## Appendix T

Transportation Addendum

## Appendix T. 1 <br> Transportation Addendum

MEMORANDUM

| To: | Eileen Hunt <br> Los Angeles Department of Transportation | Date: | February 27, 2020 |
| :--- | :--- | :--- | :--- |
|  | LLG Ref: | $5-17-0315-1$ |  |
| From: | David S. Shender, P.E. <br>  <br>  <br>  <br> Jason A. Shender <br> Linscott, Law \& Greenspan, Engineers |  |  |
| Subject: | Traffic Analysis Addendum for the Our Lady of Mt. Lebanon Project |  |  |

This traffic analysis addendum has been prepared by Linscott, Law \& Greenspan, Engineers (LLG) to provide an addendum to the traffic analysis for the proposed Our Lady of Mt. Lebanon project ("the Project") located at 333 S. San Vicente Boulevard in the City of Los Angeles (the "Project Site"). LLG previously prepared a traffic impact study dated April 16, 2019 (the "approved traffic study") for the Project based on the Los Angeles Department of Transportation (LADOT) Transportation Impact Study Guidelines, December 2016 (the "2016 Guidelines"). The findings of the approved traffic study were confirmed in the LADOT traffic assessment letter dated August 1, 2019. The approved traffic study concluded that, based on the 2016 Guidelines, the Project would not create a significant impact at any of the 14 study intersections analyzed in the approved traffic study.

This traffic analysis addendum has been prepared to address the following items:

- Minor Change in Project Description. The approved traffic study evaluated a Project including a proposed church component with 31,342 square feet of building floor area. LLG understands the proposed size of the church component has increased slightly to 31,439 square feet (i.e., an increase of 97 square feet). This traffic analysis addendum evaluates the relative changes in the trip generation forecast for the Project based on the minor change in the proposed floor area for the church component.
- Traffic Operations in the Alley Adjacent to the Project Site. An assessment of traffic operations has been prepared related to the public alley that abuts the north side of the Project Site. As described in the approved traffic study, vehicular access to the Project Site is proposed via the alley across from the existing vehicular access to the Westbury Terrace residential condominium building ("Westbury Terrace"). The analysis has been prepared to evaluate traffic operations in the alley following buildout and occupancy of the Project.
- Vehicle Miles Traveled (VMT) Analysis. In compliance with State law, LADOT issued a revised Transportation Assessment Guidelines document dated July 2019 (the "2019 Guidelines"). The 2019 Guidelines provide a new methodology and thresholds of significance for evaluating project transportation impacts related to development projects based on an analysis of


## Linscott, Law \&

 Greenspan, Engineers20931 Burbank Boulevard Suite C
Woodland Hills, CA 91367
818.835.8648 т
818.835.8649 F
www.llgengineers.com

Pasadena
Irvine
San Diego
Woodland Hills

VMT. The VMT analysis for the Project has been prepared per the 2019 Guidelines and is provided herein.

- Updated List of Related Projects. The list of related projects used in the approved traffic study has been updated to reflect information current as of January 2020.
- Updated Traffic Impact Analysis. In conjunction with the updated list of related projects, updated Levels of Service (LOS) traffic impact analyses for "Future Cumulative Baseline" and "Future Cumulative with Project" conditions have been prepared using the methodologies and significant traffic impact criteria utilized by the Cities of Los Angeles, Beverly Hills, and West Hollywood when the Project entered into a Memorandum of Understanding (MOU) agreement with LADOT on May 11, 2018.

Accordingly, LLG has prepared this traffic analysis addendum to provide: (1) an analysis of traffic operations in the public alley adjacent to the Project; (2) a VMT analysis for the Project based on the 2019 Guidelines; (3) an updated list of related projects; and (4) an updated LOS traffic impact analysis.

## Minor Change in the Project Description

The approved traffic study evaluated a Project including a proposed church component with 31,342 square feet of building floor area. LLG understands the proposed size of the church component has increased slightly to 31,439 square feet (i.e., an increase of 97 square feet of building floor area). Table 1 attached provides the updated trip generation forecast for the Project based on the slight change in the church floor area. As shown in Table 1, the Project is forecast to generate 43 net new morning (AM) peak hour trips, 53 net new afternoon (PM) peak hour trips, and 651 net new daily trips.

Table 7-1 in the approved traffic study provides the trip generation forecast for the Project based on the prior assumed building floor area for the church component. As shown in Table 7-1, the trip generation forecast for the Project was calculated to be 43 net new AM peak hour trips, 53 net new PM peak hour trips, and 650 net new daily trips. When compared to the updated trip generation forecast provided in Table 1 , the minor change in the building floor area for the church component does not result in any increase in the calculated number of weekday AM and PM peak hour vehicle trips due to the Project. Further, the minor change in the building floor area for the church will result in the forecast of one (1) additional daily vehicle trip when
compared to the forecast provided in the approved traffic study. Accordingly, it is concluded that the minor change in the proposed building floor area for the church component of the Project will not change the analysis and findings related to the relative traffic impacts of the Project as evaluated in the approved traffic study.

## Alley Analysis

An analysis of the public alley that abuts the north side of the Project Site has been prepared to assess traffic operations following buildout of the Project. As described in the approved traffic study, vehicular access to the Project Site is proposed via the alley across from the existing vehicular access to the existing Westbury Terrace. The analysis has been prepared to evaluate traffic operations in the alley during the weekday morning (AM) commuter peak hour, the weekday afternoon (PM) commuter peak hour (including arriving traffic related to an event at the church), as well as the peak hour of vehicle traffic exiting the Project following an event at the church.

## Existing Conditions

As noted above, the Project Site is located at 333 S. San Vicente Boulevard. The existing Project Site is currently developed with the existing Our Lady of Mt. Lebanon church facilities (the "Existing Church"), which include: a one-story, 6,848-square-foot cathedral; three ancillary church buildings with a total of 12,370 square feet of floor area, including a two-story, 2,520-square-foot rectory, a one-story, 5,426 square-foot social hall; a three-story, 4,424-square-foot building with offices and meeting rooms; and a surface parking lot. Vehicular access to the parking area serving the Existing Church is currently provide by two driveways along Burton Way and at two points along the public alley that abuts the north side of the Project Site. Access to the parking areas serving Westbury Terrace is provided via two driveways along the north side of the alley, across from the existing vehicular access points to the parking area serving the Existing Church. An aerial photo indication the location of the vehicular access points to the Existing Church and Westbury Terrace is provided in Figure 1.

## Proposed Project

The proposed Project includes 153 residential apartment units and 31,439 square feet of church floor area. The Project includes 397 vehicle parking spaces in a subterranean garage. The parking spaces will serve both the residential and church components of the Project. A site plan for the Project is provide in Figure 2.

Vehicular access to the Project parking garage will be provided via the alley in the general location of the access to the parking area serving the Existing Church. As shown on Figure 2, the access to the proposed parking area will provide two lanes for inbound traffic and one lane for outbound traffic.

Upon completion of the Project, the Existing Church would resume normal operations, which include holding 25 to 30 events each year, consisting of weddings, funerals, and other church events. These events would primarily take place in the multi-purpose room, which would have a capacity of approximately 475 people. While the frequency of these events would remain the same, the size of some of these events would increase because the multi-purpose room would have a larger capacity than the existing social hall, which has a capacity of approximately 230 people. In addition, it is expected that six to eight community events would be held in the multipurpose room each year.

While a majority of the larger events at the church/multi-purpose room are expected to occur on weekends, some events may occur on weekdays, primarily in the evening. For purposes of evaluating traffic movements within the alley related to Westbury Terrace, this traffic analysis conservatively assumes an event at the church with 475 attendees occurring on a weekday evening, with peak pre-event traffic arriving during the weekday PM commuter peak hour ("Pre-Event") and peak post-event traffic departing later in the evening (e.g., in the 9:00-11:00 PM timeframe).

## Existing Traffic Volumes

Manual traffic counts of vehicular turning movements were conducted on Thursday, November 14, 2019 at each of the existing church and Westbury Terrace driveways along the alley during the weekday AM commuter peak period, the weekday PM commuter peak period (which would coincide with the assumed arrival of pre-event traffic for a church event), as well as during the evening hours that could coincide with vehicle traffic exiting the Project following an event at the church ("PostEvent"). Specifically, manual traffic counts of vehicles were conducted from 7:00 AM to 10:00 AM, 3:00 PM to 6:00 PM, and 9:00 PM to 11:00 PM. The highest onehour volume of traffic was determined at each location based on the data collected. The existing traffic volumes at the driveways during the weekday AM commuter peak hour, the Pre-Event peak hour (coinciding with the weekday PM commuter peak hour), and Post-Event peak hour are shown in Figures 3, 4, and 5, respectively. Summary data worksheets of the manual traffic counts at the driveways are contained in Appendix $A$.

Eileen Hunt
February 27, 2020

Figure 3 and Figure 4 display the existing traffic volumes entering and exiting the Westbury Terrace parking garage via the alley during the weekday AM and PM commuter peak hours, respectively. During the AM peak hour, 27 vehicles were counted (7 inbound, 20 outbound) at the Westbury Terrace driveways as shown on Figure 3. Similarly, during the PM peak hour, 20 vehicles were counted (16 inbound, 4 outbound) at the Westbury Terrace driveways as shown on Figure 4. For informational purposes, the counted trip generation at the Westbury Terrace driveways was compared to the number of trips that would be forecast using applicable trip generation rates from the ITE Trip Generation Manual. For the 82 units at Westbury Terrace, application of the ITE trip rates ( $0.31 \mathrm{trips} / \mathrm{unit}$ for the AM peak hour and 0.36 trips/unit for the PM peak hour) results in a forecast of 25 trips in the AM peak hour and 29 trip in the PM peak hour for Westbury Terrace. The actual trips counted at the Westbury Terrace driveways during the commuter peak hours are generally within the range of what would be forecast using the ITE trip rates.

## Project Trip Generation and Assignment

The trip generation forecast for the Project is provided in the attached Table 1 (which has been updated from the trip generation forecast provided in the approved traffic study due to a slight change in the church floor area as previously discussed. The Project on a typical weekday is forecast to result in 48 AM peak hour trips (14 inbound trips $/ 34$ outbound trips) and 60 PM peak hour trips ( 35 inbound trips $/ 25$ outbound trips). Figure $7-1$ from the approved traffic study provides the forecast trip distribution of Project traffic to the alley (i.e., vehicles approaching/departing to and from the east and west.).

As noted above, upon completion of the Project, events held at the Existing Church would have a capacity of approximately 475 people. For this analysis, the following assumptions have been made:

- Approximately $90 \%$ of guests (i.e., 428 guests) would arrive in a private automobile, at an average rate of 3 persons per vehicle ${ }^{1}$. This would result in 143 vehicles requiring parking at the site.

[^0]- The remaining $10 \%$ of guests (i.e., 47 guests) would arrive by other means, including Uber/Lyft, walking, etc. Guests arriving and departing by Uber/Lyft would utilize the Project's proposed passenger loading area on San Vicente Boulevard and therefore would not utilize the Project's vehicle entry/exit on the alley.
- It is conservatively assumed the 143 vehicles related to guests at a peak event would arrive and depart in a one-hour period, although it is more likely that arrivals and departures would be dispersed over a greater period of time.


## Existing with Project Traffic Volumes

As previously noted, the existing traffic volumes in the alley at the Existing Church and Westbury Terrace driveways during the weekday AM, PM, and Post-Event peak hours are presented in Figures 3, 4, and 5, respectively. The forecast traffic volumes associated with the Project are then added to the existing volumes to obtain the Existing with Project traffic volumes, which are shown on Figures 6, 7, and $\boldsymbol{8}$ for the weekday AM commuter peak hour, Pre-Event peak hour, and Post-Event peak hour, respectively. The Pre-Event and Post-Event peak hour trips in Figures 7 and 8 include traffic associated with both the residential building, the church space and a special event in the multi-purpose room at the maximum occupancy of 475 people.

## Driveway Operation Analysis

An analysis was prepared to evaluate expected operations in the alley upon buildout of the Project. The operational analysis was prepared using the existing and forecast weekday AM, PM, and Post-Event peak hour traffic counts in the alley. Motorist delay and vehicle queuing in the alley have been calculated at the Project and Westbury Terrace driveways for the Existing and Existing with Project conditions. The analysis was prepared using the unsignalized intersection methodology provided in the Highway Capacity Manual (HCM) published by the Transportation Research Board. The HCM methodology allows the analysis of turning movements at the driveway, with the following specific outputs:

- Control delay (measured in vehicles/seconds): Control delay is the estimated time that the average motorist will require to wait prior to completing a specific turning movement at an intersection during the analyzed peak hour.
- Level of Service (LOS): A qualitative description of operations at an intersection, ranging from LOS A to F. LOS is defined based on calculated amount of motorist delay.
- $95^{\text {th }}$ Percentile Vehicle Queue: The calculated length of vehicle queues waiting to complete a specific turning movement at an intersection during the analyzed peak hour. The $95^{\text {th }}$ percent confidence level indicates that the queue will be at or below this length 95 percent of the time during the analyzed peak hour.

Control delay, LOS, and $95^{\text {th }}$ Percentile Vehicle Queue calculations have been prepared for the Project driveway under Existing and Existing with Project conditions during the AM, PM, and Post-Event peak hours. Table 2 provides a summary of the HCM analysis for the alley during the analyzed peak hours. The HCM data worksheets for the driveway are contained in Appendix B.

Key points from the data provided in Table 2 are as follows:

- Vehicles currently exiting the Westbury Terrace driveways onto the alley currently experience minimal delay during the commuter peak hours (average delay calculated at approximately 8.5 seconds per motorist, which corresponds with LOS A operations). Note this is generally the minimum delay value produced by the HCM analysis for motorists turning left from a minor approach or driveway. There are minimal vehicle queues related to vehicles exiting the Westbury Terrace driveways onto the alley (i.e., less than one exiting vehicle queuing into the Westbury Terrace parking areas during the commuter peak hours).
- Vehicles currently turning left into the Westbury Terrace driveways from the eastbound alley also experience minimal delay during the commuter peak hours (average delay calculated at approximately 7.3 seconds per motorists, which corresponds with LOS A operations). Note this is generally the minimum delay value produced by the HCM analysis for motorists turning left from a roadway to a minor approach or driveway. There are minimal vehicle queues related to vehicles attempting to turn left into the Westbury Terrace driveways from the alley (i.e., less than one vehicle queuing on the alley during the commuter peak hours).
- With the Project, there would be a slight increase, in some circumstances, in the calculated average delay or vehicle queuing related to motorists entering or exiting the Westbury Terrace driveways on the alley during the weekday AM commuter peak hour, the weekday Pre-Event peak hour (conservatively assumed in this analysis to coincide with the weekday commuter PM peak hour), and the Post-Event peak hour. This is due primarily to the following: (1) the relatively low volume of existing through traffic on the alley (i.e.,
vehicles traveling in the alley between Holt Avenue and San Vicente Boulevard); (2) the relatively small number of vehicles currently entering and exiting the Westbury Terrace driveways; and (3) the limited nature of conflicting traffic movements between existing vehicles entering and exiting the Westbury Terrace driveways and future vehicles entering and exiting the Project driveway. More specifically:
- AM Peak Hour. As shown in Figure 6, during the weekday AM peak hour, 15 cars were counted to turn right from the Westbury Terrace driveways (one car every four minutes). Future vehicles turning to or from the Project driveway would not be in conflict with the outbound right turns from Westbury Terrace because the Westbury Terrace vehicles turning right from the driveways have the assigned right-ofway over future vehicles turning to and from the Project driveway. Figure 6 also shows five vehicles turning left from the Westbury Terrance driveways during the AM peak hour (one car every 12 minutes). The three vehicles forecast to turn left from the alley into the Project driveway (one car every 20 minutes) and the nine vehicles forecast to turn right from the Project driveway (one car every 6.5 minutes) would be the only additional conflict for vehicles turning left from the Westbury Terrace driveways during the AM peak hour. Finally, Figure 6 shows three cars turning left from the alley into the Westbury Terrace driveways during the weekday AM peak hour (one car every 20 minutes). Future vehicles turning to or from the Project driveway will not be in conflict with this left-turn because vehicles turning left from the alley to the Westbury Terrace driveways have the assigned right-of-way over future vehicles turning to and from the Project driveway.
- Pre-Event Peak Hour. As shown in Figure 7 (which includes cumulative traffic associated with the residential building, the church space and a special event in the multi-purpose room at the maximum occupancy of 475 people), during the weekday Pre-Event peak hour (conservatively assumed in this analysis to coincide with the weekday PM commuter peak hour), two cars were counted to turn right from the Westbury Terrace driveways (one car every 30 minutes). Future vehicles turning to or from the Project driveway will not be in conflict with the outbound right turns from Westbury Terrace because the Westbury Terrace vehicles turning right from the driveways have the assigned right-of-way over future vehicles turning to and from the Project driveway. Figure 7 also shows two vehicles turning left from the Westbury Terrance driveways during the PM peak hour (one car
every 30 minutes). The 44 vehicles that are forecast to turn left into the Project driveway (one car every 90 seconds), and the six vehicles that are forecast to turn right from the Project driveway (one car every 10 minutes), would be the only additional conflict for the two vehicles turning left from Westbury Terrace driveways, resulting in the incremental increase in the average delay per motorist for vehicles exiting the Westbury Terrace driveways during the Pre-Event peak hour as shown in Table 2 (from 8.6 seconds to 9.2 seconds). Additionally, Figure 7 shows 15 cars turning left into the Westbury Terrace driveways from the alley during the weekday Pre-Event peak hour (one car every four minutes). Future vehicles turning to or from the Project driveway would not be in conflict with this left-turn because vehicles turning left from the alley to the Westbury Terrace driveways have the assigned right-of-way over future vehicles turning to and from the Project driveway. Finally, Figure 7 shows the forecast of 134 vehicles (approximately one car every 27 seconds) entering the alley from Holt Avenue and turning right into the Project driveway. Most of these forecast right-turn vehicles are related to traffic arriving for a special event. These right-turn vehicles do not conflict, and therefore, would not cause any additional delay to existing motorists entering or exiting the Westbury Terrace driveway, whether by a leftturn or right-turn traffic movement. This is another reason why the Pre-Event traffic volumes associated with the Project do not materially change motorist delay related to inbound and outbound traffic movements at the Westbury Terrace driveways.
- Post-Event Peak Hour. As shown in Figure 8, during the weekday Post-Event peak hour, no cars were counted to turn left or right from the Westbury Terrace driveways. Therefore, Project vehicle traffic related to the Post-Event peak hour would not affect traffic movements exiting Westbury Terrace. Figure 8 also shows four cars turning left into the Westbury Terrace driveways during the weekday Post-Event peak hour (one car every 15 minutes). Future vehicles turning to or from the Project driveway would not be in conflict with this left-turn because vehicles turning left from the alley to the Westbury Terrace driveways have the assigned right-of-way over future vehicles turning to and from the Project driveway.

In summary, the traffic analysis concludes that the Project would not materially change traffic operations on the alley, specifically as it relates to inbound and outbound traffic movements associated with the Westbury Terrace residential development.

## VMT Calculation

In September 2013, the Governor's Office signed Senate Bill (SB) 743, starting a process that changes the way transportation impact analysis is conducted under the California Environmental Quality Act. Within the State's CEQA Guidelines, these changes include the elimination of auto delay, Level of Service (LOS), and similar measurements of vehicular roadway capacity and traffic congestion as the basis for determining significant traffic impacts. SB 743 identifies VMT as the most appropriate CEQA transportation metric, along with the elimination of auto delay/LOS for CEQA purposes statewide. The justification for this paradigm shift is that auto delay/LOS impacts lead to improvements that increase roadway capacity and therefore induce more traffic and greenhouse gas emissions.

In July 2019, the Los Angeles City Council formally adopted VMT as the criteria for determining transportation impacts of development projects. In conjunction with the adoption of VMT, LADOT issued the 2019 Guidelines. Further, LADOT issued a memorandum dated August 9, 2019 stating that while traffic studies prepared and approved under the 2016 Guidelines will still be honored, it recommends that these projects also evaluate VMT as part of their transportation analysis. Accordingly, this VMT calculation has been prepared for the Project consistent with the 2019 Guidelines.

The VMT calculation has been prepared for the Project using Version 1.2 of the LADOT's VMT Calculator. The VMT results for the Project are contained within Appendix C. It is noted that within the VMT Calculator, 'Church' is not one of the available land use types. Therefore, per the 2019 Guidelines, a custom VMT calculation has been prepared within the VMT Calculator for the church component of the Project.

## Household VMT

As shown in Appendix C, the Project's Household VMT is calculated to be 6.2 miles per Capita. The Household VMT threshold of significance applicable to the Project (located in an area under the jurisdiction of the City's Central Area Planning Commission) is 6.0 miles per Capita. Therefore, prior to consideration of potential mitigation measures, the Project's Household VMT would be calculated to have a significant impact because it exceeds the Household VMT threshold of significance. However, the Project would implement transportation demand (TDM) strategies, which are described below, to reduce the Project's Household VMT from 6.2 to 5.8 miles, which is below the Household VMT threshold of significance. Therefore, the Project's Household VMT is considered to be less than significant.

## Work VMT

As shown in Appendix C, the Project's Work VMT is calculated to be 2.8 miles per Employee. The threshold of significance for Work VMT applicable to the Project (based on its location in the Central APC) is 7.6 miles per Employee. Therefore, the Project's Work VMT is considered to be less than significant.

## Summary of TDM Strategies

As outlined in the data sheets from the VMT Calculator provided in Appendix $C$, the VMT calculation incorporates TDM strategies, both as project features and mitigation measures. The TDM strategies are listed in Table 2.2-2 of the 2019 Guidelines. The following TDM strategies will be included as features of the Project:

- Unbundle Parking
- Promotions and Marketing
- Include Bike Parking per Los Angeles Municipal Code (LAMC)
- Pedestrian Network Improvements.

Further discussion of these TDM strategies are provided in the following paragraphs.

## Unbundle Parking

This strategy unbundles the parking costs from the property costs, requiring those who wish to purchase parking spaces to do so at an additional cost from the property cost. This strategy is applicable to residential components of development projects.

At the time of initial opening of the development, the Project includes as a project feature a charge at least $\$ 25.00$ per month per parking space for a residential unit, separate from the monthly cost to rent the residential unit. As shown in Appendix C, the Project receives a $3.0 \%$ VMT reduction for providing unbundled parking.

## Promotions and Marketing

Marketing and promotional tools will be utilized for the Project to educate and inform residents about alternative transportation options and the effects of their travel choices. Rather than two-way communication tools or tools that would encourage an individual to consider a different mode of travel at the time the trip is taken (i.e., smartphone application, daily email, etc.), this strategy includes passive educational and promotional materials, such as posters, information boards, or a website with information that residents can choose to read at their own leisure. As shown in

Eileen Hunt
February 27, 2020

Appendix C, the Project receives a $4.0 \%$ VMT reduction from the use of promotions and marketing to encourage alternative transportation options.

## Include Bike Parking per LAMC

Table 12.21 A.16(a)(1)(i) of the LAMC provides the required short-term and longterm bicycle parking spaces for the residential component of the Project ( 153 units). The short-term bicycle parking ratios are as follows:

- Dwelling Units 1-25 (25 units): 1 space per 10 units (2 spaces);
- Dwelling Units 26-100 (75 units): 1 space per 15 units ( 5 spaces); and
- Dwelling Units 101-200 (53 units): 1 space per 20 units (3 spaces).

The long-term bicycle parking ratios are as follows:

- Dwelling Units 1-25 (25 units): 1 space per unit ( 25 spaces);
- Dwelling Units 26-100 ( 75 units): 1 space per 15 units ( 50 spaces); and
- Dwelling Units 101-200 (53 units): 1 space per 20 units ( 26 spaces).

Table 12.21 A.16(a)(2) of the LAMC provides the required short-term and long-term bicycle parking spaces for the commercial components of the Project. The short-term bicycle parking ratios are as follows:

- Church (3,000 assembly area): 1 space per 350 s.f. (9 spaces).

The long-term bicycle parking ratios are as follows:

- Church (3,000 assembly area): 1 space per 700 s.f. (4 spaces).

Based on the above, the Project is required to provide 10 short-term and 101 longterm bicycle parking spaces for the residential component. For the church component, the Project is required to provide nine short-term spaces and four longterm bicycle parking spaces. As a project feature, the Project will provide the required number of short-term and long-term bicycle parking spaces for the residential and commercial components. As shown in Appendix C, the Project receives a $0.625 \%$ VMT reduction for providing bike parking per the LAMC.

Eileen Hunt
February 27, 2020

## Pedestrian Network Improvements

This strategy involves implementation of pedestrian network improvements throughout and around the Project Site that encourage people to walk. This includes internally linking all uses within the Project Site with pedestrian facilities such as sidewalks and connecting the Project Site to the surrounding pedestrian network.

The Project includes pedestrian access points directly to sidewalks on the adjacent streets, including San Vicente Boulevard and Burton Way, as well as the alley which borders the Project Site to the north. Additionally, as a project feature, the Project includes the improvement of existing sidewalks or the construction of new sidewalks on the above-mentioned streets adjacent to the Project Site, as well as Holt Avenue, which borders the Project Site to the west. As shown in Appendix C, the Project receives a $2.0 \%$ VMT reduction for providing pedestrian network improvements.

As shown in the VMT Calculator output contained within Appendix C, the Project, with the above-mentioned TDM strategies, is expected to generate 580 daily vehicle trips, a daily VMT of 3,312 miles, and Household VMT per Capita of 5.8 miles and a Work VMT per Employee of 2.8 miles. The 2019 Guidelines state that the Household VMT per Capita threshold for the Central APC must be 6.0 miles or less and the Work VMT per Employee must be 7.6 miles or less. Therefore, the Project, with the implementation of the TDM strategies listed above, would not have a significant VMT impact.

## Updated Related Project Analysis

The traffic analysis prepared in the approved traffic study utilized related projects lists provided by LADOT, the City of Los Angeles Department of City Planning, the City of Beverly Hills Community Development Department, and the City of West Hollywood Community Development Department. The related projects list has been updated to reflect known related projects within the Project vicinity as of January 2020. The updated list of related projects in the Project Site area is presented in Table 3. The location of the related projects is shown in Figure 9. The updated related projects traffic volumes at the study intersections during the weekday AM and PM peak hours are displayed in Figures 10 and 11, respectively.

Based on the information provided by the respective agencies, four projects have been added to the related projects list utilized in the approved traffic study. A summary of trip generation forecast of the four additional projects is provided below:

## City of Los Angeles

- 316 N. La Cienega Boulevard (LA15):
- $3^{\text {rd }}$ and Fairfax Project (LA16):
- 656 S. San Vicente Boulevard Medical Office Project (LA17):

City of Beverly Hills

- 9107 Wilshire Boulevard (BH10):

20 net new AM peak hour trips 26 net new PM peak hour trips

142 net new AM peak hour trips 87 net new PM peak hour trips

387 net new AM peak hour trips
473 net new PM peak hour trips
-74 net new AM peak hour trips 1 net new PM peak hour trip

## City of West Hollywood

Per email correspondence with the City of West Hollywood, the related projects list utilized in the approved traffic study was confirmed as current as of the release of the NOP. ${ }^{2}$

As shown on Table 3, the related projects are expected to generate a total of 2,469 net new AM peak hour trips and 3,582 PM peak hour trips. The four projects added to the related projects list are expected to generate a net increase of 475 AM peak hour trips and a net increase of 587 PM peak hour trips (e.g., $19.24 \%$ of the total AM peak hour trips and $16.39 \%$ of the total PM peak hour trips associated with the related projects, respectively).

[^1]Eileen Hunt
February 27, 2020
Page 15

## Updated Traffic Impact Analysis

LLG has prepared updated intersection Level of Service calculations for "Future Cumulative Baseline" and "Future Cumulative with Project" conditions to evaluate the potential traffic impacts in conjunction with the updated list of related projects. The relative impact of the added traffic volumes forecast to be generated by the Project during the AM and PM peak hours was evaluated based on analysis of future operating conditions at the study intersections, without and with the Project.

The traffic impact analysis scenarios and significance of the potential impacts of project generated traffic were identified using the traffic impact criteria set forth by the cities of Los Angeles, Beverly Hills and West Hollywood. The individual jurisdictions' impact analysis scenarios and thresholds of significance are provided by reference in the April 16, 2019 approved traffic study.

## City of Los Angeles

The updated traffic impact analysis prepared for the 10 study intersections located within or shared with the City of Los Angeles using LADOT's Critical Movement Analysis (CMA) methodology and application of the City of Los Angeles significant traffic impact criteria is summarized in Table 4. A description of the CMA method and corresponding Levels of Service, as well as the CMA data worksheets for the analyzed intersections are contained in Appendix D.

The "Future Cumulative Baseline" conditions were forecast based on the addition of traffic generated by the completion and occupancy of related projects, as well as the growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors (i.e., ambient growth). The Volume-to-Capacity ( $v / c$ ) ratios at all the study intersections are incrementally increased with the addition of ambient traffic and traffic generated by the related projects listed in Table 3.

As presented in column [3] of Table 4, nine of the 10 study intersections located within or shared with the City of Los Angeles are expected to operate at LOS D or better during the weekday AM and PM peak hours with the addition of growth in ambient traffic and related project traffic under the "Future Cumulative Baseline" conditions. The following intersection is expected to operate at LOS E during the peak hours shown below under the "Future Cumulative Baseline" conditions:

- Int. No. 11: La Cienega Boulevard

PM Peak Hour: $v / c=0.955$, LOS E
/Beverly Boulevard

Eileen Hunt
February 27, 2020

The updated "Future Cumulative Baseline" (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in Figures 12 and 13, respectively.

The "Future Cumulative with Project" conditions were forecast based on the addition of traffic generated by the Project plus completion and occupancy of related projects. As shown in column [4] of Table 4, application of the City of Los Angeles' threshold criteria to the "Future Cumulative with Project" scenario indicates that the Project would not result in a significant impact at any of the 10 study intersections. Incremental, but not significant impacts are noted at the study intersections. Therefore, no mitigation measures are required or recommended with respect to these intersections under the "Future Cumulative with Project" conditions. The updated "Future Cumulative with Project" (existing, ambient growth, related projects, and Project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in Figures 14 and 15, respectively.

## City of Beverly Hills

The updated traffic impact analysis prepared for the four study intersections located within or shared with the City of Beverly Hills using the Intersection Capacity Utilization (ICU) methodology and application of the City of Beverly Hills’ significant traffic impact criteria is summarized in Table 5. A description of the ICU method and corresponding Levels of Service, as well as the ICU data worksheets for the analyzed intersections are contained in Appendix $\boldsymbol{E}$.

The "Future Cumulative Baseline" conditions were forecast based on the addition of traffic generated by the completion and occupancy of related projects, as well as the growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors (i.e., ambient growth). The $v / c$ ratios at all the study intersections are incrementally increased with the addition of ambient traffic and traffic generated by the related projects listed in Table 3.

As presented in column [3] of Table 5, three of the four study intersections located within or shared with the City of Beverly Hills are expected to operate at LOS D or better during the weekday AM and PM peak hours with the addition of growth in ambient traffic and related project traffic under the "Future Cumulative Baseline" conditions. The following intersection is expected to operate at LOS E during the peak hours shown below under the "Future Cumulative Baseline" conditions:

- Int. No. 3: Robertson Boulevard /

Wilshire Boulevard

AM Peak Hour: $v / c=0.916$, LOS E
PM Peak Hour: $v / c=0.903$, LOS E

Eileen Hunt
February 27, 2020

The updated "Future Cumulative Baseline" (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in Figures 12 and 13, respectively.

The "Future Cumulative with Project" conditions were forecast based on the addition of traffic generated by the Project plus completion and occupancy of related projects. As shown in column [4] of Table 5, application of the City of Beverly Hills' threshold criteria to the "Future Cumulative with Project" scenario indicates that the Project would not result in a significant impact at any of the four study intersections. Incremental, but not significant impacts are noted at the study intersections. Therefore, no mitigation measures are required or recommended with respect to these intersections under the "Future Cumulative with Project" conditions. The updated "Future Cumulative with Project" (existing, ambient growth, related projects, and Project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in Figures 14 and 15, respectively.

## City of West Hollywood

The updated traffic impact analysis prepared for the three study intersections located within or shared with the City of West Hollywood using the HCM signalized intersection methodology and application of the City of West Hollywood's significant traffic impact criteria is summarized in Table 6. A description of the HCM signalized intersection method and corresponding Levels of Service, as well as the HCM data worksheets for the analyzed intersections are contained in Appendix F.

The "Future Cumulative Baseline" conditions were forecast based on the addition of traffic generated by the completion and occupancy of related projects, as well as the growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors (i.e., ambient growth). The delay values at all the study intersections are incrementally increased with the addition of ambient traffic and traffic generated by the related projects listed in Table 3.

As presented in column [3] of Table 6, the three study intersections located within or shared with the City of West Hollywood are expected to operate at LOS C or better during the weekday AM and PM peak hours with the addition of growth in ambient traffic and related project traffic under the "Future Cumulative Baseline" conditions. The updated "Future Cumulative Baseline" (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in Figures 12 and 13, respectively.

The "Future Cumulative with Project" conditions were forecast based on the addition of traffic generated by the Project plus completion and occupancy of related projects. As shown in column [4] of Table 6, application of the City of West Hollywood's threshold criteria to the "Future Cumulative with Project" scenario indicates that the Project would not result in a significant impact at any of the three study intersections. Incremental, but not significant impacts are noted at the study intersections. Therefore, no mitigation measures are required or recommended with respect to these intersections under the "Future Cumulative with Project" conditions. The updated "Future Cumulative with Project" (existing, ambient growth, related projects, and Project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in Figures 14 and 15, respectively.

## Summary

The conclusions of this traffic analysis addendum for the proposed Project are as follows:

- The minor change in the proposed building floor area for the church component of the Project (i.e., 97 square feet of additional building floor area) does not alter the analysis and findings related to the relative traffic impacts of the Project as evaluated in the approved traffic study
- Vehicle traffic associated with the Project would not materially affect traffic operations on the alley, specifically as it relates to inbound and outbound traffic movements associated with Westbury Terrace, including during the peak hours when a special event occurs in the multi-purpose room.
- With implementation of recommended TDM strategies, the Project's Household VMT per Capita and Work VMT per Employee impact would be less than significant based on the applicable Central APC thresholds of significance.
- The list of related projects has been updated to reflect known information current as of January 2020.
- Updated traffic impact analyses have been prepared in conjunction with the updated related projects list. The addition of the four projects to the list of related projects does not change the findings or conclusions of the approved traffic study.




FIGURE 3
EXISTING TRAFFIC VOLUMES


## FIGURE 4 <br> EXISTING TRAFFIC VOLUMES

WEEKDAY PRE-EVENT PEAK HOUR


## FIGURE 5 <br> EXISTING TRAFFIC VOLUMES






MAP SOURCE: GOOGLE MAPS

NOT TO SCALE

## FIGURE 9 <br> LOCATION OF RELATED PROJECTS

$0: \backslash 0315 \backslash$ addendum $\backslash \mathrm{dwg} \backslash f 11 . \mathrm{dwg} 02 / 12 / 2020 \quad 15: 02: 10$ jshender llg exhibits color.ctb

FIGURE 11
RELATED PROJECTS TRAFFIC VOLUMES

Table 1
PROJECT TRIP GENERATION [1]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LAND USE} \& \multirow[b]{2}{*}{SIZE} \& \multirow[t]{2}{*}{\begin{tabular}{c} 
DAILY \\
TRIP ENDS [2] \\
VOLUMES \\
\hline
\end{tabular}} \& \multicolumn{3}{|l|}{AM PEAK HOUR VOLUMES [2]} \& \multicolumn{3}{|l|}{PM PEAK HOUR VOLUMES [2]} \\
\hline \& \& \& IN \& OUT \& TOTAL \& IN \& OUT \& TOTAL \\
\hline \begin{tabular}{l}
Proposed Project \\
Apartments [3] \\
Church [4] \\
Subtotal \\
Transit Trips [5] \\
Apartments (15\%) \\
Church (15\%) \\
Subtotal
\end{tabular} \& \(\begin{array}{rl}153 \& \mathrm{DU} \\ 31,439 \& \mathrm{SF}\end{array}\) \& \[
\begin{array}{r}
681 \\
\underline{219} \\
900 \\
(102) \\
\left(\begin{array}{r}
(33) \\
(135)
\end{array}\right.
\end{array}
\] \& \begin{tabular}{l}
\[
\begin{array}{r}
11 \\
\underline{6} \\
17
\end{array}
\] \\
(2) \\
(1) \\
(3)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{array}{r}
36 \\
\underline{4} \\
40
\end{array}
\] \\
(5) \\
(1) \\
(6)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 47 \\
\& \underline{10} \\
\& \hline 57
\end{aligned}
\] \\
(7) \\
(2) \\
(9)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{array}{r}
34 \\
\underline{7} \\
41
\end{array}
\] \\
(5) \\
(1) \\
(6)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{array}{r}
21 \\
\underline{8} \\
29
\end{array}
\] \\
(3) \\
(1) \\
(4)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 55 \\
\& \frac{15}{70}
\end{aligned}
\] \\
(8) \\
(2) \\
(10)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Subtotal Project Driveway Trips} \& 765 \& 14 \& 34 \& 48 \& 35 \& 25 \& 60 \\
\hline \begin{tabular}{l}
Existing Site Church [4] \\
Transit Trips [5] Church (15\%)
\end{tabular} \& \((19,218) \mathrm{SF}\) \& (134)
\[
20
\] \& \begin{tabular}{l}
(4) \\
1
\end{tabular} \& \begin{tabular}{l}
(2) \\
0
\end{tabular} \& \begin{tabular}{l}
(6) \\
1
\end{tabular} \& \((4)\)
1 \& \((5)\)
1 \& (9)

2 <br>
\hline \multicolumn{2}{|l|}{Subtotal Existing Driveway Trips} \& (114) \& (3) \& (2) \& (5) \& (3) \& (4) \& (7) <br>
\hline \multicolumn{2}{|l|}{NET INCREASE DRIVEWAY TRIPS} \& 651 \& 11 \& 32 \& 43 \& 32 \& 21 \& 53 <br>
\hline
\end{tabular}

[1] Source: ITE "Trip Generation Manual", 10th Edition, 2017.
[2] Trips are one-way traffic movements, entering or leaving.
[3] ITE Land Use Code 222 (Multifamily Housing [High-Rise]) trip generation average rates. - Daily Trip Rate: 4.45 trips/dwelling unit; 50\% inbound/50\% outbound

- AM Peak Hour Trip Rate: 0.31 trips/dwelling unit; $24 \%$ inbound $/ 76 \%$ outbound
- PM Peak Hour Trip Rate: 0.36 trips/dwelling unit; $61 \%$ inbound/39\% outbound
[4] ITE Land Use Code 560 (Church) trip generation average rates.
- Daily Trip Rate: 6.95 trips/1,000 SF of floor area; $50 \%$ inbound $/ 50 \%$ outbound
- AM Peak Hour Trip Rate: 0.33 trips $/ 1,000$ SF of floor area; $60 \%$ inbound $/ 40 \%$ outbound
- PM Peak Hour Trip Rate: 0.49 trips $/ 1,000$ SF of floor area; $45 \%$ inbound $/ 55 \%$ outbound
[5] The Project site is located within $1 / 4$ mile of a Metro Rapid bus stop. The trip reduction for transit trips has been applied to all components of the project based on the "LADOT Transportation Impact Study Guidelines", December 2016 for developments within a $1 / 4$ mile walking distance of a transit station or a RapidBus stop.

Table 2
HCM DRIVEWAY ANALYSIS [A] WEEKDAY AM AND PM PEAK HOURS PROPOSED PROJECT DRIVEWAY

| PEAK HOUR | $\begin{gathered} \text { SITE } \\ \text { ACCESS } \end{gathered}$ | $\begin{gathered} \text { TRAFFIC } \\ \text { MOVEMENT } \end{gathered}$ | EXISTING |  |  | EXISTING + PROJECT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | DELAY [B] | LOS [C] | QUEUE [D] | DELAY [B] | LOS [C] | QUEUE [D] |
| AM | Westbury Terrace | EB Left (Inbound) | 7.3 | A | 0.0 | 7.3 | A | 0.0 |
|  |  | SB Left/Right (Outbound) | 8.5 | A | 0.1 | 8.5 | A | 0.1 |
|  | Project | WB Left (Inbound) | 7.3 | A | 0.0 | 7.3 | A | 0.0 |
|  |  | NB Left/Right (Outbound) | 5.0 | A | 0.0 | 8.8 | A | 0.1 |
| Pre-Event | Westbury Terrace | EB Left (Inbound) | 7.3 | A | 0.0 | 7.3 | A | 0.0 |
|  |  | SB Left/Right (Outbound) | 8.6 | A | 0.0 | 9.2 | A | 0.0 |
|  | Project | WB Left (Inbound) | 7.3 | A | 0.0 | 7.6 | A | 0.1 |
|  |  | NB Left/Right (Outbound) | 8.7 | A | 0.0 | 9.8 | A | 0.1 |
| Post-Event | Westbury Terrace | EB Left (Inbound) | 7.2 | A | 0.0 | 7.2 | A | 0.0 |
|  |  | SB Left/Right (Outbound) | 5.0 | A | 0.0 | 5.0 | A | 0.0 |
|  | Project | WB Left (Inbound) | 7.2 | A | 0.0 | 7.2 | A | 0.0 |
|  |  | NB Left/Right (Outbound) | 8.6 | A | 0.0 | 9.1 | A | 0.5 |

[A] Intersection analysis based on the Highway Capacity Manual operational analysis methodologies.
[B] Control delay reported in seconds per vehicle.
[C] Unsignalized Intersection Levels of Service were based on the following criteria:

| Control Delay (s/veh) | LOS |
| :---: | :---: |
| $=10$ | A |
| $>10-15$ | B |
| $>15-25$ | C |
| $>25-35$ | D |
| $>35-50$ | E |
| $>50$ | F |

[D] 95th percentile vehicle queue expressed in number of vehicles.

Table 3
RELATED PROJECTS LIST AND TRIP GENERATION [1]

| $\begin{gathered} \text { MAP } \\ \text { NO. } \end{gathered}$ | PROJECT NAME/ PROJECT NUMBER | PROJECT STATUS | ADDRESS/ <br> LOCATION | LAND USE DATA |  | $\begin{array}{\|c\|} \hline \text { PROJECT } \\ \text { DATA } \\ \text { SOURCE } \\ \hline \end{array}$ | DAILYTRIP ENDS [2]VOLUMES | $\begin{gathered} \hline \text { AM PEAK HOUR } \\ \text { VOLUMES [2] } \\ \hline \end{gathered}$ |  |  | PM PEAK HOURVOLUMES [2] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAND-USE | SIZE |  |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| City of Los Angeles |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LA1 | Four Seasons Residences | Under <br> Construction | 300 S. Wetherly Drive | Condominiums | 140 DU |  | 270 | 3 | 17 | 20 | 16 | 6 | 22 |
| LA2 | Cedars-Sinai Medical Center Project West Tower | Proposed | 8723 W. Alden Drive | Hospital | 100 Beds |  | 1,181 | 79 | 34 | 113 | 47 | 83 | 130 |
| LA3 | S. La Cienega Boulevard Eldercare Facility | Proposed | 1022 S. La Cienega Boulevard | Assisted Living Skilled Nursing Apartments | 183 Beds 22 DU <br> (36) DU |  | 242 | 14 | (6) | 8 | 6 | 16 | 22 |
| LA4 | 6535 Wilshire Boulevard Mixed-Use Project | Proposed | 6535 Wilshire Boulevard | Office Apartments Retail | $\begin{array}{rl} 62,000 & \mathrm{GSF} \\ 22 & \mathrm{DU} \\ 5,603 & \mathrm{GSF} \end{array}$ |  | 786 | 61 | 17 | 78 | 20 | 63 | 86 |
| LA5 | Beverly \& Fairfax Mixed-Use Project | Approved | 7901 W. Beverly Boulevard | Apartments Retail | $\begin{array}{r} 71 \mathrm{DU} \\ 11,454 \mathrm{GSF} \end{array}$ |  | 493 | 7 | 29 | 36 | 30 | 16 | 46 |
| LA6 | 333 La Cienega Boulevard Project | Under <br> Construction | 333 S. La Cienega Boulevard | Apartments Supermarket Restaurant | $\begin{array}{rl} 145 & \mathrm{DU} \\ 27,685 & \mathrm{GSF} \\ 3,370 & \mathrm{GSF} \end{array}$ | [3] | 2,020 | 35 | 71 | 106 | 114 | 77 | 191 |
| LA7 | 6399 W. Wilshire Boulevard Mixed-Use Hotel | Under <br> Construction | 6399 W. Wilshire Boulevard | Hotel Restaurant Lounge | 176 Rooms <br> 871 GSF <br> 860 GSF |  | 377 | (64) | 19 | (45) | 26 | (48) | (22) |
| LA8 | Unified Elder Care Facility/ Mixed-Use | Proposed | 8052 W. Beverly Boulevard | Synagogue <br> Apartments Medical Office Retail | $\begin{aligned} 5,000 & \text { GSF } \\ 102 & \text { DU } \\ 15,000 & \text { GSF } \\ 1,000 & \text { GSF } \end{aligned}$ |  | 725 | 19 | 26 | 45 | 21 | 49 | 70 |
| LA9 | 8000 W. Beverly Boulevard Mixed-Use Project | Proposed | 8000 W. Beverly Boulevard | Apartments Retail | $\begin{array}{r} 48 \mathrm{DU} \\ 7,400 \mathrm{GSF} \end{array}$ |  | 774 | 21 | 36 | 57 | 42 | 17 | 59 |
| LA10 | Edin Park | Proposed | 8001 W. Beverly Boulevard | Restaurant Office | $\begin{aligned} & 22,600 \text { GSF } \\ & 11,358 \text { GSF } \end{aligned}$ |  | 3,248 | 142 | 118 | 260 | 157 | 106 | 263 |
| LA11 | 488 S. San Vicente Boulevard Mixed-Use Project | Proposed | 488 S. San Vicente Boulevard | Apartments Retail | $\begin{array}{rl} 53 & \mathrm{DU} \\ 6,585 & \mathrm{GSF} \end{array}$ |  | 281 | 1 | 20 | 21 | 18 | 9 | 27 |
| LA12 | Solstice | Proposed | 431 N. La Cienega Boulevard | Apartments <br> Car Wash <br> Retail | $\begin{array}{r} 72 \mathrm{DU} \\ (7,373) \mathrm{GSF} \\ (5,310) \mathrm{GSF} \end{array}$ | [4] | (409) | (9) | 10 | 1 | (12) | (22) | (34) |

Table 3 (Continued)
RELATED PROJECTS LIST AND TRIP GENERATION [1]

| $\begin{aligned} & \text { MAP } \\ & \text { NO. } \end{aligned}$ | PROJECT NAME/ PROJECT NUMBER | $\begin{gathered} \text { PROJECT } \\ \text { STATUS } \\ \hline \end{gathered}$ | ADDRESS/ <br> LOCATION | LAND USE DATA |  | $\begin{array}{\|c\|} \hline \text { PROJECT } \\ \text { DATA } \\ \text { SOURCE } \\ \hline \end{array}$ | DAILY <br> TRIP ENDS [2] <br> VOLUMES | AM PEAK HOUR VOLUMES [2] |  |  | $\begin{gathered} \hline \text { PM PEAK HOUR } \\ \text { VOLUMES [2] } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAND-USE | SIZE |  |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| LA13 | Third Street Mixed-Use Project | Proposed | 8000 W. 3rd Street | Apartments Affordable Housing Retail | $\begin{array}{rl} 45 & \mathrm{DU} \\ 5 & \mathrm{DU} \\ 7,251 & \mathrm{GSF} \end{array}$ |  | 428 | 9 | 17 | 26 | 23 | 13 | 36 |
| LA14 | 7951 W. Beverly Boulevard Mixed-Use Project | Proposed | 7951 W. Beverly Boulevard | Apartments Affordable Housing Retail Restaurant | $\begin{array}{rl} 51 & \mathrm{DU} \\ 6 & \mathrm{DU} \\ 1,142 & \mathrm{GSF} \\ 6,294 & \mathrm{GSF} \end{array}$ |  | 782 | 30 | 32 | 62 | 40 | 26 | 66 |
| LA15 | 316 N. La Cienega Boulevard Mixed-Use Project | Proposed | 316 N. La Cienega Boulevard | Apartments Affordable Housing Retail | $\begin{array}{rl} 44 \mathrm{DU} \\ 6 \mathrm{DU} \\ 4,096 & \mathrm{GSF} \end{array}$ |  | 119 | 5 | 15 | 20 | 15 | 11 | 26 |
| LA16 | 3rd and Fairfax Project | Proposed | 6300-6370 W. 3rd Street, 300-370 S. Fairfax Avenue, and 347 S. Ogden Drive | Apartments Retail Restaurant Supermarket | $\begin{array}{rl} 331 & \mathrm{DU} \\ 13,412 & \mathrm{GSF} \\ 7,500 & \mathrm{GSF} \\ 63,085 & \mathrm{GSF} \end{array}$ | [5] | 1,609 | 49 | 93 | 142 | 66 | 21 | 87 |
| LA17 | 656 S. San Vicente Medical Office Project | Proposed | 650-676 S. San Vicente Boulevard | Medical Office <br> Retail <br> Retail | $\begin{aligned} 140,305 & \text { GSF } \\ 5,000 & \text { GSF } \\ (8,225) & \text { GSF } \end{aligned}$ | [6] <br> [7] <br> [7] | $\begin{gathered} 4,883 \\ 189 \\ (310) \end{gathered}$ | $\begin{gathered} 304 \\ 3 \\ (5) \end{gathered}$ | $\begin{gathered} 86 \\ 2 \\ (3) \end{gathered}$ | $\begin{gathered} 390 \\ 5 \\ (8) \end{gathered}$ | $\begin{array}{r} 136 \\ 9 \\ (15) \end{array}$ | $\begin{gathered} 349 \\ 10 \\ (16) \end{gathered}$ | $\begin{gathered} 485 \\ 19 \\ (31) \end{gathered}$ |
| City of Beverly Hills |  |  |  |  |  |  |  |  |  |  |  |  |  |
| BH1 | Beverly Hills Media Center Project | Proposed | 100 N. Crescent Drive | $\begin{aligned} & \text { Office } \\ & \text { Restaurant } \\ & \text { Office } \end{aligned}$ | $\begin{array}{r} 156,825 \mathrm{GSF} \\ 4,330 \mathrm{GSF} \\ (106,085) \mathrm{GSF} \end{array}$ | $\begin{aligned} & {[8]} \\ & {[9]} \\ & {[8]} \end{aligned}$ | $\begin{array}{r} 1,527 \\ 486 \\ (1,033) \end{array}$ | $\begin{gathered} 157 \\ 24 \\ (106) \end{gathered}$ | $\begin{gathered} 25 \\ 19 \\ (17) \end{gathered}$ | $\begin{gathered} 182 \\ 43 \\ (123) \end{gathered}$ | $\begin{gathered} 29 \\ 26 \\ (20) \end{gathered}$ | $\begin{array}{r} 151 \\ 16 \\ (102) \end{array}$ | $\begin{gathered} 180 \\ 42 \\ (122) \end{gathered}$ |
| BH2 | 55 N. La Cienega Boulevard Mixed-Use Hotel Project | Proposed | 55 N. La Cienega Boulevard | Hotel <br> Retail <br> Restaurant <br> Restaurant | $\begin{aligned} 200 & \text { Rooms } \\ 10,222 & \text { GSF } \\ 3,346 & \text { GSF } \\ (13,500) & \text { GSF } \end{aligned}$ | $\begin{gathered} {[10]} \\ {[7]} \\ {[9]} \\ {[9]} \end{gathered}$ | $\begin{array}{r} 1,672 \\ 386 \\ 375 \\ (1,514) \end{array}$ | $\begin{array}{r} 55 \\ 6 \\ 18 \\ (74) \end{array}$ | $\begin{array}{r} 39 \\ 4 \\ 15 \\ (60) \end{array}$ | $\begin{array}{r} 94 \\ 10 \\ 33 \\ (134) \end{array}$ | $\begin{gathered} 61 \\ 19 \\ 20 \\ (82) \end{gathered}$ | $\begin{gathered} 59 \\ 20 \\ 13 \\ (50) \end{gathered}$ | $\begin{array}{r} 120 \\ 39 \\ 33 \\ (132) \end{array}$ |
| BH3 | 168 N. La Peer Drive Residential Project | Under Construction | 154-168 N. La Peer Drive | Condominiums Condominiums | $\begin{aligned} & 16 \mathrm{DU} \\ & \text { (6) DU } \end{aligned}$ | $\begin{aligned} & {[12]} \\ & {[12]} \end{aligned}$ | $\begin{aligned} & 117 \\ & (44) \end{aligned}$ | $\begin{gathered} 2 \\ (1) \end{gathered}$ | $\begin{gathered} 5 \\ (2) \end{gathered}$ | $\begin{gathered} 7 \\ (3) \end{gathered}$ | $\begin{gathered} 6 \\ (2) \end{gathered}$ | $\begin{gathered} 3 \\ (1) \end{gathered}$ | $\begin{gathered} 9 \\ (3) \end{gathered}$ |
| BH4 | 457 N. Oakhurst Drive Residential Project | Proposed | 457 N. Oakhurst Drive | Condominiums Condominiums | $\begin{gathered} 8 \mathrm{DU} \\ \text { (2) DU } \end{gathered}$ | $\begin{aligned} & {[12]} \\ & {[12]} \end{aligned}$ | $\begin{gathered} 59 \\ (15) \end{gathered}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{gathered} 3 \\ (1) \end{gathered}$ | $\begin{gathered} 4 \\ (1) \end{gathered}$ | $\begin{gathered} 3 \\ (1) \end{gathered}$ | $\begin{aligned} & 1 \\ & 0 \end{aligned}$ | $\begin{gathered} 4 \\ (1) \end{gathered}$ |
| BH5 | 425 N. Palm Drive Residential Project | Proposed | 425 N. Palm Drive | Condominiums Condominiums | $\begin{gathered} 20 \mathrm{DU} \\ \text { (18) DU } \end{gathered}$ | $\begin{gathered} {[12]} \\ {[12]} \end{gathered}$ | $\begin{gathered} 146 \\ (132) \end{gathered}$ | $\begin{gathered} 2 \\ (2) \end{gathered}$ | $\begin{gathered} 7 \\ (6) \end{gathered}$ | $\begin{gathered} 9 \\ (8) \end{gathered}$ | $\begin{gathered} 7 \\ (6) \end{gathered}$ | $\begin{gathered} 4 \\ (4) \end{gathered}$ | $\begin{gathered} 11 \\ (10) \end{gathered}$ |
| BH6 | Gardenhouse Mixed-Use Project | Under Construction | 8600 Wilshire Boulevard | Apartments Retail | $\begin{array}{rl} 18 \mathrm{DU} \\ 6,355 & \mathrm{GSF} \end{array}$ | $\begin{gathered} {[12]} \\ {[7]} \end{gathered}$ | $\begin{aligned} & 132 \\ & 240 \end{aligned}$ | 2 4 | $6$ | $\begin{aligned} & 8 \\ & 6 \end{aligned}$ | 6 12 | $\begin{array}{r} 4 \\ 12 \end{array}$ | $\begin{aligned} & 10 \\ & 24 \end{aligned}$ |
| BH7 | 9000 Wilshire Boulevard Office Project | Approved | 9000 Wilshire Boulevard | Retail Office | $\begin{aligned} & (4,820) \text { GSF } \\ & 31,702 \text { GSF } \end{aligned}$ | [7] <br> [8] | $\begin{gathered} (182) \\ 309 \end{gathered}$ | $\begin{aligned} & \text { (3) } \\ & 32 \end{aligned}$ | $\begin{gathered} (2) \\ 5 \end{gathered}$ | $\begin{aligned} & (5) \\ & 37 \end{aligned}$ | (9) 6 | $\begin{aligned} & \text { (9) } \\ & 30 \end{aligned}$ | $\begin{gathered} (18) \\ 36 \end{gathered}$ |

Table 3 (Continued)
RELATED PROJECTS LIST AND TRIP GENERATION [1]

| $\begin{aligned} & \text { MAP } \\ & \text { NO. } \end{aligned}$ | PROJECT NAME/ PROJECT NUMBER | $\begin{gathered} \text { PROJECT } \\ \text { STATUS } \end{gathered}$ | ADDRESS/ <br> LOCATION | LAND USE DATA |  | $\begin{array}{\|c\|} \hline \text { PROJECT } \\ \text { DATA } \\ \text { SOURCE } \\ \hline \end{array}$ | DAILYTRIP ENDS [2]VOLUMES | AM PEAK HOUR VOLUMES [2] |  |  | PM PEAK HOUR VOLUMES [2] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAND-USE | SIZE |  |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| BH8 | 9145 Wilshire Boulevard Project | Proposed | 9145 Wilshire Boulevard | Religious Facility | 8,269 GSF | [13] | 240 | 13 | 7 | 20 | 14 | 10 | 24 |
| BH9 | 9200 Wilshire Boulevard Mixed-Use Project | Approved | 9200 Wilshire Boulevard | Apartments <br> Retail | $\begin{array}{rl} 54 \mathrm{DU} \\ 14,000 & \mathrm{GSF} \end{array}$ | $[12]$ $[7]$ | $\begin{aligned} & 395 \\ & 529 \end{aligned}$ | 6 8 | 19 5 | $\begin{aligned} & 25 \\ & 13 \end{aligned}$ | $\begin{aligned} & 19 \\ & 25 \end{aligned}$ | $\begin{aligned} & 11 \\ & 28 \end{aligned}$ | $\begin{aligned} & 30 \\ & 53 \end{aligned}$ |
| BH10 | 9107 Wilshire Boulevard Hotel Project | Approved | 9107 Wilshire Boulevard | Hotel Restaurant Office | 154 Rooms <br> 7,433 GSF <br> $(129,822)$ GSF | [14] | 646 | (84) | 10 | (74) | 62 | (61) | 1 |
| City of West Hollywood |  |  |  |  |  |  |  |  |  |  |  |  |  |
| WH1 | 8816 Beverly Boulevard Mixed-Use Project | Proposed | 8816 Beverly Boulevard | Apartments Retail Restaurant Office | $\begin{array}{rl} 10 & \mathrm{DU} \\ 19,493 & \mathrm{GSF} \\ 1,860 & \mathrm{GSF} \\ 25,575 & \mathrm{GSF} \end{array}$ | [15] | 959 | 47 | 18 | 65 | 31 | 54 | 85 |
| WH2 | 8650 Melrose Avenue Mixed-Use Project | Proposed | 8650 Melrose Avenue | Apartments Retail | $\begin{array}{r} 7 \mathrm{DU} \\ 14,571 \mathrm{GSF} \end{array}$ | $\begin{gathered} {[12]} \\ {[7]} \end{gathered}$ | $\begin{array}{r} 51 \\ 550 \end{array}$ | 1 9 | 2 5 | $\begin{array}{r} 3 \\ 14 \end{array}$ | 3 27 | 1 29 | $\begin{array}{r} 4 \\ 56 \end{array}$ |
| WH3 | Robertson Lane Hotel | Approved | 645-681 Roberston Boulevard \& 648-668 La Peer Drive | Hotel Restaurant Specialtay Retail Design Showroom Nightclub | 241 Rooms <br> 22,615 GSF <br> 18,130 GSF <br> 10,325 GSF <br> 3,780 GSF | [16] | 2,390 | 77 | 51 | 128 | 80 | 77 | 157 |
| WH4 | Sprouts - 8550 Santa Monica Boulevard Project | Under <br> Construction | 8550 Santa Monica Boulevard | Grocery Store <br> Restaurant Office Health/Fitness Club Specialty Retail | $\begin{array}{rr} 25,000 & \mathrm{GSF} \\ 1,319 & \mathrm{GSF} \\ 3,998 & \mathrm{GSF} \\ 8,000 & \mathrm{GSF} \\ 4,000 & \mathrm{GSF} \end{array}$ | [17] | 1,989 | 48 | 29 | 77 | 92 | 89 | 181 |
| WH5 | 8555 Santa Monica Boulevard Mixed-Use Project | Proposed | 8555 Santa Monica Boulevard | Apartments <br> Live-Work Condominiums Office Specialty Retail Restaurant | 97 DU <br> 12 DU <br> 6,080 GSF <br> 19,400 GSF <br> 2,820 GSF | [18] | 809 | 11 | 40 | 51 | 42 | 24 | 66 |
| WH6 | 9001 Santa Monica Boulevard Mixed-Use Project | Proposed | 9001 Santa Monica Boulevard | Condominiums Retail Restaurant | $\begin{array}{rl} 42 & \mathrm{DU} \\ 9,850 & \mathrm{GSF} \\ 9,800 & \mathrm{GSF} \end{array}$ | [16] | 829 | 16 | (8) | 8 | 31 | 16 | 47 |

Table 3 (Continued)
RELATED PROJECTS LIST AND TRIP GENERATION [1]

| $\begin{array}{\|c\|} \hline \text { MAP } \\ \text { NO. } \\ \hline \end{array}$ | PROJECT NAME/ PROJECT NUMBER | $\begin{gathered} \text { PROJECT } \\ \text { STATUS } \\ \hline \end{gathered}$ | ADDRESS/ <br> LOCATION | LAND USE DATA |  | $\begin{array}{\|c\|} \hline \text { PROJECT } \\ \text { DATA } \\ \text { SOURCE } \\ \hline \end{array}$ | DAILY <br> TRIP ENDS [2] <br> VOLUMES | $\begin{gathered} \hline \text { AM PEAK HOUR } \\ \text { VOLUMES [2] } \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \hline \text { PM PEAK HOUR } \\ \text { VOLUMES [2] } \\ \hline \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAND-USE | SIZE |  |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| WH7 | Melrose Triangle | Under Construction | 9040-9048 Santa Monica Boulevard | General Retail <br> Art Gallery Design Showroom Restaurant Apartments General Office | $\begin{array}{rl} 45,112 & \mathrm{GSF} \\ 16,404 & \mathrm{GSF} \\ 12,303 & \mathrm{GSF} \\ 8,202 & \mathrm{GSF} \\ 76 & \mathrm{DU} \\ 137,064 & \mathrm{GSF} \end{array}$ | [19] | 3,578 | 193 | 67 | 260 | 123 | 180 | 303 |
| WH8 | 8763 Rosewood Avenue Mixed-Use Project | Proposed | 8763 Rosewood Avenue | Retail | 4,945 GSF | [7] | 187 | 3 | 2 | 5 | 9 | 10 | 19 |
| WH9 | 8713 Beverly Boulevard Mixed-Use Project | Proposed | 8713 Beverly Boulevard | Apartments Office Retail Gallery | 30 DU <br> 3,416 GSF <br> 5,475 GSF <br> 500 GSF | [15] | 303 | 9 | 15 | 24 | 22 | 20 | 42 |
| WH10 | 417 Robertson Boulevard Showroom Project | Proposed | 417 Robertson Boulevard | Retail | 7,558 GSF | [7] | 285 | 4 | 3 | 7 | 14 | 15 | 29 |
| WH11 | 829 Larrabee Street Residential Project | Proposed | 829 Larrabee Street | Apartments | 13 DU | [12] | 95 | 1 | 5 | 6 | 4 | 3 | 7 |
| WH12 | 511 N. Flores Street Residential Project | Proposed | 511 N. Flores Street | Apartments | 10 DU | [12] | 73 | 1 | 4 | 5 | 4 | 2 | 6 |
| WH13 | 600 N. La Cienega Boulevard Mixed-Use Project | Proposed | 600 N. La Cienega Boulevard | Apartments <br> Showroom <br> Mechanical <br> Retail <br> Restaurant | 5 DU <br> 15,727 GSF <br> 2,776 GSF <br> 5,355 GSF <br> 7,094 GSF | $\begin{gathered} {[12]} \\ {[7]} \\ {[7]} \\ {[7]} \\ {[9]} \end{gathered}$ | $\begin{array}{r} 37 \\ 594 \\ 105 \\ 202 \\ 796 \end{array}$ | 0 9 2 3 39 | $\begin{array}{r} 2 \\ 6 \\ 1 \\ 2 \\ 32 \end{array}$ | $\begin{array}{r} 2 \\ 15 \\ 3 \\ 5 \\ 71 \end{array}$ | 2 29 5 10 43 | $\begin{array}{r} 1 \\ 31 \\ 6 \\ 10 \\ 26 \end{array}$ | $\begin{array}{r} 3 \\ 60 \\ 11 \\ 20 \\ 69 \end{array}$ |
| WH14 | 624 N. La Cienega Boulevard Mixed-Use Project | Proposed | 624 N. La Cienega Boulevard | Apartments Retail | $\begin{array}{r} 6 \mathrm{DU} \\ 54,209 \mathrm{GSF} \end{array}$ | $\begin{gathered} {[12]} \\ {[7]} \end{gathered}$ | $\begin{array}{r} 44 \\ 2,046 \end{array}$ | $\begin{array}{r} 1 \\ 32 \end{array}$ | $\begin{array}{r} 2 \\ 19 \end{array}$ | $\begin{array}{r} 3 \\ 51 \end{array}$ | $\begin{array}{r} 2 \\ 99 \end{array}$ | $\begin{array}{r} 1 \\ 108 \end{array}$ | $\begin{array}{r} 3 \\ 207 \end{array}$ |
| WH15 | 8899 Beverly Boulevard Mixed-Use Project | Approved | 8899 Beverly Boulevard | Apartments Condominiums Townhomes Office Retail Restaurant | 12 DU <br> 56 DU <br> 13 DU <br> 10,562 GSF <br> 19,875 GSF <br> 4,394 GSF | [20] | (129) | (69) | 21 | (48) | 17 | (54) | (37) |

Table 3 (Continued)
RELATED PROJECTS LIST AND TRIP GENERATION [1]

| MAP | PROJECT NAME/ | PROJECTSTATUS | ADDRESS/ <br> LOCATION | LAND USE DATA |  | $\begin{array}{\|c\|} \hline \text { PROJECT } \\ \text { DATA } \\ \text { SOURCE } \\ \hline \end{array}$ | DAILYTRIP ENDS [2]VOLUMES | AM PEAK HOUR VOLUMES [2] |  |  | PM PEAK HOUR VOLUMES [2] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | PROJECT NUMBER |  |  | LAND-USE | SIZE |  |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| WH16 | 8950 Sunset Boulevard Hotel Project | Proposed | 8950 Sunset Boulevard | Hotel <br> Apartments Specialty Dining Restaurant Whiskey Bar Day Spa <br> 3-Meal Restaurant Lounge | 165 Rooms <br> 4 DU <br> 7,697 GSF <br> 5,578 GSF <br> 2,002 GSF <br> 9,230 GSF <br> 2,505 GSF <br> 3,685 GSF | [21] | 2,539 | 63 | 49 | 112 | 121 | 89 | 210 |
| WH17 | The Arts Club | Proposed | 8920 Sunset Boulevard | Private Club <br> Museum Office Specialty Retail | $\begin{aligned} 7,000 & \text { Members } \\ 2,192 & \text { GSF } \\ 46,009 & \text { GSF } \\ 11,933 & \text { GSF } \end{aligned}$ | [22] | 1,961 | 103 | 19 | 122 | 68 | 91 | 159 |
| TOTAL |  |  |  |  |  |  | 42,320 | 1,367 | 1,102 | 2,469 | 1,832 | 1,750 | 3,582 |

[1] Source: City of Los Angeles Department of Transportation Related Projects List, City of Beverly Hills Community Development Deparment Related Project List, and City of West Hollywood Community Development Department Related Projects List.
[2] Trips are one-way traffic movements, entering or leaving.
[4] Source: Traffic Analysis Addendum - Proposed Residential Project at 431 N . La Cienega Boulevard, prepared by Linscott, Law \& Greenspan, Engineers, May 2018
[5] Source: Traffic Assessment for the 6300 W. 3rd Street Mixed-Use Project, prepared by Linscott, Law \& Greenspan, Engineers, July 17, 2019.
[6] ITE Land Use Code 720 (Medical-Dental Office Building) trip generation average rates.
[7] ITE Land Use Code 820 (Shopping Center) trip generation average rates.
[8] ITE Land Use Code 710 (General Office Building) trip generation average rates.
[9] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.
[10] ITE Land Use Code 310 (Hotel) trip generation average rates.
[12] ITE Land Use Code 220 (Multifamily Housing [Low-Rise]) trip generation average rates.
[13] ITE Land Use Code 561 (Synagogue) trip generation average rates.
[14] Source: Revised Traffic Assessment for the Proposed Hotel Project at 9107 Wilshire Boulevard, prepared by Linscott, Law \& Greenspan, Engineers, September 24, 2019.
[15] Source: Draft Transportation Study for the 8713 Beverly Boulevard Mixed-Use Project, prepared by Fehr \& Peers, January 2016.
[16] Source: Traffic Impact Study for Robertson Lane Hotel Project, prepared by KOA Corporation, January 2017.
[17] Source: Transportation Study for the Sprouts - 8550 Santa Monica Boulevard Project, prepared by Fehr \& Peers June 2014
[18] Source: Transportation Analysis Report for the 8555 Santa Monica Boulevard Mixed-Use Project, prepared by Fehr \& Peers, January 2018.
[19] Source: Revised Traffic Impact Analysis for the Melrose Triangle Project, prepared by LSA Associates, Inc., December 2013.
[20] Source: Draft Transportation Study for the 8899 Beverly Boulevard Project, prepared by Gibson Transportation Consulting, Inc., November 2013.
${ }^{221}$ Sowe. Traffic Impact Assessment for the 8950 Sunset Boulevard Hotel Project, prepared by Linscott, Law \& Greenspan, Engineers, September 2014
[22] Source: Transportation Study for The Arts Club West Hollywood Project, prepared by Gibson Transportation Consulting, Inc., September 2017.

Table 4

## SUMMARY OF VOLUME TO CAPACITY RATIOS <br> AND LEVELS OF SERVICE

CITY OF LOS ANGELES INTERSECTIONS

|  | INTERSECTION | PEAK HOUR | [1] <br> YEAR 2018 EXISTING |  | [2] |  |  |  | [3] <br> YEAR 2024 FUTURE PREPROJECT |  | [4] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. |  |  |  |  | YEAR 2018 <br> EXISTING <br> W/ PROJECT <br> V/C $\quad$ LOS |  | $\begin{array}{cc} \text { CHANGE } & \text { SIGNIF. } \\ \text { V/C } & \text { IMPACT } \\ {[(2)-(1)]} & {[a]} \\ \hline \end{array}$ |  |  |  | $\begin{aligned} & \text { YEAR } \\ & \text { FUT } \\ & \text { W/ PRC } \\ & \text { V/C } \\ & \hline \end{aligned}$ | $\begin{aligned} & 124 \\ & \text { E } \\ & \text { ECT } \\ & \text { LOS } \end{aligned}$ | $\begin{aligned} & \text { CHANGE } \\ & \text { V/C } \\ & {[(4)-(3)]} \\ & \hline \end{aligned}$ | SIGNIF. IMPACT <br> [a] |
| 1 | Robertson Boulevard / 3rd Street | $\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$ | $\begin{aligned} & 0.625 \\ & 0.622 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.628 \\ & 0.627 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.005 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.679 \\ & 0.691 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.682 \\ & 0.695 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 2 | Robertson Boulevard / Burton Way | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 0.688 \\ & 0.734 \end{aligned}$ | B | $\begin{aligned} & 0.689 \\ & 0.736 \end{aligned}$ | B | $\begin{aligned} & 0.001 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.748 \\ & 0.796 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.748 \\ & 0.799 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { C } \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.003 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 5 | Willaman Drive / Burton Way | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.599 \\ & 0.619 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.602 \\ & 0.619 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.643 \\ & 0.664 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.647 \\ & 0.664 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.004 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 6 | San Vicente Boulevard / Beverly Boulevard | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.669 \\ & 0.695 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.670 \\ & 0.695 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.731 \\ & 0.775 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.733 \\ & 0.775 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 7 | Sherbourne Drive / 3rd Street | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.459 \\ & 0.447 \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 0.463 \\ & 0.451 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.004 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { no } \end{aligned}$ | $\begin{aligned} & 0.497 \\ & 0.487 \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 0.500 \\ & 0.491 \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 8 | San Vicente Boulevard / 3rd Street | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.697 \\ & 0.586 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 0.699 \\ & 0.587 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.776 \\ & 0.667 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.778 \\ & 0.668 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |

Table 4 (Continued)
SUMMARY OF VOLUME TO CAPACITY RATIOS
AND LEVELS OF SERVICE

## CITY OF LOS ANGELES INTERSECTIONS

|  | INTERSECTION | PEAK <br> HOUR | $[1]$ <br> YEAR 2018 EXISTING |  | [2] |  |  |  | [3] <br> YEAR 2024 FUTURE PREPROJECT |  | [4] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. |  |  |  |  | $\begin{aligned} & \hline \text { YEAR } \\ & \text { EXIS } \\ & \text { W/ PRC } \\ & \text { V/C } \\ & \hline \end{aligned}$ | $\begin{aligned} & 18 \\ & \text { NG } \\ & \text { LOS } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { CHANGE } \\ & \text { V/C } \\ & {[(2)-(1)]} \\ & \hline \end{aligned}$ | SIGNIF. <br> IMPACT <br> [a] |  |  | $\begin{aligned} & \hline \text { YEAR } \\ & \text { FUT } \\ & \text { W/ PR } \\ & \text { V/C } \\ & \hline \end{aligned}$ | $\begin{aligned} & 124 \\ & \text { ECT } \\ & \text { LOS } \end{aligned}$ | $\begin{aligned} & \text { CHANGE } \\ & \text { V/C } \\ & {[(4)-(3)]} \\ & \hline \end{aligned}$ | SIGNIF. <br> IMPACT <br> [a] |
| 9 | San Vicente Boulevard-Le Doux Road / Burton Way | $\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$ | $\begin{aligned} & 0.527 \\ & 0.576 \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 0.531 \\ & 0.578 \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 0.004 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.572 \\ & 0.624 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.575 \\ & 0.625 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 11 | La Cienega Boulevard / Beverly Boulevard | $\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$ | $\begin{aligned} & 0.651 \\ & 0.859 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.652 \\ & 0.860 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.720 \\ & 0.955 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$ | $\begin{aligned} & 0.720 \\ & 0.957 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$ |
| 12 | La Cienega Boulevard/ 3rd Street | $\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$ | $\begin{aligned} & 0.798 \\ & 0.692 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.803 \\ & 0.693 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.005 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.867 \\ & 0.757 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.872 \\ & 0.758 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.005 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 13 | La Cienega Boulevard San Vicente Boulevard | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 0.654 \\ & 0.663 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.655 \\ & 0.667 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.715 \\ & 0.735 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.717 \\ & 0.738 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.003 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |

[a] According to LADOT's "Transportation Impact Study Guidelines", December 2016, a transportation impact on an intersection shall be deemed significant in accordance with the following table:

| Final v/c | LOS |  |
| :---: | :---: | :--- |
| $0.701-0.800$ | Croject Related Increase in v/c |  |
| $0.801-0.900$ |  |  |
| $>0.901$ | E, $F$ |  |
| equal to or greater than 0.040 |  |  |
|  |  |  |

Table 5

## SUMMARY OF VOLUME TO CAPACITY RATIOS <br> AND LEVELS OF SERVICE <br> AM AND PM PEAK HOURS <br> CITY OF BEVERLY HILLS INTERSECTIONS

|  | INTERSECTION | PEAK <br> HOUR | $[1]$YEAR 2018EXISTINGDELAYOR V/C LOS |  |  |  | 2] |  | [3]YEAR 2024FUTURE PRE-PROJECTDELAYOR V/C LOS |  | [4] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. |  |  |  |  | YEAR EXIS W/PR DELAY OR V/C | 18 <br> G <br> CT <br> LOS | CHANGE  <br> IN  <br> DELAY SIGNIF. <br> OR V/C IMPACT <br> [(2)-(1)] [a] |  |  |  | YEAR FUT W/PRO DELAY OR V/C | 24 <br> CT <br> LOS | $\begin{aligned} & \hline \text { CHANGE } \\ & \text { IN } \\ & \text { DELAY } \\ & \text { OR V/C } \\ & {[(4)-(3)]} \\ & \hline \end{aligned}$ | SIGNIF. <br> IMPACT <br> [a] |
| 2 | Robertson Boulevard / Burton Way | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 0.802 \\ & 0.843 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.802 \\ & 0.845 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.855 \\ & 0.898 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.855 \\ & 0.900 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 3 | Robertson Boulevard Wilshire Boulevard | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.858 \\ & 0.842 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.861 \\ & 0.843 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.916 \\ & 0.903 \end{aligned}$ | $\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$ | $\begin{aligned} & 0.918 \\ & 0.904 \end{aligned}$ | $\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 13 | La Cienega Boulevard/ San Vicente Boulevard | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 0.807 \\ & 0.815 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.808 \\ & 0.819 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$ | $\begin{aligned} & 0.864 \\ & 0.883 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.866 \\ & 0.886 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.003 \end{aligned}$ | $\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$ |
| 14 | La Cienega Boulevard / Wilshire Boulevard | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.713 \\ & 0.694 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.714 \\ & 0.694 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.771 \\ & 0.773 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.772 \\ & 0.773 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |

[a] According to the City of Beverly Hills' "Traffic Thresholds of Significance", Adopted October 2010, an impact is considered significant if the final volume-to-capacity ratio (v/c) equals or exceeds the thresholds shown below:

| Level of Service | $\underline{\text { Final V/C }}$ |  |
| :---: | :---: | :---: |
|  | $>0.800-0.900$ |  |
| $\mathrm{E} / \mathrm{F}$ | $>0.900$ | Project-Related Increase in V/C |

## Table 6 <br> SUMMARY OF DELAY VALUES <br> and Levels of service [A] <br> AM AND PM PEAK HOURS <br> CITY OF WEST HOLLYWOOD INTERSECTIONS

|  | INTERSECTION | INTERSECTION <br> TYPE | PEAK HOUR |  |  | [2] |  |  |  | [3] |  | [4] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. |  |  |  | $\begin{array}{\|r} \text { YEAR } \\ \text { EXIST } \\ \text { DELAY [B] } \end{array}$ | 2018 <br> ING <br> LOS [C] | YEA EXISTI PROPOSE DELAY | $\begin{array}{\|l\|} \hline 18 \\ \text { LUS } \\ \text { OJECT } \\ \text { LOS } \\ \hline \end{array}$ | DELAY <br> [(2)-(1)] | SIGNIF. IMPACT [D] | $\begin{array}{r} \text { YEAR } \\ \text { FUT } \\ \text { DELAY [B] } \\ \hline \end{array}$ | $2024$ <br> RE $\operatorname{LOS}[C]$ | YEA FUTU PROPOSE DELAY | $\begin{aligned} & \hline 4 \\ & \text { US } \\ & \text { OJECT } \\ & \text { LOS } \\ & \hline \end{aligned}$ | CHANGE DELAY [(4)-(3)] | SIGNIF. IMPACT [D] |
| 4 | San Vicente Boulevard / Melrose Avenue | Commercial Corridor | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 18.6 \\ & 18.4 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 18.6 \\ & 18.4 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 19.6 \\ & 19.0 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 19.7 \\ & 19.0 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.1 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 6 | San Vicente Boulevard / Beverly Boulevard | Commercial Corridor | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 24.0 \\ & 26.5 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 24.0 \\ & 26.5 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 25.3 \\ & 31.5 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 28.5 \\ & 31.5 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 10 | La Cienega Boulevard / <br> Melrose Avenue | Commercial Corridor | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $20.4$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 20.4 \\ & 21.7 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 22.0 \\ & 23.9 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 22.0 \\ & 23.9 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |

[A] Intersection analysis based on the Highway Capacity Manual 2010 operational analysis methodologies, per the City of West Hollywood.
[B] Control delay reported in seconds per vehicle.
[C] Signalized Intersection Levels of Service were based on the following criteria:

| Control Delay (s/veh) | LOS |
| :---: | :---: |
| < $=10$ | A |
| $>10-20$ | B |
| $>20-35$ | C |
| $>35-55$ | D |
| > 55-80 | E |
| $>80$ | F |

[D] According to the City of West Hollywood, a transportation impact on an intersection shall be deemed significant in accordance with the following criteria

|  | Project Related Increase in Delay |  |  |
| :---: | :---: | :---: | :---: |
| LOS | Commercial Corridor | Signalized | Two-Way Stop |
| D | 12 seconds | 8 seconds | 5 seconds |
| E | 8 seconds | 5 seconds | 5 seconds |
| F | 8 seconds | 5 seconds | 5 seconds |

## Appendix A

## Manual Traffic Count Data

321 San Vicente Blvd/333 San Vicente Blvd \& East of S Holt Ave
Peak Hour Turning Movement Count
 City: Los Angeles
Control: No Contro

Project ID: 19-05683-001-004 Date: 11/14/2019 -

| NS/EW Streets: | Total |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 321 San Vicente Blvd/333 San Vicente Blvd |  |  |  | 321 San Vicente Blvd/333 San Vicente Blvd |  |  |  | East of S Holt Ave |  |  |  | East of S Holt Ave |  |  |  |  |
| AM | NORTHBOUND |  |  |  | SOUTHBOUND |  |  |  | EASTBOUND |  |  |  | WESTBOUND |  |  |  |  |
|  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |  |
|  | NL | NT | NR | NU | SL | ST | SR | SU | EL | ET | ER | EU | WL | WT | WR | WU | TOTAL |
| 7:00 AM | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 4 |
| 7:15 AM | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 5 |
| 7:30 AM | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 3 | 0 | 0 | 1 | 2 | 0 | 0 | 9 |
| 7:45 AM | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 5 | 1 | 0 | 0 | 2 | 0 | 0 | 10 |
| 8:00 AM | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 7 |
| 8:15 AM | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | 8 |
| 8:30 AM | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 6 | 0 | 0 | 13 |
| 8:45 AM | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 4 |
| 9:00 AM | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 7 |
| 9:15 AM | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 9:30 AM | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 9 |
| 9:45 AM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 4 |
|  | NL | NT | NR | NU | SL | ST | SR | SU | EL | ET | ER | EU | WL | WT | WR | WU | TOTAL |
| TOTAL VOLUMES : | 1 | 0 | 0 | 0 | 4 | 2 | 20 | 0 | 4 | 15 | 6 | 0 | 1 | 25 | 4 | 0 | 82 |
| APPROACH \%'s : | 100.00\% | 0.00\% | 0.00\% | 0.00\% | 15.38\% | 7.69\% | 76.92\% | 0.00\% | 16.00\% | 60.00\% | 24.00\% | 0.00\% | 3.33\% | 83.33\% | 13.33\% | 0.00\% |  |
| PEAK HR : | 07:45 AM - 08:45 AM |  |  |  | $\begin{gathered} 2 \\ 0.500 \end{gathered}$ | $\stackrel{2}{0.250}$ | $\begin{gathered} 8 \\ 1.000 \end{gathered}$ | $\begin{gathered} 0 \\ 0.000 \end{gathered}$ | $\begin{gathered} 2 \\ 0.250 \end{gathered}$ | $\begin{gathered} 9 \\ 0.450 \end{gathered}$ | $\begin{gathered} 3 \\ 0.750 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0.000 \end{gathered}$ | $\begin{gathered} 0 \\ 0.000 \end{gathered}$ | $\begin{aligned} & 10 \\ & 0.417 \\ & \quad 0.500 \\ & \hline \end{aligned}$ | $\begin{gathered} 2 \\ 0.500 \\ 0 \end{gathered}$ | $\begin{gathered} 0 \\ 0.000 \end{gathered}$ | TOTAL |
| PEAK HR VOL : | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |  |  |  | 38 |
| PEAK HR FACTOR : | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.731 |


| NOON | NORTHBOUND |  |  |  | SOUTHBOUND |  |  |  | EASTBOUND |  |  |  | WESTBOUND |  |  |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0$N L$ | $\begin{gathered} 1 \\ \text { NT } \end{gathered}$ | $\begin{gathered} 0 \\ \text { NR } \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{NU} \end{gathered}$ | $\begin{aligned} & 0 \\ & \text { SL } \end{aligned}$ | 1ST | $\begin{gathered} 0 \\ \text { SR } \end{gathered}$ | $\begin{gathered} 0 \\ \text { SU } \end{gathered}$ | $\begin{gathered} 0 \\ \text { EL } \end{gathered}$ | 1ET | $\begin{gathered} 0 \\ \text { ER } \end{gathered}$ | $\begin{gathered} 0 \\ \text { EU } \end{gathered}$ | $\begin{gathered} 0 \\ \text { WL } \end{gathered}$ | $\begin{gathered} 1 \\ \text { WT } \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ \text { WR } \end{gathered}$ | $\begin{gathered} 0 \\ \text { WU } \end{gathered}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3:00 PM | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 4 | 0 | 0 | 0 | 5 | 0 | 0 | 13 |
| 3:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 5 | 0 | 0 | 0 | 3 | 0 | 0 | 10 |
| 3:30 PM | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| 3:45 PM | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 1 | 7 | 0 | 0 | 0 | 2 | 0 | 0 | 14 |
| 4:00 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 5 | 0 | 0 | 11 |
| 4:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 5 | 1 | 0 | 0 | 0 | 1 | 0 | 10 |
| 4:30 PM | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| 4:45 PM | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 6 | 0 | 0 | 0 | 2 | 0 | 0 | 12 |
| 5:00 PM | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 8 | 2 | 0 | 0 | 1 | 1 | 0 | 15 |
| 5:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 5 | 1 | 0 | 0 | 1 | 0 | 0 | 11 |
| 5:30 PM | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 8 | 1 | 0 | 0 | 2 | 0 | 0 | 14 |
| 5:45 PM | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 4 | 0 | 0 | 10 |
|  | NL | NT | NR | NU | SL | ST | SR | SU | EL | ET | ER | EU | WL | WT | WR | WU | TOTAL |
| TOTAL VOLUMES: | 1 | 0 | 1 | 0 | 2 | 2 | 9 | 0 | 26 | 60 | 6 | 0 | 0 | 25 | 2 | 0 | 134 |
| APPROACH \%'s : | 50.00\% | 0.00\% | 50.00\% | 0.00\% | 15.38\% | 15.38\% | 69.23\% | 0.00\% | 28.26\% | 65.22\% | 6.52\% | 0.00\% | 0.00\% | 92.59\% | 7.41\% | 0.00\% |  |
| PEAK HR : |  | 4:45 PM | 5:45 PM |  |  |  |  |  |  |  |  |  |  |  |  |  | TOTAL |
| PEAK HR VOL : | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 9 | 27 | 4 | 0 | 0 | 6 | 1 | 0 | 52 |
| PEAK HR FACTOR : | 0.250 | 0.000 | 0.250 | 0.000 | 0.500 | 0.000 | 0.250 | 0.000 | 0.563 | 0.844 | 0.500 | 0.000 | 0.000 | 0.750 | 0.250 | 0.000 | 0.867 |
|  | 0.500 |  |  |  | 0.375 |  |  |  | 0.909 |  |  |  | 0.875 |  |  |  |  |


| PM | NORTHBOUND |  |  |  | SOUTHBOUND |  |  |  | EASTBOUND |  |  |  | WESTBOUND |  |  |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 0 | 0 | $\begin{gathered} 0 \\ \mathrm{SL} \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ \mathrm{ST} \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ \text { SR } \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ \text { SU } \end{gathered}$ | $\begin{gathered} 0 \\ \text { EL } \end{gathered}$ | 1ET | $\begin{gathered} 0 \\ \text { ER } \end{gathered}$ | $\begin{gathered} 0 \\ \text { FI } \end{gathered}$ | $0$ | $\stackrel{1}{\text { WT }}$ | $\begin{gathered} 0 \\ 0 \\ \text { WR } \end{gathered}$ | $\begin{gathered} 0 \\ \text { wit } \end{gathered}$ |  |
|  | NL | NT | NR | NU |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9:00 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 9:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
| 9:30 PM | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 9:45 PM | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 10:00 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
| 10:15 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 10:30 PM | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 6 |
| 10:45 PM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 |
|  | NL | NT | NR | NU | SL | ST | SR | SU | EL | ET | ER | EU | WL | WT | WR | WU | TOTAL |
| TOTAL VOLUMES : | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 5 | 1 | 0 | 0 | 3 | 2 | 0 | 24 |
| APPROACH \%'s : | 85.71\% | 0.00\% | 14.29\% | 0.00\% |  |  |  |  | 50.00\% | 41.67\% | 8.33\% | 0.00\% | 0.00\% | 60.00\% | 40.00\% | 0.00\% |  |
| PEAK HR : |  | 9:00 PM | 0:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  | TOTAL |
| PEAK HR VOL : | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 12 |
| PEAK HR FACTOR : | 0.417 | 0.000 | 0.250 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.250 | 0.750 | 0.000 | 0.000 | 0.000 | 0.250 | 0.000 | 0.000 |  |
|  |  | 0.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.750 |

321 San Vicente Blvd/333 San Vicente Blvd \& West of San Vicente Blvd
Peak Hour Turning Movement Count


Intersection Turning Movement Count


## Appendix B

## hCM and Levels of Service Explanation hCM Unsignalzed Intersection Data Worksheets Weekday AM and PM Рeak Hours

## LEVEL OF SERVICE FOR UNSIGNALIZED INTERSECTIONS

In the Highway Capacity Manual (HCM), published by the Transportation Research Board, 2010, level of service for unsignalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, in the absence of incidents, control, traffic, or geometric delay. Only the portion of total delay attributed to the traffic control measures, either traffic signals or stop signs, is quantified. This delay is called control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for unsignalized intersections are stated in terms of the average control delay per vehicle. The level of service is determined by the computed or measured control delay and is defined for each minor movement. Average control delay for any particular minor movement is a function of the service time for the approach and the degree of utilization. (Level of service is not defined for the intersection as a whole for two-way stop controlled intersections.)

Level of Service Criteria for TWSC/AWSC Intersections

| Level of Service | Average Control Delay <br> (Sec/Veh) |
| :---: | :---: |
| A | $\leq 10$ |
| B | $>10$ and $\leq 15$ |
| C | $>15$ and $\leq 25$ |
| D | $>25$ and $\leq 35$ |
| E | $>35$ and $\leq 50$ |
| F | $>50$ |

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize HCM criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle.

LOS B describes operations with control delay greater than 10 and up to 15 seconds per vehicle.
LOS C describes operations with control delay greater than 15 and up to 25 seconds per vehicle.
LOS D describes operations with control delay greater than 25 and up to 35 seconds per vehicle.
LOS E describes operations with control delay greater than 35 and up to 50 seconds per vehicle.
LOS F describes operations with control delay in excess of 50 seconds per vehicle. For two-way stop controlled intersections, LOS F exists when there are insufficient gaps of suitable size to allow side-street demand to safely cross through a major-street traffic stream. This level of service is generally evident from extremely long control delays experienced by side-street traffic and by queuing on the minor-street approaches.

| General Information |  | Site Information |  |
| :--- | :--- | :--- | :--- |
| Analyst | JAS | Intersection | Res. Dwy-Church Dwy/Alley |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $12 / 12 / 2019$ | East/West Street | Alley |
| Analysis Year | 2019 | North/South Street | Res. Dwy-Church Dwy |
| Time Analyzed | Existing - AM | Peak Hour Factor | 1.00 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Our Lady of Mt. Lebanon |  |  |

Lanes


Vehicle Volumes and Adjustments


Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  | 4.1 |  |  |  | 7.1 |  | 6.2 |  | 7.1 |  | 6.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.13 |  |  |  | 4.13 |  |  |  | 7.13 |  | 6.23 |  | 7.13 |  | 6.23 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  | 2.2 |  |  |  | 3.5 |  | 3.3 |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  | 2.23 |  |  |  | 3.53 |  | 3.33 |  | 3.53 |  | 3.33 |

## Delay, Queue Length, and Level of Service



| General Information |  | Site Information |  |
| :--- | :--- | :--- | :--- |
| Analyst | JAS | Intersection | Res. Dwy-Church Dwy/Alley |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $1 / 15 / 2020$ | East/West Street | Alley |
| Analysis Year | 2019 | North/South Street | Res. Dwy-Church Dwy |
| Time Analyzed | Existing - Pre-Event | Peak Hour Factor | 1.00 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Our Lady of Mt. Lebanon |  |  |

Lanes


Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |  | 0 | 1 | 0 |  | 0 | 1 | 0 |
| Configuration |  |  | LTR |  |  |  | LTR |  |  |  | LR |  |  |  | LR |  |
| Volume, V (veh/h) |  | 15 | 15 | 10 |  | 1 | 3 | 1 |  | 3 |  | 2 |  | 2 |  | 2 |
| Percent Heavy Vehicles (\%) |  | 3 |  |  |  | 3 |  |  |  | 3 |  | 3 |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Right Turn Channelized | No |  |  |  |
| Median Type/Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Delay, Queue Length, and Level of Service



| General Information |  | Site Information |  |
| :--- | :--- | :--- | :--- |
| Analyst | JAS | Intersection | Res. Dwy-Church Dwy/Alley |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $12 / 12 / 2019$ | East/West Street | Alley |
| Analysis Year | 2019 | North/South Street | Res. Dwy-Church Dwy |
| Time Analyzed | Existing - Post-Event | Peak Hour Factor | 1.00 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Our Lady of Mt. Lebanon |  |  |

Lanes


Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |  | 0 | 1 | 0 |  | 0 | 1 | 0 |
| Configuration |  |  | LTR |  |  |  | LTR |  |  |  | LR |  |  |  | LR |  |
| Volume, V (veh/h) |  | 4 | 1 | 0 |  | 1 | 0 | 1 |  | 6 |  | 1 |  | 0 |  | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  |  |  | 3 |  |  |  | 3 |  | 3 |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Right Turn Channelized | No |  |  |  |
| Median Type/Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  | 4.1 |  |  |  | 7.1 |  | 6.2 |  | 7.1 |  | 6.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.13 |  |  |  | 4.13 |  |  |  | 7.13 |  | 6.23 |  | 7.13 |  | 6.23 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  | 2.2 |  |  |  | 3.5 |  | 3.3 |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  | 2.23 |  |  |  | 3.53 |  | 3.33 |  | 3.53 |  | 3.33 |

## Delay, Queue Length, and Level of Service

| Flow Rate, v (veh/h) | 4 |  |  |  | 1 |  |  |  |  | 7 |  |  |  | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity, c (veh/h) | 1613 |  |  |  | 1613 |  |  |  |  | 1010 |  |  |  | 0 |  |
| v/c Ratio | 0.00 |  |  |  | 0.00 |  |  |  |  | 0.01 |  |  |  |  |  |
| 95\% Queue Length, Q95 (veh) | 0.0 |  |  |  | 0.0 |  |  |  |  | 0.0 |  |  |  |  |  |
| Control Delay (s/veh) | 7.2 |  |  |  | 7.2 |  |  |  |  | 8.6 |  |  |  | 5.0 |  |
| Level of Service, LOS | A |  |  |  | A |  |  |  |  | A |  |  |  | A |  |
| Approach Delay (s/veh) |  | 5.8 |  |  |  | 3.6 |  |  |  | 8.6 |  |  |  | 5.0 |  |
| Approach LOS |  |  |  |  |  |  |  |  |  | A |  |  |  | A |  |


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Res. Dwy-Church Dwy/Alley |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 1/30/2020 | East/West Street | Alley |
| Analysis Year | 2019 | North/South Street | Res. Dwy-Church Dwy |
| Time Analyzed | Existing + Project - AM | Peak Hour Factor | 1.00 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Our Lady of Mt. Lebanon |  |  |

Lanes


Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |  | 0 | 1 | 0 |  | 0 | 1 | 0 |
| Configuration |  |  | LTR |  |  |  | LTR |  |  |  | LR |  |  |  | LR |  |
| Volume, V (veh/h) |  | 3 | 9 | 11 |  | 3 | 5 | 4 |  | 25 |  | 9 |  | 5 |  | 15 |
| Percent Heavy Vehicles (\%) |  | 3 |  |  |  | 3 |  |  |  | 3 |  | 3 |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Right Turn Channelized | No |  |  |  |
| Median Type/Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Critical and Follow-up Headways |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Base Critical Headway (sec) |  | 4.1 |  |  |  | 4.1 |  |  |  | 7.1 |  | 6.2 |  | 7.1 |  | 6.2 |
| Critical Headway (sec) |  | 4.13 |  |  |  | 4.13 |  |  |  | 7.13 |  | 6.23 |  | 7.13 |  | 6.23 |
| Base Follow-Up Headway (sec) |  | 2.2 |  |  |  | 2.2 |  |  |  | 3.5 |  | 3.3 |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) |  | 2.23 |  |  |  | 2.23 |  |  |  | 3.53 |  | 3.33 |  | 3.53 |  | 3.33 |

## Delay, Queue Length, and Level of Service



| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Res. Dwy-Church Dwy/Alley |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 1/30/2020 | East/West Street | Alley |
| Analysis Year | 2019 | North/South Street | Res. Dwy-Church Dwy |
| Time Analyzed | Ex+ Proj - Pre-Event | Peak Hour Factor | 1.00 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Our Lady of Mt. Lebanon |  |  |

Lanes


Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |  | 0 | 1 | 0 |  | 0 | 1 | 0 |
| Configuration |  |  | LTR |  |  |  | LTR |  |  |  | LR |  |  |  | LR |  |
| Volume, V (veh/h) |  | 15 | 15 | 134 |  | 44 | 3 | 1 |  | 19 |  | 6 |  | 2 |  | 2 |
| Percent Heavy Vehicles (\%) |  | 3 |  |  |  | 3 |  |  |  | 3 |  | 3 |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type/Storage |  |  |  | Und | d |  |  |  |  |  |  |  |  |  |  |  |
| Critical and Follow-up Headways |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Base Critical Headway (sec) |  | 4.1 |  |  |  | 4.1 |  |  |  | 7.1 |  | 6.2 |  | 7.1 |  | 6.2 |
| Critical Headway (sec) |  | 4.13 |  |  |  | 4.13 |  |  |  | 7.13 |  | 6.23 |  | 7.13 |  | 6.23 |
| Base Follow-Up Headway (sec) |  | 2.2 |  |  |  | 2.2 |  |  |  | 3.5 |  | 3.3 |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) |  | 2.23 |  |  |  | 2.23 |  |  |  | 3.53 |  | 3.33 |  | 3.53 |  | 3.33 |

## Delay, Queue Length, and Level of Service



| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Res. Dwy-Church Dwy/Alley |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 1/30/2020 | East/West Street | Alley |
| Analysis Year | 2019 | North/South Street | Res. Dwy-Church Dwy |
| Time Analyzed | Ex + Proj - Post-Event | Peak Hour Factor | 1.00 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Our Lady of Mt. Lebanon |  |  |

Lanes


Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |  | 0 | 1 | 0 |  | 0 | 1 | 0 |
| Configuration |  |  | LTR |  |  |  | LTR |  |  |  | LR |  |  |  | LR |  |
| Volume, V (veh/h) |  | 4 | 1 | 0 |  | 1 | 0 | 1 |  | 107 |  | 36 |  | 0 |  | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  |  |  | 3 |  |  |  | 3 |  | 3 |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Right Turn Channelized | No |  |  |  |
| Median Type/Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Critical and Follow-up Headways |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Base Critical Headway (sec) |  | 4.1 |  |  |  | 4.1 |  |  |  | 7.1 |  | 6.2 |  | 7.1 |  | 6.2 |
| Critical Headway (sec) |  | 4.13 |  |  |  | 4.13 |  |  |  | 7.13 |  | 6.23 |  | 7.13 |  | 6.23 |
| Base Follow-Up Headway (sec) |  | 2.2 |  |  |  | 2.2 |  |  |  | 3.5 |  | 3.3 |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) |  | 2.23 |  |  |  | 2.23 |  |  |  | 3.53 |  | 3.33 |  | 3.53 |  | 3.33 |

## Delay, Queue Length, and Level of Service

| Flow Rate, v (veh/h) | 4 |  |  |  | 1 |  |  |  |  | 143 |  |  |  | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity, c (veh/h) | 1613 |  |  |  | 1613 |  |  |  |  | 1019 |  |  |  | 0 |  |
| v/c Ratio | 0.00 |  |  |  | 0.00 |  |  |  |  | 0.14 |  |  |  |  |  |
| 95\% Queue Length, Q95 (veh) | 0.0 |  |  |  | 0.0 |  |  |  |  | 0.5 |  |  |  |  |  |
| Control Delay (s/veh) | 7.2 |  |  |  | 7.2 |  |  |  |  | 9.1 |  |  |  | 5.0 |  |
| Level of Service, LOS | A |  |  |  | A |  |  |  |  | A |  |  |  | A |  |
| Approach Delay (s/veh) |  | 5.8 |  |  |  | 3.6 |  |  |  | 9.1 |  |  |  | 5.0 |  |
| Approach LOS |  |  |  |  |  |  |  |  |  | A |  |  |  | A |  |

## Appendix C

## LADOT VMT CALCULATOR OUtPUT

## CITY OF LOS ANGELES VMT CALCULATOR Version 1.2

Project Information


Proposed Project Land Use Type Housing | Multi-Family
(custom) Church | Retai/Non-Retail
(custom) Church | Residents
(custom) Church | Employees (custom) Church | Daily
custom) Church | HBW-Attraction Split
custom) Church | HBO-Attraction Spit
(custom) Church | NHB-Attraction Split
custom) Church HBW-Production Split
custom) Church | HBO-Production Split
(custom) Church | NHB-Production Split

## TDM Strategies

Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy


Analysis Results


- =

Measuring the Miles

| Project Information |  |  |  |
| :---: | :---: | :---: | :---: |
| Land Use Type |  | Value | Units |
| Housing | Single Family | 0 | DU |
|  | Multi Family | 153 | DU |
|  | Townhouse | 0 | DU |
|  | Hotel | 0 | Rooms |
|  | Motel | 0 | Rooms |
| Affordable Housing | Family | 0 | DU |
|  | Senior | 0 | DU |
|  | Special Needs | 0 | DU |
|  | Permanent Supportive | 0 | DU |
| Retail | General Retail | 0.000 | ksf |
|  | Furniture Store | 0.000 | ksf |
|  | Pharmacy/Drugstore | 0.000 | ksf |
|  | Supermarket | 0.000 | ksf |
|  | Bank | 0.000 | ksf |
|  | Health Club | 0.000 | ksf |
|  | High-Turnover Sit-Down Restaurant | 0.000 | ksf |
|  | Fast-Food Restaurant | 0.000 | ksf |
|  | Quality Restaurant | 0.000 | ksf |
|  | Auto Repair | 0.000 | ksf |
|  | Home Improvement | 0.000 | ksf |
|  | Free-Standing Discount | 0.000 | ksf |
|  | Movie Theater | 0 | Seats |
| Office | General Office | 0.000 | ksf |
|  | Medical Office | 0.000 | ksf |
| Industrial | Light Industrial | 0.000 | ksf |
|  | Manufacturing | 0.000 | ksf |
|  | Warehousing/Self-Storage | 0.000 | ksf |
| School | University | 0 | Students |
|  | High School | 0 | Students |
|  | Middle School | 0 | Students |
|  | Elementary | 0 | Students |
|  | Private School (K-12) | 0 | Students |
| Other | Church | 186 | Trips |
| Project and Analysis Overview |  |  |  |


| Analysis Results |  |  |  |
| :---: | :---: | :---: | :---: |
| Total Employees: 6 |  |  |  |
| Total Population: 345 |  |  |  |
| Proposed Project |  | With Mitigation |  |
| $\begin{gathered} \hline 618 \\ 3,516 \end{gathered}$ | Daily Vehicle Trips Daily VMT | $\begin{gathered} \hline 580 \\ 3,312 \end{gathered}$ | Daily Vehicle Trips Daily VMT |
|  | Household VMT per Capita | 5.8 | Household VMT per Capita |
| 2.8 | Work VMT per Employee | 2.8 | Work VMT per Employee |
| Significant VMT Impact? |  |  |  |
| APC: Central |  |  |  |
| Impact Threshold: 15\% Below APC Average Household $=6.0$ <br> Work $=7.6$ |  |  |  |
| Proposed Project |  | With Mitigation |  |
| VMT Threshold | Impact | VMT Threshold | Impact |
| Household > 6.0 | Yes | Household > 6.0 | No |
| Work > 7.6 | No | Work > 7.6 | No |


| TDM Strategy Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Parking | Reduce parking | City code parking provision (spaces) | 0 | 0 |
|  | supply | Actual parking provision (spaces) | 0 | 0 |
|  | Unbundle parking | Monthly cost for parking (\$) | \$0 | \$25 |
|  | Parking cash-out | Employees eligible <br> (\%) | 0\% | 0\% |
|  | Price workplace | Daily parking charge (\$) | \$0.00 | \$0.00 |
|  | parking | Employees subject to priced parking (\%) | 0\% | 0\% |
|  | Residential area parking permits | Cost of annual permit (\$) | \$0 | \$0 |
|  |  | (cont. on following page) |  |  |


| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Transit | Reduce transit headways | Reduction in <br> headways (increase <br> in frequency) (\%) <br> Existing transit | 0\% | 0\% |
|  |  | Existing transit mode share (as a percent of total daily trips) (\%) | 0\% | 0\% |
|  |  | Lines within project site improved (<50\%, $>=50 \%$ ) | 0 | 0 |
|  | Implement neighborhood shuttle | Degree of implementation (low, medium, high) | 0 | 0 |
|  |  | Employees and residents eligible (\%) | 0\% | 0\% |
|  | Transit subsidies | Employees and residents eligible (\%) | 0\% | 0\% |
|  |  | Amount of transit subsidy per passenger (daily equivalent) (\$) | \$0.00 | \$0.00 |
| Education \& Encouragement | Voluntary travel behavior change program | $\begin{aligned} & \text { Employees and } \\ & \text { residents } \\ & \text { participating (\%) } \end{aligned}$ | 0\% | 0\% |
|  | Promotions and marketing | Employees and residents participating (\%) | 0\% | 100\% |
| (cont. on following page) |  |  |  |  |


| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Commute Trip Reductions | Required commute trip reduction program | Employees participating (\%) | 0\% | 0\% |
|  | Alternative Work Schedules and | Employees participating (\%) | 0\% | 0\% |
|  | Telecommute | Type of program | 0 | 0 |
|  | Employer sponsored vanpool or shuttle | Degree of implementation (low, medium, high) | 0 | 0 |
|  |  | Employees eligible <br> (\%) | 0\% | 0\% |
|  |  | Employer size (small, medium, large) | 0 | 0 |
|  | Ride-share program | Employees eligible (\%) | 0\% | 0\% |
| Shared Mobility | Car share | Car share project setting (Urban, Suburban, All Other) | 0 | 0 |
|  | Bike share | Within 600 feet of existing bike share station - ORimplementing new bike share station (Yes/No) | 0 | 0 |
|  | School carpool program | Level of implementation (Low, Medium, High) | 0 | 0 |
| (cont. on following page) |  |  |  |  |


| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Bicycle Infrastructure | Implement/Improve on-street bicycle facility | Provide bicycle facility along site (Yes/No) | 0 | 0 |
|  | Include Bike parking per LAMC | Meets City Bike <br> Parking Code <br> (Yes/No) | Yes | Yes |
|  | Include secure bike parking and showers | Includes indoor bike parking/lockers, showers, \& repair station (Yes/No) | 0 | 0 |
| Neighborhood Enhancement | Traffic calming improvements | Streets with traffic calming improvements (\%) | 0\% | 0\% |
|  |  | Intersections with traffic calming improvements (\%) | 0\% | 0\% |
|  | Pedestrian network improvements | Included (within project and connecting offsite/within project only) | within project and connecting off-site | within project and connecting off-site |

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Project Name: Our Lady of Mt. Lebanon

TDM Adjustments by Trip Purpose \& Strategy

| TDM Adjustments by Trip Purpose \& Strategy Place type: Urban |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Parking | Reduce parking supply | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Parking sections 1-5 |
|  | Unbundle parking | 0\% | 3\% | 0\% | 0\% | 0\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Parking cash-out | $0 \%$ | 0\% | $0 \%$ | $0 \%$ | $0 \%$ | 0\% | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ |  |
|  | Price workplace parking | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Residential area parking permits | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
| Transit | Reduce transit headways | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Transit sections 1-3 |
|  | Implement neighborhood shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Transit subsidies | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Education \& Encouragement | Voluntary travel behavior change program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy <br> Appendix, Education \& Encouragement sections 1-2 |
|  | Promotions and marketing | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 0\% |  |
| Commute Trip Reductions | Required commute trip reduction program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy <br> Appendix, Commute Trip Reductions sections 1-4 |
|  | Alternative Work <br> Schedules and <br> Telecommute <br> Program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Employer sponsored vanpool or shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Ride-share program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Shared Mobility | Car-share | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, Shared Mobility sections 1-3 |
|  | Bike share | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
|  | School carpool program | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Date: January 15, 2020
Project Name: Our Lady of Mt. Lebanon

TDM Adjustments by Trip Purpose \& Strategy, Cont.

| Place type: Urban |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Bicycle <br> Infrastructure | Implement/ Improve on-street bicycle facility | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, Bicycle Infrastructure sections 1-3 |
|  | Include Bike parking per LAMC | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% |  |
|  | Include secure bike parking and showers | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |
| Neighborhood | Traffic calming improvements | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, |
| Enhancement | Pedestrian network improvements | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | Neighborhood Enhancement sections 1-2 |



\left.| = Minimum (X\%, 1-[(1-A)*(1-B)...]) |  |  |
| :---: | :---: | :---: |
| where X\%= |  |  |$\right]$

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (Transportation Assessment Guidelines Attachment G) for further discussion of dampening.

# CITY OF LOS ANGELES VMT CALCULATOR 

## Report 4: MXD Methodology

| Home Based Work Production | MXD Methodology - Project Without TDM |  |  |  | Unadjusted VMT | MXD VMT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unadjusted Trips | MXD Adjustment | MXD Trips | Average Trip Length |  |  |
|  | 207 | -34.3\% | 136 | 6.0 | 1,242 | 816 |
| Home Based Other Production | 555 | -47.7\% | 290 | 4.8 | 2,664 | 1,392 |
| Non-Home Based Other Production | 19 | -10.5\% | 17 | 6.3 | 120 | 107 |
| Home-Based Work Attraction | 9 | -77.8\% | 2 | 8.6 | 77 | 17 |
| Home-Based Other Attraction | 240 | -48.3\% | 124 | 7.1 | 1,704 | 880 |
| Non-Home Based Other Attraction | 74 | -13.5\% | 64 | 6.2 | 459 | 397 |


| MXD Methodology with TDM Measures |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Proposed Project |  |  | Project with Mitigation Measures |  |  |
|  | TDM Adjustment | Project Trips | Project VMT | TDM Adjustment | Mitigated Trips | Mitigated VMT |
| Home Based Work Production | -2.6\% | 133 | 795 | -9.3\% | 123 | 740 |
| Home Based Other Production | -2.6\% | 283 | 1,356 | -9.3\% | 263 | 1,262 |
| Non-Home Based Other Production | -2.6\% | 17 | 104 | -6.5\% | 16 | 100 |
| Home-Based Work Attraction | -2.6\% | 2 | 17 | -6.5\% | 2 | 16 |
| Home-Based Other Attraction | -2.6\% | 121 | 857 | -6.5\% | 116 | 823 |
| Non-Home Based Other Attraction | -2.6\% | 62 | 387 | -6.5\% | 60 | 371 |

## MXD VMT Methodology Per Capita \& Per Employee



## VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr \& Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr \& Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr \& Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr \& Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr \& Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr \& Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr \& Peers, or another third party, even if the City or Fehr \& Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr \& Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

| You, the User |  |
| :--- | :--- |
| By: | Sason Shender |
| Print Name: | Transportation Planner II |
| Title: | $\frac{\text { Linscott, Law \& Greenspan, Engineers }}{\text { 20931 Burbank Boulevard, Suite C }}$ |
| Company: |  |
| Address: | $\underline{\text { Woodland Hills, CA 91367 }}$ |
| Phone: | $\underline{\text { (818) 835-8648 }}$ |
| Email Address: | $\underline{\text { jshender@llgengineers.com }}$ |
| Date: | $\underline{1 / 15 / 2020}$ |

## Appendix D

## CMA and Levels of Service Explanation CMA Data Worksheets - Weekday AM and PM Peak Hours

## CRITICAL MOVEMENT ANALYSIS (CMA) DESCRIPTION

Level of Service is a term used to describe prevailing conditions and their effect on traffic. Broadly interpreted, the Level of Service concept denotes any one of a number of differing combinations of operating conditions which may take place as a roadway is accommodating various traffic volumes. Level of Service is a qualitative measure of the effect of such factors as travel speed, travel time, interruptions, freedom to maneuver, safety, driving comfort and convenience.

Six Levels of Service, A through F, have been defined in the 1965 Highway Capacity Manual. Level of Service A describes a condition of free flow, with low traffic volumes and relatively high speeds, while Level of Service F describes forced traffic flow at low speeds with jammed conditions and queues which cannot clear during the green phases.

Critical Movement Analysis (CMA) is a procedure which provides a capacity and level of service geometry and traffic signal operation and results in a level of service determination for the intersection as a whole operating unit.

The per lane volume for each movement in the intersection is determined and the per lane intersection capacity based on the Transportation Research Board (TRB) Report 212 (Interim Materials on Highway Capacity). The resulting CMA represents the ratio of the intersection's cumulative volume over its respective capacity (V/C ratio). Critical Movement Analysis takes into account lane widths, bus and truck operations, pedestrian activity and parking activity, as well as number of lanes and geometrics.

The Level of Service (abbreviated from the Highway Capacity Manual) are listed here with their corresponding CMA and Load Factor equivalents. Load Factor is that proportion of the signal cycles during the peak hour which are fully loaded; i.e. when all of the vehicles waiting at the beginning of green are not able to clear on that green phase.

Critical Movement Analysis Characteristics

| Level of Service | Load Factor | Equivalent CMA |
| :--- | :---: | :---: |
| A (free flow) | 0.0 | $0.00-0.60$ |
| B (rural design) | $0.0-0.1$ | $0.61-0.70$ |
| C (urban design) | $0.1-0.3$ | $0.71-0.80$ |
| D (maximum urban design) | $0.3-0.7$ | $0.81-0.90$ |
| E (capacity) | $0.7-1.0$ | $0.91-1.00$ |
| F (force flow) | Not Applicable | Not Applicable |

SERVICE LEVEL A
There are no loaded cycles and few are even close to loaded at this service level. No approach phase is fully utilized by traffic and no vehicle waits longer than one red indication.

## SERVICE LEVEL B

This level represents stable operation where an occasional approach phase is fully utilized and a substantial number are approaching full use. Many drivers begin to feel restricted within platoons of vehicles.

## SERVICE LEVEL C

At this level stable operation continues. Loading is still intermittent but more frequent than at Level B. Occasionally drivers may have to wait through more one red signal indication and backups may develop behind turning vehicles. Most drivers feel somewhat restricted, but not objectionably so.

## SERVICE LEVEL D

This level encompasses a zone of increasing restriction approaching instability at the intersection. Delays to approaching vehicles may be substantial during short peaks within the peak hour, but enough cycles with lower demand occur to permit periodic clearance of queues, thus preventing excessive backups. Drivers frequently have to wait through more than one red signal. This level is the lower limit of acceptable operation to most drivers.

## SERVICE LEVEL E

This represents near capacity and capacity operation. At capacity ( $\mathrm{CMA}=1.0$ ) it represents the most vehicles that the particular intersection can accommodate. However, full utilization of every signal cycle is seldom attained no matter how great the demand. At this level all drivers wait through more than one red signal, and frequently through several.

## SERVICE LEVEL F

Jammed conditions. Traffic backed up from a downstream location on one of the street restricts or prevents movement of traffic through the intersection under consideration.

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

REMARKS:

# Level of Service Workheet <br> (Circular 212 Method) 


REMARKS:

## Appendix E

iCU and Levels of Service Explanation ICU Data Worksheets - Weekday AM and PM Peak Hours

## INTERSECTION CAPACITY UTILIZATION (ICU) DESCRIPTION

Level of Service is a term used to describe prevailing conditions and their effect on traffic. Broadly interpreted, the Levels of Service concept denotes any one of a number of differing combinations of operating conditions which may occur as a roadway is accommodating various traffic volumes. Level of Service is a qualitative measure of the effect of such factors as travel speed, travel time, traffic interruptions, freedom to maneuver, safety, driving comfort and convenience.

Six Levels of Service, A through F, have been defined in the 1965 Highway Capacity Manual, published by the Transportation Research Board. Level of Service A describes a condition of free flow, with low traffic volumes and relatively high speeds, while Level of Service F describes forced traffic flow at low speeds with jammed conditions and queues which cannot clear during the green phases.

The Intersection Capacity Utilization (ICU) method of intersection capacity analysis has been used in our studies. It directly relates traffic demand and available capacity for key intersection movements, regardless of present signal timing, The capacity per hour of green time for each approach is calculated based on the methods of the Highway Capacity Manual. The proportion of total signal time needed by each key movement is determined and compared to the total time available ( 100 percent of the hour). The result of summing the requirements of the conflicting key movements plus an allowance for clearance times is expressed as a decimal fraction. Conflicting key traffic movements are those opposing movements whose combined green time requirements are greatest.

The resulting ICU represents the proportion of the total hour required to accommodate intersection demand volumes if the key conflicting traffic movements are operating at capacity. Other movements may be operating near capacity, or may be operating at significantly better levels. The ICU may be translated to a Level of Service as tabulated below.

The Levels of Service (abbreviated from the Highway Capacity Manual) are listed here with their corresponding ICU and Load Factor equivalents. Load Factor is that proportion of the signal cycles during the peak hour which are fully loaded; i.e. when all of the vehicles waiting at the beginning of green are not able to clear on that green phase.

Intersection Capacity Utilization Characteristics

| Level of Service | Load Factor | Equivalent ICU |
| :---: | :---: | :---: |
| A | 0.0 | $0.00-0.60$ |
| B | $0.0-0.1$ | $0.61-0.70$ |
| C | $0.1-0.3$ | $0.71-0.80$ |
| D | $0.3-0.7$ | $0.81-0.90$ |
| E | $0.7-1.0$ | $0.91-1.00$ |
| F | Not Applicable | Not Applicable |

## SERVICE LEVEL A

There are no loaded cycles and few are even close to loaded at this service level. No approach phase is fully utilized by traffic and no vehicle waits longer than one red indication.

## SERVICE LEVEL B

This level represents stable operation where an occasional approach phase is fully utilized and a substantial number are approaching full use. Many drivers begin to feel restricted within platoons of vehicles.

## SERVICE LEVEL C

At this level stable operation continues. Loading is still intermittent but more frequent than at Level B. Occasionally drivers may have to wait through more than one red signal indication and backups may develop behind turning vehicles. Most drivers feel somewhat restricted, but not objectionably so.

## SERVICE LEVEL D

This level encompasses a zone of increasing restriction approaching instability at the intersection. Delays to approaching vehicles may be substantial during short peaks within the peak hour, but enough cycles with lower demand occur to permit periodic clearance of queues, thus preventing excessive backups. Drivers frequently have to wait through more than one red signal. This level is the lower limit of acceptable operation to most drivers.

## SERVICE LEVEL E

This represents near capacity and capacity operation. At capacity ( $\mathrm{ICU}=1.0$ ) it represents the most vehicles that the particular intersection can accommodate. However, full utilization of every signal cycle is seldom attained no matter how great the demand. At this level all drivers wait through more than one red signal, and frequently through several.

SERVICE LEVEL F
Jammed conditions. Traffic backed up from a downstream location on one of the street restricts or prevents movement of traffic through the intersection under consideration.

## LINSCOTT, LAW \& GREENSPAN, ENGINEERS

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

## INTERSECTION CAPACITY UTILIZATION

| N-S St: | Robertson Boulevard | Robertson Boulevard @ Burton Way |  |
| :--- | :--- | :--- | :---: |
| E-W St: | Burton Way | Peak hr: |  |
| Project: | $5-17-0315-1 /$ Our Lady of Mt. Lebanon |  |  |
| File: | ICU-2 |  |  |
| CITY OF BEVERLY HILLS |  |  |  |

$\begin{array}{lr}\text { Date of Count: } & 2018 \\ & 2024\end{array}$
Projection Year:
2024

Project: $\quad$ 5-17-0315-1/ Our Lady of Mt. Lebanon
File: ICU-2

| Movement | 2018 EXIST. TRAFFIC |  |  | 2018 W/PROJECT SITE TRAFFIC |  |  |  | 2024 WITHOUT PROJECT |  |  |  | 2024 W/PROJECT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volume | $\begin{array}{r} 2 \\ \text { Capacity } \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | $\begin{gathered} \text { V/C } \\ \text { Ratio } \end{gathered}$ | Added <br> Volume | Total <br> Volume | Capacity | V/C <br> Ratio |
| Nb Left | 56 | 1600 | 0.035 * | 0 | 56 | 1600 | 0.035 * | 2 | 61 | 1600 | 0.038 * | 0 | 61 | 1600 | 0.038 * |
| Nb Thru | 501 | 1600 | 0.313 | 1 | 502 | 1600 | 0.314 | 1 | 533 | 1600 | 0.333 | 1 | 534 | 1600 | 0.334 |
| Nb Right | 39 | 1600 | 0.024 | 1 | 40 | 1600 | 0.025 | 0 | 41 | 1600 | 0.026 | 1 | 42 | 1600 | 0.026 |
| Sb Left | 26 | 1600 | 0.016 | 0 | 26 | 1600 | 0.016 | 0 | 28 | 1600 | 0.017 | 0 | 28 | 1600 | 0.017 |
| Sb Thru | 464 | 1600 | 0.319 * | 0 | 464 | 1600 | 0.319 * | 0 | 493 | 1600 | 0.340 * | 0 | 493 | 1600 | 0.340 * |
| Sb Right | 46 | 0 |  | 0 | 46 | 0 | - | 2 | 51 | 0 | - | 0 | 51 | 0 | - |
| Eb Left | 100 | 1600 | 0.063 * | 0 | 100 | 1600 | 0.063 * | 8 | 114 | 1600 | 0.071 * | 0 | 114 | 1600 | 0.071 * |
| Eb Thru | 720 | 4800 | 0.150 | 1 | 721 | 4800 | 0.150 | 0 | 764 | 4800 | 0.159 | 1 | 765 | 4800 | 0.159 |
| Eb Right | 126 | 1600 | 0.079 | 0 | 126 | 1600 | 0.079 | 4 | 138 | 1600 | 0.086 | 0 | 138 | 1600 | 0.086 |
| Wb Left | 178 | 1600 | 0.111 | 5 | 183 | 1600 | 0.114 | 0 | 189 | 1600 | 0.118 | 5 | 194 | 1600 | 0.121 |
| Wb Thru | 1370 | 4800 | 0.285 * | 3 | 1373 | 4800 | 0.286 * | 12 | 1466 | 4800 | 0.305 * | 3 | 1469 | 4800 | 0.306 * |
| Wb Right | 81 | 1600 | 0.051 | 0 | 81 | 1600 | 0.051 | 0 | 86 | 1600 | 0.054 | 0 | 86 | 1600 | 0.054 |
| Yellow Allow | ance: | 0.100 * |  |  | 0.100 * |  |  | 0.100 * |  |  |  |  |  |  | 0.100 * |
| ICU |  | 0.802 |  | 0.802 |  |  |  | 0.855 |  |  |  |  |  |  | 0.855 |
| LOS |  | D |  |  |  |  |  |  |  |  | D |

[^2]
## LINSCOTT, LAW \& GREENSPAN, ENGINEERS

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

## INTERSECTION CAPACITY UTILIZATION

|  |  | Robertson Boulevard @ Burton Way |  |
| :--- | :--- | :--- | :---: |
| N-S St: | Robertson Boulevard | Peak hr: | PM |
| E-W St: | Burton Way | Annual Growth: | $1 \%$ |
| Project: | $5-17-0315-1 /$ Our Lady of Mt. Lebanon |  |  |
| File: | ICU-2 | CITY OF BEVERLY HILLS |  |

Roulevard @ Burton Way
Annual Growth: $\quad 1 \%$

CITY OF BEVERLY HILLS
Date:
Date of Count:
Projection Year
2/11/2020
2024

| Movement Volume ${ }^{2018} 1$ |  | EXIST. TRAFFIC |  | 2018 <br> Added <br> Volume | W/PROJECT SITE TRAFFIC |  |  | 2024 WITHOUT PROJECT |  |  |  | 2024 W/PROJECT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio |  | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | v/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio |
| Nb Left | 85 | 1600 | 0.053 * | 0 | 85 | 1600 | 0.053 * | 8 | 98 | 1600 | 0.061 * | 0 | 98 | 1600 | 0.061 * |
| Nb Thru | 504 | 1600 | 0.315 | 3 | 507 | 1600 | 0.317 | 4 | 539 | 1600 | 0.337 | 3 | 542 | 1600 | 0.339 |
| Nb Right | 72 | 1600 | 0.045 | 2 | 74 | 1600 | 0.046 | 0 | 76 | 1600 | 0.048 | 2 | 78 | 1600 | 0.049 |
| Sb Left | 82 | 1600 | 0.051 | 0 | 82 | 1600 | 0.051 | 0 | 87 | 1600 | 0.054 | 0 | 87 | 1600 | 0.054 |
| Sb Thru | 489 | 1600 | 0.334 * | 0 | 489 | 1600 | 0.334 * | 0 | 519 | 1600 | 0.359 * | 0 | 519 | 1600 | 0.359 * |
| Sb Right | 45 | 0 | - | 0 | 45 | 0 | - | 8 | 56 | 0 | - | 0 | 56 | 0 | - |
| Eb Left | 170 | 1600 | 0.106 | 0 | 170 | 1600 | 0.106 | 18 | 198 | 1600 | 0.124 | 0 | 198 | 1600 | 0.124 |
| Eb Thru | 1452 | 4800 | 0.303 * | 3 | 1455 | 4800 | 0.303 * | 0 | 1541 | 4800 | 0.321 * | 3 | 1544 | 4800 | 0.322 * |
| Eb Right | 61 | 1600 | 0.038 | 0 | 61 | 1600 | 0.038 | 4 | 69 | 1600 | 0.043 | 0 | 69 | 1600 | 0.043 |
| Wb Left | 85 | 1600 | 0.053 * | 3 | 88 | 1600 | 0.055 * | 0 | 90 | 1600 | 0.056 * | 3 | 93 | 1600 | 0.058 * |
| Wb Thru | 931 | 4800 | 0.194 | 2 | 933 | 4800 | 0.194 | 13 | 1001 | 4800 | 0.209 | 2 | 1003 | 4800 | 0.209 |
| Wb Right | 67 | 1600 | 0.042 | 0 | 67 | 1600 | 0.042 | 0 | 71 | 1600 | 0.044 | 0 | 71 | 1600 | 0.044 |
| Yellow Allowance: |  | 0.100 * |  |  | 0.100 * |  |  |  | 0.100 * |  |  |  |  |  | 0.100 * |
| ICU |  | 0.843 |  |  | $D^{0.845}$ |  |  | 0.898 |  |  |  |  |  |  | 0.900 |
| LOS |  | D |  | D |  |  |  | D |  |  |  |  |  |  | D |

* Key conflicting movement as a part of ICU

1 Counts conducted by NDS
2 Capacity expressed in veh/hour of green

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
20931 Burbank Boulevard, Suite C, Woodland Hills, CA
(818) 835-8648 Fax (818) 835-8649

N-S St: Robertson Boulevard
E-W St: Wilshire Boulevard
Project: 5-17-0315-1 / Our Lady of Mt. Lebanon
File:

## INTERSECTION CAPACITY UTILIZATION

Robertson Boulevard @ Wilshire Boulevard
Peak hr: AM
Annual Growth: 1\%
CITY OF BEVERLY HILLS
Date:
Date of Count:
Projection Year:
02/11/2020
2024

| Movement | 2018 EXIST. TRAFFIC |  |  | 2018 W/PROJECT SITE TRAFFIC |  |  |  | 2024 WITHOUT PROJECT |  |  |  | 2024 W/PROJECT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\text { Capacity }{ }^{2}$ | V/C <br> Ratio |
| Nb Left | 198 | 1600 | 0.124 * | 0 | 198 | 1600 | 0.124 * | 0 | 210 | 1600 | 0.131 * | 0 | 210 | 1600 | 0.131 * |
| Nb Thru | 634 | 3200 | 0.235 | 1 | 635 | 3200 | 0.235 | 0 | 673 | 3200 | 0.249 | 1 | 674 | 3200 | 0.249 |
| Nb Right | 117 | 0 | - | 0 | 117 | 0 | - | 0 | 124 | 0 | - | 0 | 124 | 0 | - |
| Sb Left | 59 | 1600 | 0.037 | 0 | 59 | 1600 | 0.037 | 4 | 67 | 1600 | 0.042 | 0 | 67 | 1600 | 0.042 |
| Sb Thru | 592 | 3200 | 0.224 * | 3 | 595 | 3200 | 0.226 * | 0 | 628 | 3200 | 0.238 * | 3 | 631 | 3200 | 0.239 * |
| Sb Right | 125 | 0 | - | 2 | 127 | 0 | - | 0 | 133 | 0 | - | 2 | 135 | 0 | - |
| Eb Left | 116 | 1600 | 0.073 * | 1 | 117 | 1600 | 0.073 * | 1 | 124 | 1600 | 0.077 * | 1 | 125 | 1600 | 0.078 * |
| Eb Thru | 750 | 4800 | 0.180 | 0 | 750 | 4800 | 0.180 | 66 | 862 | 4800 | 0.205 | 0 | 862 | 4800 | 0.205 |
| Eb Right | 114 | 0 | - | 0 | 114 | 0 | - | 0 | 121 | 0 | - | 0 | 121 | 0 | - |
| Wb Left | 119 | 1600 | 0.074 | 0 | 119 | 1600 | 0.074 | 0 | 126 | 1600 | 0.079 | 0 | 126 | 1600 | 0.079 |
| Wb Thru | 1623 | 4800 | 0.338 * | 0 | 1623 | 4800 | 0.338 * | 51 | 1774 | 4800 | 0.370 * | 0 | 1774 | 4800 | 0.370 * |
| Wb Right | 105 | 1600 | 0.066 | 0 | 105 | 1600 | 0.066 | 2 | 113 | 1600 | 0.071 | 0 | 113 | 1600 | 0.071 |
| Yellow Allowance: |  | 0.100 * |  |  | 0.100 * |  |  |  | 0.100 * |  |  |  | 0.100 * |  |  |
| ICU | 0.858 |  |  | 0.861 |  |  |  | 0.916 |  |  |  | E 0.918 |  |  |  |
| LOS | D |  |  | D |  |  |  | E |  |  |  |  |  |  |  |

[^3]LINSCOTT, LAW \& GREENSPAN, ENGINEERS
20931 Burbank Boulevard, Suite C, Woodland Hills, CA
(818) 835-8648 Fax (818) 835-8649

Robertson Boulevard
E-W St: Wilshire Boulevard
Project: 5-17-0315-1 / Our Lady of Mt. Lebanon
File: ICU-3

## INTERSECTION CAPACITY UTILIZATION

## Robertson Boulevard @ Wilshire Boulevard

Peak hr: PM
Annual Growth: 1\%
CITY OF BEVERLY HILLS
Date:
Date of Count:
Projection Year
02/11/2020
2024

| Movement | 20181Volume | EXIST. TRAFFIC |  | Added <br> Volume | W/PROJECT SITE TRAFFIC |  |  | 2024 WITHOUT PROJECT |  |  |  | 2024 W/PROJECT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio |  | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | Capacity | V/C <br> Ratio |
| Nb Left | 208 | 1600 | 0.130 * | 0 | 208 | 1600 | 0.130 * | 0 | 221 | 1600 | 0.138 * | 0 | 221 | 1600 | 0.138 * |
| Nb Thru | 479 | 3200 | 0.177 | 3 | 482 | 3200 | 0.178 | 0 | 508 | 3200 | 0.187 | 3 | 511 | 3200 | 0.188 |
| Nb Right | 87 | 0 | - | 0 | 87 | 0 | - | 0 | 92 | 0 | - | 0 | 92 | 0 | - |
| Sb Left | 79 | 1600 | 0.049 | 0 | 79 | 1600 | 0.049 | 4 | 88 | 1600 | 0.055 | 0 | 88 | 1600 | 0.055 |
| Sb Thru | 630 | 3200 | 0.218 * | 2 | 632 | 3200 | 0.219 * | 0 | 669 | 3200 | 0.232 * | 2 | 671 | 3200 | 0.233 * |
| Sb Right | 69 | 0 | - | 1 | 70 | 0 | - | 0 | 73 | 0 | - | 1 | 74 | 0 | - |
| Eb Left | 161 | 1600 | 0.101 | 2 | 163 | 1600 | 0.102 | 4 | 175 | 1600 | 0.109 | 2 | 177 | 1600 | 0.110 |
| Eb Thru | 1336 | 4800 | 0.319 * | 0 | 1336 | 4800 | 0.319 * | 72 | 1490 | 4800 | 0.354 * | 0 | 1490 | 4800 | 0.354 * |
| Eb Right | 197 | 0 | - | 0 | 197 | 0 | - | 0 | 209 | 0 | - | 0 | 209 | 0 | - |
| Wb Left | 119 | 1600 | 0.074 * | 0 | 119 | 1600 | 0.074 * | 0 | 126 | 1600 | 0.079 * | 0 | 126 | 1600 | 0.079 * |
| Wb Thru | 857 | 4800 | 0.179 | 0 | 857 | 4800 | 0.179 | 79 | 989 | 4800 | 0.206 | 0 | 989 | 4800 | 0.206 |
| Wb Right | 55 | 1600 | 0.034 | 0 | 55 | 1600 | 0.034 | 8 | 66 | 1600 | 0.041 | 0 | 66 | 1600 | 0.041 |
| Yellow Allowance: |  | 0.100 * |  |  | 0.100 * |  |  |  | 0.100 * |  |  |  | 0.100 * |  |  |
| ICU |  | 0.842 |  |  | 0.843 |  |  | $E^{0.903}$ |  |  |  |  |  |  | 0.904 |
|  |  | D |  |  |  |  |  | E |

* Key conflicting movement as a part of ICU

1 Counts conducted by NDS
2 Capacity expressed in veh/hour of green

## LINSCOTT, LAW \& GREENSPAN, ENGINEERS

20931 Burbank Boulevard, Suite C, Woodland Hills, CA
(818) 835-8648 Fax (818) 835-8649

## INTERSECTION CAPACITY UTILIZATION

La Cienega Boulevard @ San Vicente Boulevard

| E-W St: | San Vicente Boulevard |
| :--- | :--- |
| Project: | $5-17-0315-1 /$ Our Lady of Mt. Lebanon |
| File: | ICU-13 |

Peak hr: AM
Annual Growth: 1\%

CITY OF BEVERLY HILLS
Date:
Date of Count:
Projection Year:
2024

File: ICU-13


[^4]LINSCOTT, LAW \& GREENSPAN, ENGINEERS
20931 Burbank Boulevard, Suite C, Woodland Hills, CA
(818) 835-8648 Fax (818) 835-8649

## INTERSECTION CAPACITY UTILIZATION

N-S St: La Cienega Boulevard La Cienega Boulevard @ San Vicente Boulevard

| E-W St: | San Vicente Boulevard |
| :--- | :--- |
| Project: | $5-17-0315-1$ / Our Lady of Mt. Lebanon |
| File: | ICU-13 |

Vicente Boulevard
PM
CITY OF BEVERLY HILLS
Date:
Date of Count:
02/11/2020
2024

Projection Year:

| Movement | 20181Volume | EXIST. TRAFFIC |  | Added <br> Volume | W/PROJECT SITE TRAFFIC |  |  | 2024 WITHOUT PROJECT |  |  |  | 2024 W/PROJECT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio |  | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | Capacity | V/C <br> Ratio |
| Nb Left | 180 | 1600 | 0.113 * | 3 | 183 | 1600 | 0.114 * | 10 | 201 | 1600 | 0.126 * | 3 | 204 | 1600 | 0.127 * |
| Nb Thru | 1182 | 4800 | 0.251 | 0 | 1182 | 4800 | 0.251 | 54 | 1309 | 4800 | 0.278 | 0 | 1309 | 4800 | 0.278 |
| Nb Right | 24 | 0 | - | 0 | 24 | 0 | - | 0 | 25 | 0 | - | 0 | 25 | 0 | - |
| Sb Left | 0 | 0 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0.000 |
| Sb Thru | 1204 | 4800 | 0.274 * | 0 | 1204 | 4800 | 0.275 * | 70 | 1348 | 4800 | 0.308 * | 0 | 1348 | 4800 | 0.310 * |
| Sb Right | 113 | 0 | - | 5 | 118 | 0 | - | 13 | 133 | 0 | - | 5 | 138 | 0 | - |
| Eb Left | 2 | 0 | 0.000 | 0 | 2 | 0 | 0.000 | 0 | 2 | 0 | 0.000 | 0 | 2 | 0 | 0.000 |
| Eb Thru | 2101 | 6400 | 0.329 * | 3 | 2104 | 6400 | 0.329 * | 0 | 2230 | 6400 | 0.349 * | 3 | 2233 | 6400 | 0.349 * |
| Eb Right | 205 | 1600 | 0.128 | 2 | 207 | 1600 | 0.129 | 0 | 218 | 1600 | 0.136 | 2 | 220 | 1600 | 0.138 |
| Wb Left | 0 | 0 | 0.000 * | 0 | 0 | 0 | 0.000 * | 0 | 0 | 0 | 0.000 * | 0 | 0 | 0 | 0.000 * |
| Wb Thru | 1069 | 6400 | 0.167 | 5 | 1074 | 6400 | 0.168 | 11 | 1146 | 6400 | 0.179 | 5 | 1151 | 6400 | 0.180 |
| Wb Right | 358 | 1600 | 0.224 | 0 | 358 | 1600 | 0.224 | 7 | 387 | 1600 | 0.242 | 0 | 387 | 1600 | 0.242 |
| Yellow Allowance: |  | 0.100 * |  |  | 0.100 * |  |  |  | 0.100 * |  |  |  | 0.100 * |  |  |
| ICU |  | 0.815 |  |  | 0.819 |  |  | 0.883 |  |  |  |  |  |  | 0.886 |
| LOS |  | D |  |  |  |  |  | D |

* Key conflicting movement as a part of ICU

1 Counts conducted by NDS
2 Capacity expressed in veh/hour of green

LINSCOTT, LAW \& GREENSPAN, ENGINEERS
20931 Burbank Boulevard, Suite C, Woodland Hills, CA
(818) 835-8648 Fax (818) 835-8649

La Cienega Boulevard
E-W St: Wilshire Boulevard
Project: 5-17-0315-1 / Our Lady of Mt. Lebanon
File:

## INTERSECTION CAPACITY UTILIZATION

La Cienega Boulevard @ Wilshire Boulevard
Peak hr: AM
Annual Growth: 1\%
CITY OF BEVERLY HILLS
Date:
Date of Count:
2024

Projection Year


[^5]LINSCOTT, LAW \& GREENSPAN, ENGINEERS
20931 Burbank Boulevard, Suite C, Woodland Hills, CA
(818) 835-8648 Fax (818) 835-8649

La Cienega Boulevard
E-W St: Wilshire Boulevard
Project: 5-17-0315-1 / Our Lady of Mt. Lebanon
File:
ICU-14

## INTERSECTION CAPACITY UTILIZATION

## La Cienega Boulevard @ Wilshire Boulevard

$\begin{array}{ll}\text { Peak hr: } & \text { PM } \\ \text { Annual Growth: } & 1 \%\end{array}$
CITY OF BEVERIY HILIS
Date:
Date of Count:
Projection Year
02/11/2020
2024

| (1) 2018 |  | EXIST. TRAFFIC |  | 2018 W/PROJECT SITE TRAFFIC |  |  |  | 2024 WITHOUT PROJECT |  |  |  | 2024 W/PROJECT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \\ \hline \end{array}$ | V/C <br> Ratio | Added <br> Volume | Total <br> Volume | $\begin{array}{r} 2 \\ \text { Capacity } \end{array}$ | V/C <br> Ratio |
| Nb Left | 135 | 1600 | 0.084 * | 0 | 135 | 1600 | 0.084 * | 6 | 149 | 1600 | 0.093 * | 0 | 149 | 1600 | 0.093 * |
| Nb Thru | 953 | 4800 | 0.214 | 3 | 956 | 4800 | 0.215 | 69 | 1081 | 4800 | 0.244 | 3 | 1084 | 4800 | 0.244 |
| Nb Right | 74 | 0 | - | 0 | 74 | 0 | - | 10 | 89 | 0 | - | 0 | 89 | 0 | - |
| Sb Left | 85 | 1600 | 0.053 | 0 | 85 | 1600 | 0.053 | 0 | 90 | 1600 | 0.056 | 0 | 90 | 1600 | 0.056 |
| Sb Thru | 934 | 4800 | 0.215 * | 2 | 936 | 4800 | 0.215 * | 65 | 1056 | 4800 | 0.243 * | 2 | 1058 | 4800 | 0.243 * |
| Sb Right | 96 | 0 | - | 0 | 96 | 0 | - | 8 | 110 | 0 | - | 0 | 110 | 0 | - |
| Eb Left | 130 | 1600 | 0.081 | 0 | 130 | 1600 | 0.081 | 6 | 144 | 1600 | 0.090 | 0 | 144 | 1600 | 0.090 |
| Eb Thru | 649 | 4800 | 0.150 * | 0 | 649 | 4800 | 0.150 * | 64 | 753 | 4800 | 0.174 * | 0 | 753 | 4800 | 0.174 * |
| Eb Right | 73 | 0 | - | 0 | 73 | 0 | - | 5 | 82 | 0 | - | 0 | 82 | 0 | - |
| Wb Left | 231 | 1600 | 0.144 * | 0 | 231 | 1600 | 0.144 * | 15 | 260 | 1600 | 0.162 * | 0 | 260 | 1600 | 0.162 * |
| Wb Thru | 573 | 4800 | 0.130 | 0 | 573 | 4800 | 0.130 | 73 | 681 | 4800 | 0.153 | 0 | 681 | 4800 | 0.153 |
| Wb Right | 50 | 0 | - | 0 | 50 | 0 | - | 0 | 53 | 0 | - | 0 | 53 | 0 | - |
| Yellow Allowance: |  | 0.100 * |  |  | 0.100 * |  |  |  | 0.100 * |  |  |  | 0.100 * |  |  |
| ICU |  | 0.694 |  |  | $B^{0.694}$ |  |  | $C^{0.773}$ |  |  |  |  |  |  | 0.773 |
|  |  | B |  | B |  |  |  | C |

* Key conflicting movement as a part of ICU

1 Counts conducted by NDS
2 Capacity expressed in veh/hour of green

## APPENDIX F <br> hCM and Levels of Service Explanation hCM Signalized Intersection Data Worksheets Weekday AM and PM Peak Hours

## LEVEL OF SERVICE FOR SIGNALIZED INTERSECTIONS

In the Highway Capacity Manual (HCM), published by the Transportation Research Board, 2010, level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, in the absence of geometric delay, in the absence of incidents, and when there are no other vehicles on the road. Only the portion of total delay attributed to the control facility is quantified. This delay is called control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for traffic signals are stated in terms of the average control delay per vehicle. Delay is a complex measure and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the $v / c$ ratio for the lane group in question.

## Level of Service Criteria for Signalized Intersections

| Level of Service | Control Delay (Sec/Veh) |
| :---: | :---: |
| A | $\leq 10$ |
| B | $>10$ and $\leq 20$ |
| C | $>20$ and $\leq 35$ |
| D | $>35$ and $\leq 55$ |
| E | $>55$ and $\leq 80$ |
| F | $>80$ |

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize HCM criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle. This level of service occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay values.

LOS B describes operations with control delay greater than 10 and up to 20 seconds per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

LOS C describes operations with control delay greater than 20 and up to 35 seconds per vehicle. These higher delays may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

LOS D describes operations with control delay greater than 35 and up to 55 seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high $v / c$ ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LOS E describes operations with control delay greater than 55 and up to 80 seconds per vehicle. This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high $v / c$ ratios. Individual cycle failures are frequent occurrences.

LOS F describes operations with control delay in excess of 80 seconds per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the lane groups. It may also occur at high $v / c$ ratios with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors to such delay levels.

HCS7 Signalized Intersection Results Summary


HCS7 Signalized Intersection Results Summary


## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers |  |  |  |
| :--- | :--- | :--- | :---: |
| JAS | Analysis Date | Mar 11, 2019 |  |
| City of West Hollywood | Time Period | Existing - AM |  |
| San Vicente / Beverly | Analysis Year | 2018 |  |
|  | Intersection \#6 | File Name |  |
| Our Lady of Mt. Lebanon Project |  |  |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 53 | 627 | 127 | 110 | 1154 | 129 | 84 | 685 | 114 | 85 | 493 | 182 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\wedge$ |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green |  |  |  | 0.0 |  |  |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 |  |  | 4.0 | 4.0 | 0.0 |  |  |  |  | 7 |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  | 6 |  |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 8.4 | 44.0 | 11.1 | 46.6 | 9.5 | 25.5 | 9.5 | 25.5 |
| Change Period, ( $Y+R \mathrm{c}$ ), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway ( MAH ), s | 3.1 | 0.0 | 3.1 | 0.0 | 3.1 | 3.1 | 3.1 | 3.1 |
| Queue Clearance Time ( $g s$ ), s | 4.6 |  | 7.4 |  | 6.1 | 18.0 | 6.2 | 12.8 |
| Green Extension Time ( ge ) , s | 0.4 | 0.0 | 0.2 | 0.0 | 0.1 | 3.5 | 0.0 | 3.7 |
| Phase Call Probability | 0.73 |  | 0.94 |  | 0.88 | 1.00 | 0.88 | 1.00 |
| Max Out Probability | 1.00 |  | 0.00 |  | 0.00 | 0.04 | 0.37 | 0.01 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 53 | 627 | 127 | 110 | 1154 | 129 | 84 | 685 | 114 | 85 | 493 | 182 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g$ s), s | 2.6 | 10.5 | 3.8 | 5.4 | 22.2 | 3.6 | 4.1 | 16.0 | 5.2 | 4.2 | 10.8 | 8.2 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 2.6 | 10.5 | 3.8 | 5.4 | 22.2 | 3.6 | 4.1 | 16.0 | 5.2 | 4.2 | 10.8 | 8.2 |
| Green Ratio ( $\mathrm{g} / \mathrm{C}$ ) | 0.05 | 0.44 | 0.51 | 0.08 | 0.47 | 0.53 | 0.06 | 0.24 | 0.24 | 0.06 | 0.24 | 0.29 |
| Capacity ( $c$ ), veh/h | 89 | 1607 | 813 | 142 | 1714 | 861 | 110 | 864 | 385 | 110 | 863 | 463 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.598 | 0.390 | 0.156 | 0.775 | 0.673 | 0.150 | 0.763 | 0.793 | 0.296 | 0.774 | 0.571 | 0.393 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 53.4 | 190.9 | 61.5 | 111.1 | 348.6 | 30.9 | 86.3 | 277.3 | 88.5 | 87.7 | 202 | 96.5 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 2.1 | 7.6 | 2.5 | 4.4 | 13.9 | 1.2 | 3.5 | 11.1 | 3.5 | 3.5 | 8.1 | 3.9 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 41.9 | 16.8 | 12.0 | 40.7 | 18.3 | 1.2 | 41.6 | 32.2 | 28.1 | 41.7 | 30.2 | 1.4 |
| Incremental Delay ( $d_{2}$ ), s/veh | 2.4 | 0.7 | 0.4 | 3.4 | 2.1 | 0.4 | 4.1 | 0.6 | 0.2 | 4.3 | 0.2 | 0.2 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 44.3 | 17.5 | 12.4 | 44.1 | 20.4 | 1.6 | 45.7 | 32.8 | 28.2 | 46.0 | 30.4 | 1.6 |
| Level of Service (LOS) | D | B | B | D | C | A | D | C | C | D | C | A |
| Approach Delay, s/veh / LOS | 18.5 |  | B | 20.6 |  | C | 33.4 |  | C | 25.3 |  | C |
| Intersection Delay, s/veh / LOS | 24.0 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.42 | B | 2.46 | B | 2.44 | B | 2.44 | B |
| Bicycle LOS Score / LOS | 1.15 | A | 1.64 | B | 1.22 | A | 1.11 | A |

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers |  |  | D |
| :--- | :--- | :--- | :--- |
| JAS | Analysis Date | Mar 11, 2019 | A |
| City of West Hollywood | Time Period | Existing - PM | P |
| San Vicente / Beverly | Analysis Year | 2018 | An |
| Intersection \#6 | File Name | 06PM - Existing.xus |  |
| Our Lady of Mt. Lebanon Project |  |  |  | Intersection Information

Project Description

| Intersection Information |  |
| :--- | :--- |
| Duration, h | 0.25 |
| Area Type | Other |
| PHF | 1.00 |
| Analysis Period | $1>7: 00$ |



| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( v ), veh/h |  |  |  | 71 | 828 | 72 | 80 | 768 | 137 | 108 | 713 | 424 | 215 | 481 | 127 |
| Signal Information |  |  |  |  | と |  |  |  | DU | - |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 5.0 | 18.2 | 5.5 | 6.9 | 1.9 | 28.6 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 |  |  |  |



## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |

Intersection Information

| LLG Engineers |  |  |
| :--- | :--- | :--- |
| JAS | Analysis Date | Mar 11, 2019 |
| City of West Hollywood | Time Period | Existing - AM |
| La Cienega / Melrose | Analysis Year | 2018 |
|  | Intersection \#10 | File Name |


| Duration, h | 0.25 |
| :--- | :--- | :--- |

Area Type $\quad$ Other

| 1.00 |
| :--- | :--- |

Analysis Period 1> 7:00

Our Lady of Mt. Lebanon Project

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 53 | 377 | 34 | 501 | 895 | 38 | 47 | 591 | 160 | 58 | 841 | 154 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green |  |  |  | 0.0 | 0.0 | 0.0 |  |  |  | 3 |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |


| Timer Results | EBL |  | EBT | WBL | WBT |  | NBL | NBT |  | SBL | SBT |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 2 | 1 |  | 6 |  |  | 8 |  |  | 4 |
| Case Number |  |  | 5.3 | 1.0 |  | 3.0 |  |  | 5.0 |  |  | 6.0 |
| Phase Duration, s |  |  | 28.3 | 23.8 |  | 52.1 |  |  | 37.9 |  |  | 37.9 |
| Change Period, ( $Y+R \mathrm{c}$ ), s |  |  | 4.0 | 4.0 |  | 4.0 |  |  | 4.0 |  |  | 4.0 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 | 3.1 |  | 0.0 |  |  | 3.2 |  |  | 3.2 |
| Queue Clearance Time ( $g s$ ), s |  |  |  | 18.8 |  |  |  |  | 29.3 |  |  | 22.7 |
| Green Extension Time ( ge ), s |  |  | 0.0 | 1.0 |  | 0.0 |  |  | 4.8 |  |  | 5.0 |
| Phase Call Probability |  |  |  | 1.00 |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  | 0.00 |  |  |  |  | 0.08 |  |  | 0.03 |
| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 53 | 377 | 34 | 501 | 895 | 38 | 47 | 591 | 160 | 58 | 511 | 484 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 632 | 1809 | 1610 | 1810 | 1809 |  | 575 | 1809 | 1610 | 839 | 1900 | 1797 |
| Queue Service Time ( $g$ s), s | 6.0 | 7.6 | 1.4 | 16.8 | 13.7 |  | 6.8 | 11.0 | 6.2 | 5.0 | 20.7 | 20.7 |
| Cycle Queue Clearance Time ( $g_{\mathrm{c}}$ ), s | 6.2 | 7.6 | 1.4 | 16.8 | 13.7 |  | 27.3 | 11.0 | 6.2 | 15.8 | 20.7 | 20.7 |
| Green Ratio ( $g / C$ ) | 0.27 | 0.27 | 0.27 | 0.51 | 0.53 |  | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
| Capacity ( c ), veh/h | 249 | 978 | 435 | 666 | 1936 |  | 165 | 1360 | 605 | 294 | 714 | 675 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.212 | 0.385 | 0.078 | 0.752 | 0.462 |  | 0.284 | 0.435 | 0.264 | 0.197 | 0.716 | 0.716 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 45.6 | 150.3 | 25.5 | 262.7 | 226 |  | 42.6 | 196.8 | 100.2 | 43.9 | 342.8 | 327.6 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 1.8 | 6.0 | 1.0 | 10.5 | 9.0 |  | 1.7 | 7.9 | 4.0 | 1.8 | 13.7 | 13.1 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 26.3 | 26.7 | 24.5 | 15.8 | 12.9 |  | 35.6 | 21.0 | 19.5 | 26.8 | 24.0 | 24.0 |
| Incremental Delay ( $d_{2}$ ), s/veh | 1.9 | 1.1 | 0.4 | 0.7 | 0.8 |  | 0.3 | 0.1 | 0.1 | 0.1 | 0.5 | 0.5 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 28.2 | 27.9 | 24.8 | 16.5 | 13.7 | 0.0 | 35.9 | 21.0 | 19.6 | 26.9 | 24.5 | 24.5 |
| Level of Service (LOS) | C | C | C | B | B | A | D | C | B | C | C | C |
| Approach Delay, s/veh / LOS | 27.7 |  | C | 14.3 |  | B | 21.6 |  | C | 24.6 |  | C |
| Intersection Delay, s/veh / LOS | 20.4 |  |  |  |  |  | C |  |  |  |  |  |
| Multimodal Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Pedestrian LOS Score / LOS | 2.44 |  | B | 2.25 |  | B | 2.42 |  | B | 2.42 |  | B |
| Bicycle LOS Score / LOS | 0.87 |  | A | 1.67 |  | B | 1.15 |  | A | 1.36 |  | A |

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers | Analysis Date | Mar 11, 2019 | A |
| :--- | :--- | :--- | :--- |
| JAS | A. |  |  |
| City of West Hollywood | Time Period | Existing - PM | PH |
| La Cienega / Melrose | Analysis Year | 2018 | An |
| Intersection \#10 | File Name | 10PM - Existing.xus |  |
| Our Lady of Mt. Lebanon Project |  |  |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( v ), veh/h |  |  |  | 122 | 868 | 54 | 268 | 565 | 100 | 54 | 985 | 337 | 64 | 806 | 111 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green |  |  |  | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  | 7 |  |



HCS7 Signalized Intersection Results Summary

## General Information

| Agency | LL |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | City |
| Urban Street | Sa |
| Intersection | In |
| Project Description | O |


| LLG Engineers |  |  |
| :--- | :--- | :--- |
| JAS | Analysis Date | Mar 11, 2019 |
| City of West Hollywood | Time Period | Existing with <br> Project - AM |
| San Vicente / Melrose | Analysis Year | 2018 |
|  | Intersection \#4 | File Name |$|$| 04AM - Existing + Pro |  |  |  |
| :--- | :--- | :---: | :---: |
| Our Lady of Mt. Lebanon Project |  |  |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 88 | 489 | 41 | 251 | 745 | 169 | 67 | 578 | 98 | 76 | 430 | 52 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  | 7 |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 55.1 | 26.9 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  | $\nabla$ |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 |  | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 2 |  |  | 6 |  |  | 8 |  |  | 4 |
| Case Number |  |  | 6.0 |  |  | 5.0 |  |  | 6.0 |  |  | 5.0 |
| Phase Duration, s |  |  | 59.1 |  |  | 59.1 |  |  | 30.9 |  |  | 30.9 |
| Change Period, ( $Y+R \mathrm{c}$ ), s |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 |  |  | 0.0 |  |  | 3.2 |  |  | 3.2 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  |  |  |  | 16.1 |  |  | 24.5 |
| Green Extension Time ( $\mathrm{e}_{\mathrm{e}}$ ), s |  |  | 0.0 |  |  | 0.0 |  |  | 3.0 |  |  | 2.4 |
| Phase Call Probability |  |  |  |  |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  |  |  |  |  |  | 0.03 |  |  | 0.27 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 88 | 268 | 262 | 251 | 745 | 169 | 67 | 346 | 330 | 76 | 430 | 52 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 727 | 1900 | 1848 | 887 | 1900 | 1610 | 973 | 1900 | 1804 | 775 | 1809 | 1610 |
| Queue Service Time ( $g$ s), s | 7.9 | 5.7 | 5.8 | 16.0 | 22.5 | 4.1 | 5.3 | 14.1 | 14.1 | 8.4 | 8.5 | 2.1 |
| Cycle Queue Clearance Time ( $g_{c}$ ), s | 30.5 | 5.7 | 5.8 | 21.9 | 22.5 | 4.1 | 13.8 | 14.1 | 14.1 | 22.5 | 8.5 | 2.1 |
| Green Ratio ( g/C ) | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
| Capacity ( c ), veh/h | 343 | 1164 | 1133 | 566 | 1164 | 987 | 279 | 567 | 538 | 190 | 1079 | 480 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.256 | 0.230 | 0.231 | 0.443 | 0.640 | 0.171 | 0.240 | 0.611 | 0.613 | 0.400 | 0.399 | 0.108 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 65.6 | 98.8 | 97.2 | 146.7 | 345.6 | 60.4 | 54.9 | 256 | 246.9 | 70.7 | 159.2 | 35.1 |
| Back of Queue ( $Q$ ), veh/ln ( 95 th percentile) | 2.6 | 4.0 | 3.9 | 5.9 | 13.8 | 2.4 | 2.2 | 10.2 | 9.9 | 2.8 | 6.4 | 1.4 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 20.8 | 7.9 | 7.9 | 12.8 | 11.1 | 7.5 | 30.6 | 27.1 | 27.1 | 36.7 | 25.2 | 22.9 |
| Incremental Delay ( $d_{2}$ ), s/veh | 1.8 | 0.5 | 0.5 | 2.5 | 2.7 | 0.4 | 0.2 | 0.4 | 0.4 | 0.5 | 0.1 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 22.6 | 8.3 | 8.3 | 15.3 | 13.8 | 7.9 | 30.8 | 27.5 | 27.5 | 37.3 | 25.2 | 22.9 |
| Level of Service (LOS) | C | A | A | B | B | A | C | C | C | D | C | C |
| Approach Delay, s/veh / LOS | 10.4 |  | B | 13.3 |  | B | 27.8 |  | C | 26.7 |  | C |
| Intersection Delay, s/veh / LOS | 18.6 |  |  |  |  |  | B |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.23 | B | 2.39 | B | 2.28 | B | 2.11 | B |
| Bicycle LOS Score / LOS | 1.00 | A | 2.41 | B | 1.10 | A | 0.95 | A |

HCS7 Signalized Intersection Results Summary

## General Information

| Agency | LL |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | Sa |
| Intersection | In |
| Project Description | O | Intersection Information


| Intersection Information |  |
| :--- | :--- |
| Duration, h | 0.25 |
| Area Type | Other |
| PHF | 1.00 |
|  | Analysis Period |
| Project.xus | $1>7: 00$ |



| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 104 | 604 | 78 | 139 | 425 | 210 | 84 | 671 | 159 | 109 | 473 | 108 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  | 7 |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 46.4 | 35.6 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  | $\uparrow$ |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | $\begin{gathered} \hline \text { SBT } \\ \hline 4 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 2 |  |  | 6 |  |  | 8 |  |  |  |
| Case Number |  |  | 6.0 |  |  | 5.0 |  |  | 6.0 |  |  | 5.0 |
| Phase Duration, s |  |  | 50.4 |  |  | 50.4 |  |  | 39.6 |  |  | 39.6 |
| Change Period, ( $Y+R \mathrm{c}$ ), s |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 |  |  | 0.0 |  |  | 3.3 |  |  | 3.3 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  |  |  |  | 18.0 |  |  | 31.6 |
| Green Extension Time ( $g e$ ), s |  |  | 0.0 |  |  | 0.0 |  |  | 4.5 |  |  | 4.2 |
| Phase Call Probability |  |  |  |  |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  |  |  |  |  |  | 0.01 |  |  | 0.07 |
| Movement Group Results |  | EB |  |  | WB |  |  | NB |  |  | SB |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 104 | 347 | 335 | 139 | 425 | 210 | 84 | 429 | 401 | 109 | 473 | 108 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 978 | 1900 | 1823 | 771 | 1900 | 1610 | 935 | 1900 | 1773 | 671 | 1809 | 1610 |
| Queue Service Time ( $g$ s ) , s | 6.7 | 9.7 | 9.7 | 11.7 | 12.5 | 6.5 | 6.2 | 15.9 | 16.0 | 13.7 | 8.2 | 3.9 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 19.2 | 9.7 | 9.7 | 21.5 | 12.5 | 6.5 | 14.4 | 15.9 | 16.0 | 29.6 | 8.2 | 3.9 |
| Green Ratio ( $\mathrm{g} / \mathrm{C}$ ) | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
| Capacity ( $c$ ), veh/h | 451 | 985 | 945 | 396 | 985 | 835 | 362 | 746 | 696 | 225 | 1420 | 632 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.231 | 0.353 | 0.354 | 0.351 | 0.431 | 0.252 | 0.232 | 0.575 | 0.576 | 0.485 | 0.333 | 0.171 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 71.7 | 183.3 | 177.1 | 101 | 225.7 | 104.7 | 60.2 | 274.9 | 260.9 | 98.3 | 148.3 | 63.3 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 2.9 | 7.3 | 7.1 | 4.0 | 9.0 | 4.2 | 2.4 | 11.0 | 10.4 | 3.9 | 5.9 | 2.5 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 19.4 | 12.8 | 12.8 | 19.1 | 13.4 | 12.0 | 24.1 | 21.4 | 21.4 | 33.0 | 19.1 | 17.8 |
| Incremental Delay ( $d_{2}$ ), s/veh | 1.2 | 1.0 | 1.0 | 2.4 | 1.4 | 0.7 | 0.1 | 0.3 | 0.3 | 0.6 | 0.1 | 0.0 |
| Initial Queue Delay ( $d_{\text {s }}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 20.6 | 13.8 | 13.8 | 21.6 | 14.8 | 12.7 | 24.2 | 21.7 | 21.7 | 33.6 | 19.1 | 17.8 |
| Level of Service (LOS) | C | B | B | C | B | B | C | C | C | C | B | B |
| Approach Delay, s/veh / LOS | 14.7 |  | B | 15.5 |  | B | 21.9 |  | C | 21.2 |  | C |
| Intersection Delay, s/veh / LOS |  |  |  | . 4 |  |  |  |  |  | B |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.25 | B | 2.40 | B | 2.27 | B | 2.10 | B |
| Bicycle LOS Score / LOS | 1.14 | A | 1.76 | B | 1.24 | A | 1.06 | A |

HCS7 Signalized Intersection Results Summary

## General Information

| Agency | LL |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | Sa |
| Intersection | In |
| Project Description | O |


| LLG Engineers |  |  |
| :--- | :--- | :--- |
| JAS | Analysis Date | Mar 11, 2019 |
| City of West Hollywood | Time Period | Existing with <br> Project - AM |
| San Vicente / Beverly | Analysis Year | 2018 |
| Intersection \#6 | File Name | O6AM - Existing + Pro |
| Our Lady of Mt. Lebanon Project |  |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 53 | 627 | 127 | 110 | 1154 | 129 | 84 | 688 | 114 | 85 | 494 | 182 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 7.1 | 31.5 | 4.4 |  |  | 5.5 | 21.6 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 0.0 |  |  |  |  | $\pi$ |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 |  |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 8.4 | 43.9 | 11.1 | 46.6 | 9.5 | 25.6 | 9.5 | 25.6 |
| Change Period, ( $Y+R \mathrm{c}$ ), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway ( MAH ), s | 3.1 | 0.0 | 3.1 | 0.0 | 3.1 | 3.1 | 3.1 | 3.1 |
| Queue Clearance Time ( $g s$ ), s | 4.6 |  | 7.4 |  | 6.1 | 18.1 | 6.2 | 12.8 |
| Green Extension Time ( $\mathrm{e}_{\mathrm{e}}$ ), s | 0.4 | 0.0 | 0.2 | 0.0 | 0.1 | 3.5 | 0.0 | 3.7 |
| Phase Call Probability | 0.73 |  | 0.94 |  | 0.88 | 1.00 | 0.88 | 1.00 |
| Max Out Probability | 1.00 |  | 0.00 |  | 0.00 | 0.04 | 0.37 | 0.01 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( $v$ ), veh/h | 53 | 627 | 127 | 110 | 1154 | 129 | 84 | 688 | 114 | 85 | 494 | 182 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g$ s ) , s | 2.6 | 10.5 | 3.8 | 5.4 | 22.2 | 3.7 | 4.1 | 16.1 | 5.2 | 4.2 | 10.8 | 8.2 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 2.6 | 10.5 | 3.8 | 5.4 | 22.2 | 3.7 | 4.1 | 16.1 | 5.2 | 4.2 | 10.8 | 8.2 |
| Green Ratio ( g/C ) | 0.05 | 0.44 | 0.50 | 0.08 | 0.47 | 0.53 | 0.06 | 0.24 | 0.24 | 0.06 | 0.24 | 0.29 |
| Capacity ( c ), veh/h | 89 | 1604 | 812 | 142 | 1711 | 859 | 110 | 867 | 386 | 110 | 866 | 464 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.598 | 0.391 | 0.156 | 0.775 | 0.675 | 0.150 | 0.763 | 0.793 | 0.295 | 0.774 | 0.570 | 0.392 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 53.4 | 190.9 | 61.6 | 111.1 | 349.7 | 30.9 | 86.3 | 278 | 88.4 | 87.7 | 202.1 | 96.3 |
| Back of Queue ( $Q$ ), veh/ln ( 95 th percentile) | 2.1 | 7.6 | 2.5 | 4.4 | 14.0 | 1.2 | 3.5 | 11.1 | 3.5 | 3.5 | 8.1 | 3.9 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 41.9 | 16.9 | 12.0 | 40.7 | 18.4 | 1.2 | 41.6 | 32.1 | 28.0 | 41.7 | 30.1 | 1.4 |
| Incremental Delay ( $d_{2}$ ), s/veh | 2.4 | 0.7 | 0.4 | 3.4 | 2.1 | 0.4 | 4.1 | 0.6 | 0.2 | 4.3 | 0.2 | 0.2 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 44.3 | 17.6 | 12.4 | 44.1 | 20.5 | 1.6 | 45.7 | 32.8 | 28.2 | 46.0 | 30.4 | 1.6 |
| Level of Service (LOS) | D | B | B | D | C | A | D | C | C | D | C | A |
| Approach Delay, s/veh / LOS | 18.5 |  | B | 20.6 |  | C | 33.4 |  | C | 25.2 |  | C |
| Intersection Delay, s/veh / LOS | 24.0 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.42 | B | 2.46 | B | 2.44 | B | 2.44 | B |
| Bicycle LOS Score / LOS | 1.15 | A | 1.64 | B | 1.22 | A | 1.12 | A |

HCS7 Signalized Intersection Results Summary

## General Information

| Agency | LL |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | City |
| Urban Street | Sa |
| Intersection | In |
| Project Description | O | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 71 | 828 | 72 | 80 | 768 | 137 | 108 | 715 | 424 | 215 | 484 | 127 |
| Signal Information |  |  |  |  | $\stackrel{\rightharpoonup}{2}$ |  |  |  | D | 2 |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  | 8 |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 5.0 | 18.2 | 5.5 | 6.9 | 1.9 | 28.6 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |  |  |  |  | - |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 |  |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 9.0 | 31.2 | 9.5 | 31.7 | 10.9 | 32.6 | 16.8 | 38.5 |
| Change Period, ( $Y+R \mathrm{c}$ ), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway ( MAH ), s | 3.1 | 0.0 | 3.1 | 0.0 | 3.1 | 3.1 | 3.1 | 3.1 |
| Queue Clearance Time ( $g s$ ), s | 5.5 |  | 5.9 |  | 7.3 | 24.0 | 12.4 | 10.6 |
| Green Extension Time ( $g e$ ), s | 0.1 | 0.0 | 0.4 | 0.0 | 0.1 | 4.6 | 0.4 | 4.8 |
| Phase Call Probability | 0.83 |  | 0.86 |  | 0.93 | 1.00 | 1.00 | 1.00 |
| Max Out Probability | 0.00 |  | 1.00 |  | 0.02 | 0.02 | 0.00 | 0.00 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 71 | 828 | 72 | 80 | 768 | 137 | 108 | 715 | 424 | 215 | 484 | 127 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g$ s), s | 3.5 | 18.6 | 2.6 | 3.9 | 16.8 | 4.6 | 5.3 | 15.1 | 22.0 | 10.4 | 8.6 | 4.3 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 3.5 | 18.6 | 2.6 | 3.9 | 16.8 | 4.6 | 5.3 | 15.1 | 22.0 | 10.4 | 8.6 | 4.3 |
| Green Ratio ( g/C ) | 0.06 | 0.30 | 0.38 | 0.06 | 0.31 | 0.45 | 0.08 | 0.32 | 0.32 | 0.14 | 0.38 | 0.44 |
| Capacity ( c ), veh/h | 100 | 1093 | 609 | 110 | 1112 | 723 | 138 | 1149 | 511 | 256 | 1386 | 706 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.709 | 0.757 | 0.118 | 0.729 | 0.690 | 0.189 | 0.783 | 0.622 | 0.829 | 0.838 | 0.349 | 0.180 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 72.5 | 330.1 | 28.8 | 88.4 | 298.7 | 76.8 | 109.6 | 258.7 | 267.6 | 205.7 | 155.4 | 68 |
| Back of Queue ( $Q$ ), veh/ln ( 95 th percentile) | 2.9 | 13.2 | 1.2 | 3.5 | 11.9 | 3.1 | 4.4 | 10.3 | 10.7 | 8.2 | 6.2 | 2.7 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 41.8 | 28.4 | 2.2 | 41.5 | 27.4 | 14.9 | 40.8 | 26.1 | 3.3 | 37.6 | 19.8 | 15.4 |
| Incremental Delay ( $d_{2}$ ), s/veh | 3.4 | 4.9 | 0.4 | 8.5 | 3.5 | 0.6 | 3.6 | 0.2 | 1.3 | 2.8 | 0.1 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 45.2 | 33.3 | 2.6 | 50.0 | 30.9 | 15.5 | 44.5 | 26.3 | 4.7 | 40.4 | 19.8 | 15.4 |
| Level of Service (LOS) | D | C | A | D | C | B | D | C | A | D | B | B |
| Approach Delay, s/veh / LOS | 31.9 |  | C | 30.3 |  | C | 20.5 |  | C | 24.5 |  | C |
| Intersection Delay, s/veh / LOS | 26.5 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.46 | B | 2.43 | B | 2.43 | B | 2.42 | B |
| Bicycle LOS Score / LOS | 1.29 | A | 1.30 | A | 1.52 | B | 1.17 | A |




## General Information

Intersection Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers | D |  |  |
| :--- | :--- | :--- | :--- |
| JAS | Analysis Date | Feb 11, 2020 | Ar |
| City of West Hollywood | Time Period | Future - AM | PH |
| San Vicente / Melrose | Analysis Year | 2024 | An |
| Intersection \#4 | File Name | 04AM - Future.xus |  |


| Duration, h | 0.25 |
| :--- | :--- |
| Area Type | Other |
| PHF | 1.00 |
| Analysis Period | $1>7: 00$ |
|  |  |



| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 93 | 521 | 44 | 270 | 794 | 179 | 71 | 626 | 109 | 81 | 466 | 55 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  | ${ }^{7}$ |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 52.9 | 29.1 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  | 3 |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  | 个 |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 |  | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 2 |  |  | 6 |  |  | 8 |  |  | 4 |
| Case Number |  |  | 6.0 |  |  | 5.0 |  |  | 6.0 |  |  | 5.0 |
| Phase Duration, s |  |  | 56.9 |  |  | 56.9 |  |  | 33.1 |  |  | 33.1 |
| Change Period, ( $Y+R_{c}$ ), s |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 |  |  | 0.0 |  |  | 3.3 |  |  | 3.3 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  |  |  |  | 17.1 |  |  | 26.5 |
| Green Extension Time ( $g_{e}$ ), s |  |  | 0.0 |  |  | 0.0 |  |  | 3.4 |  |  | 2.6 |
| Phase Call Probability |  |  |  |  |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  |  |  |  |  |  | 0.04 |  |  | 0.31 |
| Movement Group Results |  | EB |  |  | WB |  |  | NB |  |  | SB |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 93 | 286 | 279 | 270 | 794 | 179 | 71 | 377 | 358 | 81 | 466 | 55 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 694 | 1900 | 1848 | 859 | 1900 | 1610 | 941 | 1900 | 1801 | 734 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 9.9 | 6.6 | 6.6 | 20.0 | 26.6 | 4.6 | 5.7 | 15.1 | 15.1 | 9.4 | 9.0 | 2.2 |
| Cycle Queue Clearance Time ( $g_{c}$ ), s | 36.6 | 6.6 | 6.6 | 26.7 | 26.6 | 4.6 | 14.7 | 15.1 | 15.1 | 24.5 | 9.0 | 2.2 |
| Green Ratio ( g/C ) | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
| Capacity ( $c$ ), veh/h | 282 | 1117 | 1086 | 522 | 1117 | 947 | 291 | 614 | 582 | 194 | 1169 | 520 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.330 | 0.256 | 0.257 | 0.518 | 0.711 | 0.189 | 0.244 | 0.614 | 0.615 | 0.417 | 0.399 | 0.106 |
| Back of Queue ( Q ), ft/ln ( 50 th percentile) | 45.4 | 64.6 | 63.5 | 102.3 | 274.7 | 39.1 | 31.6 | 164.4 | 156.5 | 41.7 | 92.7 | 19.8 |
| Back of Queue ( Q ), veh/ln ( 50 th percentile) | 1.8 | 2.6 | 2.5 | 4.1 | 11.0 | 1.6 | 1.3 | 6.6 | 6.3 | 1.7 | 3.7 | 0.8 |
| Queue Storage Ratio ( $R Q$ ) ( 50 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 26.1 | 9.0 | 9.0 | 15.5 | 13.1 | 8.6 | 29.3 | 25.7 | 25.7 | 36.1 | 23.7 | 21.3 |
| Incremental Delay ( $d_{2}$ ), s/veh | 3.1 | 0.6 | 0.6 | 3.6 | 3.8 | 0.4 | 0.2 | 0.5 | 0.5 | 0.5 | 0.1 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 29.2 | 9.5 | 9.6 | 19.1 | 17.0 | 9.0 | 29.5 | 26.2 | 26.2 | 36.6 | 23.7 | 21.4 |
| Level of Service (LOS) | C | A | A | B | B | A | C | C | C | D | C | C |
| Approach Delay, s/veh / LOS | 12.3 |  | B | 16.3 |  | B | 26.5 |  | C | 25.3 |  | C |
| Intersection Delay, s/veh / LOS |  |  |  | . 6 |  |  |  |  |  |  |  |  |
| Multimodal Results |  | EB |  |  | WB |  |  | NB |  |  | SB |  |
| Pedestrian LOS Score / LOS | 2.24 |  | B | 2.39 |  | B | 2.28 |  | B | 2.11 |  | B |
| Bicycle LOS Score / LOS | 1.03 |  | A | 2.54 |  | C | 1.15 |  | A | 0.98 |  | A |

## General Information

Intersection Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers | D |  |  |
| :--- | :--- | :--- | :--- |
| JAS | Analysis Date | Feb 11, 2020 | Ar |
| City of West Hollywood | Time Period | Future - PM | PH |
| San Vicente / Melrose | Analysis Year | 2024 | An |
| Intersection \#4 | File Name | 04PM - Future.xus |  |
|  |  |  |  |


| Duration, h | 0.25 |
| :--- | :--- |
| Area Type | Other |
| PHF | 1.00 |
| Analysis Period | $1>7: 00$ |

Project Description
Our Lady of Mt. Lebanon Project


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 110 | 646 | 83 | 158 | 456 | 223 | 89 | 735 | 178 | 116 | 530 | 115 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  | $\ddot{=}$ | $\pi$ |  |  |  |  |  |  |  | 3 |  |
| Offset, s | 0 | Reference Point | End | Green | 43.3 | 38.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  | + |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 |  | 7 |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  | 2 |  | 6 |  | 8 |  | 4 |
| Case Number |  | 6.0 |  | 5.0 |  | 6.0 |  | 5.0 |
| Phase Duration, s |  | 47.3 |  | 47.3 |  | 42.7 |  | 42.7 |
| Change Period, ( $Y+R \mathrm{c}$ ), s |  | 4.0 |  | 4.0 |  | 4.0 |  | 4.0 |
| Max Allow Headway ( MAH ), s |  | 0.0 |  | 0.0 |  | 3.4 |  | 3.4 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  | 19.0 |  | 34.7 |
| Green Extension Time ( $g_{e}$ ), s |  | 0.0 |  | 0.0 |  | 5.1 |  | 4.0 |
| Phase Call Probability |  |  |  |  |  | 1.00 |  | 1.00 |
| Max Out Probability |  |  |  |  |  | 0.03 |  | 0.31 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 110 | 372 | 357 | 158 | 456 | 223 | 89 | 472 | 441 | 116 | 530 | 115 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 950 | 1900 | 1824 | 738 | 1900 | 1610 | 887 | 1900 | 1771 | 621 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 8.0 | 11.3 | 11.4 | 15.8 | 14.7 | 7.5 | 6.7 | 17.0 | 17.0 | 15.7 | 8.8 | 4.0 |
| Cycle Queue Clearance Time ( $g_{\mathrm{c}}$ ), s | 22.7 | 11.3 | 11.4 | 27.2 | 14.7 | 7.5 | 15.5 | 17.0 | 17.0 | 32.7 | 8.8 | 4.0 |
| Green Ratio ( $g / C$ ) | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 |
| Capacity ( c ), veh/h | 383 | 916 | 880 | 343 | 916 | 777 | 374 | 815 | 760 | 229 | 1551 | 690 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.287 | 0.405 | 0.406 | 0.461 | 0.498 | 0.287 | 0.238 | 0.580 | 0.580 | 0.507 | 0.342 | 0.167 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 87 | 212.6 | 206.7 | 136.4 | 263.1 | 123.3 | 61.2 | 286.4 | 270.8 | 103.9 | 156.8 | 62.6 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 3.5 | 8.5 | 8.3 | 5.5 | 10.5 | 4.9 | 2.4 | 11.5 | 10.8 | 4.2 | 6.3 | 2.5 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 23.6 | 15.0 | 15.0 | 23.7 | 15.9 | 14.0 | 22.4 | 19.5 | 19.5 | 32.0 | 17.2 | 15.8 |
| Incremental Delay ( $d_{2}$ ), s/veh | 1.9 | 1.3 | 1.4 | 4.4 | 1.9 | 0.9 | 0.1 | 0.2 | 0.3 | 0.6 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 25.5 | 16.3 | 16.4 | 28.2 | 17.8 | 14.9 | 22.5 | 19.8 | 19.8 | 32.6 | 17.2 | 15.9 |
| Level of Service (LOS) | C | B | B | C | B | B | C | B | B | C | B | B |
| Approach Delay, s/veh / LOS | 17.6 |  | B | 19.0 |  | B | 20.0 |  | C | 19.4 |  | B |
| Intersection Delay, s/veh / LOS | 19.0 |  |  |  |  |  | B |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.26 | B | 2.41 | B | 2.26 | B | 2.10 | B |
| Bicycle LOS Score / LOS | 1.18 | A | 1.87 | B | 1.31 | A | 1.12 | A |

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers | Analysis Date | Feb 11, 2020 | Ar |
| :--- | :--- | :--- | :--- |
| JAS | Time Period | Future - AM | PH |
| City of West Hollywood | Time | An |  |
| San Vicente / Beverly | Analysis Year | 2024 | - Future.xus |
|  | Intersection \#6 | File Name | 06AM - |
| Our Lady of Mt. Lebanon Project |  |  |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 56 | 709 | 152 | 118 | 1260 | 137 | 108 | 734 | 124 | 90 | 526 | 193 |
| Signal Information |  |  |  |  |  |  |  |  |  |  | $\mathrm{l}^{7}$ |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green |  |  |  |  |  |  |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 |  | 4.0 | 1.2 | 4.0 |  |  |  |  | , |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | ${ }^{6}$ |  |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 8.5 | 41.8 | 11.5 | 44.8 | 10.9 | 26.9 | 9.8 | 25.8 |
| Change Period, ( $Y+R_{c}$ ), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway ( MAH ), s | 3.1 | 0.0 | 3.1 | 0.0 | 3.1 | 3.1 | 3.1 | 3.1 |
| Queue Clearance Time ( $g s$ ), s | 4.7 |  | 7.8 |  | 7.3 | 19.1 | 6.4 | 13.6 |
| Green Extension Time ( $g e$ ), s | 0.4 | 0.0 | 0.2 | 0.0 | 0.2 | 3.9 | 0.0 | 4.0 |
| Phase Call Probability | 0.75 |  | 0.95 |  | 0.93 | 1.00 | 0.89 | 1.00 |
| Max Out Probability | 1.00 |  | 0.00 |  | 0.00 | 0.03 | 0.52 | 0.01 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 56 | 709 | 152 | 118 | 1260 | 137 | 108 | 734 | 124 | 90 | 526 | 193 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 2.7 | 12.7 | 4.7 | 5.8 | 26.3 | 4.0 | 5.3 | 17.1 | 5.6 | 4.4 | 11.6 | 8.7 |
| Cycle Queue Clearance Time ( $\mathrm{c}_{\mathrm{c}}$ ), s | 2.7 | 12.7 | 4.7 | 5.8 | 26.3 | 4.0 | 5.3 | 17.1 | 5.6 | 4.4 | 11.6 | 8.7 |
| Green Ratio ( g/C ) | 0.05 | 0.42 | 0.50 | 0.08 | 0.45 | 0.52 | 0.08 | 0.25 | 0.25 | 0.06 | 0.24 | 0.29 |
| Capacity ( c ), veh/h | 91 | 1518 | 800 | 151 | 1639 | 833 | 140 | 922 | 410 | 116 | 875 | 470 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.616 | 0.467 | 0.190 | 0.780 | 0.769 | 0.165 | 0.773 | 0.796 | 0.302 | 0.776 | 0.601 | 0.411 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 56.5 | 225.2 | 76.5 | 118.6 | 411.7 | 35.6 | 109.1 | 290.8 | 94.4 | 92.5 | 213.6 | 101.4 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 2.3 | 9.0 | 3.1 | 4.7 | 16.5 | 1.4 | 4.4 | 11.6 | 3.8 | 3.7 | 8.5 | 4.1 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 41.9 | 18.9 | 12.6 | 40.4 | 20.7 | 1.2 | 40.8 | 31.3 | 27.1 | 41.5 | 30.3 | 1.4 |
| Incremental Delay ( $d_{2}$ ), s/veh | 2.5 | 1.0 | 0.5 | 3.3 | 3.5 | 0.4 | 3.4 | 0.6 | 0.2 | 4.2 | 0.2 | 0.2 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( d ), s/veh | 44.4 | 19.9 | 13.1 | 43.7 | 24.2 | 1.6 | 44.2 | 31.9 | 27.2 | 45.6 | 30.5 | 1.6 |
| Level of Service (LOS) | D | B | B | D | C | A | D | C | C | D | C | A |
| Approach Delay, s/veh / LOS | 20.3 |  | C | 23.7 |  | C | 32.7 |  | C | 25.3 |  | C |
| Intersection Delay, s/veh / LOS | 25.3 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.42 | B | 2.46 | B | 2.44 | B | 2.44 | B |
| Bicycle LOS Score / LOS | 1.24 | A | 1.74 | B | 1.28 | A | 1.16 | A |

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers | Analysis Date | Feb 11, 2020 | Ar |
| :--- | :--- | :--- | :--- |
| JAS | Time Period | Future - PM | PH |
| City of West Hollywood | Time | An |  |
| San Vicente / Beverly | Analysis Year | 2024 | A |
| Intersection \#6 | File Name | 06PM - Future.xus |  |
|  | Our Lady of Mt. Lebanon Project |  |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 75 | 958 | 110 | 88 | 899 | 145 | 154 | 765 | 452 | 228 | 522 | 135 |
| Signal Information |  |  |  |  | $\stackrel{\text { L }}{ }$ |  |  |  | W | 0 |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 5.1 | 17.9 | 5.9 | 9.5 | 3.9 | 27.7 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 4.0 | 0.0 | 4.0 |  |  |  |  | 7 |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 |  |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 9.1 | 31.0 | 9.9 | 31.8 | 13.5 | 31.7 | 17.4 | 35.6 |
| Change Period, ( $Y+R \mathrm{c}$ ), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway ( MAH ), s | 3.1 | 0.0 | 3.1 | 0.0 | 3.1 | 3.1 | 3.1 | 3.1 |
| Queue Clearance Time ( $g s$ ), s | 5.7 |  | 6.3 |  | 9.5 | 26.3 | 13.0 | 11.8 |
| Green Extension Time ( $g e$ ), s | 0.0 | 0.0 | 0.3 | 0.0 | 0.2 | 1.4 | 0.4 | 5.0 |
| Phase Call Probability | 0.85 |  | 0.89 |  | 0.98 | 1.00 | 1.00 | 1.00 |
| Max Out Probability | 1.00 |  | 1.00 |  | 0.00 | 1.00 | 0.00 | 0.05 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 75 | 958 | 110 | 88 | 899 | 145 | 154 | 765 | 452 | 228 | 522 | 135 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g$ s ), s | 3.7 | 22.7 | 3.9 | 4.3 | 20.6 | 4.8 | 7.5 | 16.7 | 24.3 | 11.0 | 9.8 | 4.9 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 3.7 | 22.7 | 3.9 | 4.3 | 20.6 | 4.8 | 7.5 | 16.7 | 24.3 | 11.0 | 9.8 | 4.9 |
| Green Ratio ( $g / C$ ) | 0.06 | 0.30 | 0.41 | 0.07 | 0.31 | 0.46 | 0.11 | 0.31 | 0.31 | 0.15 | 0.35 | 0.41 |
| Capacity ( c ), veh/h | 102 | 1085 | 653 | 118 | 1117 | 737 | 191 | 1115 | 496 | 269 | 1272 | 657 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.734 | 0.883 | 0.169 | 0.745 | 0.805 | 0.197 | 0.808 | 0.686 | 0.911 | 0.846 | 0.410 | 0.205 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 76.9 | 409.5 | 28.3 | 102.8 | 362 | 80.4 | 153.2 | 286.4 | 365.9 | 215.2 | 180.4 | 77.8 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 3.1 | 16.4 | 1.1 | 4.1 | 14.5 | 3.2 | 6.1 | 11.5 | 14.6 | 8.6 | 7.2 | 3.1 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 41.8 | 30.0 | 4.4 | 41.3 | 28.6 | 14.5 | 39.4 | 27.3 | 3.4 | 37.3 | 22.1 | 17.2 |
| Incremental Delay ( $d_{2}$ ), s/veh | 3.8 | 10.4 | 0.6 | 12.5 | 6.2 | 0.6 | 3.1 | 1.3 | 19.5 | 2.8 | 0.1 | 0.1 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 45.6 | 40.4 | 5.0 | 53.8 | 34.8 | 15.1 | 42.4 | 28.6 | 22.9 | 40.1 | 22.2 | 17.3 |
| Level of Service (LOS) | D | D | A | D | C | B | D | C | C | D | C | B |
| Approach Delay, s/veh / LOS | 37.4 |  | D | 33.8 |  | C | 28.3 |  | C | 26.1 |  | C |
| Intersection Delay, s/veh / LOS | 31.5 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.46 | B | 2.43 | B | 2.43 | B | 2.43 | B |
| Bicycle LOS Score / LOS | 1.43 | A | 1.42 | A | 1.62 | B | 1.22 | A |

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers | D |  |  |
| :--- | :--- | :--- | :--- |
| JAS | Analysis Date | Feb 11, 2020 | Ar |
| City of West Hollywood | Time Period | Future - AM | P |
| La Cienega / Melrose | Analysis Year | 2024 | An |
| Intersection \#10 | File Name | 10AM - Future.xus |  |
|  |  |  |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 56 | 407 | 36 | 533 | 957 | 40 | 50 | 668 | 171 | 62 | 943 | 163 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  | 7 |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 22.8 | 17.5 | 37.7 | 0.0 | 0.0 | 0.0 |  |  |  | 3 |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 2 | 1 |  | 6 |  |  | 8 |  |  | 4 |
| Case Number |  |  | 5.3 | 1.0 |  | 3.0 |  |  | 5.0 |  |  | 6.0 |
| Phase Duration, s |  |  | 21.5 | 26.8 |  | 48.3 |  |  | 41.7 |  |  | 41.7 |
| Change Period, ( $Y+R_{c}$ ), s |  |  | 4.0 | 4.0 |  | 4.0 |  |  | 4.0 |  |  | 4.0 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 | 3.1 |  | 0.0 |  |  | 3.2 |  |  | 3.2 |
| Queue Clearance Time ( $g s$ ), s |  |  |  | 21.8 |  |  |  |  | 32.2 |  |  | 24.4 |
| Green Extension Time ( $g_{e}$ ), s |  |  | 0.0 | 1.0 |  | 0.0 |  |  | 5.6 |  |  | 6.0 |
| Phase Call Probability |  |  |  | 1.00 |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  | 0.00 |  |  |  |  | 0.11 |  |  | 0.04 |
| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 56 | 407 | 36 | 533 | 957 | 40 | 50 | 668 | 171 | 62 | 567 | 539 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 596 | 1809 | 1610 | 1810 | 1809 |  | 518 | 1809 | 1610 | 781 | 1900 | 1802 |
| Queue Service Time ( $g s$ ), s | 7.5 | 9.2 | 1.7 | 19.8 | 16.4 |  | 8.0 | 11.9 | 6.2 | 5.5 | 22.4 | 22.4 |
| Cycle Queue Clearance Time ( $g_{c}$ ), s | 7.7 | 9.2 | 1.7 | 19.8 | 16.4 |  | 30.2 | 11.9 | 6.2 | 17.3 | 22.4 | 22.4 |
| Green Ratio ( g/C ) | 0.19 | 0.19 | 0.19 | 0.47 | 0.49 |  | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 |
| Capacity ( $c$ ), veh/h | 196 | 709 | 316 | 631 | 1789 |  | 168 | 1507 | 671 | 303 | 792 | 751 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.286 | 0.574 | 0.114 | 0.845 | 0.535 |  | 0.298 | 0.443 | 0.255 | 0.205 | 0.717 | 0.718 |
| Back of Queue ( Q ), ft/ln ( 95 th percentile) | 56.3 | 189.9 | 31 | 326.9 | 266.4 |  | 44.7 | 207.1 | 99.4 | 45.1 | 361.2 | 346.3 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 2.3 | 7.6 | 1.2 | 13.1 | 10.7 |  | 1.8 | 8.3 | 4.0 | 1.8 | 14.4 | 13.9 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 32.2 | 32.8 | 29.7 | 19.2 | 15.6 |  | 34.4 | 18.8 | 17.1 | 24.9 | 21.8 | 21.8 |
| Incremental Delay ( $d_{2}$ ), s/veh | 3.6 | 3.4 | 0.7 | 4.2 | 1.2 |  | 0.4 | 0.1 | 0.1 | 0.1 | 0.5 | 0.6 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 35.9 | 36.1 | 30.5 | 23.4 | 16.8 | 0.0 | 34.7 | 18.9 | 17.2 | 25.1 | 22.4 | 22.4 |
| Level of Service (LOS) | D | D | C | C | B | A | C | B | B | C | C | C |
| Approach Delay, s/veh / LOS | 35.7 |  | D | 18.7 |  | B | 19.4 |  | B | 22.5 |  | C |
| Intersection Delay, s/veh / LOS | 22.0 |  |  |  |  |  | C |  |  |  |  |  |
| Multimodal Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Pedestrian LOS Score / LOS | 2.45 |  | B | 2.26 |  | B | 2.42 |  | B | 2.42 |  | B |
| Bicycle LOS Score / LOS | 0.90 |  | A | 1.75 |  | B | 1.22 |  | A | 1.45 |  | A |

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| LLG Engineers | D |  |  |
| :--- | :--- | :--- | :--- |
| JAS | Analysis Date | Feb 11, 2020 | Ar |
| City of West Hollywood | Time Period | Future - PM | P |
| La Cienega / Melrose | Analysis Year | 2024 | An |
| Intersection \#10 | File Name | 10PM - Future.xus |  |
|  |  |  |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 130 | 935 | 57 | 286 | 615 | 106 | 57 | 1121 | 361 | 68 | 937 | 118 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End |  |  |  |  | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |



## General Information

Intersection Information

| Agency | LL |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | San |
| Intersection | In |
| Project Description | O |

LLG Engineers

| JAS |
| :--- |
| City of West Hollywood |

San Vicente / Melrose Intersection \#4
Our Lady of Mt. Lebanon Project

## General Information

Intersection Information

| Agency | LL |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | San |
| Intersection | In |
| Project Description | O |

LLG Engineers
JAS

San Vicente / Melrose Intersection \#4
Our Lady of Mt. Lebanon Project


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 110 | 646 | 83 | 158 | 456 | 223 | 89 | 737 | 178 | 116 | 533 | 115 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 43.3 | 38.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  | 个 |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 2 |  |  | 6 |  |  | 8 |  |  | 4 |
| Case Number |  |  | 6.0 |  |  | 5.0 |  |  | 6.0 |  |  | 5.0 |
| Phase Duration, s |  |  | 47.3 |  |  | 47.3 |  |  | 42.7 |  |  | 42.7 |
| Change Period, ( $Y+R_{c}$ ), s |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 |  |  | 4.0 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 |  |  | 0.0 |  |  | 3.4 |  |  | 3.4 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  |  |  |  | 19.0 |  |  | 34.8 |
| Green Extension Time ( $g$ e ), s |  |  | 0.0 |  |  | 0.0 |  |  | 5.2 |  |  | 4.0 |
| Phase Call Probability |  |  |  |  |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  |  |  |  |  |  | 0.03 |  |  | 0.31 |
| Movement Group Results |  | EB |  |  | WB |  |  | NB |  |  | SB |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 110 | 372 | 357 | 158 | 456 | 223 | 89 | 473 | 442 | 116 | 533 | 115 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 950 | 1900 | 1824 | 738 | 1900 | 1610 | 885 | 1900 | 1771 | 620 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 8.0 | 11.3 | 11.4 | 15.8 | 14.7 | 7.5 | 6.7 | 17.0 | 17.0 | 15.7 | 8.9 | 3.9 |
| Cycle Queue Clearance Time ( $g_{c}$ ), s | 22.8 | 11.3 | 11.4 | 27.2 | 14.7 | 7.5 | 15.6 | 17.0 | 17.0 | 32.8 | 8.9 | 3.9 |
| Green Ratio ( $g / C$ ) | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 |
| Capacity ( c ), veh/h | 382 | 915 | 878 | 342 | 915 | 775 | 373 | 816 | 761 | 229 | 1554 | 692 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.288 | 0.406 | 0.407 | 0.462 | 0.498 | 0.288 | 0.239 | 0.580 | 0.580 | 0.507 | 0.343 | 0.166 |
| Back of Queue ( Q ), ft/ln ( 95 th percentile) | 87 | 212.9 | 207.1 | 136.7 | 264 | 123.9 | 61.2 | 286.5 | 270.9 | 103.8 | 157.4 | 62.5 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 3.5 | 8.5 | 8.3 | 5.5 | 10.6 | 5.0 | 2.4 | 11.5 | 10.8 | 4.2 | 6.3 | 2.5 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 23.7 | 15.0 | 15.0 | 23.8 | 15.9 | 14.0 | 22.4 | 19.5 | 19.5 | 32.0 | 17.2 | 15.8 |
| Incremental Delay ( $d_{2}$ ), s/veh | 1.9 | 1.3 | 1.4 | 4.4 | 1.9 | 0.9 | 0.1 | 0.2 | 0.3 | 0.6 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 25.6 | 16.4 | 16.4 | 28.2 | 17.9 | 15.0 | 22.5 | 19.7 | 19.8 | 32.6 | 17.2 | 15.8 |
| Level of Service (LOS) | C | B | B | C | B | B | C | B | B | C | B | B |
| Approach Delay, s/veh / LOS | 17.6 |  | B | 19.0 |  | B | 20.0 |  | C | 19.3 |  | B |
| Intersection Delay, s/veh / LOS |  |  |  | . 0 |  |  |  |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.26 | B | 2.41 | B | 2.26 | B | 2.10 | B |
| Bicycle LOS Score / LOS | 1.18 | A | 1.87 | B | 1.32 | A | 1.12 | A |

## General Information

| Agency | LL |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Ci |
| Urban Street | San |
| Intersection | In |
| Project Description | Our |

Intersection Information

## LLG Engineers

JAS

San Vicente / Beverly Intersection \#6

| Analysis Date | Feb 11, 2020 |
| :--- | :--- |
| Time Period | Future with <br> Project - AM |
| Analysis Year | 2024 |


| Duration, h | 0.25 |
| :--- | :--- |
| Area Type | Other |
| PHF | 1.00 |
| Analysis Period | $1>7: 00$ |

Our Lady of Mt. Lebanon Project

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 56 | 709 | 152 | 118 | 1260 | 137 | 108 | 737 | 124 | 90 | 527 | 193 |
| Signal Information |  |  |  |  |  |  |  |  | $\pm \pi i$ |  |  |  |  | 2 | $1$ |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 7.5 | 29.2 | 4.5 | 5.8 | 1.2 | 21.8 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 4.0 | 0.0 | 4.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 |  |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 8.5 | 41.7 | 11.5 | 44.7 | 10.9 | 27.0 | 9.8 | 25.8 |
| Change Period, ( $Y+R_{\text {c }}$ ), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway ( MAH ), s | 3.1 | 0.0 | 3.1 | 0.0 | 3.1 | 3.1 | 3.1 | 3.1 |
| Queue Clearance Time ( $g s$ ), s | 4.7 |  | 7.8 |  | 7.3 | 19.1 | 6.4 | 13.6 |
| Green Extension Time ( $\mathrm{e}_{\mathrm{e}}$ ), s | 0.4 | 0.0 | 0.2 | 0.0 | 0.2 | 3.8 | 0.0 | 4.0 |
| Phase Call Probability | 0.75 |  | 0.95 |  | 0.93 | 1.00 | 0.89 | 1.00 |
| Max Out Probability | 1.00 |  | 0.00 |  | 0.00 | 0.04 | 0.13 | 0.02 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 56 | 709 | 152 | 118 | 1260 | 137 | 108 | 737 | 124 | 90 | 527 | 193 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 1810 | 1900 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g$ s ), s | 2.7 | 31.1 | 4.7 | 5.8 | 26.3 | 4.0 | 5.3 | 17.1 | 5.6 | 4.4 | 11.6 | 8.7 |
| Cycle Queue Clearance Time ( $g_{c}$ ), s | 2.7 | 31.1 | 4.7 | 5.8 | 26.3 | 4.0 | 5.3 | 17.1 | 5.6 | 4.4 | 11.6 | 8.7 |
| Green Ratio ( g/C ) | 0.05 | 0.42 | 0.50 | 0.08 | 0.45 | 0.52 | 0.08 | 0.26 | 0.26 | 0.06 | 0.24 | 0.29 |
| Capacity ( c ), veh/h | 91 | 796 | 799 | 151 | 1637 | 832 | 140 | 924 | 411 | 116 | 877 | 471 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.616 | 0.890 | 0.190 | 0.780 | 0.770 | 0.165 | 0.773 | 0.798 | 0.302 | 0.775 | 0.601 | 0.410 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 56.5 | 565.5 | 76.7 | 118.6 | 411.8 | 34.1 | 109.1 | 292.5 | 94.4 | 92.5 | 213.7 | 101.1 |
| Back of Queue ( Q ), veh/In ( 95 th percentile) | 2.3 | 22.6 | 3.1 | 4.7 | 16.5 | 1.4 | 4.4 | 11.7 | 3.8 | 3.7 | 8.5 | 4.0 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 41.9 | 24.2 | 12.6 | 40.4 | 20.7 | 1.4 | 40.8 | 31.3 | 27.0 | 41.5 | 30.2 | 1.4 |
| Incremental Delay ( $d_{2}$ ), s/veh | 2.5 | 14.2 | 0.5 | 3.3 | 3.6 | 0.4 | 3.4 | 0.7 | 0.2 | 4.1 | 0.2 | 0.2 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 44.4 | 38.5 | 13.1 | 43.7 | 24.3 | 1.8 | 44.2 | 32.0 | 27.2 | 45.6 | 30.5 | 1.6 |
| Level of Service (LOS) | D | D | B | D | C | A | D | C | C | D | C | A |
| Approach Delay, s/veh / LOS | 34.6 |  | C | 23.7 | - | C | 32.8 |  | C | 25.3 |  | C |
| Intersection Delay, s/veh / LOS | 28.5 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.42 | B | 2.46 | B | 2.29 | B | 2.29 | B |
| Bicycle LOS Score / LOS | 2.00 | B | 1.74 | B | 1.29 | A | 1.16 | A |

## General Information

| Agency | LL |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Ci |
| Urban Street | San |
| Intersection | In |
| Project Description | Our |

LLG Engineers

| JAS |
| :--- |
| City of West Hollywood |

San Vicente / Beverly Intersection \#6

Intersection Information

Our Lady of Mt. Lebanon Project

| Intersection Information |  |
| :--- | :--- |
| Duration, h | 0.25 |
| Area Type | Other |
| PHF | 1.00 |
|  |  |
|  | Analysis Period |


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 75 | 958 | 110 | 88 | 899 | 145 | 154 | 767 | 452 | 228 | 525 | 135 |
| Signal Information |  |  |  |  |  |  |  |  | IJ | L |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 5.1 | 18.4 | 5.9 | 9.5 | 3.9 | 27.3 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 4.0 | 0.0 | 4.0 |  |  |  |  | , |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase | 5 | 2 | 1 | 6 | 3 | 8 | 7 | 4 |
| Case Number | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 |
| Phase Duration, s | 9.1 | 31.5 | 9.9 | 32.3 | 13.5 | 31.3 | 17.4 | 35.2 |
| Change Period, ( $Y+R_{\text {c }}$ ), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Max Allow Headway ( MAH ), s | 3.1 | 0.0 | 3.1 | 0.0 | 3.1 | 3.1 | 3.1 | 3.1 |
| Queue Clearance Time ( $g s$ ), s | 5.7 |  | 6.3 |  | 9.5 | 26.5 | 13.0 | 12.0 |
| Green Extension Time ( $g_{\text {e }}$ ), s | 0.0 | 0.0 | 0.3 | 0.0 | 0.2 | 0.8 | 0.4 | 4.9 |
| Phase Call Probability | 0.85 |  | 0.89 |  | 0.98 | 1.00 | 1.00 | 1.00 |
| Max Out Probability | 1.00 |  | 1.00 |  | 0.00 | 1.00 | 0.00 | 0.06 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 5 | 2 | 12 | 1 | 6 | 16 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 75 | 958 | 110 | 88 | 899 | 145 | 154 | 767 | 452 | 228 | 525 | 135 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 3.7 | 22.5 | 3.9 | 4.3 | 20.4 | 4.8 | 7.5 | 16.9 | 24.5 | 11.0 | 10.0 | 4.9 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 3.7 | 22.5 | 3.9 | 4.3 | 20.4 | 4.8 | 7.5 | 16.9 | 24.5 | 11.0 | 10.0 | 4.9 |
| Green Ratio ( $g / C$ ) | 0.06 | 0.31 | 0.41 | 0.07 | 0.31 | 0.46 | 0.11 | 0.30 | 0.30 | 0.15 | 0.35 | 0.40 |
| Capacity ( c ), veh/h | 102 | 1104 | 661 | 118 | 1136 | 745 | 191 | 1096 | 488 | 269 | 1254 | 649 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.734 | 0.868 | 0.166 | 0.745 | 0.791 | 0.195 | 0.808 | 0.700 | 0.927 | 0.847 | 0.419 | 0.208 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 76.9 | 402.3 | 29 | 102.8 | 357.5 | 79.2 | 153.3 | 290.4 | 381.4 | 215.2 | 183.4 | 78.6 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 3.1 | 16.1 | 1.2 | 4.1 | 14.3 | 3.2 | 6.1 | 11.6 | 15.3 | 8.6 | 7.3 | 3.1 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 41.8 | 29.6 | 4.2 | 41.3 | 28.2 | 14.3 | 39.4 | 27.7 | 3.4 | 37.3 | 22.5 | 17.5 |
| Incremental Delay ( $d_{2}$ ), s/veh | 3.8 | 9.3 | 0.5 | 12.5 | 5.7 | 0.6 | 3.1 | 1.6 | 23.0 | 2.8 | 0.1 | 0.1 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 45.6 | 38.8 | 4.7 | 53.8 | 33.9 | 14.9 | 42.5 | 29.4 | 26.4 | 40.1 | 22.6 | 17.6 |
| Level of Service (LOS) | D | D | A | D | C | B | D | C | C | D | C | B |
| Approach Delay, s/veh / LOS | 36.0 |  | D | 33.0 |  | C | 29.8 |  | C | 26.3 |  | C |
| Intersection Delay, s/veh / LOS | 31.5 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.46 | B | 2.43 | B | 2.43 | B | 2.43 | B |
| Bicycle LOS Score / LOS | 1.43 | A | 1.42 | A | 1.62 | B | 1.22 | A |

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JAS |
| Jurisdiction | C |
| Urban Street | La |
| Intersection | Int |
| Project Description | O |

LLG Engineers

| JAS |
| :--- |
| City of West Hollywood |

La Cienega / Melrose Intersection \#10 Our Lady of Mt. Lebanon Project

Intersection Information

| Intersection Information |  |
| :--- | :--- |
| Duration, h | 0.25 |
| Area Type | Other |
| PHF | 1.00 |
|  |  |
|  | Analysis Period |
| Project.xus | $1>7: 00$ |


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 56 | 407 | 36 | 533 | 957 | 40 | 50 | 671 | 171 | 62 | 944 | 163 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  | ${ }^{7}$ |  |  |  |  |  |  | 3 |  |
| Offset, s | 0 | Reference Point | End | Green | 22.8 | 17.4 | 37.7 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |



| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.45 | B | 2.26 | B | 2.42 | B | 2.42 | B |
| Bicycle LOS Score / LOS | 0.90 | A | 1.75 | B | 1.22 | A | 1.45 | A |

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JAS |
| Jurisdiction | C |
| Urban Street | La |
| Intersection | Int |
| Project Description | O |

LLG Engineers

| JAS |
| :--- |
| City of West Hollywood |

La Cienega / Melrose Intersection \#10 Our Lady of Mt. Lebanon Project

Intersection Information

| Intersection Information |  |
| :--- | :--- |
| Duration, h | 0.25 |
| Area Type | Other |
| PHF | 1.00 |
|  |  |
| Analysis Period | $1>7: 00$ |
| Project.xus |  |



| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 130 | 935 | 57 | 286 | 615 | 106 | 57 | 1123 | 361 | 68 | 940 | 118 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 11.5 | 28.7 | 37.8 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.0 | 4.0 | 4.0 | 0.0 | 0.0 | 0.0 |  |  |  |  | 个 |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | ${ }^{6}$ | 7 |  |



| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.43 | B | 2.26 | B | 2.42 | B | 2.42 | B |
| Bicycle LOS Score / LOS | 1.41 | A | 1.32 | A | 1.76 | B | 1.42 | A |

Appendix T. 2
LADOT Assessment Letter

Date: April 27, 2020
$\begin{array}{ll}\text { To: } & \begin{array}{l}\text { Milena Zasadzien, Senior City Planner } \\ \text { Departmeny of City Planning }\end{array} \\ \text { From: } & \begin{array}{l}\text { Wes Pringle, Transportation Engineer } \\ \text { Department of Transportation }\end{array} \\ \text { Subject: } & \begin{array}{l}\text { UPDATED TRANSPORTATION ASSESSMENT FOR THE PROPOSED OUR LADY OF MOUNT } \\ \\ \\ \\ \\ \text { LEBANON MIXED-USE PROJECT AT 333 SOUTH SAN VICENTE BOULEVARD (ENV-2019- } \\ \text { 1857-EIR/CPC-2019-1856-DB-F-SPR/VTT-82229) }\end{array}\end{array}$
On August 1, 2019, the Department of Transportation (DOT) issued a traffic assessment report to the Department of City Planning for the Our Lady of Mount (Mt.) Lebanon mixed-use project located at 333 South San Vicente Boulevard, which was subject of a transportation analysis dated April 16, 2019 prepared by Linscott Law \& Greenspan engineers (LLG). However, since the report was released, the project has changed slightly and a supplemental transportation analysis (February 27 and March 25, 2020) was prepared and submitted by ILG. The supplemental analysis includes a vehicle miles traveled (VMT) analysis pursuant to the City of Los Angeles adoption of VMT as the criteria by which to determine transportation impacts under CEQA Senate Bill (SB) 743 and due to the recent changes to Section 15064.3 of the State's California Environmental Quality Act (CEQA) Guidelines. Please replace the previous DOT assessment report dated August 1, 2019, in its entirety, with this report, which addresses the totality of the transportation analysis.

The DOT has reviewed the transportation analyses prepared by LLG, dated February 27 and March 25, 2020, for the proposed Our Lady of Mt. Lebanon mixed-use project located at 333 South San Vicente Boulevard within the Central Area Planning Commission (APC) area. In compliance with SB 743 and the CEQA guidelines, a VMT analysis is required to identify the project's ability to promote the reduction of green-house gas emissions, the access to diverse land uses, and the development of multi-modal networks. The significance of a project's impact in this regard is measured against the VMT thresholds established in DOT's July 2019 Transportation Assessment Guidelines (TAG), as described below.

## DISCUSSION AND FINDINGS

## A. Project Description

The project is located at 333 South San Vicente Boulevard in the area bounded by San Vicente Boulevard to the east, Burton Way to the south, Holt Avenue to the west, and an alley to the north. Four buildings, which are owned by Our Lady of Mt. Lebanon - St. Peter Cathedral, currently occupy the project site: a cathedral, rectory, social hall, and a chancery. The existing cathedral will be retained and the other three existing buildings will be removed in order to construct 153 apartments, 31,439 square feet (a slight increase from the originally proposed size of 31,342 square feet) of church floor area, and a subterranean garage with 397 vehicle parking spaces. Vehicular access to the project would be provided by the adjacent alley. Passenger loading zones are proposed along the project frontage on Burton Way as illustrated in Attachment A. The project is expected to be completed by 2024.
B. CEQA Screening Threshold

Prior to accounting for trip reductions resulting from the application of Transportation Demand Management (TDM) Strategies, a trip generation analysis was conducted to determine if the project would exceed 250 daily vehicle trips screening threshold. Using the City of Los Angeles VMT Calculator tool, which draws upon trip rate estimates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, $9^{\text {th }}$ Edition as well as applying trip generation adjustments when applicable, based on sociodemographic data and the built environment factors of the project's surroundings, it was determined that the project does exceed the net 250 daily vehicle trips threshold. It should be noted that because the project Memorandum of Understanding (MOU) was approved prior to July 2019, the project is not required to use the new TAG, but the project has voluntarily submitted a VMT analysis. A copy of the VMT calculator version 1.2 summary report, with the corresponding net daily trips estimate, is provided as Attachment B.
C. Transportation Impacts

On July 30, 2019, pursuant to SB 743 and the recent changes to Section 15064.3 of the State's CEQA Guidelines, the City of Los Angeles adopted VMT as a criteria in determining transportation impacts under CEQA. The new DOT TAG provide instructions on preparing transportation assessments for land use proposals and defines the significant impact thresholds.

The DOT VMT Calculator tool measures project impact in terms of Household VMT per Capita, and Work VMT per Employee. DOT identified distinct thresholds for significant VMT impacts for each of the seven Area Planning Commission (APC) areas in the City. For the Central APC area, in which the project is located, the following thresholds have been established:

- Household VMT per Capita: 6.0
- Work VMT per Employee: 7.6

As cited in the March 25, 2020 VMT Analysis report, prepared by LLG, the project proposes to incorporate TDM strategies of providing bicycle parking per the Los Angeles Municipal Code (LAMC) and improving the pedestrian network as project features. The proposed project is projected to have a Household VMT per capita of 6.2 and Work VMT per employee of 2.8. Therefore, it is concluded that implementation of the Project would result in a significant Household VMT impact.

To mitigate this impact, the project proposes to implement the TDM strategies of unbundling parking and promoting and marketing various modes of travel. By implementing these strategies, the Household VMT is forecasted to be reduced to 5.8. A copy of the VMT Calculator summary report is provided as Attachment B.
D. Access and Circulation

During the preparation of the new CEQA guidelines, the State's Office of Planning and Research stressed that lead agencies can continue to apply traditional operational analysis requirements to inform land use decisions provided that such analyses were outside of the CEQA process. The authority for requiring non-CEQA transportation analysis and requiring improvements to address potential circulation deficiencies, lies in the City of Los Angeles' Site Plan Review authority as established in Section 16.05 of the Los Angeles Municipal Code
(LAMC). Therefore, DOT continues to require and review a project's site access, circulation, and operational plan to determine if any access enhancements, transit amenities, intersection improvements, traffic signal upgrades, neighborhood traffic calming, or other improvements are needed. In accordance with this authority, the project has completed a circulation analysis using a "level of service" screening methodology that indicates that the trips generated by the proposed development will not likely result in adverse circulation conditions at several locations. DOT has reviewed this analysis and determined that it adequately discloses operational concerns. A copy of the circulation analysis table that summarizes these potential deficiencies is provided as Attachment $\mathbf{C}$ to this report.
Additionally, the supplemental analysis included an analysis of the expected operations in the alley upon buildout of the project since the alley currently serves as vehicular access for the neighboring West Terrace residential development and will serve as vehicular access for the project. The supplemental analysis concluded that project would not materially change traffic operations on the alley.

## PROJECT REQUIREMENTS

A. CEQA Related Mitigation

To off-set the expected significant impacts identified in the project's transportation assessment study, DOT recommends that the applicant be required to implement the TDM strategies of unbundling parking and promotions and marketing as mitigation measures.

Unbundling parking costs from property cost would require those who wish to purchase parking spaces to do so at an additional cost from the property cost. This removes the burden from those who do not wish to utilize a parking space. An assumption is made that the parking costs are passed through to the vehicle owners/drivers utilizing the parking spaces. The promotions and marketing strategy educates and informs travelers about site-specific transportation options and the effects of their travel choice.
B. Non-CEQA Related Requirements and Considerations

To comply with transportation and mobility goals and provisions of adopted City plans and ordinances, the applicant should be required to implement the following:

## 1. Parking Requirements

The project would provide 397 vehicle parking spaces within a subterranean garage. The project would also provide a total of 19 short-term ( 10 for the apartments and nine for the church) and 105 long-term (101 apartmentsl and four church) bicycle parking spaces. The applicant should check with the Department of Building and Safety on the number of Code-required parking spaces required for this project.
2. Highway Dedication and Street Widening Requirements

Per the new Mobility Element of the General Plan, San Vicente Boulevard, a Boulevard II, would require a 40-foot half-width roadway within a 55-foot half-width right-of-way; Burton Way, an Avenue II, would require a 28-foot half-width roadway within a 43-foot half-width right-of-way; and Holt Avenue, a Local Street, would require an 18-foot halfwidth roadway within a 30-foot half-width right-of-way. The applicant should check with BOE's Land Development Group to determine if there are any other applicable highway dedication, street widening and/or sidewalk requirements for this project.

## 3. Project Access and Circulation

The conceptual site plan for the project (see Attachment A) is acceptable to DOT. Access to the parking garage will be from the alley to the north of the project. The project also proposes to install passenger loading zones for the apartments and for the church. The project should coordinate with DOT's Western District office for the approval and installation of the passenger loading zones. In order to minimize and prevent last minute building design changes, the applicant should contact DOT's Citywide Planning Coordination Section (201 North Figueroa Street, 5th Floor, Room 550, at 213-482-7024) for driveway width and internal circulation requirements prior to the commencement of building or parking layout design. Driveway placement and design shall be approved by the Department of City Planning (City Planning) in consultation with DOT, prior to issuance of a Letter of Determination by City Planning.
4. Worksite Traffic Control Requirements

DOT recommends that a construction work site traffic control plan be submitted to DOT's Citywide Temporary Traffic Control Section or Permit Plan Review Section for review and approval prior to the start of any construction work. Refer to http://ladot.lacity.org/businesses/temporary-traffic-control-plans to determine which section to coordinate review of the work site traffic control plan. The plan should show the location of any roadway or sidewalk closures, traffic detours, haul routes, hours of operation, protective devices, warning signs and access to abutting properties. DOT also recommends that all construction related truck traffic be restricted to off-peak hours to the extent feasible.
5. Development Review Fees

Section 19.15 of the LAMC identifies specific fees for traffic study review, condition clearance, and permit issuance. The applicant shall comply with any applicable fees per this ordinance.

If you have any questions, please contact Eileen Hunt of my staff at (213) 972-8481.
Attachments

K:|Letters\2020\CEN18-47901_333 San Vicente_mu_vmt update_Itr.docx
c: Daniel Skolnick, Council District 5
Matthew Masuda, Central District, BOE
Rudy Guevara, Western District, DOT
Taimour Tanavoli, Case Management, DOT
David Shender/Jason Shender, LLG


## CITY OF LOS ANGELES VMT CALCULATOR Version 1.2

Project Information
Project:
Scenario:
Address:

| Our Lady of Mt. Lebanon |
| :--- |
| Proposed Project |
| 333 S SAN VICENTE BLVD, 90048 |



Proposed Project Land Use Type Housing | Multi-Family
(custom) Church | Retail/Non-Retail (custom) Church | Residents
(custom) Church | Employe
(custom) Church | Daily
(custom) Church | HBW-Attraction Split
(custom) Church | HBO-Attraction Split
(custom) Church | NHB-Attraction Split
(custom) Church | HBW-Production Split
custom) Church | HBO-Production Split
(custom) Church | NHB-Production Split

TDM Strategies
Select each section to show individual strategies
Use $\bar{\square}$ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy


Analysis Results


0 =
Measuring the Miles

| Project Information |  |  |  |
| :---: | :---: | :---: | :---: |
| Land Use Type |  | Value | Units |
| Housing | Single Family | 0 | DU |
|  | Multi Family | 153 | DU |
|  | Townhouse | 0 | DU |
|  | Hotel | 0 | Rooms |
|  | Motel | 0 | Rooms |
| Affordable Housing | Family | 0 | DU |
|  | Senior | 0 | DU |
|  | Special Needs | 0 | DU |
|  | Permanent Supportive | 0 | DU |
| Retail | General Retail | 0.000 | ksf |
|  | Furniture Store | 0.000 | ksf |
|  | Pharmacy/Drugstore | 0.000 | ksf |
|  | Supermarket | 0.000 | ksf |
|  | Bank | 0.000 | ksf |
|  | Health Club | 0.000 | ksf |
|  | High-Turnover Sit-Down Restaurant | 0.000 | ksf |
|  | Fast-Food Restaurant | 0.000 | ksf |
|  | Quality Restaurant | 0.000 | ksf |
|  | Auto Repair | 0.000 | ksf |
|  | Home Improvement | 0.000 | ksf |
|  | Free-Standing Discount | 0.000 | ksf |
|  | Movie Theater | 0 | Seats |
| Office | General Office | 0.000 | ksf |
|  | Medical Office | 0.000 | ksf |
| Industrial | Light Industrial | 0.000 | ksf |
|  | Manufacturing | 0.000 | ksf |
|  | Warehousing/Self-Storage | 0.000 | ksf |
| School | University | 0 | Students |
|  | High School | 0 | Students |
|  | Middle School | 0 | Students |
|  | Elementary | 0 | Students |
|  | Private School (K-12) | 0 | Students |
| Other | Church | 186 | Trips |
| Project and Analysis Overview |  |  |  |


| Analysis Results |  |  |  |
| :---: | :---: | :---: | :---: |
| Total Employees: 6 |  |  |  |
| Total Population: 345 |  |  |  |
| Proposed Project |  | With Mitigation |  |
| $\begin{gathered} \hline 618 \\ 3,516 \end{gathered}$ | Daily Vehicle Trips Daily VMT | $\begin{gathered} \hline 580 \\ 3,312 \end{gathered}$ | Daily Vehicle Trips Daily VMT |
|  | Household VMT per Capita | 5.8 | Household VMT per Capita |
| 2.8 | Work VMT per Employee | 2.8 | Work VMT per Employee |
| Significant VMT Impact? |  |  |  |
| APC: Central |  |  |  |
| Impact Threshold: 15\% Below APC Average Household $=6.0$ <br> Work $=7.6$ |  |  |  |
| Proposed Project |  | With Mitigation |  |
| VMT Threshold | Impact | VMT Threshold | Impact |
| Household > 6.0 | Yes | Household > 6.0 | No |
| Work > 7.6 | No | Work > 7.6 | No |


| TDM Strategy Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Parking | Reduce parking | City code parking provision (spaces) | 0 | 0 |
|  | supply | Actual parking provision (spaces) | 0 | 0 |
|  | Unbundle parking | Monthly cost for parking (\$) | \$0 | \$25 |
|  | Parking cash-out | Employees eligible <br> (\%) | 0\% | 0\% |
|  | Price workplace | Daily parking charge (\$) | \$0.00 | \$0.00 |
|  | parking | Employees subject to priced parking (\%) | 0\% | 0\% |
|  | Residential area parking permits | Cost of annual permit (\$) | \$0 | \$0 |
|  |  | (cont. on following page) |  |  |


| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Transit | Reduce transit headways | Reduction in <br> headways (increase <br> in frequency) (\%) <br> Existing transit | 0\% | 0\% |
|  |  | Existing transit mode share (as a percent of total daily trips) (\%) | 0\% | 0\% |
|  |  | Lines within project site improved (<50\%, $>=50 \%$ ) | 0 | 0 |
|  | Implement neighborhood shuttle | Degree of implementation (low, medium, high) | 0 | 0 |
|  |  | Employees and residents eligible (\%) | 0\% | 0\% |
|  | Transit subsidies | Employees and residents eligible (\%) | 0\% | 0\% |
|  |  | Amount of transit subsidy per passenger (daily equivalent) (\$) | \$0.00 | \$0.00 |
| Education \& Encouragement | Voluntary travel behavior change program | $\begin{aligned} & \text { Employees and } \\ & \text { residents } \\ & \text { participating (\%) } \end{aligned}$ | 0\% | 0\% |
|  | Promotions and marketing | Employees and residents participating (\%) | 0\% | 100\% |
| (cont. on following page) |  |  |  |  |


| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Commute Trip Reductions | Required commute trip reduction program | Employees participating (\%) | 0\% | 0\% |
|  | Alternative Work Schedules and | Employees participating (\%) | 0\% | 0\% |
|  | Telecommute | Type of program | 0 | 0 |
|  | Employer sponsored vanpool or shuttle | Degree of implementation (low, medium, high) | 0 | 0 |
|  |  | Employees eligible <br> (\%) | 0\% | 0\% |
|  |  | Employer size (small, medium, large) | 0 | 0 |
|  | Ride-share program | Employees eligible (\%) | 0\% | 0\% |
| Shared Mobility | Car share | Car share project setting (Urban, Suburban, All Other) | 0 | 0 |
|  | Bike share | Within 600 feet of existing bike share station - ORimplementing new bike share station (Yes/No) | 0 | 0 |
|  | School carpool program | Level of implementation (Low, Medium, High) | 0 | 0 |
| (cont. on following page) |  |  |  |  |


| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Bicycle Infrastructure | Implement/Improve on-street bicycle facility | Provide bicycle facility along site (Yes/No) | 0 | 0 |
|  | Include Bike parking per LAMC | Meets City Bike <br> Parking Code <br> (Yes/No) | Yes | Yes |
|  | Include secure bike parking and showers | Includes indoor bike parking/lockers, showers, \& repair station (Yes/No) | 0 | 0 |
| Neighborhood Enhancement | Traffic calming improvements | Streets with traffic calming improvements (\%) | 0\% | 0\% |
|  |  | Intersections with traffic calming improvements (\%) | 0\% | 0\% |
|  | Pedestrian network improvements | Included (within project and connecting offsite/within project only) | within project and connecting off-site | within project and connecting off-site |

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Project Name: Our Lady of Mt. Lebanon

TDM Adjustments by Trip Purpose \& Strategy

| TDM Adjustments by Trip Purpose \& Strategy Place type: Urban |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Parking | Reduce parking supply | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Parking sections 1-5 |
|  | Unbundle parking | 0\% | 3\% | 0\% | 0\% | 0\% | 3\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Parking cash-out | $0 \%$ | 0\% | $0 \%$ | $0 \%$ | $0 \%$ | 0\% | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ |  |
|  | Price workplace parking | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Residential area parking permits | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
| Transit | Reduce transit headways | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Transit sections 1-3 |
|  | Implement neighborhood shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Transit subsidies | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Education \& Encouragement | Voluntary travel behavior change program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy <br> Appendix, Education \& Encouragement sections 1-2 |
|  | Promotions and marketing | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 0\% |  |
| Commute Trip Reductions | Required commute trip reduction program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy <br> Appendix, Commute Trip Reductions sections 1-4 |
|  | Alternative Work <br> Schedules and <br> Telecommute <br> Program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Employer sponsored vanpool or shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Ride-share program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Shared Mobility | Car-share | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, Shared Mobility sections 1-3 |
|  | Bike share | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
|  | School carpool program | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs
Date: January 15, 2020
Project Name: Our Lady of Mt. Lebanon

TDM Adjustments by Trip Purpose \& Strategy, Cont.

| Place type: Urban |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Bicycle <br> Infrastructure | Implement/ Improve on-street bicycle facility | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, Bicycle Infrastructure sections 1-3 |
|  | Include Bike parking per LAMC | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% |  |
|  | Include secure bike parking and showers | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |
| Neighborhood | Traffic calming improvements | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, |
| Enhancement | Pedestrian network improvements | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | 2.0\% | Neighborhood Enhancement sections 1-2 |



\left.| = Minimum (X\%, 1-[(1-A)*(1-B)...]) |  |  |
| :---: | :---: | :---: |
| where X\%= |  |  |$\right]$

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (Transportation Assessment Guidelines Attachment G) for further discussion of dampening.

# CITY OF LOS ANGELES VMT CALCULATOR 

## Report 4: MXD Methodology

| Home Based Work Production | MXD Methodology - Project Without TDM |  |  |  | Unadjusted VMT | MXD VMT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unadjusted Trips | MXD Adjustment | MXD Trips | Average Trip Length |  |  |
|  | 207 | -34.3\% | 136 | 6.0 | 1,242 | 816 |
| Home Based Other Production | 555 | -47.7\% | 290 | 4.8 | 2,664 | 1,392 |
| Non-Home Based Other Production | 19 | -10.5\% | 17 | 6.3 | 120 | 107 |
| Home-Based Work Attraction | 9 | -77.8\% | 2 | 8.6 | 77 | 17 |
| Home-Based Other Attraction | 240 | -48.3\% | 124 | 7.1 | 1,704 | 880 |
| Non-Home Based Other Attraction | 74 | -13.5\% | 64 | 6.2 | 459 | 397 |


| MXD Methodology with TDM Measures |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Proposed Project |  |  | Project with Mitigation Measures |  |  |
|  | TDM Adjustment | Project Trips | Project VMT | TDM Adjustment | Mitigated Trips | Mitigated VMT |
| Home Based Work Production | -2.6\% | 133 | 795 | -9.3\% | 123 | 740 |
| Home Based Other Production | -2.6\% | 283 | 1,356 | -9.3\% | 263 | 1,262 |
| Non-Home Based Other Production | -2.6\% | 17 | 104 | -6.5\% | 16 | 100 |
| Home-Based Work Attraction | -2.6\% | 2 | 17 | -6.5\% | 2 | 16 |
| Home-Based Other Attraction | -2.6\% | 121 | 857 | -6.5\% | 116 | 823 |
| Non-Home Based Other Attraction | -2.6\% | 62 | 387 | -6.5\% | 60 | 371 |

## MXD VMT Methodology Per Capita \& Per Employee



## VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr \& Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr \& Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr \& Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr \& Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr \& Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr \& Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr \& Peers, or another third party, even if the City or Fehr \& Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr \& Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

| You, the User |  |
| :--- | :--- |
| By: | Sason Shender |
| Print Name: | Transportation Planner II |
| Title: | $\frac{\text { Linscott, Law \& Greenspan, Engineers }}{\text { 20931 Burbank Boulevard, Suite C }}$ |
| Company: |  |
| Address: | $\underline{\text { Woodland Hills, CA 91367 }}$ |
| Phone: | $\underline{\text { (818) 835-8648 }}$ |
| Email Address: | $\underline{\text { jshender@llgengineers.com }}$ |
| Date: | $\underline{1 / 15 / 2020}$ |

CITY OF LOS ANGELES INTERSECTIONS

|  | INTERSECTION | PEAK HOUR | [1]YEAR 2018EXISTINGV/C $\quad$ LOS |  | [2] |  |  |  | [3]YEAR 2024FUTURE PRE-PROJECTV/C $\quad$ LOS |  | [4] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. |  |  |  |  | YEAR 2018 EXISTING W/ PROJECT V/C LOS |  | $\begin{array}{\|cc\|} \hline \text { CHANGE } & \text { SIGNIF. } \\ \text { V/C } & \text { IMPACT } \\ {[(2)-(1)]} & {[a]} \\ \hline \end{array}$ |  |  |  | YEAR 2024FUTUREW/PROJECTV/C LOS |  | $\begin{aligned} & \text { CHANGE ADVERSE } \\ & \text { V/C } \\ & \text { [(4)-(3)] } \\ & \hline \end{aligned}$ |  |
| 1 | Robertson Boulevard / 3rd Street | $\begin{gathered} \mathrm{AM} \\ \mathrm{PM} \end{gathered}$ | $\begin{aligned} & 0.625 \\ & 0.622 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.628 \\ & 0.627 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.005 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.679 \\ & 0.691 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.682 \\ & 0.695 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 2 | Robertson Boulevard / Burton Way | $\begin{gathered} \text { AM } \\ \text { PM } \end{gathered}$ | $\begin{aligned} & 0.688 \\ & 0.734 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { C } \end{aligned}$ | $\begin{aligned} & 0.689 \\ & 0.736 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { C } \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.748 \\ & 0.796 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.748 \\ & 0.799 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.003 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 5 | Willaman Drive / Burton Way | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.599 \\ & 0.619 \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.602 \\ & 0.619 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.643 \\ & 0.664 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.647 \\ & 0.664 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.004 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 6 | San Vicente Boulevard / Beverly Boulevard | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.669 \\ & 0.695 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.670 \\ & 0.695 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.731 \\ & 0.775 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.733 \\ & 0.775 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.000 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 7 | Sherbourne Drive / <br> 3rd Street | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 0.459 \\ & 0.447 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.463 \\ & 0.451 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.004 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.497 \\ & 0.487 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.500 \\ & 0.491 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 8 | San Vicente Boulevard / 3rd Street | $\begin{gathered} \text { AM } \\ \text { PM } \end{gathered}$ | $\begin{aligned} & 0.697 \\ & 0.586 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.699 \\ & 0.587 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.776 \\ & 0.667 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.778 \\ & 0.668 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 9 | San Vicente Boulevard-Le Doux Road / Burton Way | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 0.527 \\ & 0.576 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.531 \\ & 0.578 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | $\begin{aligned} & 0.004 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.572 \\ & 0.624 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.575 \\ & 0.625 \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 11 | La Cienega Boulevard / Beverly Boulevard | $\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 0.651 \\ & 0.859 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$ | $\begin{aligned} & 0.652 \\ & 0.860 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { nO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.720 \\ & 0.955 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { E } \end{aligned}$ | $\begin{aligned} & 0.720 \\ & 0.957 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{E} \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 12 | La Cienega Boulevard / 3rd Street | $\underset{\text { AM }}{\substack{2}}$ | $\begin{aligned} & 0.798 \\ & 0.692 \end{aligned}$ | $\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.803 \\ & 0.693 \end{aligned}$ | $\begin{aligned} & \text { D } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.005 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.867 \\ & 0.757 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.872 \\ & 0.758 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.005 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |
| 13 | La Cienega Boulevard / San Vicente Boulevard | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 0.654 \\ & 0.663 \end{aligned}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 0.655 \\ & 0.667 \end{aligned}$ | $\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & 0.715 \\ & 0.735 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.717 \\ & 0.738 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.003 \end{aligned}$ | $\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$ |


[^0]:    ${ }^{1}$ The Shared Parking manual (Second Edition) published by the Urban Land Institute recommends a vehicle occupancy of three persons per car for purposes of forecasting parking demand at entertainment venues such as live theaters.

[^1]:    ${ }^{2}$ Email correspondence transmitted to Bob Cheung, Senior Transportation Planner, City of West Hollywood Department of Public Works to confirm accuracy of related projects list.

[^2]:    * Key conflicting movement as a part of ICU

    1 Counts conducted by NDS
    2 Capacity expressed in veh/hour of green

[^3]:    * Key conflicting movement as a part of ICU

    1 Counts conducted by NDS
    2 Capacity expressed in veh/hour of green

[^4]:    * Key conflicting movement as a part of ICU

    1 Counts conducted by NDS
    2 Capacity expressed in veh/hour of green

[^5]:    * Key conflicting movement as a part of ICU

    1 Counts conducted by NDS
    2 Capacity expressed in veh/hour of green

