APPENDIX E: PRELIMINARY HYDROLOGY REPORT

This page intentionally left blank.

11115 Hemlock Avenue

City of Fontana, CA

Preliminary Hydrology Report

Prepared For: Prologis 17777 Center Court Dr. N, Suite 100 Cerritos, CA 90703 (652)-376-9241

> **Prepared By:** West**LAND** Group, Inc. 4150 Concours St., Suite 100 Ontario, CA 91764 (909)-989-9789

TABLE OF CONTENTS

1.	INTRODUCTION		. 1
2.	EXISTING SITE D	ESCRIPTION	. 1
	2.1.	Existing Site Topography & Hydrologic Patterns	1
3.	PROJECT SITE DI	ESCRIPTION	. 1
	3.1.	Project Description & Hydrologic Patterns	1
4.	Results & Ana	LYSIS	. 2
	4.1.	Methodology	2
	4.2.	Hydrology Results & Analysis	2
5.	CONCLUSION		. 4

APPENDICIES

APPENDIX A HYDROLOGY EXHIBITS
Pre-Development Drainage Map
Post-Development Drainage Map
APPENDIX B
Pre-Development Conditions
Post-Development Conditions
APPENDIX C
Pre-Development Conditions
Post-Development Conditions
APPENDIX D
Soils Map
NOAA ATLAS 14 DATA
Appendix EInfiltration Report

1. INTRODUCTION

The purpose of this study is to demonstrate that the proposed project site can be designed to provide adequate flood protection without adversely impacting existing off-site drainage systems or adjacent properties. The scope of this analysis includes the pre-developed and post-developed runoff analysis.

2. EXISTING SITE DESCRIPTION

2.1. EXISTING SITE TOPOGRAPHY & HYDROLOGIC PATTERNS

The project site is located on Hemlock Avenue, approximately 750-ft north of Jurupa Avenue in the City of Fontana, County of San Bernardino. The site is currently bounded to the north by existing commercial developments, to the east by Beech Avenue, to the south by an industrial development, and to the west by Hemlock Avenue.

The total area, after dedication, of the project site is 37.40 acres. The site was once utilized as a mobile trailer storage yard. The site is currently vacant with two existing buildings remaining to be demolished. Ground surface cover throughout the majority of the site consists of decomposed granite with areas of asphalt concrete pavements surrounding the existing buildings. Most of the northern side of the site consists of Portland cement concrete. Landscape planters are present along the west and east property lines of the site.

The site consists of two (2) drainage areas in the existing condition: Drainage Area A (DA-A) and Drainage Area B (DA-B). The natural drainage pattern for DA-A in the existing condition is northeast to southwest. Stormwater sheet flow towards an existing gutter adjacent to the existing screen wall along the west property line. Openings underneath the screen wall are located at the west-central area and southwest corner of the site to allow stormwater to discharge onto Hemlock Avenue. Runoff ultimately is captured by the existing street catch basins, which is connected to an existing 39-inch public storm drain system in Hemlock Avenue.

The natural drainage pattern for DA-B in the existing condition is northwest to southeast. Stormwater sheet flow towards an existing gutter adjacent to the existing screen wall along the east property line. There is an opening underneath the screen wall located at southeast corner of the site to allow stormwater to discharge onto Beech Avenue. Runoff ultimately is captured by the existing street catch basins, which is connected to an existing 42-inch public storm drain system in Beech Avenue. See Figure 1 for the pre-development drainage map.

3. **PROJECT SITE DESCRIPTION**

3.1. PROJECT DESCRIPTION & HYDROLOGIC PATTERNS

The envisioned development is a proposed industrial facility with a proposed building of approximately 750,000 square feet. Proposed auto parking spaces are located south of the site, and trailer parking spaces are located west and east of the site. Docking areas are located west and east of the proposed building. Open landscape planter areas are proposed around the perimeter of the site.

The proposed development will alter the natural drainage pattern due to grading feasibility of the proposed development, however, the point of connection into the existing public storm system will be maintained. Surface runoff will be captured by a series of proposed on-site catch basins and into the proposed on-site storm drainage system. Stormwater from building roof areas will be captured by roof leaders and discharge onto the ground surface and into the proposed catch basins. The proposed on-site storm drain systems will convey the flows into two (2) proposed underground infiltration chambers. These chamber systems will be designed to meet the project's water

quality requirements and provide sufficient storage for the increase stormwater volume based on the proposed development of the site. In a large event, stormwater will bypass the chamber system and gravity flow into the existing public storm drain systems. The west half of the site will ultimately discharge into the existing 39-inch public storm drain system in Hemlock Avenue. The east half of the site will ultimately discharge into the existing 42-inch public storm drain system in Beech Avenue.

4. **RESULTS & ANALYSIS**

4.1. METHODOLOGY

The proposed drainage areas were analyzed using the San Bernardino (SB) County Hydrology Manual for the 100year storm event. The main methods used for this project were the Rational Method and Synthetic Unit Hydrograph Method. Civil Design software was used to compute the data. Solving for the Rational Method returns the peak flow rate. Unit Hydrograph analysis will determine the total volume generated from a storm event.

According to the City of Fontana Soils Map, the site is entirely composed of type A soil (See Appendix D). The proposed land use was analyzed as commercial for both the pre- and post-development condition. According to the county's manual, Antecedent Moisture Condition (AMC) I is used for the 2-year storm event and AMC III was used for the 100-year storm event in order to give more confidence to mitigate any increase runoff, if needed.

For the rational method analysis, the runoff coefficient is determined by the land use for each condition. The rainfall intensities are based on the time of concentration for each drainage area and the intensity-duration curves provided in the county's manual. The flow lengths and terrain elevations were determined using existing topography for the pre-development condition and the conceptual grading plans for the post-development condition.

For the unit hydrograph analysis, the lag time was determined by using the time of concentration based on the rational method analysis. Rainfall depths were obtained from the National Oceanic and Atmospheric Administration (NOAA) Point Precipitation Frequency Estimates. The rainfall depth data are included in Appendix D. The rainfall used in the hydrology calculations are summarized on Table 4.1.

Table 4.1: Rainfall Depths			
Storm Event & Duration	Rainfall Depth (inches)		
2-Year, 1-Hour	0.518		
2-Year, 6-Hour	1.36		
2-Year, 24-Hour	2.46		
100-Year, 1-Hour	1.33		
100-Year, 6-Hour	3.11		
100-Year, 24-Hour	5.69		

4.2. HYDROLOGY RESULTS & ANALYSIS

The complete rational method analysis and results are included in Appendix B. The complete unit hydrograph analysis and results are included in Appendix C. The tables below provide a summary of the peak flow rate and runoff volume for the pre-developed and post-developed condition for the 2- and 100-year storm.

Table 4.2.1: Pre-Development Hydrology Summary Table						
Storm Area Tc Flow F		Flow Rate (cfs)	Volume (cf)			
Event	(Acres)	(min.)	n.) (Rational Method) (Unit Hydrograph)			
Drainage Area A						
2-Year	20.10	12.62	11.44			
100-Year	100-Year 29.19		59.13	330,220		
Drainage Area B						
2-Year	0 22	10.10	1.18			
100-Year	100-Year 8.22 18.19		14.91	57,534		

Table 4.2.2: Post-Development Hydrology Summary Table					
Storm Area Tc		Тс	Flow Rate (cfs)	Volume (cf)	
Event	(Acres)) (min.) (Rational Method) (Unit Hydrograph)		(Unit Hydrograph)	
Drainage Area A					
2-Year	24 47	10.94	30.61		
100-Year	24.47	10.84	82.55	444,521	
Drainage Area B					
2-Year	12.04	10.00	16.57		
100-Year 12.94 10.68		44.07	240,687		

Table 4.2.3: Result Analysis Summary Table			
	Drainage Area A		
	Total Area = 1,065,855 SF (24.47 Acres)		
	Q100, PRE = 59.13 CFS		
	Q100, POST = 82.55 CFS		
	ΔQ ₁₀₀ = + 23.42 CFS		
	ΔV ₁₀₀ = 114,301 CF		
	DCV = 93,857 CF (See Water Quality Management Plan)		
	DCV > ΔV ₁₀₀ 114,301 CF = Site Design Storage Requirement		
Hydrology Results &	Volume Provided = 114,337 CF (Underground Infiltration Chamber System A)		
Analysis Summary			
Table:	Drainage Area B		
	Total Area = 563,558 (12.94 Acres)		
	Q100, PRE = 14.81 CFS		
	Q100, POST = 44.07 CFS		
	ΔQ ₁₀₀ = + 29.26 CFS		
	ΔV ₁₀₀ = 182,804 CF		
	DCV = 52,687 CF (See Water Quality Management Plan)		
	DCV > ΔV ₁₀₀ 182,804 CF = Site Design Storage Requirement		
	Volume Provided = 183,014 CF (Underground Infiltration Chamber System B)		

Based on the 100-year rational method analysis, the post-development flow rate increased compare to the predevelopment flow rate. Furthermore, the post-development runoff volume increased compare to the predevelopment runoff volume. The increase in flow rate and runoff volume was a result from increase in impervious area.

To mitigate the increase storm runoff volume, two (2) underground infiltration chambers are proposed for the project. The minimum storage volume of each chamber was determined by the difference between the post-development and pre-development runoff volume for the 100-year storm event. These chamber systems will also be designed to meet water quality requirements. This strategy will reduce any potential impacts to the downstream off-site storm drain system and give more confidence to mitigate the increase in runoff. Furthermore, the proposed chamber system will mitigate the increase drainage area for Drainage Area B, which runoff ultimately discharge into the existing 42-inch public storm drain system in Beech Avenue.

5. CONCLUSION

The proposed development would not create or contribute runoff that would exceed the capacity of the existing downstream storm drain system. Furthermore, the underground infiltration systems will be designed to accommodate the 100-year storm event and would not exceed the flow rates and runoff volumes generated by the existing condition. Once construction is complete, there would not be any substantial increase in flood boundaries, levels or frequencies in any areas outside the development. The hydrologic analyses and calculations were designed in accordance with the San Bernardino County Hydrology Manual. The results from the analysis will be the basis for the grading and on-site storm-drain construction documents for the project.

Evaluation of the appropriateness of guidelines and the accuracy of County data was beyond the scope of this study. Usage of this report is limited to address the purpose and scope previously defined by the project owner. The contents of this report are professional opinion and as such, are not to be considered a guaranty or warranty.

6. **R**EFERENCES

- 1. City of Fontana Water Quality Management Plan Handbook dated September 2016
- 2. National Oceanic and Atmospheric Administration (NOAA) Atlas 14 Point Precipitation Frequency Estimates
- 3. San Bernardino County Hydrology Manual dated August 1986

APPENDIX A

HYDROLOGY EXHIBITS

SUB-DRAINAGE AREA IDENTIFIER FLOW ARROW SURFACE FLOW NODE

ABBREVIATIONS

CF CUBIC FEET CL OR € CENTERLINE DRAINAGE AREA DA EXISTING SURFACE ELEVATION ES EXISTING ΕX HOUR HR INCH/INCHES IN INVERT ELEVATION INV LENGTH RIGHT OF WAY R/W PROPERTY LINE PL OR PL PROP PROPOSED SD STORM DRAIN TYP TYPICAL ULT ULTIMATE VOLUME WIDTH

PROJECT SITE SUMMARY

SITE AREA:	29.19 ACRE (AREA A) 8.22 ACRE (AREA B)			
SOIL GROUP:	A	(PER USDA WEB SOIL SURVEY)		
IMPERVIOUS:	34%	(PRE-DEVELOPMENT)		
ISOHYETALS:	0.518" 1.33"	(2–YEAR 1 HOUR) (100–YEAR 1 HOUR)		
CN NUMBER:	32	(SOIL GROUP A)		
FREQUENCY:	100 YEAR	(FOR STORM DRAIN DESIGN)		
METHOD: SAN BERNARDINO COUNTY HYDROLOGY MA				

GENERAL NOTES

- 1. SEE PRELIMINARY HYDROLOGY REPORT, PREPARED BY WESTLAND GROUP, FOR THE COMPLETE PRE-DEVELOPMENT HYDROLOGY CALCULATIONS.
- 2. CALCULATIONS WERE BASED ON THE REQUIREMENTS ON THE SAN BERNARDINO HYDROLOGY MANUAL FOR 100 YEAR STORM.
- 3. ALL EXISTING ELEVATIONS AND INVERT ELEVATIONS ARE APPROXIMATE.
- EXISTING TOPOGRAPHY INFORMATION AS SHOWN ON THIS DRAWING IS BASED ON THE TOPOGRAPHIC AERIAL SURVEY BY WESTLAND GROUP INC,. DATED AUGUST 10TH, 2022. 4.

HYDROLOGY SUMMARY TABLE

AREA A

SUBAREAS ID	RUNOFF COEFFICIENT "C"	TIME OF CONC. "Tc" (MIN.)	RAINFALL INTENSITY "I" (INCH/HOUR)	DRAINAGE AREA (AC)	RUNOFF FLOW RATE "Q ₁₀₀ " (CFS)
A1	0.881	10.65	3.752	5.03	16.63
A2	0.879	12.51	3.407	4.77	12.73
A3	0.665	18.32	2.710	4.37	7.88
A4	0.651	20.20	2.556	15.01	24.37
TOTAL:	0.720	13.63	3.237	29.19	59.13

AREA B

SUBAREAS ID	RUNOFF	TIME OF CONC.	RAINFALL INTENSITY	DRAINAGE AREA	RUNOFF FLOW RATE
	COEFFICIENT "C"	"Tc" (MIN.)	"I" (INCH/HOUR)	(AC)	"Q ₁₀₀ " (CFS)
B1	0.666	18.19	2.722	8.22	14.91

SURFACE FLOW NODE

PROJECT SITE SUMMARY

SITE AREA:	24.46 ACRE (AREA A) 12.94 ACRE (AREA B)			
SOIL GROUP:	А	(PER USDA WEB SOIL SURVEY)		
IMPERVIOUS:	89%	(POST-DEVELOPMENT)		
ISOHYETALS:	0.518" 1.33"	(2–YEAR 1 HOUR) (100–YEAR 1 HOUR)		
CN NUMBER:	32	(SOIL GROUP A)		
FREQUENCY:	100 YEAR	(FOR STORM DRAIN DESIGN)		
METHOD:	SAN BERNARDINO COUNTY HYDROLOGY MANUAL			

3.0

ABBREVIATIONS

)F	CUBIC FEET
LOR 🖗	CENTERLINE
MP	CORRUGATED METAL PIPE
A	DRAINAGE AREA
X	EXISTING
S	FINISHED SURFACE ELEVATION
IR	HOUR
Ν	INCH/INCHES
٧V	INVERT ELEVATION
	LENGTH
R/W	RIGHT OF WAY
LOR P	PROPERTY LINE
ROP	PROPOSED
SD	STORM DRAIN
ΥP	TYPICAL
JLT	ULTIMATE
/	VOLUME
V	WIDTH

GENERAL NOTES

- 1. SEE PRELIMINARY HYDROLOGY REPORT, PREPARED BY WESTLAND GROUP, FOR THE COMPLETE POST-DEVELOPMENT HYDROLOGY CALCULATIONS.
- CALCULATIONS WERE BASED ON THE REQUIREMENTS ON THE SAN BERNARDINO HYDROLOGY MANUAL FOR 100 YEAR STORM.
- 3. PROPOSED ON-SITE DRAINAGE SYSTEM LAYOUT IS PRELIMINARY.
- 4. ALL FINISH ELEVATIONS AND INVERT ELEVATIONS ARE APPROXIMATE.

HYDROLOGY SUMMARY TABLE

AREA A

SUBAREAS ID	RUNOFF COEFFICIENT "C"	TIME OF CONC. "Tc" (MIN.)	RAINFALL INTENSITY "I" (INCH/HOUR)	DRAINAGE AREA (AC)	RUNOFF FLOW RATE "Q ₁₀₀ " (CFS)
A1	0.851	5.17	5.787	0.38	1.87
A2	0.851	5.45	5.610	0.37	1.77
A3	0.850	5.78	5.416	0.42	1.94
A4	0.835	8.71	4.235	0.78	2.76
A5	0.873	7.42	4.661	1.78	7.24
A6	0.892	10.84	3.714	13.04	43.22
Α7	0.825	6.89	4.872	0.42	1.69
A8	0.876	9.28	4.076	2.90	10.35
A9	0.884	10.14	3.864	2.24	7.65
A10	0.858	7.83	4.513	0.97	3.76
A11	0.866	6.98	4.837	0.32	3.48
A12	0.896	4.93	5.957	0.83	1.71
TOTAL:	0.880	10.84	3.714	24.46	82.55

AREA B

SUBAREAS ID	RUNOFF COEFFICIENT "C"	TIME OF CONC. "Tc" (MIN.)	RAINFALL INTENSITY "I" (INCH/HOUR)	DRAINAGE AREA (AC)	RUNOFF FLOW RATE "Q ₁₀₀ " (CFS)
B1	0.861	5.42	5.627	1.92	9.30
B2	0.891	10.68	3.746	11.02	36.77
TOTAL:	0.88	10.68	3.746	12.94	44.07

UNDERGROUND INFILTRATION CHAMBER SUMMARY

CHAMBER SYSTEM	RUNOFF VOLUME "V ₁₀₀ " (CF)	STORAGE VOLUME (CF)	MAXIMUM PONDING DEPTH (FT)
SYSTEM A	114,301	114,337	9.0
SYSTEM B	182,804	183,014	9.0

APPENDIX B

RATIONAL METHOD ANALYSIS (2/100 YEAR STORM)

RATIONAL METHOD ANALYSIS

PRE-DEVELOPMENT CONDITIONS

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVENUE 2 YEAR, RATIONAL METHOD PRE-CONDITION, AREA A _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: Storm year = 2.00 1 hour rainfall = 0.518 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1 Process from Point/Station 1.000 to Point/Station 1.100 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr) Initial subarea data: Initial area flow distance = 900.000(Ft.) Top (of initial area) elevation = 1000.910(Ft.) Bottom (of initial area) elevation = 987.110(Ft.) Difference in elevation = 13.800(Ft.) Slope = 0.01533 s(%)= 1.53 $TC = k(0.304)*[(length^3)/(elevation change)]^0.2$ Initial area time of concentration = 10.652 min. Rainfall intensity = 1.461(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.838 Subarea runoff = 6.163(CFS) Total initial stream area = 5.030(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.100(In/Hr) Process from Point/Station 1.100 to Point/Station 1.200 **** IMPROVED CHANNEL TRAVEL TIME ****

Upstream point elevation = 987.110(Ft.)

```
Downstream point elevation = 980.950(Ft.)
Channel length thru subarea = 434.000(Ft.)
                  = 10.000(Ft.)
Channel base width
Slope or 'Z' of left channel bank = 100.000
Slope or 'Z' of right channel bank = 100.000
Estimated mean flow rate at midpoint of channel = 8.390(CFS)
Manning's 'N' = 0.011
Maximum depth of channel =
                           1.000(Ft.)
Flow(q) thru subarea = 8.390(CFS)
Depth of flow = 0.125(Ft.), Average velocity = 2.993(Ft/s)
Channel flow top width = 34.946(Ft.)
Flow Velocity = 2.99(Ft/s)
Travel time = 2.42 min.
Time of concentration = 13.07 min.
Critical depth =
                 0.170(Ft.)
Adding area flow to channel
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)=
                                                0.100(In/Hr)
Rainfall intensity =
                     1.293(In/Hr) for a
                                          2.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.830
Subarea runoff =
                  4.356(CFS) for
                                   4.770(Ac.)
Total runoff =
                10.519(CFS)
Effective area this stream =
                               9.80(Ac.)
Total Study Area (Main Stream No. 1) =
                                        9.80(Ac.)
Area averaged Fm value = 0.100(In/Hr)
Depth of flow = 0.139(Ft.), Average velocity = 3.177(Ft/s)
Critical depth =
                   0.189(Ft.)
Process from Point/Station 1.200 to Point/Station
                                                        1.500
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 966.350(Ft.)
Downstream point/station elevation = 959.400(Ft.)
Pipe length = 623.08(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 10.519(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 10.519(CFS)
Normal flow depth in pipe = 13.97(In.)
Flow top width inside pipe = 15.01(In.)
Critical Depth = 14.95(In.)
Pipe flow velocity = 7.14(Ft/s)
Travel time through pipe = 1.45 min.
Time of concentration (TC) = 14.52 min.
Process from Point/Station 1.200 to Point/Station
                                                        1.500
**** CONFLUENCE OF MAIN STREAMS ****
```

```
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 9.800(Ac.)
```

```
Runoff from this stream =
                         10.519(CFS)
Time of concentration = 14.52 min.
Rainfall intensity = 1.213(In/Hr)
Area averaged loss rate (Fm) = 0.1000(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Program is now starting with Main Stream No. 2
Process from Point/Station
                            1.300 to Point/Station
                                                         1,400
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.9000 Max loss rate(Fm)=
                                                0.900(In/Hr)
Initial subarea data:
Initial area flow distance = 900.000(Ft.)
Top (of initial area) elevation = 994.000(Ft.)
Bottom (of initial area) elevation = 983.350(Ft.)
                        10.650(Ft.)
Difference in elevation =
Slope =
         0.01183 s(%)=
                            1.18
TC = k(0.496)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 18.321 min.
Rainfall intensity = 1.055(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.133
Subarea runoff =
                  0.612(CFS)
Total initial stream area =
                               4.370(Ac.)
Pervious area fraction = 0.900
Initial area Fm value = 0.900(In/Hr)
Process from Point/Station
                              1.400 to Point/Station
                                                         1.500
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 983.350(Ft.)
Downstream point elevation = 971.400(Ft.)
Channel length thru subarea = 967.000(Ft.)
Channel base width
                    = 1.500(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 2.667
Estimated mean flow rate at midpoint of channel = 0.644(CFS)
Manning's 'N'
              = 0.015
Maximum depth of channel =
                           0.500(Ft.)
Flow(q) thru subarea = 0.644(CFS)
Depth of flow = 0.144(Ft.), Average velocity = 2.654(Ft/s)
Channel flow top width = 1.883(Ft.)
Flow Velocity =
               2.65(Ft/s)
Travel time = 6.07 min.
Time of concentration = 24.39 min.
Critical depth =
                   0.170(Ft.)
Adding area flow to channel
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.9000
                          Max loss rate(Fm)=
                                                 0.900(In/Hr)
Rainfall intensity = 0.889(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area, (total area with modified
```

```
rational method)(Q=KCIA) is C = 0.090
Subarea runoff =
                  0.939(CFS) for 15.010(Ac.)
Total runoff =
                  1.550(CFS)
Effective area this stream =
                                19.38(Ac.)
Total Study Area (Main Stream No. 2) =
                                          29.18(Ac.)
Area averaged Fm value = 0.900(In/Hr)
Depth of flow = 0.241(Ft.), Average velocity = 3.525(Ft/s)
Critical depth =
                    0.293(Ft.)
Process from Point/Station 1.400 to Point/Station
                                                           1.500
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                     19.380(Ac.)
Runoff from this stream =
                            1.550(CFS)
Time of concentration = 24.39 min.
Rainfall intensity =
                      0.889(In/Hr)
Area averaged loss rate (Fm) = 0.9000(In/Hr)
Area averaged Pervious ratio (Ap) = 0.9000
Summary of stream data:
Stream Flow rate
                  Area
                          тс
                                         Rainfall Intensity
                                Fm
No.
       (CFS) (Ac.)
                         (min) (In/Hr)
                                           (In/Hr)
     10.52
              9.800
                        14.52
                                0.100
1
                                           1.213
2
      1.55
             19.380
                        24.39
                                0.900
                                           0.889
Qmax(1) =
          1.000 *
                    1.000 *
                              10.519) +
Fm Value exceeds Rainfall Intensity in one of the streams
Summing flow rates for conflunce solution
          1.000 *
                    0.595 *
                               1.550) + =
                                              11.442
Qmax(2) =
          0.709 *
                    1.000 *
                              10.519) +
                    1.000 *
          1.000 *
                              1.550) + =
                                               9.004
Total of 2 main streams to confluence:
Flow rates before confluence point:
     11.519
                2.550
Maximum flow rates at confluence using above data:
      11.442
                  9.004
Area of streams before confluence:
       9.800
                 19.380
Effective area values after confluence:
      21.338
                  29.180
Results of confluence:
Total flow rate = 11.442(CFS)
Time of concentration =
                         14.523 min.
Effective stream area after confluence =
                                          21.338(Ac.)
Study area average Pervious fraction(Ap) = 0.631
Study area average soil loss rate(Fm) = 0.631(In/Hr)
Study area total =
                      29.18(Ac.)
End of computations, Total Study Area =
                                             29.18 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
```

effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.631 Area averaged SCS curve number = 32.0

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVENUE 2 YEAR, RATIONAL METHOD PRE-CONDITION, AREA B _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: Storm year = 2.00 1 hour rainfall = 0.518 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1 Process from Point/Station2.200 to Point/Station2.300**** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60 Pervious ratio(Ap) = 0.9000 Max loss rate(Fm)= 0.900(In/Hr) Initial subarea data: Initial area flow distance = 973.000(Ft.) Top (of initial area) elevation = 994.000(Ft.) Bottom (of initial area) elevation = 980.050(Ft.) Difference in elevation = 13.950(Ft.) Slope = 0.01434 s(%)= 1.43 TC = $k(0.496)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 18.189 min. Rainfall intensity = 1.060(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.136 Subarea runoff = 1.184(CFS) Total initial stream area = 8.220(Ac.) Pervious area fraction = 0.900 Initial area Fm value = 0.900(In/Hr) End of computations, Total Study Area = 8.22 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.900

Area averaged pervious area fraction(Ap) = 0.90 Area averaged SCS curve number = 32.0

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVENUE 100 YEAR, RATIONAL METHOD PRE-CONDITION, AREA A _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.330 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station 1.000 to Point/Station 1.100 **** INITIAL AREA EVALUATION **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr) Initial subarea data: Initial area flow distance = 900.000(Ft.) Top (of initial area) elevation = 1000.910(Ft.) Bottom (of initial area) elevation = 987.110(Ft.) Difference in elevation = 13.800(Ft.) Slope = 0.01533 s(%)= 1.53 TC = $k(0.304)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 10.652 min. Rainfall intensity = 3.752(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.881 Subarea runoff = 16.630(CFS) Total initial stream area = 5.030(Ac.) Pervious area fraction = 0.100 Initial area Fm value = 0.079(In/Hr) Process from Point/Station 1.100 to Point/Station 1.200 **** IMPROVED CHANNEL TRAVEL TIME ****

Upstream point elevation = 987.110(Ft.)

```
Downstream point elevation = 980.950(Ft.)
Channel length thru subarea = 434.000(Ft.)
                  = 10.000(Ft.)
Channel base width
Slope or 'Z' of left channel bank = 100.000
Slope or 'Z' of right channel bank = 100.000
Estimated mean flow rate at midpoint of channel = 23.020(CFS)
Manning's 'N' = 0.011
Maximum depth of channel =
                           1.000(Ft.)
Flow(q) thru subarea = 23.020(CFS)
Depth of flow = 0.198(Ft.), Average velocity = 3.895(Ft/s)
Channel flow top width = 49.640(Ft.)
Flow Velocity = 3.89(Ft/s)
Travel time = 1.86 min.
Time of concentration = 12.51 min.
Critical depth = 0.273(Ft.)
Adding area flow to channel
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)=
                                                0.079(In/Hr)
                     3.407(In/Hr) for a 100.0 year storm
Rainfall intensity =
Effective runoff coefficient used for area, (total area with modified
rational method)(Q=KCIA) is C = 0.879
Subarea runoff =
                 12.729(CFS) for
                                   4.770(Ac.)
Total runoff =
                29.359(CFS)
Effective area this stream =
                               9.80(Ac.)
                                        9.80(Ac.)
Total Study Area (Main Stream No. 1) =
Area averaged Fm value = 0.079(In/Hr)
Depth of flow = 0.221(Ft.), Average velocity = 4.146(Ft/s)
Critical depth =
                   0.305(Ft.)
Process from Point/Station 1.200 to Point/Station
                                                        1.500
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 966.350(Ft.)
Downstream point/station elevation = 959.400(Ft.)
Pipe length = 623.08(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 29.359(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 29.359(CFS)
Normal flow depth in pipe = 19.97(In.)
Flow top width inside pipe = 23.70(In.)
Critical Depth = 22.55(In.)
Pipe flow velocity = 9.31(Ft/s)
Travel time through pipe = 1.12 min.
Time of concentration (TC) = 13.63 min.
Process from Point/Station 1.200 to Point/Station
                                                        1.500
**** CONFLUENCE OF MAIN STREAMS ****
```

The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.800(Ac.)

```
Runoff from this stream =
                         29.359(CFS)
Time of concentration = 13.63 min.
Rainfall intensity =
                    3.237(In/Hr)
Area averaged loss rate (Fm) = 0.0785(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Program is now starting with Main Stream No. 2
Process from Point/Station
                             1.300 to Point/Station
                                                          1,400
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.9000
                           Max loss rate(Fm)=
                                                  0.707(In/Hr)
Initial subarea data:
Initial area flow distance = 900.000(Ft.)
Top (of initial area) elevation = 994.000(Ft.)
Bottom (of initial area) elevation = 983.350(Ft.)
                        10.650(Ft.)
Difference in elevation =
Slope =
         0.01183 s(%)=
                             1.18
TC = k(0.496)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 18.321 min.
Rainfall intensity = 2.710(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.665
Subarea runoff =
                   7.879(CFS)
Total initial stream area =
                               4.370(Ac.)
Pervious area fraction = 0.900
Initial area Fm value =
                        0.707(In/Hr)
Process from Point/Station
                              1.400 to Point/Station
                                                          1.500
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation =
                          983.350(Ft.)
Downstream point elevation = 971.400(Ft.)
Channel length thru subarea = 967.000(Ft.)
Channel base width
                    =
                          1.500(Ft.)
Slope or 'Z' of left channel bank = 0.000
Slope or 'Z' of right channel bank = 2.667
Estimated mean flow rate at midpoint of channel = 20.111(CFS)
Manning's 'N'
               = 0.015
Maximum depth of channel =
                            0.500(Ft.)
Flow(q) thru subarea = 20.111(CFS)
Depth of flow = 0.946(Ft.), Average velocity = 8.564(Ft/s)
!!Warning: Water is above left or right bank elevations
Channel flow top width =
                        2.834(Ft.)
Flow Velocity =
                8.56(Ft/s)
Travel time =
                1.88 min.
Time of concentration = 20.20 min.
Critical depth =
                  1.281(Ft.)
ERROR - Channel depth exceeds maximum allowable depth
Adding area flow to channel
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.9000 Max loss rate(Fm)=
                                                  0.707(In/Hr)
```

Rainfall intensity = 2.556(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area, (total area with modified rational method)(Q=KCIA) is C = 0.651 Subarea runoff = 24.371(CFS) for 15.010(Ac.) Total runoff = 32.250(CFS) Effective area this stream = 19.38(Ac.) Total Study Area (Main Stream No. 2) = 29.18(Ac.) Area averaged Fm value = 0.707(In/Hr) Depth of flow = 1.218(Ft.), Average velocity = 10.345(Ft/s) !!Warning: Water is above left or right bank elevations ERROR - Channel depth exceeds maximum allowable depth Critical depth = 1.719(Ft.) Process from Point/Station 1.400 to Point/Station 1.500 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 19.380(Ac.) Runoff from this stream = 32.250(CFS) Time of concentration = 20.20 min. Rainfall intensity = 2.556(In/Hr) Area averaged loss rate (Fm) = 0.7066(In/Hr) Area averaged Pervious ratio (Ap) = 0.9000 Summary of stream data: Stream Flow rate Rainfall Intensity Area тс Fm (CFS) (Ac.) (min) (In/Hr) No. (In/Hr) 29.36 1 9.800 13.63 0.079 3.237 2 32.25 19.380 20.20 0.707 2.556 Qmax(1) =29.359) + 1.000 * 1.000 * 0.674 * 1.368 * 32.250) + = 59.125 Qmax(2) =0.784 * 1.000 * 29.359) +1.000 * 1.000 * 32.250) + = 55.276 Total of 2 main streams to confluence: Flow rates before confluence point: 30.359 33.250 Maximum flow rates at confluence using above data: 59.125 55.276 Area of streams before confluence: 9.800 19.380 Effective area values after confluence: 22.871 29.180 Results of confluence: Total flow rate = 59.125(CFS) Time of concentration = 13.625 min. Effective stream area after confluence = 22.871(Ac.) Study area average Pervious fraction(Ap) = 0.631 Study area average soil loss rate(Fm) = 0.496(In/Hr) Study area total = 29.18(Ac.) End of computations, Total Study Area = 29.18 (Ac.) The following figures may

be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.631 Area averaged SCS curve number = 32.0

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVENUE 100 YEAR, RATIONAL METHOD PRE-CONDITION, AREA B _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.330 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station2.200 to Point/Station2.300**** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.9000 Max loss rate(Fm)= 0.707(In/Hr) Initial subarea data: Initial area flow distance = 973.000(Ft.) Top (of initial area) elevation = 994.000(Ft.) Bottom (of initial area) elevation = 980.050(Ft.) Difference in elevation = 13.950(Ft.) Slope = 0.01434 s(%)= 1.43 TC = $k(0.496)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 18.189 min. Rainfall intensity = 2.722(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.666 Subarea runoff = 14.908(CFS) Total initial stream area = 8.220(Ac.) Pervious area fraction = 0.900 Initial area Fm value = 0.707(In/Hr) End of computations, Total Study Area = 8.22 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.900Area averaged SCS curve number = 32.0

RATIONAL METHOD ANALYSIS

POST-DEVELOPMENT CONDITIONS

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 2 YEAR, RATIONAL METHOD POST-CONDITION, AREA A1 TO A6 _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: Storm year = 2.00 1 hour rainfall = 0.518 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1 Process from Point/Station3.000 to Point/Station3.100**** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.4000 Max loss rate(Fm) = 0.400(In/Hr) Initial subarea data: Initial area flow distance = 161.250(Ft.) Top (of initial area) elevation = 999.000(Ft.) Bottom (of initial area) elevation = 990.820(Ft.) Difference in elevation = 8.180(Ft.) Slope = 0.05073 s(%)= 5.07 TC = $k(0.373)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 5.174 min. Rainfall intensity = 2.254(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.740 Subarea runoff = 0.634(CFS) Total initial stream area = 0.380(Ac.) Pervious area fraction = 0.400 Initial area Fm value = 0.400(In/Hr) Process from Point/Station 3.100 to Point/Station 3.200 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 985.820(Ft.) Downstream point/station elevation = 984.570(Ft.) Pipe length = 208.52(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 0.634(CFS)

```
Nearest computed pipe diameter =
                               9.00(In.)
Calculated individual pipe flow =
                                 0.634(CFS)
Normal flow depth in pipe = 4.48(In.)
Flow top width inside pipe =
                           9.00(In.)
Critical Depth = 4.34(In.)
Pipe flow velocity = 2.89(Ft/s)
Travel time through pipe = 1.20 min.
Time of concentration (TC) = 6.38 min.
Process from Point/Station 3.100 to Point/Station
                                                      3,200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.380(Ac.)
Runoff from this stream =
                          0.634(CFS)
Time of concentration = 6.38 min.
Rainfall intensity = 1.988(In/Hr)
Area averaged loss rate (Fm) = 0.4000(In/Hr)
Area averaged Pervious ratio (Ap) = 0.4000
Program is now starting with Main Stream No. 2
Process from Point/Station 3.200 to Point/Station
                                                       3,200
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.3900 Max loss rate(Fm)= 0.390(In/Hr)
Initial subarea data:
Initial area flow distance = 163.100(Ft.)
Top (of initial area) elevation = 997.080(Ft.)
Bottom (of initial area) elevation = 990.760(Ft.)
                       6.320(Ft.)
Difference in elevation =
Slope = 0.03875 s(%)=
                           3.87
TC = k(0.371)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 5.449 min.
Rainfall intensity =
                      2.185(In/Hr) for a
                                        2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.739
Subarea runoff =
                 0.598(CFS)
Total initial stream area =
                              0.370(Ac.)
Pervious area fraction = 0.390
Initial area Fm value =
                      0.390(In/Hr)
Process from Point/Station 3.200 to Point/Station
                                                      3.200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.370(Ac.)
Runoff from this stream =
                          0.598(CFS)
Time of concentration = 5.45 min.
Rainfall intensity = 2.185(In/Hr)
Area averaged loss rate (Fm) = 0.3900(In/Hr)
```

Area averaged Pervious ratio (Ap) = 0.3900 Summary of stream data: Stream Flow rate тс Rainfall Intensity Area Fm No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 0.63 0.380 6.38 0.400 1.988 2 0.60 0.370 5.45 0.390 2.185 Qmax(1) =1.000 * 1.000 * 0.634) + 0.891 * 1.000 * 0.598) + =1,166 Qmax(2) =1.124 * 0.855 * 0.634) + 1.000 * 1.000 * 0.598) + =1.207 Total of 2 main streams to confluence: Flow rates before confluence point: 1.634 1.598 Maximum flow rates at confluence using above data: 1.166 1.207 Area of streams before confluence: 0.380 0.370 Effective area values after confluence: 0.750 0.695 Results of confluence: Total flow rate = 1.207(CFS) Time of concentration = 5.449 min. Effective stream area after confluence = 0.695(Ac.) Study area average Pervious fraction(Ap) = 0.395 Study area average soil loss rate(Fm) = 0.395(In/Hr) Study area total = 0.75(Ac.) Process from Point/Station 3.200 to Point/Station 3.300 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 984.570(Ft.) Downstream point/station elevation = 983.370(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 1.207(CFS) 9.00(In.) Nearest computed pipe diameter = Calculated individual pipe flow = 1.207(CFS) Normal flow depth in pipe = 6.95(In.) Flow top width inside pipe = 7.55(In.) Critical Depth = 6.07(In.) Pipe flow velocity = 3.30(Ft/s) Travel time through pipe = 1.01 min. Time of concentration (TC) = 6.46 min. Process from Point/Station 3.200 to Point/Station 3.300 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1

0.695(Ac.)

Stream flow area =

```
Runoff from this stream =
                          1.207(CFS)
Time of concentration =
                      6.46 min.
Rainfall intensity = 1.973(In/Hr)
Area averaged loss rate (Fm) = 0.3951(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3951
Program is now starting with Main Stream No. 2
Process from Point/Station
                              3.300 to Point/Station
                                                          3.300
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.3800
                           Max loss rate(Fm)=
                                                  0.380(In/Hr)
Initial subarea data:
Initial area flow distance = 161.380(Ft.)
Top (of initial area) elevation = 995.070(Ft.)
Bottom (of initial area) elevation = 990.650(Ft.)
                          4.420(Ft.)
Difference in elevation =
Slope =
         0.02739 s(%)=
                             2.74
TC = k(0.368)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 5.777 min.
Rainfall intensity = 2.110(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.738
Subarea runoff =
                   0.654(CFS)
Total initial stream area =
                               0.420(Ac.)
Pervious area fraction = 0.380
Initial area Fm value =
                        0.380(In/Hr)
Process from Point/Station
                              3.300 to Point/Station
                                                          3.300
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.420(Ac.)
Runoff from this stream =
                            0.654(CFS)
Time of concentration =
                        5.78 min.
Rainfall intensity =
                      2.110(In/Hr)
Area averaged loss rate (Fm) = 0.3800(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3800
Summary of stream data:
Stream Flow rate
                         тс
                                        Rainfall Intensity
                  Area
                               Fm
No.
       (CFS) (Ac.)
                         (min) (In/Hr)
                                         (In/Hr)
1
      1.21
              0.695
                        6.46
                               0.395
                                         1.973
2
      0.65
              0.420
                        5.78
                               0.380
                                         2.110
Qmax(1) =
          1.000 *
                   1.000 *
                              1.207) +
          0.921 *
                   1.000 *
                              0.654) + =
                                              1.809
Qmax(2) =
          1.087 *
                    0.894 *
                              1.207) +
          1.000 *
                   1.000 *
                              0.654) + =
                                              1.826
```

Total of 2 main streams to confluence:

```
Flow rates before confluence point:
     2.207 1.654
Maximum flow rates at confluence using above data:
      1.809 1.826
Area of streams before confluence:
      0.695 0.420
Effective area values after confluence:
      1.115
                1.041
Results of confluence:
Total flow rate = 1.826(CFS)
Time of concentration = 5.777 min.
Effective stream area after confluence = 1.041(Ac.)
Study area average Pervious fraction(Ap) = 0.389
Study area average soil loss rate(Fm) = 0.389(In/Hr)
Study area total =
                    1.11(Ac.)
Process from Point/Station 3.300 to Point/Station
                                                     3.400
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 983.370(Ft.)
Downstream point/station elevation = 981.410(Ft.)
Pipe length = 326.99(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                    1.826(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow =
                               1.826(CFS)
Normal flow depth in pipe = 7.13(In.)
Flow top width inside pipe = 11.78(In.)
Critical Depth = 6.91(In.)
Pipe flow velocity = 3.75(Ft/s)
Travel time through pipe = 1.45 min.
Time of concentration (TC) = 7.23 min.
Process from Point/Station 3.300 to Point/Station
                                                     3,400
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 1.041(Ac.)
Runoff from this stream = 1.826(CFS)
Time of concentration = 7.23 min.
Rainfall intensity = 1.844(In/Hr)
Area averaged loss rate (Fm) = 0.3894(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3894
Program is now starting with Main Stream No. 2
Process from Point/Station
                            3.400 to Point/Station
                                                     3.400
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.3900 Max loss rate(Fm)=
                                             0.390(In/Hr)
```

```
Initial subarea data:
Initial area flow distance = 346.050(Ft.)
Top (of initial area) elevation = 991.360(Ft.)
Bottom (of initial area) elevation = 985.560(Ft.)
Difference in elevation =
                          5.800(Ft.)
Slope = 0.01676 s(%)=
                             1.68
TC = k(0.371)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 8.705 min.
                                           2.0 year storm
Rainfall intensity =
                       1.649(In/Hr) for a
Effective runoff coefficient used for area (Q=KCIA) is C = 0.687
Subarea runoff = 0.884(CFS)
Total initial stream area =
                                0.780(Ac.)
Pervious area fraction = 0.390
Initial area Fm value =
                        0.390(In/Hr)
Process from Point/Station 3.400 to Point/Station
                                                          3.400
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                     0.780(Ac.)
Runoff from this stream =
                            0.884(CFS)
Time of concentration =
                      8.71 min.
Rainfall intensity = 1.649(In/Hr)
Area averaged loss rate (Fm) = 0.3900(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3900
Summary of stream data:
Stream Flow rate
                  Area
                         тс
                               Fm
                                        Rainfall Intensity
No.
      (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
1
      1.83
              1.041
                        7.23
                               0.389
                                          1.844
2
      0.88
              0.780
                        8.71
                               0.390
                                          1.649
Qmax(1) =
          1.000 *
                   1.000 *
                               1.826) +
          1.155 *
                    0.830 *
                               0.884) + =
                                              2.674
Qmax(2) =
          0.866 *
                    1.000 *
                               1.826) +
          1.000 *
                   1.000 *
                               0.884) + =
                                              2.466
Total of 2 main streams to confluence:
Flow rates before confluence point:
      2.826
                1.884
Maximum flow rates at confluence using above data:
       2.674
                 2.466
Area of streams before confluence:
       1.041 0.780
Effective area values after confluence:
       1.689
                  1.821
Results of confluence:
Total flow rate = 2.674(CFS)
                         7.229 min.
Time of concentration =
Effective stream area after confluence =
                                          1.689(Ac.)
Study area average Pervious fraction(Ap) = 0.390
Study area average soil loss rate(Fm) = 0.390(In/Hr)
Study area total =
                     1.82(Ac.)
```

```
Process from Point/Station 3.400 to Point/Station
                                                      3.500
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 981.410(Ft.)
Downstream point/station elevation = 978.760(Ft.)
Pipe length = 156.31(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                     2.674(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow =
                                2.674(CFS)
Normal flow depth in pipe = 6.54(In.)
Flow top width inside pipe =
                          11.95(In.)
Critical Depth = 8.41(In.)
Pipe flow velocity =
                    6.12(Ft/s)
Travel time through pipe = 0.43 min.
Time of concentration (TC) = 7.65 min.
Process from Point/Station 3.400 to Point/Station
                                                      3.500
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 1.689(Ac.)
Runoff from this stream =
                          2.674(CFS)
Time of concentration = 7.65 min.
Rainfall intensity = 1.782(In/Hr)
Area averaged loss rate (Fm) = 0.3897(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3897
Program is now starting with Main Stream No. 2
Process from Point/Station 3.500 to Point/Station
                                                      3.500
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1800 Max loss rate(Fm)= 0.180(In/Hr)
Initial subarea data:
Initial area flow distance = 370.380(Ft.)
Top (of initial area) elevation = 991.730(Ft.)
Bottom (of initial area) elevation = 984.280(Ft.)
                       7.450(Ft.)
Difference in elevation =
Slope = 0.02011 s(%)=
                           2.01
TC = k(0.319)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 7.420 min.
Rainfall intensity =
                     1.815(In/Hr) for a
                                        2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.811
Subarea runoff =
                 2.620(CFS)
Total initial stream area =
                              1.780(Ac.)
Pervious area fraction = 0.180
Initial area Fm value =
                      0.180(In/Hr)
```

Process from Point/Station 3.500 to Point/Station 3.500 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.780(Ac.) Runoff from this stream = 2.620(CFS) Time of concentration = 7.42 min. Rainfall intensity = 1.815(In/Hr) Area averaged loss rate (Fm) = 0.1800(In/Hr) Area averaged Pervious ratio (Ap) = 0.1800 Summary of stream data: Stream Flow rate Area TC Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 2.67 1.689 7.65 0.390 1.782 2 2.62 1.780 7.42 0.180 1.815 Qmax(1) =1.000 * 1.000 * 2.674) +1.000 * 0.979 * 2.620) + =5.240 Qmax(2) =1.024 * 0.969 * 2.674) +1.000 * 1.000 * 2.620) + =5.275 Total of 2 main streams to confluence: Flow rates before confluence point: 3.674 3.620 Maximum flow rates at confluence using above data: 5.240 5.275 Area of streams before confluence: 1.689 1.780 Effective area values after confluence: 3.469 3.417 Results of confluence: Total flow rate = 5.275(CFS) Time of concentration = 7.420 min. Effective stream area after confluence = 3.417(Ac.) Study area average Pervious fraction(Ap) = 0.282 Study area average soil loss rate(Fm) = 0.282(In/Hr) Study area total = 3.47(Ac.) Process from Point/Station 3.500 to Point/Station 3.600 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 978.760(Ft.) Downstream point/station elevation = 965.000(Ft.) Pipe length = 812.87(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.275(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 5.275(CFS) Normal flow depth in pipe = 8.61(In.) Flow top width inside pipe = 14.83(In.) Critical Depth = 11.17(In.) Pipe flow velocity = 7.23(Ft/s) Travel time through pipe = 1.87 min.

```
Process from Point/Station
                             3.500 to Point/Station
                                                        3.600
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                    3.417(Ac.)
                           5.275(CFS)
Runoff from this stream =
Time of concentration =
                       9.29 min.
Rainfall intensity =
                     1.586(In/Hr)
Area averaged loss rate (Fm) = 0.2821(In/Hr)
Area averaged Pervious ratio (Ap) = 0.2821
Program is now starting with Main Stream No. 2
Process from Point/Station
                             3.600 to Point/Station
                                                        3.600
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.0400
                          Max loss rate(Fm)=
                                                0.040(In/Hr)
Initial subarea data:
Initial area flow distance = 980.180(Ft.)
Top (of initial area) elevation = 987.140(Ft.)
Bottom (of initial area) elevation = 975.420(Ft.)
                       11.720(Ft.)
Difference in elevation =
Slope =
         0.01196 s(%)=
                           1.20
TC = k(0.284)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 10.836 min.
Rainfall intensity = 1.446(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.875
Subarea runoff =
                16.506(CFS)
Total initial stream area =
                             13.040(Ac.)
Pervious area fraction = 0.040
Initial area Fm value =
                       0.040(In/Hr)
Process from Point/Station
                             3.600 to Point/Station
                                                        3.600
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
                   13.040(Ac.)
Stream flow area =
Runoff from this stream =
                          16.506(CFS)
Time of concentration = 10.84 min.
Rainfall intensity =
                     1.446(In/Hr)
Area averaged loss rate (Fm) = 0.0400(In/Hr)
Area averaged Pervious ratio (Ap) = 0.0400
Summary of stream data:
Stream Flow rate
                        TC
                                      Rainfall Intensity
                 Area
                              Fm
No.
      (CFS) (Ac.)
                        (min) (In/Hr)
                                        (In/Hr)
```

Time of concentration (TC) = 9.29 min.

3.417 9.29 0.282 1.586 1 5.27 16.51 13.040 0.040 1.446 2 10.84 Qmax(1) =1.000 * 1.000 * 5.275) + 1.099 * 0.858 * 16.506) + =20.835 Qmax(2) =0.893 * 1.000 * 5.275) + 1.000 * 1.000 * 16.506) + =21.215 Total of 2 main streams to confluence: Flow rates before confluence point: 6.275 17.506 Maximum flow rates at confluence using above data: 20.835 21.215 Area of streams before confluence: 3.417 13.040 Effective area values after confluence: 14,600 16.457 Results of confluence: Total flow rate = 21.215(CFS) Time of concentration = 10.836 min. Effective stream area after confluence = 16.457(Ac.) Study area average Pervious fraction(Ap) = 0.090 Study area average soil loss rate(Fm) = 0.090(In/Hr) Study area total = 16.46(Ac.) End of computations, Total Study Area = 16.77 (Ac.)

The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

```
Area averaged pervious area fraction(Ap) = 0.096
Area averaged SCS curve number = 32.0
```
San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 2 YEAR, RATIONAL METHOD POST-CONDITION, AREA A7 TO A10 _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: Storm year = 2.00 1 hour rainfall = 0.518 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1 Process from Point/Station3.700 to Point/Station3.800**** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60 Pervious ratio(Ap) = 0.5200 Max loss rate(Fm) = 0.520(In/Hr) Initial subarea data: Initial area flow distance = 160.360(Ft.) Top (of initial area) elevation = 983.600(Ft.) Bottom (of initial area) elevation = 980.790(Ft.) Difference in elevation = 2.810(Ft.) Slope = 0.01752 s(%)= 1.75 TC = $k(0.403)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 6.892 min. Rainfall intensity = 1.898(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.653 Subarea runoff = 0.521(CFS) Total initial stream area = 0.420(Ac.) Pervious area fraction = 0.520 Initial area Fm value = 0.520(In/Hr) Process from Point/Station 3.800 to Point/Station 3.900 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 975.790(Ft.) Downstream point/station elevation = 972.540(Ft.) Pipe length = 371.61(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 0.521(CFS)

```
Nearest computed pipe diameter =
                                6.00(In.)
Calculated individual pipe flow =
                                 0.521(CFS)
Normal flow depth in pipe = 4.88(In.)
Flow top width inside pipe =
                           4.68(In.)
Critical Depth = 4.42(In.)
Pipe flow velocity = 3.05(Ft/s)
Travel time through pipe = 2.03 min.
Time of concentration (TC) = 8.92 min.
Process from Point/Station 3.800 to Point/Station
                                                       3.900
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                   0.420(Ac.)
Runoff from this stream =
                          0.521(CFS)
Time of concentration = 8.92 min.
Rainfall intensity = 1.625(In/Hr)
Area averaged loss rate (Fm) = 0.5200(In/Hr)
Area averaged Pervious ratio (Ap) = 0.5200
Program is now starting with Main Stream No. 2
Process from Point/Station 3.900 to Point/Station
                                                       3,900
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1400 Max loss rate(Fm)= 0.140(In/Hr)
Initial subarea data:
Initial area flow distance = 534.460(Ft.)
Top (of initial area) elevation = 987.610(Ft.)
Bottom (of initial area) elevation = 981.360(Ft.)
                         6.250(Ft.)
Difference in elevation =
Slope = 0.01169 s(%)=
                           1.17
TC = k(0.309)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 9.280 min.
Rainfall intensity =
                     1.587(In/Hr) for a
                                        2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.821
Subarea runoff =
                 3.778(CFS)
Total initial stream area =
                              2.900(Ac.)
Pervious area fraction = 0.140
Initial area Fm value =
                       0.140(In/Hr)
Process from Point/Station 3.900 to Point/Station
                                                       3.900
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
                    2.900(Ac.)
Stream flow area =
Runoff from this stream =
                          3.778(CFS)
Time of concentration = 9.28 min.
Rainfall intensity = 1.587(In/Hr)
Area averaged loss rate (Fm) = 0.1400(In/Hr)
```

Area averaged Pervious ratio (Ap) = 0.1400 Summary of stream data: Stream Flow rate тс Rainfall Intensity Area Fm No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 8.92 1 0.52 0.420 0.520 1.625 2 3.78 2.900 9.28 0.140 1.587 Qmax(1) =1.000 * 1.000 * 0.521) + 1.026 * 0.962 * 3.778) + =4.248 Qmax(2) =0.966 * 1.000 * 0.521) +1.000 * 1.000 * 3.778) + =4.281 Total of 2 main streams to confluence: Flow rates before confluence point: 1.521 4.778 Maximum flow rates at confluence using above data: 4.248 4.281 Area of streams before confluence: 0.420 2.900 Effective area values after confluence: 3.209 3.320 Results of confluence: Total flow rate = 4.281(CFS) Time of concentration = 9.280 min. Effective stream area after confluence = 3.320(Ac.) Study area average Pervious fraction(Ap) = 0.188 Study area average soil loss rate(Fm) = 0.188(In/Hr) Study area total = 3.32(Ac.) Process from Point/Station 3.900 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 972.540(Ft.) Downstream point/station elevation = 968.390(Ft.) Pipe length = 475.00(Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 4.281(CFS) 15.00(In.) Nearest computed pipe diameter = Calculated individual pipe flow = 4.281(CFS) Normal flow depth in pipe = 9.33(In.) Flow top width inside pipe = 14.55(In.) Critical Depth = 10.05(In.) Pipe flow velocity = 5.34(Ft/s) Travel time through pipe = 1.48 min. Time of concentration (TC) = 10.76 min. Process from Point/Station 3.900 to Point/Station 4.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed:

In Main Stream number: 1 Stream flow area = 3.320(Ac.)

```
Runoff from this stream =
                          4.281(CFS)
Time of concentration = 10.76 min.
Rainfall intensity = 1.452(In/Hr)
Area averaged loss rate (Fm) = 0.1881(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1881
Program is now starting with Main Stream No. 2
Process from Point/Station
                             4.000 to Point/Station
                                                          4,000
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.0900
                           Max loss rate(Fm)=
                                                 0.090(In/Hr)
Initial subarea data:
Initial area flow distance = 689.460(Ft.)
Top (of initial area) elevation = 987.610(Ft.)
Bottom (of initial area) elevation = 980.590(Ft.)
                         7.020(Ft.)
Difference in elevation =
Slope =
         0.01018 s(%)=
                            1.02
TC = k(0.297)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 10.143 min.
Rainfall intensity = 1.505(In/Hr) for a 2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.846
Subarea runoff =
                   2.853(CFS)
Total initial stream area =
                               2.240(Ac.)
Pervious area fraction = 0.090
Initial area Fm value =
                        0.090(In/Hr)
Process from Point/Station
                              4.000 to Point/Station
                                                          4,000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                     2.240(Ac.)
Runoff from this stream =
                            2.853(CFS)
Time of concentration = 10.14 min.
Rainfall intensity =
                     1.505(In/Hr)
Area averaged loss rate (Fm) = 0.0900(In/Hr)
Area averaged Pervious ratio (Ap) = 0.0900
Summary of stream data:
Stream Flow rate
                         тс
                                        Rainfall Intensity
                  Area
                               Fm
No.
       (CFS) (Ac.)
                         (min) (In/Hr)
                                         (In/Hr)
1
      4.28
              3.320
                       10.76
                               0.188
                                         1.452
2
      2.85
              2.240
                       10.14
                               0.090
                                         1.505
Qmax(1) =
                              4.281) +
         1.000 *
                   1.000 *
          0.963 *
                   1.000 *
                              2.853) + =
                                              7.027
Qmax(2) =
         1.042 *
                   0.942 *
                              4.281) +
          1.000 *
                   1.000 *
                              2.853) + =
                                              7.055
```

Total of 2 main streams to confluence:

```
Flow rates before confluence point:
     5.281 3.853
Maximum flow rates at confluence using above data:
      7.027 7.055
Area of streams before confluence:
      3,320 2,240
Effective area values after confluence:
      5.560
                5.368
Results of confluence:
Total flow rate = 7.055(CFS)
Time of concentration = 10.143 min.
Effective stream area after confluence = 5.368(Ac.)
Study area average Pervious fraction(Ap) = 0.149
Study area average soil loss rate(Fm) = 0.149(In/Hr)
Study area total =
                    5.56(Ac.)
Process from Point/Station 4.000 to Point/Station
                                                      4.100
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 968.390(Ft.)
Downstream point/station elevation = 966.540(Ft.)
Pipe length = 211.47(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 7.055(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 7.055(CFS)
Normal flow depth in pipe = 11.29(In.)
Flow top width inside pipe = 17.41(In.)
Critical Depth = 12.33(In.)
Pipe flow velocity = 6.05(Ft/s)
Travel time through pipe = 0.58 min.
Time of concentration (TC) = 10.73 min.
Process from Point/Station 4.000 to Point/Station
                                                     4,100
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5.368(Ac.)
Runoff from this stream = 7.055(CFS)
Time of concentration = 10.73 min.
Rainfall intensity = 1.455(In/Hr)
Area averaged loss rate (Fm) = 0.1486(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1486
Program is now starting with Main Stream No. 2
Process from Point/Station 4.100 to Point/Station
                                                     4.100
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.2700 Max loss rate(Fm)=
                                             0.270(In/Hr)
```

```
Initial subarea data:
Initial area flow distance = 436.910(Ft.)
Top (of initial area) elevation = 986.380(Ft.)
Bottom (of initial area) elevation = 973.310(Ft.)
                          13.070(Ft.)
Difference in elevation =
Slope = 0.02991 s(%)=
                             2.99
TC = k(0.341)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 7.831 min.
                                            2.0 year storm
Rainfall intensity =
                       1.758(In/Hr) for a
Effective runoff coefficient used for area (Q=KCIA) is C = 0.762
Subarea runoff = 1.299(CFS)
Total initial stream area =
                                0.970(Ac.)
Pervious area fraction = 0.270
Initial area Fm value =
                        0.270(In/Hr)
Process from Point/Station 4.100 to Point/Station
                                                           4,100
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                     0.970(Ac.)
Runoff from this stream =
                            1.299(CFS)
Time of concentration =
                        7.83 min.
Rainfall intensity =
                     1.758(In/Hr)
Area averaged loss rate (Fm) = 0.2700(In/Hr)
Area averaged Pervious ratio (Ap) = 0.2700
Summary of stream data:
Stream Flow rate
                  Area
                         тс
                               Fm
                                        Rainfall Intensity
No.
       (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
1
      7.05
              5.368
                        10.73
                                0.149
                                          1.455
2
      1.30
              0.970
                        7.83
                               0.270
                                          1.758
Qmax(1) =
          1.000 *
                    1.000 *
                               7.055) +
          0.797 *
                    1.000 *
                               1.299) + =
                                               8.089
Qmax(2) =
          1.231 *
                    0.730 *
                               7.055) +
          1.000 *
                    1.000 *
                               1.299) + =
                                               7.641
Total of 2 main streams to confluence:
Flow rates before confluence point:
      8.055
                 2.299
Maximum flow rates at confluence using above data:
       8.089
                   7.641
Area of streams before confluence:
       5.368
               0.970
Effective area values after confluence:
       6.338
                   4.890
Results of confluence:
Total flow rate = 8.089(CFS)
Time of concentration = 10.725 min.
Effective stream area after confluence =
                                           6.338(Ac.)
Study area average Pervious fraction(Ap) = 0.167
Study area average soil loss rate(Fm) = 0.167(In/Hr)
Study area total =
                      6.34(Ac.)
```

The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 6.338(Ac.) Runoff from this stream = 8.089(CFS) Time of concentration = 10.73 min. Rainfall intensity = 1.455(In/Hr) Area averaged loss rate (Fm) = 0.1671(In/Hr) Area averaged Pervious ratio (Ap) = 0.1671 Program is now starting with Main Stream No. 2

Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.2000 Max loss rate(Fm)= 0.200(In/Hr) Rainfall intensity = 1.818(In/Hr) for a 2.0 year storm User specified values are as follows: TC = 7.40 min. Rain intensity = 1.82(In/Hr) Total area this stream = 1.15(Ac.) Total Study Area (Main Stream No. 2) = 7.68(Ac.) Total runoff = 1.76(CFS)

```
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                       1.150(Ac.)
Runoff from this stream =
                              1.764(CFS)
Time of concentration =
                          7.40 min.
Rainfall intensity =
                       1.818(In/Hr)
Area averaged loss rate (Fm) = 0.2000(In/Hr)
Area averaged Pervious ratio (Ap) = 0.2000
Summary of stream data:
Stream Flow rate
                   Area
                           TC
                                  Fm
                                           Rainfall Intensity
No.
       (CFS) (Ac.)
                           (min) (In/Hr)
                                             (In/Hr)
1
      8.09
               6.338
                         10.73
                                  0.167
                                             1.455
2
      1.76
               1.150
                          7.40
                                  0.200
                                             1.818
Qmax(1) =
          1.000 *
                     1.000 *
                                 8.089) +
           0.776 *
                     1.000 *
                                 1.764) + =
                                                  9.458
Qmax(2) =
          1.282 *
                     0.690 *
                                 8.089) +
           1.000 *
                     1.000 *
                                 1.764) + =
                                                  8.918
```

```
Total of 2 main streams to confluence:

Flow rates before confluence point:

9.089 2.764

Maximum flow rates at confluence using above data:

9.458 8.918

Area of streams before confluence:

6.338 1.150

Effective area values after confluence:

7.488 5.523
```

```
Results of confluence:

Total flow rate = 9.458(CFS)

Time of concentration = 10.725 min.

Effective stream area after confluence = 7.488(Ac.)

Study area average Pervious fraction(Ap) = 0.172

Study area average soil loss rate(Fm) = 0.172(In/Hr)

Study area total = 7.49(Ac.)

End of computations, Total Study Area = 7.68 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area

effects caused by confluences in the rational equation.
```

```
Area averaged pervious area fraction(Ap) = 0.172
Area averaged SCS curve number = 32.0
```

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 2 YEAR, RATIONAL METHOD POST-CONDITION, AREA A11 TO A12 _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: Storm year = 2.00 1 hour rainfall = 0.518 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1 Process from Point/Station 4.200 to Point/Station 4.300 **** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.2300 Max loss rate(Fm) = 0.230(In/Hr) Initial subarea data: Initial area flow distance = 333.920(Ft.) Top (of initial area) elevation = 983.600(Ft.) Bottom (of initial area) elevation = 974.620(Ft.) Difference in elevation = 8.980(Ft.) Slope = 0.02689 s(%)= 2.69 TC = $k(0.331)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 6.977 min. Rainfall intensity = 1.884(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 Subarea runoff = 1.235(CFS) Total initial stream area = 0.830(Ac.) Pervious area fraction = 0.230 Initial area Fm value = 0.230(In/Hr) Process from Point/Station 4.300 to Point/Station 4,400 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 969.620(Ft.) Downstream point/station elevation = 968.770(Ft.) Pipe length = 40.90(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 1.235(CFS)

Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.235(CFS) Normal flow depth in pipe = 4.59(In.) Flow top width inside pipe = 9.00(In.) Critical Depth = 6.14(In.) Pipe flow velocity = 5.45(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 7.10 min. Process from Point/Station 4.300 to Point/Station 4,400 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.830(Ac.) Runoff from this stream = 1.235(CFS) Time of concentration = 7.10 min. Rainfall intensity = 1.864(In/Hr) Area averaged loss rate (Fm) = 0.2300(In/Hr) Area averaged Pervious ratio (Ap) = 0.2300 Program is now starting with Main Stream No. 2 Process from Point/Station 4.400 to Point/Station 4,400 **** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.0300 Max loss rate(Fm)= 0.030(In/Hr) Initial subarea data: Initial area flow distance = 276.950(Ft.) Top (of initial area) elevation = 986.510(Ft.) Bottom (of initial area) elevation = 973.530(Ft.) 12.980(Ft.) Difference in elevation = Slope = 0.04687 s(%)= 4.69 TC = $k(0.282)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 4.930 min. Rainfall intensity = 2.320(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.888 Subarea runoff = 0.660(CFS) Total initial stream area = 0.320(Ac.) Pervious area fraction = 0.030 Initial area Fm value = 0.030(In/Hr) Process from Point/Station 4.400 to Point/Station 4.400 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.320(Ac.) Runoff from this stream = 0.660(CFS) Time of concentration = 4.93 min. Rainfall intensity = 2.320(In/Hr) Area averaged loss rate (Fm) = 0.0300(In/Hr)

Area averaged Pervious ratio (Ap) = 0.0300 Summary of stream data: Stream Flow rate тс Rainfall Intensity Area Fm No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 1.24 0.830 7.10 0.230 1.864 2 0.66 0.320 4.93 0.030 2.320 Qmax(1) =1.235) + 1.000 * 1.000 * 0.801 * 1.000 * 0.660) + =1.764 Qmax(2) =1.279 * 0.694 * 1.235) +1.000 * 1.000 * 0.660) + =1.757 Total of 2 main streams to confluence: Flow rates before confluence point: 2.235 1.660 Maximum flow rates at confluence using above data: 1.764 1.757 Area of streams before confluence: 0.830 0.320 Effective area values after confluence: 1.150 0.896 Results of confluence: Total flow rate = 1.764(CFS) Time of concentration = 7.102 min. Effective stream area after confluence = 1.150(Ac.) Study area average Pervious fraction(Ap) = 0.174 Study area average soil loss rate(Fm) = 0.174(In/Hr) Study area total = 1.15(Ac.) Process from Point/Station 4.400 to Point/Station 4.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 968.770(Ft.) Downstream point/station elevation = 966.540(Ft.) Pipe length = 106.90(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.764(CFS) 9.00(In.) Nearest computed pipe diameter = 1.764(CFS) Calculated individual pipe flow = Normal flow depth in pipe = 5.75(In.) Flow top width inside pipe = 8.64(In.) Critical Depth = 7.31(In.) 5.92(Ft/s) Pipe flow velocity = Travel time through pipe = 0.30 min. Time of concentration (TC) = 7.40 min. End of computations, Total Study Area = 1.15 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.174

Area averaged SCS curve number = 32.0

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 2 YEAR, RATIONAL METHOD POST-CONDITION, AREA A COMBINED _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: Storm year = 2.00 1 hour rainfall = 0.518 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1 Process from Point/Station 3.000 to Point/Station 3.600 **** USER DEFINED FLOW INFORMATION AT A POINT **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 1 = 16.60Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.100(In/Hr) Rainfall intensity = 1.446(In/Hr) for a 2.0 year storm User specified values are as follows: TC = 10.84 min. Rain intensity = 1.45(In/Hr) Total area this stream = 16.77(Ac.) Total Study Area (Main Stream No. 1) = 16.77(Ac.) Total runoff = 21.22(CFS) Process from Point/Station 3.000 to Point/Station 3.600 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 16.770(Ac.) Runoff from this stream = 21.215(CFS) Time of concentration = 10.84 min. Rainfall intensity = 1.446(In/Hr) Area averaged loss rate (Fm) = 0.1000(In/Hr)

Area averaged Pervious ratio (Ap) = 0.1000 Program is now starting with Main Stream No. 2

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)=
                                                  0.100(In/Hr)
Rainfall intensity =
                      1.455(In/Hr) for a
                                             2.0 year storm
User specified values are as follows:
TC = 10.73 min. Rain intensity =
                                     1.46(In/Hr)
Total area this stream = 7.68(Ac.)
Total Study Area (Main Stream No. 2) =
                                         24.45(Ac.)
Total runoff =
                 9.46(CFS)
Process from Point/Station 3.700 to Point/Station
                                                          3.600
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
                     7.680(Ac.)
Stream flow area =
                            9.458(CFS)
Runoff from this stream =
Time of concentration = 10.73 min.
Rainfall intensity =
                    1.455(In/Hr)
Area averaged loss rate (Fm) = 0.1000(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
                  Area
                         тс
                                        Rainfall Intensity
                               Fm
No.
      (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
             16.770
1
     21.22
                       10.84
                                0.100
                                          1.446
     9.46
             7.680
                       10.73
                                0.100
                                          1.455
2
Qmax(1) =
                              21.215) +
          1.000 *
                    1.000 *
          0.993 *
                    1.000 *
                              9.458) + =
                                              30.610
Qmax(2) =
          1.007 *
                    0.990 *
                              21.215) +
          1.000 *
                    1.000 *
                              9.458) + =
                                            30.595
Total of 2 main streams to confluence:
Flow rates before confluence point:
     22.215
                10.458
Maximum flow rates at confluence using above data:
      30.610
                  30.595
Area of streams before confluence:
      16.770 7.680
Effective area values after confluence:
      24.450
                  24.278
```

Results of confluence:

Total flow rate = 30.610(CFS) Time of concentration = 10.836 min. Effective stream area after confluence = 24.450(Ac.) Study area average Pervious fraction(Ap) = 0.100 Study area average soil loss rate(Fm) = 0.100(In/Hr) Study area total = 24.45(Ac.) End of computations, Total Study Area = 24.45 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 2 YEAR, RATIONAL METHOD POST-CONDITION, AREA B _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 2.0 Computed rainfall intensity: Storm year = 2.00 1 hour rainfall = 0.518 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 1 Process from Point/Station 5.000 to Point/Station 5.100 **** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 1 = 16.60 Pervious ratio(Ap) = 0.3100 Max loss rate(Fm) = 0.310(In/Hr) Initial subarea data: Initial area flow distance = 228.380(Ft.) Top (of initial area) elevation = 1001.000(Ft.) Bottom (of initial area) elevation = 987.460(Ft.) Difference in elevation = 13.540(Ft.) Slope = 0.05929 s(%)= 5.93 TC = $k(0.351)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 5.421 min. Rainfall intensity = 2.192(In/Hr) for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.773 Subarea runoff = 3.251(CFS) Total initial stream area = 1.920(Ac.) Pervious area fraction = 0.310 Initial area Fm value = 0.310(In/Hr) Process from Point/Station 5.100 to Point/Station 5.200 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 982.460(Ft.)

Downstream point/station elevation = 932.400(Ft.) Pipe length = 854.87(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.251(CFS)

```
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow =
                                3.251(CFS)
Normal flow depth in pipe = 8.03(In.)
Flow top width inside pipe = 11.29(In.)
Critical Depth = 9.26(In.)
Pipe flow velocity = 5.82(Ft/s)
Travel time through pipe = 2.45 min.
Time of concentration (TC) = 7.87 min.
Process from Point/Station 5.100 to Point/Station
                                                       5,200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                   1.920(Ac.)
Runoff from this stream =
                          3.251(CFS)
Time of concentration = 7.87 min.
Rainfall intensity = 1.752(In/Hr)
Area averaged loss rate (Fm) = 0.3100(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3100
Program is now starting with Main Stream No. 2
Process from Point/Station 5.200 to Point/Station
                                                       5,200
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 1 = 16.60
Pervious ratio(Ap) = 0.0500 Max loss rate(Fm)= 0.050(In/Hr)
Initial subarea data:
Initial area flow distance = 983.950(Ft.)
Top (of initial area) elevation = 996.020(Ft.)
Bottom (of initial area) elevation = 982.710(Ft.)
                       13.310(Ft.)
Difference in elevation =
Slope = 0.01353 s(%)=
                           1.35
TC = k(0.287)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 10.680 min.
Rainfall intensity =
                     1.459(In/Hr) for a
                                        2.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.869
                13.975(CFS)
Subarea runoff =
Total initial stream area =
                             11.020(Ac.)
Pervious area fraction = 0.050
Initial area Fm value =
                       0.050(In/Hr)
Process from Point/Station 5.200 to Point/Station
                                                       5.200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
                   11.020(Ac.)
Stream flow area =
Runoff from this stream =
                         13.975(CFS)
Time of concentration = 10.68 min.
Rainfall intensity = 1.459(In/Hr)
Area averaged loss rate (Fm) = 0.0500(In/Hr)
```

Area averaged Pervious ratio (Ap) = 0.0500 Summary of stream data: Stream Flow rate Area тс Rainfall Intensity Fm No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 3.25 1.920 7.87 0.310 1.752 2 13.98 11.020 10.68 0.050 1.459 Qmax(1) =1.000 * 1.000 * 3.251) + 0.737 * 1.208 * 13.975) + =15.693 Qmax(2) =0.797 * 1.000 * 3.251) + 1.000 * 1.000 * 13.975) + = 16.565 Total of 2 main streams to confluence: Flow rates before confluence point: 14.975 4.251 Maximum flow rates at confluence using above data: 15.693 16.565 Area of streams before confluence: 1.920 11.020 Effective area values after confluence: 10.041 12.940 Results of confluence: Total flow rate = 16.565(CFS) Time of concentration = 10.680 min. 12.940(Ac.) Effective stream area after confluence = Study area average Pervious fraction(Ap) = 0.089 Study area average soil loss rate(Fm) = 0.089(In/Hr) Study area total = 12.94(Ac.) End of computations, Total Study Area = 12.94 (Ac.) The following figures may

be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

```
Area averaged pervious area fraction(Ap) = 0.089
Area averaged SCS curve number = 32.0
```

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 100 YEAR, RATIONAL METHOD POST-CONDITION, AREA A1 TO A6 _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.330 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station3.000 to Point/Station3.100**** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.4000 Max loss rate(Fm)= 0.314(In/Hr) Initial subarea data: Initial area flow distance = 161.250(Ft.) Top (of initial area) elevation = 999.000(Ft.) Bottom (of initial area) elevation = 990.820(Ft.) Difference in elevation = 8.180(Ft.) Slope = 0.05073 s(%)= 5.07 TC = $k(0.373)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 5.174 min. Rainfall intensity = 5.787(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.851 Subarea runoff = 1.872(CFS) Total initial stream area = 0.380(Ac.) Pervious area fraction = 0.400 Initial area Fm value = 0.314(In/Hr) Process from Point/Station 3.100 to Point/Station 3.200 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 985.820(Ft.) Downstream point/station elevation = 984.570(Ft.) Pipe length = 208.52(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 1.872(CFS)

```
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow =
                                1.872(CFS)
Normal flow depth in pipe = 7.24(In.)
Flow top width inside pipe = 11.74(In.)
Critical Depth = 6.99(In.)
Pipe flow velocity = 3.77(Ft/s)
Travel time through pipe = 0.92 min.
Time of concentration (TC) = 6.09 min.
Process from Point/Station 3.100 to Point/Station
                                                      3,200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.380(Ac.)
Runoff from this stream =
                          1.872(CFS)
Time of concentration = 6.09 min.
Rainfall intensity = 5.245(In/Hr)
Area averaged loss rate (Fm) = 0.3141(In/Hr)
Area averaged Pervious ratio (Ap) = 0.4000
Program is now starting with Main Stream No. 2
Process from Point/Station 3.200 to Point/Station
                                                      3,200
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.3900 Max loss rate(Fm)= 0.306(In/Hr)
Initial subarea data:
Initial area flow distance = 163.100(Ft.)
Top (of initial area) elevation = 997.080(Ft.)
Bottom (of initial area) elevation = 990.760(Ft.)
                       6.320(Ft.)
Difference in elevation =
Slope = 0.03875 s(%)=
                           3.87
TC = k(0.371)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 5.449 min.
Rainfall intensity =
                      5.610(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.851
Subarea runoff =
                 1.766(CFS)
Total initial stream area =
                              0.370(Ac.)
Pervious area fraction = 0.390
Initial area Fm value =
                      0.306(In/Hr)
Process from Point/Station 3.200 to Point/Station
                                                      3.200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.370(Ac.)
Runoff from this stream =
                          1.766(CFS)
Time of concentration = 5.45 min.
Rainfall intensity = 5.610(In/Hr)
Area averaged loss rate (Fm) = 0.3062(In/Hr)
```

Area averaged Pervious ratio (Ap) = 0.3900 Summary of stream data: Stream Flow rate тс Rainfall Intensity Area Fm No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 1.87 0.380 6.09 0.314 5.245 2 1.77 0.370 5.45 0.306 5.610 Qmax(1) =1.000 * 1.000 * 1.872) + 0.931 * 1.000 * 1.766) + =3.516 Qmax(2) =1.074 * 0.894 * 1.872) +1.000 * 1.000 * 1.766) + =3.563 Total of 2 main streams to confluence: Flow rates before confluence point: 2.872 2.766 Maximum flow rates at confluence using above data: 3.516 3,563 Area of streams before confluence: 0.380 0.370 Effective area values after confluence: 0.750 0.710 Results of confluence: Total flow rate = 3.563(CFS) Time of concentration = 5.449 min. Effective stream area after confluence = 0.710(Ac.) Study area average Pervious fraction(Ap) = 0.395 Study area average soil loss rate(Fm) = 0.310(In/Hr) Study area total = 0.75(Ac.) Process from Point/Station 3.200 to Point/Station 3.300 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 984.570(Ft.) Downstream point/station elevation = 983.370(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 3.563(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 3.563(CFS) Normal flow depth in pipe = 9.35(In.) Flow top width inside pipe = 14.54(In.) Critical Depth = 9.15(In.) Pipe flow velocity = 4.43(Ft/s) Travel time through pipe = 0.75 min. Time of concentration (TC) = 6.20 min. Process from Point/Station 3.200 to Point/Station 3.300 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1

0.710(Ac.)

Stream flow area =

```
Runoff from this stream =
                            3.563(CFS)
Time of concentration =
                      6.20 min.
Rainfall intensity =
                     5.191(In/Hr)
Area averaged loss rate (Fm) = 0.3102(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3951
Program is now starting with Main Stream No. 2
Process from Point/Station
                              3.300 to Point/Station
                                                          3.300
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.3800
                           Max loss rate(Fm)=
                                                  0.298(In/Hr)
Initial subarea data:
Initial area flow distance = 161.380(Ft.)
Top (of initial area) elevation = 995.070(Ft.)
Bottom (of initial area) elevation = 990.650(Ft.)
                          4.420(Ft.)
Difference in elevation =
Slope =
         0.02739 s(%)=
                             2.74
TC = k(0.368)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 5.777 min.
Rainfall intensity = 5.416(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.850
Subarea runoff =
                   1.935(CFS)
Total initial stream area =
                               0.420(Ac.)
Pervious area fraction = 0.380
Initial area Fm value =
                        0.298(In/Hr)
Process from Point/Station
                              3.300 to Point/Station
                                                          3.300
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.420(Ac.)
Runoff from this stream =
                            1.935(CFS)
Time of concentration =
                        5.78 min.
Rainfall intensity =
                      5.416(In/Hr)
Area averaged loss rate (Fm) = 0.2984(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3800
Summary of stream data:
Stream Flow rate
                         TC
                                        Rainfall Intensity
                  Area
                               Fm
No.
       (CFS) (Ac.)
                         (min) (In/Hr)
                                         (In/Hr)
1
      3.56
              0.710
                        6.20
                               0.310
                                         5.191
2
      1.93
              0.420
                        5.78
                               0.298
                                         5.416
Qmax(1) =
          1.000 *
                   1.000 *
                              3.563) +
          0.956 *
                   1.000 *
                              1.935) + =
                                              5.413
Qmax(2) =
          1.046 *
                    0.932 *
                              3.563) +
          1.000 *
                   1.000 *
                              1.935) + =
                                              5.407
```

Total of 2 main streams to confluence:

```
Flow rates before confluence point:
     4.563 2.935
Maximum flow rates at confluence using above data:
      5.413 5.407
Area of streams before confluence:
      0.710 0.420
Effective area values after confluence:
      1.130
                1.081
Results of confluence:
Total flow rate = 5.413(CFS)
Time of concentration = 6.202 min.
Effective stream area after confluence = 1.130(Ac.)
Study area average Pervious fraction(Ap) = 0.389
Study area average soil loss rate(Fm) = 0.306(In/Hr)
Study area total =
                    1.13(Ac.)
Process from Point/Station 3.300 to Point/Station
                                                      3.400
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 983.370(Ft.)
Downstream point/station elevation = 981.410(Ft.)
Pipe length = 326.99(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                     5.413(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow =
                               5.413(CFS)
Normal flow depth in pipe = 10.73(In.)
Flow top width inside pipe = 17.66(In.)
Critical Depth = 10.76(In.)
Pipe flow velocity = 4.93(Ft/s)
Travel time through pipe = 1.11 min.
Time of concentration (TC) = 7.31 min.
Process from Point/Station 3.300 to Point/Station
                                                     3,400
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 1.130(Ac.)
Runoff from this stream =
                         5.413(CFS)
Time of concentration = 7.31 min.
Rainfall intensity = 4.704(In/Hr)
Area averaged loss rate (Fm) = 0.3058(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3895
Program is now starting with Main Stream No. 2
Process from Point/Station
                            3.400 to Point/Station
                                                      3.400
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.3900 Max loss rate(Fm)=
                                             0.306(In/Hr)
```

```
Initial subarea data:
Initial area flow distance = 346.050(Ft.)
Top (of initial area) elevation = 991.360(Ft.)
Bottom (of initial area) elevation = 985.560(Ft.)
Difference in elevation =
                          5.800(Ft.)
Slope = 0.01676 s(%)=
                             1.68
TC = k(0.371)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 8.705 min.
Rainfall intensity =
                       4.235(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.835
Subarea runoff = 2.758(CFS)
Total initial stream area =
                                0.780(Ac.)
Pervious area fraction = 0.390
Initial area Fm value =
                        0.306(In/Hr)
Process from Point/Station 3.400 to Point/Station
                                                           3.400
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
                      0.780(Ac.)
Stream flow area =
                            2.758(CFS)
Runoff from this stream =
Time of concentration =
                      8.71 min.
Rainfall intensity =
                      4.235(In/Hr)
Area averaged loss rate (Fm) = 0.3062(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3900
Summary of stream data:
Stream Flow rate
                  Area
                         тс
                               Fm
                                        Rainfall Intensity
No.
      (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
1
      5.41
                        7.31
                                0.306
                                        4.704
              1.130
2
      2.76
              0.780
                        8.71
                               0.306
                                          4.235
Qmax(1) =
          1.000 *
                    1.000 *
                               5.413) +
          1.119 *
                    0.840 *
                               2.758) + =
                                               8.004
Qmax(2) =
          0.893 *
                    1.000 *
                               5.413) +
          1.000 *
                    1.000 *
                               2.758) + =
                                              7.594
Total of 2 main streams to confluence:
Flow rates before confluence point:
      6.413
                 3.758
Maximum flow rates at confluence using above data:
       8.004
                   7.594
Area of streams before confluence:
       1.130 0.780
Effective area values after confluence:
       1.785
                   1.910
Results of confluence:
Total flow rate = 8.004(CFS)
Time of concentration =
                         7.308 min.
Effective stream area after confluence =
                                           1.785(Ac.)
Study area average Pervious fraction(Ap) = 0.390
Study area average soil loss rate(Fm) = 0.306(In/Hr)
Study area total =
                     1.91(Ac.)
```

```
Process from Point/Station 3.400 to Point/Station
                                                       3.500
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 981.410(Ft.)
Downstream point/station elevation = 978.760(Ft.)
Pipe length = 156.31(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                     8.004(CFS)
Nearest computed pipe diameter = 15.00(In.)
Calculated individual pipe flow =
                                8.004(CFS)
Normal flow depth in pipe = 11.70(In.)
Flow top width inside pipe = 12.43(In.)
Critical Depth = 13.37(In.)
Pipe flow velocity =
                    7.80(Ft/s)
Travel time through pipe = 0.33 min.
Time of concentration (TC) = 7.64 min.
Process from Point/Station 3.400 to Point/Station
                                                       3.500
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 1.785(Ac.)
Runoff from this stream =
                          8.004(CFS)
Time of concentration = 7.64 min.
Rainfall intensity = 4.579(In/Hr)
Area averaged loss rate (Fm) = 0.3060(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3897
Program is now starting with Main Stream No. 2
Process from Point/Station 3.500 to Point/Station
                                                       3.500
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1800 Max loss rate(Fm)= 0.141(In/Hr)
Initial subarea data:
Initial area flow distance = 370.380(Ft.)
Top (of initial area) elevation = 991.730(Ft.)
Bottom (of initial area) elevation = 984.280(Ft.)
                       7.450(Ft.)
Difference in elevation =
Slope = 0.02011 s(%)=
                           2.01
TC = k(0.319)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 7.420 min.
Rainfall intensity =
                     4.661(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.873
Subarea runoff =
                 7.241(CFS)
Total initial stream area =
                              1.780(Ac.)
Pervious area fraction = 0.180
Initial area Fm value =
                      0.141(In/Hr)
```

Process from Point/Station 3.500 to Point/Station 3.500 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.780(Ac.) Runoff from this stream = 7.241(CFS) Time of concentration = 7.42 min. Rainfall intensity = 4.661(In/Hr) Area averaged loss rate (Fm) = 0.1413(In/Hr) Area averaged Pervious ratio (Ap) = 0.1800 Summary of stream data: Stream Flow rate Area тс Fm Rainfall Intensity No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 8.00 1.785 7.64 0.306 4.579 2 7.24 1.780 7.42 0.141 4.661 Qmax(1) =1.000 * 1.000 * 8.004) +1.000 * 0.982 * 7.241) + =15.114 Qmax(2) =1.019 * 0.971 * 8.004) + 1.000 * 1.000 * 7.241) + =15.161 Total of 2 main streams to confluence: Flow rates before confluence point: 9.004 8.241 Maximum flow rates at confluence using above data: 15.114 15.161 Area of streams before confluence: 1.785 1.780 Effective area values after confluence: 3.565 3.513 Results of confluence: Total flow rate = 15.161(CFS) Time of concentration = 7.420 min. Effective stream area after confluence = 3.513(Ac.) Study area average Pervious fraction(Ap) = 0.285 Study area average soil loss rate(Fm) = 0.224(In/Hr) 3.56(Ac.) Study area total = Process from Point/Station 3.500 to Point/Station 3.600 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 978.760(Ft.) Downstream point/station elevation = 965.000(Ft.) Pipe length = 812.87(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.161(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 15.161(CFS) Normal flow depth in pipe = 13.38(In.) Flow top width inside pipe = 20.19(In.) Critical Depth = 17.31(In.) Pipe flow velocity = 9.37(Ft/s) Travel time through pipe = 1.45 min.

```
Process from Point/Station
                             3.500 to Point/Station
                                                        3.600
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                    3.513(Ac.)
Runoff from this stream =
                          15.161(CFS)
Time of concentration =
                       8.87 min.
Rainfall intensity =
                     4.189(In/Hr)
Area averaged loss rate (Fm) = 0.2237(In/Hr)
Area averaged Pervious ratio (Ap) = 0.2850
Program is now starting with Main Stream No. 2
Process from Point/Station
                             3.600 to Point/Station
                                                        3.600
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.0400
                          Max loss rate(Fm)=
                                                0.031(In/Hr)
Initial subarea data:
Initial area flow distance = 980.180(Ft.)
Top (of initial area) elevation = 987.140(Ft.)
Bottom (of initial area) elevation = 975.420(Ft.)
                       11.720(Ft.)
Difference in elevation =
Slope =
         0.01196 s(%)=
                            1.20
TC = k(0.284)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 10.836 min.
Rainfall intensity = 3.714(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.892
Subarea runoff =
                 43.217(CFS)
Total initial stream area =
                             13.040(Ac.)
Pervious area fraction = 0.040
Initial area Fm value =
                       0.031(In/Hr)
Process from Point/Station
                             3.600 to Point/Station
                                                        3.600
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                   13.040(Ac.)
Runoff from this stream =
                          43.217(CFS)
Time of concentration = 10.84 min.
Rainfall intensity =
                     3.714(In/Hr)
Area averaged loss rate (Fm) = 0.0314(In/Hr)
Area averaged Pervious ratio (Ap) = 0.0400
Summary of stream data:
Stream Flow rate
                        TC
                                      Rainfall Intensity
                 Area
                              Fm
No.
      (CFS) (Ac.)
                        (min) (In/Hr)
                                        (In/Hr)
```

Time of concentration (TC) = 8.87 min.

15.16 8.87 0.224 4.189 1 3.513 43.22 13.040 10.84 0.031 3.714 2 Qmax(1) =1.000 * 1.000 * 15.161) + 1.129 * 0.818 * 43.217) + = 55.083 Qmax(2) =0.880 * 1.000 * 15.161) +1.000 * 1.000 * 43.217) + =56.561 Total of 2 main streams to confluence: Flow rates before confluence point: 44.217 16.161 Maximum flow rates at confluence using above data: 55.083 56.561 Area of streams before confluence: 3.513 13.040 Effective area values after confluence: 14.182 16.553 Results of confluence: Total flow rate = 56.561(CFS) Time of concentration = 10.836 min. Effective stream area after confluence = 16.553(Ac.) Study area average Pervious fraction(Ap) = 0.092 Study area average soil loss rate(Fm) = 0.072(In/Hr)

16.55(Ac.)

be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.096

16.77 (Ac.)

End of computations, Total Study Area =

Area averaged SCS curve number = 32.0

Study area total =

The following figures may

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 100 YEAR, RATIONAL METHOD POST-CONDITION, AREA A7 TO A10 _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.330 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station3.700 to Point/Station3.800**** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.5200 Max loss rate(Fm)= 0.408(In/Hr) Initial subarea data: Initial area flow distance = 160.360(Ft.) Top (of initial area) elevation = 983.600(Ft.) Bottom (of initial area) elevation = 980.790(Ft.) Difference in elevation = 2.810(Ft.) Slope = 0.01752 s(%)= 1.75 TC = $k(0.403)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 6.892 min. Rainfall intensity = 4.872(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.825 Subarea runoff = 1.687(CFS) Total initial stream area = 0.420(Ac.) Pervious area fraction = 0.520 Initial area Fm value = 0.408(In/Hr) Process from Point/Station 3.800 to Point/Station 3.900 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 975.790(Ft.) Downstream point/station elevation = 972.540(Ft.) Pipe length = 371.61(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 1.687(CFS)

```
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow =
                                1.687(CFS)
Normal flow depth in pipe = 6.05(In.)
Flow top width inside pipe = 12.00(In.)
Critical Depth = 6.63(In.)
Pipe flow velocity = 4.26(Ft/s)
Travel time through pipe = 1.46 min.
Time of concentration (TC) = 8.35 min.
Process from Point/Station 3.800 to Point/Station
                                                       3.900
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                   0.420(Ac.)
Runoff from this stream =
                          1.687(CFS)
Time of concentration = 8.35 min.
Rainfall intensity =
                  4.343(In/Hr)
Area averaged loss rate (Fm) = 0.4083(In/Hr)
Area averaged Pervious ratio (Ap) = 0.5200
Program is now starting with Main Stream No. 2
Process from Point/Station 3.900 to Point/Station
                                                       3,900
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1400 Max loss rate(Fm)= 0.110(In/Hr)
Initial subarea data:
Initial area flow distance = 534.460(Ft.)
Top (of initial area) elevation = 987.610(Ft.)
Bottom (of initial area) elevation = 981.360(Ft.)
                         6.250(Ft.)
Difference in elevation =
Slope = 0.01169 s(%)=
                           1.17
TC = k(0.309)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 9.280 min.
Rainfall intensity =
                     4.076(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.876
Subarea runoff =
                10.351(CFS)
Total initial stream area =
                              2.900(Ac.)
Pervious area fraction = 0.140
Initial area Fm value =
                       0.110(In/Hr)
Process from Point/Station 3.900 to Point/Station
                                                       3.900
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                    2.900(Ac.)
Runoff from this stream =
                         10.351(CFS)
Time of concentration = 9.28 min.
Rainfall intensity = 4.076(In/Hr)
Area averaged loss rate (Fm) = 0.1099(In/Hr)
```

Area averaged Pervious ratio (Ap) = 0.1400 Summary of stream data: Stream Flow rate тс Rainfall Intensity Area Fm No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 4.343 1 1.69 0.420 8.35 0.408 2 10.35 2.900 9.28 0.110 4.076 Qmax(1) =1.687) + 1.000 * 1.000 * 0.899 * 1.067 * 10.351) + =11.625 Qmax(2) =0.932 * 1.000 * 1.687) +1.000 * 1.000 * 10.351) + =11.923 Total of 2 main streams to confluence: Flow rates before confluence point: 2.687 11.351 Maximum flow rates at confluence using above data: 11.625 11.923 Area of streams before confluence: 0.420 2.900 Effective area values after confluence: 3.028 3.320 Results of confluence: Total flow rate = 11.923(CFS) Time of concentration = 9.280 min. Effective stream area after confluence = 3.320(Ac.) Study area average Pervious fraction(Ap) = 0.188 Study area average soil loss rate(Fm) = 0.148(In/Hr) Study area total = 3.32(Ac.) Process from Point/Station 3.900 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 972.540(Ft.) Downstream point/station elevation = 968.390(Ft.) Pipe length = 475.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.923(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 11.923(CFS) Normal flow depth in pipe = 14.27(In.) Flow top width inside pipe = 19.60(In.) Critical Depth = 15.44(In.) Pipe flow velocity = 6.85(Ft/s) Travel time through pipe = 1.16 min. Time of concentration (TC) = 10.44 min. Process from Point/Station 3.900 to Point/Station 4.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed:

In Main Stream number: 1 Stream flow area = 3.320(Ac.)

```
Runoff from this stream =
                         11.923(CFS)
Time of concentration = 10.44 min.
Rainfall intensity =
                     3.799(In/Hr)
Area averaged loss rate (Fm) = 0.1477(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1881
Program is now starting with Main Stream No. 2
Process from Point/Station
                              4.000 to Point/Station
                                                          4,000
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.0900
                           Max loss rate(Fm)=
                                                  0.071(In/Hr)
Initial subarea data:
Initial area flow distance = 689.460(Ft.)
Top (of initial area) elevation = 987.610(Ft.)
Bottom (of initial area) elevation = 980.590(Ft.)
                          7.020(Ft.)
Difference in elevation =
Slope =
         0.01018 s(%)=
                            1.02
TC = k(0.297)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 10.143 min.
Rainfall intensity = 3.864(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.884
Subarea runoff =
                   7.648(CFS)
Total initial stream area =
                               2.240(Ac.)
Pervious area fraction = 0.090
Initial area Fm value =
                        0.071(In/Hr)
Process from Point/Station
                              4.000 to Point/Station
                                                          4,000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                     2.240(Ac.)
Runoff from this stream =
                            7.648(CFS)
Time of concentration = 10.14 min.
Rainfall intensity =
                      3.864(In/Hr)
Area averaged loss rate (Fm) = 0.0707(In/Hr)
Area averaged Pervious ratio (Ap) = 0.0900
Summary of stream data:
Stream Flow rate
                         тс
                                        Rainfall Intensity
                  Area
                               Fm
No.
       (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
     11.92
1
              3.320
                       10.44
                               0.148
                                         3.799
2
      7.65
              2.240
                       10.14
                               0.071
                                         3.864
Qmax(1) =
          1.000 *
                   1.000 *
                              11.923) +
          0.983 *
                   1.000 *
                              7.648) + =
                                             19.439
Qmax(2) =
          1.018 *
                    0.972 *
                              11.923) +
          1.000 *
                   1.000 *
                              7.648) + =
                                             19.444
```

Total of 2 main streams to confluence:

```
Flow rates before confluence point:
     12.923 8.648
Maximum flow rates at confluence using above data:
     19,439 19,444
Area of streams before confluence:
      3.320 2.240
Effective area values after confluence:
      5.560
                5.467
Results of confluence:
Total flow rate = 19.444(CFS)
Time of concentration = 10.143 min.
Effective stream area after confluence = 5.467(Ac.)
Study area average Pervious fraction(Ap) = 0.149
Study area average soil loss rate(Fm) = 0.117(In/Hr)
Study area total =
                    5.56(Ac.)
Process from Point/Station 4.000 to Point/Station
                                                      4.100
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 968.390(Ft.)
Downstream point/station elevation = 966.540(Ft.)
Pipe length = 211.47(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 19.444(CFS)
Nearest computed pipe diameter = 24.00(In.)
Calculated individual pipe flow = 19.444(CFS)
Normal flow depth in pipe = 18.12(In.)
Flow top width inside pipe = 20.65(In.)
Critical Depth = 19.03(In.)
Pipe flow velocity = 7.64(Ft/s)
Travel time through pipe = 0.46 min.
Time of concentration (TC) = 10.60 min.
Process from Point/Station 4.000 to Point/Station
                                                      4,100
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5.467(Ac.)
Runoff from this stream = 19.444(CFS)
Time of concentration = 10.60 min.
                  3.762(In/Hr)
Rainfall intensity =
Area averaged loss rate (Fm) = 0.1166(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1486
Program is now starting with Main Stream No. 2
Process from Point/Station 4.100 to Point/Station
                                                      4.100
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.2700 Max loss rate(Fm)= 0.212(In/Hr)
```

```
Initial subarea data:
Initial area flow distance = 436.910(Ft.)
Top (of initial area) elevation = 986.380(Ft.)
Bottom (of initial area) elevation = 973.310(Ft.)
                          13.070(Ft.)
Difference in elevation =
Slope = 0.02991 s(%)=
                             2.99
TC = k(0.341)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 7.831 min.
Rainfall intensity =
                       4.513(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.858
Subarea runoff = 3.755(CFS)
Total initial stream area =
                                0.970(Ac.)
Pervious area fraction = 0.270
Initial area Fm value =
                        0.212(In/Hr)
Process from Point/Station 4.100 to Point/Station
                                                          4,100
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                     0.970(Ac.)
Runoff from this stream =
                            3.755(CFS)
Time of concentration =
                       7.83 min.
Rainfall intensity =
                      4.513(In/Hr)
Area averaged loss rate (Fm) = 0.2120(In/Hr)
Area averaged Pervious ratio (Ap) = 0.2700
Summary of stream data:
Stream Flow rate
                  Area
                         тс
                               Fm
                                        Rainfall Intensity
No.
       (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
     19.44
              5.467
                       10.60
                               0.117
                                          3.762
1
2
     3.75
              0.970
                       7.83
                               0.212
                                        4.513
Qmax(1) =
          1.000 *
                    1.000 *
                              19.444) +
          0.826 *
                   1.000 *
                              3.755) + =
                                              22.543
Qmax(2) =
          1.206 *
                    0.739 *
                              19.444) +
          1.000 *
                    1.000 *
                              3.755) + = 21.070
Total of 2 main streams to confluence:
Flow rates before confluence point:
     20.444
              4.755
Maximum flow rates at confluence using above data:
      22.543
                 21.070
Area of streams before confluence:
       5.467 0.970
Effective area values after confluence:
       6.437
                   5.007
Results of confluence:
Total flow rate = 22.543(CFS)
Time of concentration =
                        10.604 min.
Effective stream area after confluence = 6.437(Ac.)
Study area average Pervious fraction(Ap) = 0.167
Study area average soil loss rate(Fm) = 0.131(In/Hr)
Study area total =
                     6.44(Ac.)
```

The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 6.437(Ac.) Runoff from this stream = 22.543(CFS) Time of concentration = 10.60 min. Rainfall intensity = 3.762(In/Hr) Area averaged loss rate (Fm) = 0.1310(In/Hr) Area averaged Pervious ratio (Ap) = 0.1669 Program is now starting with Main Stream No. 2

Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.2000 Max loss rate(Fm)= 0.157(In/Hr) Rainfall intensity = 4.703(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 7.31 min. Rain intensity = 4.70(In/Hr) Total area this stream = 1.15(Ac.) Total Study Area (Main Stream No. 2) = 7.68(Ac.) Total runoff = 4.85(CFS)

```
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                       1.150(Ac.)
Runoff from this stream =
                              4.853(CFS)
Time of concentration =
                          7.31 min.
Rainfall intensity =
                        4.703(In/Hr)
Area averaged loss rate (Fm) = 0.1570(In/Hr)
Area averaged Pervious ratio (Ap) = 0.2000
Summary of stream data:
Stream Flow rate
                   Area
                           тс
                                  Fm
                                           Rainfall Intensity
No.
       (CFS) (Ac.)
                           (min) (In/Hr)
                                             (In/Hr)
1
     22.54
               6.437
                         10.60
                                  0.131
                                             3.762
2
      4.85
               1.150
                          7.31
                                  0.157
                                             4.703
Qmax(1) =
           1.000 *
                     1.000 *
                                22.543) +
           0.793 *
                     1.000 *
                                4.853) + =
                                                 26.392
Qmax(2) =
          1.259 *
                     0.689 *
                                22.543) +
           1.000 *
                     1.000 *
                                4.853) + =
                                                 24.420
```

```
Total of 2 main streams to confluence:

Flow rates before confluence point:

23.543 5.853

Maximum flow rates at confluence using above data:

26.392 24.420

Area of streams before confluence:

6.437 1.150

Effective area values after confluence:

7.587 5.587
```

```
Results of confluence:

Total flow rate = 26.392(CFS)

Time of concentration = 10.604 min.

Effective stream area after confluence = 7.587(Ac.)

Study area average Pervious fraction(Ap) = 0.172

Study area average soil loss rate(Fm) = 0.135(In/Hr)

Study area total = 7.59(Ac.)

End of computations, Total Study Area = 7.68 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area

effects caused by confluences in the rational equation.
```

```
Area averaged pervious area fraction(Ap) = 0.172
Area averaged SCS curve number = 32.0
```
San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 100 YEAR, RATIONAL METHOD POST-CONDITION, AREA A11 TO A12 _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.330 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station 4.200 to Point/Station 4.300 **** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.2300 Max loss rate(Fm) = 0.181(In/Hr) Initial subarea data: Initial area flow distance = 333.920(Ft.) Top (of initial area) elevation = 983.600(Ft.) Bottom (of initial area) elevation = 974.620(Ft.) Difference in elevation = 8.980(Ft.) Slope = 0.02689 s(%)= 2.69 TC = $k(0.331)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 6.977 min. Rainfall intensity = 4.837(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.866 Subarea runoff = 3.478(CFS) Total initial stream area = 0.830(Ac.) Pervious area fraction = 0.230 Initial area Fm value = 0.181(In/Hr) Process from Point/Station 4.300 to Point/Station 4,400 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 969.620(Ft.) Downstream point/station elevation = 968.770(Ft.) Pipe length = 40.90(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 3.478(CFS)

```
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow =
                                3.478(CFS)
Normal flow depth in pipe = 7.24(In.)
Flow top width inside pipe = 11.74(In.)
Critical Depth = 9.56(In.)
Pipe flow velocity = 7.03(Ft/s)
Travel time through pipe = 0.10 min.
Time of concentration (TC) = 7.07 min.
Process from Point/Station 4.300 to Point/Station
                                                      4,400
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.830(Ac.)
Runoff from this stream =
                          3.478(CFS)
Time of concentration = 7.07 min.
Rainfall intensity = 4.797(In/Hr)
Area averaged loss rate (Fm) = 0.1806(In/Hr)
Area averaged Pervious ratio (Ap) = 0.2300
Program is now starting with Main Stream No. 2
Process from Point/Station 4.400 to Point/Station
                                                      4,400
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.0300 Max loss rate(Fm)= 0.024(In/Hr)
Initial subarea data:
Initial area flow distance = 276.950(Ft.)
Top (of initial area) elevation = 986.510(Ft.)
Bottom (of initial area) elevation = 973.530(Ft.)
                      12.980(Ft.)
Difference in elevation =
Slope = 0.04687 s(%)=
                           4.69
TC = k(0.282)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 4.930 min.
Rainfall intensity =
                     5.957(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.896
Subarea runoff =
                 1.709(CFS)
Total initial stream area =
                              0.320(Ac.)
Pervious area fraction = 0.030
Initial area Fm value =
                      0.024(In/Hr)
Process from Point/Station 4.400 to Point/Station
                                                      4.400
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.320(Ac.)
Runoff from this stream =
                          1.709(CFS)
Time of concentration = 4.93 min.
Rainfall intensity = 5.957(In/Hr)
Area averaged loss rate (Fm) = 0.0236(In/Hr)
```

Area averaged Pervious ratio (Ap) = 0.0300 Summary of stream data: Stream Flow rate тс Rainfall Intensity Area Fm No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 1 3.48 0.830 7.07 0.181 4.797 2 1.71 0.320 4.93 0.024 5.957 Qmax(1) =1.000 * 1.000 * 3.478) + 0.804 * 1.000 * 1.709) + =4.853 Qmax(2) =1.251 * 0.697 * 3.478) +1.000 * 1.000 * 1.709) + =4.742 Total of 2 main streams to confluence: Flow rates before confluence point: 4.478 2.709 Maximum flow rates at confluence using above data: 4.853 4.742 Area of streams before confluence: 0.830 0.320 Effective area values after confluence: 1.150 0.899 Results of confluence: Total flow rate = 4.853(CFS) Time of concentration = 7.074 min. Effective stream area after confluence = 1.150(Ac.) Study area average Pervious fraction(Ap) = 0.174 Study area average soil loss rate(Fm) = 0.137(In/Hr) Study area total = 1.15(Ac.) Process from Point/Station 4.400 to Point/Station 4.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 968.770(Ft.) Downstream point/station elevation = 966.540(Ft.) Pipe length = 106.90(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.853(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 4.853(CFS) Normal flow depth in pipe = 9.28(In.) Flow top width inside pipe = 10.05(In.) Critical Depth = 10.90(In.) Pipe flow velocity = 7.45(Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 7.31 min. End of computations, Total Study Area = 1.15 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation. Area averaged pervious area fraction(Ap) = 0.174

```
Area averaged SCS curve number = 32.0
```

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 100 YEAR, RATIONAL METHOD POST-CONDITION, AREA A COMBINED _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.330 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station 3.000 to Point/Station 3.600 **** USER DEFINED FLOW INFORMATION AT A POINT **** COMMERCIAL subarea type Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil(AMC 2) = 32.00 Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.079(In/Hr) Rainfall intensity = 3.714(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 10.84 min. Rain intensity = 3.71(In/Hr) Total area this stream = 16.77(Ac.) Total Study Area (Main Stream No. 1) = 16.77(Ac.) Total runoff = 56.51(CFS) Process from Point/Station 3.000 to Point/Station 3.600 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 16.770(Ac.) Runoff from this stream = 56.510(CFS) Time of concentration = 10.84 min. Rainfall intensity = 3.714(In/Hr) Area averaged loss rate (Fm) = 0.0785(In/Hr)

Area averaged Pervious ratio (Ap) = 0.1000 Program is now starting with Main Stream No. 2

```
COMMERCIAL subarea type
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)=
                                                   0.079(In/Hr)
Rainfall intensity =
                      3.762(In/Hr) for a
                                          100.0 year storm
User specified values are as follows:
TC = 10.60 min. Rain intensity =
                                      3.76(In/Hr)
Total area this stream = 7.68(Ac.)
Total Study Area (Main Stream No. 2) =
                                         24.45(Ac.)
Total runoff =
                26.39(CFS)
Process from Point/Station 3.700 to Point/Station
                                                           3.600
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                      7.680(Ac.)
Runoff from this stream =
                           26.392(CFS)
Time of concentration = 10.60 min.
Rainfall intensity =
                     3.762(In/Hr)
Area averaged loss rate (Fm) = 0.0785(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
                  Area
                         тс
                                        Rainfall Intensity
                                Fm
No.
      (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
             16.770
1
     56.51
                        10.84
                                0.079
                                          3.714
     26.39
             7.680
                        10.60
                                0.079
                                          3.762
2
Qmax(1) =
                              56.510) +
          1.000 *
                    1.000 *
          0.987 *
                    1.000 *
                              26.392) + =
                                              82.554
Qmax(2) =
          1.013 *
                    0.979 *
                              56.510) +
          1.000 *
                    1.000 *
                              26.392) + =
                                              82.431
Total of 2 main streams to confluence:
Flow rates before confluence point:
     57.510
                27.392
Maximum flow rates at confluence using above data:
      82.554
                  82.431
Area of streams before confluence:
      16.770
                 7.680
Effective area values after confluence:
      24.450
                  24.091
```

Results of confluence:

Total flow rate = 82.554(CFS) Time of concentration = 10.836 min. Effective stream area after confluence = 24.450(Ac.) Study area average Pervious fraction(Ap) = 0.100 Study area average soil loss rate(Fm) = 0.079(In/Hr) Study area total = 24.45(Ac.) End of computations, Total Study Area = 24.45 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 32.0

San Bernardino County Rational Hydrology Program (Hydrology Manual Date - August 1986) CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2005 Version 7.1 Rational Hydrology Study Date: 10/18/22 JOB NO. 2022-318 11115 HEMLOCK AVE 100 YEAR, RATIONAL METHOD POST-CONDITION, AREA B _____ Program License Serial Number 6277 _____ ******** Hydrology Study Control Information ********* _____ Rational hydrology study storm event year is 100.0 Computed rainfall intensity: Storm year = 100.00 1 hour rainfall = 1.330 (In.) Slope used for rainfall intensity curve b = 0.6000 Soil antecedent moisture condition (AMC) = 3 Process from Point/Station 5.000 to Point/Station 5.100 **** INITIAL AREA EVALUATION **** Soil classification AP and SCS values input by user USER INPUT of soil data for subarea SCS curve number for soil(AMC 2) = 32.00Adjusted SCS curve number for AMC 3 = 52.00Pervious ratio(Ap) = 0.3100 Max loss rate(Fm) = 0.243(In/Hr) Initial subarea data: Initial area flow distance = 228.380(Ft.) Top (of initial area) elevation = 1001.000(Ft.) Bottom (of initial area) elevation = 987.460(Ft.) Difference in elevation = 13.540(Ft.) Slope = 0.05929 s(%)= 5.93 TC = $k(0.351)*[(length^3)/(elevation change)]^{0.2}$ Initial area time of concentration = 5.421 min. Rainfall intensity = 5.627(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.861 Subarea runoff = 9.303(CFS) Total initial stream area = 1.920(Ac.) Pervious area fraction = 0.310 Initial area Fm value = 0.243(In/Hr) Process from Point/Station 5.100 to Point/Station 5.200 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 982.460(Ft.) Downstream point/station elevation = 971.000(Ft.) Pipe length = 854.87(Ft.) Manning's N = 0.013

No. of pipes = 1 Required pipe flow = 9.303(CFS)

```
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow =
                                9.303(CFS)
Normal flow depth in pipe = 11.79(In.)
Flow top width inside pipe = 17.11(In.)
Critical Depth = 14.15(In.)
Pipe flow velocity = 7.58(Ft/s)
Travel time through pipe = 1.88 min.
Time of concentration (TC) = 7.30 min.
Process from Point/Station 5.100 to Point/Station
                                                       5,200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                   1.920(Ac.)
Runoff from this stream =
                          9.303(CFS)
Time of concentration = 7.30 min.
Rainfall intensity = 4.707(In/Hr)
Area averaged loss rate (Fm) = 0.2434(In/Hr)
Area averaged Pervious ratio (Ap) = 0.3100
Program is now starting with Main Stream No. 2
Process from Point/Station 5.200 to Point/Station
                                                       5,200
**** INITIAL AREA EVALUATION ****
Soil classification AP and SCS values input by user
USER INPUT of soil data for subarea
SCS curve number for soil(AMC 2) = 32.00
Adjusted SCS curve number for AMC 3 = 52.00
Pervious ratio(Ap) = 0.0500 Max loss rate(Fm)= 0.039(In/Hr)
Initial subarea data:
Initial area flow distance = 983.950(Ft.)
Top (of initial area) elevation = 996.020(Ft.)
Bottom (of initial area) elevation = 982.710(Ft.)
                       13.310(Ft.)
Difference in elevation =
Slope = 0.01353 s(%)=
                           1.35
TC = k(0.287)*[(length^3)/(elevation change)]^{0.2}
Initial area time of concentration = 10.680 min.
Rainfall intensity =
                      3.746(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.891
                 36.766(CFS)
Subarea runoff =
Total initial stream area =
                             11.020(Ac.)
Pervious area fraction = 0.050
Initial area Fm value =
                       0.039(In/Hr)
Process from Point/Station 5.200 to Point/Station
                                                       5.200
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
                   11.020(Ac.)
Stream flow area =
                         36.766(CFS)
Runoff from this stream =
Time of concentration = 10.68 min.
Rainfall intensity = 3.746(In/Hr)
Area averaged loss rate (Fm) = 0.0393(In/Hr)
```

Area averaged Pervious ratio (Ap) = 0.0500 Summary of stream data: Stream Flow rate Area тс Rainfall Intensity Fm No. (CFS) (Ac.) (min) (In/Hr) (In/Hr) 9.30 4.707 1 1.920 7.30 0.243 36.77 2 11.020 10.68 0.039 3.746 Qmax(1) =1.000 * 9.303) + 1.000 * 0.684 * 1.259 * 36.766) + =40.947 Qmax(2) =0.785 * 1.000 * 9.303) + 1.000 * 1.000 * 36.766) + =44.067 Total of 2 main streams to confluence: Flow rates before confluence point: 10.303 37.766 Maximum flow rates at confluence using above data: 40.947 44.067 Area of streams before confluence: 1.920 11.020 Effective area values after confluence: 9.453 12.940 Results of confluence: Total flow rate = 44.067(CFS) 10.680 min. Time of concentration = Effective stream area after confluence = 12.940(Ac.) Study area average Pervious fraction(Ap) = 0.089 Study area average soil loss rate(Fm) = 0.070(In/Hr) Study area total = 12.94(Ac.) End of computations, Total Study Area = 12.94 (Ac.) The following figures may

```
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
```

```
Area averaged pervious area fraction(Ap) = 0.089
Area averaged SCS curve number = 32.0
```

APPENDIX C

UNIT HYDROGRAPH ANALYSIS (24 HOUR, 100-YEAR STORM)

UNIT HYDROGRAPH ANALYSIS (24 HOUR, 100-YEAR STORM)

PRE-DEVELOPMENT CONDITION

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 10/18/22 San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6277 _____ JOB NO 2022-318 11115 HEMLOCK AVENUE 100-YEAR, UNIT HYDROGRAPH PRE-CONDITION, AREA A ----------Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-AreaDurationIsohyetal(Ac.)(hours)(In) Rainfall data for year 100 29.19 1 1.33 _____ Rainfall data for year 100 29.19 6 3.11 _____ Rainfall data for year 100 29.19 24 5.69 _____ ******* Area-averaged max loss rate, Fm ******* Area SCS curve SCS curve Area Fp(Fig C6) Ap Fm (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 29.19 1.000 0.785 0.600 0.471 No.(AMCII) NO.(AMC 3) 32.0 52.0 Area-averaged adjusted loss rate Fm (In/Hr) = 0.471 ******** Area-Averaged low loss rate fraction, Yb *********

SCS CN SCS CN Area Area S Pervious (AMC2) (Ac.) Fract (AMC3) Yield Fr 17.51 0.600 32.0 52.0 9.23 0.199 11.68 0.400 98.0 98.0 0.20 0.958 Area-averaged catchment yield fraction, Y = 0.502 Area-averaged low loss fraction, Yb = 0.498 User entry of time of concentration = 0.227 (hours) Watershed area = 29.19(Ac.) Catchment Lag time = 0.182 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 45.8722 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.471(In/Hr)Average low loss rate fraction (Yb) = 0.498 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.492(In) Computed peak 30-minute rainfall = 1.008(In) Specified peak 1-hour rainfall = 1.330(In) Computed peak 3-hour rainfall = 2.239(In) Specified peak 6-hour rainfall = 3.110(In) Specified peak 24-hour rainfall = 5.690(In) Rainfall depth area reduction factors: 29.19(Ac.) (Ref: fig. E-4) Using a total area of 5-minute factor = 0.999 Adjusted rainfall = 0.492(In) Adjusted rainfall = 1.007(In) 30-minute factor = 0.999 Adjusted rainfall = 1.328(In) 1-hour factor = 0.9993-hour factor = 1.000Adjusted rainfall = 2.239(In) Adjusted rainfall = 3.110(In) 6-hour factor = 1.000 24-hour factor = 1.000 Adjusted rainfall = 5.690(In) _____ Unit Hydrograph Interval'S' GraphUnit HydrographNumberMean values((CFS)) _____ (K = 353.02 (CFS)) 3.888 13.724 1 2 25.344 75.746 3 61.737 128.471 4 85.872 85.201 5 95.288 33.242 6 98.297 10.620 7 99.167 3.072 8 100.000 2.940 _____ Peak Unit Adjusted mass rainfall Unit rainfall Number (In) (In) 1 0.4916 0.4916 2 0.6486 0.1571 3 0.7628 0.1142 4 0.8559 0.0930 5 0.9358 0.0799 6 1.0066 0.0708

-	4 0706	0 0640
/	1.0/06	0.0640
8	1.1293	0.0587
0	1 1020	0 0545
9	1.1838	0.0545
10	1.2348	0.0510
11	1 2027	0 0100
11	1.282/	0.0480
12	1.3282	0.0454
12	1 2707	0 0515
13	1.3/3/	0.0515
14	1.4291	0.0494
15	1 4767	0 0476
10	1.4707	0.04/0
16	1.5227	0.0460
17	1 5672	0 0115
10	1.5072	0.0445
18	1.6104	0.0431
19	1.6523	0.0419
20	1 (0)1	0 0400
20	1.0931	0.0408
21	1.7328	0.0397
22	1 7715	0 0297
22	1.//15	0.0307
23	1.8093	0.0378
24	1 8/63	0 0370
27	1.0405	0.05/0
25	1.8824	0.0362
26	1,9179	0.0354
27	1.0520	0.0007
27	1.9526	0.0347
28	1,9866	0.0340
20	2 0200	0 0224
29	2.0200	0.0334
30	2.0528	0.0328
21	2 0950	0 0222
51	2.0050	0.0522
32	2.1167	0.0317
33	2 1/179	0 0312
55	2.170	0.0012
34	2.1/86	0.030/
35	2,2088	0.0302
20	2, 2200	0.0000
36	2.2380	0.0298
37	2.2679	0.0293
20	2 2067	0 0200
20	2.2907	0.0209
39	2.3252	0.0285
40	2 3533	Q Q281
40	2.5555	0.0201
41	2.3810	0.02//
42	2,4083	0.0274
12	2 4254	0.0270
43	2.4354	0.0270
44	2.4621	0.0267
46	2 1001	0 0261
45	2.4004	0.0204
46	2.5145	0.0261
47	2 5403	0 0258
47	2.5405	0.0250
48	2.5658	0.0255
49	2,5910	0.0252
5	2.55210	0.0232
50	2.6159	0.0249
51	2.6406	0.0247
50	2 6650	0 0244
52	2.0050	0.0244
53	2.6892	0.0242
E /	2 7122	0 0220
54	2.7132	0.0235
55	2.7369	0.0237
56	2,7694	0.0235
50	2 7020	0.0222
57	2.7836	0.0233
58	2.8067	0.0231
50	2 8295	0 0000
	2.0275	0.0220
60	2.8522	0.0226
61	2.8746	0.0224
~-	2.0000	0.0227
<u>ہ</u> ک	2.8968	0.0223
63	2.9189	0.0221
64	2 0409	0 0210
04	2.3400	0.0219
65	2.9625	0.0217
66	2 9840	0 0215
		0.0215
0/	3.0054	0.0214

68	3.0266	0.0212
69	3.0476	0.0210
70	3.0685	0.0209
71	3.0892	0.0207
72	3.1097	0.0206
73	3.1285	0.0187
74	3 1471	0 0186
75	3 1655	0.0185
75	3 1920	0.0103
70	2 2020	0.0103
77	5.2020	0.0182
78	3.2201	0.0181
79	3.2380	0.0179
80	3.2558	0.01/8
81	3.2735	0.0177
82	3.2911	0.0176
83	3.3085	0.0174
84	3.3258	0.0173
85	3.3430	0.0172
86	3.3601	0.0171
87	3.3770	0.0170
88	3.3939	0.0169
89	3,4107	0.0168
90	3,4273	0.0166
91	3 4439	0.0100
92	3 4603	0.0105
92	2 4766	0.0104
95	3.4700	0.0103
94	5.4929	0.0162
95	3.5090	0.0161
96	3.5251	0.0160
97	3.5410	0.0160
98	3.5569	0.0159
99	3.5727	0.0158
100	3.5883	0.0157
101	3.6039	0.0156
102	3.6195	0.0155
103	3.6349	0.0154
104	3,6502	0.0153
105	3,6655	0.0153
106	3.6806	0.0152
107	3 6957	0 0151
109	3 7107	0.0151
100	2 7257	0.0100
110	2 7405	0.0149
110	3.7405	0.0149
111	3.7553	0.0148
112	3.7700	0.0147
113	3.7847	0.0146
114	3.7992	0.0146
115	3.8137	0.0145
116	3.8281	0.0144
117	3.8425	0.0143
118	3.8567	0.0143
119	3.8710	0.0142
120	3.8851	0.0141
121	3.8992	0.0141
122	3.9132	0.0140
123	3.9271	0.0139
124	3.9410	0.0139
125	3 9548	0 0132
126	3 9686	0.0120 0 0120
120	2 2022	0.0100
120	3.3023	0.0137
τζο	3.3323	0.0130

129	4.0095	0.0136
130	4.0230	0.0135
131	4,0365	0.0135
132	1 0100	0 0134
100	4 0622	0.0137
100	4.0032	0.0133
134	4.0/65	0.0133
135	4.0897	0.0132
136	4.1029	0.0132
137	4.1160	0.0131
138	4.1291	0.0131
139	4,1421	0.0130
140	A 1551	0 0130
1/1	4.1690	0.0100
141	4.1000	0.0129
142	4.1808	0.0129
143	4.1936	0.0128
144	4.2064	0.0128
145	4.2191	0.0127
146	4.2317	0.0127
147	4.2443	0.0126
148	4.2569	0.0126
1/0	1 2694	0 0125
150	4.2004	0.0125
150	4.2819	0.0125
151	4.2943	0.0124
152	4.3067	0.0124
153	4.3190	0.0123
154	4.3313	0.0123
155	4.3435	0.0122
156	4.3557	0.0122
157	4.3678	0.0121
158	4.3799	0.0121
159	4 3920	0 0121
160	4.3520	0.0121
100	4.4040	0.0120
161	4.4100	0.0120
162	4.42/9	0.0119
163	4.4398	0.0119
164	4.4517	0.0118
165	4.4635	0.0118
166	4.4752	0.0118
167	4.4870	0.0117
168	4.4987	0.0117
169	4.5103	0.0117
170	4.5219	0.0116
171	4 5335	0 0116
172	4.5555	0.0115
172	4.5450	0.0115
175	4.5505	0.0115
1/4	4.5680	0.0115
175	4.5/94	0.0114
176	4.5908	0.0114
177	4.6021	0.0113
178	4.6135	0.0113
179	4.6247	0.0113
180	4.6360	0.0112
181	4.6472	0.0112
182	1 6584	0.0112
183	4.650 4 1.6695	0 0111
10/	4.0095	0.0111
104	4.0000	0.0111
105	4.091/	0.0111
186	4.7027	0.0110
187	4./137	0.0110
188	4.7247	0.0110
189	4.7356	0.0109

100	1 7465	0 0100
190	4.7405	0.0109
191	4.7574	0.0109
192	4.7682	0.0108
102	4 7700	0 0100
195	4.7790	0.0100
194	4.7898	0.0108
195	4.8005	0.0107
106	1 9112	0 0107
190	4.8113	0.0107
197	4.8219	0.0107
198	4.8326	0.0107
100	1 9122	0 0106
199	4.8452	0.0100
200	4.8538	0.0106
201	4.8644	0.0106
202	1 8749	0 0105
202	4.0745	0.0105
203	4.8854	0.0105
204	4.8959	0.0105
205	4,9063	0.0104
205	1.0167	0.0104
206	4.9167	0.0104
207	4.9271	0.0104
208	4,9375	0.0104
200	1 0179	0 0102
209	4.9470	0.0105
210	4.9581	0.0103
211	4.9684	0.0103
212	1 0786	0 0102
212	4.9780	0.0102
213	4.9889	0.0102
214	4.9991	0.0102
215	5 0092	a a1a2
215	5.0052	0.0102
216	5.0194	0.0101
217	5.0295	0.0101
218	5,0396	0.0101
210	5.0350	0.0101
219	5.0496	0.0101
220	5.0597	0.0100
221	5,0697	0.0100
 ววว	5 0707	0 0100
222	5.0797	0.0100
223	5.0896	0.0100
224	5.0995	0.0099
225	5 1095	0 0000
225	5.1000	0.0000
226	5.1193	0.0099
227	5.1292	0.0099
228	5,1390	0.0098
220	F 1400	0.0000
229	5.1488	0.0098
230	5.1586	0.0098
231	5.1684	0.0098
222	5 1791	0 0007
202	5.1781	0.0007
233	5.18/8	0.009/
234	5.1975	0.0097
235	5,2072	0,0097
236	5.2072	0.0007
236	5.2169	0.0096
237	5.2265	0.0096
238	5,2361	0.0096
220		0 0006
239	5.2450	0.0090
240	5.2552	0.0096
241	5.2647	0.0095
242	5,2742	0,0095
242		0.0000
243	5.283/	0.0095
244	5.2932	0.0095
245	5,3026	0,0094
246	E 2121	0 0004
240	2.2121	0.0094
247	5.3215	0.0094
248	5.3308	0.0094
2/10	5 3402	0 0001
243		0.0094
250	5.3495	0.0093

251	5.3588	0.0093	
252	5.3681	0.0093	
253	5.3774	0.0093	
254	5.3867	0.0093	
255	5.3959	0.0092	
256	5,4051	0.0092	
257	5.4143	0.0092	
258	5.4235	0.0092	
259	5 4326	0.0092	
255	5 1/18	0.0092	
261	5 4509	0.0091	
262	5 4600	0.0001	
202	5 1690	0.0001	
205	5 / 721	0.0001	
265	5 / 871	0.0001	
205	5.4071	0.0090	
200	5.4901	0.0090	
267	5.5051	0.0090	
268	5.5141	0.0090	
269	5.5231	0.0090	
270	5.5320	0.0089	
2/1	5.5409	0.0089	
272	5.5498	0.0089	
273	5.5587	0.0089	
274	5.5676	0.0089	
275	5.5764	0.0088	
276	5.5852	0.0088	
277	5.5940	0.0088	
278	5.6028	0.0088	
279	5.6116	0.0088	
280	5.6204	0.0088	
281	5.6291	0.0087	
282	5.6378	0.0087	
283	5.6465	0.0087	
284	5.6552	0.0087	
285	5.6639	0.0087	
286	5.6725	0.0087	
287	5.6812	0.0086	
288	5.6898	0.0086	
Unit	Unit	Unit	Effective
Period	Rainfall	Soil-Loss	Rainfall
(number)	(In)	(In)	(In)
1	0.0086	0.0043	0.0043
2	0.0086	0.0043	0.0043
3	0.0087	0.0043	0.0044
4	0.0087	0.0043	0.0044
5	0.0087	0.0043	0.0044
6	0.0087	0.0043	0.0044
7	0.0088	0.0044	0.0044
8	0.0088	0.0044	0.0044
9	0.0088	0.0044	0.0044
10	0.0088	0.0044	0.0044
11	0.0089	0.0044	0.0045
12	0.0089	0.0044	0.0045
13	0.0089	0.0044	0.0045
14	0.0090	0.0045	0.0045
15	0.0090	0.0045	0.0045
16	0.0090	0.0045	0.0045
17	0.0091	0.0045	0.0045
18	0.0091	0.0045	0.0046

19	0 0091	0 0045	0 0046
20	0.0001	0.0045	0.0040
20	0.0091	0.0045	0.0040
21	0.0092	0.0046	0.0046
22	0.0092	0.0046	0.0046
23	0.0092	0.0046	0.0046
24	0.0093	0.0046	0.0046
25	0.0093	0.0046	0.0047
26	0.0093	0.0046	0.0047
27	0.0094	0.0047	0.0047
28	0 0001	0 0017	0 0017
20	0.0004	0.0047	0.0047
29	0.0094	0.0047	0.0047
50	0.0094	0.0047	0.0047
31	0.0095	0.0047	0.0048
32	0.0095	0.004/	0.0048
33	0.0096	0.0048	0.0048
34	0.0096	0.0048	0.0048
35	0.0096	0.0048	0.0048
36	0.0096	0.0048	0.0048
37	0.0097	0.0048	0.0049
38	0.0097	0.0048	0.0049
39	0.0098	0.0049	0.0049
40	0.0098	0.0049	0.0049
/1	0 0008	0 0019	0 0019
42	0.0000	0.0049	0.0045
42	0.0099	0.0049	0.0050
45	0.0099	0.0049	0.0050
44	0.0099	0.0049	0.0050
45	0.0100	0.0050	0.0050
46	0.0100	0.0050	0.0050
47	0.0101	0.0050	0.0051
48	0.0101	0.0050	0.0051
49	0.0101	0.0050	0.0051
50	0.0102	0.0051	0.0051
51	0.0102	0.0051	0.0051
52	0.0102	0.0051	0.0051
53	0 0103	0 0051	0 0052
50	0.0103	0.0051	0.0052
54	0.0103	0.0051	0.0052
55	0.0104	0.0052	0.0052
50	0.0104	0.0052	0.0052
5/	0.0105	0.0052	0.0053
58	0.0105	0.0052	0.0053
59	0.0106	0.0053	0.0053
60	0.0106	0.0053	0.0053
61	0.0107	0.0053	0.0054
62	0.0107	0.0053	0.0054
63	0.0107	0.0053	0.0054
64	0.0108	0.0054	0.0054
65	0.0108	0.0054	0.0054
66	0 0109	0 0054	0 0055
67	0.0109	0 0054	0.0055
69	0.0105	0.0054	0.0055
60	0.0110		0.0055
69	0.0110	0.0055	0.0055
70	0.0111	0.0055	0.0056
/1	0.0111	0.0055	0.0056
72	0.0112	0.0056	0.0056
73	0.0112	0.0056	0.0056
74	0.0113	0.0056	0.0057
75	0.0113	0.0056	0.0057
76	0.0114	0.0057	0.0057
77	0.0115	0.0057	0.0058
78	0.0115	0.0057	0.0058
79	0.0116	0.0058	0.0058

90	0 0116	0 0059	0 0050
00	0.0110	0.0058	0.0058
81	0.011/	0.0058	0.0059
82	0.0117	0.0058	0.0059
83	0.0118	0.0059	0.0059
84	0.0118	0.0059	0.0060
85	0 0119	0 0059	0 0060
05 06	0.0119	0.0055	0.0000
00	0.0120	0.0000	0.0000
8/	0.0121	0.0060	0.0061
88	0.0121	0.0060	0.0061
89	0.0122	0.0061	0.0061
90	0.0122	0.0061	0.0061
91	0.0123	0.0061	0.0062
92	0 0124	0 0062	0 0062
02	0.0125	0.0002	0.0002
55	0.0125	0.0002	0.0003
94	0.0125	0.0062	0.0063
95	0.0126	0.0063	0.0063
96	0.0127	0.0063	0.0064
97	0.0128	0.0063	0.0064
98	0.0128	0.0064	0.0064
99	0.0129	0.0064	0.0065
100	0 0130	0 0064	0 0065
101	0.0130	0.0004	0.0005
101	0.0131	0.0005	0.0000
102	0.0131	0.0065	0.0066
103	0.0132	0.0066	0.0066
104	0.0133	0.0066	0.0067
105	0.0134	0.0067	0.0067
106	0.0135	0.0067	0.0068
107	0 0136	0 0068	0 0068
100	0.0136	0.0000	0.0000
100	0.0130	0.0008	0.0009
109	0.0138	0.0068	0.0069
110	0.0138	0.0069	0.0069
111	0.0139	0.0069	0.0070
112	0.0140	0.0070	0.0070
113	0.0141	0.0070	0.0071
114	0.0142	0.0071	0.0071
115	0 0143	0 0071	0 0072
116	0.0143	0 0072	0.0072
117	0.0144	0.0072	0.0072
117	0.0146	0.0072	0.0073
118	0.0146	0.0073	0.0074
119	0.0148	0.0074	0.0074
120	0.0149	0.0074	0.0075
121	0.0150	0.0075	0.0075
122	0.0151	0.0075	0.0076
123	0.0153	0.0076	0.0077
124	0 0153	0 0076	0 0077
125	0.0155	0.0070	0.0077
125	0.0155	0.0077	0.0078
126	0.0156	0.00/8	0.0078
127	0.0158	0.0078	0.0079
128	0.0159	0.0079	0.0080
129	0.0160	0.0080	0.0081
130	0.0161	0.0080	0.0081
131	0.0163	0.0081	0.0082
132	0 0164	0 0082	0 0083
122	0.0104	0.0082	0.0005
124	0.0100		0.0084
134	0.0168	0.0083	0.0084
135	0.0170	0.0084	0.0085
136	0.0171	0.0085	0.0086
137	0.0173	0.0086	0.0087
138	0.0174	0.0087	0.0088
139	0.0177	0.0088	0.0089
140	0 0178	0 0089	0 0000
1-10	0.01/0	0.0005	0.0009

1/1	0 0181	0 0000	0 0001
141	0.0101	0.0000	0.0001
142	0.0102	0.0091	0.0091
143	0.0185	0.0092	0.0093
144	0.0186	0.0093	0.0093
145	0.0206	0.0102	0.0103
146	0.0207	0.0103	0.0104
147	0.0210	0.0105	0.0106
148	0.0212	0.0105	0.0106
149	0.0215	0.0107	0.0108
150	0 0217	0 0108	0 0100
150	0.0217	0.0108	0.0105
151	0.0221	0.0110	0.0111
152	0.0223	0.0111	0.0112
153	0.0226	0.0113	0.0114
154	0.0228	0.0114	0.0115
155	0.0233	0.0116	0.0117
156	0.0235	0.0117	0.0118
157	0.0239	0.0119	0.0120
158	0.0242	0.0120	0.0121
159	0.0247	0.0123	0.0124
160	0.0249	0.0124	0.0125
161	0.0255	0.0127	0.0128
162	0.0258	0.0128	0.0130
163	0 0264	0 0131	0 0133
164	0.0204	0.0133	0.0134
165	0.0207	0.0135	0.0134
105	0.0274	0.0130	0.0137
100	0.02//	0.0138	0.0139
16/	0.0285	0.0142	0.0143
168	0.0289	0.0144	0.0145
169	0.0298	0.0148	0.0150
170	0.0302	0.0150	0.0152
171	0.0312	0.0155	0.0157
172	0.0317	0.0158	0.0159
173	0.0328	0.0163	0.0165
174	0.0334	0.0166	0.0168
175	0.0347	0.0173	0.0174
176	0.0354	0.0176	0.0178
177	0 0370	0 0184	0 0186
178	0.0378	0 0188	0.0100
170	0.0370	0.0108	0.0100
100	0.0397	0.0198	0.0200
100	0.0408	0.0203	0.0205
181	0.0431	0.0215	0.021/
182	0.0445	0.0221	0.0224
183	0.0476	0.0237	0.0239
184	0.0494	0.0246	0.0248
185	0.0454	0.0226	0.0228
186	0.0480	0.0239	0.0241
187	0.0545	0.0271	0.0274
188	0.0587	0.0292	0.0295
189	0.0708	0.0352	0.0356
190	0.0799	0.0393	0.0406
191	0 1142	0 0393	0 0750
192	0.1571	0.0393	0.0750
103	0.1971	0.0393	0.1170
10/	0.4010	0.0000	0.4323
105	0.000	CECU.U	0.0220
100	0.0040	0.03E4 6TE0.0	0.0322
190	0.0510	0.0254	0.0256
19/	0.0515	0.0256	0.0259
198	0.0460	0.0229	0.0231
199	0.0419	0.0209	0.0211
200	0.0387	0.0193	0.0195
201	0.0362	0.0180	0.0182

202	0 0310	0 0169	0 0171
202	0.0340	0.0109	0.01/1
203	0.0322	0.0160	0.0162
204	0.030/	0.0153	0.0154
205	0.0293	0.0146	0.0147
206	0.0281	0.0140	0.0141
207	0.0270	0.0134	0.0136
208	0.0261	0.0130	0.0131
209	0.0252	0.0125	0.0127
210	0 0244	0 0122	0 0123
210	0.027	0.0122	0.0120
211	0.0237	0.0110	0.0119
212	0.0251	0.0115	0.0110
213	0.0224	0.0112	0.0113
214	0.0219	0.0109	0.0110
215	0.0214	0.0106	0.0107
216	0.0209	0.0104	0.0105
217	0.0187	0.0093	0.0094
218	0.0183	0.0091	0.0092
219	0.0179	0.0089	0.0090
220	0.0176	0.0087	0.0088
221	0.0172	0.0086	0.0086
222	0.0169	0.0084	0.0085
223	0 0165	0 0082	0 0083
223	0.0162	0.0002	0.0000
224	0.0102	0.0001	0.0002
225	0.0100	0.0079	0.0000
220	0.0157	0.0078	0.0079
227	0.0154	0.00//	0.0077
228	0.0152	0.0075	0.0076
229	0.0149	0.0074	0.0075
230	0.0147	0.0073	0.0074
231	0.0145	0.0072	0.0073
232	0.0143	0.0071	0.0072
233	0.0141	0.0070	0.0071
234	0.0139	0.0069	0.0070
235	0.0137	0.0068	0.0069
236	0 0135	0 0067	0 0068
237	0 0133	0.0066	0.0000
238	0.0132	0.0000	0.0007
200	0.0132	0.0000	0.0000
239	0.0130	0.0005	0.0005
240	0.0129	0.0064	0.0065
241	0.012/	0.0063	0.0064
242	0.0126	0.0062	0.0063
243	0.0124	0.0062	0.0062
244	0.0123	0.0061	0.0062
245	0.0121	0.0060	0.0061
246	0.0120	0.0060	0.0060
247	0.0119	0.0059	0.0060
248	0.0118	0.0059	0.0059
249	0.0117	0.0058	0.0059
250	0.0115	0.0057	0.0058
251	0.0114	0.0057	0.0057
252	0 0113	0 0056	0 0057
252	0.0112	0.0056	0.0057
255	0.0112	0.0050	0.0050
254	0.0110	0.0055	0.0000 0 00FF
200	0.0100		0.0055
200	6 0100 60103	0.0054	0.0055
25/	80102	0.0054	0.0054
258	0.010/	0.0053	0.0054
259	0.0106	0.0053	0.0053
260	0.0105	0.0052	0.0053
261	0.0104	0.0052	0.0052
262	0.0104	0.0052	0.0052

26	3	0.0103		0.0051		0.0052	
26	<u>л</u>	0 0102		0 0051		0 0051	
20		0.0102 0 0101		0.0051		0.0051	
20	5 6	0.0100		0.0050		0.0051	
20	7	0.0100		0.0050		0.0050	
26	7	0.0100		0.0050		0.0050	
26	8	0.0099		0.0049		0.0050	
26	9	0.0098		0.0049		0.0049	
27	0	0.0097		0.0048		0.0049	
27	1	0.0097		0.0048		0.0049	
27	2	0.0096		0.0048		0.0048	
27	3	0.0095		0.0047		0.0048	
27	4	0.0095		0.0047		0.0048	
27	5	0.0094		0.0047		0.0047	
27	6	0.0093		0.0046		0.0047	
27	7	0.0093		0.0046		0.0047	
27	8	0.0092		0.0046		0.0046	
27	9	0.0092		0.0046		0.0046	
28	9	0 0091		0 0045		0 0046	
20	1	a aaga		0.0045		0.0040	
20	1 2	a aaga		0.0045		0.0045	
20	2	0.0090		0.0045		0.0045	
20	2	0.0009		0.0044		0.0045	
28	4	0.0089		0.0044		0.0045	
28	5	0.0088		0.0044		0.0044	
28	6	0.0088		0.0044		0.0044	
28	7	0.0087		0.0043		0.0044	
28	8	0.0087		0.0043		0.0043	
Pe ++	ak flow rate in	flood +++++++ 24 - u n o f	hydrograp +++++++++ H O U R f +	++++++++++++++++++++++++++++++++++++++	5.78(CFS) +++++++++++ R M g r a p h		++++++
	 Hydro	graph i	n 5 M	linute inte	ervals ((CF	 S))	
	-						
 Time(h+m) Volume Ac.Ft	Q(CFS) 0	20.0	40.0	60.0	80.0
0+ 5	0.0004	0.06	0				
0+10	0.0031	0.39	õ	Ì			i
0+15	0.0096	0.94	õ	i	i	i	i
0+20	0.0186	1.32	õ	i	İ		i
0+25	0.0287	1.46	õ	i	i	i	i
0+30	0.0392	1.51	õ	i i	i	i i	
0+35	0.0352	1 53	Q Q		ł	1	I
0+33	0.0457	1 55	Q		ł		
0+40	0.0004	1 55	Q		ł		
0+45	0.0711	1.55	Q		ł		
0+50	0.0818	1.50	Q				
0+55	0.0926	1.50	Ų Q				
1 + 1/4		1.5/	ų				1
1+ 0	0.1034	a	•	1			
1+ 5	0.1034	1.57	Q			ļ	ļ
1+ 5 1+10	0.1034 0.1142 0.1251	1.57 1.58	Q Q				
1+ 0 1+ 5 1+10 1+15	0.1034 0.1142 0.1251 0.1360	1.57 1.58 1.58	Q Q Q				
1+ 0 1+ 5 1+10 1+15 1+20	0.1034 0.1142 0.1251 0.1360 0.1469	1.57 1.58 1.58 1.59	Q Q Q Q				
1+ 0 1+ 5 1+10 1+15 1+20 1+25	0.1034 0.1142 0.1251 0.1360 0.1469 0.1579	1.57 1.58 1.58 1.59 1.59	Q Q Q Q Q				
1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30	0.1034 0.1142 0.1251 0.1360 0.1469 0.1579 0.1689	1.57 1.58 1.58 1.59 1.59 1.60	б б б б б				
1+ 5 1+10 1+15 1+20 1+25 1+30 1+35	0.1034 0.1142 0.1251 0.1360 0.1469 0.1579 0.1689 0.1800	1.57 1.58 1.58 1.59 1.59 1.60 1.60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

1+45	0.2021	1.61	QV			
1+50	0 2133	1 62	OV			
1.50	0.2100	1 (2)				
1+22	0.2245	1.62	ŲV			
2+ 0	0.2357	1.63	QV			
2+ 5	0.2470	1.63	OV			
2.10	0.2502	1 (1				
2+10	0.2583	1.64	ŲV			
2+15	0.2696	1.65	QV			
2+20	0.2810	1.65	OV			
2,25	0 2024	1 66				
2+25	0.2924	1.00	Qv			
2+30	0.3038	1.66	QV			
2+35	0.3153	1.67	OV			
2.40	0 2260	1 67				
2+40	0.5209	1.0/	Qv			
2+45	0.3384	1.68	QV			
2+50	0.3500	1.69	OV			
2+55	0 2617	1 60				
2+33	0.3017	1.09	QV			
3+ 0	0.3734	1.70	QV			
3+ 5	0.3851	1.70	0 V			
3+10	0 3060	1 71	õ v	i		
5+10	0.000	1.71	Q V Q V			
3+15	0.408/	1./2	Qν			
3+20	0.4206	1.72	QV			
3+25	0 4325	1 73	0 V			
2.20	0.4525	1 70	Q V Q V			
3+30	0.4444	1./3	Ųν			
3+35	0.4564	1.74	QV			
3+40	0 4685	1 75	0 V	i i		
2.45	0.4005	1 75				
3+45	0.4805	1.75	ųν			
3+50	0.4927	1.76	QV			
3+55	0.5048	1.77	0 V			
4. 0	0 5171	1 77				
4+ 0	0.51/1	1.//	ųν			
4+ 5	0.5293	1.78	QV			
4+10	0.5417	1.79	0 V	i i		
4.10	0.5117	1 00				
4+15	0.5540	1.00	Ųν			
4+20	0.5664	1.80	QV			
4+25	0.5789	1.81	0 V			
1.20	0 5014	1 0 0				
4+30	0.3314	1.02	Q V			
4+35	0.6040	1.82	QV			
4+40	0.6166	1.83	0 V			
1+15	0 6202	1 0/	õ v	i		
4+45	0.0292	1.04	Q V			
4+50	0.6420	1.85	Ųν			
4+55	0.6547	1.85	0 V			
5+ Ø	0 6676	1 86	0 V	i		
	0.0070	1.00	Q V			
5+ 5	0.6804	1.8/	Ųν			
5+10	0.6934	1.88	Q V			
5+15	0 7063	1 89	0 V	i i		
5.20	0.7005	1 00				
5+20	0./194	1.89	Ųν			
5+25	0.7325	1.90	QV			
5+30	0.7456	1.91	0 V			
5.25	0 7590	1 02				
5+55	0.7509	1.92	ų v			
5+40	0.7721	1.93	QV			
5+45	0.7855	1.94	0 V			
5+50	0 7080	1 0/	õ v			
5+50	0.7505	1.04	Q V			
5+55	0.8123	1.95	Q V			
6+ 0	0.8258	1.96	Q V			
6+ 5	0.8394	1,97	0 V	l i		
6,10	0 0520	1 00				
0+10	0.0230	т.98	ų v			
6+15	0.8667	1.99	Q V			
6+20	0.8805	2,00	0 V	l i	l i	
6+25	0 8012	2 01				
0725	0.0743	2.0I				
6+30	0.9082	2.02	IQ V			
6+35	0.9222	2.03	Q V			
6+40	0 9362	2 01				
6.45	0.0502	2.04				
0+45	0.9503	2.05	lõ v			

6+50	0.9645	2.06	Q	V		1	
6+55	0.9788	2.07	İõ	vi		i	i
7+ 0	0.9931	2.08	lõ	vİ		Ì	i
7+ 5	1 0075	2 09	lõ	V I		1	
7+10	1 0219	2.05		V I			1
7+10	1 0265	2.10	10	V I		1	1
7+15	1.0505	2.11	10				1
7+20	1.0511	2.12	IQ	V I			
7+25	1.0658	2.13	10	V I			1
7+30	1.0806	2.15	IQ	V I		1	
7+35	1.0954	2.16	ĮQ	V		ļ	
7+40	1.1104	2.17	ĮQ	V			
7+45	1.1254	2.18	Q	V			
7+50	1.1405	2.19	Q	V			
7+55	1.1557	2.21	Q	V			
8+ 0	1.1709	2.22	Q	V			
8+ 5	1.1863	2.23	Q	V		Ì	
8+10	1.2017	2.24	İõ	vi		i	i
8+15	1.2173	2.26	lõ	vi		Ì	i
8+20	1,2329	2.27	lõ	v		Ì	
8+25	1 2486	2 28		v I			1
8+30	1 2645	2.20	10	V I			1
8+36	1 2804	2.50	10	V 1			1
0-10	1 2064	2.51	10	V I		1	1
8+40	1.2964	2.33	IQ	V I			1
8+45	1.3125	2.34	10	V I			1
8+50	1.328/	2.35	ĮQ	V I			
8+55	1.3450	2.37	ĮQ	V		ļ	
9+ 0	1.3615	2.38	ĮQ	V		1	
9+ 5	1.3780	2.40	Q	V			
9+10	1.3946	2.42	Q	V			
9+15	1.4114	2.43	Q	V			
9+20	1.4283	2.45	Q	V			
9+25	1.4452	2.47	Q	V		Ì	
9+30	1.4623	2.48	İQ	vi		Ì	İ
9+35	1.4796	2.50	İõ	vi		i	İ
9+40	1,4969	2.52	lõ	vi		i	İ
9+45	1.5144	2.54	lõ	v I		Ì	
9+50	1 5320	2 55		v I			1
9+55	1 5497	2.55		V I			1
10± 0	1 5676	2.57	10	V I			1
10+ 0	1 5856	2.55	10				1
10+ 3	1 6027	2.01	10				1
10+10	1.0037	2.05	16				1
10+15	1.6220	2.65	IQ	V I			
10+20	1.6404	2.67	IQ	V I			
10+25	1.6589	2.70	10	V			
10+30	1.6///	2.72	ĮQ	V			
10+35	1.6965	2.74	ĮQ	V		1	
10+40	1.7156	2.76	ĮQ	V			
10+45	1.7348	2.79	Q	V			
10+50	1.7541	2.81	Q	V			
10+55	1.7736	2.84	Q	V			
11+ 0	1.7933	2.86	Q	V			
11+ 5	1.8132	2.89	Q	V			
11+10	1.8333	2.91	Q	V			
11+15	1.8535	2.94	Q	vİ		1	
11+20	1.8740	2.97	ĬÕ	vİ		i	İ
11+25	1.8946	3.00	ĺŏ	V		i	i
11+30	1,9155	3.03	lõ	- 1	/	i	İ
11+35	1,9365	3,06	lõ	\.	/	1	
11+40	1,9578	3.00	lñ.	۰ ۱.			1
11+45	1 9792	2.05 2.10		۷ ۱.	/		1
11+50	2 0010	2 15	10	v 1	,		1
TTL 70	2.0010	2.12	12	v	1	1	1

11+55	2.0229	3.19	Q	V I			
12+ 0	2.0451	3.22	Q	V I			
12+ 5	2.0676	3.27	lo	V İ			İ
12+10	2.0909	3.37	0	V I			ĺ
12+15	2.1151	3.52	lõ	Iv İ			İ
12+20	2.1401	3.63	0	iv i			İ
12+25	2.1655	3.70		iv i			i
12+30	2,1913	3.75		iv i			İ
12+35	2.2175	3.80		iv i			İ
12+40	2 2439	3 84					1
12+45	2.2433	3 89					1
12+50	2.2707	3 94					1
12+50	2.2375	3 90					1
13+ 0	2.3234	1 05					1
13+ 5	2.3332	4.05					1
12+10	2.3013	4.10					1
12,15	2.4101	4.10					1
12+12	2.4392	4.22					1
13+20	2.4087	4.20					1
13+25	2.4986	4.35	IQ				
13+30	2.5291	4.42	IQ				
13+35	2.5600	4.49	ĮQ				
13+40	2.5914	4.56	ĮQ				
13+45	2.6234	4.64	Q				ļ
13+50	2.6559	4.73	Q				ļ
13+55	2.6891	4.81	Q				ļ
14+ 0	2.7229	4.91	Q	V I			
14+ 5	2.7574	5.01	Q	V			
14+10	2.7926	5.11	Q	V			
14+15	2.8286	5.23	Q	V			
14+20	2.8654	5.35	Q	V			
14+25	2.9031	5.47	Q	V			
14+30	2.9417	5.61	Q	V			
14+35	2.9814	5.76	Q	V			
14+40	3.0221	5.91	Q	I V I			ĺ
14+45	3.0640	6.08	Q	i v i			ĺ
14+50	3.1071	6.27	Ō	i v i			İ
14+55	3.1517	6.47	Ō	i v i			İ
15+ 0	3.1978	6.69	Ō	i v i			İ
15+ 5	3.2456	6.94	Ō	i vi			i
15+10	3,2953	7.22		i vi			i
15+15	3,3471	7.53		i vi			İ
15+20	3 4014	7 88					1
15+25	3 /581	8 23					1
15+20	3 5158	8 30					1
15+35	3 5737	8 /1					1
15+10	3.5757	0.41 0.72					1
15+40	3.0339	0.75					1
15+45	2.0990	10 57					1
15+50	2.0570	10.57			,		1
15+55	3.85/9	12.50			/		1
16+ 0	3.9/4/	10.90	i v				1
16+ 5	4.1804	29.8/			V A		
16+10	4.5828	58.42		! !	V Q		
16+15	5.104/	/5./8		!!!	V	Q	
16+20	5.4709	53.18			QV		ļ
16+25	5.6613	27.64		i G j	V	_	ļ
16+30	5.7679	15.48	l Q	ļ	۱	/	ļ
16+35	5.8431	10.92	Q	ļ ļ	١	/	ļ
16+40	5.9101	9.72	Q	i l		V	ļ
16+45	5.9637	7.79	Q	ļ		V	l
16+50	6.0127	7.12	Q			V	
16+55	6.0582	6.61	Q			V	

17+ 0	6 1010	6 20		I I	I I	V I
17+ 0	0.1010	0.20				v I
1/+ 5	6.1412	5.85	ĮQ			V I
17+10	6.1795	5.55	Q			V
17+15	6.2159	5.29	0			V
17+20	6 2508	5 06	ĺ	i	i i	v
17.20	C 2042	1.00				
1/+25	6.2843	4.8/	Ų			V
17+30	6.3166	4.69	ĮQ			V I
17+35	6.3478	4.53	Q			V
17+40	6.3780	4.38	İ	İ	Í	v
17.45	6 4072	4 25				v I
17+45	0.4075	4.25				V
17+50	6.4357	4.13	Q			V
17+55	6.4634	4.02	Q			V
18+ 0	6.4904	3.92	lo l	İ	Í	v
10+ 5	6 5166	2 91		i		V I
10-10	0.5100	3.81				v j
18+10	6.5418	3.66	I Q			V I
18+15	6.5657	3.47	Q			V
18+20	6.5885	3.32	0			V I
18+25	6 6107	3 22		i	i i	v
10.20	C. C222	2.14				V I
18+30	6.6323	3.14	ĮŲ			V
18+35	6.6535	3.07	ĮQ			V
18+40	6.6742	3.01	Q			V
18+45	6.6946	2.95	lo I	İ	Í	v
10, 50	6 7145	2 00		i		V I
10+50	0.7145	2.90				V
18+55	6./341	2.85	Q			V
19+ 0	6.7534	2.80	Q			V
19+ 5	6.7723	2.75	0			V I
19+10	6 7910	2 71		i	i i	v
10.15	C 9002	2.71				V I
19+15	6.8093	2.66	I Q			V I
19+20	6.8274	2.62	Q			V
19+25	6.8452	2.58	Q			V
19+30	6.8627	2.54	io i	i	İ	vi
10,25	6 9900	2.54				V I
19+35	0.0000	2.51				V
19+40	6.8970	2.4/	Q			V
19+45	6.9138	2.44	Q			V
19+50	6.9304	2.41	0		I	VI
10+55	6 9/68	2 38		i		V I
10+00	0.0400	2.50				V I
20+ 0	6.9629	2.35	ĮŲ			V
20+ 5	6.9789	2.32	Q			V
20+10	6.9946	2.29	Q			V
20+15	7.0102	2.26	0	İ	Í	Vİ
20+20	7 0256	2 24		i		V I
20+20	7.0250	2.24				v
20+25	7.0408	2.21	I Q			V
20+30	7.0559	2.19	Q			V
20+35	7.0708	2.16	Q			V
20+40	7.0855	2.14	io i	i	İ	vi
20+45	7 1001	2 12		i		v I
20+45	7.1001	2.12				V I
20+50	7.1145	2.09	I Q			V
20+55	7.1288	2.07	Q			V
21+ 0	7.1429	2.05	0			V
21+ 5	7 1569	2 03		i	i i	v
21,10	7 1700	2.05				
21+10	7.1/08	2.01	IV.			V
21+15	/.1845	1.99 (2		l I	V
21+20	7.1981	1.98 (2			V
21+25	7.2116	1.96 ()	l i	i i	vi
21+30	7 2250	1 0/ /	1			v l
21.25	7 2220	1 02	2			V [
21+35	1.2382	1.92 (2			V
21+40	7.2513	1.91 (2			V
21+45	7.2643	1.89 (2			V
21+50	7.2772	1.87 (5	j i		vİ
21,55	7 2000	1 0 0 1	c 1	ı 		
22-72	7.2900	1.00 (2			V I
22+ 0	1.3027	1.84 (2 2	I		V (

22+ 5	7.3153	1.83	0			V I
22+10	7.3278	1.81	Q	İ	İ	v
22+15	7.3402	1.80	Q	İ	ĺ	V
22+20	7.3525	1.78	Q	ĺ		V
22+25	7.3647	1.77	Q	ĺ		V
22+30	7.3768	1.76	Q			V
22+35	7.3888	1.74	Q			V
22+40	7.4007	1.73	Q			V
22+45	7.4125	1.72	Q			V
22+50	7.4243	1.71	Q			V
22+55	7.4360	1.69	Q			V
23+ 0	7.4475	1.68	Q			V
23+ 5	7.4591	1.67	Q			V
23+10	7.4705	1.66	Q			V
23+15	7.4818	1.65	Q			V
23+20	7.4931	1.64	Q			V
23+25	7.5043	1.63	Q			V
23+30	7.5154	1.62	Q			V
23+35	7.5265	1.61	Q			V
23+40	7.5375	1.60	Q			V
23+45	7.5484	1.59	Q			V
23+50	7.5593	1.58	Q			V
23+55	7.5700	1.57	Q			V
24+ 0	7.5808	1.56	Q			V

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 10/18/22 _____ San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6277 _____ JOB NO 2022-318 11115 HEMLOCK AVENUE 100-YEAR, UNIT HYDROGRAPH PRE-CONDITION, AREA B -----. Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-AreaDurationIsohyetal(Ac.)(hours)(In) Rainfall data for year 100 8.22 1 1.33 _____ Rainfall data for year 100 8.22 6 3.11 _____ Rainfall data for year 100 8.22 24 5.69 _____ ******* Area-averaged max loss rate, Fm ******* SCS curve SCS curve Area Area Fp(Fig C6) Ap Fm No.(AMCII) NO.(AMC 3)(Ac.)Fraction(In/Hr)(dec.)(In/Hr)32.052.08.221.0000.7850.9000.707 Area-averaged adjusted loss rate Fm (In/Hr) = 0.707 ******** Area-Averaged low loss rate fraction, Yb *********

SCS CN SCS CN Area Area S Pervious (AMC2) (Ac.) Fract (AMC3) Yield Fr 7.40 0.900 32.0 52.0 9.23 0.199 0.82 0.100 98.0 98.0 0.20 0.958 Area-averaged catchment yield fraction, Y = 0.275 Area-averaged low loss fraction, Yb = 0.725 User entry of time of concentration = 0.303 (hours) Watershed area = 8.22(Ac.) Catchment Lag time = 0.243 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 34.3614 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.707(In/Hr) Average low loss rate fraction (Yb) = 0.725 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.492(In) Computed peak 30-minute rainfall = 1.008(In) Specified peak 1-hour rainfall = 1.330(In) Computed peak 3-hour rainfall = 2.239(In) Specified peak 6-hour rainfall = 3.110(In) Specified peak 24-hour rainfall = 5.690(In) Rainfall depth area reduction factors: 8.22(Ac.) (Ref: fig. E-4) Using a total area of 5-minute factor = 1.000 Adjusted rainfall = 0.492(In) Adjusted rainfall = 1.008(In) 30-minute factor = 1.000 Adjusted rainfall = 1.329(In)

 1-hour factor = 1.000
 Adjusted rainfall = 1.329(In)

 3-hour factor = 1.000
 Adjusted rainfall = 2.239(In)

 6-hour factor = 1.000
 Adjusted rainfall = 3.110(In)

 24-hour factor = 1.000
 Adjusted rainfall = 5.690(In)

 1-hour factor = 1.000_____ Unit Hydrograph Interval'S' GraphUnit HydrographNumberMean values((CFS)) _____ (K = 99.41 (CFS)) 2.380 1 2.366 2 14,565 12.114 3 37.668 22.967 4 66.447 28.609 5 84.161 17.610 6 92.859 8.646 7 97.015 4.132 8 98.439 1.416 9 99.057 0.615 10 99.673 0.612 100.000 11 0.325 _____ Peak Unit Adjusted mass rainfall Unit rainfall Number (In) (In) 1 0.4921 0.4921 2 0.6493 0.1572 3 0.7636 0.1143

4	0.8567	0.0931
5	0.9367	0.0800
6	1,0076	0.0709
7	1 0716	0 06/1
, o	1 1204	0.0041
0	1.1504	0.0566
9	1.1850	0.0545
10	1.2360	0.0510
11	1.2840	0.0480
12	1.3295	0.0455
13	1.3809	0.0515
14	1 4304	0 0494
15	1 4779	0.0424
10	1.4779	0.0470
16	1.5239	0.0459
1/	1.5684	0.0445
18	1.6115	0.0431
19	1.6533	0.0419
20	1.6941	0.0407
21	1.7337	0.0397
22	1 7724	0 0387
22	1 9102	0 0379
23	1.0102	0.0378
24	1.04/1	0.0369
25	1.8832	0.0361
26	1.9186	0.0354
27	1.9532	0.0347
28	1.9872	0.0340
29	2.0206	0.0334
30	2.0534	0.0328
31	2 0855	0 0322
22	2.0000	0.0322
32	2.11/2	0.0310
33	2.1483	0.0311
34	2.1/90	0.0306
35	2.2091	0.0302
36	2.2389	0.0297
37	2.2681	0.0293
38	2.2970	0.0289
39	2.3255	0.0285
40	2.3535	0.0281
41	2 3812	0 0277
12	2 1086	0 0274
42	2.4080	0.0274
45	2.4550	0.0270
44	2.4623	0.0267
45	2.4887	0.0264
46	2.5148	0.0261
47	2.5405	0.0258
48	2.5660	0.0255
49	2,5912	0.0252
50	2 6162	0 0249
50	2.0102	0.0247
51	2.6409	0.0247
52	2.6653	0.0244
53	2.6895	0.0242
54	2.7134	0.0239
55	2.7371	0.0237
56	2.7606	0.0235
57	2,7839	0.0233
58	2.8069	0.0230
50	2 8297	0.0200 0 0000
60	2.0237	0.0220
50	2.8524	0.0226
61	2.8/48	0.0224
62	2.8971	0.0222
63	2.9191	0.0221
64	2.9410	0.0219

65	2.9627	0.0217
66	2.9842	0.0215
67	3.0056	0.0214
68	3.0268	0.0212
69	3.0478	0.0210
70	3.0687	0.0209
71	3 0894	0.0207
72	3 1009	0.0207
72	2 1297	0.0200
75	5.1207	0.0107
74	3.1473	0.0186
75	3.1657	0.0185
76	3.1841	0.0183
//	3.2023	0.0182
78	3.2203	0.0181
79	3.2382	0.0179
80	3.2560	0.0178
81	3.2737	0.0177
82	3.2913	0.0176
83	3.3087	0.0174
84	3.3260	0.0173
85	3.3432	0.0172
86	3.3603	0.0171
87	3.3773	0.0170
88	3.3941	0.0169
89	3.4109	0.0168
90	3.4275	0.0166
91	3 4441	0 0165
92	3 4605	0.0164
92	3 4768	0.0163
94	3 4031	0.0103
94	2 6002	0.0102
95	3.3092	0.0101
96	3.5255	0.0160
97	3.5412	0.0160
98	3.55/1	0.0159
99	3.5729	0.0158
100	3.5886	0.0157
101	3.6041	0.0156
102	3.6197	0.0155
103	3.6351	0.0154
104	3.6504	0.0153
105	3.6657	0.0153
106	3.6808	0.0152
107	3.6959	0.0151
108	3.7109	0.0150
109	3.7259	0.0149
110	3.7407	0.0149
111	3.7555	0.0148
112	3,7702	0.0147
113	3,7849	0.0146
114	3 7994	0.0146
115	3 8139	0.0140
116	3 8283	0.0145
117	3 8/27	0.0144
110		0.0143
110	2,0202	0.0143
170	3.8/12	0.0142
120	3.8853	0.0141
121	3.8994	0.0141
122	3.9134	0.0140
123	3.9273	0.0139
124	3.9412	0.0139
125	3.9550	0.0138

126	3.9688	0.0138
127	3.9825	0.0137
128	3,9961	0.0136
129	4 0097	0 0136
120	4.0007	0.0135
121	4.0252	0.0135
131	4.0367	0.0135
132	4.0501	0.0134
133	4.0634	0.0133
134	4.0767	0.0133
135	4.0899	0.0132
136	4,1031	0.0132
137	1 1162	0.0131
120	4,1202	0.0101
100	4.1293	0.0131
139	4.1423	0.0130
140	4.1552	0.0130
141	4.1682	0.0129
142	4.1810	0.0129
143	4.1938	0.0128
144	4,2066	0.0128
145	4 2193	0 0127
146	4 2210	0.0127
140	4.2319	0.0127
147	4.2445	0.0126
148	4.25/1	0.0126
149	4.2696	0.0125
150	4.2821	0.0125
151	4.2945	0.0124
152	4.3069	0.0124
153	4,3192	0.0123
154	1 3315	0 0123
155	4.3313	0.0123
155	4.3437	0.0122
156	4.3559	0.0122
157	4.3680	0.0121
158	4.3801	0.0121
159	4.3922	0.0121
160	4.4042	0.0120
161	4.4162	0.0120
162	4.4281	0.0119
163	4,4400	0.0119
164	4,4519	0.0118
165	4 4637	0 0118
166	4.4057	0.0110
100	4.4972	0.0117
167	4.4872	0.0117
168	4.4989	0.011/
169	4.5105	0.0116
170	4.5221	0.0116
171	4.5337	0.0116
172	4.5452	0.0115
173	4.5567	0.0115
174	4.5682	0.0115
175	4 5796	0 0114
176	1 5910	0.011/
170	4.5510	0.0114
170	4.6023	0.0113
170	4.0130	0.0113
1/9	4.6249	0.0113
180	4.6362	0.0112
181	4.6474	0.0112
182	4.6585	0.0112
183	4.6697	0.0111
184	4,6808	0.0111
185	4,6918	0 0111
186	4 7029	0 0110
		0.0110

107	4 7120	0 0110
187	4./139	0.0110
188	4.7249	0.0110
189	4,7358	0.0109
100	1 7467	0 0100
190	4.7407	0.0109
191	4.7576	0.0109
192	4.7684	0.0108
193	1 7792	0 0108
100	4.7752	0.0100
194	4.7900	0.0108
195	4.8007	0.0107
196	A 811A	0 0107
107	4 0224	0.0107
197	4.8221	0.010/
198	4.8328	0.0107
199	4.8434	0.0106
200	1 9540	0 0106
200	4.8540	0.0100
201	4.8645	0.0106
202	4.8751	0.0105
203	1 8856	0 0105
205	4.0050	0.0105
204	4.8961	0.0105
205	4.9065	0.0104
206	4,9169	0.0104
207	4 0272	0 0104
207	4.9275	0.0104
208	4.9377	0.0104
209	4.9480	0.0103
210	1 9583	a a1a3
210	4.9989	0.0105
211	4.9686	0.0103
212	4.9788	0.0102
213	4,9890	0.0102
214	1 0002	0 0102
214	4.5552	0.0102
215	5.0094	0.0102
216	5.0195	0.0101
217	5,0296	0.0101
210	5 0207	0 0101
218	5.0597	0.0101
219	5.0498	0.0101
220	5.0598	0.0100
221	5,0698	0.0100
	E 0709	0 0100
222	5.0798	0.0100
223	5.0898	0.0100
224	5.0997	0.0099
225	5,1096	0.0099
226	E 110E	0 0000
220	5.1195	0.0099
227	5.1294	0.0099
228	5.1392	0.0098
229	5 1490	0 0098
220	5.1490	0.0000
230	5.1588	0.0098
231	5.1686	0.0098
232	5.1783	0.0097
233	5 1880	0 0007
255	5.1000	0.0007
234	5.1977	0.009/
235	5.2074	0.0097
236	5,2170	0.0096
227	5 2266	0 0006
237	5.2200	0.0090
238	5.2362	0.0096
239	5.2458	0.0096
240	5,2554	0.0096
2.1	E 2640	0 0005
241	5.2049	0.0095
242	5.2744	0.0095
243	5.2839	0.0095
244	5,2934	0.0095
245	5.2004 F 2020	0.0000
240	5.5020	0.0094
246	5.3122	0.0094
247	5.3216	0.0094

240	F 2210	0.0004	
248	5.3310	0.0094	
249	5.3404	0.0094	
250	5.3497	0.0093	
251	5 3500	0,0002	
251	5.3590	0.0095	
252	5.3683	0.0093	
253	5.3776	0.0093	
254	5 3969	0 0003	
254	5.5808	0.0093	
255	5.3961	0.0092	
256	5.4053	0.0092	
257	5 4145	0 0092	
257	5.4226	0.0052	
258	5.4236	0.0092	
259	5.4328	0.0092	
260	5.4419	0.0091	
261	E 4E10	0,0001	
201	5.4510	0.0091	
262	5.4601	0.0091	
263	5.4692	0.0091	
264	5 4782	0 0001	
204	5.4782	0.0001	
265	5.48/3	0.0090	
266	5.4963	0.0090	
267	5.5053	0.0090	
268	5 51/2	0 0000	
208	5.5145	0.0090	
269	5.5232	0.0090	
270	5.5321	0.0089	
271	5.5411	0.0089	
272	5 5500	0 0000	
272	5.5500	0.0005	
273	5.5589	0.0089	
274	5.5677	0.0089	
275	5,5766	0.0088	
276	5 5854	0 0088	
270	5.5854	0.0088	
2//	5.5942	0.0088	
278	5.6030	0.0088	
279	5.6118	0.0088	
290	5 6205	0 0088	
280	5.0205	0.0088	
281	5.6293	0.008/	
282	5.6380	0.0087	
283	5.6467	0.0087	
284	5 6554	0 0087	
204	5.0554	0.0087	
285	5.6640	0.008/	
286	5.6727	0.0087	
287	5.6813	0,0086	
288	5 6899	0 0086	
200	5.0855	0.0000	
Unit	Unit	Unit	Effective
Period	Rainfall	Soil-Loss	Rainfall
(number)	(In)	(In)	(In)
(·····································	()	()	()
1	0 0086	0 0063	0 0021
1	0.0000	0.0005	0.0024
2	0.0086	0.0063	0.0024
3	0.0087	0.0063	0.0024
4	0.0087	0.0063	0.0024
5	0 0087	0 0063	0 0024
5	0.0007	0.0005	0.0024
b	0.008/	0.0003	0.0024
7	0.0088	0.0064	0.0024
8	0.0088	0.0064	0.0024
9	0 0088	0 0064	0 0024
10	0.0000		0.0024
TQ	0.0000	0.0004	0.0024
11	0.0089	0.0064	0.0024
12	0.0089	0.0065	0.0024
13	0.0089	0.0065	0.0025
1/	0 0000	0 0065	0 0025
14	0.0000	0.0005	0.0025
12	0.0090	0.0065	0.0025

16	a aaga	0 0065	0 0025
17	0.0000	0.0005	0.0025
18	0.0001	0.0000	0.0025
10	0.0001	0.0000	0.0025
19	0.0091	0.0000	0.0025
20	0.0091	0.0000	0.0025
21	0.0092	0.0067	0.0025
22	0.0092	0.0067	0.0025
23	0.0092	0.0067	0.0025
24	0.0093	0.0067	0.0025
25	0.0093	0.0067	0.0026
26	0.0093	0.0068	0.0026
27	0.0094	0.0068	0.0026
28	0.0094	0.0068	0.0026
29	0.0094	0.0068	0.0026
30	0.0094	0.0069	0.0026
31	0.0095	0.0069	0.0026
32	0.0095	0.0069	0.0026
33	0.0096	0.0069	0.0026
34	0.0096	0.0069	0.0026
35	0.0096	0.0070	0.0026
36	0.0096	0.0070	0.0026
37	0.0097	0.0070	0.0027
38	0.0097	0.0070	0.0027
39	0 0098	0 0071	0 0027
40	0.0098	0.0071	0.0027
40	0.0098	0 0071	0.0027
41	0.0000	0.0071	0.0027
42	0.000	0.0072	0.0027
45	0.000	0.0072	0.0027
44 45	0.0099	0.0072	0.0027
45	0.0100	0.0072	0.0027
40	0.0100	0.0073	0.0027
47	0.0101	0.0073	0.0020
40	0.0101	0.0075	0.0028
49	0.0101	0.0074	0.0028
50	0.0102	0.0074	0.0028
51	0.0102	0.0074	0.0028
52	0.0102	0.0074	0.0028
53	0.0103	0.00/5	0.0028
54	0.0103	0.00/5	0.0028
55	0.0104	0.0075	0.0029
56	0.0104	0.0076	0.0029
57	0.0105	0.0076	0.0029
58	0.0105	0.0076	0.0029
59	0.0106	0.0077	0.0029
60	0.0106	0.0077	0.0029
61	0.0107	0.0077	0.0029
62	0.0107	0.0077	0.0029
63	0.0107	0.0078	0.0029
64	0.0108	0.0078	0.0030
65	0.0108	0.0079	0.0030
66	0.0109	0.0079	0.0030
67	0.0109	0.0079	0.0030
68	0.0110	0.0080	0.0030
69	0.0110	0.0080	0.0030
70	0.0111	0.0080	0.0030
71	0.0111	0.0081	0.0031
72	0.0112	0.0081	0.0031
73	0.0112	0.0082	0.0031
74	0.0113	0.0082	0.0031
75	0.0113	0.0082	0.0031
76	0.0114	0.0083	0.0031
77	0 0115	0 0083	0 0031
-----	--------	--------	------------------
70	0.0115	0.0005	0.0031
70	0.0115	0.0085	0.0032
79	0.0116	0.0084	0.0032
80	0.0116	0.0084	0.0032
81	0.0117	0.0085	0.0032
82	0.0117	0.0085	0.0032
83	0.0118	0.0086	0.0032
84	0.0118	0.0086	0.0033
85	0.0119	0,0087	0.0033
86	0 0120	0 0087	0 0033
80	0.0120	0.0087	0.0000
87	0.0121	0.008/	0.0033
88	0.0121	0.0088	0.0033
89	0.0122	0.0088	0.0033
90	0.0122	0.0089	0.0034
91	0.0123	0.0089	0.0034
92	0.0124	0.0090	0.0034
93	0.0125	0.0090	0.0034
94	0.0125	0.0091	0.0034
95	0.0126	0.0091	0.0035
96	0.0127	0.0092	0.0035
97	0.0128	0.0093	0.0035
98	0.0128	0.0093	0.0035
99	0 0129	0 0094	0 0035
100	0.0120	0.0094	0.0035
101	0.0130	0.0004	0.0000
101	0.0131	0.0095	0.0030
102	0.0131	0.0095	0.0036
103	0.0132	0.0096	0.0036
104	0.0133	0.0096	0.0036
105	0.0134	0.0097	0.0037
106	0.0135	0.0098	0.0037
107	0.0136	0.0098	0.0037
108	0.0136	0.0099	0.0037
109	0.0138	0.0100	0.0038
110	0.0138	0.0100	0.0038
111	0.0139	0.0101	0.0038
112	0.0140	0.0102	0.0038
113	0.0141	0.0103	0.0039
114	0 0142	0 0103	0 0039
115	0.0142	0.0103	0.0039
116	0.0145	0.0104	0.0055
117	0.0144	0.0105	0.0040
117	0.0140	0.0106	0.0040
118	0.0146	0.0106	0.0040
119	0.0148	0.010/	0.0041
120	0.0149	0.0108	0.0041
121	0.0150	0.0109	0.0041
122	0.0151	0.0109	0.0041
123	0.0153	0.0111	0.0042
124	0.0153	0.0111	0.0042
125	0.0155	0.0112	0.0043
126	0.0156	0.0113	0.0043
127	0.0158	0.0114	0.0043
128	0.0159	0.0115	0.0044
129	0.0160	0.0116	0.0044
130	0 0161	0 0117	0 0011
131	0.0162	0.0110	0.0044 0 0015
122	0.0103	0.0119	0.0045
122	0.0104	0.0121	0.0045
133	0.0100	0.0122	0.0046
134	0.0168	0.0122	0.0046
135	0.01/0	0.0123	0.0047
136	0.0171	0.0124	0.0047
137	0.0173	0.0126	0.0048

138	0.0174	0.0126	0.0048
139	0 0177	0 0128	0 0049
140	0.0178	0.0120	0.0049
1/1	0.0170	0.0125	0.0045
141	0.0101	0.0132	0.0050
142	0.0102	0.0132	0.0050
145	0.0100	0.0134	0.0051
144	0.0186	0.0135	0.0051
145	0.0206	0.0149	0.0056
146	0.020/	0.0150	0.0057
14/	0.0210	0.0153	0.0058
148	0.0212	0.0154	0.0058
149	0.0215	0.0156	0.0059
150	0.021/	0.0157	0.0060
151	0.0221	0.0160	0.0061
152	0.0222	0.0161	0.0061
153	0.0226	0.0164	0.0062
154	0.0228	0.0166	0.0063
155	0.0233	0.0169	0.0064
156	0.0235	0.0170	0.0064
157	0.0239	0.0174	0.0066
158	0.0242	0.0175	0.0066
159	0.0247	0.0179	0.0068
160	0.0249	0.0181	0.0068
161	0.0255	0.0185	0.0070
162	0.0258	0.0187	0.0071
163	0.0264	0.0191	0.0072
164	0.0267	0.0194	0.0073
165	0.0274	0.0198	0.0075
166	0.0277	0.0201	0.0076
167	0.0285	0.0206	0.0078
168	0.0289	0.0209	0.0079
169	0.0297	0.0216	0.0082
170	0.0302	0.0219	0.0083
171	0.0311	0.0226	0.0085
172	0.0316	0.0230	0.0087
173	0.0328	0.0238	0.0090
174	0.0334	0.0242	0.0092
175	0.0347	0.0251	0.0095
176	0.0354	0.0257	0.0097
177	0.0369	0.0268	0.0101
178	0.0378	0.0274	0.0104
179	0.0397	0.0288	0.0109
180	0.0407	0.0295	0.0112
181	0.0431	0.0313	0.0118
182	0.0445	0.0323	0.0122
183	0.0476	0.0345	0.0131
184	0.0494	0.0358	0.0136
185	0.0455	0.0330	0.0125
186	0.0480	0.0348	0.0132
187	0.0545	0.0396	0.0150
188	0.0588	0.0427	0.0161
189	0.0709	0.0514	0.0195
190	0.0800	0.0580	0.0220
191	0.1143	0.0589	0.0554
192	0.1572	0.0589	0.0983
193	0.4921	0.0589	0.4332
194	0.0931	0.0589	0.0342
195	0.0641	0.0465	0.0176
196	0.0510	0.0370	0.0140
197	0 0515	0 0373	0 01/1
198	0 0459	0.0373	0.0141
	0.0400		0.0120

100	0 0410	0 0204	0 0115
199	0.0419	0.0304	0.0115
200	0.038/	0.0281	0.0106
201	0.0361	0.0262	0.0099
202	0.0340	0.0247	0.0093
203	0.0322	0.0234	0.0088
204	0.0306	0.0222	0.0084
205	0.0293	0.0212	0.0080
206	0.0281	0.0204	0.0077
200	0 0270	0 0196	0 007/
207	0.0270	0.0190	0.0074
200	0.0201	0.0109	0.0072
209	0.0252	0.0183	0.0069
210	0.0244	0.01//	0.006/
211	0.0237	0.0172	0.0065
212	0.0230	0.0167	0.0063
213	0.0224	0.0163	0.0062
214	0.0219	0.0159	0.0060
215	0.0214	0.0155	0.0059
216	0.0209	0.0151	0.0057
217	0.0187	0.0136	0.0051
218	0.0183	0.0133	0.0050
219	0.0179	0.0130	0.0049
220	0 0176	0 0127	0 0018
220	0.0170	0.0127	0.0040
221	0.01/2	0.0125	0.0047
222	0.0169	0.0122	0.0046
223	0.0165	0.0120	0.0045
224	0.0162	0.0118	0.0045
225	0.0160	0.0116	0.0044
226	0.0157	0.0114	0.0043
227	0.0154	0.0112	0.0042
228	0.0152	0.0110	0.0042
229	0.0149	0.0108	0.0041
230	0.0147	0.0107	0.0040
231	0.0145	0.0105	0.0040
232	0.0143	0.0104	0.0039
233	0 0141	0 0102	0 0039
232	0 0139	0.0102	0.0000
225	0.0137	0.0101	0.0030
233	0.0137	0.0099	0.0038
230	0.0135	0.0098	0.0037
237	0.0133	0.0097	0.003/
238	0.0132	0.0096	0.0036
239	0.0130	0.0094	0.0036
240	0.0129	0.0093	0.0035
241	0.0127	0.0092	0.0035
242	0.0126	0.0091	0.0034
243	0.0124	0.0090	0.0034
244	0.0123	0.0089	0.0034
245	0.0121	0.0088	0.0033
246	0.0120	0.0087	0.0033
247	0 0119	0.0086	0.0033
249	0.0119	0.0085	0.0033
240	0.0116	0.0085	0.0032
249	0.0116	0.0005	0.0032
250	0.0115	0.0084	0.0032
251	0.0114	6.6003	0.0031
252	0.0113	0.0082	0.0031
253	0.0112	0.0081	0.0031
254	0.0111	0.0081	0.0030
255	0.0110	0.0080	0.0030
256	0.0109	0.0079	0.0030
257	0.0108	0.0078	0.0030
258	0.0107	0.0078	0.0029
259	0.0106	0.0077	0.0029

260	e	.0105		0.0076		0.0029	
261	e	.0104		0.0076		0.0029	
262	e	.0104		0.0075		0.0028	
263	e	.0103		0.0075		0.0028	
264	e	.0102		0.0074		0.0028	
265	e	.0101		0.0073		0.0028	
266	e	.0100		0.0073		0.0028	
267	e	.0100		0.0072		0.0027	
268	P	. 0099		0.0072		0.0027	
269	c c	0098		0 0071		0 0027	
270	c c	0097		0 0071		0 0027	
270	e Ø	0097		0.0071		0.0027	
271		0096		0.0070		0.0027	
272		00000		0.0070		0.0020	
275		0005		0.0005		0.0020	
274		0000		0.0005		0.0020	
275	e c	00034		0.0008		0.0020	
270	e	0002		0.0000		0.0020	
277	e	0000		0.0007		0.0025	
278	e	00092		0.0067		0.0025	
279		0.0092		0.0066		0.0025	
280	e c	0.0091		0.0066		0.0025	
281	k a	.0090		0.0066		0.0025	
282	e	.0090		0.0065		0.0025	
283	e	.0089		0.0065		0.0024	
284	e	.0089		0.0064		0.0024	
285	e	.0088		0.0064		0.0024	
286	e	.0088		0.0064		0.0024	
287	e	.0087		0.0063		0.0024	
288	e	.0087		0.0063		0.0024	
Peak ++++	flow rate in Rι	flood hy +++++++ 24 - H n o f f	/drograph	n = 15 +++++++++ S T 0 F y d r o g	5.78(CFS) ++++++++++ ? M g r a p h	+++++++++++++++++++++++++++++++++++++++	·
 Time(h+m)	Hydrog Volume Ac.Ft	raph in 	5 Mi 0	.nute inte 	ervals ((C 10.0	FS)) 15.0	20.0
0+ 5	0.0000	0.01 (2				I
0+10	0.0003	0.03 (2	Ì			Í
0+15	0.0009	0.09 (2	İ	İ	İ	i
0+20	0.0020	0.16 (2	Ì	Ì	İ	i
0+25	0.0033	0.20 ()	İ	i	i	i
0+30	0.0048	0.22 ()	İ	i	i	i
0+35	0.0064	0.23 ()	İ	i	i	i
0+40	0.0080	0.23 ()	İ	İ	İ	i
0+45	0.0097	0.24 ()	i	i	i	i
0+50	0.0113	0.24 ()	i	i	İ	i
0+55	0.0130	0.24)	i	i	İ	i
1+ 0	0.0146	0.24 (-)	İ	i	i	İ
1+ 5	0.0163	0.24 (-)	i	i	i	l
1+10	0.0180	0.24 ()		Ì	i	ł
1+15	0.0196	0.24 ()		Ì	i	ł
1+20	0.0213	0.24 ()		Ì	i	ĺ
1+25	0.0230	0.24 ()		i	i	ĺ
			-	I.	I.	I I	1

1+30	0.0247	0.25	0		
1+35	0 0264	0.25	n l		
1+40	0.0204	0.25	0		
1.45	0.0201	0.25			
1,50	0.0298	0.25	Q I		
1+50	0.0222	0.25	Q		
1+55	0.0332	0.25	Q		
2+ 0	0.0349	0.25	QV		
2+ 5	0.0367	0.25	QV		
2+10	0.0384	0.25	QV		
2+15	0.0401	0.25	QV		
2+20	0.0419	0.25	QV		
2+25	0.0436	0.25	QV		
2+30	0.0454	0.26	QV		
2+35	0.0472	0.26	QV		
2+40	0.0489	0.26	QV		
2+45	0.0507	0.26	QV		
2+50	0.0525	0.26	QV		
2+55	0.0543	0.26	QV		
3+ 0	0.0561	0.26	QV		
3+ 5	0.0579	0.26	QV		
3+10	0.0597	0.26	QV		
3+15	0.0615	0.26	QV		
3+20	0.0633	0.26	QV		
3+25	0.0651	0.27	QV		
3+30	0.0670	0.27	QV		
3+35	0.0688	0.27	QV		
3+40	0.0707	0.27	Q V		
3+45	0.0725	0.27	Q V		
3+50	0.0744	0.27	o v		
3+55	0.0762	0.27	ον		
4+ 0	0.0781	0.27	ον		
4+ 5	0.0800	0.27	õ v		
4+10	0.0819	0.27	õ v		
4+15	0.0838	0.28	õ v		
4+20	0.0857	0.28	ο V		
4+25	0.0876	0.28	ο v		
4+30	0.0895	0.28	ο v		
4+35	0.0000	0.20	ο v		
4+10	0.0914	0.20	0 V		
4+45	0.0953	0.20	0 V		
4+50	0.0993	0.20	0 V		
4+55	0.0075	0.20			
4+JJ 5+ 0	0.0002	0.20 0.20			
5+ 5	0.1012	0.2J			
5+ 5 5+10	0.1052	0.25			
5+10	0.1052	0.25			
5+10	0.1072	0.20			
5+20	0.1092	0.29			
5+25	0.1112	0.29	Q V		
5+50	0.1152	0.29			
5+55	0.1152	0.29			
5+40	0.11/2	0.30	Q V		
5+45	0.1195	0.30	Q V		
5+50 5+50	0.1224	0.30			
5+55	U.1234	0.30	v v l		
0+ Ø	0.1255	0.30			
0+ 5 6,10	0.12/0	0.30			
0+10	0.1217	0.50	v v l		
C+10	0.1327	U.31			
0+20	0.1260	10.31			
0+25	0.1300	0.31	V V		
0+30	0.1301	0.31	v v		

6+35	0.1403	0.31 Q	V			
6+40	0.1424	0.31 Q	V		l İ	
6+45	0.1446	0.31 Q	V			
6+50	0.1467	0.32 Q	V	ĺ	i i	
6+55	0.1489	0.32 Q	V		i i	
7+ 0	0.1511	0.32 Õ	V	i	i i	
7+ 5	0.1533	0.32 0	V		i i	
7+10	0.1555	0.32 0	V		i i	
7+15	0.1578	0.32 0	V	i	i i	
7+20	0.1600	0.33 0	v		i i	
7+25	0.1623	0.33 0	v		i i	
7+30	0.1645	0.33 0	v		i i	
7+35	0.1668	0.33 0	v		i i	
7+40	0.1691	0.33 0	v		i i	
7+45	0.1714	0.33 0	v		i i	
7+50	0.1737	0.34 Q	v		i i	
7+55	0.1760	0.34 0	v		i i	
8+ 0	0.1784	0.34 Q	v		i i	
8+ 5	0.1807	0.34 0	v		i i	
8+10	0.1831	0.34 0	v		i i	
8+15	0.1855	0.35 0	v		i i	
8+20	0.1879	0.35 0	v		i i	
8+25	0.1903	0.35 0	v		i i	
8+30	0.1927	0.35 0	v		i i	
8+35	0.1951	0.35 0	v		i i	
8+40	0.1976	0.36 0	v		i i	
8+45	0.2001	0.36 0	v		i i	
8+50	0.2025	0.36 Q	v		i i	
8+55	0.2050	0.36 0	v		i i	
9+ 0	0.2076	0.37 Q	v		i i	
9+ 5	0.2101	0.37 Q	v		i i	
9+10	0.2126	0.37 0	v		i i	
9+15	0.2152	0.37 0	v		i i	
9+20	0.2178	0.37 0	v		i i	
9+25	0.2204	0.38 0	v		i i	
9+30	0.2230	0.38 0	v		i i	
9+35	0.2256	0.38 0	v		i i	
9+40	0.2283	0.39 0	v		i i	
9+45	0.2310	0.39 0	v		i i	
9+50	0.2337	0.39 0	V	i	i i	
9+55	0.2364	0.39 0	V		i i	
10+ 0	0.2391	0.40 0	V	i	i i	
10+ 5	0.2419	0.40 0	V	i	i i	
10+10	0.2446	0.40 0	V		i i	
10+15	0.2474	0.41 0	V	i	i i	
10+20	0.2502	0.41 Q	V	l	i i	
10+25	0.2531	0.41 Q	V	İ	i i	
10+30	0.2559	0.42 0	V	i	i i	
10+35	0.2588	0.42 Õ	V	i	i i	
10+40	0.2617	0.42 Õ	V	i	i i	
10+45	0.2647	0.43 Q	V	l	i i	
10+50	0.2676	0.43 Q	V	İ	i i	
10+55	0.2706	0.43 Q	V		i i	
11+ 0	0.2736	0.44 0	V		i i	
11+ 5	0.2767	0.44 Õ	V		j i	
11+10	0.2797	0.45 Õ	V		j i	
11+15	0.2828	0.45 Õ	V		j i	
11+20	0.2859	0.45 Õ	V		j i	
11+25	0.2891	0.46 Õ	V		j i	
11+30	0.2923	0.46 O	V		j i	
11+35	0.2955	0.47 Õ	V		j i	
		· · ·	-	•		

11+40	0.2987	0.47	Q	V			
11+45	0.3020	0.48	Q	V			
11+50	0.3053	0.48	Q	V			
11+55	0.3087	0.49	Q	V			Ì
12+ 0	0.3121	0.49	Q	V	i i		i
12+ 5	0.3155	0.50	Ō	V			i
12+10	0.3190	0.51	Ĭo	v	i i		i
12+15	0.3226	0.53	lo	v			İ
12+20	0.3264	0.54	lo	v			Ì
12+25	0.3302	0.56		v			i
12+30	0.3342	0.57		1	/		i
12+35	0.3381	0.58		Ň	/		
12+40	0.3422	0.59		Ň	/		i
12+45	0.3463	0.59		Ň	/		
12+50	0.3504	0.60		Ň	/		
12+55	0.3546	0.61		Ň	/		
13+ 0	0 3588	0.62		,	/		
13+ 5	0.3530	0.62		,	/		
13+10	0.3675	0.02					
12+15	0.3073	0.05					
12+20	0.3713	0.04	10				
12:25	0.3704	0.05					
12+25	0.3010	0.00					
12+20	0.3030	0.07					
13+35	0.3903	0.68					
13+40	0.3951	0.69	IQ				
13+45	0.3999	0.71	IQ				
13+50	0.4049	0.72	ĮQ		V		
13+55	0.4099	0.73	ĮQ		V		
14+ 0	0.4150	0.74	ĮQ		V		
14+ 5	0.4202	0.76	ĮQ		V		
14+10	0.4256	0.77	ĮQ		V		
14+15	0.4310	0.79	ĮQ		V		
14+20	0.4366	0.81	ĮQ		V		
14+25	0.4423	0.83	ĮQ		V		
14+30	0.4481	0.85	Q		V		
14+35	0.4541	0.87	Q		V		
14+40	0.4602	0.89	Q		V		
14+45	0.4665	0.92	Q		V		
14+50	0.4730	0.94	Q		V		
14+55	0.4797	0.97	Q		V		
15+ 0	0.4866	1.00	Q		V		
15+ 5	0.4938	1.04	Q		V		
15+10	0.5012	1.08	Q		V I		
15+15	0.5089	1.12	Q		V		
15+20	0.5170	1.17	Q		V		
15+25	0.5254	1.22	Q		V I		
15+30	0.5341	1.26	Q		V		
15+35	0.5430	1.29	Q		V		
15+40	0.5520	1.32	ĮQ		V		i
15+45	0.5616	1.39	ĮQ		V		i
15+50	0.5721	1.52	İQ		v		i
15+55	0.5843	1.77	İÕ		v		i
16+ 0	0.6013	2.47	i o		i v		i
16+ 5	0.6337	4.70	İ	0	l v		i
16+10	0.7014	9.84	i	z		V	i
16+15	0.8013	14.51	i			V	ol
16+20	0.9100	15.78	i			v	้ได
16+25	0.9813	10.35	1) ,	v
16+30	1.0219	5.89	ł			2	V
16+35	1.0459	3.49	0)	۲ ح		Īv
16+40	1.0605	2.11	ίο	•			İv
			, .				

16+45	1 0716	1 61		I	I I	V I
16,50	1 0016	1 46		1		V I
10+50	1.0010	1.40				V I
16+55	1.0901	1.23	ĮQ			V I
17+ 0	1.0971	1.01	Q			V
17+ 5	1.1036	0.95	Q			V
17+10	1.1097	0.89	0			V
17+15	1,1156	0.85	lo		i i	vi
17+20	1 1211	0 01			i i	v l
17+20	1,1211	0.01				V I
17+25	1.1265	0.77	IV			V
17+30	1.1316	0.74	ĮQ			V
17+35	1.1365	0.72	Q			V
17+40	1.1413	0.69	Q			V
17+45	1.1459	0.67	lo	Ì	i i	V İ
17+50	1 1504	0 65	10	i	i i	v
17+55	1 15/9	0.05		1		V I
10.0	1.1540	0.05				V I
18+ 0	1.1590	0.62	IQ			V
18+ 5	1.1631	0.60	ĮQ			V I
18+10	1.1671	0.58	Q			V
18+15	1.1709	0.55	Q			V
18+20	1.1746	0.53	0	Í	i i	V
18+25	1,1781	0.51	lo		i i	vi
18+20	1 1015	0.10	0		i i	v
10+30	1 1010	0.40	Q Q	1		V I
18+35	1.1848	0.48	Q			V
18+40	1.1881	0.47	Q			V
18+45	1.1912	0.46	Q			V
18+50	1.1944	0.45	Q			V
18+55	1.1974	0.44	0	ĺ	i i	vi
19+ 0	1,2004	0.44	õ	i	i i	v
10+ 5	1 2024	0 13	ě O		i i	- V
10.10	1.2054	0.43	Q			V I
19+10	1.2063	0.42	Q			V
19+15	1.2092	0.42	Q			V
19+20	1.2120	0.41	Q			V
19+25	1.2147	0.40	Q			V
19+30	1.2175	0.40	Q			V
19+35	1,2202	0.39	0	i	i i	vi
19+40	1 2228	0 38	۰ ٥		i i	v
10.45	1 2254	0.00	2 0			V I
19+45	1.2254	0.50	Q			V I
19+50	1.2280	0.37	Q			V
19+55	1.2305	0.37	Q			V
20+ 0	1.2331	0.36	Q			V
20+ 5	1.2355	0.36	Q			V
20+10	1.2380	0.36	0	ĺ	i i	VÍ
20+15	1.2404	0.35	õ	i	i i	v
20+20	1 2/28	0.35	ν Ο			v I
20+20	1 2452	0.55	Q Q			V I
20+25	1.2452	0.34	Q			V I
20+30	1.24/5	0.34	Q			V
20+35	1.2498	0.34	Q			V
20+40	1.2521	0.33	Q			V
20+45	1.2544	0.33	Q			V
20+50	1.2566	0.32	0	i	i i	vi
20+55	1 2588	0 32	Õ	ĺ	i i	V I
20155	1 2610	0.22	2 0			
21+ 0	1.2010	0.52	Q			V I
21+ 5	1.2032	0.32	Ų	1	ļļļ	V
21+10	1.2653	0.31	Q	l		V
21+15	1.2674	0.31	Q			V
21+20	1.2696	0.31	Q		l İ	V
21+25	1.2716	0.30	Q		l İ	vi
21+30	1.2737	0.30	õ	i	i i	v
21+35	1 2758	0 20	۰ ٥			
21+33	1 2770	0.50	2	1		
21+40	1.2//8	0.30	v o	1		V
21+45	1.2/98	0.29	Q	I	I I	V

21+50	1.2818	0.29 Q			V
21+55	1.2838	0.29 Q			V
22+ 0	1.2858	0.29 Q			V
22+ 5	1.2877	0.28 Q			V
22+10	1.2896	0.28 Q			V
22+15	1.2916	0.28 Q			V
22+20	1.2935	0.28 Q			V
22+25	1.2954	0.27 Q			V
22+30	1.2972	0.27 Q			V
22+35	1.2991	0.27 Q			V
22+40	1.3009	0.27 Q			V
22+45	1.3028	0.27 Q			V
22+50	1.3046	0.26 Q			V
22+55	1.3064	0.26 Q			V
23+ 0	1.3082	0.26 Q			V
23+ 5	1.3100	0.26 Q			V
23+10	1.3117	0.26 Q			V
23+15	1.3135	0.25 Q			V
23+20	1.3152	0.25 Q			V
23+25	1.3170	0.25 Q			V
23+30	1.3187	0.25 Q			V
23+35	1.3204	0.25 Q			V
23+40	1.3221	0.25 Q			V
23+45	1.3238	0.25 Q			V
23+50	1.3255	0.24 Q			V
23+55	1.3271	0.24 Q			V
24+ 0	1.3288	0.24 Q			V

UNIT HYDROGRAPH ANALYSIS (24 HOUR, 100-YEAR STORM)

POST-DEVELOPMENT CONDITION

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 10/18/22 San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6277 _____ JOB NO 2022-318 11115 HEMLOCK AVENUE 100-YEAR, UNIT HYDROGRAPH POST-CONDITION, AREA A -----. Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-AreaDurationIsohyetal(Ac.)(hours)(In) Rainfall data for year 100 24.47 1 1.33 _____ Rainfall data for year 100 24.47 6 3.11 _____ Rainfall data for year 100 24.47 24 5.69 _____ ******* Area-averaged max loss rate, Fm ******* Area SCS curve SCS curve Area Fp(Fig C6) Ap Fm (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 24.47 1.000 0.785 0.120 0.094 No.(AMCII) NO.(AMC 3) 32.0 52.0 Area-averaged adjusted loss rate Fm (In/Hr) = 0.094 ******** Area-Averaged low loss rate fraction, Yb *********

SCS CN SCS CN Area Area S Pervious (AMC2) (AMC3) (Ac.) Fract Yield Fr 2.94 0.120 32.0 52.0 9.23 0.199 21.53 0.880 98.0 98.0 0.20 0.958 Area-averaged catchment yield fraction, Y = 0.867 Area-averaged low loss fraction, Yb = 0.133 User entry of time of concentration = 0.181 (hours) Watershed area = 24.47(Ac.) Catchment Lag time = 0.144 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 57.6781 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.094(In/Hr) Average low loss rate fraction (Yb) = 0.133 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.492(In) Computed peak 30-minute rainfall = 1.008(In) Specified peak 1-hour rainfall = 1.330(In) Computed peak 3-hour rainfall = 2.239(In) Specified peak 6-hour rainfall = 3.110(In) Specified peak 24-hour rainfall = 5.690(In) Rainfall depth area reduction factors: Using a total area of 24.47(Ac.) (Ref: fig. E-4) 5-minute factor = 0.999 Adjusted rainfall = 0.492(In) Adjusted rainfall = 1.007(In) 30-minute factor = 0.999 Adjusted rainfall = 1.328(In) 1-hour factor = 0.9993-hour factor = 1.000Adjusted rainfall = 2.239(In) Adjusted rainfall = 3.110(In) 6-hour factor = 1.000 24-hour factor = 1.000 Adjusted rainfall = 5.690(In) _____ Unit Hydrograph Interval'S' GraphUnit HydrographNumberMean values((CFS)) _____ (K = 295.93 (CFS)) 1 6.038 17.867 2 38.773 96.875 3 79.357 120.101 4 94.547 44.953 5 98.446 11.539 6 99.506 3.138 100.000 7 1.462 Peak Unit Adjusted mass rainfall Unit rainfall Number (In) (In) 1 0.4917 0.4917 2 0.6488 0.1571 3 0.7630 0.1142 4 0.8561 0.0931 5 0.9360 0.0799 6 1.0068 0.0708 7 1.0708 0.0640

-		
8	1.1296	0.0588
9	1,1841	0.0545
10	1 2250	0 0510
10	1.2350	0.0210
11	1.2830	0.0480
12	1 3285	0 0454
12	1.3203	0.0404
13	1.3800	0.0515
14	1,4294	0.0494
15	1 4770	0 0176
15	1.4//0	0.0470
16	1.5230	0.0460
17	1.5675	0.0445
10	1 (10)	0 0421
19	1.0100	0.0451
19	1.6525	0.0419
20	1,6933	0.0408
20	1 7220	0.0207
21	1./330	0.0397
22	1.7717	0.0387
23	1 8095	0 0378
25	1.0055	0.0570
24	1.8465	0.0370
25	1.8826	0.0362
26	1 9180	0 0351
20	1.9100	0.0354
27	1.9527	0.0347
28	1.9867	0.0340
20	2 0201	0 0224
29	2.0201	0.0554
30	2.0529	0.0328
31	2.0851	0.0322
22	2.1100	0.0317
32	2.1168	0.031/
33	2.1480	0.0312
34	2 1787	0 0307
25	2,2000	0.0202
35	2.2089	0.0302
36	2.2386	0.0298
37	2 2679	0 0293
30	2.2075	0.0200
38	2.2968	0.0289
39	2.3252	0.0285
40	2 3533	0 0281
40	2.3555	0.0201
41	2.3810	0.02//
42	2.4084	0.0274
43	2 4354	Q Q27Q
45	2.4554	0.0270
44	2.4621	0.026/
45	2.4885	0.0264
46	2 51/6	0 0261
40	2.5140	0.0201
47	2.5403	0.0258
48	2,5658	0.0255
10	2 5010	0 0252
49	2.3310	0.0252
50	2.6160	0.0249
51	2.6407	0.0247
E 2	2 6651	0 0244
52	2.0051	0.0244
53	2.6893	0.0242
54	2.7132	0.0239
5	2.7260	0.0207
55	2.7369	0.0237
56	2.7604	0.0235
57	2 7837	0 0233
57	2.7057	0.0200
58	2.8067	0.0231
59	2.8296	0.0228
60	2.8522	0,0226
	2.0322	0.0220
61	2.8/46	0.0224
62	2.8969	0.0223
63	2 9190	Q Q221
	2.9190	0.0221
64	2.9408	0.0219
65	2.9625	0.0217
66	2 9841	Q Q215
		0.0210
6/	3.0054	0.0214
68	3.0266	0.0212

69	3.0476	0.0210
70	3.0685	0.0209
71	3,0892	0.0207
72	3 1098	0 0206
72	2 1295	0.0200
75	2 1471	0.0107
74		0.0100
75	3.1656	0.0185
76	3.1839	0.0183
77	3.2021	0.0182
78	3.2202	0.0181
79	3.2381	0.0179
80	3.2559	0.0178
81	3,2735	0.0177
82	3 2911	0.0176
92	2 2025	0.0170
04	2,220	0.0174
84	3.3258	0.01/3
85	3.3430	0.0172
86	3.3601	0.0171
87	3.3771	0.0170
88	3.3940	0.0169
89	3.4107	0.0168
90	3,4274	0.0166
Q1	3 1139	0 0165
02	2 4602	0.0105
92	5.4005	0.0164
93	3.4/6/	0.0163
94	3.4929	0.0162
95	3.5091	0.0161
96	3.5251	0.0160
97	3.5411	0.0160
98	3.5569	0.0159
99	3,5727	0.0158
100	3 5884	0 0157
101	3 6010	0.0156
101	2 6105	0.0150
102	5.0195	0.0155
103	3.6349	0.0154
104	3.6503	0.0153
105	3.6655	0.0153
106	3.6807	0.0152
107	3.6958	0.0151
108	3.7108	0.0150
109	3,7257	0.0149
110	3 7496	0.01/0
111	2 7664	0.0145
112	2,7334	0.0140
112	3.7701	0.014/
113	3./84/	0.0146
114	3.7993	0.0146
115	3.8137	0.0145
116	3.8282	0.0144
117	3.8425	0.0143
118	3,8568	0.0143
119	3 8710	0 0142
120	2 9951	0.0142
120	2 0002 2.002T	0.0141
121	3.8992	0.0141
122	3.9132	0.0140
123	3.9272	0.0139
124	3.9411	0.0139
125	3.9549	0.0138
126	3.9686	0.0138
127	3,9823	0.0137
128	3 9960	0 0136
120	4 0005	0.010c
エムジ	4.0095	0.0130

130	4.0231	0.0135
131	4,0365	0.0135
122	1 0400	0 0124
132	4.0499	0.0134
133	4.0633	0.0133
134	4.0765	0.0133
125	1 0909	0 0122
155	4.0090	0.0152
136	4.1029	0.0132
137	4.1161	0.0131
120	1 1201	0 0121
130	4.1291	0.0131
139	4.1421	0.0130
140	4.1551	0.0130
1/1	1 1690	0 0120
141	4.1000	0.0129
142	4.1809	0.0129
143	4.1937	0.0128
144	1 2061	0 0129
144	4.2004	0.0128
145	4.2191	0.012/
146	4.2318	0.0127
147	1 2444	0 0126
147	4.2444	0.0120
148	4.25/0	0.0126
149	4.2695	0.0125
150	1 2819	0 0125
150	4.2015	0.0125
151	4.2943	0.0124
152	4.3067	0.0124
153	4 3190	Q Q123
155	4.3130	0.0125
154	4.3313	0.0123
155	4.3436	0.0122
156	4 3557	Q Q122
150	4.3537	0.0122
157	4.36/9	0.0121
158	4.3800	0.0121
159	1 3920	Q Q121
100	4.3520	0.0121
160	4.4041	0.0120
161	4.4160	0.0120
162	4,4280	0.0119
162	1 1200	0.0110
105	4.4399	0.0119
164	4.4517	0.0118
165	4,4635	0.0118
166	4 4752	0 0110
100	4.4/55	0.0119
167	4.4870	0.0117
168	4,4987	0.0117
160	1 5101	0 0117
109	4.5104	0.0117
170	4.5220	0.0116
171	4.5335	0.0116
172	1 5151	0 0115
172	4.5451	0.0115
1/3	4.5566	0.0115
174	4.5680	0.0115
175	4 5795	Q Q114
175	4.5755	0.0114
176	4.5908	0.0114
177	4.6022	0.0113
178	4 6135	0 0113
170	4.6240	0.0110
179	4.6248	0.0113
180	4.6360	0.0112
181	4.6472	0.0112
102	A 6594	0 0112
102	4.0384	0.0117
183	4.6695	0.0111
184	4.6806	0.0111
195	1 6017	0 0111
103	4.071/	0.0111
186	4.7027	0.0110
187	4.7137	0.0110
188	1 7247	0 0110
100	T • / 24/	0.0110
189	4./356	0.0109
190	4.7466	0.0109

191	4.7574	0.0109
192	4.7683	0.0108
193	4 7791	0 0108
104	4 7909	0.0100
194	4.7898	0.0108
195	4.8006	0.0107
196	4.8113	0.0107
197	4 8220	0 0107
109	4 9226	0.0107
198	4.8520	0.0107
199	4.8433	0.0106
200	4.8538	0.0106
201	4.8644	0.0106
202	1 9740	0 0105
202	4.0749	0.0105
203	4.8854	0.0105
204	4.8959	0.0105
205	4.9064	0.0104
206	1 9168	0 0101
200	4.0108	0.0104
207	4.9272	0.0104
208	4.9375	0.0104
209	4.9479	0.0103
210	1 9582	0 0103
210	4.0002	0.0103
211	4.9684	0.0103
212	4.9787	0.0102
213	4.9889	0.0102
214	4 9991	0 0102
21-	F 0002	0.0102
215	5.0093	0.0102
216	5.0194	0.0101
217	5.0295	0.0101
218	5,0396	0.0101
210	5 0407	0 0101
219	5.0497	0.0101
220	5.059/	0.0100
221	5.0697	0.0100
222	5.0797	0.0100
 223	5 0897	0 0100
223	5.0057	0.0100
224	5.0996	0.0099
225	5.1095	0.0099
226	5.1194	0.0099
227	5,1292	0.0099
227	5.1202	0.0000
220	5.1391	0.0098
229	5.1489	0.0098
230	5.1587	0.0098
231	5.1684	0.0098
222	5 1792	0 0007
222	5.1702	0.0007
233	5.18/9	0.0097
234	5.1976	0.0097
235	5.2072	0.0097
236	5,2169	0.0096
220	5 2265	0.0006
237	5.2205	0.0090
238	5.2361	0.0096
239	5.2457	0.0096
240	5.2552	0.0096
2/1	5 2648	0 0005
241	5.2048	0.0000
242	5.2/43	0.0095
243	5.2838	0.0095
244	5.2932	0.0095
245	5 3027	0 0001
240	5.3027	0.0004
240	2.2121	0.0094
247	5.3215	0.0094
248	5.3309	0.0094
249	5.3402	0.0094
250	5 3/96	0 0000
200	5.3490	0.0095
251	5.3589	0.0093

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 271 272 273 274 275 276 277 278 277 278 279 280 281 282 283	5.3682 5.3774 5.3867 5.3959 5.4051 5.4143 5.4235 5.4235 5.4327 5.4418 5.4509 5.4600 5.4691 5.4781 5.4781 5.4781 5.4781 5.4782 5.5052 5.5141 5.5052 5.5141 5.5231 5.5231 5.5320 5.5409 5.5409 5.5409 5.5409 5.5409 5.5409 5.5409 5.5409 5.5409 5.5409 5.5587 5.5676 5.5764 5.5853 5.5941 5.6029 5.6116 5.6204 5.6291 5.6379 5.6466	0.0093 0.0093 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092 0.0091 0.0091 0.0091 0.0091 0.0091 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088	
284 285	5.6553 5.6639	0.0087 0.0087	
286	5.6726	0.0087	
287 288	5.6812 5.6898	0.0086 0.0086	
Unit	Unit	 Unit	 Fffective
Period	Rainfall	Soil-Loss	Rainfall
(number)	(In)	(In)	(In)
1	0.0086	0.0011	0.0075
2	0.0086	0.0011	0.0075
3	0.0087	0.0012	0.0075
+ 5	0.0087	0.0012	0.0075
6	0.0087	0.0012	0.0076
7	0.0088	0.0012	0.0076
8	0.0088	0.0012	0.0076
9	0.0088	0.0012	0.0077
10	0.0088	0.0012	0.0077
11	0.0089	0.0012	0.0077
12	0.0089	0.0012	0.0077
14	0.0009	0.0012	0.0078
15	0.0090	0.0012	0.0078
16	0.0090	0.0012	0.0078
17	0.0091	0.0012	0.0078
18	0.0091	0.0012	0.0079
19	0.0091	0.0012	0.0079

20	0.0091	0.0012	0.0079
21	0.0092	0.0012	0,0080
22	0.0092	0.0012	0,0080
22	0.0092	0.0012	0.0000
20	0.0002	0.0012	0.0000
24	0.0095	0.0012	0.0000
25	0.0095	0.0012	0.0001
20	0.0095	0.0012	0.0081
27	0.0094	0.0012	0.0081
28	0.0094	0.0012	0.0081
29	0.0094	0.0013	0.0082
30	0.0094	0.0013	0.0082
31	0.0095	0.0013	0.0082
32	0.0095	0.0013	0.0082
33	0.0096	0.0013	0.0083
34	0.0096	0.0013	0.0083
35	0.0096	0.0013	0.0083
36	0.0096	0.0013	0.0084
37	0.0097	0.0013	0.0084
38	0.0097	0.0013	0.0084
39	0.0098	0.0013	0.0085
40	0.0098	0.0013	0.0085
41	0.0098	0.0013	0.0085
42	0.0099	0.0013	0.0085
43	0.0099	0.0013	0.0086
44	0.0099	0.0013	0.0086
45	0.0100	0.0013	0.0087
46	0.0100	0.0013	0.0087
47	0.0101	0.0013	0.0087
48	0.0101	0.0013	0.0087
49	0.0101	0.0013	0.0088
50	0.0102	0.0014	0.0088
51	0.0102	0.0014	0.0089
52	0.0102	0.0014	0.0089
53	0.0103	0.0014	0.0089
54	0.0103	0.0014	0.0090
55	0.0104	0.0014	0.0090
56	0.0104	0.0014	0.0090
57	0.0105	0.0014	0.0091
58	0.0105	0.0014	0.0091
59	0.0106	0.0014	0.0092
60	0.0106	0.0014	0.0092
61	0.0107	0.0014	0.0092
62	0.0107	0.0014	0.0093
63	0.0107	0.0014	0.0093
64	0.0108	0.0014	0.0093
65	0.0108	0.0014	0.0094
66	0.0109	0.0014	0.0094
67	0.0109	0.0015	0.0095
68	0.0110	0.0015	0.0095
69	0.0110	0.0015	0.0096
70	0.0111	0.0015	0.0096
71	0.0111	0.0015	0.0097
72	0.0112	0.0015	0.0097
73	0.0112	0.0015	0.0097
74	0.0113	0.0015	0.0098
75	0.0113	0.0015	0.0098
76	0.0114	0.0015	0.0099
77	0.0115	0.0015	0.0099
78	0.0115	0.0015	0.0100
79	0.0116	0.0015	0.0100
80	0.0116	0.0015	0.0101

Q1	0 0117	0 0016	0 0101
02	0.0117	0.0010	0.0101
82	0.0117	0.0016	0.0102
83	0.0118	0.0016	0.0102
84	0.0118	0.0016	0.0103
85	0.0119	0.0016	0.0103
86	0.0120	0.0016	0.0104
87	0.0121	0.0016	0.0105
88	0.0121	0.0016	0.0105
89	0 0122	0 0016	0 0106
00	0.0122	0.0016	0.0100
90	0.0122	0.0016	0.0100
91	0.0123	0.0016	0.0107
92	0.0124	0.0016	0.010/
93	0.0125	0.0017	0.0108
94	0.0125	0.0017	0.0108
95	0.0126	0.0017	0.0109
96	0.0127	0.0017	0.0110
97	0.0128	0.0017	0.0111
98	0.0128	0.0017	0.0111
99	0.0129	0.0017	0.0112
100	0.0130	0.0017	0.0112
101	0 0131	0 0017	0 0113
102	0.0131	0 0017	0.011/
102	0.0131	0.0017	0.0114
104	0.0132	0.0018	0.0115
104	0.0133	0.0018	0.0115
105	0.0134	0.0018	0.0116
106	0.0135	0.0018	0.0117
107	0.0136	0.0018	0.0118
108	0.0136	0.0018	0.0118
109	0.0138	0.0018	0.0119
110	0.0138	0.0018	0.0120
111	0.0139	0.0019	0.0121
112	0.0140	0.0019	0.0121
113	0.0141	0.0019	0.0123
114	0.0142	0.0019	0.0123
115	0 0143	0 0019	0 0124
116	0.0143	0.0019	0.0124
117	0.0144	0.0019	0.0125
110	0.0146	0.0019	0.0120
118	0.0146	0.0019	0.0127
119	0.0148	0.0020	0.0128
120	0.0149	0.0020	0.0129
121	0.0150	0.0020	0.0130
122	0.0151	0.0020	0.0131
123	0.0153	0.0020	0.0132
124	0.0153	0.0020	0.0133
125	0.0155	0.0021	0.0134
126	0.0156	0.0021	0.0135
127	0.0158	0.0021	0.0137
128	0 0159	0 0021	0 0138
120	0.0155	0 0021	0.0130
120	0.0100	0.0021	0.0135
121	0.0161	0.0021	0.0140
131	0.0163	0.0022	0.0142
132	0.0164	0.0022	0.0143
133	0.0166	0.0022	0.0144
134	0.0168	0.0022	0.0145
135	0.0170	0.0023	0.0147
136	0.0171	0.0023	0.0148
137	0.0173	0.0023	0.0150
138	0.0174	0.0023	0.0151
139	0.0177	0.0023	0.0153
140	0.0178	0.0024	0.0154
141	0.0181	0.0024	0.0157

1/12	0 0192	0 0021	0 0159
142	0.0102	0.0024	0.0158
143	0.0185	0.0025	0.0100
144	0.0186	0.0025	0.0161
145	0.0206	0.0027	0.0178
146	0.0207	0.0028	0.0180
147	0.0210	0.0028	0.0182
148	0.0212	0.0028	0.0184
149	0.0215	0.0029	0.0187
150	0 0217	0 0029	0 0188
150	0.0217	0.0025	0.0100
151	0.0221	0.0029	0.0191
152	0.0223	0.0030	0.0193
153	0.0226	0.0030	0.0196
154	0.0228	0.0030	0.0198
155	0.0233	0.0031	0.0202
156	0.0235	0.0031	0.0204
157	0.0239	0.0032	0.0208
158	0.0242	0.0032	0.0210
159	0.0247	0.0033	0.0214
160	0.0249	0.0033	0.0216
161	0.0255	0.0034	0.0221
162	0.0258	0.0034	0.0223
163	0 0264	0 0035	0 0229
164	0.0267	0.0035	0.0225
165	0.0207	0.0055	0.0251
105	0.0274	0.0030	0.0257
166	0.02//	0.0037	0.0240
167	0.0285	0.0038	0.0247
168	0.0289	0.0038	0.0250
169	0.0298	0.0040	0.0258
170	0.0302	0.0040	0.0262
171	0.0312	0.0041	0.0270
172	0.0317	0.0042	0.0275
173	0.0328	0.0044	0.0284
174	0.0334	0.0044	0.0290
175	0.0347	0.0046	0.0301
176	0.0354	0.0047	0.0307
177	0 0370	0 0049	0.0320
179	0.0370	0.0049	0.0520
170	0.0378	0.0050	0.0328
1/9	0.0397	0.0053	0.0344
180	0.0408	0.0054	0.0353
181	0.0431	0.0057	0.0374
182	0.0445	0.0059	0.0386
183	0.0476	0.0063	0.0413
184	0.0494	0.0066	0.0429
185	0.0454	0.0060	0.0394
186	0.0480	0.0064	0.0416
187	0.0545	0.0072	0.0472
188	0.0588	0.0078	0.0509
189	0.0708	0.0079	0.0630
190	0.0799	0,0079	0.0721
191	0 1142	0 0079	0 1064
102	0.1571	0.0079	0.1004
192	0.1371	0.0079	0.1492
195	0.4917	0.0079	0.4838
194	0.0231	0.00/9	0.0852
195	0.0640	0.0079	0.0562
196	0.0510	0.0068	0.0442
197	0.0515	0.0068	0.0446
198	0.0460	0.0061	0.0399
199	0.0419	0.0056	0.0363
200	0.0387	0.0051	0.0336
201	0.0362	0.0048	0.0313
202	0.0340	0.0045	0.0295

203	0 0322	0 0013	Q Q279
205	0.0322	0.0045	0.0275
204	0.0307	0.0041	0.0200
205	0.0293	0.0039	0.0254
206	0.0281	0.0037	0.0243
207	0.0270	0.0036	0.0234
208	0.0261	0.0035	0.0226
209	0.0252	0.0034	0.0219
210	0.0244	0.0032	0.0212
211	0.0237	0.0032	0.0206
212	0 0231	0 0031	0 0200
212	0.0231	0.0031	0.0200
215	0.0224	0.0000	0.0100
214	0.0219	0.0029	0.0190
215	0.0214	0.0028	0.0185
216	0.0209	0.0028	0.0181
21/	0.018/	0.0025	0.0163
218	0.0183	0.0024	0.0159
219	0.0179	0.0024	0.0155
220	0.0176	0.0023	0.0152
221	0.0172	0.0023	0.0149
222	0.0169	0.0022	0.0146
223	0.0165	0.0022	0.0143
224	0.0162	0.0022	0.0141
225	0 0160	0 0021	0 0138
225	0.0100	0.0021	0.0136
220	0.0157	0.0021	0.0130
227	0.0154	0.0021	0.0134
228	0.0152	0.0020	0.0132
229	0.0149	0.0020	0.0129
230	0.0147	0.0020	0.0128
231	0.0145	0.0019	0.0126
232	0.0143	0.0019	0.0124
233	0.0141	0.0019	0.0122
234	0.0139	0.0018	0.0120
235	0.0137	0.0018	0.0119
236	0.0135	0.0018	0.0117
237	0.0133	0.0018	0.0116
238	0 0132	0 0018	0 0114
230	0.0130	0.0010	0.0113
235	0.0130	0.0017	0.0113
240	0.0129	0.0017	0.0111
241	0.0127	0.0017	0.0110
242	0.0126	0.0017	0.0109
243	0.0124	0.001/	0.0108
244	0.0123	0.0016	0.0106
245	0.0121	0.0016	0.0105
246	0.0120	0.0016	0.0104
247	0.0119	0.0016	0.0103
248	0.0118	0.0016	0.0102
249	0.0117	0.0015	0.0101
250	0.0115	0.0015	0.0100
251	0 0114	0 0015	0 0099
252	0.0113	0.0015	0.0000
252	0.0113	0.0015	0.0000
200	0.0112	0.0013	0.0097
254	0.0111	0.0015	0.0096
255	0.0110	0.0015	0.0095
256	0.0109	0.0014	0.0095
257	0.0108	0.0014	0.0094
258	0.0107	0.0014	0.0093
259	0.0106	0.0014	0.0092
260	0.0105	0.0014	0.0091
261	0.0104	0.0014	0.0091
262	0.0104	0.0014	0.0090
263	0.0103	0.0014	0.0089
			-

264 265 266 267 268	e e e e	.0102 .0101 .0100 .0100 .0099	0.0014 0.0013 0.0013 0.0013 0.0013		0.0088 0.0088 0.0087 0.0086 0.0086	
269 270 271 272	9 9 9 9	.0098 .0097 .0097 .0096	0.0013 0.0013 0.0013 0.0013		0.0085 0.0084 0.0084 0.0083	
273 274 275 276	e e e e	.0095 .0095 .0094 .0093	0.0013 0.0013 0.0012 0.0012		0.0083 0.0082 0.0082 0.0081	
277 278 279 280	e e e	.0093 .0092 .0092	0.0012 0.0012 0.0012 0.0012		0.0080 0.0080 0.0079 0.0079	
280 281 282 283 284	0 0 0 0	.0090 .0090 .0089	0.0012 0.0012 0.0012 0.0012		0.0078 0.0078 0.0077 0.0077	
285 286 287	e e e	.0088 .0088 .0087	0.0012 0.0012 0.0012		0.0076 0.0076 0.0075	
 Tota Tota	al soil rain lo al effective ra	ss = infall =	0.67(In) 5.02(In)			
Peal +++-	k flow rate in ++++++++++++++++ R u	flood hydr +++++++++++ 24 - H C □ n o f f	ograph = 7 +++++++++++++++++++++++++++++++++++	5.62(CFS) +++++++++++ R M g r a p h	++++++++	++++++
	Hydrog	raph in	5 Minute into	ervals ((CF	s))	
Time(h+m)	Volume Ac.Ft	Q(CFS) 0	20.0	40.0	60.0	80.0
0+5 0+10 0+25 0+25 0+30 0+35 0+40 0+45 0+55 1+0 1+5 1+10 1+15 1+20 1+25 1+30 1+35 1+40	0.0009 0.0068 0.0189 0.0334 0.0485 0.0638 0.0792 0.0946 0.1101 0.1257 0.1413 0.1569 0.1726 0.1884 0.2042 0.2200 0.2359 0.2519 0.2679 0.2839 0.2839	$ 0.13 Q \\ 0.86 Q \\ 1.76 Q \\ 2.10 VQ \\ 2.19 VQ \\ 2.22 VQ \\ 2.24 VQ \\ 2.25 VQ \\ 2.25 VQ \\ 2.27 VQ \\ 2.27 VQ \\ 2.27 VQ \\ 2.29 VQ \\ 2.29 VQ \\ 2.30 VQ \\ 2.31 VQ \\ 2.32 Q \\ 2.32 Q \\ 2.32 Q \\ 2.34 Q \\ 2.34 Q \\ 2.34 Q \\ 2.34 Q \\ 2.34 Q \\ 2.34 Q \\ 2.34 Q \\ 2.34 Q \\ 2.34 Q \\ $				

1+50	0.3162	2.35	Q			
1+55	0.3324	2.35	0	İ		
2+ 0	0 3/86	2 36		i		
21 0	0.0400	2.50		1		
2+ 5	0.3649	2.3/	IV			
2+10	0.3813	2.38	ĮQ			
2+15	0.3977	2.38	Q			
2+20	0.4142	2.39	0	İ		
2+25	0 4307	2 40		i		
2,20	0.4307	2.40				
2+30	0.44/5	2.41	IV			
2+35	0.4640	2.42	ĮQ			
2+40	0.4807	2.43	Q			
2+45	0.4975	2.43	0			
2+50	0.5143	2.44	lov	İ		
2+55	0 5312	2 45		i		
2100	0.5512	2.45				
3+ 0	0.5481	2.40				
3+ 5	0.5651	2.4/	ĮQV			
3+10	0.5822	2.48	QV			
3+15	0.5993	2.49	QV			
3+20	0.6165	2.50	lov	İ		
3+25	0.6337	2.51	lov	i		
3+20	0.6511	2.51				
2-25	0.0511	2.51				
3+35	0.6684	2.52	ĮQV			
3+40	0.6859	2.53	QV			
3+45	0.7034	2.54	QV			
3+50	0.7210	2.55	lov	İ		
3+55	0.7386	2.56	lov			
4+ 0	0 7563	2.50				
4+ 0	0.7505	2.57				
4+ 5	0.7741	2.50				
4+10	0.7920	2.59	IQ V			
4+15	0.8099	2.60	Q V			
4+20	0.8279	2.61	lo v			
4+25	0.8459	2.62	lo v	İ		
1+30	0 86/1	2 63		i		
4+30	0.0041	2.05				
4+35	0.0025	2.64				
4+40	0.9006	2.65	IQ V			
4+45	0.9189	2.67	Q V			
4+50	0.9373	2.68	lq v			
4+55	0.9559	2.69	lo v	İ		
5+ 0	0 9744	2 70		i		
5+ 5	0.0021	2.70				
	1 0110	2.71				
5+10	1.0118	2.72	IQ V			
5+15	1.0307	2.73	IQ V			
5+20	1.0496	2.74	Q V			
5+25	1.0686	2.76	lo v			
5+30	1.0876	2.77	lo v	İ		
5+35	1 1068	2 78		i		
5133	1 1260	2.70		1		
5+40	1.1200	2.79				
5+45	1.1453	2.81	iq v			
5+50	1.1648	2.82	IQ V			
5+55	1.1843	2.83	lq v			
6+ 0	1.2039	2.84	lo v	İ		
6+ 5	1,2235	2.86	lo v			
6+10	1 2433	2 87	lo v			
6.15	1 2622	2.07				
C1+0	1.2032	2.00				
6+20	1.2831	2.90	ið n			
6+25	1.3032	2.91	IQ V			
6+30	1.3233	2.93	Q V			
6+35	1.3436	2.94	lo v	l i	l i	
6+40	1.3639	2.95	lõ v	j i		
6+15	1 38//	2 07				
0743	1 4050	2.7/				
0+50	1.4050	2.98	lõ v	1		

6+55	1.4256	3.00	0	V I		
7+ 0	1.4464	3.01	İõ	v		
7+ 5	1.4672	3.03	iõ	v		
7+10	1 4882	3 05		v		
7+10	1 5002	3.05		v		
7+13	1 5205	2.00		V I		
7+20	1.5505	5.00	IV IV	V I		
7+25	1.5518	3.09	IV	V		
7+30	1.5/32	3.11	ĮQ	V		
/+35	1.5948	3.13	ĮQ	V		
7+40	1.6164	3.15	ĮQ	V		
7+45	1.6382	3.16	ĮQ	V		
7+50	1.6601	3.18	Q	V		
7+55	1.6822	3.20	Q	V		
8+ 0	1.7043	3.22	Q	V		
8+ 5	1.7266	3.24	Q	V		
8+10	1.7490	3.25	Q	V		
8+15	1.7715	3.27	Q	V		
8+20	1.7942	3.29	ļo	v		
8+25	1.8170	3.31	İõ	v		
8+30	1.8400	3.33	lõ	v		
8+35	1.8631	3.35	lõ	v		
8+40	1.8863	3.37	lõ	v		
8+45	1 9097	3 39		v		
8+50	1 9332	3 42		v		
8+55	1 9569	3 11		v		
0+ 0	1 0907	2 46		v		
9+ 0 0 - E	2.0047	2.40		v		
9+ J 0+10	2.0047	2.40 2 E1		v		
9+10	2.0209	2.21	10	v		
9+15	2.0532	3.53	IV	V		
9+20	2.0///	3.55	IQ	V		
9+25	2.1023	3.58	ĮQ	V		
9+30	2.12/1	3.60	ĮQ	V		
9+35	2.1521	3.63	ĮQ	V		
9+40	2.1773	3.66	ĮQ	V		
9+45	2.2026	3.68	ĮQ	V		
9+50	2.2282	3.71	Q	V		
9+55	2.2539	3.74	Q	V		
10+ 0	2.2798	3.76	Q	V		
10+ 5	2.3060	3.79	Q	V		
10+10	2.3323	3.82	Q	V		
10+15	2.3588	3.85	Q	V		
10+20	2.3856	3.88	Q	V		
10+25	2.4125	3.91	ļo	v		
10+30	2.4397	3.95	ļo	v		
10+35	2.4671	3.98	ļo	v		
10+40	2.4948	4.01	ÍŌ	v		
10+45	2.5226	4.05	İŏ	v		
10+50	2.5507	4.08	ĺÕ	v		
10+55	2 5791	4 12			/	
11+ 0	2 6077	4 16		1	/	
11+ 5	2.6366	4.10 4 19		,	/	
11+10	2.658	1 23		,	/	
11+15	2.6050	т.23 Д 27	I N	\ \		
11, 20	2.0992	+.2/ 1 01	1 2	\ \	/	
11+20 11-25	2.7249	4.51	I V	\	/	
11+20	2.7549	4.30	I V	\		
11+30	2.7852	4.40	ĮŲ	1		
11+35	2.8158	4.44	ĮŲ		V	
11+40	2.8467	4.49	ĮQ		V	
11+45	2.8/79	4.54	ĮQ		V	
11+50	2.9095	4.58	ĮQ		V	
11+55	2.9414	4.63	ĮQ		V	

12+ 0	2.9737	4.69	Q	V		
12+ 5	3.0065	4.76	Q	V		
12+10	3.0406	4.96	Q	V		
12+15	3.0764	5.19	Q	V		
12+20	3.1129	5.31	Q	V		
12+25	3.1501	5.39	Q	V		
12+30	3.1876	5.46	Q	V		
12+35	3.2257	5.52	Q	V		
12+40	3.2642	5.59	Q	V		
12+45	3.3032	5.66	Q	V		
12+50	3.3427	5.74	Q	V		
12+55	3.3827	5.81	Q	V		
13+ 0	3.4233	5.89	Q	V		
13+ 5	3.4644	5.97	Q	V		
13+10	3.5061	6.06	Q	V		
13+15	3.5484	6.15	Q	V		
13+20	3.5914	6.24	Q	V		
13+25	3.6350	6.34	Q	V		
13+30	3.6794	6.44	Q	V		
13+35	3.7244	6.54	Q	V		
13+40	3.7702	6.65	Q	V		
13+45	3.8169	6.77	Q	V		
13+50	3.8644	6.89	Q	V		
13+55	3.9128	7.03	Q	V		
14+ 0	3.9621	7.16	Q	V		
14+ 5	4.0124	7.31	Q	V		
14+10	4.0639	7.47	Q	V		
14+15	4.1165	7.64	Q	V		
14+20	4.1703	7.82	Q	V		
14+25	4.2254	8.00	Q	V		
14+30	4.2819	8.21	Q	V		
14+35	4.3399	8.42	Q	V		
14+40	4.3996	8.66	Q	V		
14+45	4.4610	8.91	Q	V		
14+50	4.5243	9.19	Q	V		
14+55	4.5897	9.50	Q	V		
15+ 0	4.6574	9.83	Q	V		
15+ 5	4.7277	10.21	Q	V		
15+10	4.8009	10.63	Q	V		
15+15	4.8774	11.10	Q	V		
15+20	4.9576	11.64	Q	V		ļ
15+25	5.0412	12.14	Q	V		
15+30	5.1251	12.18	Q	\	/	ļ
15+35	5.2090	12.19	Q	\	/	ļ
15+40	5.2981	12.94	Q	\	/	ļ
15+45	5.3963	14.25	Q		V	ļ
15+50	5.5085	16.30	Q		V	ļ
15+55	5.6426	19.47	Q	_	V	ļ
16+ 0	5.8165	25.26		Q	V	ļ
16+ 5	6.0925	40.07		(2 V	
16+10	6.5898	72.20			V	Q
16+15	7.1106	75.62			V	QI
16+20	/.3887	40.38			2 V	ļ
16+25	7.5392	21.86	(2	V	ļ
16+30	/.6466	15.59	Q		V	. ļ
16+35	/.7394	13.48	Q		V	.
16+40	7.8202	11.72	Q		V V	
16+45	/.8939	10.70	Q			' .,
10+20	7.9620	9.89	Ų			v
16+55	8.0257	9.24	Q			v l
17+ 0	8.0855	8.69	Q			V

17+ 5	8.1422	8.23	0		V I
17+10	8.1962	7.83	້		v
17+15	8.2477	7.48	l õ		V
17+20	8 2971	7 18			V
17+25	8 2447	6 01			
17,20	8.3447	6.66			
17+30	0.3900	0.00			V I
1/+35	8.4350	6.44	Q		V
17+40	8.4780	6.24	Q		V
17+45	8.5197	6.06	Q		V
17+50	8.5603	5.89	Q		V
17+55	8.5999	5.74	Q		V
18+ 0	8.6384	5.60	Q		V
18+ 5	8.6759	5.44	Ō	i i	v
18+10	8.7115	5.17	Ō		v
18+15	8.7451	4.88	ĨÕ		V
18+20	8 7776	4.00 1 71			V
10+20	0.7770	4.71			
10+25	0.0092	4.59			
18+30	8.8401	4.49	ĮŲ		V
18+35	8.8/04	4.40	Q		V
18+40	8.9002	4.31	Q		V
18+45	8.9293	4.23	Q		V
18+50	8.9580	4.16	Q		V
18+55	8.9861	4.08	Q		V
19+ 0	9.0137	4.01	Q		V
19+ 5	9.0409	3.95	0	i i	v
19+10	9.0677	3.88	0		v
19+15	9 0940	3 82			v
19+20	0 1100	3 77			v
10,25	0 1455	2.77			
19+25	9.1455	5.71			V I
19+30	9.1/0/	3.66	ĮŲ		V
19+35	9.1955	3.60	ĮQ		V
19+40	9.2200	3.55	Q		V
19+45	9.2441	3.51	Q		V
19+50	9.2680	3.46	Q		V
19+55	9.2915	3.42	Q		V
20+ 0	9.3147	3.37	Q		V
20+ 5	9.3377	3.33	Q		V
20+10	9.3604	3.29	0	i i	v
20+15	9.3828	3.25	0		v
20+20	9 4049	3 22			v
20+25	9 4268	3 18			v
20125	0 4495	2 15			
20+30	9.4405	2.12			
20+35	9.4099	2.00			
20+40	9.4911	3.08			V I
20+45	9.5121	3.05	IV.		V
20+50	9.5329	3.02	Q		V
20+55	9.5534	2.98	IQ		V
21+ 0	9.5738	2.96	Q		V
21+ 5	9.5939	2.93	Q		V
21+10	9.6139	2.90	Q		V
21+15	9.6337	2.87	Q	l i	v i
21+20	9.6533	2.84	lo		vi
21+25	9.6727	2.82	lõ	i i	vi
21+30	9.6919	2.79	10		v I
21+35	9 7110	2 77			
21+33	0 7200	2			
21740 21,45	0 7496	2./3			
21+45	J. /400	2.72			
21+50	9./6/2	2.70			V
21+55	9.7857	2.68	IV		V
22+ 0	9.8040	2.65	IQ		V
22+ 5	9.8221	2.63	Q		V

22+10	9.8401	2.61	Q		V	
22+15	9.8579	2.59	Q		V	
22+20	9.8756	2.57	Q		V	
22+25	9.8932	2.55	Q		V	
22+30	9.9107	2.53	Q		V	
22+35	9.9280	2.51	Q		V	
22+40	9.9452	2.50	Q		V	
22+45	9.9622	2.48	Q		V	
22+50	9.9792	2.46	Q		V	
22+55	9.9960	2.44	Q		V	
23+ 0	10.0127	2.43	Q		V	
23+ 5	10.0293	2.41	Q		V	
23+10	10.0458	2.39	Q		V	
23+15	10.0622	2.38	Q		V	
23+20	10.0784	2.36	Q		V	
23+25	10.0946	2.35	Q		V	
23+30	10.1106	2.33	Q		V	
23+35	10.1266	2.32	Q		V	
23+40	10.1424	2.30	Q		V	
23+45	10.1582	2.29	Q		V	
23+50	10.1738	2.27	Q		V	
23+55	10.1894	2.26	Q		V	
24+ 0	10.2048	2.24	Q		V	

Unit Hydrograph Analysis Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 10/18/22 San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 6277 _____ JOB NO 2022-318 11115 HEMLOCK AVENUE 100-YEAR, UNIT HYDROGRAPH POST-CONDITION, AREA B -----. Storm Event Year = 100 Antecedent Moisture Condition = 3 English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-AreaDurationIsohyetal(Ac.)(hours)(In) Rainfall data for year 100 12.94 1 1.33 _____ Rainfall data for year 100 12.94 6 3.11 _____ Rainfall data for year 100 12.94 24 5.69 _____ ******* Area-averaged max loss rate, Fm ******* SCS curve SCS curve Area Area Fp(Fig C6) Ap Fm (Ac.) Fraction (In/Hr) (dec.) (In/Hr) 12.94 1.000 0.785 0.090 0.071 No.(AMCII) NO.(AMC 3) 32.0 52.0 Area-averaged adjusted loss rate Fm (In/Hr) = 0.071 ******** Area-Averaged low loss rate fraction, Yb *********

SCS CN SCS CN Area Area S Pervious (AMC2) (AMC3) (Ac.) Fract Yield Fr 1.16 0.090 32.0 52.0 9.23 0.199 11.78 0.910 98.0 98.0 0.20 0.958 Area-averaged catchment yield fraction, Y = 0.890 Area-averaged low loss fraction, Yb = 0.110 User entry of time of concentration = 0.178 (hours) Watershed area = 12.94(Ac.) Catchment Lag time = 0.142 hours Unit interval = 5.000 minutes Unit interval percentage of lag time = 58.5206 Hydrograph baseflow = 0.00(CFS) Average maximum watershed loss rate(Fm) = 0.071(In/Hr) Average low loss rate fraction (Yb) = 0.110 (decimal) VALLEY DEVELOPED S-Graph Selected Computed peak 5-minute rainfall = 0.492(In) Computed peak 30-minute rainfall = 1.008(In) Specified peak 1-hour rainfall = 1.330(In) Computed peak 3-hour rainfall = 2.239(In) Specified peak 6-hour rainfall = 3.110(In) Specified peak 24-hour rainfall = 5.690(In) Rainfall depth area reduction factors: Using a total area of 12.94(Ac.) (Ref: fig. E-4) 5-minute factor = 0.999 Adjusted rainfall = 0.492(In) Adjusted rainfall = 1.007(In) 30-minute factor = 0.999 Adjusted rainfall = 1.329(In)

 1-hour factor = 0.999
 Adjusted rainfall = 1.329(In)

 3-hour factor = 1.000
 Adjusted rainfall = 2.239(In)

 6-hour factor = 1.000
 Adjusted rainfall = 3.110(In)

 24-hour factor = 1.000
 Adjusted rainfall = 5.690(In)

1-hour factor = 0.999_____ Unit Hydrograph Interval'S' GraphUnit HydrographNumberMean values((CFS)) _____ (K = 156.49 (CFS)) 6.210 9.719 1 2 39.813 52,586 3 80.245 63.274 4 94.922 22.968 5 98.531 5.648 2.298 100.000 6 -----. Peak Unit Adjusted mass rainfall Unit rainfall (In) Number (In) 1 0.4919 0.4919 2 0.6491 0.1572 3 0.7634 0.1143 4 0.8565 0.0931 5 0.9365 0.0800 6 1.0073 0.0708 7 1.0714 0.0641 8 1.1302 0.0588

9	1.1847	0.0545
10	1,2357	0.0510
11	1 2027	0.0400
11	1.2837	0.0480
12	1.3292	0.0455
12	1 3907	0 0515
15	1.5007	0.0515
14	1.4301	0.0494
15	1,4777	0.0476
16	1 500	0 0460
10	1.5250	0.0400
17	1.5681	0.0445
18	1 6112	0 0431
10	1.0112	0.0410
19	1.6531	0.0419
20	1.6938	0.0407
21	1 7335	a a397
22	1,7555	0.0007
22	1.//22	0.038/
23	1.8100	0.0378
24	1 8469	Q Q369
27	1.0409	0.0505
25	1.8830	0.0361
26	1.9184	0.0354
27	1 0521	0 0317
27	1.9551	0.0347
28	1.9871	0.0340
29	2.0205	0.0334
20	2 0522	0 0220
50	2.0552	0.0520
31	2.0854	0.0322
32	2,1171	0.0317
22	2 1492	0.0011
33	2.1482	0.0311
34	2.1789	0.0307
35	2 2091	0 0302
35	2.2001	0.0002
36	2.2388	0.0297
37	2.2681	0.0293
38	2 2969	a a289
20	2.2909	0.0205
39	2.3254	0.0285
40	2.3535	0.0281
<i>A</i> 1	2 3812	Q Q277
42	2.3012	0.0277
42	2.4085	0.0274
43	2.4356	0.0270
11	2 1623	0 0267
44	2.4025	0.0207
45	2.4886	0.0264
46	2.5147	0.0261
47	2 5405	0 0259
47	2.5405	0.0238
48	2.5660	0.0255
49	2.5912	0.0252
50	2 6161	0 0240
50	2.0101	0.0249
51	2.6408	0.0247
52	2.6652	0.0244
E 2	2 6904	0 0242
33	2.0094	0.0242
54	2.7133	0.0239
55	2.7371	0.0237
55	2.7572	0.0225
56	2.7605	0.0235
57	2.7838	0.0233
58	2 8069	0 0231
50	2.0005	0.0231
59	2.8297	0.0228
60	2.8523	0.0226
61	2,8748	0.0224
0±	2.0740	0.0224
62	2.89/0	0.0222
63	2.9191	0.0221
64	2 9410	Q Q210
	2.0410	0.0219
65	2.962/	0.0217
66	2.9842	0.0215
67	3 0055	Q Q211
07 60	2.0000	0.0214
68	3.026/	0.0212
69	3.0477	0.0210

70	3.0686	0.0209
71	3 0893	0 0207
72	2 1000	0,0206
12	5.1099	0.0200
73	3.1286	0.0187
74	3.1472	0.0186
75	2 1657	0 0195
75	5.105/	0.0105
76	3.1840	0.0183
77	3.2022	0.0182
78	3 2203	0 0181
70	5.2205	0.0101
/9	3.2382	0.01/9
80	3.2560	0.0178
81	3 2737	0 0177
01	2.2012	0.0177
82	3.2912	0.01/6
83	3.3086	0.0174
84	3,3260	0.0173
0	2 2422	0.0170
00	5.5452	0.01/2
86	3.3602	0.0171
87	3.3772	0.0170
00	2 20/1	0 0160
00	5.5941	0.0109
89	3.4108	0.0168
90	3.4275	0.0166
91	3 4440	0 0165
02	2.4605	0.0100
92	3.4605	0.0164
93	3.4768	0.0163
94	3,4930	0.0162
05	2 5002	0 0161
55	5.5052	0.0101
96	3.5252	0.0160
97	3.5412	0.0160
98	3 5571	0 0159
00	2 5729	0.0159
99	3.5/28	0.0128
100	3.5885	0.0157
101	3,6041	0.0156
102	2 6106	0 0155
102	5.0190	0.0155
103	3.6350	0.0154
104	3.6504	0.0153
105	3 6656	0 0153
105	2.0000	0.0153
100	3.6808	0.0152
107	3.6959	0.0151
108	3.7109	0.0150
100	2 7259	0 01/0
105	5.7258	0.0149
110	3./40/	0.0149
111	3.7555	0.0148
112	3 7702	0 0147
110	2 7049	0.0140
113	3./848	0.0146
114	3.7994	0.0146
115	3.8139	0.0145
116	2 0 2 0 2	0 01//
110	5.0205	0.0144
117	3.8426	0.0143
118	3.8569	0.0143
110	3 8711	0 01/2
110	2.0052	0.0142
120	3.8852	0.0141
121	3.8993	0.0141
122	3,9133	0.0140
100	2 0 7 7 7	0.0120
125	5.92/3	0.0139
124	3.9412	0.0139
125	3.9550	0.0138
126	3 9687	Q Q120
107	2.0007	0.0130
12/	3.9824	0.0137
128	3.9961	0.0136
129	4,0096	0.0136
120	1 0727	0.010F
שכד	4.0252	0.0132

131	4.0366	0.0135
132	4.0500	0.0134
133	4.0634	0.0133
134	4,0766	0.0133
135	4 0899	0 0132
136	4 1030	0.0132
127	4.1160	0.0102
137	4.1102	0.0131
138	4.1292	0.0131
139	4.1422	0.0130
140	4.1552	0.0130
141	4.1681	0.0129
142	4.1810	0.0129
143	4.1938	0.0128
144	4.2065	0.0128
145	4.2192	0.0127
146	4,2319	0.0127
1/7	1 2445	0 0126
147	4.2445	0.0120
140	4.2571	0.0120
149	4.2696	0.0125
150	4.2820	0.0125
151	4.2944	0.0124
152	4.3068	0.0124
153	4.3191	0.0123
154	4.3314	0.0123
155	4.3437	0.0122
156	4.3558	0.0122
157	4.3680	0.0121
158	4 3801	0 0121
150	4 2022	0.0121
159	4.3922	0.0121
160	4.4042	0.0120
161	4.4161	0.0120
162	4.4281	0.0119
163	4.4400	0.0119
164	4.4518	0.0118
165	4.4636	0.0118
166	4.4754	0.0118
167	4.4871	0.0117
168	4,4988	0.0117
169	4.5105	0.0116
170	4 5221	0 0116
171	1 5336	0.0116
171	4.5550	0.0110
172	4.5452	0.0115
1/3	4.5567	0.0115
174	4.5681	0.0115
175	4.5796	0.0114
176	4.5909	0.0114
177	4.6023	0.0113
178	4.6136	0.0113
179	4.6249	0.0113
180	4.6361	0.0112
181	4.6473	0.0112
182	4 6585	0 0112
183	4 6696	0 0111
10/	4 6907	0.0111
104	4.080/	0.0111
185	4.6918	0.0111
186	4./028	0.0110
187	4.7138	0.0110
188	4.7248	0.0110
189	4.7357	0.0109
190	4.7467	0.0109
191	4.7575	0.0109

102	1 7691	0 0100
192	4.7084	0.0108
193	4.7792	0.0108
194	4.7899	0.0108
195	4 8007	0 0107
100	4.0007	0.0107
196	4.8114	0.010/
197	4.8221	0.0107
198	4.8327	0.0107
100	1 8131	0 0106
200	4.0520	0.0100
200	4.8539	0.0100
201	4.8645	0.0106
202	4.8750	0.0105
202	1 9955	0 0105
205	4.0055	0.0105
204	4.8960	0.0105
205	4.9065	0.0104
206	4.9169	0.0104
207	1 9273	0 0101
207	4.9275	0.0104
208	4.9376	0.0104
209	4.9479	0.0103
210	4.9583	0.0103
211	1 9685	0 0103
211	4.9089	0.0105
212	4.9788	0.0102
213	4.9890	0.0102
214	4,9992	0.0102
215	5 0091	0 0102
215	5.0004	0.0102
216	5.0195	0.0101
217	5.0296	0.0101
218	5.0397	0.0101
219	5 0498	0 0101
210	5.0490	0.0101
220	5.0598	0.0100
221	5.0698	0.0100
222	5.0798	0.0100
223	5 0897	0 0100
223	5.0057	0.0100
224	5.0997	0.0099
225	5.1096	0.0099
226	5.1195	0.0099
227	5 1293	0 0099
227	5.1200	0.0000
228	5.1392	0.0098
229	5.1490	0.0098
230	5.1588	0.0098
231	5.1685	0.0098
222	E 1702	0 0007
232	5.1/05	0.0097
233	5.1880	0.0097
234	5.1977	0.0097
235	5,2073	0.0097
236	5 2170	0 0006
200	5.2170	0.0000
237	5.2266	0.0096
238	5.2362	0.0096
239	5,2458	0.0096
240	5 2552	0 0006
240	5.2555	0.0000
241	5.2649	0.0095
242	5.2744	0.0095
243	5.2839	0.0095
244	5,2933	0.0095
245	E 2028	0.0001
240	5.3028	0.0094
246	5.3122	0.0094
247	5.3216	0.0094
248	5.3310	0.0094
240	E 2402	0 0001
247	5.5405	0.0094
250	5.3497	0.0093
251	5.3590	0.0093
252	5.3683	0.0093

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271	5.3775 5.3868 5.3960 5.4052 5.4144 5.4236 5.4327 5.4419 5.4510 5.4601 5.4601 5.4691 5.4691 5.4782 5.4872 5.4872 5.4962 5.5052 5.5142 5.5052 5.5142 5.5232 5.5321 5.5410	0.0093 0.0092 0.0092 0.0092 0.0092 0.0092 0.0092 0.0091 0.0091 0.0091 0.0091 0.0091 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0089 0.0089	
272	5.5499	0.0089	
273	5.5588	0.0089	
274	5.5677	0.0089	
275	5.5765	0.0088	
276	5.5854	0.0088	
277	5.5942	0.0088	
2/8	5.6030	0.0088	
279	5.6205	0.0088	
281	5.6292	0.0087	
282	5.6379	0.0087	
283	5.6466	0.0087	
284	5.6553	0.0087	
285	5.6640	0.0087	
286	5.6727	0.0087	
287	5.6813	0.0086	
288	5.6899	0.0086	
Unit	Unit	Unit	Effective
Period	Rainfall	Soil-Loss	Rainfall
(number)	(In)	(In)	(In)
1	0.0086	0.0009	0.0077
2	0.0086	0.0010	0.0077
3	0.0087	0.0010	0.0077
4 5	0.0007	0.0010	0.0077
6	0.0087	0.0010	0.0078
7	0.0088	0.0010	0.0078
8	0.0088	0.0010	0.0078
9	0.0088	0.0010	0.0079
10	0.0088	0.0010	0.0079
11	0.0089	0.0010	0.0079
12	0.0089	0.0010	0.0079
13	0.0089	0.0010	0.0080
14 15	0.0090	0.0010	0.0080
15 16	0.0090	0.0010	0.0080
17	0.0090	0.0010	0.0000
<u>-</u> , 18	0.0091	0.0010	0.0081
19	0.0091	0.0010	0.0081
20	0.0091	0.0010	0.0081

21	0 0092	0 0010	0 0082
21	0.0002	0.0010	0.0002
22	0.0092	0.0010	0.0082
25	0.0092	0.0010	0.0082
24	0.0093	0.0010	0.0082
25	0.0093	0.0010	0.0083
26	0.0093	0.0010	0.0083
27	0.0094	0.0010	0.0083
28	0.0094	0.0010	0.0083
29	0.0094	0.0010	0.0084
30	0.0094	0.0010	0.0084
31	0.0095	0.0010	0.0084
32	0 0095	0 0010	0 0085
22	0.0000	0.0010	0.0005
27	0.0000	0.0011	0.0005
54 2F	0.0090	0.0011	0.0005
35	0.0096	0.0011	0.0086
36	0.0096	0.0011	0.0086
37	0.0097	0.0011	0.0086
38	0.0097	0.0011	0.0086
39	0.0098	0.0011	0.0087
40	0.0098	0.0011	0.0087
41	0.0098	0.0011	0.0088
42	0.0099	0.0011	0.0088
43	0.0099	0.0011	0.0088
44	0.0099	0.0011	0.0088
45	0 0100	0 0011	0 0089
45	0.0100	0.0011	0.0000
40	0.0100	0.0011	0.0000
47	0.0101	0.0011	0.0090
48	0.0101	0.0011	0.0090
49	0.0101	0.0011	0.0090
50	0.0102	0.0011	0.0090
51	0.0102	0.0011	0.0091
52	0.0102	0.0011	0.0091
53	0.0103	0.0011	0.0092
54	0.0103	0.0011	0.0092
55	0.0104	0.0011	0.0092
56	0.0104	0.0011	0.0093
57	0.0105	0.0012	0.0093
58	0.0105	0.0012	0.0093
59	0 0106	0 0012	0 0094
60	0.0106	0 0012	0.0094
61	0.0100	0.0012	0.0094
62	0.0107	0.0012	0.0000
62	0.0107	0.0012	0.0095
63	0.0107	0.0012	0.0096
64	0.0108	0.0012	0.0096
65	0.0108	0.0012	0.0096
66	0.0109	0.0012	0.0097
67	0.0109	0.0012	0.0097
68	0.0110	0.0012	0.0098
69	0.0110	0.0012	0.0098
70	0.0111	0.0012	0.0098
71	0.0111	0.0012	0.0099
72	0.0112	0.0012	0.0099
73	0.0112	0.0012	0.0100
74	0.0113	0.0012	0.0100
75 75	0 0113	0 0013	0 0101
76	0.0110	0.0013	0.0101
ט <i>ו</i> דד	0.0115	0.0012	0.0102
//	0.0115	6 0013	0.0102
/8	0.0115	0.0013	0.0102
/9	0.0116	0.0013	0.0103
80	0.0116	0.0013	0.0103
81	0.0117	0.0013	0.0104

ຊາ	0 0117	0 0013	0 0101
02	0.0117	0.0013	0.0104
83	0.0118	0.0013	0.0105
84	0.0118	0.0013	0.0105
85	0.0119	0.0013	0.0106
86	0.0120	0.0013	0.0107
87	0.0121	0.0013	0.0107
88	0.0121	0.0013	0.0108
89	0.0122	0.0013	0.0108
90	0 0122	0 0013	0 0109
01	0.0122	0.0014	0.0109
91	0.0123	0.0014	0.0110
92	0.0124	0.0014	0.0110
93	0.0125	0.0014	0.0111
94	0.0125	0.0014	0.0111
95	0.0126	0.0014	0.0112
96	0.0127	0.0014	0.0113
97	0.0128	0.0014	0.0113
98	0.0128	0.0014	0.0114
99	0.0129	0.0014	0.0115
100	0.0130	0.0014	0.0115
101	0.0131	0.0014	0.0116
102	0 0131	0 0014	0 0117
102	0 0132	0.0015	0.0119
104	0.0132	0.0015	0.0110
104	0.0133	0.0015	0.0118
105	0.0134	0.0015	0.0119
106	0.0135	0.0015	0.0120
107	0.0136	0.0015	0.0121
108	0.0136	0.0015	0.0121
109	0.0138	0.0015	0.0122
110	0.0138	0.0015	0.0123
111	0.0139	0.0015	0.0124
112	0.0140	0.0015	0.0125
113	0.0141	0.0016	0.0126
114	0.0142	0.0016	0.0126
115	0 0143	0 0016	0 0128
116	0.0144	0.0016	0.0120
117	0.0144	0.0010	0.0128
110	0.0146	0.0010	0.0130
118	0.0146	0.0016	0.0130
119	0.0148	0.0016	0.0132
120	0.0149	0.0016	0.0132
121	0.0150	0.0017	0.0134
122	0.0151	0.0017	0.0134
123	0.0153	0.0017	0.0136
124	0.0153	0.0017	0.0136
125	0.0155	0.0017	0.0138
126	0.0156	0.0017	0.0139
127	0.0158	0.0017	0.0140
128	0.0159	0.0017	0.0141
129	0 0160	0 0018	0 0143
120	0.0161	0.0010	0.0145
121	0.0101	0.0010	0.0144
121	0.0163	0.0018	0.0145
132	0.0164	0.0018	0.0146
133	0.0166	0.0018	0.0148
134	0.0168	0.0018	0.0149
135	0.0170	0.0019	0.0151
136	0.0171	0.0019	0.0152
137	0.0173	0.0019	0.0154
138	0.0174	0.0019	0.0155
139	0.0177	0.0019	0.0157
140	0.0178	0.0020	0.0158
141	0.0181	0.0020	0.0161
142	0,0182	0.0020	0.0162
		· · · · - •	
1/13	0 0185	0 0020	0 0161
------	--------	--------	--------
145	0.0105	0.0020	0.0104
144	0.0186	0.0020	0.0100
145	0.0206	0.0023	0.0183
146	0.0207	0.0023	0.0184
147	0.0210	0.0023	0.0187
148	0.0212	0.0023	0.0189
149	0.0215	0.0024	0.0192
150	0.0217	0.0024	0.0193
151	0 0221	0 0024	0 0196
151	0.0221	0.0024	0.0100
152	0.0222	0.0025	0.0198
153	0.0226	0.0025	0.0201
154	0.0228	0.0025	0.0203
155	0.0233	0.0026	0.0207
156	0.0235	0.0026	0.0209
157	0.0239	0.0026	0.0213
158	0.0242	0.0027	0.0215
159	0.0247	0.0027	0.0220
160	0.0249	0.0027	0.0222
161	0.0255	0.0028	0.0227
162	0.0258	0.0028	0.0229
163	0.0264	0.0029	0.0235
164	0 0267	0.0029	0 0238
165	0.0207	0.0025	0.0250
105	0.0274	0.0030	0.0243
100	0.02/7	0.0031	0.0247
167	0.0285	0.0031	0.0253
168	0.0289	0.0032	0.0257
169	0.0297	0.0033	0.0265
170	0.0302	0.0033	0.0269
171	0.0311	0.0034	0.0277
172	0.0317	0.0035	0.0282
173	0.0328	0.0036	0.0292
174	0.0334	0.0037	0.0297
175	0.0347	0.0038	0.0309
176	0.0354	0.0039	0.0315
177	0 0369	0 0041	0 0329
178	0 0378	0 0042	0.0325
170	0.0370	0.0042	0.0353
100	0.0357	0.0044	0.0353
100	0.0407	0.0043	0.0302
181	0.0431	0.0047	0.0384
182	0.0445	0.0049	0.0396
183	0.04/6	0.0052	0.0424
184	0.0494	0.0054	0.0440
185	0.0455	0.0050	0.0405
186	0.0480	0.0053	0.0427
187	0.0545	0.0059	0.0486
188	0.0588	0.0059	0.0529
189	0.0708	0.0059	0.0650
190	0.0800	0.0059	0.0741
191	0.1143	0.0059	0.1084
192	0 1572	0.0059	0 1513
103	0.1972	0.0055	0.1919
104	0.401	0.0055	0.4001
105	0.001	0.0059	0.00/2
100	0.0041	6.0055	0.0582
190	0.0510	0.0056	0.0454
197	0.0515	0.0057	0.0458
198	0.0460	0.0051	0.0409
199	0.0419	0.0046	0.0373
200	0.0387	0.0043	0.0344
201	0.0361	0.0040	0.0321
202	0.0340	0.0037	0.0303
203	0.0322	0.0035	0.0287

204	0 0307	0 0034	Q Q273
204	0.0307	0.0034	0.0275
205	0.0295	0.0032	0.0200
200	0.0281	0.0031	0.0250
207	0.0270	0.0030	0.0240
208	0.0261	0.0029	0.0232
209	0.0252	0.0028	0.0224
210	0.0244	0.0027	0.0217
211	0.0237	0.0026	0.0211
212	0.0231	0.0025	0.0205
213	0.0224	0.0025	0.0200
214	0 0219	0 0024	0 0195
214	0.0213	0.0024	0.0100
215	0.0214	0.0024	0.0190
216	0.0209	0.0023	0.0186
21/	0.018/	0.0021	0.016/
218	0.0183	0.0020	0.0163
219	0.0179	0.0020	0.0160
220	0.0176	0.0019	0.0156
221	0.0172	0.0019	0.0153
222	0.0169	0.0019	0.0150
223	0.0165	0.0018	0.0147
224	0 0162	0 0018	0 0145
224	0.0160	0.0010	0.0143
225	0.0100	0.0013	0.0142
226	0.0157	0.0017	0.0140
227	0.0154	0.001/	0.013/
228	0.0152	0.0017	0.0135
229	0.0149	0.0016	0.0133
230	0.0147	0.0016	0.0131
231	0.0145	0.0016	0.0129
232	0.0143	0.0016	0.0127
233	0.0141	0.0016	0.0125
234	0 0139	0 0015	0 0124
235	0.0137	0 0015	0.0124
233	0.0137	0.0015	0.0122
230	0.0133	0.0015	0.0120
237	0.0133	0.0015	0.0119
238	0.0132	0.0015	0.0117
239	0.0130	0.0014	0.0116
240	0.0129	0.0014	0.0114
241	0.0127	0.0014	0.0113
242	0.0126	0.0014	0.0112
243	0.0124	0.0014	0.0110
244	0.0123	0.0014	0.0109
245	0 0121	0 0013	0 0108
245	0.0121	0 0013	0.0100
240	0.0120	0.0013	0.0107
247	0.0119	0.0013	0.0100
248	0.0118	0.0013	0.0105
249	0.0116	0.0013	0.0104
250	0.0115	0.0013	0.0103
251	0.0114	0.0013	0.0102
252	0.0113	0.0012	0.0101
253	0.0112	0.0012	0.0100
254	0.0111	0.0012	0.0099
255	0.0110	0.0012	0.0098
256	0 0109	0 0012	0 0097
257	0.0109	0 0012	0.00057
201	0.0107	0.0012	0.0090
250	0.0107	0.0012	0.0095
259	0.0106	0.0012	0.0095
260	0.0105	0.0012	0.0094
261	0.0104	0.0012	0.0093
262	0.0104	0.0011	0.0092
263	0.0103	0.0011	0.0091
264	0.0102	0.0011	0.0091

265	6	0.0101	0.0011		0.0090	
266	6	0.0100	0.0011		0.0089	
267	6	0.0100	0.0011		0.0089	
268	6	0.0099	0.0011		0.0088	
269	6	0.0098	0.0011		0.0087	
270	6	0.0097	0.0011		0.0087	
271	6	0.0097	0.0011		0.0086	
272	6	0.0096	0.0011		0.0085	
273	6	0.0095	0.0010		0.0085	
274	(0.0095	0.0010		0.0084	
275	(0.0094	0.0010		0.0084	
276	e	0.0093	0.0010		0.0083	
277	e	0.0093	0.0010		0.0083	
278	e	0.0092	0.0010		0.0082	
279	e	0.0092	0.0010		0.0081	
280	é	0.0091	0.0010		0.0081	
281	G	0,0090	0.0010		0.0080	
282	Ģ	0,0090	0.0010		0.0080	
283	Ģ	0.0089	0.0010		0.0079	
284	í	0.0089	0.0010		0.0079	
285	c c	0088	0 0010		0 0078	
285	c c	0088	0.0010		0.0078	
200	6	0087	0.0010		0.0070	
207		0.0007	0.0010		0.0077	
200			0.0010		0.00//	
+++•	+++++++++++ R ر Hydroę	24 - H O U u n o f f graph in 5	JR STOR Hydrog Minute inte	M r a p h rvals ((CF	·+++++++++ · ·S))	++++++
++++ Time(h+m)	HHHHHHHHHH R u Hydrog Volume Ac.Ft	24 - H O U u n o f f graph in 5 Q(CFS) 0	JR STOR Hydrog Minute inte 12.5	M r a p h rvals ((CF 25.0	······································	++++++ 50.0
++++ Time(h+m) 	Hydrog Volume Ac.Ft	24 - H O U J n o f f graph in 5 Q(CFS) 0	JR STOR Hydrog Minute inte 12.5	M r a p h rvals ((CF 25.0	······································	++++++ 50.0
++++ Time(h+m) 0+ 5 0+10	Hydrog Volume Ac.Ft 0.0005 0.0038	24 - H O U J n o f f graph in 5 Q(CFS) 0 0.07 Q	JR STOR Hydrog Minute inte 12.5	M r a p h rvals ((CF 25.0	······································	+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15	++++++++++++++++++++++++++++++++++++++	24 - H O U J n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 0	JR STOR Hydrog Minute inte 12.5	M r a p h rvals ((CF 25.0	37.5	++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20	++++++++++++++++++++++++++++++++++++++	24 - H O U J n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1 14 O	JR STOR Hydrog Minute inte 12.5	M r a p h rvals ((CF 25.0	37.5	++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25	++++++++++++++++++++++++++++++++++++++	24 - H O U J n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1 19 O	JR STOR Hydrog Minute inte 12.5	M r a p h rvals ((CF 25.0	37.5	++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30	Hydrog Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349	24 - H O U J n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.19 Q 1.21 O	JR STOR Hydrog Minute inte 12.5	M r a p h rvals ((CF 25.0	37.5	+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35	<pre>Herein Here</pre>	24 - H O U J n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.19 Q 1.21 Q 1.21 Q	JR STOR Hydrog Minute inte 12.5	M r a p h rvals ((CF 25.0		++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+25 0+25 0+30 0+35 0+40	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516	24 - H O U J n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.19 Q 1.21 Q 1.21 Q 1.21 Q 1.22 Q	JR STOR Hydrog Minute inte 12.5	<pre> ********** M r a p h rvals ((CF 25.0 </pre>		++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+25 0+25 0+30 0+35 0+40 0+45	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600	24 - H O U J n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.19 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q	JR STOR Hydrog Minute inte 12.5	<pre> H + + + + + + + + + + + + + + + + + + +</pre>		+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+45 0+50	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0605	24 - H O U n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.19 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.23 Q	JR STOR Hydrog Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>		++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+50 0+55	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769	24 - H O U n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.19 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q	JR STOR Hydrog Minute inte 12.5	<pre> ********** M r a p h rvals ((CF 25.0 </pre>		+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 0+55 1+ 0	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854	24 - H O U n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.19 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q	JR STOR Hydrog Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>		+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939	24 - H O U n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.19 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.24 O	JR STOR Hydrog Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>		+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q	JR STOR Hydrog Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>	 S)) 	+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+45 0+55 1+ 0 1+ 5 1+10 1+15	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025 0.1111	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q 1.24 Q	J R S T O R H y d r o g Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>	 S)) 	+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025 0.1111 0.1197	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q 1.24 Q 1.24 Q 1.25 O	J R S T O R H y d r o g Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>	 S)) 37.5 	+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+ 15 1+20 1+25	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025 0.1111 0.1197 0.1283	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q 1.24 Q 1.25 Q 1.25 VO	J R S T O R H y d r o g Minute inte 12.5	<pre> ********** M r a p h rvals ((CF 25.0 </pre>		+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025 0.1111 0.1197 0.1283 0 1369	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q 1.24 Q 1.25 Q 1.25 VQ 1.26 VO	J R S T O R H y d r o g Minute inte 12.5	<pre> ********** M r a p h rvals ((CF 25.0 </pre>		+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025 0.1111 0.1197 0.1283 0.1369 0 1456	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q 1.24 Q 1.25 Q 1.25 VQ 1.26 VQ 1.26 VQ	J R S T O R H y d r o g Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>		+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025 0.1111 0.1197 0.1283 0.1369 0.1456 0.1543	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q 1.24 Q 1.25 Q 1.26 VQ 1.26 VQ 1.26 VQ	J R S T O R H y d r o g Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>	S)) 37.5	+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025 0.1111 0.1197 0.1283 0.1369 0.1456 0.1543 0.1631	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q 1.24 Q 1.25 Q 1.25 VQ 1.26 Q 1.26 Q 1.27 Q	J R S T O R H y d r o g Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>	S)) 37.5	+++++++ 50.0
++++ Time(h+m) 0+ 5 0+10 0+15 0+20 0+25 0+30 0+25 0+30 0+35 0+40 0+45 0+55 1+ 0 1+ 5 1+10 1+15 1+20 1+25 1+30 1+35 1+40 1+45 1+50	R u Hydrog Volume Ac.Ft 0.0005 0.0038 0.0104 0.0183 0.0265 0.0349 0.0432 0.0516 0.0600 0.0685 0.0769 0.0854 0.0939 0.1025 0.1111 0.1197 0.1283 0.1369 0.1456 0.1543 0.1631 0.1718	24 - H O U a n o f f graph in 5 Q(CFS) 0 0.07 Q 0.48 Q 0.96 Q 1.14 Q 1.21 Q 1.21 Q 1.22 Q 1.22 Q 1.22 Q 1.23 Q 1.23 Q 1.23 Q 1.23 Q 1.24 Q 1.24 Q 1.24 Q 1.25 Q 1.25 VQ 1.26 VQ 1.26 Q 1.27 Q 1.	J R S T O R H y d r o g Minute inte 12.5	<pre> *********** M r a p h rvals ((CF 25.0 </pre>	S)) 37.5	+++++++ 50.0

1+55	0 1806	1 28	0			
2.0	0.1000	1 20				
2+ 0	0.1895	1.20	IV IV			
2+ 5	0.1983	1.29	ĮQ			
2+10	0.2072	1.29	Q			
2+15	0.2161	1.29	0			
2+20	0 2251	1 30				
2,25	0.2251	1 20				
2+25	0.2340	1.50	IV IV			
2+30	0.2430	1.31	ĮQ			
2+35	0.2521	1.31	Q			
2+40	0.2611	1.32	0			
2+45	0.2702	1.32	lo			
2+50	0 2704	1 22				
2+50	0.2754	1 22				
2+55	0.2885	1.33	ĮŲV			
3+ 0	0.2977	1.34	ĮQV			
3+ 5	0.3070	1.34	QV			
3+10	0.3162	1.34	QV			
3+15	0.3255	1.35	lov			
3+20	0 3349	1 35	lov			
2,25	0.2442	1 26				
3+23	0.3442	1.50				
3+30	0.3536	1.36	ĮŲV			
3+35	0.3630	1.37	QV			
3+40	0.3725	1.37	QV			
3+45	0.3820	1.38	lov			
3+50	0.3916	1.39	lov			
2+55	0.1011	1 20				
1.0	0.4011	1.35				
4+ 0	0.4108	1.40	ĮŲV			
4+ 5	0.4204	1.40	IQ V			
4+10	0.4301	1.41	Q V			
4+15	0.4398	1.41	Q V			
4+20	0.4496	1.42	lo v			
1+25	0 1591	1 /2				
4+20	0.4502	1 47				
4+50	0.4092	1.45				
4+35	0.4/91	1.43	IQ V			
4+40	0.4890	1.44	Q V			
4+45	0.4990	1.45	QV			
4+50	0.5090	1.45	lo v	i i		
4+55	0 5190	1 46	lo v			
F1 0	0.5100	1 16				
5+ 0	0.5291	1.40				
5+ 5	0.5393	1.4/	IQ V			
5+10	0.5494	1.48	IQ V			
5+15	0.5597	1.48	Q V			
5+20	0.5699	1.49	Q V			
5+25	0.5802	1.50	lo v	i i		
5+30	0 5906	1 50				
5130	0.5500	1 51				
5+55	0.0010	1.51				
5+40	0.6114	1.52	IQ V			
5+45	0.6219	1.52	IQ V			
5+50	0.6324	1.53	Q V			
5+55	0.6430	1.54	lo v			
6+ 0	0.6537	1.54	lo v			
6+ 5	0 6643	1 55				
0+ J C+10	0.0045	1 50				
0+10	1C/0.0	1.20				
6+15	0.6829	1.5/	IV V			
6+20	0.6967	1.57	IQ V			
6+25	0.7076	1.58	Q V			
6+30	0.7185	1.59	lo v	l i	l i	
6+35	0.7295	1.60	lo v	i i		
6+40	0 7406	1 60	lo v			
6+15	0 7517	1 61				
	0.7517	1 62				
0+50	0.7628	1.62	IV V			
6+55	0.7740	1.63	IQ V			

7+ 0	0.7853	1.64	0	V I		1	
7+ 5	0.7966	1.64	lõ	vi		1	i
7+10	0 8080	1 65	lõ	v i		i	
7+15	0.0000	1 66		v i			1
7+15	0.010	1.00	10	V I			1
7+20	0.0310	1.67	10				
7+25	0.8425	1.68	IQ	V			
7+30	0.8542	1.69	ĮQ	V			
7+35	0.8658	1.70	ĮQ	vi			
7+40	0.8776	1.71	Q	V I			
7+45	0.8894	1.72	Q	V			
7+50	0.9013	1.73	Q	V			
7+55	0.9133	1.74	Q	V I			
8+ 0	0.9253	1.75	0	V İ		ĺ	Ì
8+ 5	0.9374	1.76	İŌ	vi		İ	İ
8+10	0.9496	1.77	lõ	vi		1	i
8+15	0.9618	1.78	lõ	vi		i	i
8+20	0 9741	1 79		v i			
8+25	0.0965	1 90		V I			
0+23	0.9803	1 01	10				1
0+30	0.9989	1.01	IV	V I			
8+35	1.0115	1.82	IQ	V I			
8+40	1.0241	1.83	ĮQ	V			
8+45	1.0368	1.84	ĺQ	VI			
8+50	1.0495	1.85	ĮQ	V			
8+55	1.0624	1.87	Q	V			
9+ 0	1.0753	1.88	Q	V			
9+ 5	1.0884	1.89	Q	V			
9+10	1.1015	1.90	Q	V			
9+15	1.1147	1.92	İQ	Vİ		İ	İ
9+20	1.1280	1.93	İõ	vi		i	i
9+25	1.1413	1.94	lõ	vi		i	i
9+30	1 1548	1 96		vi		ł	
9+35	1 169/	1 07		V I			
0+40	1 1004	1 09	10	V I			1
9+40	1 1050	2.90	10				1
9+45	1,1956	2.00	10	V I			
9+50	1.2097	2.01	IQ	V I			
9+55	1.2236	2.03	ĮQ	V			
10+ 0	1.23//	2.04	ĮQ	V			
10+ 5	1.2519	2.06	ĮQ	V			
10+10	1.2662	2.07	ĮQ	V			
10+15	1.2806	2.09	Q	V			
10+20	1.2951	2.11	Q	V			
10+25	1.3097	2.12	Q	V			
10+30	1.3245	2.14	Q	V			
10+35	1.3394	2.16	Q	V		ĺ	Ì
10+40	1.3544	2.18	İŌ	vi		İ	İ
10+45	1.3695	2.20	İõ	vi		i	i
10+50	1.3848	2.22	lõ	vi		1	i
10+55	1 4002	2 24		- 1		i	
11+ 0	1 /157	2.24		v			
11, 5	1 4137	2.20	10	V			1
11+ 5	1.4314	2.20	10	V			
11+10	1.44/2	2.30	IQ	V			
11+15	1.4632	2.32	ĮQ	V			
11+20	1.4793	2.34	ĮQ	V		!	
11+25	1.4956	2.36	ĮQ	V		ļ	
11+30	1.5120	2.39	Q	V			
11+35	1.5286	2.41	Q	V	1		
11+40	1.5454	2.44	Q	V	,		
11+45	1.5624	2.46	Q	ĪV	,		
11+50	1.5795	2.49	Q	İv	,	1	
11+55	1.5968	2.52	0	İv	,	1	1
12+ 0	1.6144	2.54	ĺÕ	İv	,	İ	i
				1 -			

12+ 5	1.6322	2.59	Q	V		
12+10	1.6507	2.69	Q	V		
12+15	1.6701	2.82	Q	V		
12+20	1.6900	2.88	Q	V		
12+25	1.7101	2.93	Q	V		
12+30	1.7306	2.96	Q	V		
12+35	1.7512	3.00	õ	v		
12+40	1.7721	3.04	õ	v		
12+45	1.7933	3.07	õ	v		
12+50	1 8147	3 11	۰ ٥	v		
12+55	1 8365	3 15	Q Q	v		
13+ 0	1 8585	3 20	Q Q	v		
12+ 5	1 9909	2 24	Q	v		
12,10	1 0025	2 20 1	Q	v		
12,15	1 0264	2.29	Q	v		
12+12	1.9204	2.24 2.20	Q	V V		
13+20	1.9498	2.29	Q	V		
13+25	1.9734	3.44	Q	V		
13+30	1.9975	3.49	Q	V		
13+35	2.0220	3.55	Q	V		
13+40	2.0469	3.61	Q	V		
13+45	2.0722	3.68	Q	V		
13+50	2.0980	3.74	Q	V		
13+55	2.1242	3.81	Q	V		
14+ 0	2.1510	3.89	Q	V		
14+ 5	2.1784	3.97	Q	V		
14+10	2.2063	4.05	Q	V		
14+15	2.2348	4.15	Q	V		
14+20	2.2640	4.24	Q	V		
14+25	2.2940	4.34	Ō	v		
14+30	2.3246	4.45	õ	v		
14+35	2.3561	4.57	õ	v		
14+40	2 3885	4 70	õ	v		
14+45	2.3003	4.70	Q Q	v		
14+50	2.4562	1 99	Q Q	v		
14+55	2.4902	5 16	Ŷ	V V		
15+ 0	2.4017	5 34	Q	v v		
15+ 0	2.5204	5.54	Q	v v		
15+ 5	2.5000	5.54	Q	V V		
15+10	2.6064	5.//	Q	V V		
15+15	2.6479	6.03	Q	V		
15+20	2.6915	6.33	Q	V		
15+25	2.7369	6.59	Q	V	_	
15+30	2.7824	6.61	Q	۱ <i>۱</i>	/	
15+35	2.8280	6.62	Q	۱ ۱	/	
15+40	2.8765	7.05	Q	۱	/	
15+45	2.9303	7.80	Q		V	
15+50	2.9918	8.93	Q		V	
15+55	3.0651	10.65	Q		V	
16+ 0	3.1599	13.76		Q	V	
16+ 5	3.3096	21.73		Q	V	
16+10	3.5784	39.04			V	Q
16+15	3.8550	40.16			V	Q
16+20	4.0016	21.29		0	v	
16+25	4.0816	11.61 I	0		v	
16+30	4.1410	8.62	٥		v	
16+35	4.1890	6.98	ດັ		۰ ۱	/
16+40	4 2326	6 32	N N			/
16+45	4 2724	5 7 2	n v			/
16+50	1 3003	5 26 1	Q Q			, V
16+55	1 3/27	0C.C	ر م			V
	4.2421	ששיכ	ν V			V
17+ 0	4.3/01	4.70	Q Q			V
T/+ 2	4.4008	4.46	ų			v

17,10	1 1260	1 24		I I		V I
17+10	4.4300	4.24				V I
1/+15	4.4639	4.05	ĮŲ			v i
17+20	4.4907	3.89	Q			V
17+25	4.5165	3.74	0			V I
17+30	4 5414	3 61	İ	i i	İ	v
17.25	4.5414	2 40				V I
1/+35	4.5654	3.49	IV			V
17+40	4.5888	3.39	ĮQ			V
17+45	4.6114	3.29	Q			V
17+50	4.6334	3.20	İÖ	i i	i	v
17.55	1.0551	2.11				v I
1/+55	4.0548	5.11	IV			V
18+ 0	4.6757	3.03	Q			V
18+ 5	4.6960	2.95	Q			V
18+10	4.7153	2.80	İÖ	i i	i	vi
10+15	1 7336	2 65		i i		v
10+15	4.7550	2.05				V I
18+20	4.7512	2.55	ĮQ			V
18+25	4.7683	2.49	Q			V
18+30	4,7851	2.44	0			V I
18+35	1 8015	2 30		i i		V I
10.40	4.00176	2.55				
18+40	4.81/6	2.34	ίδ			V I
18+45	4.8335	2.30	Q			V
18+50	4.8490	2.25	0			V
18+55	4 8642	2 22	ĺ	i i	İ	v
10, 0	4.0702	2,22				
19+ 0	4.8/92	2.18	IV			V
19+ 5	4.8940	2.14	ĮQ			V I
19+10	4.9085	2.11	lQ			V
19+15	4.9228	2.07	İn	i i	i	vi
10+20	1 0360	2 04		i i		v i
19+20	4.9309	2.04				V I
19+25	4.9507	2.01	ĮQ			V I
19+30	4.9644	1.98	Q			V
19+35	4.9778	1.96	0	i i	Í	V Í
10+10	/ 0011	1 03		i i		v
10+40	4.0012	1.00				V I
19+45	5.0042	1.90	IV			V
19+50	5.0171	1.88	Q			V
19+55	5.0299	1.85	Q			V
20+ 0	5 0425	1 83	Ín	i i	i	v
201 0		1 01				V I
20+ 5	5.0550	1.01				V I
20+10	5.0673	1.79	ĮQ			V
20+15	5.0794	1.77	Q			V
20+20	5.0915	1.75	0			V
20+25	5 1033	1 73	ĺ	i i	İ	v
20125	5.1055	1 71				V I
20+30	5.1151	1./1	ļγ			V I
20+35	5.1267	1.69	ĮQ			V I
20+40	5.1382	1.67	lQ			V
20+45	5.1496	1.65	İo	i i	i	vi
20+50	5 1609	1 64	lõ	i i		v I
20+30	5.1009	1.04				V I
20+55	5.1/20	1.62	ĮQ			V
21+ 0	5.1831	1.60	Q			V
21+ 5	5.1940	1.59	0			V I
21+10	5 2048	1 57		i i	İ	v
21,10	5.2040	1 56				V I
21+15	5.2150	1.50				V I
21+20	5.2262	1.54	ĮQ			V
21+25	5.2367	1.53	Q			V
21+30	5.2472	1.52	0	l i	i	vİ
21+35	5 2575	1 50	Ĩ	i i		v I
21-10	5.2575	1 40				V
21+40	5.26/8	1.49	IV.			vi
21+45	5.2779	1.48	Q			V
21+50	5.2880	1.46	Q			V I
21+55	5.2980	1.45	0	j i	İ	vi
22+ 0	5 3070	1 //				v I
227 0	5.5075	1.44				V
22+ 5	5.31/8	1.43	ίγ			V
22+10	5.3275	1.42	I Q	I		V

22+15	5.3372	1.41	Q		V	
22+20	5.3468	1.40	Q		V	
22+25	5.3564	1.38	Q		V	
22+30	5.3658	1.37	Q		V	
22+35	5.3752	1.36	Q		V	
22+40	5.3846	1.35	Q		V	
22+45	5.3938	1.34	Q		V	
22+50	5.4030	1.33	Q		V	
22+55	5.4121	1.33	Q		V	
23+ 0	5.4212	1.32	Q		V	
23+ 5	5.4302	1.31	Q		V	
23+10	5.4392	1.30	Q		V	
23+15	5.4480	1.29	Q		V	
23+20	5.4569	1.28	Q		V	
23+25	5.4656	1.27	Q		V	
23+30	5.4743	1.26	Q		V	
23+35	5.4830	1.26	Q		V	
23+40	5.4916	1.25	Q		V	
23+45	5.5001	1.24	Q		V	
23+50	5.5086	1.23	Q		V	
23+55	5.5171	1.23	Q		V	
24+ 0	5.5254	1.22	Q		V	

APPENDIX D

SUPPORTING DOCUMENTS

SOILS MAP

NOAA ATLAS 14 DATA

Precipitation Frequency Data Server

TORR

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PD	S-based p	point prec	ipitation f	requency	estimates	s with 90%	confiden	ce interva	ls (in inch	nes) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.103	0.136	0.179	0.216	0.266	0.306	0.348	0.393	0.455	0.505
	(0.086-0.125)	(0.113-0.165)	(0.149-0.218)	(0.177-0.264)	(0.212-0.338)	(0.238-0.398)	(0.264-0.464)	(0.289-0.538)	(0.321-0.651)	(0.344-0.749)
10-min	0.148	0.195	0.257	0.309	0.382	0.439	0.499	0.563	0.652	0.724
	(0.124-0.180)	(0.162-0.236)	(0.213-0.313)	(0.254-0.379)	(0.303-0.485)	(0.342-0.570)	(0.379-0.664)	(0.415-0.771)	(0.460-0.933)	(0.493-1.07)
15-min	0.179	0.235	0.311	0.374	0.461	0.531	0.603	0.680	0.789	0.876
	(0.149-0.217)	(0.196-0.286)	(0.258-0.378)	(0.308-0.458)	(0.367-0.586)	(0.413-0.689)	(0.458-0.803)	(0.501-0.933)	(0.557-1.13)	(0.596-1.30)
30-min	0.269	0.353	0.466	0.561	0.692	0.797	0.906	1.02	1.18	1.31
	(0.224-0.326)	(0.294-0.429)	(0.387-0.567)	(0.462-0.688)	(0.551-0.879)	(0.620-1.03)	(0.687-1.21)	(0.753-1.40)	(0.835-1.69)	(0.895-1.95)
60-min	0.395	0.518	0.684	0.823	1.02	1.17	1.33	1.50	1.74	1.93
	(0.329-0.478)	(0.432-0.629)	(0.568-0.832)	(0.677-1.01)	(0.808-1.29)	(0.909-1.52)	(1.01-1.77)	(1.10-2.05)	(1.23-2.48)	(1.31-2.86)
2-hr	0.587	0.762	0.991	1.18	1.44	1.63	1.84	2.05	2.34	2.57
	(0.490-0.712)	(0.635-0.925)	(0.823-1.21)	(0.970-1.45)	(1.14-1.82)	(1.27-2.12)	(1.39-2.44)	(1.51-2.81)	(1.65-3.35)	(1.75-3.81)
3-hr	0.745	0.962	1.24	1.47	1.78	2.02	2.26	2.51	2.84	3.10
	(0.621-0.902)	(0.801-1.17)	(1.03-1.51)	(1.21-1.81)	(1.42-2.26)	(1.57-2.62)	(1.71-3.01)	(1.85-3.44)	(2.01-4.07)	(2.11-4.60)
6-hr	1.06	1.36	1.76	2.07	2.49	2.80	3.11	3.43	3.85	4.18
	(0.881-1.28)	(1.14-1.65)	(1.46-2.14)	(1.70-2.54)	(1.98-3.16)	(2.18-3.63)	(2.36-4.14)	(2.53-4.70)	(2.72-5.51)	(2.84-6.19)
12-hr	1.39	1.81	2.34	2.76	3.30	3.71	4.11	4.50	5.02	5.41
	(1.16-1.69)	(1.51-2.20)	(1.94-2.85)	(2.27-3.38)	(2.63-4.20)	(2.88-4.81)	(3.11-5.47)	(3.32-6.17)	(3.54-7.19)	(3.69-8.02)
24-hr	1.86	2.46	3.22	3.81	4.57	5.14	5.69	6.24	6.95	7.47
	(1.65-2.15)	(2.18-2.84)	(2.84-3.72)	(3.33-4.44)	(3.87-5.51)	(4.26-6.32)	(4.61-7.17)	(4.91-8.07)	(5.26-9.37)	(5.47-10.4)
2-day	2.25	3.04	4.04	4.84	5.88	6.66	7.43	8.20	9.21	9.96
	(1.99-2.59)	(2.69-3.51)	(3.56-4.68)	(4.23-5.64)	(4.98-7.09)	(5.52-8.19)	(6.01-9.35)	(6.46-10.6)	(6.97-12.4)	(7.29-13.9)
3-day	2.43	3.34	4.51	5.45	6.69	7.63	8.56	9.51	10.8	11.7
	(2.15-2.80)	(2.96-3.86)	(3.98-5.22)	(4.76-6.35)	(5.67-8.06)	(6.33-9.38)	(6.94-10.8)	(7.49-12.3)	(8.15-14.5)	(8.58-16.4)
4-day	2.63 (2.33-3.03)	3.65 (3.23-4.21)	4.97 (4.38-5.75)	6.04 (5.28-7.04)	7.46 (6.32-8.99)	8.55 (7.09-10.5)	9.63 (7.80-12.1)	10.7 (8.47-13.9)	12.2 (9.25-16.5)	13.4 (9.78-18.6)
7-day	3.01 (2.67-3.47)	4.25 (3.76-4.90)	5.87 (5.17-6.79)	7.19 (6.29-8.38)	8.98 (7.60-10.8)	10.4 (8.59-12.7)	11.7 (9.52-14.8)	13.2 (10.4-17.1)	15.1 (11.4-20.4)	16.6 (12.2-23.2)
10-day	3.26 (2.88-3.75)	4.63 (4.09-5.34)	6.45 (5.69-7.46)	7.94 (6.95-9.26)	9.99 (8.46-12.0)	11.6 (9.60-14.2)	13.2 (10.7-16.6)	14.9 (11.7-19.3)	17.2 (13.0-23.2)	19.0 (13.9-26.5)
20-day	3.86	5.56	7.86	9.79	12.5	14.6	16.8	19.2	22.4	25.0
	(3.42-4.45)	(4.92-6.42)	(6.93-9.10)	(8.56-11.4)	(10.6-15.0)	(12.1-18.0)	(13.6-21.2)	(15.1-24.8)	(17.0-30.2)	(18.3-34.9)
30-day	4.56 (4.03-5.25)	6.57 (5.80-7.58)	9.32 (8.21-10.8)	11.6 (10.2-13.6)	14.9 (12.7-18.0)	17.6 (14.6-21.6)	20.4 (16.5-25.7)	23.3 (18.4-30.2)	27.5 (20.8-37.1)	30.9 (22.6-43.1)
45-day	5.39 (4.78-6.22)	7.70 (6.81-8.89)	10.9 (9.62-12.6)	13.7 (11.9-15.9)	17.6 (14.9-21.2)	20.8 (17.3-25.6)	24.2 (19.6-30.5)	27.9 (22.0-36.1)	33.2 (25.1-44.7)	37.5 (27.4-52.3)
60-day	6.34 (5.62-7.31)	8.93 (7.90-10.3)	12.6 (11.1-14.5)	15.7 (13.7-18.3)	20.3 (17.1-24.4)	24.0 (19.9-29.5)	28.0 (22.7-35.3)	32.4 (25.5-41.9)	38.6 (29.2-52.1)	43.8 (32.1-61.1)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves

Duration 5-min 2-day 10-min 3-day 4-day 15-min 30-min 7-day 60-min 10-day 20-day 2-hr 30-day 3-hr 6-hr 45-day 12-hr 60-day 24-hr

NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Sun Oct 16 00:07:06 2022

Back to Top

Maps & aerials

Small scale terrain

APPENDIX E

INFILTRATION REPORT

June 8, 2016

ProLogis

200 SoCalGeo

2817 East Cedar Street, Suite 200 Ontario, California 91761

Attention: Mr. Scott Mulkay

- Project No.: **15G177-2**
- Subject: **Results of Infiltration Testing** Proposed Commercial/Industrial Building 11115 Hemlock Avenue Fontana, California
- Reference: <u>Geotechnical Investigation, Proposed Commercial/Industrial Building, 11115</u> <u>Hemlock Avenue, Fontana, California</u>, prepared for ProLogis by Southern California Geotechnical, Inc. (SCG), SCG Project No. 15G177-1, dated September 4, 2015.

Gentlemen:

In accordance with your request, we have conducted infiltration testing at the subject site. We are pleased to present this report summarizing the results of the infiltration testing and our design recommendations.

Scope of Services

The scope of services performed for this project was in general accordance with our Proposal No. 15P322-2, dated September 16, 2015. The scope of services included surface reconnaissance, subsurface exploration, field testing, and engineering analysis to determine the infiltration rates of the onsite soils. The infiltration testing was performed in general accordance with the <u>Technical Guidance Document for Water Quality Management Plans</u> prepared for the County of San Bernardino Areawide Stormwater Program dated June 7, 2013. The San Bernardino County standards defer to guidelines published by Riverside County Department of Environmental Health (RCDEH).

Site and Project Description

The subject site is located on the east side of Hemlock Avenue, approximately 750 feet north of the intersection of Hemlock Avenue and Jurupa Avenue, at the street address of 11115 Hemlock Avenue in Fontana, California. The site is bounded to the north by an existing commercial/industrial development, to the east by Beech Avenue, to the south by an existing commercial/industrial building, and to the west by Hemlock Avenue. The general location of the site is illustrated on the Site Location Map, included as Plate 1 of this report.

The site consists of a rectangular shaped parcel, $37.21\pm$ acres in size. The site is currently utilized as a mobile trailer storage yard, occupied by Modular Space Corporation. Two buildings are present in the west-central area of the site. These buildings are single-story structures,

which are assumed to be supported on shallow foundations with concrete slab-on-grade floors. Ground surface cover throughout the majority of the site consists of open graded gravel with areas of asphaltic concrete pavements surrounding the buildings and near the northwest corner of the site. The easternmost of the two buildings is immediately surrounded by Portland cement concrete. Landscape planters are present along the northern side of the westernmost building, and along the east and west property lines.

Detailed topographic information was not available at the time of this report. Based on visual observations, site grades appear to dip downwards toward the southwest at an estimated gradient of approximately 1 to $2\pm$ percent.

Proposed Development

A preliminary site plan, prepared by RGA, was provided to our office. Based on this plan, the site will be developed with one (1) commercial/industrial building. The proposed building will be located in the central portion of the site and will possess a footprint area of 775,200 \pm ft². The building will be constructed in a cross-deck configuration with dock high doors on the east and west sides. We expect that the building will be surrounded by asphaltic concrete pavements in the parking and drive areas and Portland cement concrete pavements in the truck court and loading dock areas. It is assumed that several landscape planters and concrete flatwork will be included throughout the site.

We understand the site will utilize an on-site storm water disposal system to dispose of storm water. Based on the infiltration test location plan provided to our office by the project civil engineer, the storm water disposal system will consist of two (2) below grade chamber systems and two (2) infiltration basins. One below grade chamber system will be located in the southeast area of the subject site and the other chamber system will be located in the southwest area of the site. One infiltration basin will be located in the southwest corner. The bottom of the proposed below grade chamber systems will be 8 to $12\pm$ feet below the existing site grades and the bottom of the infiltration basins will be 6 to $10\pm$ feet below the existing grades.

Previous Studies

Southern California Geotechnical, Inc. (SCG) previously performed a geotechnical investigation at the subject site, which is referenced above. As a part of this study, a total of ten (10) borings were advanced to depths of 5 to $30\pm$ feet below the existing site grades. Boring No. B-1 was drilled through existing asphaltic concrete pavements. The pavement section at Boring No. B-1 consisted of $6\frac{1}{2}\pm$ inches of asphaltic concrete with no discernable underlying layer of aggregate base. The remaining borings were drilled in areas paved with crushed miscellaneous base (CMB). At Boring Nos. B-2 through B-10, the ground surface cover consisted of a 3 to 4-inch thick CMB layer. Artificial fill soils were encountered beneath the pavements at Boring No. B-1, and beneath the CMB layer at Boring Nos. B-2 and B-8. The artificial fill soils extend to depths of $2\frac{1}{2}\pm$ feet below the existing site grades and generally consisted of medium dense to dense fine sands with varying amounts of fine to coarse gravel, medium to coarse sands, and silt. Native alluvium was encountered beneath pavements and/or the artificial fill soils at all of the boring locations, extending to at least the maximum depth explored of $30\pm$ feet below the existing site grades.

sands, fine to coarse sands and fine sandy silts with varying amounts of silt, fine to coarse gravel and cobbles. Boring No. B-7 also encountered a layer of very dense gravelly fine to coarse sands between depths of 17 and $25\pm$ feet. Groundwater was not encountered at any of the borings.

Subsurface Exploration

Scope of Exploration

The subsurface exploration conducted for this project consisted of a total of six (6) infiltration test borings. The borings were advanced to depths of 8 to $12\pm$ feet below existing site grades. The borings were advanced using a truck-mounted drilling rig, equipped with 8-inch diameter hollow stem augers and were logged during drilling by a member of our staff. The approximate locations of the infiltration test borings (identified as I-1 through I-6) are indicated on the Infiltration Test Location Plan, enclosed as Plate 2 of this report.

Upon the completion of each infiltration boring, the bottom of the test holes were covered with $2\pm$ inches of clean 3/4-inch gravel. A sufficient length of 3-inch-diameter perforated PVC casing was then placed into each test hole so that the PVC casing extended from the bottom of the test hole to the ground surface. Clean 3/4-inch gravel was then installed in the annulus surrounding the PVC casing.

Geotechnical Conditions

Ground surface cover at all six (6) of the infiltration boring locations consisted of 1 to $3\pm$ inches of open graded gravel. Native alluvium was encountered beneath the open graded gravel layer at all of the infiltration boring locations, extending to at least the maximum explored depth of $12\pm$ feet below existing grades. The alluvial soils generally consist of loose to dense fine to medium sands, silty fine to medium sands, and gravelly fine to coarse sands with varying amounts of coarse sand, fine to coarse gravel, silt, and cobble content. The Boring Logs, which illustrate the conditions encountered at the boring locations, are included with this report.

Infiltration Testing

We understand that the results of the testing will be used to prepare a preliminary design for the proposed storm water infiltration system that will be used to dispose of storm water at the subject site. As previously stated, the infiltration testing was performed in general accordance with <u>Technical Guidance Document for Water Quality Management Plans, prepared for the County of San Bernardino Areawide Stormwater Program</u>, dated June 7, 2013.

Pre-soaking

In accordance with the infiltration county standards for sandy soils, the infiltration test borings were pre-soaked 2 hours prior to infiltration testing or until all of the water had percolated through each test hole. The pre-soaking process consisted of filling each test boring by inverting a full 5 gallon bottle of clear water supported over the hole so that the water flow into the hole holds constant at a level at least 5 times the hole's radius above the gravel at the bottom of the hole. Pre-soaking was completed after all of the water had percolated through the test hole.

Infiltration Testing

Following the pre-soaking process of the infiltration test borings, SCG performed the infiltration testing. Each test hole was filled with water to a depth of at least 5 times the hole's radius above the gravel at the bottom of the test hole prior to each test interval. In accordance with the San Bernardino County guidelines, since "sandy soils" were encountered at the bottom of all the infiltration test borings (where 6 inches of water infiltrated into the surrounding soils for two consecutive 25-minute readings), readings were taken at an interval of 10 minutes for a total of 1 hour at the test location. After each reading, water was added to the boring so that the depth of the water was at least 5 times the radius of the hole. The water level readings are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on the spreadsheets.

The infiltration rates for the tests are tabulated in inches per hour. In accordance with typically accepted practice, it is recommended that the most conservative reading from the latter part of the infiltration test be used for design. The rate is summarized below:

<u>Infiltration</u> <u>Test No.</u>	Soil Description	Infiltration Rate (inches/hour)
I-1	Fine to medium Sand, little Silt, trace coarse Sand, little fine Gravel	2.1
I-2	Silty fine to medium Sand, trace coarse Sand, trace fine Gravel	3.6
I-3	Silty fine Sand, trace to little medium to coarse Sand, trace fine Gravel	3.6
I-4	Gravelly fine to coarse Sand, trace Silt	6.4
I-5	Silty fine to medium Sand, little coarse Sand, trace fine Gravel	1.2
I-6	Fine to medium Sand, little coarse Sand, little Silt, little fine Gravel	2.8

Laboratory Testing

Grain Size Analysis

The grain size distribution of selected soils taken from the base of each infiltration test boring has been determined using a range of wire mesh screens. The analysis was performed in general accordance with ASTM D-422 and/or ASTM D-1140. The weight of the portion of the sample retained on each screen is recorded and the percentage finer or coarser of the total weight is calculated. The results of the analysis are presented at the end of this report.

Design Recommendations

A total of six (6) infiltration tests were performed at the subject site. As noted above, the infiltration rates range from 1.2 to 6.4 inches per hour. The primary factors affecting the infiltration rates are the silt content and the varying relative densities of the encountered soils, which vary at different depths and locations at the subject site.

Based on the infiltration test results, we recommend an average infiltration rate of 2 inches per hour be used in the design of the proposed below grade chamber system and proposed infiltration basins.

We recommend that a representative from the geotechnical engineer be on-site during the construction of the proposed infiltration chambers and basins to identify the soil classification at the base of each infiltration system. It should be confirmed that the soils at the base of the proposed infiltration system correspond with those presented in this report to ensure that the performance of each system will be consistent with the rates reported herein.

The design of the proposed infiltration system should be performed by the project civil engineer, in accordance with the city of Fontana and/or San Bernardino County guidelines. **It is recommended that the project civil engineer apply an appropriate factor of safety.** It is recommended that the system be constructed so as to facilitate removal of silt and clay, or other deleterious materials from any water that may enter the systems. The presence of such materials would decrease the effective infiltration rates. **The infiltration rates recommended to the subsurface profile.** Any fines, debris, or organic materials could significantly impact the infiltration rates. It should be noted that the recommended infiltration rates are based on infiltration testing at six (6) discrete locations and that the overall infiltration rate of the infiltration system could vary considerably.

Infiltration versus Permeability

Infiltration rates are based on unsaturated flow. As water is introduced into soils by infiltration, the soils become saturated and the wetting front advances from the unsaturated zone to the saturated zone. Once the soils become saturated, infiltration rates become zero, and water can only move through soils by hydraulic conductivity at a rate determined by pressure head and soil permeability. The infiltration rates presented herein was determined in accordance with the San Bernardino County guidelines, and is considered valid for the time and place of the actual test. Changes in soil moisture content will affect the infiltration rate. Infiltration rates should be expected to decrease until the soils become saturated. Soil permeability values will then govern groundwater movement. Permeability values may be on the order of 10 to 20 times less than infiltration rates. The system designer should incorporate adequate factors of safety and allow for overflow design into appropriate traditional storm drain systems, which would transport storm water off-site.

Location of Infiltration System

The use of on-site storm water infiltration systems carries a risk of creating adverse geotechnical conditions. Increasing the moisture content of the soil can cause the soil to lose internal shear strength and increase its compressibility, resulting in a change in the designed engineering properties. Overlying structures and pavements in the infiltration area could potentially be damaged due to saturation of subgrade soils. If possible, the proposed infiltration system for this site should be located at least 25 feet away from any structures, including retaining walls. Even with this provision of locating the infiltration system at least 25 feet from the buildings, it is possible that infiltrating water into the subsurface soils could have an adverse effect on the proposed or existing structures. It should also be noted that utility trenches which happen to

collect storm water can also serve as conduits to transmit storm water toward the structure, depending on the slope of the utility trench. Therefore, consideration should also be given to the proposed locations of underground utilities which may pass near the proposed infiltration system.

General Comments

This report has been prepared as an instrument of service for use by the client in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without appropriate interpretation by the project architect, structural engineer, and/or civil engineer. The design of the proposed storm water infiltration systems are the responsibility of the civil engineer. The role of the geotechnical engineer is limited to determination of infiltration rate only. By using the design infiltration rate contained herein, the civil engineer agrees to indemnify, defend, and hold harmless the geotechnical engineer for all aspects of the design and performance of the proposed storm water infiltration system. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party's sole risk, and we accept no responsibility for damage or loss which may occur.

The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between boring locations and testing depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein.

This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted.

The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed.

<u>Closure</u>

We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office.

No. 229

Respectfully Submitted,

SOUTHERN CALIFORNIA GEOTECHNICAL, INC.

+ Miln

Scott McCann Staff Scientist

John A. Seminara, GE 2294 Principal Engineer

Distribution: (1) Addressee

Enclosures: Plate 1 - Site Location Map Plate 2 - Infiltration Test Location Plan Boring Log Legend and Logs (8 pages) Infiltration Test Results Spreadsheet (6 pages) Grain Size Distribution Graph (6 pages)

PROPOSED COMMERCIAL/INDUSTRIAL BUILDING FONTANA, CALIFORNIA SCALE: 1" = 2400' DRAWN: JLH CHKD: JAS SCG BRO JECT

GEOTECHNICAL

SCALE: 1" = 2400 DRAWN: JLH CHKD: JAS SCG PROJECT 15G177-2 **PLATE 1**

SOURCE: SAN BERNARDINO COUNTY THOMAS GUIDE, 2013

NOTE: BASE MAP PREPARED BY RGA

EXISTING BUILDING TO BE DEMOLISHED

APPROXIMATE BORING LOCATION FROM PREVIOUS STUDY (SCG PROJECT NO. 15G177-1)

APPROXIMATE INFILTRATION TEST LOCATION

GEOTECHNICAL LEGEND

BORING LOG LEGEND

SAMPLE TYPE	GRAPHICAL SYMBOL	SAMPLE DESCRIPTION
AUGER		SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED)
CORE		ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK.
GRAB	M	SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE. (DISTURBED)
CS		CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED)
NSR	\bigcirc	NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL.
SPT		STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH INSIDE DIAMETER SPLIT BARREL, DRIVEN 18 INCHES WITH THE SPT HAMMER. (DISTURBED)
SH		SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED)
VANE		VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED.

COLUMN DESCRIPTIONS

DEPTH:	Distance in feet below the ground surface.
SAMPLE:	Sample Type as depicted above.
BLOW COUNT:	Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30-inch drop. 50/3" indicates penetration refusal (>50 blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more.
POCKET PEN.:	Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer.
GRAPHIC LOG :	Graphic Soil Symbol as depicted on the following page.
DRY DENSITY:	Dry density of an undisturbed or relatively undisturbed sample in lbs/ft ³ .
MOISTURE CONTENT:	Moisture content of a soil sample, expressed as a percentage of the dry weight.
LIQUID LIMIT:	The moisture content above which a soil behaves as a liquid.
PLASTIC LIMIT:	The moisture content above which a soil behaves as a plastic.
PASSING #200 SIEVE:	The percentage of the sample finer than the #200 standard sieve.
UNCONFINED SHEAR:	The shear strength of a cohesive soil sample, as measured in the unconfined state.

SOIL CLASSIFICATION CHART

м		ONS	SYM	BOLS	TYPICAL
			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	Y (LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

JOI PR	3 NO.: OJEC	: 150 T: C/	G177-2 I Devel	opmer	DRILLING DATE: 5/20/16 DRILLING METHOD: Hollow Stem Auger			WATE CAVE	R DEF	PTH: 'H:		
LO		DN: F	ontana	, Califo	brnia LOGGED BY: Jason Hiskey			READ	ING T	AKEN:	TO	
FIE		RESU					30R/	ATOP	KY RI	ESUL		
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	UNCONFINED SHEAR (TSF)	COMMENTS
					- 3± inches Open-graded Gravel							
		21			<u>ALLUVIUM:</u> Light Gray fine Sand, trace Silt, trace medium Sand, trace fine Gravel, medium dense-dry to damp		2					
5		10			Light Gray Brown fine Sand, little Silt, trace medium to coarse Sand, loose to medium dense-damp to moist		7					-
		31			Light Gray Brown Silty fine Sand, trace coarse Sand, dense-damp		6					-
					Light Gray fine to medium Sand, trace to little Silt, little coarse Sand, dense-dry to damp		2					
10		34					3					
		43		• • • • • • • • • • • • • • • • • • •	Light Gray fine to medium Sand, trace coarse Sand, little fine Gravel, little Silt, dense-dry to damp		2					
FBL 15G177-2.GPJ SOCALGEO.GDT 6/8/16					Boring Terminated at 12'							
TE	ST	BC	RIN	IG L	_OG	I						PLATE I-1

JOB	NO.: DJEC	15G F: C/	177-2 Devel	opmen	DRILLING DATE: 5/20/16 t DRILLING METHOD: Hollow Stem Auger				R DEF	PTH: H: akeni		
FIE		RESU	JLTS			LA	BORA		RYR	ESUL	TS	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN. (TSF)	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PASSING #200 SIEVE (%)	UNCONFINED SHEAR (TSF)	COMMENTS
					2 ¹ / ₂ ± inches Open-graded Gravel	1						
		33			ALLOVIOM: Light Gray fine to medium Sand, little Silt, little coarse Sand, occasional Cobbles, dense-dry to damp	-	2					-
5		44			Light Gray Silty fine to medium Sand, little coarse Sand, some fine to coarse Gravel, occasional Cobbles, dense-dry to damp	-	2					-
		18			Light Gray Brown fine Sand, trace coarse Sand, little Silt, medium dense-damp	-	5					-
10-		27		······································	Light Brown Silty fine to medium Sand, trace coarse Sand, trace fine Gravel, medium dense-damp	-	3					-
					Boring Terminated at 10'							
77-2.GPJ SOCALGEO.GDT 6/8/16												
TBL 15G	ST	BC	RIN	IG L	.0G							PLATE I-2

JOB PRO	NO.: JEC	15G T: C/	177-2 Devel	opmen	DRILLING DATE: 5/20/16 t DRILLING METHOD: Hollow Stem Auger			WATE CAVE	R DEF	PTH: H:		
		N: F	ontana	, Califo	brnia LOGGED BY: Jason Hiskey	1 .		READ		AKEN:	то	
рертн (FEET)	SAMPLE	BLOW COUNT	POCKET PEN.	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY (PCF)	MOISTURE CONTENT (%)			PASSING #200 SIEVE (%)	UNCONFINED C	COMMENTS
			<u> </u>	•••••	→ 3± inches Open-graded Gravel		20			<u> </u>		
		19			Gray to Gray Brown fine to medium Sand, trace Silt, little coarse Sand, medium dense-dry to damp	-	2					-
5		12			<u>ALLUVIUM:</u> Light Brown Silty fine Sand, trace to little medium to coarse Sand trace fine Gravel medium dense-damp	-	5					-
	\mathbb{N}											
					Boring Terminated at 8'							
8/16												
LGEO.GDT 6/												
7-2.GPJ SOCA												
TBL 15G17												

		· 150	177 0					\ <u>\</u> /\	ם חבי	στυ		
PR	DJFC	. 150 T: C/	I Devel	opmen	TILLING DATE. 3/20/10 DRILLING MFTHOD: Hollow Stem Auger			CAVE		- іп. Н:		
LO		DN: F	ontana	, Califo	brnia LOGGED BY: Jason Hiskey			READ	ING T	AKEN:		
FIF		RESI	II TS				30RA		RYR	ะรมเ	TS	
EPTH (FEET)	AMPLE	-OW COUNT	SF)	RAPHIC LOG	DESCRIPTION	RY DENSITY CF)	OISTURE DNTENT (%)	auid MIT	ASTIC	ASSING 200 SIEVE (%)	VCONFINED HEAR (TSF)	OMMENTS
B	SP	BL	ΔË	ß	SURFACE ELEVATION: MSL	ЦĞ	žΰ			74 ₽2	ן ק ר	CC
		24		• • <td>1± inch Open-graded Gravel ALLUVIUM: Light Gray Brown fine to medium Sand, little Silt, some coarse Sand, little fine to coarse Gravel, medium dense-dry to damp Light Brown fine to coarse Sand, trace Silt, some fine to coarse</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1± inch Open-graded Gravel ALLUVIUM: Light Gray Brown fine to medium Sand, little Silt, some coarse Sand, little fine to coarse Gravel, medium dense-dry to damp Light Brown fine to coarse Sand, trace Silt, some fine to coarse		2					
5		23			Gravel, medium dense-dry to damp		2					-
		22			Light Gray Brown fine to medium Sand, trace Silt, little coarse Sand, little fine to corase Gravel, medium dense-dry to damp		2					-
40		13			Gray Brown Silty fine Sand, trace medium Sand, medium dense-moist		10					
10	X	31			Gray Brown Silty fine to medium Sand, little coarse Sand, trace fine Gravel, dense-damp to moist Light Gray Gravelly fine to coarse Sand, trace Silt, occasional		7 2					-
					Boring Terminated at 12'							
5177-2.GPJ SOCALGEO.GDT 6/8/16												
	<u>ет</u>				00							

JUDI NO.: 195/17/2 DIFLUNCE INDUCT: S20/16 WATER DEPTH: PRODUCT: CT Development DURING METHOD: Holdwistern Auger DAVE DEPTH: LOCATION: Fontana. California LOCATION: Fontana. California DESCRIPTION DESCRIPTION FELD RESULTS DESCRIPTION USABULTS USABULTS USABULTS DESCRIPTION USABULTS USABULTS USABULTS DESCRIPTION USABULTS USABULTS USABULTS DESCRIPTION USABULTS USABULTS USABULTS DESCRIPTION USABULTS USABULTS USABULTS DESCRIPTION USABULTS USABULTS USABULTS DESCRIPTION USABULTS USABULTS USABULTS DESCRIPTION USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS USABULTS T USABULTS USABULTS USABULTS T <th></th> <th></th> <th>450</th> <th>477.0</th> <th></th> <th></th> <th></th> <th></th> <th>\</th> <th></th> <th></th> <th></th> <th></th>			450	477.0					\				
Products: un laterequiret UCANTON: Produina California LOGGED BY: Jacon Heavy READING TAKEN: FIELD RESULTS I Book Survey of the second seco	JOB		: 15G	1//-2	00000-0	URILLING DATE: 5/20/16			VVATE		чн: 		
TELED RESULTS FIELD RESULTS UBJ US (SUB VALUE) FIELD RESULTS UBJ US (SUB VALUE)			1. C/)N⊢ ⊑		oprnen Calife	I DRILLING METHUD: HOROW SIEM AUger							
Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation <		יתוע	איז. ר סרפי				1 .			ים ענ		то	
List List <thlist< th=""> List List <thl< td=""><td>FIEL</td><td></td><td>KESU</td><td></td><td>-</td><td></td><td></td><td>SOR/</td><td>ATOP</td><td></td><td>-501</td><td>.15</td><td></td></thl<></thlist<>	FIEL		KESU		-			SOR/	ATOP		-501	.15	
All B Close Close Surface Elevation: MSL Close	TH (FEET)	PLE	W COUNT	KET PEN.)	PHIC LOG	DESCRIPTION	DENSITY	STURE ITENT (%)	₽∟	STIC	SING SIEVE (%)	ONFINED AR (TSF)	IMENTS
0 i	Ш	AA	D D	SR	RA		Υ Σ Ω	BS	BS₽	Ϋ́Ε	200 200	ЯЩ	MO
9 Performed Start Start (Inter Sand, Ittle medium Sand, Ittle medium Sand, Ittle medium Sand, Ittle coarse Sand, Ittle coarse Sand, Ittle start, 7 6 13 13 14 Brown Sity fine to medium Sand, Ittle coarse Sand, Ittle medium Sand, Ittle stit, 7 7 15 15 Brown Sity fine to medium Sand, Ittle coarse Sand, Ittle medium Sand, Ittle stit, 7 7 49 15 Brown Sity fine to medium Sand, Ittle coarse Sand, Ittle medium Sand, Ittle stit, 7 7 49 16 Brown Sity fine to medium Sand, Ittle coarse Sand, Ittle coarse Sand, Ittle stit, 7 7 10 10 Brown Sity fine to medium Sand, Ittle coarse Sand, Ittle coarse Sand, Ittle stit, 7 7		S N	Ξ	1 E	U	SURFACE ELEVATION: MSL		ΣŬ			U #	⊃໑	Ō
13 Brown Sitty fine to medium Sand, little coarse Sand, trace fine Gravel, medium dense-damp to moist 7 15 Brown fine Sand, trace coarse Sand, little medium Sand, little Sitt, medium dense-damp to moist 7 49 Brown Sitty fine to medium Sand, little coarse Sand, little coarse Sand, little coarse Sand, little Sitt, medium dense-damp to moist 7 10 Brown Sitty fine to medium Sand, little coarse Sand, little coarse Sand, little coarse Sand, little coarse Sand, little Sitt, Gravel, occasional Cobbles, dense-damp to moist 6			9			 <u>ALLUVIUM</u>: Brown Silty fine Sand, little medium Sand, loose-damp to moist 		6					-
5 15 Brown fine Sand, trace coarse Sand, little medium Sand, little Silt, medium dense-damp to moist 7 49 Brown Silty fine to medium Sand, little coarse Sand, trace fine 6 10 10 Brown Silty fine to medium Sand, little coarse Sand, trace fine 6			13			Brown Silty fine to medium Sand, little coarse Sand, trace fine Gravel, medium dense-damp to moist	-	7					-
Hand Design of the large stand, little coarse Sand, trace fine Gravel, occasional Cobbles, dense-damp to moist	5		15			- Brown fine Sand, trace coarse Sand, little medium Sand, little Silt, medium dense-damp to moist	-	7					-
10 Image: Control of the second sec			49			Brown Silty fine to medium Sand, little coarse Sand, trace fine Gravel, occasional Cobbles, dense-damp to moist		6					-
Id Doring Terminated at 10' Boring Terminated at 10' Id													
I 196117-2 GPJ SOCALGEEO GPJ 6/8/16 I 196117-2 GPJ SOCALGEEO GPJ 6/8/16	- 10-					Boring Terminated at 10'							
	TBL 156177-2.6PJ SOCALGEO.GDT 6/8/16												

JOE PRC	NO.:	: 15G T: C/	177-2 Devel	opmen	t DRILLING DATE: 5/20/16 T DRILLING METHOD: Hollow Stem Auger			WATE	R DEF	PTH: H:		
		N: F	ontana II エロ	i, Califo	ornia LOGGED BY: Jason Hiskey	1 4	3081			AKEN:	TS	
DEPTH (FEET)	SAMPLE	BLOW COUNT	POCKET PEN.	GRAPHIC LOG	DESCRIPTION SURFACE ELEVATION: MSL	DRY DENSITY	MOISTURE CONTENT (%)		PLASTIC LIMIT	PASSING #200 SIEVE (%)	UNCONFINED 5 SHEAR (TSF) 6	COMMENTS
	1				- 3± inches Open-graded Gravel	1						
		13			<u>ALLUVIUM</u> : Brown Silty fine Sand, trace fine Gravel, little medium to coarse Sand, medium dense-damp to moist	-	6					-
5		8			Gray Brown Silty fine Sand, trace medium Sand, loose-moist	-	9					-
		21			Light Gray fine to medium Sand, little coarse Sand, little Silt, little fine Gravel, medium dense-dry to damp	-	2					-
					Boring Terminated at 8'							
3DT 6/8/16												
SOCALGEO.(
177-2.GPJ 5												
3L 15G												
≓∟ ⊤⊏	_ ст				00							

Project Name	Proposed C/I Building
Project Location	Fontana, CA
Project Number	15G177-2
Engineer	SM

Test Hole Radius Test Depth

4	(in)
9.4	(ft)

I-1

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
D1	Initial	12:40 PM	16.0	7.42	0.53	1 72	2 11	
ГІ	Final	12:56 PM	10.0	7.95	0.55	1.72	2.11	Sat
D 2	Initial	12:57 PM	16.0	7.26	0.56	1.96	2.07	-e-
۲Z	Final	1:13 PM	10.0	7.82	0.56	1.00	2.07	
1	Initial	1:25 PM	10.0	7.30	0.27	1 02	2.12	
1	Final	1:35 PM	10.0	7.67	0.37	1.92	2.15	
2	Initial	1:36 PM	10.0	7.28	0.36	1 94	2.05	
2	Final	1:46 PM	10.0	7.64	0.50	1.54	2.00	ing
з	Initial	1:47 PM	10.0	7.35	0.36	1.87	2 12	esti
5	Final	1:57 PM	10.0	7.71	0.30	1.07	2.12	Ĕ
1	Initial	1:58 PM	10.0	7.39	0.36	1.83	2 16	Itio
4	Final	2:08 PM	10.0	7.75	0.50	1.05	2.10	ltra
Б	Initial	2:09 PM	10.0	7.29	0.27	1.02	2 1 2	Infi
5	Final	2:19 PM	10.0	7.66	0.37	1.95	2.12	
6	Initial	2:20 PM	10.0	7.33	0 36	1 80	2 10	
0	Final	2:30 PM	10.0	7.69	0.30	1.09	2.10	

Per County Standards, Infiltration Rate calculated as follows:

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 Δt = Time Interval H above GS= 2

Project Name	Proposed C/I Building
Project Location	Fontana, CA
Project Number	15G177-2
Engineer	SM

Test Hole Radius Test Depth

4	(in)
7.8	(ft)

I-2

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
D1	Initial	12:45 PM	14.0	5.52	4.40	1.73	5.24		
ГІ	Final	12:59 PM	14.0	6.68	1.10			Sat	
D 2	Initial	1:00 PM	14.0	5.69	0.92	1.68	4.27	Pre-	
F۷	Final	1:14 PM	14.0	6.61					
1	Initial	1:29 PM	10.0	5.48	0.54	2.08	2.88		
1	Final	1:39 PM		6.02					
2	Initial	1:40 PM	10.0	5.69	0.60	1.84	3 50		
2	Final	1:50 PM		6.29	0.00	1.04	5.59	ing	
3	Initial	1:51 PM	10.0	5.66	0.57	1 80	3 31	esti	
5	Final	2:01 PM		6.23	0.57	1.09	5.51	Ĕ	
1	Initial	2:02 PM	10.0	5.71	0.56	1 84	3 35	tion	
4	Final	2:12 PM		6.27	0.50	1.04	5.55	ltra	
5	5	Initial	2:13 PM	10.0	5.75	0.56	1.80	3 / 2	Infi
	Final	2:23 PM	10.0	6.31	0.50	1.00	5.42		
6	Initial	2:24 PM	10.0	M 10.0	5.83	0.56	1 72	3 56	
	Final	2:34 PM		6.39	0.56	1.72	5.50		

Per County Standards, Infiltration Rate calculated as follows:

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 Δt = Time Interval H above GS= 0.67

Project Name	Proposed C/I Building
Project Location	Fontana, CA
Project Number	15G177-2
Engineer	SM

Test Hole Radius Test Depth

4	(in)
6.9	(ft)

I-3

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
D1	Initial	12:50 PM	12.0	4.74	0.76	1.75	3.66	L.	
FI	Final	1:03 PM	13.0	5.50				Sat	
D0	Initial	1:04 PM	12.0	5.11	0.83	1.35	5.07	-e-	
P2	Final	1:17 PM	13.0	5.94				ш.	
1	Initial	1:32 PM	10.0	4.70	0.63	1.86	3.74		
I	Final	1:42 PM		5.33					
2	Initial	1:43 PM	10.0	4.64	0.64	1 01	3 70		
2	Final	1:53 PM		5.28	0.04	1.51	3.70	ing	
3	Initial	1:54 PM	10.0	4.75	0.60	1.82	3.62	esti	
5	Final	2:04 PM		5.35	0.00	1.02	5.02	Ē	
1	Initial	2:05 PM	10.0	4.83	0.50	1 75	2 70	Itio	
4	Final	2:15 PM		5.42	0.55	1.75	5.70	ltra	
5	Initial	2:16 PM	10.0	4.85	0.57	1 74	3 60	Infi	
	Final	2:26 PM		5.42	0.57	1.74	5.00		
6	Initial	2:27 PM	10.0	10.0	4.81	0.58	1 77	2 50	
	Final	2:37 PM		5.39	0.58	1.77	3.59		

Per County Standards, Infiltration Rate calculated as follows:

$$Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$ H above GS= 0.83

Project Name	Proposed C/I Building
Project Location	Fontana, CA
Project Number	15G177-2
Engineer	SM

Test Hole Radius Test Depth

4	(in)
9.8	(ft)

I-4

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)	
D1	Initial	8:15 AM	7.0	7.70	0.76	1.72	6.91	
ГІ	Final	8:22 AM	7.0	8.46				Sat
50	Initial	8:23 AM	7.0	7.70	0.72	1.74	6.47	Pre-
P2	Final	8:30 AM	7.0	8.42				
1	Initial	8:31 AM	10.0	7.74	1.13	1.50	8.16	
1	Final	8:41 AM		8.87				
2	Initial	8:42 AM	10.0	7.76	1 12	1 48	8 16	
2	Final	8:52 AM		8.88	1.12	1.40	0.10	ing
G	Initial	8:53 AM	10.0	7.70	1.05	1 58	7 23	esti
5	Final	9:03 AM		8.75	1.05	1.50	1.25	Ĕ
4	Initial	9:04 AM	10.0	7.69	1.02	1.60	6.03	atio
	Final	9:14 AM		8.71	1.02	1.00	0.95	ltra
5	Initial	9:15 AM	10.0	7.70	1.02	1 50	6.07	Infi
	Final	9:25 AM		8.72	1.02	1.59	0.97	
6	Initial	9:26 AM	10.0	7.65	0.98	1.66	6.44	
	Final	9:36 AM		8.63	0.96	1.00	0.44	

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 Δt = Time Interval H above GS= 0
INFILTRATION CALCULATIONS

Project Name	Proposed C/I Building
Project Location	Fontana, CA
Project Number	15G177-2
Engineer	SM

Test Hole Radius Test Depth

4	(in)
8.0	(ft)

I-5

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
P1	D1	Initial	10:40 AM	10.0	5.48	0.52	2 20	1 / 1	
	Final	10:58 AM	10.0	6.00	0.52	2.29	1.41	Sat	
P2	Initial	10:59 AM	05.0	5.97	0.50	1.81	1.21	Pre-	
	Final	11:24 AM	25.0	6.47					
1 II F	1	Initial	11:25 AM	10.0	5.98	2.22	0.04	24.07	
	Final	11:35 AM	10.0	8.20	2.22	0.94	24.07		
2	Initial	11:36 AM	10.0	5.97	0.22	1 95	1 25		
2	Final	11:46 AM		6.19	0.22	1.00	1.20	ing	
3	З	Initial	11:47 AM	10.0	5.97	0.22	1 95	1 25	est
	Final	11:57 AM	10.0	6.19	0.22	1.55	1.20	Г С	
4	Initial	11:58 AM	10.0	5.94	0.23	1.98	1.29	ltration	
	Final	12:08 PM		6.17					
5	5	Initial	12:09 PM	10.0	6.01	0.21	1 02	1 21	Infi
	Final	12:19 PM	10.0	6.22	0.21	1.52	1.21		
6	6	Initial	12:20 PM	10.0	6.02	0.21	1 01	1 22	
	Final	12:30 PM	10.0	6.23	0.21	1.91	1.22		

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r + 2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 $\Delta t = Time Interval$ H above GS= 0.67

 H_{avg} = Average Head Height over the time interval

INFILTRATION CALCULATIONS

Project Name	Proposed C/I Building
Project Location	Fontana, CA
Project Number	15G177-2
Engineer	SM

Test Hole Radius Test Depth

	4	(in)
	6.7	(ft)
I-6		

Infiltration Test Hole

Interval Number		Time	Time Interval (min)	Water Depth (ft)	Change in Water Level (ft)	Average Head Height (ft)	Infiltration Rate Q (in/hr)		
P1	D1	Initial	10:50 AM	14.0	4.20	0.72	2 11	2 75	
	Final	11:04 AM	14.0	4.93	0.73	2.11	2.15	Sat	
P2 Fi	Initial	11:05 AM	14.0	4.50	0.69	1.83	2.97	Pre-	
	Final	11:19 AM	14.0	5.19					
1	Initial	11:30 AM	10.0	4.67	0.49	1.76	3.06		
	Final	11:40 AM		5.16					
2	Initial	11:41 AM	10.0	4.49	0.51	1.93	2 93		
2	Final	11:51 AM		5.00	0.01	1.55	2.55	ing	
3	Initial	11:52 AM	10.0	4.63	0.47	1 81	2.86	esti	
5	Final	12:02 PM		5.10	0.47	1.01	2.00	Ĕ	
4	Initial	12:03 PM	10.0	4.61	0.46	1.83	2.76	tion	
	Final	12:13 PM		5.07	0.40	1.05	2.70	ltra	
5	5	Initial	12:14 PM	10.0	4.66	0.45	1 70	2 77	Infi
	Final	12:24 PM	10.0	5.11	0.45	1.75	2.11		
6	6	Initial	12:25 PM	10.0	4.67	0.45	1 78	2 78	
	Final	12:35 PM	10.0	5.12	0.40	1.70	2.70		

Per County Standards, Infiltration Rate calculated as follows:

$$\boxed{Q = \frac{\Delta H(60r)}{\Delta t(r+2H_{avg})}}$$

Where: Q = Infiltration Rate (in inches per hour)

 ΔH = Change in Height (Water Level) over the time interval

r = Test Hole (Borehole) Radius

 Δt = Time Interval H above GS= 1.33

 H_{avg} = Average Head Height over the time interval

