way		Analys	is Yea	r 2026			Analysis	Period	1> 16	:45	4		*
Intersection		Mindanao/La Villa N	/larina	File Na	ame	12PM	- Future	e.xus	-					ኻተቱ	
Project Descrip	tion	Paseo Marina		л									5	41491	× (*
Demand Inform	nation				EB			W	B		NB			SB	
Approach Move	ement			L	Т	R	L	1	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			21	1	38	53	2	2 76	29	1082	68	137	1227	14
				1	b 111	F 112		1							
Signal Informa	tion				212	∠ ↓ a	- 3 S	<u> </u>							
Cycle, s	90.0	Reference Phase	2		ľ	- ⁶ 51	ŗ₿_"					1	2	3	€ ₄
Offset, s	0	Reference Point	End	Green	10.1	50.6	14.7	0.0	0.0	0.0					5
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.6	3.7	3.6	0.0	0.0	0.0		N	$\mathbf{\nabla}$		Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7	1.7	0.0	0.0	0.0	_	5	6	7	8
				501					MOT				0.01	_	ODT
Timer Results				EBL	-	EBI	WB		WBI	NBI	-	NBI	SBL	-	SBI
Assigned Phase	e					4		\rightarrow	8		\rightarrow	6	5		2
Case Number						8.0		\rightarrow	8.0			6.3	1.0		4.0
Phase Duration, s					-	20.0		\rightarrow	20.0			55.0	15.0)	70.0
Change Period, (Y+R c), s					_	5.3		_	5.3			4.4	4.9		4.4
Max Allow Head	dway (/	ИАН), s		<u> </u>		3.4	<u> </u>	\rightarrow	3.4			0.0	3.2	_	0.0
Queue Clearan		(gs),s				4.8		\rightarrow	8.8				4.3		
Green Extensio	n lime	(ge), s		<u> </u>		0.3		_	0.2			0.0	0.1		0.0
Phase Call Pro	bability			<u> </u>		1.00	<u> </u>	\rightarrow	1.00	<u> </u>			1.00)	
Max Out Proba	bility					0.00			0.10				0.05		
Movement Gro	oup Res	ults			FB			WF	3		NB			SB	_
Approach Move	ement		_	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	1	6	16	5	2	12
Adjusted Flow Flow	Rate (v), veh/h	_		61	-		132	2	29	587	575	138	628	626
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1589			155	6	450	1900	1860	1810	1900	1892
Queue Service	Time (d	(s), S			0.0			3.9		2.7	17.6	17.6	2.3	12.0	12.1
Cvcle Queue C	learance	e Time (<code>q c</code>). s			2.8			6.8		2.7	17.6	17.6	2.3	12.0	12.1
Green Ratio (g	/C)				0.16	-		0.16	3	0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c), v	/ veh/h				313			310)	333	1068	1046	463	1385	1379
Volume-to-Cap	acity Ra	tio(X)			0.193	;		0.42	6	0.088	0.549	0.550	0.299	0.453	0.454
Back of Queue	(Q), ft/	In (95 th percentile)			52			119.	6	13.6	297.6	293.1	32.1	183.4	182.8
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		2.1	1		4.8		0.5	11.9	11.7	1.3	7.3	7.3
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.00)	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh			32.7	1		34.2	2	9.2	12.5	12.5	7.5	4.9	4.9
Incremental De	lay (d 2), s/veh			0.1			0.3		0.5	2.0	2.1	0.1	1.1	1.1
Initial Queue De			0.0	<u> </u>		0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (d), s/veh					32.8			34.6	3	9.7	14.5	14.6	7.6	6.0	6.0
Level of Service (LOS)					С			С		Α	В	В	Α	А	Α
Approach Delay, s/veh / LOS				32.8	;	С	34.6	3	С	14.4		В	6.2		A
Intersection Delay, s/veh / LOS						1'	1.6						B		
,															
Multimodal Re	Multimodal Results				EB			WE	3		NB			SB	
Pedestrian LOS Score / LOS				2.30		В	2.30)	В	1.71		В	1.71		В
Bicycle LOS Sc	icycle LOS Score / LOS					А	0.71	1	А	1.47	7	А	1.64		В

Copyright © 2020 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.8.5

General Inform	nation									Int	tersect	tion Infe	ormatio	on	_		× l <u>x</u>
Agency		Linscott, Law & Gre	enspan	, Engine	ers					Du	uration,	h	0.250			4 + 4	<u>*_</u>
Analyst		JAS		Analys	is Dat	te Dec	2,	2020		Ar	еа Тур	е	Other		<u></u>		<u>&</u> 5–
Jurisdiction		City of Los Angeles		Time F	Period	Futu Proje	re ect	with : - PM		PH	ΗF		0.99		4 \ \	w∔e	\$ ↓ ¥
Urban Street		Mindanao Way		Analys	is Yea	ar 2026	3			Ar	nalysis	Period	1> 16	:45		5 4 4	<u>_</u>
Intersection		Mindanao/La Villa N	<i>l</i> larina	File Na	ame	12PI	И-	- Future	e with	n Pr	oject -	Option I	B.xus		1	111 141471	× (*
Project Descrip	tion	Paseo Marina - Opt	ion B												1		
		•		-													
Demand Inform	nation				EB	;			N	٧B			NB			SB	
Approach Move	ement			L	Т	R		L	-	Т	R		Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			21	1	38	;	53		2	76	29	1084	68	137	1229	14
0: 11.6	<i></i>				F III	5.16		Γ			Г						
Signal Informa	ition		0	1	1215	- 	•										
Cycle, s	90.0	Reference Phase	2		ſ	1 5	t?	E.						1	2	3	↔ 4
Offset, s	0	Reference Point	End	Green 10.1 5		50.6	3	14.7	0.	0	0.0	0.0					<u> </u>
Uncoordinated		Simult. Gap E/W	On	Yellow	3.6	3.7		3.6	0.	0	0.0	0.0			Ψ.		Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.3	0.7		1.7	0.	0	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	T	WBI	-	V	VBT	NBL	-	NBT	SBL	-	SBT
Assigned Phase	e					4	Т				8			6	5		2
Case Number					+	8.0	t		\neg	6	8.0			6.3	1.0		4.0
Phase Duration				20.0	T			2	0.0			55.0	15.0) -	70.0		
Change Period. ($Y+R_c$). s					+	5.3	t		+	Ę	5.3			4.4	4.9		4.4
Max Allow Head	Max Allow Headway (MAH), s					3.4	T			3	3.4			0.0	3.2		0.0
Queue Clearan	ce Time	e (g s), s			+	4.8	Ť		\neg	8	8.8				4.3		
Green Extensio	n Time	(ge),s				0.3	Т			(0.2			0.0	0.1		0.0
Phase Call Pro	bability					1.00				1	.00				1.00)	
Max Out Proba	bility					0.00				0	.10				0.05	5	
Movement Gro		sulte	_		EB		Ţ		\٨/	R			NB			SB	
Approach Move	ment	Suits			Т	R	÷	I	T		R	1	T	R		т	R
Assigned Move	ment			7	4	14	t	3	8	+	18	1	6	16	5	2	12
Adjusted Flow F	Rate (v), veh/h			61	<u> </u>	T		13	2	10	29	588	576	138	629	627
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1589)	t		155	56		449	1900	1860	1810	1900	1892
Queue Service	Time (d	q s), S			0.0	-	T		3.9	9	_	2.7	17.6	17.7	2.3	12.1	12.1
Cycle Queue C	learanc	e Time (g c), s			2.8		1		6.8	3		2.7	17.6	17.7	2.3	12.1	12.1
Green Ratio (g	/C)				0.16		Т		0.1	6		0.56	0.56	0.56	0.70	0.73	0.73
Capacity (c), v	/eh/h				313		Т		31	0		333	1068	1046	462	1385	1379
Volume-to-Cap	acity Ra	itio(X)			0.193	3			0.42	26		0.088	0.550	0.551	0.299	0.454	0.454
Back of Queue	(Q), ft/	In (95 th percentile)			52				119	.6		13.6	298	294.1	32.1	183.7	183.1
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		2.1				4.8	3		0.5	11.9	11.8	1.3	7.3	7.3
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00		4		0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), s	/veh			32.7		4		34.	2		9.2	12.5	12.5	7.5	4.9	4.9
Incremental De	Incremental Delay (d ₂), s/veh				0.1		4		0.3	3		0.5	2.0	2.1	0.1	1.1	1.1
Initial Queue Delay (d 3), s/veh					0.0		4		0.0	2		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh					32.8		4		34.	6		9.7	14.5	14.6	7.6	6.0	6.0
Level of Service (LOS)					С		4		С		-	A	В	В	A	A	A
Approach Delay, s/veh / LOS				32.8	5	С		34.6			C	14.4		В	6.2		A
Intersection Delay, s/veh / LOS							11.	.1							В		
Multimodal Results					EB		T		W	В			NB			SB	
Pedestrian LOS	Pedestrian LOS Score / LOS					В	T	2.30			В	1.71		В	1.71		В
Bicycle LOS Sc	icycle LOS Score / LOS				,	А	1	0.71	\neg		A	1.47	7	А	1.64		В