Appendix T

Transportation Addendum

Appendix T.1

Transportation Addendum

MEMORANDUM

To:	Eileen Hunt Los Angeles Department of Transportation	Date:	February 27, 2020	Engin
From:	David S. Shender, P.E. Jason A. Shender Linscott, Law & Greenspan, Engineers	LLG Ref:	5-17-0315-1	Traffic Transı Parkin
Subject:	Traffic Analysis Addendum for the Our I	Lady of I	Mt. Lebanon Project	Linsc

This traffic analysis addendum has been prepared by Linscott, Law & Greenspan, Engineers (LLG) to provide an addendum to the traffic analysis for the proposed Our Lady of Mt. Lebanon project ("the Project") located at 333 S. San Vicente Boulevard in the City of Los Angeles (the "Project Site"). LLG previously prepared a traffic impact study dated April 16, 2019 (the "approved traffic study") for the Project based on the Los Angeles Department of Transportation (LADOT) *Transportation Impact Study Guidelines*, December 2016 (the "2016 Guidelines"). The findings of the approved traffic study were confirmed in the LADOT traffic assessment letter dated August 1, 2019. The approved traffic study concluded that, based on the 2016 Guidelines, the Project would not create a significant impact at any of the 14 study intersections analyzed in the approved traffic study.

This traffic analysis addendum has been prepared to address the following items:

- <u>Minor Change in Project Description</u>. The approved traffic study evaluated a Project including a proposed church component with 31,342 square feet of building floor area. LLG understands the proposed size of the church component has increased slightly to 31,439 square feet (i.e., an increase of 97 square feet). This traffic analysis addendum evaluates the relative changes in the trip generation forecast for the Project based on the minor change in the proposed floor area for the church component.
- <u>Traffic Operations in the Alley Adjacent to the Project Site</u>. An assessment of traffic operations has been prepared related to the public alley that abuts the north side of the Project Site. As described in the approved traffic study, vehicular access to the Project Site is proposed via the alley across from the existing vehicular access to the Westbury Terrace residential condominium building ("Westbury Terrace"). The analysis has been prepared to evaluate traffic operations in the alley following buildout and occupancy of the Project.
- <u>Vehicle Miles Traveled (VMT) Analysis</u>. In compliance with State law, LADOT issued a revised *Transportation Assessment Guidelines* document dated July 2019 (the "2019 Guidelines"). The 2019 Guidelines provide a new methodology and thresholds of significance for evaluating project transportation impacts related to development projects based on an analysis of

LINSCOTT LAW & GREENSPAN

engineers

Engineers & Planners Traffic Transportation Parking

Linscott, Law & Greenspan, Engineers

20931 Burbank Boulevard Suite C Woodland Hills, CA 91367 818.835.8648 T 818.835.8649 F www.llgengineers.com

Pasadena Irvine San Diego Woodland Hills

VMT. The VMT analysis for the Project has been prepared per the 2019 Guidelines and is provided herein.

- <u>Updated List of Related Projects</u>. The list of related projects used in the approved traffic study has been updated to reflect information current as of January 2020.
- <u>Updated Traffic Impact Analysis</u>. In conjunction with the updated list of related projects, updated Levels of Service (LOS) traffic impact analyses for "Future Cumulative Baseline" and "Future Cumulative with Project" conditions have been prepared using the methodologies and significant traffic impact criteria utilized by the Cities of Los Angeles, Beverly Hills, and West Hollywood when the Project entered into a Memorandum of Understanding (MOU) agreement with LADOT on May 11, 2018.

Accordingly, LLG has prepared this traffic analysis addendum to provide: (1) an analysis of traffic operations in the public alley adjacent to the Project; (2) a VMT analysis for the Project based on the 2019 Guidelines; (3) an updated list of related projects; and (4) an updated LOS traffic impact analysis.

Minor Change in the Project Description

The approved traffic study evaluated a Project including a proposed church component with 31,342 square feet of building floor area. LLG understands the proposed size of the church component has increased slightly to 31,439 square feet (i.e., an increase of 97 square feet of building floor area). *Table 1* attached provides the updated trip generation forecast for the Project based on the slight change in the church floor area. As shown in *Table 1*, the Project is forecast to generate 43 net new morning (AM) peak hour trips, 53 net new afternoon (PM) peak hour trips, and 651 net new daily trips.

Table 7-1 in the approved traffic study provides the trip generation forecast for the Project based on the prior assumed building floor area for the church component. As shown in Table 7-1, the trip generation forecast for the Project was calculated to be 43 net new AM peak hour trips, 53 net new PM peak hour trips, and 650 net new daily trips. When compared to the updated trip generation forecast provided in *Table 1*, the minor change in the building floor area for the church component does not result in any increase in the calculated number of weekday AM and PM peak hour vehicle trips due to the Project. Further, the minor change in the building floor area for the church will result in the forecast of one (1) additional daily vehicle trip when

compared to the forecast provided in the approved traffic study. Accordingly, it is concluded that the minor change in the proposed building floor area for the church component of the Project will not change the analysis and findings related to the relative traffic impacts of the Project as evaluated in the approved traffic study.

Alley Analysis

An analysis of the public alley that abuts the north side of the Project Site has been prepared to assess traffic operations following buildout of the Project. As described in the approved traffic study, vehicular access to the Project Site is proposed via the alley across from the existing vehicular access to the existing Westbury Terrace. The analysis has been prepared to evaluate traffic operations in the alley during the weekday morning (AM) commuter peak hour, the weekday afternoon (PM) commuter peak hour (including arriving traffic related to an event at the church), as well as the peak hour of vehicle traffic exiting the Project following an event at the church.

Existing Conditions

As noted above, the Project Site is located at 333 S. San Vicente Boulevard. The existing Project Site is currently developed with the existing Our Lady of Mt. Lebanon church facilities (the "Existing Church"), which include: a one-story, 6,848-square-foot cathedral; three ancillary church buildings with a total of 12,370 square feet of floor area, including a two-story, 2,520-square-foot rectory, a one-story, 5,426 square-foot social hall; a three-story, 4,424-square-foot building with offices and meeting rooms; and a surface parking lot. Vehicular access to the parking area serving the Existing Church is currently provide by two driveways along Burton Way and at two points along the public alley that abuts the north side of the Project Site. Access to the parking areas serving Westbury Terrace is provided via two driveways along the north side of the alley, across from the existing vehicular access points to the parking area serving the Existing Church. An aerial photo indication the location of the vehicular access points to the Existing Church and Westbury Terrace is provided in *Figure 1*.

Proposed Project

The proposed Project includes 153 residential apartment units and 31,439 square feet of church floor area. The Project includes 397 vehicle parking spaces in a subterranean garage. The parking spaces will serve both the residential and church components of the Project. A site plan for the Project is provide in *Figure 2*.

Vehicular access to the Project parking garage will be provided via the alley in the general location of the access to the parking area serving the Existing Church. As shown on *Figure 2*, the access to the proposed parking area will provide two lanes for inbound traffic and one lane for outbound traffic.

Upon completion of the Project, the Existing Church would resume normal operations, which include holding 25 to 30 events each year, consisting of weddings, funerals, and other church events. These events would primarily take place in the multi-purpose room, which would have a capacity of approximately 475 people. While the frequency of these events would remain the same, the size of some of these events would increase because the multi-purpose room would have a larger capacity than the existing social hall, which has a capacity of approximately 230 people. In addition, it is expected that six to eight community events would be held in the multi-purpose room each year.

While a majority of the larger events at the church/multi-purpose room are expected to occur on weekends, some events may occur on weekdays, primarily in the evening. For purposes of evaluating traffic movements within the alley related to Westbury Terrace, this traffic analysis conservatively assumes an event at the church with 475 attendees occurring on a weekday evening, with peak pre-event traffic arriving during the weekday PM commuter peak hour ("Pre-Event") and peak post-event traffic departing later in the evening (e.g., in the 9:00 – 11:00 PM timeframe).

Existing Traffic Volumes

Manual traffic counts of vehicular turning movements were conducted on Thursday, November 14, 2019 at each of the existing church and Westbury Terrace driveways along the alley during the weekday AM commuter peak period, the weekday PM commuter peak period (which would coincide with the assumed arrival of pre-event traffic for a church event), as well as during the evening hours that could coincide with vehicle traffic exiting the Project following an event at the church ("Post-Event"). Specifically, manual traffic counts of vehicles were conducted from 7:00 AM to 10:00 AM, 3:00 PM to 6:00 PM, and 9:00 PM to 11:00 PM. The highest one-hour volume of traffic was determined at each location based on the data collected. The existing traffic volumes at the driveways during the weekday AM commuter peak hour, the Pre-Event peak hour (coinciding with the weekday PM commuter peak hour), and Post-Event peak hour are shown in *Figures 3*, *4*, and *5*, respectively. Summary data worksheets of the manual traffic counts at the driveways are contained in *Appendix A*.

Figure 3 and *Figure 4* display the existing traffic volumes entering and exiting the Westbury Terrace parking garage via the alley during the weekday AM and PM commuter peak hours, respectively. During the AM peak hour, 27 vehicles were counted (7 inbound, 20 outbound) at the Westbury Terrace driveways as shown on *Figure 3*. Similarly, during the PM peak hour, 20 vehicles were counted (16 inbound, 4 outbound) at the Westbury Terrace driveways as shown on *Figure 4*. For informational purposes, the counted trip generation at the Westbury Terrace driveways was compared to the number of trips that would be forecast using applicable trip generation rates from the ITE *Trip Generation Manual*. For the 82 units at Westbury Terrace, application of the ITE trip rates (0.31 trips/unit for the AM peak hour and 0.36 trips/unit for the PM peak hour) results in a forecast of 25 trips in the AM peak hour and 29 trip in the PM peak hour for Westbury Terrace. The actual trips counted at the Westbury Terrace driveways during the commuter peak hours are generally within the range of what would be forecast using the ITE trip rates.

Project Trip Generation and Assignment

The trip generation forecast for the Project is provided in the attached *Table 1* (which has been updated from the trip generation forecast provided in the approved traffic study due to a slight change in the church floor area as previously discussed. The Project on a typical weekday is forecast to result in 48 AM peak hour trips (14 inbound trips/34 outbound trips) and 60 PM peak hour trips (35 inbound trips/25 outbound trips). Figure 7-1 from the approved traffic study provides the forecast trip distribution of Project traffic to the alley (i.e., vehicles approaching/departing to and from the east and west.).

As noted above, upon completion of the Project, events held at the Existing Church would have a capacity of approximately 475 people. For this analysis, the following assumptions have been made:

• Approximately 90% of guests (i.e., 428 guests) would arrive in a private automobile, at an average rate of 3 persons per vehicle¹. This would result in 143 vehicles requiring parking at the site.

¹ The *Shared Parking* manual (Second Edition) published by the Urban Land Institute recommends a vehicle occupancy of three persons per car for purposes of forecasting parking demand at entertainment venues such as live theaters.

- The remaining 10% of guests (i.e., 47 guests) would arrive by other means, including Uber/Lyft, walking, etc. Guests arriving and departing by Uber/Lyft would utilize the Project's proposed passenger loading area on San Vicente Boulevard and therefore would not utilize the Project's vehicle entry/exit on the alley.
- It is conservatively assumed the 143 vehicles related to guests at a peak event would arrive and depart in a one-hour period, although it is more likely that arrivals and departures would be dispersed over a greater period of time.

Existing with Project Traffic Volumes

As previously noted, the existing traffic volumes in the alley at the Existing Church and Westbury Terrace driveways during the weekday AM, PM, and Post-Event peak hours are presented in *Figures 3*, 4, and 5, respectively. The forecast traffic volumes associated with the Project are then added to the existing volumes to obtain the Existing with Project traffic volumes, which are shown on *Figures 6*, 7, and 8 for the weekday AM commuter peak hour, Pre-Event peak hour, and Post-Event peak hour, respectively. The Pre-Event and Post-Event peak hour trips in *Figures 7* and 8 include traffic associated with both the residential building, the church space and a special event in the multi-purpose room at the maximum occupancy of 475 people.

Driveway Operation Analysis

An analysis was prepared to evaluate expected operations in the alley upon buildout of the Project. The operational analysis was prepared using the existing and forecast weekday AM, PM, and Post-Event peak hour traffic counts in the alley. Motorist delay and vehicle queuing in the alley have been calculated at the Project and Westbury Terrace driveways for the Existing and Existing with Project conditions. The analysis was prepared using the unsignalized intersection methodology provided in the *Highway Capacity Manual* (HCM) published by the Transportation Research Board. The HCM methodology allows the analysis of turning movements at the driveway, with the following specific outputs:

- Control delay (measured in vehicles/seconds): Control delay is the estimated time that the average motorist will require to wait prior to completing a specific turning movement at an intersection during the analyzed peak hour.
- Level of Service (LOS): A qualitative description of operations at an intersection, ranging from LOS A to F. LOS is defined based on calculated amount of motorist delay.

• 95th Percentile Vehicle Queue: The calculated length of vehicle queues waiting to complete a specific turning movement at an intersection during the analyzed peak hour. The 95th percent confidence level indicates that the queue will be at or below this length 95 percent of the time during the analyzed peak hour.

Control delay, LOS, and 95th Percentile Vehicle Queue calculations have been prepared for the Project driveway under Existing and Existing with Project conditions during the AM, PM, and Post-Event peak hours. *Table 2* provides a summary of the HCM analysis for the alley during the analyzed peak hours. The HCM data worksheets for the driveway are contained in *Appendix B*.

Key points from the data provided in *Table 2* are as follows:

- Vehicles currently exiting the Westbury Terrace driveways onto the alley currently experience minimal delay during the commuter peak hours (average delay calculated at approximately 8.5 seconds per motorist, which corresponds with LOS A operations). Note this is generally the minimum delay value produced by the HCM analysis for motorists turning left from a minor approach or driveway. There are minimal vehicle queues related to vehicles exiting the Westbury Terrace driveways onto the alley (i.e., less than one exiting vehicle queuing into the Westbury Terrace parking areas during the commuter peak hours).
- Vehicles currently turning left into the Westbury Terrace driveways from the eastbound alley also experience minimal delay during the commuter peak hours (average delay calculated at approximately 7.3 seconds per motorists, which corresponds with LOS A operations). Note this is generally the minimum delay value produced by the HCM analysis for motorists turning left from a roadway to a minor approach or driveway. There are minimal vehicle queues related to vehicles attempting to turn left into the Westbury Terrace driveways from the alley (i.e., less than one vehicle queuing on the alley during the commuter peak hours).
- With the Project, there would be a slight increase, in some circumstances, in the calculated average delay or vehicle queuing related to motorists entering or exiting the Westbury Terrace driveways on the alley during the weekday AM commuter peak hour, the weekday Pre-Event peak hour (conservatively assumed in this analysis to coincide with the weekday commuter PM peak hour), and the Post-Event peak hour. This is due primarily to the following: (1) the relatively low volume of existing through traffic on the alley (i.e.,

LINSCOTT LAW & GREENSPAN engineers

vehicles traveling in the alley between Holt Avenue and San Vicente Boulevard); (2) the relatively small number of vehicles currently entering and exiting the Westbury Terrace driveways; and (3) the limited nature of conflicting traffic movements between existing vehicles entering and exiting the Westbury Terrace driveways and future vehicles entering and exiting the Project driveway. More specifically:

- o <u>AM Peak Hour</u>. As shown in *Figure 6*, during the weekday AM peak hour, 15 cars were counted to turn right from the Westbury Terrace driveways (one car every four minutes). Future vehicles turning to or from the Project driveway would not be in conflict with the outbound right turns from Westbury Terrace because the Westbury Terrace vehicles turning right from the driveways have the assigned right-ofway over future vehicles turning to and from the Project driveway. Figure 6 also shows five vehicles turning left from the Westbury Terrance driveways during the AM peak hour (one car every 12 minutes). The three vehicles forecast to turn left from the alley into the Project driveway (one car every 20 minutes) and the nine vehicles forecast to turn right from the Project driveway (one car every 6.5 minutes) would be the only additional conflict for vehicles turning left from the Westbury Terrace driveways during the AM peak hour. Finally, Figure 6 shows three cars turning left from the alley into the Westbury Terrace driveways during the weekday AM peak hour (one car every 20 minutes). Future vehicles turning to or from the Project driveway will not be in conflict with this left-turn because vehicles turning left from the alley to the Westbury Terrace driveways have the assigned right-of-way over future vehicles turning to and from the Project driveway.
- O Pre-Event Peak Hour. As shown in *Figure 7* (which includes cumulative traffic associated with the residential building, the church space and a special event in the multi-purpose room at the maximum occupancy of 475 people), during the weekday Pre-Event peak hour (conservatively assumed in this analysis to coincide with the weekday PM commuter peak hour), two cars were counted to turn right from the Westbury Terrace driveways (one car every 30 minutes). Future vehicles turning to or from the Project driveway will not be in conflict with the outbound right turns from Westbury Terrace because the Westbury Terrace vehicles turning right from the driveways have the assigned right-of-way over future vehicles turning to and from the Project driveway. *Figure 7* also shows two vehicles turning left from the Westbury Terrace driveways during the PM peak hour (one car

LINSCOTT LAW & GREENSPAN engineers

every 30 minutes). The 44 vehicles that are forecast to turn left into the Project driveway (one car every 90 seconds), and the six vehicles that are forecast to turn right from the Project driveway (one car every 10 minutes), would be the only additional conflict for the two vehicles turning left from Westbury Terrace driveways, resulting in the incremental increase in the average delay per motorist for vehicles exiting the Westbury Terrace driveways during the Pre-Event peak hour as shown in Table 2 (from 8.6 seconds to 9.2 seconds). Additionally, Figure 7 shows 15 cars turning left into the Westbury Terrace driveways from the alley during the weekday Pre-Event peak hour (one car every four minutes). Future vehicles turning to or from the Project driveway would not be in conflict with this left-turn because vehicles turning left from the alley to the Westbury Terrace driveways have the assigned right-of-way over future vehicles turning to and from the Project driveway. Finally, Figure 7 shows the forecast of 134 vehicles (approximately one car every 27 seconds) entering the alley from Holt Avenue and turning right into the Project driveway. Most of these forecast right-turn vehicles are related to traffic arriving for a special event. These right-turn vehicles do not conflict, and therefore, would not cause any additional delay to existing motorists entering or exiting the Westbury Terrace driveway, whether by a leftturn or right-turn traffic movement. This is another reason why the Pre-Event traffic volumes associated with the Project do not materially change motorist delay related to inbound and outbound traffic movements at the Westbury Terrace driveways.

O Post-Event Peak Hour. As shown in *Figure 8*, during the weekday Post-Event peak hour, no cars were counted to turn left or right from the Westbury Terrace driveways. Therefore, Project vehicle traffic related to the Post-Event peak hour would not affect traffic movements exiting Westbury Terrace. *Figure 8* also shows four cars turning left into the Westbury Terrace driveways during the weekday Post-Event peak hour (one car every 15 minutes). Future vehicles turning to or from the Project driveway would not be in conflict with this left-turn because vehicles turning left from the alley to the Westbury Terrace driveways have the assigned right-of-way over future vehicles turning to and from the Project driveway.

In summary, the traffic analysis concludes that the Project would not materially change traffic operations on the alley, specifically as it relates to inbound and outbound traffic movements associated with the Westbury Terrace residential development.

LINSCOTT LAW & GREENSPAN engineers

VMT Calculation

In September 2013, the Governor's Office signed Senate Bill (SB) 743, starting a process that changes the way transportation impact analysis is conducted under the California Environmental Quality Act. Within the State's CEQA Guidelines, these changes include the elimination of auto delay, Level of Service (LOS), and similar measurements of vehicular roadway capacity and traffic congestion as the basis for determining significant traffic impacts. SB 743 identifies VMT as the most appropriate CEQA transportation metric, along with the elimination of auto delay/LOS for CEQA purposes statewide. The justification for this paradigm shift is that auto delay/LOS impacts lead to improvements that increase roadway capacity and therefore induce more traffic and greenhouse gas emissions.

In July 2019, the Los Angeles City Council formally adopted VMT as the criteria for determining transportation impacts of development projects. In conjunction with the adoption of VMT, LADOT issued the 2019 Guidelines. Further, LADOT issued a memorandum dated August 9, 2019 stating that while traffic studies prepared and approved under the 2016 Guidelines will still be honored, it recommends that these projects also evaluate VMT as part of their transportation analysis. Accordingly, this VMT calculation has been prepared for the Project consistent with the 2019 Guidelines.

The VMT calculation has been prepared for the Project using Version 1.2 of the LADOT's VMT Calculator. The VMT results for the Project are contained within *Appendix C*. It is noted that within the VMT Calculator, 'Church' is not one of the available land use types. Therefore, per the 2019 Guidelines, a custom VMT calculation has been prepared within the VMT Calculator for the church component of the Project.

Household VMT

As shown in *Appendix C*, the Project's Household VMT is calculated to be 6.2 miles per Capita. The Household VMT threshold of significance applicable to the Project (located in an area under the jurisdiction of the City's Central Area Planning Commission) is 6.0 miles per Capita. Therefore, prior to consideration of potential mitigation measures, the Project's Household VMT would be calculated to have a significant impact because it exceeds the Household VMT threshold of significance. However, the Project would implement transportation demand (TDM) strategies, which are described below, to reduce the Project's Household VMT from 6.2 to 5.8 miles, which is below the Household VMT threshold of significance. Therefore, the Project's Household VMT is considered to be less than significant.

Work VMT

As shown in *Appendix C*, the Project's Work VMT is calculated to be 2.8 miles per Employee. The threshold of significance for Work VMT applicable to the Project (based on its location in the Central APC) is 7.6 miles per Employee. Therefore, the Project's Work VMT is considered to be less than significant.

Summary of TDM Strategies

As outlined in the data sheets from the VMT Calculator provided in *Appendix C*, the VMT calculation incorporates TDM strategies, both as project features and mitigation measures. The TDM strategies are listed in Table 2.2-2 of the 2019 Guidelines. The following TDM strategies will be included as features of the Project:

- Unbundle Parking
- Promotions and Marketing
- Include Bike Parking per Los Angeles Municipal Code (LAMC)
- Pedestrian Network Improvements.

Further discussion of these TDM strategies are provided in the following paragraphs.

Unbundle Parking

This strategy unbundles the parking costs from the property costs, requiring those who wish to purchase parking spaces to do so at an additional cost from the property cost. This strategy is applicable to residential components of development projects.

At the time of initial opening of the development, the Project includes as a project feature a charge at least \$25.00 per month per parking space for a residential unit, separate from the monthly cost to rent the residential unit. As shown in *Appendix C*, the Project receives a 3.0% VMT reduction for providing unbundled parking.

Promotions and Marketing

Marketing and promotional tools will be utilized for the Project to educate and inform residents about alternative transportation options and the effects of their travel choices. Rather than two-way communication tools or tools that would encourage an individual to consider a different mode of travel at the time the trip is taken (i.e., smartphone application, daily email, etc.), this strategy includes passive educational and promotional materials, such as posters, information boards, or a website with information that residents can choose to read at their own leisure. As shown in

Appendix C, the Project receives a 4.0% VMT reduction from the use of promotions and marketing to encourage alternative transportation options.

Include Bike Parking per LAMC

Table 12.21 A.16(a)(1)(i) of the LAMC provides the required short-term and long-term bicycle parking spaces for the residential component of the Project (153 units). The short-term bicycle parking ratios are as follows:

- Dwelling Units 1-25 (25 units): 1 space per 10 units (2 spaces);
- Dwelling Units 26-100 (75 units): 1 space per 15 units (5 spaces); and
- Dwelling Units 101-200 (53 units): 1 space per 20 units (3 spaces).

The long-term bicycle parking ratios are as follows:

- Dwelling Units 1-25 (25 units): 1 space per unit (25 spaces);
- Dwelling Units 26-100 (75 units): 1 space per 15 units (50 spaces); and
- Dwelling Units 101-200 (53 units): 1 space per 20 units (26 spaces).

Table 12.21 A.16(a)(2) of the LAMC provides the required short-term and long-term bicycle parking spaces for the commercial components of the Project. The short-term bicycle parking ratios are as follows:

• Church (3,000 assembly area): 1 space per 350 s.f. (9 spaces).

The long-term bicycle parking ratios are as follows:

• Church (3,000 assembly area): 1 space per 700 s.f. (4 spaces).

Based on the above, the Project is required to provide 10 short-term and 101 longterm bicycle parking spaces for the residential component. For the church component, the Project is required to provide nine short-term spaces and four longterm bicycle parking spaces. As a project feature, the Project will provide the required number of short-term and long-term bicycle parking spaces for the residential and commercial components. As shown in *Appendix C*, the Project receives a 0.625% VMT reduction for providing bike parking per the LAMC.

Pedestrian Network Improvements

This strategy involves implementation of pedestrian network improvements throughout and around the Project Site that encourage people to walk. This includes internally linking all uses within the Project Site with pedestrian facilities such as sidewalks and connecting the Project Site to the surrounding pedestrian network.

The Project includes pedestrian access points directly to sidewalks on the adjacent streets, including San Vicente Boulevard and Burton Way, as well as the alley which borders the Project Site to the north. Additionally, as a project feature, the Project includes the improvement of existing sidewalks or the construction of new sidewalks on the above-mentioned streets adjacent to the Project Site, as well as Holt Avenue, which borders the Project Site to the west. As shown in *Appendix C*, the Project receives a 2.0% VMT reduction for providing pedestrian network improvements.

As shown in the VMT Calculator output contained within *Appendix C*, the Project, with the above-mentioned TDM strategies, is expected to generate 580 daily vehicle trips, a daily VMT of 3,312 miles, and Household VMT per Capita of 5.8 miles and a Work VMT per Employee of 2.8 miles. The 2019 Guidelines state that the Household VMT per Capita threshold for the Central APC must be 6.0 miles or less and the Work VMT per Employee must be 7.6 miles or less. Therefore, the Project, with the implementation of the TDM strategies listed above, would not have a significant VMT impact.

Updated Related Project Analysis

The traffic analysis prepared in the approved traffic study utilized related projects lists provided by LADOT, the City of Los Angeles Department of City Planning, the City of Beverly Hills Community Development Department, and the City of West Hollywood Community Development Department. The related projects list has been updated to reflect known related projects within the Project vicinity as of January 2020. The updated list of related projects in the Project Site area is presented in *Table 3*. The location of the related projects is shown in *Figure 9*. The updated related projects traffic volumes at the study intersections during the weekday AM and PM peak hours are displayed in *Figures 10* and *11*, respectively.

Based on the information provided by the respective agencies, four projects have been added to the related projects list utilized in the approved traffic study. A summary of trip generation forecast of the four additional projects is provided below:

City of Los Angeles

• 316 N. La Cienega Boulevard (LA15):	20 net new AM peak hour trips 26 net new PM peak hour trips
• 3 rd and Fairfax Project (LA16):	142 net new AM peak hour trips 87 net new PM peak hour trips
• 656 S. San Vicente Boulevard Medical Office Project (LA17):	387 net new AM peak hour trips 473 net new PM peak hour trips
City of Beverly Hills	
• 9107 Wilshire Boulevard (BH10):	-74 net new AM peak hour trips 1 net new PM peak hour trip

City of West Hollywood

Per email correspondence with the City of West Hollywood, the related projects list utilized in the approved traffic study was confirmed as current as of the release of the NOP.²

As shown on *Table 3*, the related projects are expected to generate a total of 2,469 net new AM peak hour trips and 3,582 PM peak hour trips. The four projects added to the related projects list are expected to generate a net increase of 475 AM peak hour trips and a net increase of 587 PM peak hour trips (e.g., 19.24% of the total AM peak hour trips and 16.39% of the total PM peak hour trips associated with the related projects, respectively).

² Email correspondence transmitted to Bob Cheung, Senior Transportation Planner, City of West Hollywood Department of Public Works to confirm accuracy of related projects list.

Updated Traffic Impact Analysis

LLG has prepared updated intersection Level of Service calculations for "Future Cumulative Baseline" and "Future Cumulative with Project" conditions to evaluate the potential traffic impacts in conjunction with the updated list of related projects. The relative impact of the added traffic volumes forecast to be generated by the Project during the AM and PM peak hours was evaluated based on analysis of future operating conditions at the study intersections, without and with the Project.

The traffic impact analysis scenarios and significance of the potential impacts of project generated traffic were identified using the traffic impact criteria set forth by the cities of Los Angeles, Beverly Hills and West Hollywood. The individual jurisdictions' impact analysis scenarios and thresholds of significance are provided by reference in the April 16, 2019 approved traffic study.

City of Los Angeles

The updated traffic impact analysis prepared for the 10 study intersections located within or shared with the City of Los Angeles using LADOT's Critical Movement Analysis (CMA) methodology and application of the City of Los Angeles significant traffic impact criteria is summarized in *Table 4*. A description of the CMA method and corresponding Levels of Service, as well as the CMA data worksheets for the analyzed intersections are contained in *Appendix D*.

The "Future Cumulative Baseline" conditions were forecast based on the addition of traffic generated by the completion and occupancy of related projects, as well as the growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors (i.e., ambient growth). The Volume-to-Capacity (v/c) ratios at all the study intersections are incrementally increased with the addition of ambient traffic and traffic generated by the related projects listed in *Table 3*.

As presented in column [3] of *Table 4*, nine of the 10 study intersections located within or shared with the City of Los Angeles are expected to operate at LOS D or better during the weekday AM and PM peak hours with the addition of growth in ambient traffic and related project traffic under the "Future Cumulative Baseline" conditions. The following intersection is expected to operate at LOS E during the peak hours shown below under the "Future Cumulative Baseline" conditions:

• Int. No. 11: La Cienega Boulevard PM Peak Hour: v/c = 0.955, LOS E /Beverly Boulevard

The updated "Future Cumulative Baseline" (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in *Figures 12* and *13*, respectively.

The "Future Cumulative with Project" conditions were forecast based on the addition of traffic generated by the Project plus completion and occupancy of related projects. As shown in column [4] of *Table 4*, application of the City of Los Angeles' threshold criteria to the "Future Cumulative with Project" scenario indicates that the Project would not result in a significant impact at any of the 10 study intersections. Incremental, but not significant impacts are noted at the study intersections. Therefore, no mitigation measures are required or recommended with respect to these intersections under the "Future Cumulative with Project" conditions. The updated "Future Cumulative with Project" (existing, ambient growth, related projects, and Project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in *Figures 14* and *15*, respectively.

City of Beverly Hills

The updated traffic impact analysis prepared for the four study intersections located within or shared with the City of Beverly Hills using the Intersection Capacity Utilization (ICU) methodology and application of the City of Beverly Hills' significant traffic impact criteria is summarized in *Table 5*. A description of the ICU method and corresponding Levels of Service, as well as the ICU data worksheets for the analyzed intersections are contained in *Appendix E*.

The "Future Cumulative Baseline" conditions were forecast based on the addition of traffic generated by the completion and occupancy of related projects, as well as the growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors (i.e., ambient growth). The v/c ratios at all the study intersections are incrementally increased with the addition of ambient traffic and traffic generated by the related projects listed in *Table 3*.

As presented in column [3] of *Table 5*, three of the four study intersections located within or shared with the City of Beverly Hills are expected to operate at LOS D or better during the weekday AM and PM peak hours with the addition of growth in ambient traffic and related project traffic under the "Future Cumulative Baseline" conditions. The following intersection is expected to operate at LOS E during the peak hours shown below under the "Future Cumulative Baseline" conditions:

•	Int. No. 3: Robertson Boulevard /	AM Peak Hour: $v/c = 0.916$, LOS E
	Wilshire Boulevard	PM Peak Hour: $v/c = 0.903$, LOS E

The updated "Future Cumulative Baseline" (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in *Figures 12* and *13*, respectively.

The "Future Cumulative with Project" conditions were forecast based on the addition of traffic generated by the Project plus completion and occupancy of related projects. As shown in column [4] of *Table 5*, application of the City of Beverly Hills' threshold criteria to the "Future Cumulative with Project" scenario indicates that the Project would not result in a significant impact at any of the four study intersections. Incremental, but not significant impacts are noted at the study intersections. Therefore, no mitigation measures are required or recommended with respect to these intersections under the "Future Cumulative with Project" conditions. The updated "Future Cumulative with Project" (existing, ambient growth, related projects, and Project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in *Figures 14* and *15*, respectively.

City of West Hollywood

The updated traffic impact analysis prepared for the three study intersections located within or shared with the City of West Hollywood using the HCM signalized intersection methodology and application of the City of West Hollywood's significant traffic impact criteria is summarized in *Table 6*. A description of the HCM signalized intersection method and corresponding Levels of Service, as well as the HCM data worksheets for the analyzed intersections are contained in *Appendix F*.

The "Future Cumulative Baseline" conditions were forecast based on the addition of traffic generated by the completion and occupancy of related projects, as well as the growth in traffic due to the combined effects of continuing development, intensification of existing developments and other factors (i.e., ambient growth). The delay values at all the study intersections are incrementally increased with the addition of ambient traffic and traffic generated by the related projects listed in *Table 3*.

As presented in column [3] of *Table 6*, the three study intersections located within or shared with the City of West Hollywood are expected to operate at LOS C or better during the weekday AM and PM peak hours with the addition of growth in ambient traffic and related project traffic under the "Future Cumulative Baseline" conditions. The updated "Future Cumulative Baseline" (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in *Figures 12* and *13*, respectively.

The "Future Cumulative with Project" conditions were forecast based on the addition of traffic generated by the Project plus completion and occupancy of related projects. As shown in column [4] of *Table 6*, application of the City of West Hollywood's threshold criteria to the "Future Cumulative with Project" scenario indicates that the Project would not result in a significant impact at any of the three study intersections. Incremental, but not significant impacts are noted at the study intersections. Therefore, no mitigation measures are required or recommended with respect to these intersections under the "Future Cumulative with Project" conditions. The updated "Future Cumulative with Project" (existing, ambient growth, related projects, and Project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in *Figures 14* and *15*, respectively.

Summary

The conclusions of this traffic analysis addendum for the proposed Project are as follows:

- The minor change in the proposed building floor area for the church component of the Project (i.e., 97 square feet of additional building floor area) does not alter the analysis and findings related to the relative traffic impacts of the Project as evaluated in the approved traffic study
- Vehicle traffic associated with the Project would not materially affect traffic operations on the alley, specifically as it relates to inbound and outbound traffic movements associated with Westbury Terrace, including during the peak hours when a special event occurs in the multi-purpose room.
- With implementation of recommended TDM strategies, the Project's Household VMT per Capita and Work VMT per Employee impact would be less than significant based on the applicable Central APC thresholds of significance.
- The list of related projects has been updated to reflect known information current as of January 2020.
- Updated traffic impact analyses have been prepared in conjunction with the updated related projects list. The addition of the four projects to the list of related projects does not change the findings or conclusions of the approved traffic study.
- cc: File

FIGURE 1

LINSCOTT, LAW & GREENSPAN, engineers

MAP SOURCE: GOOGLE MAPS

EXISTING DRIVEWAY LOCATIONS

color.ctb exhibits ₽ jsher 14:00:43 2019 12/12/ o:\0315\addendum\dwg\f1.dwg

EXISTING TRAFFIC VOLUMES

WEEKDAY AM PEAK HOUR OUR LADY OF MT. LEBANON PROJECT

LINSCOTT, LAW & GREENSPAN, engineers

NOT TO SCALE

FIGURE 4 EXISTING TRAFFIC VOLUMES

> WEEKDAY PRE-EVENT PEAK HOUR OUR LADY OF MT. LEBANON PROJECT

LINSCOTT, LAW & GREENSPAN, engineers

Ν

NOT TO SCALE

FIGURE 5 EXISTING TRAFFIC VOLUMES

> WEEKDAY POST-EVENT PEAK HOUR OUR LADY OF MT. LEBANON PROJECT

MAP SOURCE: GOOGLE MAPS

LINSCOTT, LAW & GREENSPAN, engineers

Ν

NOT TO SCALE

WEEKDAY AM PEAK HOUR OUR LADY OF MT. LEBANON PROJECT

LINSCOTT, LAW & GREENSPAN, engineers

LINSCOTT, LAW & GREENSPAN, engineers

WEEKDAY PRE-EVENT PEAK HOUR OUR LADY OF MT. LEBANON PROJECT

WEEKDAY POST-EVENT PEAK HOUR OUR LADY OF MT. LEBANON PROJECT

LINSCOTT, LAW & GREENSPAN, engineers

o:\0315\addendum\dwg\f9.dwg 02/04/2020 09:54:27 jshender IIg exhibits color

o:\0315\addendum\dwg\f13.dwg 02/12/2020 15:42:03 jshender llg exhibits color.ctb

o:\0315\addendum\dwg\f15.dwg 02/12/2020 15:50:59 jshender IIg exhibits color.ctb

								30-Jan-20
		DAILY	AM PEAK HOUR			PM PEAK HOUR		
		TRIP ENDS [2]	VOLUMES [2]		VOLUMES [2]			
LAND USE	SIZE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
Proposed Project								
Apartments [3]	153 DU	681	11	36	47	34	21	55
Church [4]	31,439 SF	<u>219</u>	<u>6</u>	<u>4</u>	<u>10</u>	<u>7</u>	<u>8</u>	15
Subtotal		900	17	40	57	41	29	70
Transit Trips [5]								
Apartments (15%)		(102)	(2)	(5)	(7)	(5)	(3)	(8)
Church (15%)		<u>(33)</u>	<u>(1)</u>	(1)	<u>(2)</u>	(1)	(1)	<u>(2)</u>
Subtotal		(135)	(3)	(6)	(9)	(6)	(4)	(10)
Subtotal Project Driveway Trips		765	14	34	48	35	25	60
Existing Site								
Church [4]	(19,218) SF	(134)	(4)	(2)	(6)	(4)	(5)	(9)
Transit Trips [5]								
Church (15%)		20	1	0	1	1	1	2
Subtotal Existing Driveway Trips		(114)	(3)	(2)	(5)	(3)	(4)	(7)
NET INCREASE DRIVEWAY TRIPS		651	11	32	43	32	21	53

Table 1 **PROJECT TRIP GENERATION [1]**

[1] Source: ITE "Trip Generation Manual", 10th Edition, 2017.

[2] Trips are one-way traffic movements, entering or leaving.

[3] ITE Land Use Code 222 (Multifamily Housing [High-Rise]) trip generation average rates.

Daily Trip Rate: 4.45 trips/dwelling unit; 50% inbound/50% outbound
AM Peak Hour Trip Rate: 0.31 trips/dwelling unit; 24% inbound/76% outbound

- PM Peak Hour Trip Rate: 0.36 trips/dwelling unit; 61% inbound/39% outbound

[4] ITE Land Use Code 560 (Church) trip generation average rates.

- Daily Trip Rate: 6.95 trips/1,000 SF of floor area; 50% inbound/50% outbound

- AM Peak Hour Trip Rate: 0.33 trips/1,000 SF of floor area; 60% inbound/40% outbound

- PM Peak Hour Trip Rate: 0.49 trips/1,000 SF of floor area; 45% inbound/55% outbound

[5] The Project site is located within 1/4 mile of a Metro Rapid bus stop. The trip reduction for transit trips has been applied to all components of the project based on the "LADOT Transportation Impact Study

Guidelines", December 2016 for developments within a 1/4 mile walking distance of a transit station or a RapidBus stop.
Table 2HCM DRIVEWAY ANALYSIS [A]WEEKDAY AM AND PM PEAK HOURSPROPOSED PROJECT DRIVEWAY

30-Jan-20

PEAK	SITE	TRAFFIC]	EXISTING	3	EXIST	TING + PRO	DJECT
HOUR	ACCESS	MOVEMENT	DELAY [B]	LOS [C]	QUEUE [D]	DELAY [B]	LOS [C]	QUEUE [D]
	Westbury Terrace	EB Left (Inbound)	7.3	А	0.0	7.3	А	0.0
АM	westbury renace	SB Left/Right (Outbound)	8.5	А	0.1	8.5	А	0.1
	Project	WB Left (Inbound)	7.3	А	0.0	7.3	А	0.0
	NB Left/Right (Outbo		5.0	Α	0.0	8.8	А	0.1
	Westbury Terrace	EB Left (Inbound)	7.3	А	0.0	7.3	А	0.0
Pro Evont	westoury remace	SB Left/Right (Outbound)	8.6	Α	0.0	9.2	А	0.0
TIC-Event	Project	WB Left (Inbound)	7.3	А	0.0	7.6	А	0.1
	Hojeet	NB Left/Right (Outbound)	8.7	Α	0.0	9.8	А	0.1
	Westbury Terrace	EB Left (Inbound)	7.2	А	0.0	7.2	А	0.0
Post Event	westoury remace	SB Left/Right (Outbound)	5.0	Α	0.0	5.0	А	0.0
1 Ost-Event	Project	WB Left (Inbound)	7.2	А	0.0	7.2	А	0.0
	110jeet	NB Left/Right (Outbound)	8.6	А	0.0	9.1	А	0.5

[A] Intersection analysis based on the Highway Capacity Manual operational analysis methodologies.

[B] Control delay reported in seconds per vehicle.

[C] Unsignalized Intersection Levels of Service were based on the following criteria:

Control Delay (s/veh)	LOS
<= 10	А
> 10-15	В
> 15-25	С
> 25-35	D
> 35-50	E
> 50	F

[D] 95th percentile vehicle queue expressed in number of vehicles.

МАР	PROJECT NAME/	PROJECT	ADDRESS/	LAND USF	EDATA	PROJECT DATA	DAILY TRIP ENDS [2]	AN	A PEAK H	OUR [2]	P	M PEAK H VOLUMES	OUR [2]
NO.	PROJECT NUMBER	STATUS	LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
				City of L	os Angeles								
LA1	Four Seasons Residences	Under Construction	300 S. Wetherly Drive	Condominiums	140 DU		270	3	17	20	16	6	22
LA2	Cedars-Sinai Medical Center Project West Tower	Proposed	8723 W. Alden Drive	Hospital	100 Beds		1,181	79	34	113	47	83	130
LA3	S. La Cienega Boulevard Eldercare Facility	Proposed	1022 S. La Cienega Boulevard	Assisted Living Skilled Nursing Apartments	183 Beds 22 DU (36) DU		242	14	(6)	8	6	16	22
LA4	6535 Wilshire Boulevard Mixed-Use Project	Proposed	6535 Wilshire Boulevard	Office Apartments Retail	62,000 GSF 22 DU 5,603 GSF		786	61	17	78	20	63	86
LA5	Beverly & Fairfax Mixed-Use Project	Approved	7901 W. Beverly Boulevard	Apartments Retail	71 DU 11,454 GSF		493	7	29	36	30	16	46
LA6	333 La Cienega Boulevard Project	Under Construction	333 S. La Cienega Boulevard	Apartments Supermarket Restaurant	145 DU 27,685 GSF 3,370 GSF	[3]	2,020	35	71	106	114	77	191
LA7	6399 W. Wilshire Boulevard Mixed-Use Hotel	Under Construction	6399 W. Wilshire Boulevard	Hotel Restaurant Lounge	176 Rooms 871 GSF 860 GSF		377	(64)	19	(45)	26	(48)	(22)
LA8	Unified Elder Care Facility/ Mixed-Use	Proposed	8052 W. Beverly Boulevard	Synagogue Apartments Medical Office Retail	5,000 GSF 102 DU 15,000 GSF 1,000 GSF		725	19	26	45	21	49	70
LA9	8000 W. Beverly Boulevard Mixed-Use Project	Proposed	8000 W. Beverly Boulevard	Apartments Retail	48 DU 7,400 GSF		774	21	36	57	42	17	59
LA10	Edin Park	Proposed	8001 W. Beverly Boulevard	Restaurant Office	22,600 GSF 11,358 GSF		3,248	142	118	260	157	106	263
LA11	488 S. San Vicente Boulevard Mixed-Use Project	Proposed	488 S. San Vicente Boulevard	Apartments Retail	53 DU 6,585 GSF		281	1	20	21	18	9	27
LA12	Solstice	Proposed	431 N. La Cienega Boulevard	Apartments Car Wash Retail	72 DU (7,373) GSF (5,310) GSF	[4]	(409)	(9)	10	1	(12)	(22)	(34)

Table 3 RELATED PROJECTS LIST AND TRIP GENERATION [1]

Table 3 (Continued) RELATED PROJECTS LIST AND TRIP GENERATION [1]

				LAND USE DATA LAND-USE SIZE		PROJECT	DAILY	AN	1 PEAK H	OUR	P	A PEAK H	OUR
MAP	PROJECT NAME/	PROJECT	ADDRESS/	LAND USE	E DATA	DATA	TRIP ENDS [2]	<u> </u>	OLUMES	[2]		OLUMES	[2]
NO.	PROJECT NUMBER	STATUS	LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	IN	001	TOTAL	IN	001	TOTAL
LA13	Third Street Mixed-Use Project	Proposed	8000 W. 3rd Street	Apartments Affordable Housing Retail	45 DU 5 DU 7,251 GSF		428	9	17	26	23	13	36
LA14	7951 W. Beverly Boulevard Mixed-Use Project	Proposed	7951 W. Beverly Boulevard	Apartments Affordable Housing Retail Restaurant	51 DU 6 DU 1,142 GSF 6,294 GSF		782	30	32	62	40	26	66
LA15	316 N. La Cienega Boulevard Mixed-Use Project	Proposed	316 N. La Cienega Boulevard	Apartments Affordable Housing Retail	44 DU 6 DU 4,096 GSF		119	5	15	20	15	11	26
LA16	3rd and Fairfax Project	Proposed	6300-6370 W. 3rd Street, 300-370 S. Fairfax Avenue, and 347 S. Ogden Drive	Apartments Retail Restaurant Supermarket	331 DU 13,412 GSF 7,500 GSF 63,085 GSF	[5]	1,609	49	93	142	66	21	87
LA17	656 S. San Vicente Medical Office Project	Proposed	650-676 S. San Vicente Boulevard	Medical Office Retail Retail	140,305 GSF 5,000 GSF (8,225) GSF	[6] [7] [7]	4,883 189 (310)	304 3 (5)	86 2 (3)	390 5 (8)	136 9 (15)	349 10 (16)	485 19 (31)
				City of B	everly Hills	1							
BH1	Beverly Hills Media Center Project	Proposed	100 N. Crescent Drive	Office Restaurant Office	156,825 GSF 4,330 GSF (106,085) GSF	[8] [9] [8]	1,527 486 (1,033)	157 24 (106)	25 19 (17)	182 43 (123)	29 26 (20)	151 16 (102)	180 42 (122)
BH2	55 N. La Cienega Boulevard Mixed-Use Hotel Project	Proposed	55 N. La Cienega Boulevard	Hotel Retail Restaurant Restaurant	200 Rooms 10,222 GSF 3,346 GSF (13,500) GSF	[10] [7] [9] [9]	1,672 386 375 (1,514)	55 6 18 (74)	39 4 15 (60)	94 10 33 (134)	61 19 20 (82)	59 20 13 (50)	120 39 33 (132)
BH3	168 N. La Peer Drive Residential Project	Under Construction	154-168 N. La Peer Drive	Condominiums Condominiums	16 DU (6) DU	[12] [12]	117 (44)	2 (1)	5 (2)	7 (3)	6 (2)	3 (1)	9 (3)
BH4	457 N. Oakhurst Drive Residential Project	Proposed	457 N. Oakhurst Drive	Condominiums Condominiums	8 DU (2) DU	[12] [12]	59 (15)	1 0	3 (1)	4 (1)	3 (1)	1 0	4 (1)
BH5	425 N. Palm Drive Residential Project	Proposed	425 N. Palm Drive	Condominiums Condominiums	20 DU (18) DU	[12] [12]	146 (132)	2 (2)	7 (6)	9 (8)	7 (6)	4 (4)	11 (10)
BH6	Gardenhouse Mixed-Use Project	Under Construction	8600 Wilshire Boulevard	Apartments Retail	18 DU 6,355 GSF	[12] [7]	132 240	2 4	6 2	8 6	6 12	4 12	10 24
BH7	9000 Wilshire Boulevard Office Project	Approved	9000 Wilshire Boulevard	Retail Office	(4,820) GSF 31,702 GSF	[7] [8]	(182) 309	(3) 32	(2) 5	(5) 37	(9) 6	(9) 30	(18) 36

Table 3 (Continued) RELATED PROJECTS LIST AND TRIP GENERATION [1]

				LAND USE DATA		PROJECT	CCT DAILY AM PEAK HOUR			OUR	PM PEAK HOUR			
MAP	PROJECT NAME/	PROJECT	ADDRESS/	LAND USE	E DATA	DATA	TRIP ENDS [2]	V	OLUMES	[2]	,	VOLUMES	[2]	
NO.	PROJECT NUMBER	STATUS	LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL	
BH8	9145 Wilshire Boulevard Project	Proposed	9145 Wilshire Boulevard	Religious Facility	8,269 GSF	[13]	240	13	7	20	14	10	24	
BH9	9200 Wilshire Boulevard Mixed-Use Project	Approved	9200 Wilshire Boulevard	Apartments Retail	54 DU 14,000 GSF	[12] [7]	395 529	6 8	19 5	25 13	19 25	11 28	30 53	
BH10	9107 Wilshire Boulevard Hotel Project	Approved	9107 Wilshire Boulevard	Hotel Restaurant Office	154 Rooms 7,433 GSF (129,822) GSF	[14]	646	(84)	10	(74)	62	(61)	1	
				City of We	st Hollywood									
WH1	8816 Beverly Boulevard Mixed-Use Project	Proposed	8816 Beverly Boulevard	Apartments Retail Restaurant Office	10 DU 19,493 GSF 1,860 GSF 25,575 GSF	[15]	959	47	18	65	31	54	85	
WH2	8650 Melrose Avenue Mixed-Use Project	Proposed	8650 Melrose Avenue	Apartments Retail	7 DU 14,571 GSF	[12] [7]	51 550	1 9	2 5	3 14	3 27	1 29	4 56	
WH3	Robertson Lane Hotel	Approved	645-681 Roberston Boulevard & 648-668 La Peer Drive	Hotel Restaurant Specialtay Retail Design Showroom Nightclub	241 Rooms 22,615 GSF 18,130 GSF 10,325 GSF 3,780 GSF	[16]	2,390	77	51	128	80	77	157	
WH4	Sprouts - 8550 Santa Monica Boulevard Project	Under Construction	8550 Santa Monica Boulevard	Grocery Store Restaurant Office Health/Fitness Club Specialty Retail	25,000 GSF 1,319 GSF 3,998 GSF 8,000 GSF 4,000 GSF	[17]	1,989	48	29	77	92	89	181	
WH5	8555 Santa Monica Boulevard Mixed-Use Project	Proposed	8555 Santa Monica Boulevard	Apartments Live-Work Condominiums Office Specialty Retail Restaurant	97 DU 12 DU 6,080 GSF 19,400 GSF 2,820 GSF	[18]	809	11	40	51	42	24	66	
WH6	9001 Santa Monica Boulevard Mixed-Use Project	Proposed	9001 Santa Monica Boulevard	Condominiums Retail Restaurant	42 DU 9,850 GSF 9,800 GSF	[16]	829	16	(8)	8	31	16	47	

PROJECT DAILY AM PEAK HOUR PM PEAK HOUR ADDRESS/ FRIP ENDS [2] VOLUMES [2] MAP PROJECT NAME/ PROJECT LAND USE DATA DATA VOLUMES [2] NO. PROJECT NUMBER STATUS LOCATION LAND-USE SIZE SOURCE VOLUMES IN OUT TOTAL IN OUT TOTAL WH7 Melrose Triangle Under 9040-9048 Santa Monica Boulevard General Retail 45,112 GSF [19] 3,578 193 67 260 123 180 303 Construction Art Gallery 16,404 GSF Design Showroom 12,303 GSF Restaurant 8,202 GSF Apartments 76 DU General Office 137,064 GSF WH8 8763 Rosewood Avenue 8763 Rosewood Avenue 4,945 GSF 187 3 2 5 9 10 19 Proposed Retail [7] Mixed-Use Project WH9 8713 Beverly Boulevard Proposed 8713 Beverly Boulevard Apartments 30 DU [15] 303 9 15 24 22 20 42 Mixed-Use Project Office 3,416 GSF 5,475 GSF Retail Gallery 500 GSF WH10 417 Robertson Boulevard Proposed 417 Robertson Boulevard Retail 7,558 GSF [7] 285 4 3 7 14 15 29 Showroom Project WH11 829 Larrabee Street Proposed 829 Larrabee Street Apartments 13 DU [12] 95 1 5 6 4 3 7 Residential Project WH12 511 N. Flores Street 511 N. Flores Street 73 4 10 DU [12] 5 4 2 6 Proposed Apartments 1 Residential Project WH13 600 N. La Cienega Boulevard Proposed 600 N. La Cienega Boulevard Apartments 5 DU [12] 37 0 2 2 2 3 1 Mixed-Use Project 15,727 GSF [7] 594 9 6 15 29 31 60 Showroom 105 5 11 2,776 GSF 2 3 Mechanical [7] 1 6 10 202 5 10 20 Retail 5,355 GSF [7] 3 2 32 71 43 26 69 Restaurant 7,094 GSF [9] 796 39 624 N. La Cienega Boulevard 624 N. La Cienega Boulevard [12] 44 2 3 2 WH14 Proposed Apartments 6 DU 1 3 1 Mixed-Use Project 54,209 GSF 2,046 19 99 108 207 Retail [7] 32 51 8899 Beverly Boulevard 17 (37) WH15 Approved 8899 Beverly Boulevard Apartments 12 DU [20] (129) (69) 21 (48) (54) Mixed-Use Project Condominiums 56 DU Townhomes 13 DU Office 10,562 GSF 19.875 GSF Retail 4,394 GSF Restaurant

Table 3 (Continued) RELATED PROJECTS LIST AND TRIP GENERATION [1]

Table 3 (Continued) RELATED PROJECTS LIST AND TRIP GENERATION [1]

MAP	PROJECT NAME/	PROJECT	ADDRESS/	LAND US	E DATA	PROJECT DATA	DAILY TRIP ENDS [2]	AN	1 PEAK H OLUMES)UR [2]	P	M PEAK H VOLUMES	OUR
NO.	PROJECT NUMBER	STATUS	LOCATION	LAND-USE	SIZE	SOURCE	VOLUMES	IN	OUT	TOTAL	IN	OUT	TOTAL
WH16	8950 Sunset Boulevard Hotel Project	Proposed	8950 Sunset Boulevard	Hotel Apartments Specialty Dining Restaurant Whiskey Bar Day Spa 3-Meal Restaurant Lounge	165 Rooms 4 DU 7,697 GSF 5,578 GSF 2,002 GSF 9,230 GSF 2,505 GSF 3,685 GSF	[21]	2,539	63	49	112	121	89	210
WH17	The Arts Club	Proposed	8920 Sunset Boulevard	Private Club Museum Office Specialty Retail	7,000 Members 2,192 GSF 46,009 GSF 11,933 GSF	[22]	1,961	103	19	122	68	91	159
TOTA	L						42,320	1,367	1,102	2,469	1,832	1,/50	3,582

[1] Source: City of Los Angeles Department of Transportation Related Projects List, City of Beverly Hills Community Development Department Related Project List, and City of West Hollywood Community Development Department Related Projects List. [2] Trips are one-way traffic movements, entering or leaving.

[3] Source: 333 La Cienega Boulevard Traffic Study, prepared by The Mobility Group, March 2015.

[4] Source: Traffic Analysis Addendum - Proposed Residential Project at 431 N. La Cienega Boulevard, prepared by Linscott, Law & Greenspan, Engineers, May 2018

[5] Source: Traffic Assessment for the 6300 W. 3rd Street Mixed-Use Project, prepared by Linscott, Law & Greenspan, Engineers, July 17, 2019.

[6] ITE Land Use Code 720 (Medical-Dental Office Building) trip generation average rates.

[7] ITE Land Use Code 820 (Shopping Center) trip generation average rates.

[8] ITE Land Use Code 710 (General Office Building) trip generation average rates.

[9] ITE Land Use Code 932 (High-Turnover [Sit-Down] Restaurant) trip generation average rates.

[10] ITE Land Use Code 310 (Hotel) trip generation average rates.

[11] ITE Land Use Code 820 (Shopping Center) trip generation average rates.

[12] ITE Land Use Code 220 (Multifamily Housing [Low-Rise]) trip generation average rates.

[13] ITE Land Use Code 561 (Synagogue) trip generation average rates.

[14] Source: Revised Traffic Assessment for the Proposed Hotel Project at 9107 Wilshire Boulevard, prepared by Linscott, Law & Greenspan, Engineers, September 24, 2019.

[15] Source: Draft Transportation Study for the 8713 Beverly Boulevard Mixed-Use Project, prepared by Fehr & Peers, January 2016.

[16] Source: Traffic Impact Study for Robertson Lane Hotel Project, prepared by KOA Corporation, January 2017.

[17] Source: Transportation Study for the Sprouts - 8550 Santa Monica Boulevard Project, prepared by Fehr & Peers, June 2014.

[18] Source: Transportation Analysis Report for the 8555 Santa Monica Boulevard Mixed-Use Project, prepared by Fehr & Peers, January 2018.

[19] Source: Revised Traffic Impact Analysis for the Melrose Triangle Project, prepared by LSA Associates, Inc., December 2013.

[20] Source: Draft Transportation Study for the 8899 Beverly Boulevard Project, prepared by Gibson Transportation Consulting, Inc., November 2013.

[21] Source: Traffic Impact Assessment for the 8950 Sunset Boulevard Hotel Project, prepared by Linscott, Law & Greenspan, Engineers, September 2014.

[22] Source: Transportation Study for The Arts Club West Hollywood Project, prepared by Gibson Transportation Consulting, Inc., September 2017.

Table 4 SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE CITY OF LOS ANGELES INTERSECTIONS

			[1]				[2]	_	[3]				[4]	
					YEAR	2018			YEAR	2024	YEAR	2024		
			YEAR 2	2018	EXIST	ING	CHANGE	SIGNIF.	FUTURE	PRE-	FUTU	RE	CHANGE	SIGNIF.
		PEAK	EXIST	ING	W/ PRO	JECT	V/C	IMPACT	PROJI	ECT	W/ PRO	JECT	V/C	IMPACT
NO.	INTERSECTION	HOUR	V/C	LOS	V/C	LOS	[(2)-(1)]	[a]	V/C	LOS	V/C	LOS	[(4)-(3)]	[a]
1	Robertson Boulevard / 3rd Street	AM PM	0.625 0.622	B B	0.628 0.627	B B	0.003 0.005	NO NO	0.679 0.691	B B	0.682 0.695	B B	0.003 0.004	NO NO
2	Robertson Boulevard / Burton Way	AM PM	0.688 0.734	B C	0.689 0.736	B C	0.001 0.002	NO NO	0.748 0.796	C C	0.748 0.799	C C	0.000 0.003	NO NO
5	Willaman Drive / Burton Way	AM PM	0.599 0.619	A B	0.602 0.619	B B	0.003 0.000	NO NO	0.643 0.664	B B	0.647 0.664	B B	0.004 0.000	NO NO
6	San Vicente Boulevard / Beverly Boulevard	AM PM	0.669 0.695	B B	0.670 0.695	B B	0.001 0.000	NO NO	0.731 0.775	C C	0.733 0.775	C C	0.002 0.000	NO NO
7	Sherbourne Drive / 3rd Street	AM PM	0.459 0.447	A A	0.463 0.451	A A	0.004 0.004	NO NO	0.497 0.487	A A	0.500 0.491	A A	0.003 0.004	NO NO
8	San Vicente Boulevard / 3rd Street	AM PM	0.697 0.586	B A	0.699 0.587	B A	0.002 0.001	NO NO	0.776 0.667	C B	0.778 0.668	C B	0.002 0.001	NO NO

Table 4 (Continued) SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE CITY OF LOS ANGELES INTERSECTIONS

			[1]	[1]			[2]		[3]				[4]	
			YEAR	YEAR 2018 EXISTING		2018 ING	CHANGE	SIGNIF.	YEAR 2024 FUTURE PRE-		YEAR FUTU	2024 RE	CHANGE	SIGNIF.
		PEAK	EXIST	ING	W/ PRO	JECT	V/C	IMPACT	PROJ	ECT	W/ PRO	JECT	V/C	IMPACT
NO.	INTERSECTION	HOUR	V/C	LOS	V/C	LOS	[(2)-(1)]	[a]	V/C	LOS	V/C	LOS	[(4)-(3)]	[a]
9	San Vicente Boulevard-Le Doux Road /	AM	0.527	A	0.531	A	0.004	NO	0.572	A	0.575	A	0.003	NO
	Burton Way	PM	0.576	A	0.578	A	0.002	NO	0.624	B	0.625	B	0.001	NO
11	La Cienega Boulevard /	AM	0.651	B	0.652	B	0.001	NO	0.720	C	0.720	C	0.000	NO
	Beverly Boulevard	PM	0.859	D	0.860	D	0.001	NO	0.955	E	0.957	E	0.002	NO
12	La Cienega Boulevard /	AM	0.798	C	0.803	D	0.005	NO	0.867	D	0.872	D	0.005	NO
	3rd Street	PM	0.692	B	0.693	B	0.001	NO	0.757	C	0.758	C	0.001	NO
13	La Cienega Boulevard /	AM	0.654	B	0.655	B	0.001	NO	0.715	C	0.717	C	0.002	NO
	San Vicente Boulevard	PM	0.663	B	0.667	B	0.004	NO	0.735	C	0.738	C	0.003	NO

[a] According to LADOT's "Transportation Impact Study Guidelines", December 2016, a transportation impact on an intersection shall be deemed significant in accordance with the following table:

<u>Final v/c</u>	LOS	Project Related Increase in v/c
0.701 - 0.800	С	equal to or greater than 0.040
0.801 - 0.900	D	equal to or greater than 0.020
> 0.901	E, F	equal to or greater than 0.010

Table 5SUMMARY OF VOLUME TO CAPACITY RATIOSAND LEVELS OF SERVICEAM AND PM PEAK HOURSCITY OF BEVERLY HILLS INTERSECTIONS

			[1]		[2] YEAR 2018 C		[2]		[3]				[4]	
			YEAR	2018	YEAR	2018	CHANGE		YEAR	2024	YEAR	2024	CHANGE	
			EXIST	ING	EXIST	ING	IN		FUTURE	PRE-	FUTU	JRE	IN	
					W/ PRO	JECT	DELAY	SIGNIF.	PROJI	ECT	W/ PRO	JECT	DELAY	SIGNIF.
		PEAK	DELAY		DELAY		OR V/C	IMPACT	DELAY		DELAY		OR V/C	IMPACT
NO.	INTERSECTION	HOUR	OR V/C	LOS	OR V/C	LOS	[(2)-(1)]	[a]	OR V/C	LOS	OR V/C	LOS	[(4)-(3)]	[a]
2	Robertson Boulevard /	AM	0.802	D	0.802	D	0.000	NO	0.855	D	0.855	D	0.000	NO
	Burton Way	PM	0.843	D	0.845	D	0.002	NO	0.898	D	0.900	D	0.002	NO
3	Robertson Boulevard /	AM	0.858	D	0.861	D	0.003	NO	0.916	Е	0.918	Е	0.002	NO
	Wilshire Boulevard	PM	0.842	D	0.843	D	0.001	NO	0.903	Е	0.904	Е	0.001	NO
13	La Cienega Boulevard /	AM	0.807	D	0.808	D	0.001	NO	0.864	D	0.866	D	0.002	NO
	San Vicente Boulevard	PM	0.815	D	0.819	D	0.004	NO	0.883	D	0.886	D	0.003	NO
14	La Cienega Boulevard /	AM	0.713	С	0.714	С	0.001	NO	0.771	С	0.772	С	0.001	NO
	Wilshire Boulevard	PM	0.694	В	0.694	В	0.000	NO	0.773	С	0.773	С	0.000	NO

[a] According to the City of Beverly Hills' "Traffic Thresholds of Significance", Adopted October 2010, an impact is considered significant if the final volume-to-capacity ratio (v/c) equals or exceeds the thresholds shown below:

Level of Service	Final V/C
D	> 0.800 - 0.900
E/F	> 0.900

<u>Project-Related Increase in V/C</u> equal to or greater than 0.030 equal to or greater than 0.020 11-Feb-20

Table 6 SUMMARY OF DELAY VALUES AND LEVELS OF SERVICE [A] AM AND PM PEAK HOURS CITY OF WEST HOLLYWOOD INTERSECTIONS

															11-Feb-20
				[1]			[2]		[3]			[4	4]	
						YEAR	R 2018					YEAR	R 2024		
				YEAR	2018	EXISTIN	G PLUS	CHANGE	SIGNIF.	YEAR	2024	FUTUR	E PLUS	CHANGE	SIGNIF.
		INTERSECTION	PEAK	EXIST	ING	PROPOSED	PROJECT	DELAY	IMPACT	FUTU	RE	PROPOSED	PROJECT	DELAY	IMPACT
NO.	INTERSECTION	TYPE	HOUR	DELAY [B]	LOS [C]	DELAY	LOS	[(2)-(1)]	[D]	DELAY [B]	LOS [C]	DELAY	LOS	[(4)-(3)]	[D]
4	San Vicente Boulevard / Melrose Avenue	Commercial Corridor	AM PM	18.6 18.4	B B	18.6 18.4	B B	0.0 0.0	NO NO	19.6 19.0	B B	19.7 19.0	B B	0.1 0.0	NO NO
6	San Vicente Boulevard / Beverly Boulevard	Commercial Corridor	AM PM	24.0 26.5	C C	24.0 26.5	C C	0.0 0.0	NO NO	25.3 31.5	C C	28.5 31.5	C C	3.2 0.0	NO NO
10	La Cienega Boulevard / Melrose Avenue	Commercial Corridor	AM PM	20.4 21.7	C C	20.4 21.7	C C	0.0 0.0	NO NO	22.0 23.9	C C	22.0 23.9	C C	0.0 0.0	NO NO

[A] Intersection analysis based on the Highway Capacity Manual 2010 operational analysis methodologies, per the City of West Hollywood.

[B] Control delay reported in seconds per vehicle.

[C] Signalized Intersection Levels of Service were based on the following criteria:

Control Delay (s/veh)	LOS
<= 10	Α
> 10-20	в
> 20-35	С
> 35-55	D
> 55-80	Е
> 80	F

[D] According to the City of West Hollywood, a transportation impact on an intersection shall be deemed significant in accordance with the following criteria:

P	roject	Related	Increase	in Delay

LOS	Commercial Corridor	Signalized	Two-Way Stop
D	12 seconds	8 seconds	5 seconds
E	8 seconds	5 seconds	5 seconds
F	8 seconds	5 seconds	5 seconds

APPENDIX A

MANUAL TRAFFIC COUNT DATA

321 San Vicente Blvd/333 San Vicente Blvd & East of S Holt Ave

National Data & Surveying Services

Location: 321 San Vicente Blvd/333 San Vicente Blvd & East of S Holt Ave City: Los Angeles Control: No Control

Project ID: 19-05683-001-004 Date: 11/14/2019

Control:	No Control							То	tal					Date:	11/14/2019		
NS/EW Streets:	321 San V	icente Blvd/	333 San Vic	ente Blvd	321 San Vie	cente Blvd/	333 San Vic	ente Blvd		East of S	Holt Ave			East of S	Holt Ave		
AM	0 NL	NORTH 1 NT	IBOUND <mark>0</mark> NR	0 NU	0 SL	SOUTH 1 ST	IBOUND <mark>0</mark> SR	0 SU	0 EL	EASTE 1 ET	OUND 0 ER	<mark>0</mark> EU	0 WL	WESTE 1 WT	BOUND 0 WR	0 WU	TOTAL
7:00 AM 7:15 AM 7:30 AM	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	2 1 2	0 0 0	0 0 1	0 0 3	0 1 0	0 0 0	0 0 1	1 3 2	1 0 0	0 0 0	4 5 9
7:45 AM 8:00 AM	0	0	0	0	0	0	2	0	0	5 3	<u>1</u> 0	0	0	2	0	0	10 7
8:15 AM 8:30 AM 8:45 AM	0 0 0	0 0 0	0 0 0	0 0 0	0 1 0	0 2 0	2 2 1	0 0 0	2 0 0	0 1 0	1 1 1	0 0 0	0 0 0	2 6 2	1 0 0	0 0 0	8 13 4
9:00 AM 9:15 AM 9:30 AM 9:45 AM	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 1 0	0 0 0 0	1 2 3 0	0 0 0 0	1 0 0 0	0 0 2 1	0 0 0 1	0 0 0 0	0 0 0 0	4 0 2 1	0 0 0 1	0 0 0 0	7 2 9 4
TOTAL VOLUMES : APPROACH %'s :	NL 1 100.00%	NT 0 0.00%	NR 0 0.00%	NU 0 0.00%	SL 4 15.38%	ST 2 7.69%	SR 20 76.92%	SU 0 0.00%	EL 4 16.00%	ET 15 60.00%	ER 6 24.00%	EU 0 0.00%	WL 1 3,33%	WT 25 83.33%	WR 4 13.33%	WU 0 0.00%	TOTAL 82
PEAK HR : PEAK HR VOL : PEAK HR FACTOR :	0 0.000	07:45 AM - 0 0.000	08:45 AM 0 0.000	0 0.000	2 0.500	2 0.250 0.6	8 1.000	0 0.000	2 0.250	9 0.450 0.5	3 0.750 33	0 0.000	0 0.000	10 0.417 0.5	2 0.500 00	0 0.000	TOTAL 38 0.731
ΝΟΟΝ	0	NORTH	IBOUND	0	0	SOUTH	IBOUND	0	0	EASTE	OUND	0	0	WESTE	BOUND		
3:00 PM	NL	NT	NR	NU	SL	ST 0	5R 1	SU	EL	ET 4	ER	EU	WL	WT	WR	WU	TOTAL
3:15 PM 3:30 PM	0	0	0	0	0	0	0 2	0	2	5 4	0	0	0	3 0	0	0	10 7
3:45 PM 4:00 PM	0	0	0	0	0	2	2	0	1	7	0	0	0	2	0	0	14 11
4:15 PM 4:30 PM 4:45 PM	0 0 0	0 0 0	0 0 1	0 0 0	0 0 0	0 0 0	0 2 0	0 0 0	3 2 3	5 3 6	1 0 0	0 0 0	0	0 0 2	1 0 0	0 0 0	10 7 12
5:00 PM 5:15 PM 5:30 PM 5:45 PM	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 1 0	0 0 0 0	1 0 0 1	0 0 0 0	1 4 1 2	8 5 8 2	2 1 1 1	0 0 0 0	0 0 0 0	1 1 2 4	1 0 0 0	0 0 0 0	15 11 14 10
TOTAL VOLUMES : APPROACH %'s :	NL 1 50.00%	NT 0 0.00%	NR 1 50.00%	NU 0 0.00%	SL 2 15.38%	ST 2 15.38%	SR 9 69.23%	SU 0 0.00%	EL 26 28.26%	ET 60 65.22%	ER 6 6.52%	EU 0 0.00%	WL 0 0.00%	WT 25 92.59%	WR 2 7.41%	WU 0 0.00%	TOTAL 134
PEAK HR : PEAK HR VOL : PEAK HR FACTOR :	1 0.250	04:45 PM - 0 0.000 0.5	1 0.250 00	0 0.000	2 0.500	0 0.000 0.3	1 0.250 75	0 0.000	9 0.563	27 0.844 0.9	4 0.500 09	0 0.000	0 0.000	6 0.750 0.8	1 0.250 75	0 0.000	52 0.867
PM	0	NORTH	IBOUND	0	0	SOUTH	IBOUND	0	0	EASTE 1	OUND 0	0	0	WESTE 1	BOUND	0	
9:00 PM	NL 0	NT 0	NR 0	NU 0	SL 0	ST 0	SR 0	SU 0	EL 2	ET 1	ER 0	EU	WL 0	WT 0	WR 0	WU 0	TOTAL 3
9:15 PM 9:30 PM	03	0	0	0	0	0	0	0	0	1	0	0	0	1 0 0	0	0	2 4 2
10:00 PM 10:15 PM	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	2
10:30 PM 10:45 PM	1 0	0	0	0	0	0 0	0 0	0 0	1 1	2 0	0 0	0 0	0 0	2 0	0 2	0 0	6 3
TOTAL VOLUMES : APPROACH %'s :	NL 6 85.71 <u>%</u>	NT 0 0.00%	NR 1 14.29%	NU 0 0.00%	SL 0	ST 0	SR 0	SU 0	EL 6 50.00%	ET 5 41.67%	ER 1 8.33%	EU 0 0.00%	WL 0 0.00%	WT 3 60.00%	WR 2 40.00%	WU 0 0.00%	TOTAL 24
PEAK HR : PEAK HR VOL : PEAK HR FACTOR :	5 0.417	09:00 PM - 0 0.000 0.5	10:00 PM 1 0.250 00	0 0.000	0 0.000	0 0.000	0 0.000	0 0.000	2 0.250	3 0.750 0.4	0 0.000 17	0 0.000	0 0.000	1 0.250 0.2	0 0.000 50	0 0.000	TOTAL 12 0.750
						_				_	_			_			

321 San Vicente Blvd/333 San Vicente Blvd & West of San Vicente Blvd

Peak Hour Turning Movement Count

National Data & Surveying Services

Date: 11/14/2019

Location: 321 San Vicente Blvd/333 San Vicente Blvd & West of San Vicente Blvd City: Loc Angeler City: Los Angeles Control: No Control Project ID: 19-05683-002-003

Total NS/EW Streets: 321 San Vicente Blvd/333 San Vicente Blvd 321 San Vicente Blvd/333 San Vicente Blvd West of San Vicente Blvd West of San Vicente Blvd NORTHBOUND SOUTHBOUND FASTBOUND WESTBOUND AM 0 0 0 Λ Λ Λ Λ n TOTAL NL NT NR NU SL SR SU EL ER EU WL WT WR WU 7:00 AN 0 0 0 0 0 0 0 0 0 0 0 0 0 ŏ 7:15 AM 0 0 0 ō 3 9 7:30 AM 0 0 0 0 0 0 0 0 0 7:45 AM 8:00 AM 10 8:15 AM 8:30 AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 8 0 0 ñ ñ ñ ñ 8:45 AM 9:00 AM 0 0 9:15 AM 9:30 AM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 9 6 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 ŏ ŏ ĩ 9:45 AM Ô. 1 0 1 1 ÷. Ó SU 0 ET 15 ER EU 0 WR 4 TOTAL NL NT NR NU SL 4 ST 4 SR EL 2 WL 7 WT WU 0 TOTAL VOLUMES 0 0 10 2 20 0 69 0.00 0.009 100.009 0.00 10.53 0.00 22.58 12.90% APPROACH %'s 22.22 22.22% 55.56% 10.53 78.95% 64.52% 0.00 TOTAL PEAK HR : 7:15 AM 08:15 A PEAK HR VOL 0 0 0 11 0 0 29 0.000 0.750 0.000 0.000 0.250 0.550 0.500 0.625 PEAK HR FACTOR 0.000 0.000 0.000 0.625 0.000 0.000 0.500 0.000 0.725 0.667 0.600 0.750 NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND NOON 0 0 0 0 0 0 0 0 0 0 0 0 1 TOTAL 11 9 5 NR SU WT WR WU NT NU Sl S٦ SF ER EU WL 3:00 PN 0 0 0 3:15 PM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3:30 PM ō ñ ñ ñ ō 3:45 PN 0 9 4:00 PM 0 0 10 0 0 0 4:15 PM 4:30 PM ō 0 ō Ō Ō Ō ō ō 8 0 0 0 0 0 0 0 0 0 0 0 0 4:45 PN 5:00 PN 10 11 6 12 8 0 0 0 0 5:15 PM 0 0 0 0 0 0 0 1 3 1 0 1 0 0 5:30 PM 5:45 PM 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0 1 2 õ ī 1 N NR NU SL 0 S٦ SR SU EL 9 FR EU WL W WF WU OTA TOTAL VOLUMES 2 4 1 0 0 4 0 42 12 0 5 21 3 0 103 <u>28.57</u>% APPROACH %'s 57.149 14.29 0.009 0.00% 0.00% 100.00% 0.00% 14.29% 66.67% 19.05% 0.00 17.249 72.41% 10.349 0.009 TOTAL PEAK HR : :45 PN 05:45 PEAK HR VOL : PEAK HR FACTOR : 0 0 0 6 18 6 0 1 0 0 39 1 0.500 0.000 0.250 0.000 0.000 0.000 0.250 0.000 0.500 0.643 0.500 0.000 0.250 . 1.000 0.000 0.000 0.813 0.833 SOUTHBOUND NORTHBOUND EASTBOUND WESTBOUND ΡM 0 0 0 ٥ ٥ ٥ 0 0 Λ TOTAL NR NU SU WT WR WU NL NT SL 0 ST SR EL ET ER EU WL 9:00 PM 3 9:15 PM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9:30 PM 0 0 0 0 0 0 0 0 0 0 0 0 1 9:45 PM 10:00 PN 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 10:15 PM 0 0 0 0 0 0 0 0 0 0 0 0 10.30 PM 0 Ó 0 0 0 0 0 0 Ô Ô 0 Ô 0 Ô Ô 10:45 PM ō õ õ õ 0 õ õ 2 õ 0 0 NR NU S SR SU FR EU WL W WF OTAL N. SL Εl WU

0 0.00%

0

0.000

0

0

0.000

0.00%

1

100 00%

0

0.000

0

0

0.000

0.00%

2

2

0.500

33 339

4

0.500

.

0

0

0.000

1.000

0.00%

0

0.00

0

0.000

1

1

0.250

25.00%

2

0

0.000

0.500

50 00%

1

0.250

25 00%

0

0

0.000

0.00%

13

TOTAL

7

0.583

0 0.009

0

0.000

TOTAL VOLUMES

PEAK HR VOL : PEAK HR FACTOR :

APPROACH %'s

PEAK HR :

2 100.00%

0.250

0

0.00%

00 PN

0

0.000

0

0.000

0.009

APPENDIX B

HCM AND LEVELS OF SERVICE EXPLANATION HCM UNSIGNALIZED INTERSECTION DATA WORKSHEETS – WEEKDAY AM AND PM PEAK HOURS

LEVEL OF SERVICE FOR UNSIGNALIZED INTERSECTIONS

In the *Highway Capacity Manual (HCM)*, published by the Transportation Research Board, 2010, level of service for unsignalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, in the absence of incidents, control, traffic, or geometric delay. Only the portion of total delay attributed to the traffic control measures, either traffic signals or stop signs, is quantified. This delay is called *control delay*. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for unsignalized intersections are stated in terms of the average control delay per vehicle. The level of service is determined by the computed or measured control delay and is defined for each minor movement. Average control delay for any particular minor movement is a function of the service time for the approach and the degree of utilization. (Level of service is not defined for the intersection as a whole for two-way stop controlled intersections.)

Level of Service Criteria f	or TWSC/AWSC Intersections
Level of Service	Average Control Delay (Sec/Veh)
А	≤ 10
В	$> 10 \text{ and } \le 15$
С	> 15 and ≤ 25
D	> 25 and ≤ 35
Е	$>$ 35 and \leq 50
F	> 50

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize *HCM* criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle.

LOS B describes operations with control delay greater than 10 and up to 15 seconds per vehicle.

LOS C describes operations with control delay greater than 15 and up to 25 seconds per vehicle.

LOS D describes operations with control delay greater than 25 and up to 35 seconds per vehicle.

LOS E describes operations with control delay greater than 35 and up to 50 seconds per vehicle.

LOS F describes operations with control delay in excess of 50 seconds per vehicle. For two-way stop controlled intersections, LOS F exists when there are insufficient gaps of suitable size to allow side-street demand to safely cross through a major-street traffic stream. This level of service is generally evident from extremely long control delays experienced by side-street traffic and by queuing on the minor-street approaches.

HCS7 Two-Way Stop-Control Report

General Information		Site Information							
Analyst	JAS	Intersection	Res. Dwy-Church Dwy/Alley						
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles						
Date Performed	12/12/2019	East/West Street	Alley						
Analysis Year	2019	North/South Street	Res. Dwy-Church Dwy						
Time Analyzed	Existing - AM	Peak Hour Factor	1.00						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Our Lady of Mt. Lebanon								

Lanes

/ . l. ¹ . l . . . / . l

. . ..

Major Street: East-West

venicle volumes and Adj	ustme	nts														
Approach	Eastbound Westbound							North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LR				LR	
Volume, V (veh/h)		3	9	3		2	5	4		0		0		5		15
Percent Heavy Vehicles (%)		3				3				3		3		3		3
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized		No No								Ν	lo			Ν	lo	
Median Type/Storage																
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2		7.1		6.2
Critical Headway (sec)		4.13				4.13				7.13		6.23		7.13		6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3
Follow-Up Headway (sec)		2.23				2.23				3.53		3.33		3.53		3.33
Delay, Queue Length, and	l Leve	l of S	ervice	,												
Flow Rate, v (veh/h)		3				2					0				20	
Capacity, c (veh/h)		1602				1598					0				1046	
v/c Ratio		0.00				0.00									0.02	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.1	
Control Delay (s/veh)		7.3				7.3					5.0				8.5	
Level of Service, LOS		A				A					A				A	
Approach Delay (s/veh)		1	5			1				5	.0		8.5			
Approach LOS											Ą				Ą	

Copyright © 2019 University of Florida. All Rights Reserved.

HCS7 Two-Way Ston-Control Report

General Information		Site Information							
Analyst	JAS	Intersection	Res. Dwy-Church Dwy/Alley						
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles						
Date Performed	1/15/2020	East/West Street	Alley						
Analysis Year	2019	North/South Street	Res. Dwy-Church Dwy						
Time Analyzed	Existing - Pre-Event	Peak Hour Factor	1.00						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Our Lady of Mt. Lebanon								

Lanes

Vehicle Volumes and Adju	ustme	ents																	
Approach	Eastbound Westbound						North	bound			South	bound							
Movement	U	L	Т	R	U L T R				U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0			
Configuration			LTR				LTR				LR				LR				
Volume, V (veh/h)		15	15	10		1	3	1		3		2		2		2			
Percent Heavy Vehicles (%)		3				3				3		3		3		3			
Proportion Time Blocked																			
Percent Grade (%)											C				0				
Right Turn Channelized		No No							No No										
Median Type/Storage		Undivided									<u> </u>								
Critical and Follow-up He	adwa	ys																	
Base Critical Headway (sec)																			
Critical Headway (sec)																			
Base Follow-Up Headway (sec)																			
Follow-Up Headway (sec)																			
Delay, Queue Length, and	l Leve	l of S	ervice	I															
Flow Rate, v (veh/h)		15				1					5				4				
Capacity, c (veh/h)		1609				1581					975				997				
v/c Ratio		0.01				0.00					0.01				0.00				
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0				0.0				
Control Delay (s/veh)		7.3				7.3					8.7				8.6				
Level of Service, LOS		А				А					А				A				
Approach Delay (s/veh)		2	.8			1	.5			8	.7		8.6						
Approach LOS											4		A						

HCS7 Two-Way Stop	-Control Report

General Information		Site Information							
Analyst	JAS	Intersection	Res. Dwy-Church Dwy/Alley						
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles						
Date Performed	12/12/2019	East/West Street	Alley						
Analysis Year	2019	North/South Street	Res. Dwy-Church Dwy						
Time Analyzed	Existing - Post-Event	Peak Hour Factor	1.00						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Our Lady of Mt. Lebanon								

Lanes

Major Street: East-West

Vehicle Volumes and Adj	ustme	ents															
Approach	Eastbound Westbound									North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LR				LR		
Volume, V (veh/h)		4	1	0		1	0	1		6		1		0		0	
Percent Heavy Vehicles (%)		3				3				3		3		3		3	
Proportion Time Blocked																	
Percent Grade (%)											0			(0		
Right Turn Channelized		No No								Ν	lo			Ν	lo		
Median Type/Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1		6.2		7.1		6.2	
Critical Headway (sec)		4.13				4.13				7.13		6.23		7.13		6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53		3.33		3.53		3.33	
Delay, Queue Length, and	d Leve	l of S	ervice														
Flow Rate, v (veh/h)		4				1					7				0		
Capacity, c (veh/h)		1613				1613					1010				0		
v/c Ratio		0.00				0.00					0.01						
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0						
Control Delay (s/veh)		7.2				7.2					8.6				5.0		
Level of Service, LOS		A				A					А				A		
Approach Delay (s/veh)		5	.8			3	.6			8	.6		5.0				
Approach LOS											Ą		A				

Copyright $\ensuremath{\mathbb{C}}$ 2019 University of Florida. All Rights Reserved.

ICS7 Two-Way Ston -Control Po

General InformationSite InformationAnalystJASIntersectionRes. Dwy-Church Dwy/AlleyAgency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed1/30/2020East/West StreetAlleyAnalysis Year2019North/South StreetRes. Dwy-Church Dwy	ries/ two way stop control hepoir								
AnalystJASIntersectionRes. Dwy-Church Dwy/AlleyAgency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed1/30/2020East/West StreetAlleyAnalysis Year2019North/South StreetRes. Dwy-Church Dwy	General Information		Site Information						
Agency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed1/30/2020East/West StreetAlleyAnalysis Year2019North/South StreetRes. Dwy-Church Dwy	Analyst	JAS	Intersection	Res. Dwy-Church Dwy/Alley					
Date Performed 1/30/2020 East/West Street Alley Analysis Year 2019 North/South Street Res. Dwy-Church Dwy	Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Analysis Year 2019 North/South Street Res. Dwy-Church Dwy	Date Performed	1/30/2020	East/West Street	Alley					
	Analysis Year	2019	North/South Street	Res. Dwy-Church Dwy					
Time Analyzed Existing + Project - AM Peak Hour Factor 1.00	Time Analyzed	Existing + Project - AM	Peak Hour Factor	1.00					
Intersection Orientation East-West Analysis Time Period (hrs) 0.25	Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description Our Lady of Mt. Lebanon	Project Description	Our Lady of Mt. Lebanon							

Lanes

Vehicle Volumes and Adj	ustme	nts																	
Approach		Eastb	ound			West	bound			Northbound				South	bound				
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0			
Configuration			LTR				LTR				LR				LR				
Volume, V (veh/h)		3	9	11		3	5	4		25		9		5		15			
Percent Heavy Vehicles (%)		3				3				3		3		3		3			
Proportion Time Blocked																			
Percent Grade (%)											0				0				
Right Turn Channelized		Ν	10			Ν	10			Ν	10			No					
Median Type/Storage		Undivided																	
Critical and Follow-up Ho	eadwa	ys																	
Base Critical Headway (sec)		4.1				4.1				7.1		6.2		7.1		6.2			
Critical Headway (sec)		4.13				4.13				7.13		6.23		7.13		6.23			
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3			
Follow-Up Headway (sec)		2.23				2.23				3.53		3.33		3.53		3.33			
Delay, Queue Length, and	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)		3				3					34				20				
Capacity, c (veh/h)		1602				1588					972				1039				
v/c Ratio		0.00				0.00					0.03				0.02				
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1				0.1				
Control Delay (s/veh)		7.3				7.3					8.8				8.5				
Level of Service, LOS		A				A					A				А				
Approach Delay (s/veh)		1	.0			1	.8			8	.8			8	.5				
Approach LOS											A				Ą				

Copyright @ 2020 University of Florida. All Rights Reserved.

HCS7 TM TWSC Version 7.4

Generated: 1/30/2020 12:27:19 PM

Existing with Project - AM.xtw

HCS7 Two-Way Stop-Control Report

General InformationSite InformationAnalystJASIntersectionRes. Dwy-Church Dwy/AlleyAgency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed1/30/2020East/West StreetAlleyAnalysis Year2019North/South StreetRes. Dwy-Church DwyTime AnalyzedEx+ Proj - Pre-EventPeak Hour Factor1.00Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25	ries/ iwo way stop control hepoir								
AnalystJASIntersectionRes. Dwy-Church Dwy/AlleyAgency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed1/30/2020East/West StreetAlleyAnalysis Year2019North/South StreetRes. Dwy-Church DwyTime AnalyzedEx+ Proj - Pre-EventPeak Hour Factor1.00Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25	General Information		Site Information						
Agency/Co.Linscott, Law & GreenspanJurisdictionCity of Los AngelesDate Performed1/30/2020East/West StreetAlleyAnalysis Year2019North/South StreetRes. Dwy-Church DwyTime AnalyzedEx+ Proj - Pre-EventPeak Hour Factor1.00Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25	Analyst	JAS	Intersection	Res. Dwy-Church Dwy/Alley					
Date Performed1/30/2020East/West StreetAlleyAnalysis Year2019North/South StreetRes. Dwy-Church DwyTime AnalyzedEx+ Proj - Pre-EventPeak Hour Factor1.00Intersection OrientationEast-WestAnalysis Time Period (hrs)0.25	Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Analysis Year 2019 North/South Street Res. Dwy-Church Dwy Time Analyzed Ex+ Proj - Pre-Event Peak Hour Factor 1.00 Intersection Orientation East-West Analysis Time Period (hrs) 0.25	Date Performed	1/30/2020	East/West Street	Alley					
Time Analyzed Ex+ Proj - Pre-Event Peak Hour Factor 1.00 Intersection Orientation East-West Analysis Time Period (hrs) 0.25	Analysis Year	2019	North/South Street	Res. Dwy-Church Dwy					
Intersection Orientation East-West Analysis Time Period (hrs) 0.25	Time Analyzed	Ex+ Proj - Pre-Event	Peak Hour Factor	1.00					
	Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description Our Lady of Mt. Lebanon	Project Description	Our Lady of Mt. Lebanon							

Lanes

Iviajor stre

Vehicle Volumes and Adj	ustme	nts															
Approach		Eastb	ound			West	bound			Northbound Southbound							
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LR				LR		
Volume, V (veh/h)		15	15	134		44	3	1		19		6		2		2	
Percent Heavy Vehicles (%)		3				3				3		3		3		3	
Proportion Time Blocked																	
Percent Grade (%)											0			2 2 3 3 0 0 N0 0 7.1 6.2 7.13 6.2			
Right Turn Channelized		Ν	lo			Ν	10			Ν	10		No				
Median Type/Storage		Undivided															
Critical and Follow-up He	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1		6.2		7.1		6.2	
Critical Headway (sec)		4.13				4.13				7.13		6.23		7.13		6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53		3.33		3.53		3.33	
Delay, Queue Length, and	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		15				44					25				4		
Capacity, c (veh/h)		1609				1425					774				863		
v/c Ratio		0.01				0.03					0.03				0.00		
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1				0.0		
Control Delay (s/veh)		7.3				7.6					9.8				9.2		
Level of Service, LOS		А				A					A				А		
Approach Delay (s/veh)		0	.7			7	.0			9	.8			9	.2		
Approach LOS											A				Ą		

Copyright @ 2020 University of Florida. All Rights Reserved.

HCS7 TM TWSC Version 7.4

Existing with Project - Pre-Event.xtw

Generated: 1/30/2020 12:30:18 PM

HCS7 Two-Way Ston-Control Re

ries/ iwo way stop control hepoir								
General Information		Site Information						
Analyst	JAS	Intersection	Res. Dwy-Church Dwy/Alley					
Agency/Co.	Linscott, Law & Greenspan	Jurisdiction	City of Los Angeles					
Date Performed	1/30/2020	East/West Street	Alley					
Analysis Year	2019	North/South Street	Res. Dwy-Church Dwy					
Time Analyzed	Ex + Proj - Post-Event	Peak Hour Factor	1.00					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Our Lady of Mt. Lebanon							

Lanes

					<mark>۴</mark> ا	or Street: Ea	st-West								
Vehicle Volumes and Ad	justme	nts													
Approach	Τ	Eastb	ound			West	ound			North	bound			South	bound
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1
Configuration			LTR				LTR				LR				LR
Volume, V (veh/h)		4	1	0		1	0	1		107		36		0	
Percent Heavy Vehicles (%)		3				3				3		3		3	
Proportion Time Blocked															
Percent Grade (%)										0		0			
Right Turn Channelized		Ν	10			N	0			Ν	10	No			
Median Type/Storage		Undivided													
Critical and Follow-up H	eadwa	ys													
Base Critical Headway (sec)		4.1				4.1				7.1		6.2		7.1	
Critical Headway (sec)		4.13				4.13				7.13		6.23		7.13	
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5	
Follow-Up Headway (sec)		2.23				2.23				3.53		3.33		3.53	
Delay, Queue Length, an	d Leve	l of S	ervice												
Flow Rate, v (veh/h)		4				1					143				0
Capacity, c (veh/h)		1613				1613					1019				0
v/c Ratio		0.00				0.00					0.14				
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.5				
Control Delay (s/veh)		7.2				7.2					9.1				5.0
Level of Service, LOS		A				A					A				A
Approach Delay (s/veh)		5	.8			3	.6			9	.1			5	.0
Approach LOS											A				A

All Rights Reserved. ιy

HCS7 1 TWSC Version 7.4 Existing with Project - Post-Event.xtw R

12

0

0

3

6.2

6.23

3.3

3.33

APPENDIX C

LADOT VMT CALCULATOR OUTPUT

CITY OF LOS ANGELES VMT CALCULATOR Version 1.2

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	153	DU
(custom) Church Retail/Non-Retail	Non-Retai	LU type
(custom) Church Residents	0	Person
(custom) Church Employees	6	Person
(custom) Church Daily	186	Trips
(custom) Church HBW-Attraction Split	5	Percent
(custom) Church HBO-Attraction Split	75	Percent
(custom) Church NHB-Attraction Split	10	Percent
(custom) Church HBW-Production Split	0	Percent
(custom) Church HBO-Production Split	0	Percent
(custom) Church NHB-Production Split	10	Percent

TDM Strategies

Select each section to show individual strategies Use ☑ to denote if the TDM strategy is part of the proposed project or is a mitigation strategy

Max Home Based TDM Achieved? Max Work Based TDM Achieved?	Proposed Project No No	With Mitigation No No
A Parki	ng	
B Trans	sit	
C Education & Eng	couragement	
D Commute Trip	Reductions	
E Shared M	obility	
Bicycle Infra	structure	
G Neighborhood I	nhancement	
Traffic Calming 25 per Improvements 100 per Proposed Prj Mitigation 100	cent of streets within p ning improvements cent of intersections wi fic calming improveme	roject with traffic thin project with nts
Pedestrian Network Improvements within project a Proposed Prj Mitigation	and connecting off-site	_

Analysis Results

Proposed Project	With Mitigation
618	580
Daily Vehicle Trips	Daily Vehicle Trips
3,516	3,312
Daily VMT	Daily VMT
6.2	5.8
Houseshold VMT	Houseshold VMT
per Capita	per Capita
2.8	2.8
Work VMT	Work VMT
Significant V	/MT Impact?
Household: Yes	Household: No
Threshold = 6.0	Threshold = 6.0
15% Below APC	15% Below APC
Work: No	Work: No
Threshold = 7.6	Threshold = 7.6
15% Below APC	15% Below APC

1/15/2020

Measuring the Miles

Report 1: Project & Analysis Overview

Date: January 15, 2020 Project Name: Our Lady of Mt. Lebanon Project Scenario: Proposed Project Project Address: 333 S SAN VICENTE BLVD, 90048

Project Information						
Lanc	l Use Type	Value	Units			
	Single Family	0	DU			
	Multi Family	153	DU			
Housing	Townhouse	0	DU			
-	Hotel	0	Rooms			
	Motel	0	Rooms			
	Family	0	DU			
Affardable Housing	Senior	0	DU			
Ajjoraable Housing	Special Needs	0	DU			
	Permanent Supportive	0	DU			
	General Retail	0.000	ksf			
	Furniture Store	0.000	ksf			
Retail	Pharmacy/Drugstore	0.000	ksf			
	Supermarket	0.000	ksf			
	Bank	0.000	ksf			
	Health Club	0.000	ksf			
	High-Turnover Sit-Down	0.000				
	Restaurant	0.000	ksf			
	Fast-Food Restaurant	0.000	ksf			
	Quality Restaurant	0.000	ksf			
	Auto Repair	0.000	ksf			
	Home Improvement	0.000	ksf			
	Free-Standing Discount	0.000	ksf			
	Movie Theater	0	Seats			
Office	General Office	0.000	ksf			
OJJICe	Medical Office	0.000	ksf			
	Light Industrial	0.000	ksf			
Industrial	Manufacturing	0.000	ksf			
	Warehousing/Self-Storage	0.000	ksf			
	University	0	Students			
	High School	0	Students			
School	Middle School	0	Students			
	Elementary	0	Students			
	Private School (K-12)	0	Students			
Other	Church	186	Trips			

Project and Analysis Overview

Report 1: Project & Analysis Overview

	Analysis Res	sults	
	Total Employees:	6	
	Total Population:	345	
Propos	ed Project	With M	itigation
618	Daily Vehicle Trips	580	Daily Vehicle Trips
3,516	Daily VMT	3,312	Daily VMT
6.2	Household VMT	F 0	Household VMT per
6.2	per Capita	5.8	Capita
2.0	Work VMT	20	Work VMT per
2.8	per Employee	2.8	Employee
	Significant VMT	Impact?	
	APC: Centr	al	
	Impact Threshold: 15% Belo	ow APC Average	
	Household = 6	5.0	
	Work = 7.6		
Propos	ed Project	With M	itigation
VMT Threshold	Impact	VMT Threshold	Impact
Household > 6.0	Yes	Household > 6.0	No
Work > 7.6	No	Work > 7.6	No

Report 2: TDM Inputs

Strategy Type		Description	Proposed Project	Mitigation
	Reduce parking	City code parking provision (spaces)	0	0
supply		Actual parking provision (spaces)	0	0
	Unbundle parking	Monthly cost for parking (\$)	\$0	\$25
Parking	Parking cash-out	Employees eligible (%)	0%	0%
•	Price workplace	Daily parking charge (\$)	\$0.00	\$0.00
	parking	Employees subject to priced parking (%)	0%	0%
	Residential area parking permits	Cost of annual permit (\$)	\$0	\$0
		(cont. on following page	2)	

Report 2: TDM Inputs

	TDM	Strategy Inputs,	Cont.	
Strate	gy Туре	Description	Proposed Project	Mitigations
		Reduction in headways (increase in frequency) (%)	0%	0%
	Reduce transit headways	Existing transit mode share (as a percent of total daily trips) (%)	0%	0%
		Lines within project site improved (<50%, >=50%)	0	0
Transit	Implement	Degree of implementation (low, medium, high)	0	0
	neighborhood shuttle	Employees and residents eligible (%)	0%	0%
		Employees and residents eligible (%)	0%	0%
	Transit subsidies	Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$0.00
Education &	Voluntary travel behavior change program	Employees and residents participating (%)	0%	0%
Encouragement	Promotions and marketing	Employees and residents participating (%)	0%	100%

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.						
Strate	gy Туре	Description	Proposed Project	Mitigations		
	Required commute trip reduction program	Employees participating (%)	0%	0%		
	Alternative Work Schedules and	Employees participating (%)	0%	0%		
	Telecommute	Type of program	0	0		
Commute Trip Reductions		Degree of implementation (low, medium, high)	0	0		
	Employer sponsored vanpool or shuttle	Employees eligible (%)	0%	0%		
		Employer size (small, medium, large)	0	0		
	Ride-share program	Employees eligible (%)	0%	0%		
	Car share	Car share project setting (Urban, Suburban, All Other)	0	0		
Shared Mobility	Bike share	Within 600 feet of existing bike share station - OR- implementing new bike share station (Yes/No)	0	0		
	School carpool program	Level of implementation (Low, Medium, High)	0	0		

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.							
Strate	Strategy Type Description Proposed Project Mitigations						
	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0			
Bicycle Infrastructure	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	Yes	Yes			
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, & repair station (Yes/No)	0	0			
Neighborhood	Traffic calming	Streets with traffic calming improvements (%)	0%	0%			
	improvements	Intersections with traffic calming improvements (%)	0%	0%			
Ennancement	Pedestrian network improvements	Included (within project and connecting off- site/within project only)	within project and connecting off-site	within project and connecting off-site			

Report 3: TDM Outputs

	TDM Adjustments by Trip Purpose & Strategy													
						Place type	Urban							
		Home B	ased Work	Home B	ased Work	Ноте Во	ised Other	Home Bo	ased Other	Non-Home	Based Other	Non-Home	Based Other	
		Proc	luction	Attr	action	Prod	uction	Attr	action	Proa	luction	Attr	action	Source
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	1
	Reduce parking supply	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Stratemy
	Unbundle parking	0%	3%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	
Parking	Parking cash-out	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Parking
	Price workplace parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1 - 5
	Residential area parking permits	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
	Reduce transit headways	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%)% 0% 0%		
Transit	Implement neighborhood shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Transit sections 1 - 3
	Transit subsidies	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Education &	Voluntary travel behavior change program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Education &
Encouragement	Promotions and marketing	0%	4%	0%	4%	0%	4%	0%	4%	0%	4%	0%	0%	Encouragement sections 1 - 2
	Required commute trip reduction program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Commute Trip Reductions	Alternative Work Schedules and Telecommute Program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Commute Trip
	Employer sponsored vanpool or shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	sections 1 - 4
	Ride-share program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Car-share	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Shared Mobility	Bike share	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Appendix, Shared
Shared Mobility	School carpool program	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Mobility sections 1 - 3

Date: January 15, 2020 Project Name: Our Lady of Mt. Lebanon Project Scenario: Proposed Project Project Address: 333 S SAN VICENTE BLVD, 90048

Report 3: TDM Outputs

	TDM Adjustments by Trip Purpose & Strategy, Cont.													
						Place type	Urban							
		Home Bo Proa	Home Based Work Home Based Work Home Based Other Home Based Other Non-Home Based Other Non-Home Based Other Non-Home Based Other Production Attraction Production Attraction Production Attraction			Home Based Work Production		Home Based Work Attraction		Based Other	Source			
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
	Implement/ Improve on-street bicycle facility	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Bicycle Infrastructure	Include Bike parking per LAMC	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	Appendix, Bicycle Infrastructure
	Include secure bike parking and showers	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	sections 1 - 3
Neighborhood Enhancement	Traffic calming improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix,
	Pedestrian network improvements	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	Neighborhood Enhancement sections 1 - 2

	Final Combined & Maximum TDM Effect											
	Home Based Work Production		Home Based Work Attraction		Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction	
	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated
COMBINED TOTAL	3%	9%	3%	7%	3%	9%	3%	7%	3%	7%	3%	3%
MAX. TDM EFFECT	3%	9%	3%	7%	3%	9%	3%	7%	3%	7%	3%	7%

= Mini	= Minimum (X%, 1-[(1-A)*(1-B)]) where X%=					
PLACE	urban	75%				
ТҮРЕ	compact infill	40%				
MAX:	suburban center	20%				
	suburban	15%				

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (*Transportation Assessment Guidelines Attachment G*) for further discussion of dampening.

Report 4: MXD Methodology

	MXD M	ethodology - Pr	oject Without 1	MD		
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT
Home Based Work Production	207	-34.3%	136	6.0	1,242	816
Home Based Other Production	555	-47.7%	290	4.8	2,664	1,392
Non-Home Based Other Production	19	-10.5%	17	6.3	120	107
Home-Based Work Attraction	9	-77.8%	2	8.6	77	17
Home-Based Other Attraction	240	-48.3%	124	7.1	1,704	880
Non-Home Based Other Attraction	74	-13.5%	64	6.2	459	397

MXD Methodology with TDM Measures							
		Proposed Project		Project	with Mitigation M	easures	
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT	
Home Based Work Production	-2.6%	133	795	-9.3%	123	740	
Home Based Other Production	-2.6%	283	1,356	-9.3%	263	1,262	
Non-Home Based Other Production	-2.6%	17	104	-6.5%	16	100	
Home-Based Work Attraction	-2.6%	2	17	-6.5%	2	16	
Home-Based Other Attraction	-2.6%	121	857	-6.5%	116	823	
Non-Home Based Other Attraction	-2.6%	62	387	-6.5%	60	371	

MXD VMT Methodology Per Capita & Per Employee								
Total Population: 345								
	Total Employees: 6							
APC: Central								
	Proposed Project Project With Mitigation Measures							
Total Home Based Production VMT	2,151	2,002						
Total Home Based Work Attraction VMT	17	16						
Total Home Based VMT Per Capita	6.2	5.8						
Total Work Based VMT Per Employee	2.8	2.8						

VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr & Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr & Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr & Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr & Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr & Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr & Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr & Peers, or another third party, even if the City or Fehr & Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr & Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

You, the User	
Ву:	Jash
Print Name:	Jason Shender
Title:	Transportation Planner II
Company:	Linscott, Law & Greenspan, Engineers
Address:	20931 Burbank Boulevard, Suite C Woodland Hills, CA 91367
Phone:	(818) 835-8648
Email Address:	jshender@llgengineers.com
Date:	1/15/2020
APPENDIX D

CMA AND LEVELS OF SERVICE EXPLANATION CMA DATA WORKSHEETS – WEEKDAY AM AND PM PEAK HOURS

CRITICAL MOVEMENT ANALYSIS (CMA) DESCRIPTION

Level of Service is a term used to describe prevailing conditions and their effect on traffic. Broadly interpreted, the Level of Service concept denotes any one of a number of differing combinations of operating conditions which may take place as a roadway is accommodating various traffic volumes. Level of Service is a qualitative measure of the effect of such factors as travel speed, travel time, interruptions, freedom to maneuver, safety, driving comfort and convenience.

Six Levels of Service, A through F, have been defined in the 1965 *Highway Capacity Manual*. Level of Service A describes a condition of free flow, with low traffic volumes and relatively high speeds, while Level of Service F describes forced traffic flow at low speeds with jammed conditions and queues which cannot clear during the green phases.

Critical Movement Analysis (CMA) is a procedure which provides a capacity and level of service geometry and traffic signal operation and results in a level of service determination for the intersection as a whole operating unit.

The per lane volume for each movement in the intersection is determined and the per lane intersection capacity based on the Transportation Research Board (TRB) Report 212 (*Interim Materials on Highway Capacity*). The resulting CMA represents the ratio of the intersection's cumulative volume over its respective capacity (V/C ratio). Critical Movement Analysis takes into account lane widths, bus and truck operations, pedestrian activity and parking activity, as well as number of lanes and geometrics.

The Level of Service (abbreviated from the *Highway Capacity Manual*) are listed here with their corresponding CMA and Load Factor equivalents. Load Factor is that proportion of the signal cycles during the peak hour which are fully loaded; i.e. when all of the vehicles waiting at the beginning of green are not able to clear on that green phase.

Critical Mov	vement Analysis Characte	ristics
Level of Service	Load Factor	Equivalent CMA
A (free flow)	0.0	0.00 - 0.60
B (rural design)	0.61 - 0.70	
C (urban design)	0.1 - 0.3	0.71 - 0.80
D (maximum urban design)	0.3 - 0.7	0.81 - 0.90
E (capacity)	0.7 - 1.0	0.91 - 1.00
F (force flow)	Not Applicable	Not Applicable

SERVICE LEVEL A

There are no loaded cycles and few are even close to loaded at this service level. No approach phase is fully utilized by traffic and no vehicle waits longer than one red indication.

SERVICE LEVEL B

This level represents stable operation where an occasional approach phase is fully utilized and a substantial number are approaching full use. Many drivers begin to feel restricted within platoons of vehicles.

SERVICE LEVEL C

At this level stable operation continues. Loading is still intermittent but more frequent than at Level B. Occasionally drivers may have to wait through more one red signal indication and backups may develop behind turning vehicles. Most drivers feel somewhat restricted, but not objectionably so.

SERVICE LEVEL D

This level encompasses a zone of increasing restriction approaching instability at the intersection. Delays to approaching vehicles may be substantial during short peaks within the peak hour, but enough cycles with lower demand occur to permit periodic clearance of queues, thus preventing excessive backups. Drivers frequently have to wait through more than one red signal. This level is the lower limit of acceptable operation to most drivers.

SERVICE LEVEL E

This represents near capacity and capacity operation. At capacity (CMA = 1.0) it represents the most vehicles that the particular intersection can accommodate. However, full utilization of every signal cycle is seldom attained no matter how great the demand. At this level all drivers wait through more than one red signal, and frequently through several.

SERVICE LEVEL F

Jammed conditions. Traffic backed up from a downstream location on one of the street restricts or prevents movement of traffic through the intersection under consideration.

(Circular 212 Method)

I/S #:	North-South Street:	Roberts	on Bouleva	rd		Yea	r of Count	: 2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA01	East-West Street:	3rd Stree	et			Proje	ction Year	: 2024		Pea	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady of	f Mt. Leban	on Project
Opp Bight	No. o oosed Ø'ing: N/S-1, E/W-2 o Turns: EREE-1_NRTOR-2 o	of Phases r Both-3? r OL A-3?	NB 0	SB	2 0 0	NB	0 SI	2 0 3 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
		ATCC 02	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	Override	Capacity			0			0				0				0				0
			EXIST	ING CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	on w/o pf	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	E W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		Malana	No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
r	ົ Left		volume 26		26		volume 26	volume 26	Volume	28		28		28		28	Volume	28		28
QN	 ↓ Left-Through 		20	0	20	Ŭ	20	20	Ŭ	20	0	20	Ŭ	20	0	20	Ŭ	20	0	20
No	Through		466	0	645	0	466	646	4	499	0	694	0	499	0	695	0	499	0	695
IHB	Through-Right		170	1	0		100	0	-	405	1	0		100	1	0	0	100	1	0
OR.			179	0	0	1	180	0	5	195	0	0		196	0	0	0	196	0	0
z	· Left-Right			0							0				0				0 0	
-	.																			
9	→ Left → Left-Through		18	1	18	1	19	19	0	19	1	19	1	20	1	20	0	20	1	20
Ino	Through		389	Ő	439	0	389	439	2	415	0	468	0	415	0	468	0	415	0	468
BH.	← Through-Right			1							1				1				1	
	✓ Right ✓ Left-Through-Right		50	0	0	0	50	0	0	53	0	0	0	53	0	0	0	53	0	0
Š	Left-Right			0							Ő				0				Ő	
	1 1 - 6		-	4			00			40		10		40	1	40	0	40		40
9	∠ Leπ ⊥ Left-Through		38	0	38	0	38	38	0	40	0	40	0	40	0	40	0	40	0	40
NNC	→ Through		347	1	196	1	348	196	10	378	1	213	1	379	1	213	0	379	1	213
TBC	Through-Right			1							1				1				1	
SAS	Right		44	0	44	0	44	44	0	47	0	47	0	47	0	47	0	47	0	47
	- ∠eft-Right			0							Ő				0				Ő	
	() off		400	1	400		400	400		4.4.4	1	114		444	1	444		444	1	114
<u>ģ</u>	 Leπ Left-Through 		133	0	133	0	133	133	U	141	0	141	U	141	0	141	U	141	0	141
Г О	← Through		731	1	386	2	733	389	10	786	1	415	2	788	1	418	0	788	1	418
TB(Through-Right			1					0		1			47	1	47	0	47	1	47
VES	Left-Through-Right		41	0	41	3	44	44	0	44	0	44	3	47	0	47	0	47	0	47
>	⊱ Left-Right			0							0				0				0	
			Nor	th-South:	663	No	rth-South:	665		Nor	th-South:	713		Nor	th-South:	715		Nor	th-South:	715
	CRITICAL V	OLUMES	E E	ast-west: SUM:	4∠4 1087	'	=ast-west: SUM:	427		E	ast-west: SUM:	455 1168		E	ast-west: SUM:	458 1173		E	SUM:	458 1173
	VOLUME/CAPACITY (V/C) RATIO:			0.725			0.728				0.779				0.782				0.782
V/C	LESS ATSAC/ATCS ADJU	STMENT:			0.625			0.628				0.679				0.682				0.682
		CE (LOS):			В			В				В				В				В

1

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003 Significant impacted? NO

∆v/c after mitigation: 0.003 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	Roberts	on Bouleva	rd		Yea	r of Count	: 2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA01	East-West Street:	3rd Stree	et			Proje	ction Year	2024		Pea	ak Hour:	PM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Opp	No. o Dosed Ø'ing: N/S-1, E/W-2 of Turmo: EBEE 1 NBTOB 2 of	of Phases r Both-3?	NB 0	SB	2 0 0	NB	0 SI	2 0 3 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
Right	Turns: FREE-1, NRTOR-20	I ULA-3 ?	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+ Override	ATCS-2? Capacity			2 0			2 0				2 0				2 0				2 0
			EXIST	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR		ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	СТ W/ МІТ	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	້ Left		35	1	35	0	35	35	0	37	1	37	0	37	1	37	0	37	1	37
NI NI	✓ Left-Through			0							0				0				0	
BOI	↑ Through		541	0	670	0	541	673	4	578	0	733	0	578	0	736	0	578	0	736
H	Right		129	0	0	3	132	0	18	155	0	0	3	158	0	0	0	158	0	0
10R	⊷ Left-Through-Right			0	-			-			0	-			0	-			0	
~	· ↓ Left-Right			0							0				0				0	
	1.00		45	1	45		40	40	0	40	1	40		54	1	54	0	F 4	4	54
Q	→ Left-Through		40	0	45	3	40	40	U	40	0	40	3	51	0	51	U	51	0	51
no	Through		374	0	432	0	374	432	8	405	0	467	0	405	0	467	0	405	0	467
BH.	← Through-Right			1							1				1				1	
LUC I	Right		58	0	0	0	58	0	0	62	0	0	0	62	0	0	0	62	0	0
SC	人 Left-Right			0							0				0				0	
			_																	
	Left		74	1	74	0	74	74	0	79	1	79	0	79	1	79	0	79	1	79
NI	→ Left-Inrough		337	0	204	2	330	205	29	387	0	231	2	380	0	232	0	380	0	232
ВО	✓ Through-Right		007	1	204	-	000	200	20	007	1	201	-	000	1	202	Ŭ	000	1	101
AST	Right		71	0	71	0	71	71	0	75	0	75	0	75	0	75	0	75	0	75
E/	Left-Through-Right			0							0				0				0	
	- Lett-Right		I	U							U				U				U	
	√ Left		164	1	164	0	164	164	0	174	1	174	0	174	1	174	0	174	1	174
	C Left-Through			0							0	~			0	6- ·	-		0	6- - -
30L	← Inrough ↓ Through-Right		448	1 1	248		449	250	18	494	1	273		495	1 1	274	U	495	ן 1	274
STI	through-rught		48	0	48	2	50	50	0	51	0	51	2	53	0	53	0	53	0	53
ME	Left-Through-Right			0							0				0				0	
	⊱ Left-Right			0	745			704			0	704			0	707			0	707
	CRITICAL V	OLUMES	Nor F	tn-South: ast-West	715 368		rπh-South: East-West	721		Nor	tn-South: ast-West	781 405		Nor F	tn-South: ast-West	787 406		Nort F=	n-South:	787 406
	STATIONE V		- ⁻	SUM:	1083	'	SUM:	1090		L	SUM:	1186		-	SUM:	1193		L¢	SUM:	1193
	VOLUME/CAPACITY (V/C) ratio:			0.722			0.727				0.791				0.795				0.795
V/C	LESS ATSAC/ATCS ADJU	STMENT:			0.622			0.627				0.691				0.695				0.695
		CE (LOS):			В			В				В				В				В

2

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004 Significant impacted? NO *∆v/c* after mitigation: 0.004 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: R	lobertsor	n Bouleva	rd		Yea	r of Count	2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA02	East-West Street: B	Burton Wa	ay			Proje	ction Year	2024		Pea	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Op	No. of Pl posed Ø'ing: N/S-1, E/W-2 or Bo Turns: EREE-1_NRTOR-2 or Ol	hases oth-3?	NB 0	SB	3 0 0	NB	0 SI	3 0 3 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0
Right			EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	Override Car	pacity			2			2				2				2				2
			EXISTI	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	E W/ PROJE	ст w/ міт	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	5 1.4		Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
Ģ	i Leπ ⊷ Left-Through		00	0	90	0	50	90	2	01	0	01	0	01	0	01	U	01	0	01
INO	↑ Through		501	1	501	1	502	502	1	533	1	533	1	534	1	534	0	534	1	534
BH.	Through-Right			0							0				0				0	
DRT			39	1	0	1	40	0	0	41	1	0	1	42	1	0	0	42	1	0
ž	← Left-Right			0							0				0				0	
9	∽ Left		26	1	26	0	26	26	0	28	1	28	0	28	1	28	0	28	1	28
NNC N	↓ Through		464	0	510	0	464	510	0	493	0	544	0	493	0	544	0	493	0	544
HB(✓ Through-Right			1							1				1				1	
UT	→ Right		46	0	0	0	46	0	2	51	0	0	0	51	0	0	0	51	0	0
sc	、 Left-Right			0							0				0				0	
٥	ノ Left		100	1	100	0	100	100	8	114	1	114	0	114	1	114	0	114	1	114
NN	→ Through		720	3	240	1	721	240	0	764	3	255	1	765	3	255	0	765	3	255
LBO	✓ Through-Right			0							0				0				0	
ASI	Right		126	1	98	0	126	98	4	138	1	108	0	138	1	108	0	138	1	108
ш	↓ Left-Right			0							0				0				0	
Δ	✓ Left ✓ Left-Through		178	1	178	5	183	183	0	189	1	189	5	194	1	194	0	194	1	194
NN	← Through		1370	3	457	3	1373	458	12	1466	3	489	3	1469	3	490	0	1469	3	490
TBC	Through-Right			0							0				0				0	
ES.	Right		81	1	68	0	81	68	0	86	1	72	0	86	1	72	0	86	1	72
3	Left-Right			0							0				0				0	
			Nor	th-South:	566	No	rth-South:	566		Nor	th-South:	605		Nor	th-South:	605		Nor	h-South:	605
	CRITICAL VOLU	UMES	E	ast-West: SUM·	557 1123	'	East-West:	558 1124		E	ast-West: SUM·	603 1208		E	ast-West:	604 1209		Ea	st-West:	604 1209
	VOLUME/CAPACITY (V/C) R	RATIO:		3011.	0.788		50M.	0 789			30M.	0.848			301/1.	0.848			30W.	0.848
V/0	C LESS ATSAC/ATCS ADJUSTN	MENT:			0.688			0.689				0.748				0.748				0.748
	LEVEL OF SERVICE ((LOS):			В			В				С				С				С

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.000 Significant impacted? NO *∆v/c* after mitigation: 0.000 Fully mitigated? N/A

1

(Circular 212 Method)

I/S #:	North-South Street: Ro	bertson Bo	ulevar	ď		Yea	r of Count	: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA02	East-West Street: Bu	Irton Way				Proje	ction Year	2024		Pe	ak Hour:	PM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Op	No. of Ph posed Ø'ing: N/S-1, E/W-2 or Bot Turne: EREE 1, NRTOR 2 or Ol	th-3?	0	SB	3 0 0	NB	0 SI	3 0 3 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0
Right		A-3 ? EB	0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+ATC Override Cap	S-2? acity			2 0			2				2				2 0				2 0
			EXISTI	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTUR	W/ PROJE	ст w/ міт	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	5 1-64	Vol	Ime	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
9	Left		85	1	85	0	85	85	8	98	1	98	0	98	1	98	0	98	1	98
no	1 Through		504	1	504	3	507	507	4	539	1	539	3	542	1	542	0	542	1	542
ΗB	Through-Right			0							0				0				0	
DRT	→ Right		72	1	30	2	74	30	0	76	1	31	2	78	1	32	0	78	1	32
ž	←→ Left-Through-Right			0							0				0				0	
₽	→ Left		82	1	82	0	82	82	0	87	1	87	0	87	1	87	0	87	1	87
NNC N	Through		489	0	534	0	489	534	0	519	0	575	0	519	0	575	0	519	0	575
НВС	Through-Right			1		Ŭ	100		, in the second s	0.0	1		l č	010	1		Ŭ	0.0	1	
UT	→ Right		45	0	0	0	45	0	8	56	0	0	0	56	0	0	0	56	0	0
sc	✓ Left-Through-Right 人 Left-Right			0							0				0				0	
0	J Left		170	1	170	0	170	170	18	198	1	198	0	198	1	198	0	198	1	198
N	→ Through	1	452	3	484	3	1455	485	0	1541	3	514	3	1544	3	515	0	1544	3	515
BO	√ Through-Right			0					_		0				0				0	
AST	Right		61	1	19	0	61	19	4	69	1	20	0	69	1	20	0	69	1	20
ш	Left-Right			0							0				0				0	
	* •																			
Δ	✓ Left ✓ Left Through		85	1	85	3	88	88	0	90	1	90	3	93	1	93	0	93	1	93
NUN	<pre>↓ Left-Through</pre> ← Through		931	3	310	2	933	311	13	1001	3	334	2	1003	3	334	0	1003	3	334
ГВС	♣ Through-Right			0							0				0				0	
ES.	Right		67	1	26	0	67	26	0	71	1	28	0	71	1	28	0	71	1	28
3	Left-Right			0							0				0				0	
			Nort	th-South:	619	No	rth-South:	619		Nor	th-South:	673		Nor	th-South:	673		Nor	h-South:	673
	CRITICAL VOLU	IMES	Ea	ast-West:	569 1188		East-West:	573 1102		E	ast-West:	604 1277		E	ast-West:	608 1281		Ea	st-West:	608 1281
	VOLUME/CAPACITY (V/C) RA			30W.	0.834		50M.	0.836			30M.	0.896			301/1.	0.890			30W.	0.890
V/0	C LESS ATSAC/ATCS ADJUSTM	ENT:			0.734			0.736				0.796				0.799				0.799
	LEVEL OF SERVICE (L	OS):			С			C				C				С				С

2

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003 Significant impacted? NO *∆v/c* after mitigation: 0.003 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	Willama	n Drive			Yea	r of Count	: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA05	East-West Street:	Burton V	Vay			Proje	ction Year	2024		Pea	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Opr	No. o Dosed Ø'ing: N/S-1. E/W-2 or	f Phases Both-3?			3 0			3 0				3 0				3 0				3 0
Right	Turns: FREE-1. NRTOR-2 or	OLA-3?	NB 0	SB	0	NB	0 SI	3 0	NB	0	SB	0	NB	0	SB	0	NB	0	SB	Ő
rugitt		ATCS 22	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	Override	Capacity			0			0				0				0				0
			EXISTI	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	on w/o pf	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	E W/ PROJE	СТ W/ МІТ	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	5 Loff		Volume	Lanes	Volume	I raffic	Volume 77	Volume 77	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
무	↓ Left-Through		11	0	11	0	11	11	U	02	0	02	0	02	0	02	0	02	0	02
INO	↑ Through		204	0	290	0	204	290	0	217	0	309	0	217	0	309	0	217	0	309
HB	Through-Right			0							0				0				0	
NT			9	0	0	0	9	0	0	10	0	0	0	10	0	0	0	10	0	0
ž	← Left-Inrougn-Right			1							1				1				1	
I.	Lent-tugit			U							U				U				Ū	
Δ	└→ Left		36	0	36	0	36	36	0	38	0	38	0	38	0	38	0	38	0	38
NN	↓ Left-Through		64	0	400		64	400	0	<u></u>	0	400		<u></u>	0	400	0	<u></u>	0	400
BO	↓ Through ↓ Through-Right		64	0	130	0	64	130	0	60	0	138	0	68	0	138	0	60	0	138
Ē	ר Right		30	0	0	0	30	0	0	32	0	0	0	32	0	0	0	32	0	0
sol	↔ Left-Through-Right			1							1				1				1	
	人 Left-Right			0							0				0				0	
1	_ ^J Left		157	1	157	2	159	159	0	167	1	167	2	169	1	169	0	169	1	169
Ð	⊥→ Left-Through			0							0				0				0	
no	\rightarrow Through $$		608	3	203	0	608	203	0	645	3	215	0	645	3	215	0	645	3	215
STE	Right		22	1	22	0	22	22	0	23	1	23	0	23	1	23	0	23	1	23
EA:	✓ Left-Through-Right			0					-		0				0		_		0	
	- ≺ Left-Right			0							0				0				0	
I	√ Left		53	1	53	0	53	53	0	56	1	56	0	56	1	56	0	56	1	56
Ð	✓ Left-Through			0	00	ľ	00	00	, in the second s	00	0	00	ľ	00	0	00	Ĭ	00	0	00
no	← Through		1540	3	513	8	1548	516	0	1635	3	545	8	1643	3	548	0	1643	3	548
ЗТВ	← Through-Right		20	0	20		20	20	0	21	0	21		21	0	21	0	21	0	21
VES	Left-Through-Right		29	0	29	0	29	29	U	51	0	51	0	51	0	31	0	51	0	51
>	⊱ Left-Right			0							0				0				0	
			Nor	th-South:	326	No	rth-South:	326		Nor	th-South:	347		Nor	th-South:	347		Nor	th-South:	347
	CRITICAL V	OLUMES	E	ast-west: SUM:	670 996	'	ast-west: SUM:	675 1001		E	ast-west: SUM:	1059		E	ast-west: SUM:	1064		Ea	SUM:	1064
	VOLUME/CAPACITY (V/C) RATIO:		30m.	0.699		<i>3011</i> .	0.702			30111.	0.743			50111.	0.747			2011.	0.747
V/C	LESS ATSAC/ATCS ADJUS	STMENT:			0.599			0,602				0.643				0.647				0.647
	LEVEL OF SERVIC	E (LOS):			A			B				B				B				B
	LEVEL OF SERVIC	E (LOS):			Α			В				В				В				В

1

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004 Significant impacted? NO *∆v/c* after mitigation: 0.004 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	Willamar	n Drive			Yea	r of Count	: 2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA05	East-West Street:	Burton V	Vay			Proje	ction Year	2024		Pea	ak Hour:	PM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
	No. of	Phases			3			3				3				3				3
Орг	posed Ø'ing: N/S-1, E/W-2 or	Both-3?		\$ B	0	NR	0 54	0 8 0	NR	0	\$ R	0	NB	0	\$ B	0	NB	0	\$ R	0
Right	Turns: FREE-1, NRTOR-2 or	OLA-3?	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	ŏ	WB	0
	ATSAC-1 or ATSAC+A	ATCS-2?			2			2				2				2				2
	Override C	Capacity	EVICTI			EVICT			CUTUD				FUTU				CUTUD			
	MOVEMENT		EXIST	No of	Lano	Project	Total	Lana		Total		Lano				Lano		Total	No of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	ົງ Left		50	0	50	0	50	50	0	53	0	53	0	53	0	53	0	53	0	53
NN	Left-Through		100	0	0.40		100	0.4.0			0				0				0	
BO	↑ Through		132	0	210	0	132	210	0	140	0	223	0	140	0	223	0	140	0	223
RTH	 ✓ Right 		28	0	0	0	28	0	0	30	0	0	0	30	0	0	0	30	0	0
NOF	← Left-Through-Right			1							1				1				1	
	Left-Right			0							0				0				0	
1	└→ Left		141	0	141	0	141	141	0	150	0	150	0	150	0	150	0	150	0	150
QN	Left-Through			0		Ŭ			Ŭ	100	0	100	Ŭ	100	0	100	, in the second s	100	0	100
30L	Through		160	0	325	0	160	325	0	170	0	345	0	170	0	345	0	170	0	345
E	← Through-Right		24	0	0	0	24	0	0	25	0	0	0	25	0	0	0	25	0	0
no	Left-Through-Right		24	1	0	Ů	24	U	v	20	1	U	Ŭ	25	1	0	Ŭ	20	1	U
S	↓, Left-Right			0							0				0				0	
1	Ĵ loft		163	1	163	5	168	168	0	173	1	173	5	178	1	178	0	178	1	178
₽	Left-Through		100	0	105	J J	100	100	Ŭ	175	0	175	, v	170	0	170	Ŭ	170	0	170
INO	→ Through		1614	3	538	0	1614	538	0	1713	3	571	0	1713	3	571	0	1713	3	571
ĨB	→ Through-Right		22	0	22	0	22	22	0	24	0	24	0	24	0	24	0	24	0	24
EAS	Left-Through-Right		52	0	52	0	32	32	U	54	0	34	0	54	0	54	0	54	0	54
_	- ↓ Left-Right			0							0				0				0	
			110	1	440	0	110	440	0	110	1	110	0	110	1	110	0	110	1	110
₽	↓ Left-Through		112	0	112		112	112	U	119	0	119	U	119	0	119	U	119	0	119
Ino	← Through		863	3	288	5	868	289	0	916	3	305	5	921	3	307	0	921	3	307
TB	← Through-Right		25	0	25		25	25	0	27	0	27	0	27	0	27	0	27	0	27
VES	Left-Through-Right		30	0	35	0	35	35	0	37	0	37	U	37	0	37	U	57	0	37
^	⊱ Left-Right			0							0				0				0	
			Nor	th-South:	375	No	rth-South:	375		Nor	th-South:	398		Nor	th-South:	398		Nort	th-South:	398
	GRITICAL VU	LOWES	E	ast-west: SUM:	1025	'	=ast-west: SUM:	1025		E	ast-west: SUM:	1088		E	ast-west: SUM:	1088		Eð	SUM:	1088
	VOLUME/CAPACITY (V/C)	RATIO:			0.719			0.719				0.764				0.764				0.764
V/C	LESS ATSAC/ATCS ADJUS	TMENT:			0.619			0.619				0.664				0.664				0.664
	LEVEL OF SERVICE	E (LOS):			В			В				В				В				В

2

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.000 Significant impacted? NO *∆v/c* after mitigation: 0.000 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	Sherbou	rne Drive			Yea	r of Count	: 2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA07	East-West Street:	3rd Stree	ət			Proje	ction Year	: 2024		Pe	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Ор	No. o posed Ø'ing: N/S-1, E/W-2 or	of Phases r Both-3?			2 0			2 0				2 0				2 0				2 0
Right	Turns: FREE-1, NRTOR-2 of	r OLA-3?	NB 0	SB	0	NB	0 54	B 0	NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC+	ATCS-2?	EB U	WB	2	EB	0 00	B 0 2	EB	U	WB	2	EB	U	WB	2	EB	U	WB	2
	Override	Capacity			0			0				0				0				0
			EXIST	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	ст w/ міт	IGATION
	MOVEMENT		Malanaa	No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	5 Loft		Volume 10	Lanes	volume 10	Tramic 5	Volume 24	Volume 24	voiume	volume 20	Lanes	volume 20	volume	volume 25	Lanes	volume 25	voiume	volume 25	Lanes	volume 25
g	√ Left-Through		15	0	15		24	24	Ŭ	20	0	20		25	0	20	Ŭ	20	0	25
Ino	Through		80	0	114	0	80	119	0	85	0	121	0	85	0	126	0	85	0	126
HB	Through-Right			0							0				0				0	
RT	→ Right		15	0	0	0	15	0	0	16	0	0	0	16	0	0	0	16	0	0
ž	Left-Inrough-Right			1							1				1				1	
	Leit-Right		1	U							U				0				U	
<u> </u>	└→ Left		34	0	34	0	34	34	0	36	0	36	0	36	0	36	0	36	0	36
N	Left-Through		2	0	04		2	04	0	2	0	00		2	0	00	0	2	0	00
BO	↓ Through ↓ Through-Right		3	0	81	0	3	81	U	3	0	80	0	3	0	80	0	3	0	80
E	Right		44	Õ	0	0	44	0	0	47	0	0	0	47	Õ	0	0	47	0	0
sol	↔ Left-Through-Right			1							1				1				1	
	ل Left-Right		I	0							0				0				0	
	Ĵ Left		139	1	139	0	139	139	0	148	1	148	0	148	1	148	0	148	1	148
Ð	→ Left-Through			0							0				0				0	
DO.	→ Through		547	1	278	3	550	280	7	588	1	299	3	591	1	301	0	591	1	301
STB	↓ I nrougn-kignt		q	0	q	0	9	q	0	10	0	10	0	10	0	10	0	10	0	10
EAS	Left-Through-Right		Ŭ	Õ	Ŭ		0	Ŭ	Ŭ	10	0	10	l í	10	Õ	10	, in the second s	10	0	10
	- ≺ Left-Right			0							0				0				0	
	√ left		54	1	54	0	54	54	0	57	1	57	0	57	1	57	0	57	1	57
Q	✓ Left-Through			0	04	Ĭ		04	Ŭ	57	0	51	Ŭ	51	0	51	Ŭ	57	0	57
Ino	← Through		1103	2	552	0	1103	552	8	1179	2	590	0	1179	2	590	0	1179	2	590
TB	← Through-Right		014	0	014		014	014	0	007	0	007		007	0	007	0	007	0	007
VES	Left-Through-Right		214	0	214	0	214	214	0	227	0	227	0	227	0	227	0	227	0	227
>	⊱ Left-Right			Ő							0				Ő				Ő	
			Nor	th-South:	148	No	rth-South:	153		Nor	th-South:	157		Nor	th-South:	162		Nort	h-South:	162
	CRITICAL V	OLUMES	E	ast-West:	691 830	'	ast-West:	691 844		E	ast-West:	738		E	ast-West:	738		Eé	st-West:	738
	VOLUME/CAPACITY /V/C) RATIO:		30M.	0 559		50M.	0.563			30M.	0 597			301/1.	0.600			30M.	0.600
V/0	C LESS ATSAC/ATCS ADJUS	STMENT:			0.009			0.000				0.007				0.000				0.000
		CE (LOS)			0.459 A			0.403 A				0.497 A				0.500 A				0.500 A
I		JE (E00).			A			A				A				A				A

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003 Significant impacted? NO *∆v/c* after mitigation: 0.003 Fully mitigated? N/A

1

(Circular 212 Method)

I/S #:	North-South Street:	Sherbou	rne Drive			Yea	r of Count	: 2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA07	East-West Street:	3rd Stree	ət			Proje	ction Year	: 2024		Pea	ak Hour:	PM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Opp	No. c posed Ø'ing: N/S-1, E/W-2 of Turmo: EREE 1, NRTOR 2 of	of Phases r Both-3?	NB 0	SB	2 0 0	NB	0 SI	2 0 8 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
Right	Turns. FREE-1, NRTOR-20	I ULA-3 I	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+ Override	ATCS-2? Capacity			2 0			2 0				2 0				2 0				2 0
			EXIST	ING CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	E W/ PROJE	СТ W/ МІТ	IGATION
	MOVEMENT		Volume	No. of	Lane Volume	Project Traffic	Total Volume	Lane	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
Г) Left		12	0	12	3	15	15	0	13	0	13	3	16	0	16	0	16	0	16
Q	← Left-Through			0							0				0				0	
no	Through		37	0	84	0	37	87	0	39	0	89	0	39	0	92	0	39	0	92
臣	Through-Right			0							0				0				0	
LN LN			35	0	0	0	35	0	0	37	0	0	0	37	0	0	0	37	0	0
ž	← Left-Right			0							0				0				0	
ľ	g		8																	
Δ	∽ Left		138	0	138	0	138	138	0	146	0	146	0	146	0	146	0	146	0	146
N	↓ Left-Through		07	0	204		07	204	0	100	0	445		400	0	445	0	100	0	445
BO	Through-Right		97	0	391	0	97	391	0	103	0	415	0	103	0	415	U	103	0	415
ΗĽ	↓ Right		156	0	0	0	156	0	0	166	Õ	0	0	166	Õ	0	0	166	0	0
ŝ	↔ Left-Through-Right			1							1				1				1	
<i>"</i>	人, Left-Right		<u> </u>	0							0				0				0	
L I	J left		49	1	49	0	49	49	0	52	1	52	0	52	1	52	0	52	1	52
₽	⊥ Left-Through			0	-10	Ŭ	40	-10	Ŭ	02	0	02	l v	02	0	02	Ŭ	02	0	02
n n	→ Through		683	1	362	8	691	366	18	743	1	394	8	751	1	398	0	751	1	398
TBC	→ Through-Right			1							1				1				1	
AS'	↓ Right ↓ off Through Bight		41	0	41	0	41	41	0	44	0	44	0	44	0	44	0	44	0	44
ш	Left-Right			0							0				0				0	
	t										-								-	
0	✓ Left		55	1	55	0	55	55	0	58	1	58	0	58	1	58	0	58	1	58
N.	✓ Left-Through		500	0	202	0	502	202	16	62F	0	210		62F	0	210	0	625	0	210
BO	Through-Right		003	2 0	292	0	003	292	10	000	2	518		033	2 0	318	U	000	2	310
STI	t Right		58	1	58	0	58	58	0	62	1	62	0	62	1	62	0	62	1	62
ME	Left-Through-Right			0							0				0				0	
	⊱ Left-Right			0	400		with 041	400			0	400			0	404		A.	0	404
	CRITICAL V		Noi	ast-Weet	403 417		Fast-West	406		Nor	tn-South: ast-West	428 452		NOI	tn-South: ast-Weet	431		Nor	n-South:	431
	ORTHOAL V	2201020	- ⁻	SUM:	820	'	SUM:	827		E	SUM:	880		L	SUM:	887		Le	SUM:	887
	VOLUME/CAPACITY (V/C) RATIO:			0.547			0.551				0.587				0.591				0.591
V/C	C LESS ATSAC/ATCS ADJU	STMENT:			0.447			0.451				0.487				0.491				0.491
	LEVEL OF SERVIC	CE (LOS):			Α			Α				Α				Α				Α

2

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.004 Significant impacted? NO *∆v/c* after mitigation: 0.004 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	San Vice	ente Boulev	ard		Yea	r of Count	: 2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA08	East-West Street:	3rd Stree	ət			Proje	ction Year	: 2024		Pe	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady o	f Mt. Leban	on Project
Орј	No. o posed Ø'ing: N/S-1, E/W-2 or	f Phases r Both-3?			2 0			2 0				2 0				2 0				2 0
Right	Turns: FREE-1, NRTOR-2 or	r OLA-3?	NB 0	SB	0	NB	0 54	B 0	NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC+	ATCS-2?	EB U	WB	2	EB	0 10	B 0 2	EB	U	WB	2	EB	U	WB	2	EB	U	WB	2
	Override	Capacity			0			0				0				0				0
			EXISTI	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	OJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	E W/ PROJE	ст w/ міт	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		102	1	102	0	102	102	2	110	1	110	0	110	1	110	0	110	1	110
	<∱ Left-Through			0							0				0				0	
30L	↑ Through		572	1	293	0	572	293	21	628	1	346	0	628	1	346	0	628	1	346
E	Through-Right		12	1	12	0	10	12	40	62	1	62	0	62	1	62	0	62	1	62
OR	<pre>/ Right sh→ Left-Through-Right</pre>		15	0	15	U	15	15	49	03	0	03	0	03	0	03	U	03	0	03
z	<pre> Y Left-Right </pre>			0							0 0				0				0	
-																				
9	∽ Left		116	1	116	0	116	116	3	126	1	126	0	126	1	126	0	126	1	126
n l	Through		447	2	224	1	448	224	10	484	2	242	1	485	2	243	0	485	2	243
HBC	Through-Right			0							0				0	2.0	Ŭ	100	0	2.0
E D	ل Right		92	1	51	0	92	50	8	106	1	59	0	106	1	58	0	106	1	58
so	← Left-Through-Right			0							0				0				0	
			1	U							U				U				U	
	Left		82	1	82	3	85	85	7	94	1	94	3	97	1	97	0	97	1	97
	→ Left-Through		402	0	040	0	404	040		540	0	200		507	0	004	0	507	0	004
301	→ Through → Through-Right		483	2	242	8	491	240	0	519	2	260	8	527	2	264	0	527	2	264
STI	Right		68	1	17	1	69	18	3	75	1	20	1	76	1	21	0	76	1	21
EA	Left-Through-Right			0							0				0				0	
	- ≺ Left-Right			0							0				0				0	
	√ Left		54	1	54	1	55	55	3	60	1	60	1	61	1	61	0	61	1	61
Q	✓ Left-Through			0					_		0				0		_		0	
Ŋ	← Through		1217	1	704	0	1217	704	0	1292	1	748	0	1292	1	748	0	1292	1	748
STB	Eight		101	1	101	0	101	101	0	203	1	203	0	203	1	203	0	203	1	203
VE	Left-Through-Right		101	Ő	101	Ŭ	101	101	Ŭ	200	õ	200	Ŭ	200	Ő	200	Ŭ	200	Ő	200
-	⊱ Left-Right			0							0				0				0	
			Nor	th-South:	409	No	rth-South:	409		Nor	th-South:	472		Nor	th-South:	472 845		Nor	th-South:	472 845
	CRITICAL V	OLUWES	E	ast-west: SUM:	1195		SUM:	1198		E	SUM:	1314		E	SUM:	040 1317		E	SUM:	040 1317
	VOLUME/CAPACITY (V/C) RATIO:		20	0.797		20	0.799	1		20	0.876			20.00	0.878			2011	0.878
V/C	LESS ATSAC/ATCS ADJUS	STMENT:			0,697			0,699				0.776				0,778				0,778
	LEVEL OF SERVIC	E (LOS):			В			В				С				С				С

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.002 Significant impacted? NO *∆v/c* after mitigation: 0.002 Fully mitigated? N/A

CMA08

(Circular 212 Method)

I/S #:	North-South Street:	San Vice	ente Boulev	ard		Yea	r of Coun	t: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA08	East-West Street:	3rd Stree	et			Proje	ction Yea	: 2024		Pe	ak Hour:	PM	Revie	ewed by:	J	AS	Project:	Our Lady of	f Mt. Leban	on Project
	No. o	of Phases			2			2				2				2				2
Ор	posed Ø'ing: N/S-1, E/W-2 or	r Both-3?		60	0	ND	0.5	D O		0	60	0	ND	0	CP.	0	ND	0	CD.	0
Right	Turns: FREE-1, NRTOR-2 of	r OLA-3?	EB 0	ЗВ WB	0	EB	0 31 0 W	B 0	EB	0	3B WB	0	EB	0	ЗВ WB	0	EB	0	3B WB	0
	ATSAC-1 or ATSAC+	ATCS-2?			2			2				2				2				2
	Override	Capacity			0			0				0				0				0
	MOVEMENT		EXIST	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR		ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTUR	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		Volumo	No. of	Lane	Project	Total	Lane	Added	Total Volume	No. of	Lane Volume	Added	Total Volume	No. of	Lane	Added	Total Volume	No. of Lanes	Lane Volume
	ົ Left		46	1	46	0	46	46	2	51	1	51	0	51	1	51	0	51	1	51
Q	⊷ Left-Through			0					_		0	• •	-	•	0				0	
no	Through		451	1	244	0	451	244	31	510	1	293	0	510	1	293	0	510	1	293
HB	Through-Right			1							1				1	75			1	
LN			36	0	36	0	36	36	37	75	0	75	0	75	0	75	0	75	0	75
ž	Left-Right			0							0				0				0	
	g		1																	
Δ	└→ Left		298	1	298	0	298	298	6	322	1	322	0	322	1	322	0	322	1	322
N	↓ Left-Through		577	0	200	2	590	200	27	620	0	220	2	640	0	201		640	0	204
BO	↓ Through ↓ Through-Right		577	0	209	3	560	290	21	039	0	320	3	042	0	321	0	042	0	321
Ė	ل Right		170	1	98	0	170	97	16	196	1	110	0	196	1	109	0	196	1	109
sol	↔ Left-Through-Right			0							0				0				0	
	人, Left-Right		I	0							0				0				0	
	Ĵ Left		145	1	145	2	147	147	18	172	1	172	2	174	1	174	0	174	1	174
Q	⊥ → Left-Through			0							0				0				0	
DO	→ Through		667	2	334	5	672	336	13	721	2	361	5	726	2	363	0	726	2	363
3TB	↓ I hrough-Right		51	0	28	2	53	30	16	70	0	45	2	72	0	17	0	72	0	47
EAS	Left-Through-Right		01	0	20	-	00	00	10	10	0	-10	-	72	0	77	U U	12	0	-11
	- ∠ Left-Right			0							0				0				0	
				4	0	2	10	10	4.4	04	1	24	2	27	4	27	0	07	1	27
₽	✓ Left		9	0	9	3	12	12	14	24	0	24	3	21	0	21	U	21	0	21
٦ S	← Through		525	1	342	0	525	342	0	557	1	363	0	557	1	363	0	557	1	363
TB(<pre></pre>			1						1.05	1	105			1				1	105
ES	Right		158	0	158	0	158	158	0	168	0	168	0	168	0	168	0	168	0	168
\$	Left-Right			0							0				0				0	
			Nor	th-South:	542	No	rth-South:	542		Nor	th-South:	615		Nor	th-South:	615		Nor	th-South:	615
	CRITICAL V	OLUMES	E	ast-West:	487	1	East-West:	489		E	ast-West:	535		E	ast-West:	537		Ea	ast-West:	537
				SUM:	1029		SUM:	1031			SUM:	1150			SUM:	1152			SUM:	1152
		ATTO:			0.686			0.687				0.767				0.768				0.768
V/0	LESS ATSAC/ATCS ADJU	SIMENT:			0.586			0.587				0.667				0.668				0.668
	LEVEL OF SERVIC	CE (LOS):			Α			Α				В				В				В

2

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.001 Significant impacted? NO *∆v/c* after mitigation: 0.001 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	San Vice	ente Boulev	ard-Le Do	oux Road	Yea	r of Count	: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA09	East-West Street:	Burton V	Vay			Proje	ction Year	2024		Pe	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady of	f Mt. Leban	on Project
0	No. of nosod Ø'ing: N/S 1 E/W 2 or	f Phases			3			3				3				3				3
Diabt	Turner EBEE 1 NBTOR 2 or		NB 0	SB	0	NB	0 SE	B 0	NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
Right	Turns: FREE-1, NRTOR-2 of	ULA-3?	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+/ Override	ATCS-2? Capacity			2			2				2				2				2
	•••••	- apuely	EXISTI		TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTUR	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	5		Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
₽	Left ↓ Left-Through		29	1	29	0	29	29	0	31	1	31	0	31	1	31	0	31	1	31
ÎN	1 Through		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
EH.	Through-Right			0				. –			0	. –			0				0	. –
ORT	Right		24	1	15	0	24	15	0	25	1	15	0	25	1	15	0	25	1	15
ž	✓ Left-Right			0							0				0				0	
-			-		_		-			_		_		-		_		_		
Ģ	└→ Left └→ Left-Through		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
INO	 ↓ Left ↓ Left-Through ↓ Through ↓ Through-Right ↓ Right 		460	1	281	8	468	285	8	496	1	302	8	504	1	306	0	504	1	306
THB	← Through-Right		101	1	404		101	404		407	1	407		407	1	407		107	1	407
ΓΠΟ	✓ Right ↓ Left-Through-Right		101	0	101	0	101	101	0	107	0	107	0	107	0	107	0	107	0	107
Ō	↓ Left-Right			0							0				0				0	
	Ĵ loft		12	0	0	0	12	0	0	13	0	0	0	13	0	0	0	13	0	0
₽	⊥ Left-Through		12	0	Ŭ	Ů	12	Ŭ	v	10	0	Ŭ		15	0	Ŭ	Ŭ	10	0 0	Ŭ
INO	→ Through		633	2	221	0	633	221	0	672	2	235	0	672	2	235	0	672	2	235
STB	↓ Through-Right → Right		31	1	31	0	31	31	0	33	1	33	0	33	1	33	0	33	1	33
EAS	Left-Through-Right		01	Ő	01	Ŭ	01	01	Ŭ	00	0	00	Ŭ	00	0	00	Ŭ	00	0	00
	- ≺ Left-Right			0							0		_		0				0	
	√ Left		19	1	19	0	19	19	0	20	1	20	0	20	1	20	0	20	1	20
	✓ Left-Through			0							0				0				0	
BOL	← Through ↓ Through-Right		1612	2	584	4	1616	585	12	1723	2	624	4	1727	2	625	0	1727	2	625
STI	← Through ← Through ← Through-Right ← Right		722	1	0	0	722	0	7	773	1	0	0	773	1	0	0	773	1	0
Ň	Left-Through-Right			0							0				0				0	
l	¢ Leπ-κignt		Nor	th-South:	310	No	rth-South:	314		Nor	th-South:	333		Noi	th-South:	337		Nor	th-South:	337
	CRITICAL VO	OLUMES	E	ast-West:	584	1	East-West:	585		E	ast-West:	624		E	ast-West:	625		Ea	ast-West:	625
		DATIO		SUM:	894	 	SUM:	899			SUM:	957			SUM:	962	 		SUM:	962
1//	VULUME/CAPACITY (V/C)	ATIO:			0.627			0.631				0.672				0.675				0.675
V/C	LESS ATSACIATOS ADJUS				0.527			0.531				0.572				0.575				0.575
	LEVEL OF SERVIC	E (LOS):			Α			Α				Α				Α				Α

1

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003 Significant impacted? NO *∆v/c* after mitigation: 0.003 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	San Vice	ente Boulev	ard-Le Do	oux Road	Yea	r of Count	: 2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA09	East-West Street:	Burton V	Vay			Proje	ction Year	2024		Pe	ak Hour:	PM	Revie	ewed by:	J	AS	Project:	Our Lady of	f Mt. Leban	on Project
0	No. of	f Phases			3			3				3				3				3
Opp	bosed 10 ing: N/S-1, E/W-2 or	Both-3?	NB 0	SB	0	NB	0 SI	3 0	NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
Right	Turns: FREE-1, NRTOR-2 or	·OLA-3?	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+/	ATCS-2?			2			2				2				2				2
	Override	Capacity	EXISTI		TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTUR	E W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
₽	☐ Left		67	1	67	0	67	67	0	71	1	71	0	71	1	71	0	71	1	71
М По	Through		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HB(Through-Right			0							0				0				0	
RT			38	1	20	0	38	20	0	40	1	21	0	40	1	21	0	40	1	21
ž	↔ Left-Through-Right			0							0				0				0	
I	Lon rught		1	Ŭ							Ŭ				Ŭ				Ŭ	
₽	→ Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NNC	↓ Through		450	1	238	5	455	240	16	494	1	261	5	499	1	263	0	499	1	263
HBC	Through-Right		100	1	200	Ŭ	100			101	1	20.	Ŭ	100	1	200	Ŭ	100	1	200
LT I	Right		25	0	25	0	25	25	0	27	0	27	0	27	0	27	0	27	0	27
sc	-≺t⊶ Leπ-Inrougn-Right			0							0				0				0	
-																				
<u> </u>	Left		20	0	0	0	20	0	0	21	0	0	0	21	0	0	0	21	0	0
N	→ Through		1820	2	623	0	1820	623	0	1932	2	661	0	1932	2	661	0	1932	2	661
BO	Trough-Right			1					-		1				1				1	
ASI	Right		48	0	48	0	48	48	0	51	0	51	0	51	0	51	0	51	0	51
ш	∠ Left-Right			0							0				0				0	
	*						_	_						_						
₽	✓ Left ✓ Left-Through		36	1	36	0	36	36	0	38	1	38	0	38	1	38	0	38	1	38
NN	← Through		816	2	339	13	829	342	13	879	2	368	13	892	2	371	0	892	2	371
TBC	← Through-Right			1							1				1				1	
ES.	C Right ↓ off-Through-Bight		540	1	0	0	540	0	18	591	1	0	0	591	1	0	0	591	1	0
5	Left-Right			0							0				0				0	
			Nor	th-South:	305	No	rth-South:	307		Nor	th-South:	332		Nor	th-South:	334		Nor	th-South:	334
	CRITICAL VO	OLUMES	E	ast-West: SUM	659 964		East-West: SUM	659 966		E	ast-West: SUM	699 1031		E	ast-West: SUM·	699 1033		Ea	ast-West: SUM	699 1033
	VOLUME/CAPACITY (V/C)) RATIO:		00/11.	0.676		50M.	0.678			00111.	0 724			00111.	0.725			00.01.	0.725
V/C	LESS ATSAC/ATCS ADJUS	STMENT:			0.576			0.578				0.624				0.625				0.625
	LEVEL OF SERVIC	E (LOS):			Α			A				В				В				В

2

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.001 Significant impacted? NO *∆v/c* after mitigation: 0.001 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	La Ciene	ega Bouleva	ırd		Yea	r of Count	: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA11	East-West Street:	Beverly	Boulevard			Proje	ction Year	2024		Pea	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Op Right	No. of posed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 or	f Phases Both-3? OLA-3?	NB 3	SB	4 0 0 3	NB	3 SI	4 0 3 0 8	NB	3	SB	4 0 0 3	NB	3	SB	4 0 0 3	NB	3	SB	4 0 0 3
	ATSAC-1 or ATSAC+	ATCS-2?	28 3	WB	2	<i>LD</i>	5 77	2	_D	5	WB	2	<i>LD</i>	5	WB	2	<i>LD</i>	5	WD	2
	Override 0	Capacity			0			0				0				0				0
			EXIST	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	СТ W/ МІТ	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	ົງ Left		65	1	65	0	65	65	2	71	1	71	0	71	1	71	0	71	1	71
	<∱ Left-Through			0							0				0				0	
30L	Through		776	2	388	3	779	390	21	845	2	423	3	848	2	424	0	848	2	424
Ŧ	Through-Right		168	0	0	2	170	0	1	170	0	0	2	181	0	0	0	181	0	0
OR	↓ Left-Through-Right		100	0	Ū	-	170	Ŭ		175	0	Ŭ	-	101	0	U	Ŭ	101	0	Ŭ
Z	tright Left-Right			0							0				0				0	
	L off		70	1	70		70	70	0	00	1	00		00	1	00	0	00	1	00
g	→ Left-Through		70	0	70	0	70	70	ð	82	0	82	0	82	0	82	0	82	0	82
NO	Through		940	2	405	1	941	406	28	1026	2	445	1	1027	2	445	0	1027	2	445
뛰	← Through-Right			1							1				1				1	
	✓ Right ✓ Left-Through-Right		276	0	276	0	276	276	15	308	0	308	0	308	0	308	0	308	0	308
Š	人 Left-Right			Ő							0 0				0				Ő	
	1																			
Δ	→ Left → Left-Through		127	2	70	0	127	70	17	152	2	84	0	152	2	84	0	152	2	84
NN	→ Through		590	2	295	0	590	295	27	653	2	327	0	653	2	327	0	653	2	327
BC	Through-Right			0							0				0				0	
AST	Right		86	1	21	0	86	21	3	94	1	23	0	94	1	23	0	94	1	23
ш	∠ Left-Right			0							0				0				0	
	· · · · · · · · · · · · · · · · · · ·		1																-	
Δ	✓ Left ✓ Left		486	2	267	1	487	268	1	517	2	284	1	518	2	285	0	518	2	285
N	↓ Len-Inrougn ← Through		975	2	488	0	975	488	20	1055	2	528	0	1055	2	528	0	1055	2	528
BO	Through-Right		0.0	0		Ŭ	0.0				0		Ŭ		0	020	, in the second s	1000	0	020
ESI	Right		74	1	4	0	74	4	4	83	1	1	0	83	1	1	0	83	1	1
×	Left-Through-Right			0							0				0				0	
	y Lon night		Noi	th-South:	470	No	rth-South:	471		Nor	th-South:	516		Nor	th-South:	516		Nor	h-South:	516
	CRITICAL VO	OLUMES	E	ast-West:	562	<i>1</i>	East-West:	563		E	ast-West:	612		E	ast-West:	612		Ea	st-West:	612
		DATIO		SUM:	1032		SUM:	1034			SUM:	1128			SUM:	1128			SUM:	1128
	VOLUME/CAPACITY (V/C)	RATIO:			0.751			0.752				0.820				0.820				0.820
V/0	LESS ATSAC/ATCS ADJUS	MENT:			0.651			0.652				0.720				0.720				0.720
	LEVEL OF SERVIC	E (LOS):			В			В				С				С				С

1

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.000 Significant impacted? NO *∆v/c* after mitigation: 0.000 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street: La C	ienega Boulev	ard		Yea	r of Count	: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA11	East-West Street: Bev	erly Boulevard			Proje	ction Year	: 2024		Pe	ak Hour:	PM	Revie	wed by:	J	AS	Project:	Our Lady of	f Mt. Leban	on Project
Op Right	No. of Phas posed Ø'ing: N/S-1, E/W-2 or Both Turns: FREE-1, NRTOR-2 or OLA-	es 3? 3? NB 3 5 3	SB	4 0 0 3	NB FB	3 SI 3 W	4 0 8 0 8 3	NB FB	3	SB W/B	4 0 0 3	NB	3	SB W/B	4 0 0 3	NB	3	SB WB	4 0 0 3
	ATSAC-1 or ATSAC+ATCS	2?	WD	2	LD==	5 10	2	LD==	J	WD	2	LD=-	J	WD	2	LD=-	J	110	2
	Override Capac	ity		0			0				0				0				0
	MOVEMENT	EXIST	ING CONDI	TION	EXIST		ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU		ION W/ PR	OJECT	FUTUR	E W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT	Volume	NO. OF Lanes	Lane Volume	Traffic	Total Volume	Lane Volume	Added Volume	Volume	NO. OF Lanes	Lane Volume	Added Volume	Volume	NO. OF Lanes	Lane Volume	Added Volume	l otal Volume	NO. OF Lanes	Lane Volume
	ົງ Left	95	1	95	0	95	95	4	105	1	105	0	105	1	105	0	105	1	105
	<∱ Left-Through		0							0				0				0	
BOI	↑ Through	1053	2	527	2	1055	528	38	1156	2	578	2	1158	2	579	0	1158	2	579
ТH	Right	402	1	238	1	403	238	2	429	1	254	1	430	1	253	0	430	1	253
NOR LOR	⊷ Left-Through-Right		0					_		0				0				0	
-	≺∽ Left-Right		0							0				0				0	
	└ l off	114	1	114	0	11/	114	10	131	1	131	0	131	1	131	0	131	1	131
QN	Lon Left-Through		0		U U	114		10	101	0	101	Ŭ	101	0		Ŭ	101	0	101
30U	Through	950	2	358	3	953	359	38	1046	2	405	3	1049	2	406	0	1049	2	406
HE	← Through-Right	125	1	125	0	125	125	35	168	1	168	0	169	1	169	0	168	1	169
no	✓ Left-Through-Right	120	0	120	U U	120	125		100	0	100	Ŭ	100	0	100	Ŭ	100	0 0	100
S	人, Left-Right		0							0				0				0	
	J loft	280	2	150	0	280	150	31	338	2	186	0	338	2	186	0	338	2	186
₽	⊥ Left-Through	200	0	100	U U	200	100	01	000	0	100	Ŭ	000	0	100	Ŭ	000	0	100
Ino	→ Through	1026	2	513	0	1026	513	43	1132	2	566	0	1132	2	566	0	1132	2	566
ЗТВ	↓ Through-Right	135	0	40	0	135	40	6	1/0	0	11	0	1/0	0	11	0	1/0	0	11
EAS	Left-Through-Right	100	0	-10	U U	100	40	Ŭ	140	0		Ŭ	140	0		Ŭ	140	0	
	- ≺ Left-Right		0							0				0				0	
	√ Left	208	2	164	2	300	165	3	319	2	175	2	321	2	177	0	321	2	177
QN	✓ Left-Through	200	0	104		000	100	Ĭ	010	Ō		_	521	Ō		Ŭ	521	0	
no	← Through	764	2	382	0	764	382	47	858	2	429	0	858	2	429	0	858	2	429
STB	Eight	145	0	31	0	145	31	q	163	0	32	0	163	0	32	0	163	0	32
VE	Left-Through-Right	140	0	01	Ŭ	140	01	Ŭ	100	0	02	Ŭ	100	0	02	Ŭ	100	0	02
_	⊱ Left-Right		0							0				0	= 1.0			0	
	CRITICAL VOLUM	FS No	rth-South: =ast-Wost:	641 677	No	rth-South:	642 678		Nor	th-South:	709 741		Nor	th-South:	710 743		Nort	th-South:	710 743
	STATIONE TOEUM		SUM:	1318		SUM:	1320			SUM:	1450			SUM:	1453			SUM:	1453
	VOLUME/CAPACITY (V/C) RAT	0:		0.959			0.960				1.055				1.057				1.057
V/0	C LESS ATSAC/ATCS ADJUSTME	IT:		0.859			0.860				0.955				0.957				0.957
	LEVEL OF SERVICE (LO	S):		D			D				E				E				E

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.002 Significant impacted? NO *∆v/c* after mitigation: 0.002 Fully mitigated? N/A

2

(Circular 212 Method)

I/S #:	North-South Street:	La Ciene	ega Bouleva	rd		Yea	r of Count	: 2018	Amb	ient Grov	vth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA12	East-West Street:	3rd Stree	ət			Proje	ction Year	2024		Pea	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Орг	No. o posed Ø'ing: N/S-1, E/W-2 or	of Phases r Both-3?		SP	4 0	NR	0 54	4	NR	0	S P	4 0	NP	0	SP	4 0	NR	0	S P	4 0
Right	Turns: FREE-1, NRTOR-2 or	r OLA-3?	EB 0	зв WB	0	КВ ЕВ	0 32 0 W	B 0	EB	0	зв WB	0	КВ ЕВ	0	зв WB	0	КВ ЕВ	0	зв WB	0
	ATSAC-1 or ATSAC+	ATCS-2?			2			2				2				2				2
	Override	Capacity	EVICT			EVICT			CUTUD				EUTU				CUTUD			
	MOVEMENT		LAIST	No of	Lane	Project	Total	Lano		Total	No of	Lane	Added	Total	No of	Lane		Total	No of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
0	Left		174	2	96	0	174	96	0	185	2	102	0	185	2	102	0	185	2	102
NN	✓ Left-Through		050	0	240		050	240		010	0	244		040	0	244	0	010	0	244
BO	↑ I hrough ↑ Through-Right		803	2	319	0	853	319	14	919	2	344	0	919	2	344	0	919	2	344
RTH	C Right		103	0	103	0	103	103	3	112	0	112	0	112	0	112	0	112	0	112
NO I	← Left-Through-Right			0							0				0				0	
	Y Left-Right			0							0				0				0	
	└→ Left		60	2	33	0	60	33	0	64	2	35	0	64	2	35	0	64	2	35
	Left-Through			0					_		0			• ·	0				0	
30L	Through		1150	2	474	2	1152	475	30	1251	2	514	2	1253	2	514	0	1253	2	514
IH	← I hrough-Right		272	1	272	0	272	272	1	290	1	290	0	290	1	290	0	290	1	290
no	Left-Through-Right		212	0	2.2	Ŭ	212	212		200	0	200	Ŭ	200	0	200	, in the second s	200	0	200
S	人, Left-Right			0							0				0				0	
l I	Ĵleft		125	1	125	5	130	130	8	141	1	141	5	146	1	146	0	146	1	146
₽	⊥ Left-Through		120	0	120	Ŭ	100	100	Ŭ	171	0		l v	140	0	140	Ŭ	140	0	140
INO	→ Through		433	2	217	3	436	218	7	467	2	234	3	470	2	235	0	470	2	235
TB	↓ Through-Right		45	0	0	0	45	0	13	01	0	40	0	01	0	40	0	01	0	40
EAS	Left-Through-Right			0	0		40	U		51	0	40		51	0	40	Ŭ	51	0	40
	- ∠ Left-Right			0							0				0				0	
	(left		331	1	331	0	331	331	3	354	1	354	0	354	1	354	0	354	1	354
9	<pre>✓ Left-Through</pre>		551	0	331		551	551	5	554	0	554		554	0	554	0	554	0	554
Ino	← Through		1028	1	540	1	1029	540	1	1092	1	573	1	1093	1	574	0	1093	1	574
ЗТВ	← Through-Right		51	1	51		51	51	0	54	1	54		54	1	54	0	54	1	54
VES	Left-Through-Right		51	0	51	0	51	51	U	- 54	0	- 54	0	54	0	- 54	0	- 54	0	54
^	⊱ Left-Right			0							0				0				0	
			Nor	th-South:	570	No	rth-South:	571		Nor	th-South:	616		Nor	th-South:	616		Nor	h-South:	616
	CRITICAL V	OLUMES	E	ast-west: SUM:	1235	'	=ast-west: SUM:	1241		E	ast-west: SUM:	1330		E	ast-west: SUM:	1336		Eð	SUM:	1336
	VOLUME/CAPACITY (V/C) RATIO:			0.898			0,903				0.967				0.972				0.972
V/C	LESS ATSAC/ATCS ADJUS	STMENT:			0.798			0.803				0.867				0.872				0.872
	LEVEL OF SERVIC	E (LOS):			С			D				D				D				D

1

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.005 Significant impacted? NO *∆v/c* after mitigation: 0.005 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	La Ciene	ega Bouleva	rd		Yea	r of Count	: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA12	East-West Street:	3rd Stree	et			Proje	ction Year	2024		Pe	ak Hour:	PM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Орг	No. o posed Ø'ing: N/S-1, E/W-2 or	of Phases r Both-3?		SP	4 0	NR	0 51	4	NR	0	SP	4 0	NR	0	SP	4 0	NR	0	S P	4
Right	Turns: FREE-1, NRTOR-2 or	r OLA-3?	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0	EB	0	WB	0	EB	0	08 ₩B	0
	ATSAC-1 or ATSAC+	ATCS-2?			2			2				2				2				2
	Overnde	Capacity	EXISTI		TION	EXIST	ING PLUS P	ROJECT	FUTUR		ON W/O PF	OJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
Ω	Left		107	2	59	0	107	59	0	114	2	63	0	114	2	63	0	114	2	63
NNC	Through		1133	2	432	0	1133	432	30	1233	2	470	0	1233	2	470	0	1233	2	470
HBC	through-Right			1							1	•			1				1	•
RTI	🔿 Right		162	0	162	0	162	162	4	176	0	176	0	176	0	176	0	176	0	176
Ñ	← Left-Through-Right			0							0				0				0	
l	Leit-Night		l	U							U				U				U	
	→ Left		134	2	74	0	134	74	0	142	2	78	0	142	2	78	0	142	2	78
NN	↓ Left-Through Through		1012	0	383	5	1017	384	37	1111	0	/21	5	1116	0	122	0	1116	0	122
- PG	✓ Through-Right		1012	1	505		1017	504	57		1	721	J	1110	1	722	Ŭ	1110	1	722
LT O	✓ Right		136	0	136	0	136	136	7	151	0	151	0	151	0	151	0	151	0	151
so	↔ Left-Through-Right			0							0				0				0	
	2 c Lott Right		I _	Ŭ							Ŭ				Ŭ					
_	→ Left t Left		171	1	171	3	174	174	10	192	1	192	3	195	1	195	0	195	1	195
NN	→ Leπ-Inrougn → Through		775	2	388	2	777	389	8	831	2	416	2	833	2	417	0	833	2	417
BO	→ Through-Right			0							0		_		0				0	
AST	Right		144	1	115	0	144	115	39	192	1	161	0	192	1	161	0	192	1	161
ш	Left-Right			0							0				0				0	
			и. •																-	
0	✓ Left ✓ Left-Through		195	1	195	0	195	195	8	215	1	215	0	215	1	215	0	215	1	215
NN	← Through		491	1	316	3	494	318	7	528	1	339	3	531	1	341	0	531	1	341
BC	Through-Right			1							1				1				1	
ES.	Right		141	0	141	0	141	141	0	150	0	150	0	150	0	150	0	150	0	150
3	Left-Right			0							0				0				0	
			Nor	th-South:	506	No	rth-South:	506		Nor	th-South:	548		Nor	th-South:	548		Nort	h-South:	548
	CRITICAL V	OLUMES	E	ast-West: SUM·	583 1089		East-West:	584 1090		E	ast-West:	631 1179		E	ast-West:	632 1180		Ea	st-West:	632 1180
	VOLUME/CAPACITY (V/C) RATIO:		30141.	0 792		50M.	0 793			30141.	0.857			30M.	0.858			30W.	0.858
V/C	LESS ATSAC/ATCS ADJU	STMENT:			0.692			0.693				0.757				0.758				0.758
	LEVEL OF SERVIC	CE (LOS):			В			В				С				С				C

2

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.001 Significant impacted? NO *∆v/c* after mitigation: 0.001 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	La Ciene	ega Bouleva	ırd		Yea	r of Count	: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA13	East-West Street: San Vicente Boulevard No. of Phases			ard		Proje	ction Yea	2024		Pea	ak Hour:	AM	Revie	ewed by:	J	AS	Project:	Our Lady o	f Mt. Leban	on Project
Op Right	No. o posed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 or	f Phases Both-3? OLA-3?	NB 0	SB	2 0 0	NB	0 SI	2 0 8 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
	ATSAC-1 or ATSAC+	ATCS-2?	EB U	WB	2	EB	0 00	в 0 2	EB	0	WB	2	EB	U	WB	2	EB	0	WB	2
-	Override	Capacity			0			0				0				0				0
			EXIST	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTUR	E W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	ົງ Left		128	1	128	1	129	129	2	138	1	138	1	139	1	139	0	139	1	139
	<∱ Left-Through			0							0				0				0	
BOI	Through		737	2	248	0	737	248	26	808	2	271	0	808	2	271	0	808	2	271
TH	Right		6	0	6	0	6	6	0	6	0	6	0	6	0	6	0	6	0	6
В	⊷ Left-Through-Right			0							0				0				0	
	✓ Left-Right			0							0				0				0	
	S Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
QN	Left-Through		Ŭ	0	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ũ	0	Ŭ	Ŭ	Ũ	Ō	Ű	Ŭ	Ũ	0	Ŭ
30L	Through		1266	2	505	0	1266	505	50	1394	2	556	0	1394	2	557	0	1394	2	557
H	← Through-Right		248	1	248	2	250	250	12	275	1	275	2	277	1	277	0	277	1	277
no	✓ Left-Through-Right		240	0	240	-	200	200	12	210	0 0	210	-	211	0	211	Ŭ	211	Ő	211
00	人, Left-Right			0							0				0				0	
	Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
₽	⊥ → Left-Through		Ŭ	0	-	Ŭ	Ū	•	, in the second s	0	0	-	Ŭ	0	0	•	Ŭ	0	0	-
DO.	→ Through		937	4	234	5	942	236	0	995	4	249	5	1000	4	250	0	1000	4	250
STB	↓ Inrougn-Right		189	1	125	3	192	128	0	201	1	132	3	204	1	135	0	204	1	135
EA	✓ Left-Through-Right			0							0				0				0	
	- ≺ Left-Right	_		0						_	0			_	0			_	0	
	√ Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
QN	✓ Left-Through			0			-		_	-	0			-	0		-	-	0	
20U	← Through		1991	4	498	2	1993	498	2	2115	4	529	2	2117	4	529	0	2117	4	529
STE	t Right		238	1	238	0	238	238	3	256	1	256	0	256	1	256	0	256	1	256
Ň	Left-Through-Right			0							0				0				0	
	⊱ Left-Right		No	0	622	N-	the Couth	624		N	0	604	ļ	N/	0	606		N/~	0	606
	CRITICAL V	OLUMES	Nor E	ast-West:	498		East-West:	498		Nor	ast-West:	529		NOI E	ast-West:	529		Nor Ea	ast-West:	529
				SUM:	1131		SUM:	1132			SUM:	1223			SUM:	1225			SUM:	1225
	VOLUME/CAPACITY (V/C)) RATIO:			0.754			0.755				0.815				0.817				0.817
V/0	C LESS ATSAC/ATCS ADJUS	STMENT:			0.654			0.655				0.715				0.717				0.717
	LEVEL OF SERVIC	E (LOS):			В			В				С				С				С

1

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.002 Significant impacted? NO *∆v/c* after mitigation: 0.002 Fully mitigated? N/A

(Circular 212 Method)

I/S #:	North-South Street:	La Ciene	ega Bouleva	rd		Yea	r of Coun	t: 2018	Amb	ient Grov	wth: (%):	1.0	Condu	cted by:	NDS		Date:		2/4/2020	
CMA13	East-West Street:	San Vice	ente Boulev	ard		Proje	ction Yea	: 2024		Pe	ak Hour:	PM	Revie	ewed by:	J	AS	Project:	Our Lady of	Mt. Leban	on Project
Opp	No. o posed Ø'ing: N/S-1, E/W-2 or	f Phases Both-3?			2 0			2 0				2 0				2 0				2 0
Right	Turns: FREE-1, NRTOR-2 or	OLA-3?	NB 0	SB	0	NB	0 SI	B 0	NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC+	ATCS-2?	<i>EB</i> 0	WB	2	EB	0 00	B 0 2	EB	0	WB	2	EB	U	WB	2	EB	U	WB	2
	Override	Capacity			0			0				0				0				0
			EXISTI	NG CONDI	TION	EXIST	ING PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUTU	RE CONDIT	ION W/ PR	OJECT	FUTUR	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
Δ	Left		180	1	180	3	183	183	10	201	1	201	3	204	1	204	0	204	1	204
NN	← Left-Through		1182	0	402	0	1182	402	54	1309	0	445	0	1309	0	445	0	1309	0	445
ЦЩ Ц	through-Right		1102	1	102	Ŭ	1102	102	01	1000	1	110	Ŭ	1000	1	110	Ŭ	1000	1	110
RTI			24	0	24	0	24	24	0	25	0	25	0	25	0	25	0	25	0	25
g	Left-Through-Right			0							0				0				0	
I	γ Len-Right		1	U							U				0				0	
Δ	└→ Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NN	Left-Through Through		1204	0	139	0	1204	441	70	13/8	0	191	0	13/18	0	495	0	13/18	0	195
р Ц Ц	✓ Through-Right		1204	1	-55	Ŭ	1204		10	1040	1	-3-	Ŭ	1040	1	400		1040	1	455
E.	Right		113	0	113	5	118	118	13	133	0	133	5	138	0	138	0	138	0	138
so	← Left-Through-Right			0							0				0				0	
ľ	pg _on ngm		1																	
0	Left		2	0	0	0	2	0	0	2	0	0	0	2	0	0	0	2	0	0
N	\rightarrow Len-Inrougn \rightarrow Through		2101	4	525	3	2104	526	0	2230	4	558	3	2233	4	558	0	2233	4	558
BO	→ Through-Right			0		_			_		0				0				0	
ASI	Right		205	1	115	2	207	116	0	218	1	118	2	220	1	118	0	220	1	118
ш	→ Left-Right			0							0				0				0	
	*									_								-		
₽	✓ Left ✓ Left-Through		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NNC N	Through		1069	4	267	5	1074	269	11	1146	4	287	5	1151	4	288	0	1151	4	288
TBC	← Through-Right			0							0				0				0	
/ES	← Right		358	1	358	0	358	358	7	387	1	387	0	387	1	387	0	387	1	387
5	⊱ Left-Right			0							0				0				0	
			Nor	th-South:	619	No	rth-South:	624		Nor	th-South:	695		Nor	th-South:	699		Nor	th-South:	699
	CRITICAL VO	ULUMES	E	ast-west: SUM:	525 1144		ast-west: SUM:	526 1150		E	ast-west: SUM:	558 1253		E	ast-west: SUM:	558 1257		Ea	st-west: SUM:	558 1257
	VOLUME/CAPACITY (V/C)) RATIO:			0.763			0.767				0.835				0.838				0.838
V/C	LESS ATSAC/ATCS ADJUS	STMENT:			0.663			0.667				0.735				0.738				0.738
	LEVEL OF SERVIC	E (LOS):			В			В				С				С				С

2

REMARKS:

Version: 1i Beta; 8/4/2011

PROJECT IMPACT

Change in v/c due to project: 0.003 Significant impacted? NO *∆v/c* after mitigation: 0.003 Fully mitigated? N/A

APPENDIX E

ICU AND LEVELS OF SERVICE EXPLANATION ICU DATA WORKSHEETS – WEEKDAY AM AND PM PEAK HOURS

INTERSECTION CAPACITY UTILIZATION (ICU) DESCRIPTION

Level of Service is a term used to describe prevailing conditions and their effect on traffic. Broadly interpreted, the Levels of Service concept denotes any one of a number of differing combinations of operating conditions which may occur as a roadway is accommodating various traffic volumes. Level of Service is a qualitative measure of the effect of such factors as travel speed, travel time, traffic interruptions, freedom to maneuver, safety, driving comfort and convenience.

Six Levels of Service, A through F, have been defined in the 1965 *Highway Capacity Manual*, published by the Transportation Research Board. Level of Service A describes a condition of free flow, with low traffic volumes and relatively high speeds, while Level of Service F describes forced traffic flow at low speeds with jammed conditions and queues which cannot clear during the green phases.

The Intersection Capacity Utilization (ICU) method of intersection capacity analysis has been used in our studies. It directly relates traffic demand and available capacity for key intersection movements, regardless of present signal timing, The capacity per hour of green time for each approach is calculated based on the methods of the *Highway Capacity Manual*. The proportion of total signal time needed by each key movement is determined and compared to the total time available (100 percent of the hour). The result of summing the requirements of the conflicting key movements plus an allowance for clearance times is expressed as a decimal fraction. Conflicting key traffic movements are those opposing movements whose combined green time requirements are greatest.

The resulting ICU represents the proportion of the total hour required to accommodate intersection demand volumes if the key conflicting traffic movements are operating at capacity. Other movements may be operating near capacity, or may be operating at significantly better levels. The ICU may be translated to a Level of Service as tabulated below.

The Levels of Service (abbreviated from the *Highway Capacity Manual*) are listed here with their corresponding ICU and Load Factor equivalents. Load Factor is that proportion of the signal cycles during the peak hour which are fully loaded; i.e. when all of the vehicles waiting at the beginning of green are not able to clear on that green phase.

Intersect	ion Capacity Utilization Char	acteristics
Level of Service	Load Factor	Equivalent ICU
А	0.0	0.00 - 0.60
В	0.0 - 0.1	0.61 - 0.70
С	0.1 - 0.3	0.71 - 0.80
D	0.3 - 0.7	0.81 - 0.90
Е	0.7 - 1.0	0.91 - 1.00
F	Not Applicable	Not Applicable

SERVICE LEVEL A

There are no loaded cycles and few are even close to loaded at this service level. No approach phase is fully utilized by traffic and no vehicle waits longer than one red indication.

SERVICE LEVEL B

This level represents stable operation where an occasional approach phase is fully utilized and a substantial number are approaching full use. Many drivers begin to feel restricted within platoons of vehicles.

SERVICE LEVEL C

At this level stable operation continues. Loading is still intermittent but more frequent than at Level B. Occasionally drivers may have to wait through more than one red signal indication and backups may develop behind turning vehicles. Most drivers feel somewhat restricted, but not objectionably so.

SERVICE LEVEL D

This level encompasses a zone of increasing restriction approaching instability at the intersection. Delays to approaching vehicles may be substantial during short peaks within the peak hour, but enough cycles with lower demand occur to permit periodic clearance of queues, thus preventing excessive backups. Drivers frequently have to wait through more than one red signal. This level is the lower limit of acceptable operation to most drivers.

SERVICE LEVEL E

This represents near capacity and capacity operation. At capacity (ICU = 1.0) it represents the most vehicles that the particular intersection can accommodate. However, full utilization of every signal cycle is seldom attained no matter how great the demand. At this level all drivers wait through more than one red signal, and frequently through several.

SERVICE LEVEL F

Jammed conditions. Traffic backed up from a downstream location on one of the street restricts or prevents movement of traffic through the intersection under consideration.

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

INTERSECTION CAPACITY UTILIZATION	υ,	0, 1	
			INTERSECTION CAPACITY UTILIZATION

		Robertson Boulevard @ Burton Way		
N-S St:	Robertson Boulevard	Peak hr: AM	Date:	02/11/2020
E-W St:	Burton Way	Annual Growth: 1%	Date of Count:	2018
Project:	5-17-0315-1/ Our Lady of Mt. Lebanon		Projection Year:	2024
File:	ICU-2	CITY OF BEVERLY HILLS		

	2018	EXIST. TR	AFFIC	2018	W/PROJE	CT SITE T	RAFFIC	2024	WITHOUT	F PROJECT		2024	W/PROJE	СТ	
	1	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C
Movement	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio
Nb Left Nb Thru Nb Right	56 501 39	1600 1600 1600	0.035 * 0.313 0.024	0 1 1	56 502 40	1600 1600 1600	0.035 * 0.314 0.025	2 1 0	61 533 41	1600 1600 1600	0.038 * 0.333 0.026	0	61 534 42	1600 1600 1600	0.038 * 0.334 0.026
Sb Left Sb Thru Sb Right	26 464 46	1600 1600 0	0.016 0.319 *	0 0 0	26 464 46	1600 1600 0	0.016 0.319 *	0 0 2	28 493 51	1600 1600 0	0.017 0.340 *	0 0 0	28 493 51	1600 1600 0	0.017 0.340 *
Eb Left Eb Thru Eb Right	100 720 126	1600 4800 1600	0.063 * 0.150 0.079	0 1 0	100 721 126	1600 4800 1600	0.063 * 0.150 0.079	8 0 4	114 764 138	1600 4800 1600	0.071 * 0.159 0.086	0 1 0	114 765 138	1600 4800 1600	0.071 * 0.159 0.086
Wb Left Wb Thru Wb Right	178 1370 81	1600 4800 1600	0.111 0.285 * 0.051	5 3 0	183 1373 81	1600 4800 1600	0.114 0.286 * 0.051	0 12 0	189 1466 86	1600 4800 1600	0.118 0.305 * 0.054	5 3 0	194 1469 86	1600 4800 1600	0.121 0.306 * 0.054
Yellow Allow	vance:		0.100 *				0.100 *				0.100 *				0.100 *
ICU LOS			0.802 D				0.802 D				0.855 D			[0.855

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

,	INTERSECTION CAPACITY UTILIZATION

		Robertson Boulevard	@ Burton Way		
N-S St:	Robertson Boulevard	Peak hr:	PM	Date:	02/11/2020
E-W St:	Burton Way	Annual Growth:	1%	Date of Count:	2018
Project:	5-17-0315-1/ Our Lady of Mt. Lebanon			Projection Year:	2024
File:	ICU-2	CITY OF BEVERLY H	HILLS		

	2018 EXIST. TRAFFIC		2018	W/PROJE	CT SITE TI	RAFFIC	2024	2024 WITHOUT PROJECT				2024 W/PROJECT			
	1	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C
Movement	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio
Nb Left	85	1600	0.053 *	0	85	1600	0.053 *	8	98	1600	0.061 *	0	98	1600	0.061 *
Nb Thru	504	1600	0.315	3	507	1600	0.317	4	539	1600	0.337	3	542	1600	0.339
Nb Right	72	1600	0.045	2	74	1600	0.046	0	76	1600	0.048	2	78	1600	0.049
Sb Left	82	1600	0.051	0	82	1600	0.051	0	87	1600	0.054	0	87	1600	0.054
Sb Thru	489	1600	0.334 *	0	489	1600	0.334 *	0	519	1600	0.359 *	0	519	1600	0.359 *
Sb Right	45	0	-	0	45	0	-	8	56	0	-	0	56	0	-
Eb Left	170	1600	0.106	0	170	1600	0.106	18	198	1600	0.124	0	198	1600	0.124
Eb Thru	1452	4800	0.303 *	3	1455	4800	0.303 *	0	1541	4800	0.321 *	3	1544	4800	0.322 *
Eb Right	61	1600	0.038	0	61	1600	0.038	4	69	1600	0.043	0	69	1600	0.043
Wb Left	85	1600	0.053 *	3	88	1600	0.055 *	0	90	1600	0.056 *	3	93	1600	0.058 *
Wb Thru	931	4800	0.194	2	933	4800	0.194	13	1001	4800	0.209	2	1003	4800	0.209
Wb Right	67	1600	0.042	0	67	1600	0.042	0	71	1600	0.044	0	71	1600	0.044
Yellow Allov	vance:		0.100 *				0.100 *				0.100 *				0.100 *
ICU LOS			0.843 D				0.845 D				0.898 D				0.900 D

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

		Robertson Boulevard @ Wilshire Boulevard		
N-S St:	Robertson Boulevard	Peak hr: AM	Date:	02/11/2020
E-W St:	Wilshire Boulevard	Annual Growth: 1%	Date of Count:	2018
Project:	5-17-0315-1 / Our Lady of Mt. Lebanon		Projection Year:	2024
File:	ICU-3	CITY OF BEVERLY HILLS	-	

	2018 EXIST. TRAFFIC			2018	W/PROJE	CT SITE TI	RAFFIC	2024	2024 WITHOUT PROJECT				2024 W/PROJECT			
	1	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	
Movement	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	
Nb Left Nb Thru	198 634	1600 3200	0.124 * 0.235	0 1	198 635	1600 3200	0.124 * 0.235	0	210 673	1600 3200	0.131 * 0.249	0	210 674	1600 3200	0.131 * 0.249	
Nb Right	117	0	-	0	117	0	-	0	124	0	-	0	124	0	-	
Sb Left Sb Thru	59 592	1600 3200	0.037 0.224 *	0 3	59 595	1600 3200	0.037 0.226 *	4	67 628	1600 3200	0.042 0.238 *	0	67 631	1600 3200	0.042 0.239 *	
Sb Right	125	0	-	2	127	0	-	0	133	0	-	2	135	0	-	
Eb Left Eb Thru	116 750	1600 4800	0.073 * 0.180	1 0	117 750	1600 4800	0.073 * 0.180	1	124 862	1600 4800	0.077 *	1	125 862	1600 4800	0.078 * 0.205	
Eb Right	114	0	-	0	114	0	-	0	121	0	-	0	121	0	-	
Wb Left Wb Thru Wb Right	119 1623 105	1600 4800 1600	0.074 0.338 * 0.066	0 0 0	119 1623 105	1600 4800 1600	0.074 0.338 * 0.066	0 51 2	126 1774 113	1600 4800 1600	0.079 0.370 * 0.071	0 0 0	126 1774 113	1600 4800 1600	0.079 0.370 * 0.071	
Yellow Allow	/ance:		0.100 *				0.100 *	I			0.100 *				0.100 *	
ICU LOS			0.858 D				0.861 D				0.916 E			I	0.918 E	

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

		Robertson Boulevard @ Wilshire Boulevard		
N-S St:	Robertson Boulevard	Peak hr: PM	Date:	02/11/2020
E-W St:	Wilshire Boulevard	Annual Growth: 1%	Date of Count:	2018
Project:	5-17-0315-1 / Our Lady of Mt. Lebanon		Projection Year:	2024
File:	ICU-3	CITY OF BEVERLY HILLS		

	2018 EXIST. TRAFFIC		2018	W/PROJE	CT SITE TI	RAFFIC	2024 WITHOUT PROJECT				2024				
	1	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C
Movement	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio
Nb Left	208	1600	0.130 *	0	208	1600	0.130 *	0	221	1600	0.138 *	0	221	1600	0.138 *
Nb Thru	479	3200	0.177	3	482	3200	0.178	0	508	3200	0.187	3	511	3200	0.188
Nb Right	87	0	-	0	87	0	-	0	92	0	-	0	92	0	-
Sb Left	79	1600	0.049	0	79	1600	0.049	4	88	1600	0.055	0	88	1600	0.055
Sb Thru	630	3200	0.218 *	2	632	3200	0.219 *	0	669	3200	0.232 *	2	671	3200	0.233 *
Sb Right	69	0	-	1	70	0	-	0	73	0	-	1	74	0	-
Eb Left	161	1600	0.101	2	163	1600	0.102	4	175	1600	0.109	2	177	1600	0.110
Eb Thru	1336	4800	0.319 *	0	1336	4800	0.319 *	72	1490	4800	0.354 *	0	1490	4800	0.354 *
Eb Right	197	0	-	0	197	0	-	0	209	0	-	0	209	0	-
Wb Left	119	1600	0.074 *	0	119	1600	0.074 *	0	126	1600	0.079 *	0	126	1600	0.079 *
Wb Thru	857	4800	0.179	0	857	4800	0.179	79	989	4800	0.206	0	989	4800	0.206
Wb Right	55	1600	0.034	0	55	1600	0.034	8	66	1600	0.041	0	66	1600	0.041
Yellow Allov	wance:		0.100 *	1			0.100 *				0.100 *				0.100 *
ICU LOS			0.842 D				0.843 D				0.903 E				0.904 E

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

INTERSECTION CAPACITY UTILIZATION

		La Cienega Boulevard @ S	San Vicente Boulevard		
N-S St:	La Cienega Boulevard	Peak hr: AN	M	Date:	02/11/2020
E-W St:	San Vicente Boulevard	Annual Growth: 1	1%	Date of Count:	2018
Project:	5-17-0315-1 / Our Lady of Mt. Lebanon			Projection Year:	2024
File:	ICU-13	CITY OF BEVERLY HILLS	8	-	

	2018 EXIST. TRAFFIC			2018	W/PROJE	CT SITE T	RAFFIC	2024 WITHOUT PROJECT				2024			
	1	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C
Movement	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio
Nb Left Nb Thru	128 737	1600 4800	0.080 * 0.155	1	129 737	1600 4800	0.081 * 0.155	2 26	138 808	1600 4800	0.086 * 0.170	1	139 808	1600 4800	0.087 * 0.170
Nb Right	6	0	-	0	6	0	-	0	6	0	-	0	6	0	-
Sb Left	0	0	0.000	0	0	0	0.000	0	0	0	0.000	0	0	0	0.000
Sb Right	248	4600 0	-	2	250	4800 0	-	12	275	4800 0	-	2	277	4800	-
Eb Left	0	0	0.000 *	0	0	0	0.000 *	0	0	0	0.000 *	0	0	0	0.000 *
Eb Thru Eb Right	937 189	6400 1600	0.146 0.118	5	942 192	6400 1600	0.147 0.120	0	995 201	6400 1600	0.155 0.126	5	1000 204	6400 1600	0.156 0.128
Wb Left	0	0	0.000	0	0	0	0.000	0	0	0	0.000	0	0	0	0.000
Wb Thru Wb Right	1991 238	6400 1600	0.311 ^ 0.149	0	1993 238	6400 1600	0.311 ^ 0.149	3	2115 256	6400 1600	0.330 ^ 0.160	0	2117 256	6400 1600	0.331 ^ 0.160
Yellow Allow	/ance:		0.100 *				0.100 *				0.100 *				0.100 *
ICU LOS			0.807 D				0.808 D				0.864 D			[0.866 D

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

INTERSECTION CAPACITY UTILIZATION

		La Cienega Boulevard @ San Vicente Boulevard		
N-S St:	La Cienega Boulevard	Peak hr: PM	Date:	02/11/2020
E-W St:	San Vicente Boulevard	Annual Growth: 1%	Date of Count:	2018
Project:	5-17-0315-1 / Our Lady of Mt. Lebanon		Projection Year:	2024
File:	ICU-13	CITY OF BEVERI Y HILLS		

	2018 EXIST. TRAFFIC			2018	W/PROJE	CT SITE TI	RAFFIC	2024 WITHOUT PROJECT				2024			
	1	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C
Movement	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio
Nb Left Nb Thru Nb Right	180 1182 24	1600 4800 0	0.113 * 0.251	3 0 0	183 1182 24	1600 4800 0	0.114 * 0.251	10 54 0	201 1309 25	1600 4800 0	0.126 * 0.278	3 0 0	204 1309 25	1600 4800 0	0.127 * 0.278
Sb Left Sb Thru Sb Right	0 1204 113	0 4800 0	0.000 0.274 * -	0 0 5	0 1204 118	0 4800 0	0.000 0.275 * -	0 70 13	0 1348 133	0 4800 0	0.000 0.308 * -	0 0 5	0 1348 138	0 4800 0	0.000 0.310 * -
Eb Left Eb Thru Eb Right	2 2101 205	0 6400 1600	0.000 0.329 * 0.128	0 3 2	2 2104 207	0 6400 1600	0.000 0.329 * 0.129	0 0 0	2 2230 218	0 6400 1600	0.000 0.349 * 0.136	0 3 2	2 2233 220	0 6400 1600	0.000 0.349 * 0.138
Wb Thru Wb Right	1069 358	6400 1600	0.167 0.224	5	1074 358	6400 1600	0.168 0.224	11 7	1146 387	6400 1600	0.000 0.179 0.242	5 0	1151 387	6400 1600	0.000 0.180 0.242
Yellow Allov	wance:		0.100 *	-			0.100 *				0.100 *				0.100 *
ICU LOS			0.815 D				0.819 D				0.883 D				0.886 D

* Key conflicting movement as a part of ICU1 Counts conducted by NDS

2 Capacity expressed in veh/hour of green

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

		La Cienega Boulevard @ Wilshire Boulevard		
N-S St:	La Cienega Boulevard	Peak hr: AM	Date:	02/11/2020
E-W St:	Wilshire Boulevard	Annual Growth: 1%	Date of Count:	2018
Project:	5-17-0315-1 / Our Lady of Mt. Lebanon		Projection Year:	2024
File:	ICU-14	CITY OF BEVERLY HILLS	-	

	2018 EXIST. TRAFFIC				W/PROJE	CT SITE T	RAFFIC	2024	WITHOUT	F PROJECT		2024			
	1	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C
Movement	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio
Nb Left Nb Thru Nb Right	154 708 60	1600 4800 0	0.096 * 0.160	0 1 0	154 709 60	1600 4800 0	0.096 * 0.160	3 44 10	166 796 74	1600 4800 0	0.104 * 0.181 -	0 1 0	166 797 74	1600 4800 0	0.104 * 0.181
Sb Left Sb Thru Sb Right	51 843 221	1600 4800 0	0.032 0.222 * -	0 3 0	51 846 221	1600 4800 0	0.032 0.222 *	0 34 7	54 929 242	1600 4800 0	0.034 0.244 * -	0 3 0	54 932 242	1600 4800 0	0.034 0.245 * -
Eb Left Eb Thru Eb Right	121 439 64	1600 4800 0	0.076 * 0.105 -	0 0 0	121 439 64	1600 4800 0	0.076 * 0.105 -	2 65 3	130 531 71	1600 4800 0	0.081 * 0.125 -	0 0 0	130 531 71	1600 4800 0	0.081 * 0.125 -
Wb Left Wb Thru Wb Right	108 1016 37	1600 4800 0	0.068 0.219 * -	0 0 0	108 1016 37	1600 4800 0	0.068 0.219 * -	7 43 0	122 1122 39	1600 4800 0	0.076 0.242 * -	0 0 0	122 1122 39	1600 4800 0	0.076 0.242 * -
Yellow Allow	vance:		0.100 *				0.100 *				0.100 *				0.100 *
ICU LOS			0.713 C				0.714 C				0.771 C			(0.772 C

20931 Burbank Boulevard, Suite C, Woodland Hills, CA (818) 835-8648 Fax (818) 835-8649

		La Cienega Boulevard @ Wilshire Boulevard		
N-S St:	La Cienega Boulevard	Peak hr: PM	Date:	02/11/2020
E-W St:	Wilshire Boulevard	Annual Growth: 1%	Date of Count:	2018
Project:	5-17-0315-1 / Our Lady of Mt. Lebanon		Projection Year:	2024
File:	ICU-14	CITY OF BEVERLY HILLS	-	

	2018	EXIST. TR	AFFIC	2018	W/PROJE	CT SITE TI	RAFFIC	2024	WITHOUT	F PROJECT		2024			
	1	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C	Added	Total	2	V/C
Movement	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio	Volume	Volume	Capacity	Ratio
Nb Left Nb Thru	135 953	1600 4800	0.084 * 0.214	0 3	135 956	1600 4800	0.084 * 0.215	6 69	149 1081	1600 4800	0.093 * 0.244	0 3	149 1084	1600 4800	0.093 * 0.244
Nb Right	74	0	-	0	74	0	-	10	89	0	-	0	89	0	-
Sb Left Sb Thru Sb Right Eb Left Eb Thru Eb Right Wb Left	85 934 96 130 649 73 231	1600 4800 0 1600 4800 0 1600	0.053 0.215 * - 0.081 0.150 * - 0.144 *	0 2 0 0 0 0 0 0	85 936 96 130 649 73 231	1600 4800 0 1600 4800 0 1600	0.053 0.215 * - 0.081 0.150 * - 0.144 *	0 65 8 6 64 5 15	90 1056 110 144 753 82 260	1600 4800 0 1600 4800 0 1600	0.056 0.243 * - 0.090 0.174 * - 0.162 *	0 2 0 0 0 0 0 0	90 1058 110 144 753 82 260	1600 4800 0 1600 4800 0 1600	0.056 0.243 * - 0.090 0.174 * - 0.162 *
Wb Thru	573	4800	0.130	0	573	4800	0.130	73	681	4800	0.153	0	681	4800	0.153
Wb Right	50	0	-	0	50	0	-	0	53	0	-	0	53	0	-
Yellow Allov	wance:		0.100 *				0.100 *				0.100 *				0.100 *
ICU LOS			0.694 B				0.694 B				0.773 C				0.773 C

APPENDIX F

HCM AND LEVELS OF SERVICE EXPLANATION HCM SIGNALIZED INTERSECTION DATA WORKSHEETS – WEEKDAY AM AND PM PEAK HOURS

LEVEL OF SERVICE FOR SIGNALIZED INTERSECTIONS

In the *Highway Capacity Manual (HCM)*, published by the Transportation Research Board, 2010, level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, in the absence of geometric delay, in the absence of incidents, and when there are no other vehicles on the road. Only the portion of total delay attributed to the control facility is quantified. This delay is called *control delay*. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for traffic signals are stated in terms of the average control delay per vehicle. Delay is a complex measure and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group in question.

Level of Service Criteri	a for Signalized Intersections
Level of Service	Control Delay (Sec/Veh)
А	≤ 10
В	> 10 and ≤ 20
С	> 20 and ≤ 35
D	$>$ 35 and \leq 55
E	> 55 and ≤ 80
F	> 80

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize *HCM* criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle. This level of service occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay values.

LOS B describes operations with control delay greater than 10 and up to 20 seconds per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

LOS C describes operations with control delay greater than 20 and up to 35 seconds per vehicle. These higher delays may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

LOS D describes operations with control delay greater than 35 and up to 55 seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LOS E describes operations with control delay greater than 55 and up to 80 seconds per vehicle. This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences.

LOS F describes operations with control delay in excess of 80 seconds per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors to such delay levels.

			Ŭ									,					
General Inform	nation								Inte	ersect	ion Info	ormatio	on		***	× L	
Agency		LLG Engineers							Du	ration	h	0.25			18 N. N. W.		
Analyst				Analys	is Dat	o Mar 1	1 2010		Are	aa Tyn	<u> </u>	Other		- <u>-</u>		₹.	
lurisdiction		City of West Hollywor	nd	Time F		Evistir	$n_{\rm r} = \Delta M$		PH		0	1 00		↓ 4	w‡e	24	
Lirban Street		San Vicente / Melros	<u> </u>			r 2018	IG - AW		An	Analysis Period			00	4			
Intersection		Intersection #4				044M	- Evisti		19	arysis	renou	121.	00			5	
Project Descript	tion	Our Lady of Mt. Leba	non P					iy.rt						_	4 1 4 W 1	* *	
T Toject Descrip		Our Eddy of Mit. Ecoa		TOJOOL													
Demand Inform	nation			E				W				NB			SB		
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R	
Demand (v), v	eh/h			88	489	41	251	7	45	169	67	575	98	76	429	52	
														<u>.</u>			
Signal Informa	tion			-		<u> </u>								_		X	
Cycle, s	90.0	Reference Phase 2			i≓ •	5 10 10	2	,						e 1	2	(† x	
Offset, s	0	Reference Point	End	Green	55.2	26.8	0.0	0.0 0.0		0.0	0.0			K	5		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.	.0	0.0	0.0					N	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	.0	0.0	0.0		5	6	7	8	
				-	1												
Timer Results				EBL	-	EBT	WB		W	/BT	NBL	-	NBT	SBL	-	SBT	
Assigned Phase						2				6			8			4	
Case Number						6.0			5	5.0			6.0			5.0	
Phase Duration	, S					59.2			59	9.2			30.8			30.8	
Change Period,	(Y+R	c), S				4.0				.0			4.0			4.0	
Max Allow Head	dway(/	<i>MAH</i>), s				0.0				0.0			3.2			3.2	
Queue Clearan	ce Time	e (g s), s											16.1			24.4	
Green Extensio	n Time	(ge),s				0.0			0	0.0		3.0				2.4	
Phase Call Pro	oability												1.00			1.00	
Max Out Probal	bility												0.03			0.26	
Movement Gro					EB			\٨/	B			NB	_		SB		
Approach Move	mont	Suits			т	P	1	vv		P	1	т	P		т	P	
Assigned Move	ment			L 5	ו 2	12		6		16	3	I Q	18		1	К 14	
Adjusted Flow F) veh/h		98 88	268	262	251	74	5	160	67	344	320	76	4	52	
Adjusted Flow I	tion Ele	y, ven/n		727	1000	18/18	887	100	0 1	1610	974	1000	1803	777	1800	1610	
	Time ()	γ_{c}) s	_	79	5 7	5.7	16.0	22	4	4 1	53	14.0	14 1	84	8.5	21	
	learanc	$g(a_c)$	_	30.4	5.7	5.7	21.8	22	4	<u>4</u> 1	13.7	14.0	14.1	22.4	8.5	2.1	
Green Ratio (a	\sqrt{C}	e fille (g ?), 3	_	0.61	0.61	0.61	0.61	0.6	. . .1	0.61	0.30	0.30	0.30	0.30	0.0	0.30	
Capacity (c) y	/O/		_	344	1166	1134	567	116	36	988	278	565	536	190	1076	479	
Volume-to-Cap	acity Ra	tio (X)	_	0.256	0.230	0.231	0.442	0.6	39 (0 171	0 241	0.610	0.613	0.400	0.399	0 109	
Back of Queue	(Q) ft	(In (95 th percentile)		65.3	98.5	96.8	146	344		60.2	54.9	255.4	246.3	70.7	159 1	35.2	
Back of Queue	(Q) ve	eh/ln (95 th percentile)	2.6	3.9	3.9	5.8	13	8	24	22	10.2	9.9	2.8	64	14	
Queue Storage	Ratio (RQ) (95 th percentile) 2)	0.00	0.00	0.00	0.00	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay ((d_1) , s	/veh	- /	20.7	7.8	7.8	12.7	11.	.0	7.5	30.7	27.1	27.2	36.8	25.2	23.0	
Incremental De	$av(d_2)$), s/veh	_	1.8	0.5	0.5	2.5	2.	7	0.4	0.2	0.4	0.4	0.5	0.1	0.0	
Initial Queue De	elav (d	3). s/veh		0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d). s/v	eh		22.5	8.3	8.3	15.2	13	.7	7.9	30.8	27.5	27.6	37.3	25.3	23.0	
Level of Service	Level of Service (LOS)			C	A	A	B	B		A	C	C	C	D	_0.0	<u> </u>	
Approach Delay s/yeh / LOS			10.3		B	13 2		F	B	27 9		C	26.7		C		
Intersection Delay, s/ven/LOS			10.0		- 18	3.6		-	-			-	20.7 C				
Intersection Delay, siven / 203			18.0				10.0										
Multimodal Results				EB			W	В			NB			SB			
Pedestrian LOS	Score	/ LOS		2.23		В	2.39	9	E	В	2.28		В	2.11		В	
Bicycle LOS Score / LOS				1.00		А	2.41		E	В	1.10		А	0.95	;	А	

			J -									,					
General Inform	nation								In	tersect	ion Info	ormati	on	2	4741	× L	
Agency										uration	h	0.25	511		1971 - C. 194		
Applyst			Analy		ata N	Mar 11	2010			radion,		Otho				۲. 4	
Analyst		City of West Hellywood	Time	Dorio		Evictin	, 2013			ыс тур	5	1 00			wŤe	2-	
Junsaiction		San Visanta / Malrosa	Anal		oor 2		ig - Fivi					1.00					
Urban Street		San vicence / weirose					Eviati		AI	laiysis	Penoa	1>7.	00			5	
Intersection	1	Intersection #4	Filer	lame		J4PIN	- Existii	ng.xu	JS								
Project Descrip	tion	Our Lady of Mt. Lebanol	n Project														
Demand Inform	nation			E	EB			W				NB			SB		
Approach Move	ement		L	-	г	R	L		Т	R	L	Т	R	L	Т	R	
Demand (v), v	eh/h		104	6	04	78	139	4	25	210	84	669	159	109	470	108	
Signal Informa	Signal Information				<u>5</u> -	215										L	
Cycle, s	90.0	Reference Phase 2		1	5 m		7	,						4	×	фх	
Offset, s	0	Reference Point En	d Gree	1 6	5	5 25 5		-	0	0.0	0.0	_	1		3	4	
Uncoordinated	No	Simult. Gap E/W Or	1 Yello	N 4.0) 4	4.0	0.0	0.	.0	0.0	0.0			\rightarrow		512	
Force Mode	Fixed	Simult. Gap N/S Or	n Red	0.0) (0.0	0.0	0.	.0	0.0	0.0		5	6	7	8	
Timer Results			EE	BL	EE	BT	WB	L	٧	VBT	NBL	-	NBT	SBL	-	SBT	
Assigned Phase					2	2				6			8			4	
Case Number					6.	.0			Ę	5.0			6.0			5.0	
Phase Duration	, s				50).5			5	50.5			39.5			39.5	
Change Period,	(Y+R	c), S			4.	.0			2	4.0			4.0			4.0	
Max Allow Head	dway (/	MAH), s			0.0				(0.0			3.3			3.3	
Queue Clearan	ce Time	e (g s), S											17.9			31.6	
Green Extensio	n Time	(ge), s			0.	.0			(0.0		4.4				4.1	
Phase Call Prol	bability												1.00			1.00	
Max Out Proba	bility												0.01			0.07	
	-																
Movement Gro	oup Res	sults		E	В			W	В			NB			SB		
Approach Move	ement		L	Т		R	L	Т		R	L	Т	R	L	Т	R	
Assigned Move	ment		5	2		12	1	6		16	3	8	18	7	4	14	
Adjusted Flow F	Rate (v), veh/h	104	34	7 :	335	139	42	5	210	84	428	400	109	470	108	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/ln	978	190	00 1	1823	771	190	00	1610	938	1900	1773	673	1809	1610	
Queue Service	Time (🤉	g s), S	6.6	9.	7	9.7	11.7	12.	.5	6.5	6.2	15.9	15.9	13.7	8.2	3.9	
Cycle Queue C	learanc	e Time (<i>g c</i>), s	19.2	9.	7	9.7	21.4	12.	.5	6.5	14.3	15.9	15.9	29.6	8.2	3.9	
Green Ratio (g	/C)		0.52	0.5	52 (0.52	0.52	0.5	52	0.52	0.39	0.39	0.39	0.39	0.39	0.39	
Capacity (c), v	/eh/h		452	98	7 9	947	397	98	7	836	363	745	695	225	1418	631	
Volume-to-Capa	acity Ra	tio (X)	0.230	0.3	52 0	.353	0.351	0.43	31	0.251	0.232	0.575	0.576	0.485	0.332	0.171	
Back of Queue	(Q), ft/	(In (95 th percentile)	71.6	182	2.4 1	76.6	100.8	225	5.3	104.4	60.1	274.8	260.7	98.4	147.6	63.4	
Back of Queue	(Q), ve	eh/In (95 th percentile)	2.9	7.3	3	7.1	4.0	9.0	0	4.2	2.4	11.0	10.4	3.9	5.9	2.5	
Queue Storage	Ratio (RQ) (95 th percentile)	0.00	0.0	0 0	0.00	0.00	0.0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay ((d 1), s	/veh	19.3	12	.7 1	12.7	19.1	13.	.4	12.0	24.1	21.5	21.5	33.1	19.1	17.8	
Incremental De	lay (<i>d</i> 2), s/veh	1.2	1.0	0	1.0	2.4	1.4	4	0.7	0.1	0.3	0.3	0.6	0.1	0.0	
Initial Queue De	elay(d	з), s/veh	0.0	0.	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/ve	eh	20.5	13	.7 1	13.8	21.5	14.	.8	12.7	24.2	21.7	21.8	33.7	19.2	17.9	
Level of Service	Level of Service (LOS)			В	5	В	С	В		В	С	С	С	С	В	В	
Approach Delay, s/veh / LOS			14	6	B	3	15.4		ij	В	22.0		С	21.3		С	
Intersection Delay, s/veh / LOS						18	.4							B			
Multimodal Results				E	В			W	В			NB			SB		
Pedestrian LOS	Score	/ LOS	2.2	5	В	3	2.40)		В	2.27		В	2.10		В	
Bicycle LOS Score / LOS				4	A	A	1.76	;		В	1.24		А	1.05		А	

												,					
General Inform	nation								Inter	rsect	ion Infe	ormati	on		▲2740 ↑ 1	× L	
Agency		LLG Engineers							Dura	ation	h	0.25	011		11 N. N. W.		
Analyst				Analys	is Dat	Mar 1	1 2010		Area	a Typ	<u> </u>	Othe	r	- <u>-</u>		×.	
Jurisdiction		City of West Hollyw	ood	Time	Pariod	Evistin	$n_{\rm r} = \Delta M$		PHE	-	<u> </u>	1 00	•	- <u>→</u>	w‡e	2-	
Lirban Street		San Vicente / Bever	rlv			r 2018	Analysis			lycic	Pariod	1.00	00	4		+ *	
Intersection		Intersection #6	iy		515 TCa	064M	- Evicti			19313	l'enou		00			£	
Project Descript	tion	Our Lady of Mt Lak	onon D	roject	ame	UOAN		iy.xu	15					-	4 1 4 1 1		
Project Descrip	lion	Our Lady of Mit. Let	anon F	TUJECI													
Demand Inform	nation			EB				M				NB			SB		
Approach Move	ement			L	Т	R	L	-	Т	R	L	Т	R	L	Т	R	
Demand (v), v	eh/h			53	627	127	110	11	54	129	84	685	5 114	85	493	182	
Signal Information				5	<u> </u>	2		50	21			_		-			
Cycle, s	90.0	.0 Reference Phase 2			l è	⁻⊨`	ĸ	5	2	1	2	l I			י) ו'	4	
Offset, s	0	Reference Point	End	Green	71	31.6		5	5	21.5			1	<u>Y</u> ² ,		4	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	4.	0	4.0	0.0					tz.	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8	
Timer Results				EBI	-	EBT	WB	L	WB	3T	NBL	-	NBT	SBL	-	SBT	
Assigned Phase	e			5		2	1		6		3		8	7		4	
Case Number				2.0		3.0	2.0		3.0	0	2.0		3.0	2.0		3.0	
Phase Duration	, S			8.4		44.0	11.1		46.	.6	9.5		25.5	9.5		25.5	
Change Period,	, (Y+R	c), S		4.0		4.0	4.0		4.0	0	4.0		4.0	4.0		4.0	
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s		3.1		0.0	3.1		0.0	0.0 3.4		3.1		3.1		3.1	
Queue Clearan	ce Time	e (g s), s		4.6			7.4			6.			18.0	6.2		12.8	
Green Extensio	n Time	(g _e), s		0.4		0.0	0.2		0.0	0	0.1		3.5	0.0		3.7	
Phase Call Prol	bability			0.73	3		0.94	1			0.88	;	1.00	0.88	;	1.00	
Max Out Proba	bility			1.00)		0.00)			0.00)	0.04	0.37	·	0.01	
							_		-							_	
Movement Gro	oup Res	sults			EB			W	В	_		NB			SB		
Approach Move	ement			L	T	R	L	Т		R	L	Т	R	L	Т	R	
Assigned Move	ment			5	2	12	1	6		16	3	8	18	7	4	14	
Adjusted Flow I	Rate (v), veh/h		53	627	127	110	115	4 1	29	84	685	114	85	493	182	
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1810	1809	1610	1810	180	9 16	610	1810	1809	1610	1810	1809	1610	
Queue Service	Time (🤅	g s), S		2.6	10.5	3.8	5.4	22.	23	3.6	4.1	16.0	5.2	4.2	10.8	8.2	
Cycle Queue C	learanc	e lime (<i>g c</i>), s		2.6	10.5	3.8	5.4	22.	23	3.6	4.1	16.0	5.2	4.2	10.8	8.2	
Green Ratio (g	/C)			0.05	0.44	0.51	0.08	0.4	7 0.	0.53	0.06	0.24	0.24	0.06	0.24	0.29	
Capacity (c), v	/eh/h			89	1607	813	142	1/1	4 8	361	110	864	385	110	863	463	
Volume-to-Capa	acity Ra	itio (X)		0.598	0.390	0.156	0.775	0.67	3 0.	.150	0.763	0.793	0.296	0.774	0.571	0.393	
Back of Queue	(Q), ft/	In (95 th percentile)		53.4	190.9	61.5	111.1	348	.6 3	0.9	86.3	277.3	88.5	87.7	202	96.5	
Back of Queue	(Q), Ve	eh/In (95 th percenti	le) ile)	2.1	7.6	2.5	4.4	13.	9 1	1.2	3.5	11.1	3.5	3.5	8.1	3.9	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay ((01 1), S	/ven		41.9	16.8	12.0	40.7	18.	3 1	1.2	41.6	32.2	28.1	41.7	30.2	1.4	
Incremental De	lay (<i>d</i> 2), s/ven		2.4	0.7	0.4	3.4	2.1		0.4	4.1	0.6	0.2	4.3	0.2	0.2	
Control Dates (Initial Queue Delay (<i>d</i> ₃), s/veh				0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh				44.3	17.5	12.4	44.1	20.	4 1	1.6	45.7	32.8	28.2	46.0	30.4	1.6	
Level of Service (LOS)					. I	R				А		U				A	
Approach Delay, s/veh / LOS				18.5		В	20.6)	U		33.4		U	25.3		U	
Intersection Delay, s/veh / LOS				24.0										С			
Multimodal Results				EB			WF		/B		NI		NB		SB		
Pedestrian LOS	Pedestrian LOS Score / LOS			2 42		B	2 AF	3	- R		2 44		В	2 44		В	
Bicycle LOS Sc	Pedestrian LOS Score / LOS 3icycle LOS Score / LOS				;	A	1.64	1	B		1.22	2	A	1.11		A	

Copyright © 2019 University of Florida, All Rights Reserved.

HCS7[™] Streets Version 7.4

			5		•••••••						,					
General Inform	nation								Interse	ction In	format	ion		4244,	× L	
	lation								Duratio	n h	0 25			10 V V 2		
Applyct				Analys		o Mor 1	1 2010			n, n no	Oth	or.	-1		۲. 4	
Analysi				Time	oriod		1, 2019			pe	1.00	51		"Ĭ.	2-	
Junsaiction		City of West Hollyw					ig - Pivi			Dariad	1.00				+ +	
Urban Street		San vicente / Bever	iy	Analys	as rea		E. de di		Analysi	s Period	> /	.00			5	
Intersection		Intersection #6			ame	U6PIN	- Existi	ng.xu	IS							
Project Descrip	tion	Our Lady of Mt. Let	anon P	roject										N		
Demand Inform	nation				EB			V	VB		NF	3		SB		
Approach Move	ement				Т	R			T R	1	Т	R	1	Т	R	
Demand (v) v	eh/h			71	828	72	80	7	68 13	7 108	71	3 424	215	481	127	
					020		00			100			210	101		
Signal Information				2	5	<u> </u>	9	도망	6221				_			
Cycle, s	90.0	Reference Phase 2		1 🖹		_ ⊢ '				- 1	Φ 2		→ -	<u>،</u> ۲	4	
Offset, s	0	Reference Point	End		3	10.0		-				1	Y 2 ,		4	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	5.0 4 0	4 0	5.5 4 0	4	$\frac{9}{0}$ 1.8	20.	• ←		$ \rightarrow $		t a	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0 0.0	0.0		5	6	7	8	
		· · ·		r-			÷									
Timer Results				EBL	_	EBT	WB	L	WBT	NE	L	NBT	SBI	_	SBT	
Assigned Phase				5		2	1		6	3		8	7		4	
Case Number				2.0		3.0	2.0		3.0	2.0)	3.0	2.0		3.0	
Phase Duration	, S			9.0		31.2	9.5		31.7	10.	9	32.6	16.8	3	38.5	
Change Period.	(Y+R)	c). S		4.0		4.0	4.0		4.0	4.0)	4.0	4.0		4.0	
Max Allow Head	dwav (/	MAH), s		3.1		0.0	3.1		0.0	3.1	3.1		3.1		3.1	
Queue Clearan	ce Time	(a_s) , s		5.5	-		5.9	-		7.5	3	24.0	12.4	1	10.5	
Green Extensio	n Time	(q_e) s		0.1		0.0	0.4		0.0	0		4.6	0.4		4.8	
Phase Call Pro	hability	(90),0		0.83	3	0.0	0.86	3	0.0	0.9	3	1.00	1.00)	1.00	
Max Out Proba	bility			0.00			1.00	<u>,</u>		0.0	2	0.02	0.00)	0.00	
Max Out 1100a	Sinty			0.00	· .		1.00			0.0	-	0.02	0.00		0.00	
Movement Gro	oup Res	ults			EB			W	В		NB			SB		
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow F	Rate (v), veh/h		71	828	72	80	76	8 137	108	713	424	215	481	127	
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1810	1809	1610	1810	180	9 1610	1810	1809	1610	1810	1809	1610	
Queue Service	Time (g	g s), S		3.5	18.6	2.6	3.9	16.	8 4.6	5.3	15.1	22.0	10.4	8.5	4.3	
Cycle Queue C	learance	e Time (g c), s		3.5	18.6	2.6	3.9	16.	8 4.6	5.3	15.1	22.0	10.4	8.5	4.3	
Green Ratio (g	/C)			0.06	0.30	0.38	0.06	0.3	1 0.45	0.08	0.32	0.32	0.14	0.38	0.44	
Capacity (c), v	/eh/h			100	1094	610	110	111	3 724	138	1149	511	256	1385	706	
Volume-to-Capa	acity Ra	tio (X)		0.709	0.757	0.118	0.729	0.69	0.18	0.783	0.62	0.829	0.838	0.347	0.180	
Back of Queue	(Q), ft/	(In (95 th percentile)		72.5	330.1	28.8	88.4	298	.7 76.8	109.6	258.2	2 267.6	205.7	154.4	68	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.9	13.2	1.2	3.5	11.	9 3.1	4.4	10.3	10.7	8.2	6.2	2.7	
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay ((d 1), s	/veh		41.8	28.4	2.2	41.5	27.	4 14.9	40.8	26.1	3.3	37.6	19.8	15.4	
Incremental De	lay (d 2), s/veh		3.4	4.9	0.4	8.5	3.5	5 0.6	3.6	0.2	1.4	2.8	0.1	0.0	
Initial Queue De	elay (<i>d</i>	з), s/ve h		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (<i>d</i>), s/veh				45.2	33.3	2.6	50.0	30.	9 15.5	44.5	26.3	4.7	40.4	19.8	15.5	
Level of Service (LOS)				D	С	Α	D	С	В	D	С	A	D	В	В	
Approach Delay, s/veh / LOS				31.9)	С	30.3	3	С	20.	5	С	24.5	5	С	
Intersection Delay, s/veh / LOS						26	6.5						C			
													-			
Multimodal Results				EB			W	В		NB			SB			
Pedestrian LOS	Score	/ LOS		2.46	5	В	2.43	3	В	2.4	3	В	2.42	2	В	
Bicycle LOS Score / LOS				1.29)	А	1.30)	A	1.5	1	В	1.17	7	A	
									,							
--	---------	---------	---------	-----------	---------------	--------	---------	----------	---------	-------------	----------	-------------	------------------			
General Information						Inte	ersect	ion Info	ormatic	on	2	4241	a l _a			
Agency LLG Engineers						Du	ration.	h	0.25			Sec. 1				
Analyst JAS /	Analvs	is Date	Mar 11	1.2019		Are	ea Typ	e	Other				<u>₹</u>			
Jurisdiction City of West Hollywood	Time P	eriod	Existin	na - AM		PH	IF	-	1.00		- → -	w∔e	∑- \$-			
Urban Street La Cienega / Melrose	Analys	is Year	2018	.g /		Ana	alvsis	Period	1>7.0	00	4		+ ★ ★			
Intersection Intersection #10	File Na	me	10AM	- Existir	ומ צו	IS	aryoro									
Project Description Our Lady of Mt Lebanon Pro	niect		10/ 10/	Exioti	ig.re						1	* * * * * *				
	5,001															
Demand Information		EB			V	VB			NB			SB				
Approach Movement	L	Т	R	L	-	Т	R	L	Т	R	L	Т	R			
Demand (v), veh/h	53	377	34	501	8	95	38	47	591	160	58	841	154			
			-	1 11:	_			_								
Signal Information		l Ş	1.a 🗄	245						<u> </u>			\mathbf{A}			
Cycle, s 90.0 Reference Phase 2			8	1 SA	7							3	4			
Offset, s 0 Reference Point End	Green	19.8	24.3	33.9	0.	0	0.0	0.0			<u> </u>					
Uncoordinated No Simult. Gap E/W On	Yellow	4.0	4.0	4.0	0.	0	0.0	0.0					Ŷ			
Force Mode Fixed Simult. Gap N/S On F	Red	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8			
	EDI		EDT			10/		ND					ODT			
Imer Results	EBL		EBI	VVBI	-+		/BT	NBL	-	NBI	SBL	-	5B1			
Assigned Phase			2	1	\rightarrow	ر د	0			8		_	4			
Case Number			5.3	1.0	_	5	0.U			5.0			6.0 27.0			
Change Deried (V: R) a			28.3	23.8	,	52	2.1			37.9			37.9			
Max Allow Headway (MAH) a			4.0	4.0	\rightarrow	4	.0			4.0		_	4.0 2.2			
(MATT), S			0.0	18.9		0	.0			3.Z			3.∠ 22.7			
Green Extension Time (g_s) , s			0.0	1.0	+	0	0			4.8			5.0			
Phase Call Probability			0.0	1.0	_	0	.0			4.0 1.00		-	1.00			
Max Out Probability				0.00	, - +		_			0.08			1.00			
				0.00						0.00						
Movement Group Results		EB			W	В			NB			SB				
Approach Movement	L	Т	R	L	Т		R	L	Т	R	L	Т	R			
Assigned Movement	5	2	12	1	6		16	3	8	18	7	4	14			
Adjusted Flow Rate (v), veh/h	53	377	34	501	89	5	38	47	591	160	58	511	484			
Adjusted Saturation Flow Rate (s), veh/h/ln	632	1809	1610	1810	180)9		575	1809	1610	839	1900	1797			
Queue Service Time (g_s), s	6.0	7.6	1.4	16.8	13.	7		6.8	11.0	6.2	5.0	20.7	20.7			
Cycle Queue Clearance Time (g_c), s	6.2	7.6	1.4	16.8	13.	7		27.3	11.0	6.2	15.8	20.7	20.7			
Green Ratio (g/C)	0.27	0.27	0.27	0.51	0.5	3		0.38	0.38	0.38	0.38	0.38	0.38			
Capacity (c), veh/h	249	978	435	666	193	36		165	1360	605	294	714	675			
Volume-to-Capacity Ratio (X)	0.212	0.385	0.078	0.752	0.46	62		0.284	0.435	0.264	0.197	0.716	0.716			
Back of Queue (Q), ft/In (95 th percentile)	45.6	150.3	25.5	262.7	22	6		42.6	196.8	100.2	43.9	342.8	327.6			
Back of Queue (Q), veh/In (95 th percentile)	1.8	6.0	1.0	10.5	9.0	0		1.7	7.9	4.0	1.8	13.7	13.1			
Queue Storage Ratio (<i>RQ</i>) (95 th percentile)	0.00	0.00	0.00	0.00	0.0	0		0.00	0.00	0.00	0.00	0.00	0.00			
Uniform Delay (d 1), s/veh	26.3	26.7	24.5	15.8	12.	.9		35.6	21.0	19.5	26.8	24.0	24.0			
Incremental Delay (d 2), s/veh	1.9	1.1	0.4	0.7	0.8	8		0.3	0.1	0.1	0.1	0.5	0.5			
Initial Queue Delay (d 3), s/veh	0.0	0.0	0.0	0.0	0.0	0		0.0	0.0	0.0	0.0	0.0	0.0			
Control Delay (d), s/veh	28.2	27.9	24.8	16.5	13.	7	0.0	35.9	21.0	19.6	26.9	24.5	24.5			
Level of Service (LOS)	C	С	C	В	В		A	D	С	В	C	С	C			
Approach Delay, s/veh / LOS	27.7		C	14.3	5	E	В	21.6		С	24.6		С			
Intersection Delay, s/veh / LOS			20).4							5					
Multimodal Pesults		EP			10/	B			ND			QD				
Pedestrian LOS Score / LOS	2 11		B	2.25		5	B	2 / 2		B	2 / 2	30	B			
	·		~	L.CU	·	L	-	L.74	· I	-	L.72		~			

Intersection Information Intersection Information Intersection Information Agency LLG Engineers Analysis Date Mar 11, 2010 Analysis PM Duration, h 0.25 Analysis JAS Analysis Period Existing PM PHF 1.00 Intersection Inte				- 5									,				
Agency LL C Engineers Duration, h 0.25 Analysti JAS Analysis Date Mart 11, 2019 Area Type Other Jursdiction City of West Hollywood Time Period Exsting - PM HF 1.00 Urban Street La Clenega / Merose Analysis Ver 2018 Analysis Period (1>7.00 Immerose (1) File Name 10PM - Existing .vs Variable (1) Variable (1) <td< td=""><td>General Inform</td><td>nation</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Inte</td><td>ersect</td><td>ion Inf</td><td>ormatio</td><td>on</td><td>4</td><td>***</td><td>× L</td></td<>	General Inform	nation								Inte	ersect	ion Inf	ormatio	on	4	***	× L
Targets Description Analysis Date Mar 11, 2019 Area Type Date Time Period Existing - PM PHF 1.00 Date Date Area Type Date Date <thdate< th=""> <thdate< td=""><td>Agency</td><td></td><td>LLG Engineers</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Dur</td><td>ation</td><td>h</td><td>0.25</td><td></td><td></td><td>Sec. as</td><td></td></thdate<></thdate<>	Agency		LLG Engineers							Dur	ation	h	0.25			Sec. as	
National biology Product National Participation Product National Participation Product National Participation Product National Participation Other National Participation National Partinal Participation Natinteennet Partin P	Analyst				Analys	is Date	Mar 1	1 2010			a Typ	<u> </u>	Other		- ^{- 1}		<u>بر</u> 4
Data Street La Cienega / Mericos Analysis Yerico Time Analysis Yerico La Cienega / Mericos Network Intersection Intersection #10 File Name 10PM - Existing.xus Intersection 1.7 - 7.00 Project Description Our Lady of ML Lebanon Project Image 2018 Analysis Yerico 1.8 - 7.00 R L T R Demand Information L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R L T R R R L T R R R L T R R R R<	Jurisdiction		City of West Hollyw	ood	Time	Poriod		n, 2013			атур =	<u> </u>	1 00		- → *	wŧe	2
Data Uniteda Laboration Pringer tend Pringer tend <td>Lirban Street</td> <td></td> <td>La Cienega / Melros</td> <td>000</td> <td></td> <td></td> <td>r 2018</td> <td>ig - i ivi</td> <td></td> <td>Ana</td> <td>lveie</td> <td>Doriod</td> <td>1.00</td> <td>20</td> <td>- 4</td> <td></td> <td>+</td>	Lirban Street		La Cienega / Melros	000			r 2018	ig - i ivi		Ana	lveie	Doriod	1.00	20	- 4		+
The relation of the	Intersection		La Cierrega / Merios	50	Filo N		10PM	Evicti			119515	renou	127.	50			£
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Broject Deserio	tion	Our Lody of Mt Lok	onon D	roioot	ame	TUPIN	- EXISUI	ig.xt	15					-	*	* *
Demand Information EB WB NB L T R	Project Descrip	lion	Our Lady of Mit. Let	anon P	roject												
Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R	Demand Inform	nation				EB			V	/B			NB			SB	
Demand (v), veh/h 122 868 54 268 565 100 54 985 337 64 806 1111 Signal Information Cycle, s 9.0.0 Reference Phase 2 137 64 806 1117 Signal Information Unccordinated Unccordinated No Simult. Gap E/W On Reference Phase 2 137 0.0	Approach Move	ement			L	Т	R	L	-	Т	R	L	Т	R	L	Т	R
Signal Information Cycle, s 90.0 Reference Point End Uncoordinated Construct	Demand (v), v	eh/h			122	868	54	268	5	65	100	54	985	337	64	806	111
Signal Information Cycle, s 90.0 Reference Phaine Z <thz< th=""> Z <thz< th=""> <thz< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td>1.</td><td>1</td><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></thz<></thz<></thz<>						1.	1			11					1		
Cycle, s 90.0 Reference Phase 2 Offset, s 0 Reference Phase 2 Offset, s 0 Reference Phase 2 Green I 0.7 30.1 37.2 0.0 0.0 0.0 Force Mode Fixed Simult. Gap E/W On Red 0.0	Signal Informa	tion				5	<u> </u>	215						_			L
Offset 0 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap K/S On Ref 0.0	Cycle, s	90.0	Reference Phase	2		l è	⊣≝ ≚	- 1 50	2				×		4	×	tta 🗍
$ \begin{array}{ $	Offset, s	0	Reference Point	End	Green	10.7	30.1	37.2	0	0	0.0	0.0		1	X Z	3	4
Force Mode Fixed Simult: Gap N/S On Red 0.0 <td>Uncoordinated</td> <td>No</td> <td>Simult. Gap E/W</td> <td>On</td> <td>Yellow</td> <td>4.0</td> <td>4.0</td> <td>4.0</td> <td>0.</td> <td>0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>\rightarrow</td> <td></td> <td>512</td>	Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.	0	0.0	0.0			\rightarrow		512
Immer Results EBL EBT WBL WBT NBL NBL SBL SBT Assigned Phase 2 1 6 8 4 Case Number 5.3 1.0 3.0 5.0 6.0 Phase Duration, s 34.1 14.7 48.8 41.2 41.2 Change Period, (Y+Re), s - 4.0 <td< td=""><td>Force Mode</td><td>Fixed</td><td>Simult. Gap N/S</td><td>On</td><td>Red</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.</td><td>0</td><td>0.0</td><td>0.0</td><td></td><td>5</td><td>6</td><td>7</td><td>8</td></td<>	Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8
Time ResultsEBLEBLEBLWBLWBLNBLNBLNBLNBLNBLSBLSBTAssigned Phase8																	
Assigned Phase I	Timer Results				EBL	-	EBT	WB	L	WE	BT	NBI	-	NBT	SBL	-	SBT
Case Number image for the set of the set	Assigned Phase	Э					2	1		6	6			8			4
Phase Duration, s Image Pariod, (Y4R c), s Image Pariod, (Y4R c)	Case Number						5.3	1.0		3.0	0			5.0			6.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Phase Duration	, S					34.1	14.7	7	48.	.8			41.2			41.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Change Period,	(Y+R	c), S				4.0	4.0		4.(0			4.0			4.0
Queue Clearance Time ($g \circ$), s Image of the transmet of the transmet of the transmet of tr	Max Allow Head	w Headway (<i>MAH</i>), s learance Time (<i>q</i> s), s					0.0	3.1		0.0	0			3.3			3.3
Green Extension Time ($g \circ$), s 0.0 0.0 0.0 0.0 7.2 6.7 Phase Call Probability I 1.00 I 0.00 I 0.00 0.15 0.03 1.00 Max Out Probability I 0.00 I 0.00 I 0.15 I 0.23 Movement Group Results I T R L L T	Queue Clearan	e Clearance Time (g s), s						10.2	2					25.9			30.7
Phase Call Probability Image: Call Probability <td>Green Extensio</td> <td colspan="2">ue Clearance Time ($g s$), s n Extension Time ($g e$), s</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>0.5</td> <td></td> <td>0.0</td> <td>0</td> <td></td> <td></td> <td>7.2</td> <td></td> <td></td> <td>6.7</td>	Green Extensio	ue Clearance Time ($g s$), s n Extension Time ($g e$), s					0.0	0.5		0.0	0			7.2			6.7
Max Out Probability Image: Constraint of the percentile	Phase Call Prol	een Extension Time (g_e), s ase Call Probability						1.00)					1.00			1.00
Movement Group Results L T R L D D	Max Out Proba	bility						0.00)					0.15			0.23
Movement Group Results Image: Figure Fi																	
Approach MovementLTR </td <td>Movement Gro</td> <td>oup Res</td> <td>ults</td> <td></td> <td></td> <td>EB</td> <td>1</td> <td></td> <td>W</td> <td>В</td> <td></td> <td></td> <td>NB</td> <td></td> <td></td> <td>SB</td> <td></td>	Movement Gro	oup Res	ults			EB	1		W	В			NB			SB	
Assigned Movement5212161638187414Adjusted Flow Rate (v), veh/h122868542685651005498533764468449Adjusted Saturation Flow Rate (s), veh/h/n85918091610181018096191809161058019001819Queue Service Time (g_{s}), s9.918.92.18.28.36.719.814.09.017.317.3Cycle Queue Clearance Time (g_{c}), s10.018.92.18.28.36.79.814.028.717.317.3Green Ratio (g/C)0.330.330.330.480.500.410.410.410.410.410.410.410.41Capacity (c), veh/h3681214541375180421714.2664192783750Volume-to-Capacity Ratio (X)0.3320.7150.1000.7140.3130.2490.6000.5080.3330.5980598Back of Queue (Q), teh/ln (95 th percentile)97.632.636.4145.2147.144.2312.58.62.211.711.3Queue Storage Ratio (RQ) (95 th percentile)0.00.00.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00	Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Adjusted Flow Rate (ψ), veh/h122868542685651005498533764468449Adjusted Saturation Flow Rate (s), veh/h/ln85918091610181018096191809161058019001819Queue Service Time (g_{s}), s9.918.92.18.28.36.719.814.09.017.317.3Cycle Queue Clearance Time (g_{c}), s10.018.92.18.28.360.410.410.410.410.410.41Green Ratio ($g'C$)0.330.330.330.480.500.410.410.410.410.410.410.41Capacity (c), veh/h368121454137518.040.240.6600.5080.3330.5980.598Back of Queue (Q), ft/ln (95 th percentile)97.632636.4145.2147.144.2312215.856.1217.11.3Queue Storage Ratio (RQ) (95 th percentile)3.91.301.555.85.91.81.2.58.62.2.211.711.3Queue Storage Ratio (RQ) (95 th percentile)0.00.00	Assigned Move	ment			5	2	12	1	6		16	3	8	18	7	4	14
Adjusted Saturation Flow Rate (s), veh/h/ln85918091610180918091819180918191809181018091810180918101809181018091810180918101809181918	Adjusted Flow F	Rate (v), veh/h		122	868	54	268	56	5 1	100	54	985	337	64	468	449
Queue Service Time (g s), s 9.9 18.9 2.1 8.2 8.3 6.7 19.8 14.0 9.0 17.3 17.3 Cycle Queue Clearance Time (g c), s 10.0 18.9 2.1 8.2 8.3 23.9 19.8 14.0 28.7 17.3 17.3 Green Ratio (g/C) 0.33 0.33 0.33 0.48 0.50 0.41 <t< td=""><td>Adjusted Satura</td><td>ation Flo</td><td>ow Rate (s), veh/h/l</td><td>n</td><td>859</td><td>1809</td><td>1610</td><td>1810</td><td>180</td><td>9</td><td></td><td>619</td><td>1809</td><td>1610</td><td>580</td><td>1900</td><td>1819</td></t<>	Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	859	1809	1610	1810	180	9		619	1809	1610	580	1900	1819
Cycle Queue Clearance Time (gc), s 10.0 18.9 2.1 8.2 8.3 23.9 19.8 14.0 28.7 17.3 17.3 Green Ratio (g/C) 0.33 0.33 0.33 0.48 0.50 0.41	Queue Service	Time (g	g s), s		9.9	18.9	2.1	8.2	8.3	3		6.7	19.8	14.0	9.0	17.3	17.3
Green Ratio (g/C) 0.33 0.33 0.33 0.33 0.48 0.50 0.41 <th< td=""><td>Cycle Queue C</td><td>learance</td><td>e Time (<i>g c</i>), s</td><td></td><td>10.0</td><td>18.9</td><td>2.1</td><td>8.2</td><td>8.3</td><td>3</td><td></td><td>23.9</td><td>19.8</td><td>14.0</td><td>28.7</td><td>17.3</td><td>17.3</td></th<>	Cycle Queue C	learance	e Time (<i>g c</i>), s		10.0	18.9	2.1	8.2	8.3	3		23.9	19.8	14.0	28.7	17.3	17.3
Capacity (c), veh/h 368 1214 541 375 1804 217 1492 664 192 783 750 Volume-to-Capacity Ratio (X) 0.332 0.715 0.100 0.714 0.313 0.249 0.660 0.508 0.333 0.598 0.598 Back of Queue (Q), ft/ln (95 th percentile) 97.6 326 36.4 145.2 147.1 44.2 312 215.8 56.1 291.8 281.8 Back of Queue (Q), veh/ln (95 th percentile) 3.9 13.0 1.5 5.8 5.9 1.8 12.5 8.6 2.2 11.7 11.3 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.	Green Ratio (g	/C)			0.33	0.33	0.33	0.48	0.5	0		0.41	0.41	0.41	0.41	0.41	0.41
Volume-to-Capacity Ratio (X) 0.332 0.715 0.100 0.714 0.313 0.249 0.600 0.508 0.333 0.598 0.598 Back of Queue (Q), ft/ln (95 th percentile) 97.6 326 36.4 145.2 147.1 44.2 312 215.8 56.1 291.8 281.8 Back of Queue (Q), veh/ln (95 th percentile) 3.9 13.0 1.5 5.8 5.9 1.8 12.5 8.6 2.2 11.7 11.3 Queue Storage Ratio (RQ) (95 th percentile) 0.00 <td>Capacity (c), v</td> <td>/eh/h</td> <td></td> <td></td> <td>368</td> <td>1214</td> <td>541</td> <td>375</td> <td>180</td> <td>94</td> <td></td> <td>217</td> <td>1492</td> <td>664</td> <td>192</td> <td>783</td> <td>750</td>	Capacity (c), v	/eh/h			368	1214	541	375	180	94		217	1492	664	192	783	750
Back of Queue (Q), ft/ln (95 th percentile) 97.6 326 36.4 145.2 147.1 44.2 312 215.8 56.1 291.8 281.8 Back of Queue (Q), veh/ln (95 th percentile) 3.9 13.0 1.5 5.8 5.9 1.8 12.5 8.6 2.2 11.7 11.3 Queue Storage Ratio (RQ) (95 th percentile) 0.00	Volume-to-Capa	acity Ra	tio (X)		0.332	0.715	0.100	0.714	0.31	13		0.249	0.660	0.508	0.333	0.598	0.598
Back of Queue (Q), veh/ln (95 th percentile)3.9 $1.3.$ $1.5.$ $5.8.$ $5.9.$ 1.8 $12.5.$ $8.6.$ $2.2.$ $11.7.$ $11.3.$ Queue Storage Ratio (RQ) (95 th percentile) 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ 0.00 $0.0.$ <t< td=""><td>Back of Queue</td><td>(Q), ft/</td><td>(In (95 th percentile)</td><td></td><td>97.6</td><td>326</td><td>36.4</td><td>145.2</td><td>147</td><td>.1</td><td></td><td>44.2</td><td>312</td><td>215.8</td><td>56.1</td><td>291.8</td><td>281.8</td></t<>	Back of Queue	(Q), ft/	(In (95 th percentile)		97.6	326	36.4	145.2	147	.1		44.2	312	215.8	56.1	291.8	281.8
Queue Storage Ratio (RQ) (95 th percentile)0.00	Back of Queue	(Q), ve	eh/In (95 th percenti	le)	3.9	13.0	1.5	5.8	5.9)		1.8	12.5	8.6	2.2	11.7	11.3
Uniform Delay (d_1), s/veh 23.2 26.1 20.5 18.6 13.4 29.9 21.4 19.7 32.9 20.6 20.6 Incremental Delay (d_2), s/veh 2.4 3.6 0.4 1.0 0.5 0.2 0.2 0.2 0.4 0.3 0.3 Initial Queue Delay (d_3), s/veh 0.0 <td< td=""><td>Queue Storage</td><td>Ratio (</td><td>RQ) (95 th percent</td><td>ile)</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.0</td><td>0</td><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></td<>	Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Incremental Delay (d_2), s/veh 2.4 3.6 0.4 1.0 0.5 0.2 0.2 0.2 0.4 0.3 0.3 Initial Queue Delay (d_3), s/veh 0.0 <	Uniform Delay ((d 1), si	/veh		23.2	26.1	20.5	18.6	13.	4	_	29.9	21.4	19.7	32.9	20.6	20.6
Initial Queue Delay (d 3), s/veh 0.0	Incremental De	ncremental Delay (d_2), s/veh			2.4	3.6	0.4	1.0	0.5	5		0.2	0.2	0.2	0.4	0.3	0.3
Control Delay (d), s/veh25.629.720.919.513.90.030.121.519.933.320.920.9Level of Service (LOS)CCCBBACCBCCCApproach Delay, s/veh / LOS28.8C14.0B21.5C21.7CIntersection Delay, s/veh / LOS21.7 -21.7 -21.7 -21.7 -21.7 -21.7 -21.7 -21.7	Initial Queue De	hitial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0)		0.0	0.0	0.0	0.0	0.0	0.0
Level of Service (LOS) C <td>Control Delay (</td> <td colspan="3">Control Delay (d), s/veh</td> <td>25.6</td> <td>29.7</td> <td>20.9</td> <td>19.5</td> <td>13.</td> <td>9 (</td> <td>0.0</td> <td>30.1</td> <td>21.5</td> <td>19.9</td> <td>33.3</td> <td>20.9</td> <td>20.9</td>	Control Delay (Control Delay (d), s/veh			25.6	29.7	20.9	19.5	13.	9 (0.0	30.1	21.5	19.9	33.3	20.9	20.9
Approach Delay, s/veh / LOS 28.8 C 14.0 B 21.5 C 21.7 C Intersection Delay, s/veh / LOS 21.7 C	Level of Service (LOS)				С	C	C	В	B		A	С	C	В	С	C	С
Intersection Delay, s/veh / LOS 21.7 C	Approach Delay, s/veh / LOS				28.8	3	С	14.0)	В	3	21.5	5	С	21.7		С
	Intersection Delay, s/veh / LOS					21	.7					_		C	_		
	Multimedal De	Aultimodal Posults							14/	D						00	
Information LB WB INB SB Dedestrian LOS 2.42 D 2.42 D 2.42 D	Redestrian LOC	ultimodal Results			0.40	EB	D	0.05			2	0.40		P	0.40	58	D
Revelation LOG Score / LOS 2.43 D 2.23 D 2.42 D 2.42 D Biovole LOS Score / LOS 1.35 A 1.26 A 1.62 D 1.30 A	Biovola LOS So				2.43	· ·	Δ	2.20	, ;	D A	_	1.62	-	B	2.42		Δ

					•	01000		loou		ininai j	,				
General Inform	nation								Intersec	tion Inf	ormatio	n		***	þa ly
	lation								Duration	b	0 25	<i></i>			
Applied				Analys	ia Data	Mor 1	1 2010				Othor		-		r. A
Analyst			!	Analys	is Date		1, 2019		Агеа тур	e	Other				2
JURISAICTION		City of West Hollyw	000	Time F	erioa	Projec	t - AM		PHF		1.00		14 14 14		+ + ₹
Urban Street		San Vicente / Melro	se	Analys	is Year	2018			Analysis	Period	1> 7:	00			
Intersection		Intersection #4		File Na	ame	04AM	- Existi	ng + P	roject.xu	S				11 1 4 Y	
Project Descript	tion	Our Lady of Mt. Let	anon P	roject											
										1			- V		
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			88	489	41	251	74	5 169	67	578	98	76	430	52
Signal Informa	tion							1							1
	90.0	Peference Phase	2	-		242							x		<u>ሉ</u>
Offect o	90.0	Reference Pridse	Z End	-	F -	151	7					1	2	3	4
Unseed stad	U	Simult Cap 5/4/	Ena	Green	55.1	26.9	0.0	0.0	0.0	0.0			<u>A</u>		•
	INO	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0	0.0	0.0	- 11		Y		Ŷ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8
Timor Posults				EBI	Î	EBT	\//R		WBT	NBI		NRT	SBI		SBT
Accigned Phase	2				-	2			6	NDL	-	0	30		4
Coop Number	5					2		+	5.0	<u> </u>		6.0		_	4
Case Number	_					0.0	<u> </u>		5.0		_	0.0			5.0 20.0
Phase Duration	, s) -				59.1		\rightarrow	59.1		_	30.9			30.9
Change Period,	(Y+R	c), S				4.0	<u> </u>		4.0	<u> </u>	_	4.0			4.0
Max Allow Head	dway(1	ИАН), S		<u> </u>	_	0.0			0.0	<u> </u>	_	3.2	<u> </u>	\rightarrow	3.2
Queue Clearan		e (gs), s					<u> </u>			<u> </u>		16.1	<u> </u>		24.5
Green Extensio	n lime	(<i>g</i> e), S				0.0		\rightarrow	0.0			3.0		\rightarrow	2.4
Phase Call Prot	bability											1.00			1.00
Max Out Probal	bility											0.03			0.27
Movement Gra		sulte			ED			\//P			ND	_		C P	
Approach Move	mont	Suno			Т	R	1	т	R		Т	R	1	Т	R
Assigned Move	mont			5	2	12	1	6	16	3	л В	18	7	1	14
Adjusted Flow) voh/h		00	2	262	251	745	160	67	246	220	76	420	52
Adjusted Flow I	tion Ele), ven/m w Rate (s) veh/h/l	n	727	1000	18/8	887	1000	1610	073	1000	1804	775	1800	1610
Aujusteu Satura	Time (70	5.7	5.9	16.0	22.5	4 1	52	14.1	14.1	9.4	9.5	2.1
		g(s), s		7.9	5.7	5.0	21.0	22.5	4.1	12.0	14.1	14.1	0.4	0.5	2.1
Croop Potio (a		e fille (<i>g c</i>), s		30.5	0.61	0.61	21.9	22.5	4.1	13.0	14.1	14.1	22.5	0.0	2.1
Green Ralio (g	/C)			2.42	1164	1122	0.01	1164	0.01	0.30	0.30	0.30	100	10.30	0.30
Valume to Con	en/n	tio (V)		343	0.020	0.021	0.442	0.640	907	279	0.611	0.612	190	1079	460
Volume-to-Capa		(10(X))		0.256	0.230	0.231	0.443	0.640		0.240	0.611	0.013	0.400	0.399	0.106
Back of Queue	(Q),π/	in (95 th percentile)	1->	65.6	98.8	97.2	146.7	345.6	60.4	54.9	256	246.9	70.7	159.2	35.1
Back of Queue	(Q), Ve	en/in (95 th percenti	le) ile)	2.6	4.0	3.9	5.9	13.8	2.4	2.2	10.2	9.9	2.8	6.4	1.4
Queue Storage	Rallo (KQ) (95 in percent	lie)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (Uniform Delay (<i>d</i> 1), s/veh					7.9	12.8	11.1	7.5	30.6	27.1	27.1	36.7	25.2	22.9
Incremental De	ncremental Delay (d_2), s/veh					0.5	2.5	2.7	0.4	0.2	0.4	0.4	0.5	0.1	0.0
Initial Queue De	nitial Queue Delay (d 3), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh				22.6	8.3	8.3	15.3	13.8	7.9	30.8	27.5	27.5	37.3	25.2	22.9
Level of Service (LOS)				C	A	A	В	В	A	C	C	C	D	C	C
Approach Delay, s/veh / LOS				10.4		В	13.3	3	В	27.8	3	С	26.7		С
Intersection Del	ntersection Delay, s/veh / LOS					18	3.6						В		
Multimodal Po	nodal Results				ER			\//P			NR			SR	
Padastrian LOS	Score					B	2.20		B	2.20		B	2 11		B
Ricycle I OS So				1.00		Δ	2.00		B	2.20	, ,	Δ	2.11		Δ
Dicycle LOG 30				1.00		Λ	2.4		J	1.10	/	Λ	0.90	,	Λ

			. e.g		u int	01000				, in the second	,				
General Inform	nation								Intersec	tion Inf	ormatio	n		****	به لړ
	ation							1	Duration		0 25			an an an an	
Apolyot				Anolyc	io Dot	Mor 1	1 2010			, II 0	Othor		7		r. A
Andryst		JAS City of Moot Hollyw		Time	oriod		1, 2019			e	1 00		- →	"Ĭ.	4
Junsaiction		City of west Hollyw	000	I Ime F	renou	Projec	t - PM		РПГ		1.00		4		
Urban Street		San Vicente / Melro	se	Analys	is Yea	· 2018			Analysis	Period	1> 7:0	00			
Intersection		Intersection #4		File Na	ame	04PM	- Existi	ng + F	roject.xu	s				* * * * *	* *
Project Descript	tion	Our Lady of Mt. Let	anon P	roject											
										1			- 1/		
Demand Inform	nation				EB			W	B		NB			SB	1
Approach Move	ement			L	Т	R		Т	R		Т	R		Т	R
Demand (v), v	eh/h			104	604	78	139	42	5 210	84	671	159	109	473	108
Signal Informa	tion					U.									1
Cvcle, s	90.0	Reference Phase	2	1	2	Г.А.	2						2	•	Φ
Offset, s	0	Reference Point	End				<u> </u>				_	1	2	3	4
Uncoordinated	No	Simult, Gap E/W	On	Green	46.4	35.6	0.0	0.0		0.0	-		\rightarrow		-+-
Force Mode	Fixed	Simult Gap N/S	On	Red	4.0	4.0	0.0	0.0		0.0	_	5	6	7	
	TIXOU	Cirruit: Cup 170	OII	Ittou	0.0	0.0	0.0	10.0	0.0	0.0					
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	э					2			6			8			4
Case Number						6.0			5.0			6.0			5.0
Phase Duration	, S					50.4			50.4			39.6			39.6
Change Period,	nge Period, (Y+ <i>R c</i>), s Allow Headway (<i>MAH</i>), s					4.0			4.0			4.0			4.0
Max Allow Head	Allow Headway (<i>MAH</i>), s					0.0			0.0			3.3			3.3
Queue Clearan	Allow Headway (<i>MAH</i>), s Je Clearance Time (g s), s											18.0			31.6
Green Extensio	ue Clearance Time (g_s), s en Extension Time (g_e), s					0.0			0.0			4.5			4.2
Phase Call Pro	oability											1.00			1.00
Max Out Probal	bility											0.01			0.07
														, in the second s	
Movement Gro	oup Res	sults			EB	1		WB			NB			SB	
Approach Move	ement			L	T	R	L	Т	R	L	T	R		Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		104	347	335	139	425	210	84	429	401	109	473	108
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	978	1900	1823	771	1900	0 1610	935	1900	1773	671	1809	1610
Queue Service	Time((g s), S		6.7	9.7	9.7	11.7	12.5	6.5	6.2	15.9	16.0	13.7	8.2	3.9
Cycle Queue C	learanc	e lime (g c), s		19.2	9.7	9.7	21.5	12.5	6.5	14.4	15.9	16.0	29.6	8.2	3.9
Green Ratio (g	/C)			0.52	0.52	0.52	0.52	0.52	0.52	0.40	0.40	0.40	0.40	0.40	0.40
Capacity (c), v	en/n	·· ()()		451	985	945	396	985	835	362	746	696	225	1420	632
Volume-to-Capa				0.231	0.353	0.354	0.351	0.43	1 0.252	0.232	0.575	0.576	0.485	0.333	0.171
Back of Queue	(Q), ft/	(in (95 th percentile)		/1./	183.3	1//.1	101	225.	/ 104./	60.2	274.9	260.9	98.3	148.3	63.3
Back of Queue	(Q), Ve	PO) (95 th percenti	ile)	2.9	7.3	7.1	4.0	9.0	4.2	2.4	11.0	10.4	3.9	5.9	2.5
Uniform Delay (raii0		iie)	10.00	12.8	12.8	10.00	13/	12.0	24.1	21 /	21.4	33.0	10.00	17.8
Incremental De	$\left(\frac{d}{d} \right), \frac{d}{d}$) s/veh		12	1 0	12.0	24	14	0.7	0.1	0.3	0.3	0.6	0.1	0.0
Initial Queue De	ncremental Delay (d ₂), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (Control Delay (<i>d</i> 3), s/veh			20.6	13.8	13.8	21.6	14.8	12.7	24.2	21.7	21.7	33.6	19.1	17.8
_evel of Service (LOS)				_0.0	B	B	C	B	B	C		C	C	B	B
Approach Delay, s/veh / LOS				14 7		B	15	5	B	21 0		C	21.2		C
Approach Delay, s/ven / LOS				17.7		18	3.4	-	5	21.0		-	B	-	-
	tersection Delay, s/ven / LOS												-		
Multimodal Re	timodal Results				EB			WB			NB			SB	
Pedestrian LOS	estrian LOS Score / LOS					В	2.40) (В	2.27	'	В	2.10)	В
Bicycle LOS Sc	ore / LC	DS		1.14		А	1.76	6	В	1.24		А	1.06	5	А

		1103	7 Olgi	nanze	u mu	ei 3ec		1030	iits 5u	iiiiiai	у				
Conoral Inform	ation								Interco	tion Inf	ormoti			4441.	ية لر
General morn	lation								Duration			<u>הכ</u>	- 1		
Agency				Analys	- Date	Mand	1 0040			1, 11	0.25				K
Analyst		JAS		Analys	is Date		1,2019			be	Other	-		"Ì.	2-
Junsaiction		City of West Hollyw	000	Time F	renoa	Projec	t - AM				1.00		1411		1 4 1 4 2
Urban Street		San Vicente / Beve	rly	Analys	is Yeaı	2018			Analysis	Period	1> 7:	00			
Intersection		Intersection #6		File Na	ame	06AM	- Existi	ng + I	Project.x	IS				* * * * *	
Project Descrip	tion	Our Lady of Mt. Let	banon P	roject											
Demand Inform	nation				FB			W	/B		NB			SB	
Approach Move	ement			1	Т	R	1.		- r R	1	Т	R	1	Т	R
Demand (v) v	eh/h			53	627	127	110	11	54 129	84	688	114	85	494	182
Bomana (V), V	011/11			00	021	121	IIIO			01	000		00	101	TOE
Signal Informa	tion		1		2	- 2	2		522			_		F	
Cycle, s	90.0	Reference Phase	2		l è	⊺ ⇒ `	ĸ	50	5	<u>1</u> 2				ין ר ו	t i
Offset, s	0	Reference Point	End	Green	71	31.5	44	5 !	5 21	6 0 0		1	M Z .	◆ <u> </u> ° ↑	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	4.0	0 4.0	0.0		>			17
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8
					Ĩ									Ĩ	
Timer Results				EBL	-	EBT	WB		WBT	NB	_	NBT	SBI	-	SBT
Assigned Phase	9			5		2	1	\rightarrow	6	3	_	8	7		4
Case Number				2.0		3.0	2.0		3.0	2.0	_	3.0	2.0		3.0
Phase Duration	, S	```		8.4	_	43.9	11.1		46.6	9.5		25.6	9.5		25.6
Change Period,	Period,(Y+R c), s w Headway(MAH), s			4.0		4.0	4.0	_	4.0	4.0		4.0	4.0		4.0
Max Allow Head	w Headway (<i>MAH</i>), s Clearance Time (<i>q</i> s), s			3.1		0.0	3.1	_	0.0	3.1	_	3.1	3.1		3.1
Queue Clearan	Clearance Time (g_s) , s			4.6			7.4	_		6.1		18.1	6.2		12.8
Green Extensio	n Time	(<i>g</i> e), s		0.4		0.0	0.2	_	0.0	0.1		3.5	0.0		3.7
Phase Call Prol	bability			0.73			0.94			0.88	3	1.00	0.88	3	1.00
Max Out Proba	bility			1.00			0.00)		0.00)	0.04	0.37		0.01
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v	′), veh/h		53	627	127	110	115	4 129	84	688	114	85	494	182
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1810	1809	1610	1810	180	9 1610	1810	1809	1610	1810	1809	1610
Queue Service	Time (g s), s		2.6	10.5	3.8	5.4	22.2	2 3.7	4.1	16.1	5.2	4.2	10.8	8.2
Cycle Queue C	learanc	e Time (<i>g c</i>), s		2.6	10.5	3.8	5.4	22.2	2 3.7	4.1	16.1	5.2	4.2	10.8	8.2
Green Ratio (g	/C)			0.05	0.44	0.50	0.08	0.47	7 0.53	0.06	0.24	0.24	0.06	0.24	0.29
Capacity (c), v	reh/h			89	1604	812	142	171	1 859	110	867	386	110	866	464
Volume-to-Capa	acity Ra	atio (X)		0.598	0.391	0.156	0.775	0.67	5 0.150	0.763	0.793	0.295	0.774	0.570	0.392
Back of Queue	(Q), ft/	/In (95 th percentile))	53.4	190.9	61.6	111.1	349.	.7 30.9	86.3	278	88.4	87.7	202.1	96.3
Back of Queue	(Q), Ve	PO(10) (95 th percenti	lle)	2.1	7.6	2.5	4.4	14.0	1.2	3.5	11.1	3.5	3.5	8.1	3.9
Liniform Delay	(d_1) s			41.9	16.9	12.0	40.7	18	0.00 4 1 2	41.6	32.1	28.0	41 7	30.1	1.4
Incremental De	lav (<i>d</i> 2), s/veh		2.4	0.7	0.4	3.4	2.1	0.4	4.1	0.6	0.2	4.3	0.2	0.2
Initial Queue De	tial Queue Delay (d ₂), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (tial Queue Delay (d 3), s/ven			44.3	17.6	12.4	44.1	20.5	5 1.6	45.7	32.8	28.2	46.0	30.4	1.6
Level of Service	evel of Service (LOS)			D	В	В	D	С	A	D	С	С	D	С	A
Approach Delay	pproach Delay, s/veh / LOS			- 18.5	_	B	20.6	3	C	33.4	1	C	25.2	2	С
Intersection De	ntersection Delay, s/ven / LOS					24	1.0						С		
Multimodal Re	esults			EB			WE	3		NB			SB		
Pedestrian LOS	Score	/ LOS		2.42		В	2.46	3	В	2.44	1	В	2.44		В
Bicycle LOS Sc	ore / LC	DS		1.15		А	1.64	+	В	1.22	2	А	1.12	2	А

		1100	r olgi	Iunzo		01300		1050		innai į	y				
General Inform	nation								Intersoc	tion Inf	ormati	n		4244	þa ly
	ation								Duration		0 25			11 N. N. 12	
Apolyot				Anolyc	via Dota	Mor 1	1 2010			, 11	0.25 Othou		1		۲. 4
Andryst		JAS City of Moot Hollyw	aad	Time	os Dale		1, 2019		Агеа тур	e	1.00		-	"Ĩ.	24
Junsaiction		City of West Hollyw	000		renou	Projec	ct - PM				1.00				4
Urban Street		San Vicente / Beve	rly	Analys	sis Year	2018			Analysis	Period	1> 7:	00		N. A. A. A	
Intersection		Intersection #6		File Na	ame	06PM	- Existi	ng + F	Project.xu	s				****	7
Project Descript	tion	Our Lady of Mt. Let	banon P	roject											
Demand Inform	nation				ER			۱۸/	/B		NB			SB	
Approach Move	mont				Т	P		Т		1 1	Т	P		Т	P
Domand (y) y	ob/b			 71	0.00	72	P0	76	1 1	109	715	424	215	19/	127
Demand (V), V	en/m			11	020	12	00	70		100	115	424	215	404	121
Signal Informa	tion				l e	5	<u> </u>	<u>. </u>	52216	2				_	
Cycle, s	90.0	Reference Phase	2		K.	.⊨₹ `	Ĩ	٦.,	~		12		→ -	י (ר	4
Offset, s	0	Reference Point	End	Green	5.0	18.2	55	60	<u> </u>	28.6		1	<u> </u>		4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	4.0	0 4.0	4.0	╧	▶ .			17
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	e			5		2	1		6	3		8	7		4
Case Number				2.0		3.0	2.0		3.0	2.0		3.0	2.0		3.0
Phase Duration	, S			9.0		31.2	9.5		31.7	10.9)	32.6	16.8	3	38.5
Change Period,	od, (Y+ <i>R c</i>), s eadway (<i>MAH</i>), s			4.0		4.0	4.0		4.0	4.0		4.0	4.0		4.0
Max Allow Head	w Headway (<i>MAH</i>), s			3.1		0.0	3.1		0.0	3.1		3.1	3.1		3.1
Queue Clearan	Clearance Time (g s), s			5.5			5.9			7.3		24.0	12.4	<u>ا</u>	10.6
Green Extensio	n Time	(g _e), s		0.1		0.0	0.4		0.0	0.1		4.6	0.4		4.8
Phase Call Pro	bability			0.83	3		0.86	3		0.93	3	1.00	1.00)	1.00
Max Out Probal	bility			0.00)		1.00)		0.02	2	0.02	0.00)	0.00
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		71	828	72	80	768	3 137	108	715	424	215	484	127
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1810	1809	1610	1810	180	9 1610	1810	1809	1610	1810	1809	1610
Queue Service	Time (g s), s		3.5	18.6	2.6	3.9	16.8	8 4.6	5.3	15.1	22.0	10.4	8.6	4.3
Cycle Queue C	learanc	e Time (<i>g c</i>), s		3.5	18.6	2.6	3.9	16.8	8 4.6	5.3	15.1	22.0	10.4	8.6	4.3
Green Ratio (g	/C)			0.06	0.30	0.38	0.06	0.3	1 0.45	0.08	0.32	0.32	0.14	0.38	0.44
Capacity (c), v	reh/h			100	1093	609	110	1112	2 723	138	1149	511	256	1386	706
Volume-to-Capa	acity Ra	tio(X)		0.709	0.757	0.118	0.729	0.69	0 0.189	0.783	0.622	0.829	0.838	0.349	0.180
Back of Queue	(Q), ft/	In (95 th percentile))	72.5	330.1	28.8	88.4	298.	7 76.8	109.6	258.7	267.6	205.7	155.4	68
Back of Queue	(Q), Ve	eh/In (95 th percenti	lle)	2.9	13.2	1.2	3.5	11.9	9 3.1	4.4	10.3	10.7	8.2	6.2	2.7
Queue Storage	Ratio (KQ) (95 th percent	(iie)	0.00	0.00	0.00	0.00	0.00	J 0.00	0.00	0.00	0.00	0.00	10.00	0.00
Incremental De	(u +), s			3.4	20.4 2 Q	0.4	85	35	- 14.9	3.6	20.1	13	2.8	0.1	0.0
Initial Queue De	ncremental Delay (d ₂), s/veh			0.0	4.9	0.4	0.0	0.0		0.0	0.2	0.0	2.0	0.1	0.0
Control Delay (nitial Queue Delay (<i>d</i> ₃), s/veh			45.2	33.3	2.6	50.0	30.0	9 15 5	44 5	26.3	47	40.4	19.8	15.4
Level of Service	control Delay (<i>d</i>), s/veh				C	Δ	D	C	R	D	20.0 C	Δ	 D	R	R
_evel of Service (LOS)				31 0		C	30 3		C	20 5		C	24 6		C
Approach Delay, s/ven / LOS				01.0		26	6.5			20.0		0	<u>с</u>		-
	tersection Delay, s/ven / LOS												-		
Multimodal Re	sults	S			EB			WE	3		NB			SB	
Pedestrian LOS	Score	/ LOS		2.46	5	В	2.43	3	В	2.43	3	В	2.42	2	В
Bicycle LOS Sc	ore / LC	DS		1.29)	А	1.30)	А	1.52	2	В	1.17	7	A

		1100	/ Olgi	nanze	a mit	000		1050	into (oun	innai j	,				
General Inform	nation								Intor	react	ion Inf	ormati	20		4241	× (,
	ation								Dura	seci	b lon inte	0.25	511		al ar ar	
Apolyot				Anolyc		Mor 1	1 2010		Aroo		11 2	0.25 Otho		7 4		۲. 4
Andryst		JAS City of Moot Hollyw		Time	ors Date		1, 2019			тур	3	1.00		-	"Ĭ.	2-
Junsaiction		City of West Hollyw		Time F	Peniod	Projec	t - AM		РПГ			1.00		1417		1 + +
Urban Street		La Cienega / Melro	se	Analys	sis Year	· 2018			Analy	ysis l	Period	1> 7:	00		1. A. A. M.	
Intersection		Intersection #10		File Na	ame	10AM	- Existi	ng + F	Projec	ct.xus	5				41491	* 1*
Project Descript	tion	Our Lady of Mt. Let	oanon P	roject												
Demondlation					ED			104						1	00	
Demand Inform	nation				EB	Р	<u> </u>		- -	Р	<u> </u>			<u> </u>	<u>ЗВ</u>	D
Approach wove				E2	1 277	<u></u> 24	501) <u> </u>	70	47	504	160	E 0	042	154
Demand (V), V	en/n			- 55	377	54	501	08	55	30	47	594	100	50	042	154
Signal Informa	tion				2	5										
Cycle, s	90.0	Reference Phase	2		Ì	7≝ ≥	- - -	2				l l		4	×	Φ
Offset, s	0	Reference Point	End	Green	10.8	24.2	34.0			0.0	0.0	_	1		3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.0		0.0	0.0	_		\rightarrow		512
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0) (0.0	0.0		5	6	7	8
				7				11						1		
Timer Results				EBL	- -	EBT	WB	L	WB	т	NBL	-	NBT	SBI		SBT
Assigned Phase	9					2	1		6				8			4
Case Number						5.3	1.0		3.0)			5.0			6.0
Phase Duration	, S					28.2	23.8	3	52.0	0			38.0			38.0
Change Period,	iod, (Y+ <i>R c</i>), s eadway (<i>MAH</i>), s					4.0	4.0		4.0)			4.0			4.0
Max Allow Head	v Headway (<i>MAH</i>), s					0.0	3.1	_	0.0)			3.2			3.2
Queue Clearan	w Headway (<i>MAH</i>), s learance Time (g s), s						18.8	3					29.3			22.7
Green Extensio	n Time	(<i>g</i> e), S				0.0	1.0		0.0)			4.8			5.0
Phase Call Prot	Dability						1.00)		_		_	1.00			1.00
Max Out Probal	bility						0.00)					0.08			0.03
Movement Gro	oup Res	sults			EB			WE	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т	F	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	1	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		53	377	34	501	895	5 3	38	47	594	160	58	512	484
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	632	1809	1610	1810	180	9		574	1809	1610	836	1900	1797
Queue Service	Time (g	g s), s		6.0	7.6	1.4	16.8	13.8	3		6.8	11.0	6.2	5.0	20.7	20.7
Cycle Queue C	learanc	e Time (<i>g c</i>), s		6.2	7.6	1.4	16.8	13.8	3		27.3	11.0	6.2	15.9	20.7	20.7
Green Ratio (g	/C)			0.27	0.27	0.27	0.51	0.53	3		0.38	0.38	0.38	0.38	0.38	0.38
Capacity (c), v	reh/h			249	976	434	666	193	5		165	1361	606	294	715	676
Volume-to-Capa	acity Ra	itio(X)		0.213	0.386	0.078	0.753	0.46	3		0.284	0.436	0.264	0.198	0.716	0.716
Back of Queue	(Q), ft/	/In (95 th percentile)		45.6	150.5	25.6	263.2	226	3		42.6	197.9	100.2	43.9	343.1	327.9
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	1.8	6.0	1.0	10.5	9.0		_	1.7	7.9	4.0	1.8	13.7	13.1
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.00)	_	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((a1), S	/ven		26.3	26.8	24.5	15.8	12.9	9	_	35.5	20.9	19.4	26.8	24.0	24.0
Incremental De	cremental Delay (d_2), s/veh			1.9	1.2	0.4	0.7	0.0		_	0.3	0.1	0.1	0.1	0.5	0.5
Control Delay (itial Queue Delay (d_3), s/veh			28.3	27.0	24.9	16.5	13	7 0		35.0	21.0	10.0	26.0	24.5	24.5
Level of Service	Control Delay (d), s/veh			20.3	21.9	24.9		ТЗ./ Р		Λ	35.9	21.0	19.0	20.9	24.5	24.3
	evel of Service (LOS)			27 0					/		21.6			24.6		
Intersection Delay	Approach Delay, s/veh / LOS			21.0	,	20	14.3	,	D		21.0	,	0	24.0 C		0
	ay, 3/ve					20	<u>, т</u>							J		
Multimodal Re	sults				EB			WE	3			NB			SB	
Pedestrian LOS	Score	/ LOS	LOS			В	2.25	5	В		2.42	2	В	2.42	2	В
Bicycle LOS Sc	ore / LC	DS		0.87	/	А	1.67	7	В		1.15	;	А	1.36	;	А

		1100	i olgi		a mi	01900		1031	into	Jour	innai j	y				
Conoral Inform	otion								Inte	orcoot	ion Inf	ormoti	22		▲ 】 ゆ ↓ ↓	× L
General morn	lation									ersect			SN	- 1		
Agency				Analus	in Dat	Mard	1 0040		Du	ration,	n	0.25	-			K.
Analyst		JAS		Analys			1, 2019		Are	за тур Г	e	Othe	-	- 2		2
Jurisdiction		City of West Hollyw	000	Time F	eriod	Projec	ng with st - PM		РН			1.00		14 14 1	w Te	4
Urban Street		La Cienega / Melro	se	Analys	is Yea	r 2018			Ana	alysis	Period	1> 7:	00	-	a a a s	4
Intersection		Intersection #10		File Na	ame	10PM	- Existi	ng +	Proje	ect.xus	6				4 1 4 17 1	* (*
Project Descrip	tion	Our Lady of Mt. Let	banon P	roject												
-																
Demand Inform	nation				EB		<u> </u>	N	/B	_	<u> </u>	NB	-	<u> </u>	SB	
Approach Move	ement			L		R	L	_		R			R			R
Demand (v), v	eh/h			122	868	54	268	5	65	100	54	987	337	64	809	111
Signal Informa	tion				5	_										
Cvcle, s	90.0	Reference Phase	2	1	E E	╡ _┙ ╕┇	- EV3	7						2	×	Φ
Offset, s	0	Reference Point	End		10.7			ŰĻ.				_	1	2	3	4
Uncoordinated	No	Simult, Gap F/W	On	Green	10.7	30.0	37.3	0.	0	0.0	0.0	-		\rightarrow		-+-
Force Mode	Fixed	Simult Gap N/S	On	Red	4.0	4.0	4.0	0.	0	0.0	0.0	-	5	6	7	Y
	TIXCU	Cirruit. Cap 10/C	011	Rea	0.0	0.0	0.0	0.	0	10.0	0.0		-	-		
Timer Results				EBL	-	EBT	WB	L	W	/BT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	Э					2	1			6			8			4
Case Number						5.3	1.0		3	6.0			5.0			6.0
Phase Duration	, S					34.0	14.7	7	48	8.7			41.3			41.3
Change Period,	Je Period,(Y+ <i>R</i> c), s Ilow Headway(<i>MAH</i>), s					4.0	4.0		4	.0			4.0			4.0
Max Allow Head	Illow Headway (MAH), s					0.0	3.1		0	.0			3.3			3.3
Queue Clearan	llow Headway (<i>MAH</i>), s e Clearance Time (<i>g</i> s), s						10.2	2					26.0			30.7
Green Extensio	ue Clearance Time (g s), s n Extension Time (g e), s					0.0	0.5		0	0.0			7.2			6.7
Phase Call Prol	bability						1.00)					1.00			1.00
Max Out Proba	bility						0.00)					0.15			0.24
Movement Gra		ulte			EB			\\/	D			NR			CD.	
Approach Move	mont	ouits			Т	P	1			Ъ	1		D		т	D
Approach Move	mont				ו ר	12		6	+	16	L 2	0	10		1	Γ. 14
Adjusted Flow) voh/h		- 0 - 100	2	12	1	50	-	10	5	007	10	64	4	14
Adjusted Flow r), ven/n w Roto (a) veh/h/l	n	950	1900	1610	200	100	5	100	04 617	907	1610	570	470	400
	Time ((0.09	18.0	2 1	8.2	8/	1	_	67	10.9	14.0	0.0	17.4	17.4
	learance	g(s), s		9.9 10.0	18.0	2.1	8.2	8.4	1	_	24.0	10.8	14.0	28.7	17.4	17.4
Green Ratio (o	\sqrt{C}			0.33	0.33	0.33	0.48	0.5	0	_	0.41	0.41	0.41	0.41	0.41	0.41
Capacity (c) w	/0/) /eh/h			367	1211	539	375	180	2	_	216	1494	665	192	785	751
Volume-to-Cap	acity Ra	tio (X)		0.333	0 716	0.100	0.715	0.31	14	_	0.250	0.661	0.507	0.333	0.599	0.599
Back of Queue	(Ω) ft/	(In (95 th percentile)		97.7	326.6	36.5	145.5	147	1	_	44.2	312.6	215.6	56.1	293	283
Back of Queue	$(\mathbf{Q}), \mathbf{u}$	h/ln (95 th percenti	, ile)	39	13.1	1.5	5.8	50	. I 2	_	1.8	12.5	8.6	22	11 7	11.3
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d 1), s/	/veh		23.3	26.2	20.6	18.6	13.	4		29.9	21.3	19.6	32.9	20.6	20.6
Incremental De	lay (d 2), s/veh		2.4	3.7	0.4	1.0	0.5	5		0.2	0.2	0.2	0.4	0.3	0.3
Initial Queue De	ncremental Delay (d 2), s/ven			0.0	0.0	0.0	0.0	0.0)		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (control Delay (d), s/veh			25.7	29.8	21.0	19.6	13.	9	0.0	30.1	21.5	19.8	33.3	20.9	20.9
Level of Service	evel of Service (LOS)			С	С	С	В	В		А	С	С	В	С	С	С
Approach Delay	Approach Delay, s/veh / LOS			28.9)	С	14.0)	E	В	21.4		С	21.7	·	С
Intersection De	ntersection Delay, s/ven / LOS					2'	.7							С		
Multimodal Re	odal Results				EB			W	В			NB			SB	
Pedestrian LOS	Score	sore / LOS		2.43		В	2.25	5	E	В	2.42	2	В	2.42		В
Bicycle LOS Sc	ore / LC	DS		1.35	;	A	1.26	6	ŀ	A	1.62	2	В	1.30)	A

												,				
General Inform	nation								Inter	rsect	ion Info	ormatio	on		4741	s l <u>s</u>
Agency	lation	I I G Engineers							Dura	ation	h	0.25	211		7117	
Analyst				Analys	is Dat	Eeh 1	1 2020				<u></u>	Other		_* _\$		<u>د</u> لا
Jurisdiction		City of West Hollyw	ood	Time	Poriod	Future	ΛM			, iypu	0	1 00		→ _^* +>	w‡e	K— ↓ ↓ ↓
Lirban Street		San Vicente / Melro	500	Analys		r 2024			Analy	veiel	Period	1.00	20	** **		
Intersection		Intersection #4	30	File Nr		040M	Eutur			y 515 1	enou	1-1.				<u> </u>
Project Description	tion	Our Lody of Mt Lob	anon D	rojoct		04AW	- Future	5.Xus)					-	ী ি বিকল্পন	- (*
Project Descrip	lion	Our Lady of Mit. Leb		Tojeci												
Demand Inform	nation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R	L	T -	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			93	521	44	270	7	94	179	71	626	109	81	466	55
Signal Informa	tion					225										\mathbf{L}
Cycle, s	90.0	Reference Phase	2		HE P	C - 547	7							4	•	(TX
Offset, s	0	Reference Point	End	Green	52.9	29 1	0.0	0	0	0.0	0.0	_	1	X Z	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.	0	0.0	0.0			$\mathbf{\mathbf{b}}$		512
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8
					7											
Timer Results				EBL	-	EBT	WB	L	WB	т	NBL		NBT	SBL	-	SBT
Assigned Phase	e					2			6				8			4
Case Number						6.0			5.0)			6.0			5.0
Phase Duration	, S					56.9			56.9	9			33.1		:	33.1
Change Period,	, (Y+R	c), S				4.0			4.0)			4.0			4.0
Max Allow Head	eadway (<i>MAH</i>), s ance Time (<i>g</i> s), s					0.0			0.0)			3.3			3.3
Queue Clearan	earance Time (g_s), s												17.1			26.5
Green Extensio	Clearance Time (<i>g</i> s), s Extension Time (<i>g</i> e), s					0.0			0.0)			3.4			2.6
Phase Call Prol	bability												1.00			1.00
Max Out Proba	bility												0.04			0.31
Movement Gre		ulte			ER			\٨/	R			NB	_		SB	
Approach Move	mont	Juits				D	1	VV T		D	1		D		т	D
Approach Move	ment			L 5	2	12	1	6	1	16	с 3	8	18		1	14
Adjusted Flow F	Rate (v) veh/h		93	286	279	270	79	4 1	79	71	377	358	, 81	466	55
Adjusted Satura	ation Flo	w Rate (s) veh/h/li	1	694	1900	1848	859	190	10 16	310	941	1900	1801	734	1809	1610
Queue Service	Time ((τ_s) s		9.9	6.6	6.6	20.0	26	6 4	16	57	15 1	15 1	94	9.0	22
	learanc	$a = Time(a_c) s$		36.6	6.6	6.6	26.7	26	6 4	1.6	14 7	15.1	15.1	24.5	9.0	2.2
Green Ratio (a	\sqrt{C}	o milo (g o), o		0.59	0.59	0.59	0.59	0.5	i9 0	59	0.32	0.32	0.32	0.32	0.32	0.32
Capacity (c) , y	/eh/h			282	1117	1086	522	111	7 94	47	291	614	582	194	1169	520
Volume-to-Cap	acity Ra	tio (X)	_	0.330	0.256	0.257	0.518	0.7	11 0.1	189	0.244	0.614	0.615	0.417	0.399	0.106
Back of Queue	(Q), ft/	In (50 th percentile)		45.4	64.6	63.5	102.3	274	.7 39	9.1	31.6	164.4	156.5	41.7	92.7	19.8
Back of Queue	(Q), ve	eh/In (50 th percentil	e)	1.8	2.6	2.5	4.1	11.	0 1	1.6	1.3	6.6	6.3	1.7	3.7	0.8
Queue Storage	Ratio (RQ) (50 th percent	, ile)	0.00	0.00	0.00	0.00	0.0	0 0.	.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		26.1	9.0	9.0	15.5	13.	.1 8	3.6	29.3	25.7	25.7	36.1	23.7	21.3
Incremental De	lay (d 2), s/veh		3.1	0.6	0.6	3.6	3.8	B 0).4	0.2	0.5	0.5	0.5	0.1	0.0
Initial Queue De	elay (d	3), s/veh		0.0	0.0	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		29.2	9.5	9.6	19.1	17.	.0 9	9.0	29.5	26.2	26.2	36.6	23.7	21.4
Level of Service	e (LOS)			С	Α	Α	В	В		A	С	С	С	D	С	С
Approach Delay	, s/veh	/LOS		12.3	;	В	16.3	3	В		26.5		С	25.3		С
Intersection De	lay, s/ve	h / LOS				19	9.6							В		
	•															
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/ LOS		2.24	-	В	2.39)	В		2.28		В	2.11		В
Bicycle LOS Sc	ore / LC	DS		1.03	;	А	2.54	L I	С		1.15		А	0.98		А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS7™ Streets Version 7.4

		1100	r olg	nunzo	um	.01300		1031	unto	Jour	mai	y				
General Inform	nation								Int	ersect	ion Inf	ormatio	n		474+1	a l <u>a</u>
Agency	lation	LLG Engineers								iration	h	0.25	<u>, , , , , , , , , , , , , , , , , , , </u>		7117	
Analyst		JAS		Analys	is Date	- Feh 1	1 2020		Are	ea Tvn		Other		_7 24		<u>د</u> لا
Jurisdiction		City of West Hollyw	ood	Time F	Period	Future	- PM		PH	ieu ryp	0	1 00		→ _^ ∻ →	w∔e	×_} ↓ ∲
Urban Street		San Vicente / Melro	se	Analys	is Yea	r 2024			Δn	alvsis	Period	1> 7.	າດ	**		 * *-
Intersection		Intersection #4		File Na	ame	04PM	- Futur			aryoio		1. 1.		- [_]	* * *	
Project Descrip	tion	Our Lady of Mt. Let	anon P	roiect			- i utur	J.Auc	,					- 5	1 1 4 1 1 1 1 1 1 1 1	- ا ^م
r rojoor Booonp	ton	our Eddy of Mit. Edd	anonn	Tojoot												
Demand Inform	nation				EB			٧	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			110	646	83	158	4	56	223	89	735	178	116	530	115
<u></u>								1-				_				
Signal Informa	ation		0			<u> </u>										\mathbf{A}
Cycle, s	90.0	Reference Phase	2		R '	5	7						1	\$ 2	3	4
Offset, s	0	Reference Point	End	Green	43.3	38.7	0.0	0.	0	0.0	0.0			<u> </u>		•
Uncoordinated	NO	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.	0	0.0	0.0	_				₩
Force Mode	Fixed	Simult. Gap N/S	On	Rea	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8
Timor Posults				ERI		EBT	\\/P	1	۱۸/		NRI		NRT	<u>S</u> BI		CRT
Assigned Phase	•			EDL	-	2	VVD	-		6	INDL	•	8	301		۵۵۱ ۸
Case Number	0					6.0		-	5	50			6.0			5.0
Phase Duration				<u> </u>		47.3		-	47	73			0.0 42 7			12 7
Change Period	(V+R)			<u> </u>		4.0		-	4	1.0			4.0			4.0
Max Allow Hear	benod, (Y+R c), s bw Headway (MAH), s					0.0		-	0	0			3.4			3.4
Queue Clearan	llow Headway (<i>MAH</i>), s e Clearance Time (<i>g</i> s), s		_			0.0		\rightarrow	0	,			19.0			34.7
Green Extensio	e Clearance Time (g_s), s		_			0.0			0	0.0			5.1			4.0
Phase Call Pro	bability	(3-),-							-				1.00			1.00
Max Out Proba	bility									_			0.03		(0.31
	,														and the second	
Movement Gro	oup Res	sults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6		16	3	8	18	7	4	14
Adjusted Flow I	Rate(<i>v</i>), veh/h		110	372	357	158	45	6	223	89	472	441	116	530	115
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	950	1900	1824	738	190)0	1610	887	1900	1771	621	1809	1610
Queue Service	Time (g	g s), S		8.0	11.3	11.4	15.8	14.	.7	7.5	6.7	17.0	17.0	15.7	8.8	4.0
Cycle Queue C	learance	e Time (g c), s		22.7	11.3	11.4	27.2	14.	.7	7.5	15.5	17.0	17.0	32.7	8.8	4.0
Green Ratio (g	I/C)			0.48	0.48	0.48	0.48	0.4	.8	0.48	0.43	0.43	0.43	0.43	0.43	0.43
Capacity (c), v	/eh/h			383	916	880	343	91	6	777	374	815	760	229	1551	690
Volume-to-Cap	acity Ra	itio(X)		0.287	0.405	0.406	0.461	0.49	98 (0.287	0.238	0.580	0.580	0.507	0.342	0.167
Back of Queue	(Q), π/	In (95 th percentile)	1->	87	212.6	206.7	136.4	263	5.1 1	123.3	61.2	286.4	270.8	103.9	156.8	62.6
Back of Queue	(Q), Ve	en/in (95 th percenti	le) ile)	3.5	8.5	8.3	5.5	10.	.5	4.9	2.4	11.5	10.8	4.2	6.3	2.5
Queue Storage		KQ) (95 in percent	lie)	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(a1), si	/ven		23.0	15.0	15.0	23.1	15.	.9	14.0	22.4	19.5	19.5	32.0	17.2	15.8
Incremental De	cremental Delay (d_2), s/veh			1.9	1.3	1.4	4.4	1.8	9	0.9	0.1	0.2	0.3	0.6	0.0	0.0
Control Doley (elay (a	3), s/ven		0.0	16.2	0.0	0.0	17	0	14.0	0.0	10.0	0.0	0.0	0.0	15.0
Level of Sonvior	u), S/VE	511		25.5	10.3 D	10.4	20.2	□1/. □	.0	14.9 P	22.5	19.0	19.0 D	52.0	17.Z	15.9
Approach Dolo	- (LU3)	/1.05		17.6		B	10.0			B	20.0			10 /		B
	y, siveri lav eluc	h /1 09		17.0		10	19.0	,		D	20.0		U	B 19.4		0
	ay, 5/VE															
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	S Score	/LOS		2.26	;	В	2.4	1	I	В	2.26	;	В	2.10		В
Bicycle LOS So	core / LC	DS		1.18	;	Α	1.87	7	I	В	1.31		А	1.12		А

Copyright © 2020 University of Florida, All Rights Reserved.

HCS7™ Streets Version 7.4

						ersec		1631	unts Su	iiiiiai j	У				
Concerct Inform	ti								Interes	tion luf	- 1		T D		. I.
General Inform	nation								Interse		ormatio	on	- 1	$\downarrow \downarrow \downarrow \downarrow \downarrow$	- X
Agency		LLG Engineers							Duration	1, N	0.25				K
		JAS		Analys	IS Date	e Feb 1	1, 2020		Area Ty	pe	Other		\rightarrow \rightarrow		
Jurisdiction		City of West Hollyw	00d	Time F		Future	e - AM			D : I	1.00		\rightarrow	8 8	↓ ↓ ↓ ↓
Urban Street		San Vicente / Bever	ТУ	Analys	is year	2024	= .		Analysis	Period	1>7:	00	_ ~		
Intersection		Intersection #6			ame	06AM	- Future	e.xus	3				_	<u>הוור</u>	- 4
Project Descrip	tion	Our Lady of Mt. Let	anon P	roject										4 47 1	
Demand Inform	nation				EB			V	VB		NB		1	SB	
Approach Move	ement			L	Т	R	L	T	T R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			56	709	152	118	12	260 137	108	734	124	90	526	193
						_		1				· .	<u> </u>	<u> </u>	
Signal Informa	ation				§	= 7	2		20	2				ĸ	
Cycle, s	90.0	Reference Phase	2		2	_≓	Ŕ	2	5 25	17 - ISU	12			1) 』	4
Offset, s	0	Reference Point	End	Green	7.5	29.2	4.5	5.	8 1.2	21.8	3		<u> </u>	Ì 🕇	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	4.	0.0	4.0		▶			
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0.0	0.0		5	6	7	8
					_			_						_	
Timer Results				EBL	· -	EBT	WB		WBT	NBI		NBT	SBL	-	SBT
Assigned Phas	е			5		2	1	\rightarrow	6	3		8	/		4
Case Number				2.0		3.0	2.0	_	3.0	2.0		3.0	2.0		3.0
Phase Duration	1, S			8.5	-	41.8	11.5	5	44.8	10.9)	26.9	9.8		25.8
Change Period	, (Y+R)	c), S	4.0		4.0	4.0		4.0	4.0		4.0	4.0		4.0	
Max Allow Hea	dway(/	vay(<i>MAH</i>), s e Time(g s), s			_	0.0	3.1	_	0.0	3.1	_	3.1	3.1		3.1
Queue Clearan	earance Time (g_s) , s			4.7			7.8			7.3	_	19.1	6.4		13.6
Green Extensio	Extension Time ($g \in $), s			0.4		0.0	0.2	_	0.0	0.2		3.9	0.0		4.0
Phase Call Pro	bability			0.75			0.95	>		0.93	3	1.00	0.89)	1.00
Max Out Proba	bility			1.00			0.00)		0.00)	0.03	0.52	2 0	0.01
Movement Gro	oup Res	ults			EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow	Rate (v), veh/h		56	709	152	118	126	60 137	108	734	124	90	526	193
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	1810	1809	1610	1810	180	9 1610	1810	1809	1610	1810	1809	1610
Queue Service	Time (g	g s), s		2.7	12.7	4.7	5.8	26.	.3 4.0	5.3	17.1	5.6	4.4	11.6	8.7
Cycle Queue C	learanc	e Time (g c), s		2.7	12.7	4.7	5.8	26.	.3 4.0	5.3	17.1	5.6	4.4	11.6	8.7
Green Ratio (g	ŋ/C)	i		0.05	0.42	0.50	0.08	0.4	5 0.52	0.08	0.25	0.25	0.06	0.24	0.29
Capacity (c), v	/eh/h			91	1518	800	151	163	89 833	140	922	410	116	875	470
Volume-to-Cap	acity Ra	itio(X)		0.616	0.467	0.190	0.780	0.76	69 0.165	0.773	0.796	0.302	0.776	0.601	0.411
Back of Queue	(Q), ft/	/In (95 th percentile)		56.5	225.2	76.5	118.6	411	.7 35.6	109.1	290.8	94.4	92.5	213.6	101.4
Back of Queue	(Q), Ve	eh/In (95 th percenti	le)	2.3	9.0	3.1	4.7	16.	.5 1.4	4.4	11.6	3.8	3.7	8.5	4.1
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d 1), s	/veh		41.9	18.9	12.6	40.4	20.	.7 1.2	40.8	31.3	27.1	41.5	30.3	1.4
Incremental De	cremental Delay ($d z$), s/veh			2.5	1.0	0.5	3.3	3.5	5 0.4	3.4	0.6	0.2	4.2	0.2	0.2
Initial Queue D	itial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (Control Delay (<i>d</i>), s/veh			44.4	19.9	13.1	43.7	24.	.2 1.6	44.2	31.9	27.2	45.6	30.5	1.6
Level of Service	evel of Service (LOS)			D	В	В	D	С	A	D	С	С	D	С	А
Approach Dela	Approach Delay, s/veh / LOS			20.3		С	23.7	7	С	32.7	7	С	25.3	3	С
Intersection De	ntersection Delay, s/veh / LOS					25	5.3						С		
Multimodal Re	ultimodal Results				EB	_		W	B		NB	_		SB	_
Pedestrian LOS	Score	/ LOS		2.42		В	2.46	5	В	2.44	ŀ	В	2.44		В
Bicycle LOS So	core / LC	05		1.24		А	1.74	ł	В	1.28	5	A	1.16)	A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS7[™] Streets Version 7.4

Intermetion intermetion intermetion into any proper intermetion intermetintere intermetion intermetion intermetion int			1100	r olgi	Tanzo	u int	01300		1031		Jun	innary	y					
Agency Duration, h 0.25 Analysis JAS Analysis Analysis Duration, h 0.26 Analysis JAS Analysis Analysis Varea Type Other Intersection Intersectio	General Informat	tion								Inters	secti	ion Info	ormatio	on	2	*	s l <u>s</u>	
Analyst JAS Analysts Data Signal City of West Hollywood Time Period Future \cdot PM PHF 1.00 Jurisdiction City of West Hollywood Time Period Future \cdot PM PHF 1.00 Intersection Intersection Intersection #6 File Name 06PM - Future \cdot Na Period 1> 7.00 Intersection Intersection Name Name 06PM - Future \cdot Na Name Nam	Agency		IIG Engineers							Durat	tion	h	0.25			7117		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Analyst				Analys	is Date	Eeb 1	1 2020		Area .	Tvne	<u>د</u>	Other		_1 _2		بر بر گ	
Outsan Steel Carlo Vicent / Bevering Analysis Vicent / Bevering Analysise Vicent / Bevering Analysis Vicen	Jurisdiction		City of West Hollyw	ood	Time E		Future	DM			турс	,	1 00		→ ->	N w∔e	~_ ↓ ↓	
Order Notice: Data Vestion Problem Problem <td>Urban Street</td> <td></td> <td>San Vicente / Bever</td> <td>rlv</td> <td>Analys</td> <td>is Vear</td> <td>2024</td> <td>, - 1 IVI</td> <td></td> <td>Analy</td> <td>veie F</td> <td>Pariod</td> <td>1> 7.</td> <td>າດ</td> <td></td> <td></td> <td></td>	Urban Street		San Vicente / Bever	rlv	Analys	is Vear	2024	, - 1 IVI		Analy	veie F	Pariod	1> 7.	າດ				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Intersection #6	ity		me	06PM	- Future			313 1	chioù	12 1.	50		* * * *	<u>~</u>	
$ \begin{array}{ $	Project Description	n	Our Lady of Mt Let	anon P	roject			- i uture	5.Au3)					-		▼ ([*]	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Our Lady of Mit. Let	anon i	lojeci													
Approach Movement L T R	Demand Informa	ation				EB			V	٧B			NB			SB		
Demand (v), veh/h 75 958 110 88 899 145 154 765 452 228 522 135 Signal Information Cycle, s 90.0 Reference Phase 2 77.9 5.9 9.5 3.9 27.7 4 <td>Approach Movem</td> <td>nent</td> <td></td> <td></td> <td>L</td> <td>Т</td> <td>R</td> <td>L</td> <td>—</td> <td>Т</td> <td>R</td> <td>L</td> <td>Т</td> <td>R</td> <td>L</td> <td>Т</td> <td>R</td>	Approach Movem	nent			L	Т	R	L	—	Т	R	L	Т	R	L	Т	R	
Signal Information Cycle, s 90.0 Reference Pname 2 Green 5.1 17.9 5.3 9.5 3.9 2.7 Offset, s 0 Reference Point End Green 5.1 17.9 5.9 9.5 3.9 2.7 Timer Results NB SBL SBL SBL SBL SBT Assigned Phase 5 2 1 31.0 9.9 31.8 13.5 31.7 17.4 Case Number SBL CBL SBL VBL VBL NBL NBL SBL SBT Assigned Phase 5 2 31.0 0.0 31.0 31.1	Demand (v), veh	ר/h			75	958	110	88	8	99 1	145	154	765	452	228	522	135	
					1		_											
	Signal Information	on			s -	2		= 5	1	500	Ш.	Rel.				ĸ.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cycle, s 9	90.0	Reference Phase	2		R	1	1 ²		5		1	17 T	1		1)₃[4	
$ \begin{array}{ $	Offset, s	0	Reference Point	End	Green	5.1	17.9	5.9	9.	5 3	3.9	27.7			<u>-</u> <u>5</u>	ĬŤ		
Force Mode Fixed Simult. Gap N/S On Red 0.0 <th< td=""><td>Uncoordinated</td><td>No</td><td>Simult. Gap E/W</td><td>On</td><td>Yellow</td><td>4.0</td><td>4.0</td><td>4.0</td><td>4.</td><td>00</td><td>0.0</td><td>4.0</td><td></td><td>↗ `</td><td></td><td></td><td>\mathbf{r}</td></th<>	Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	4.	00	0.0	4.0		↗ `			\mathbf{r}	
Timer Results Image: Partial participant partial participant partite participant partite participant participant partite participan	Force Mode F	ixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0 0	0.0	0.0		5	6	7	8	
Time ResultsLEBLEBIWBLWBLWBLNBLNBLNBLSBLSBLSBLSBLAsigned PhaseAssigned Phase $2 \cdot \ \ 3 \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				_		1					- 1					_		
Assigned Phase 5 2 1 6 3 8 7 4 Case Number 2.0 3.0 2.0 3.0 2.0 3.1 7.1 3.1 7.1 3.1 7.1 3.1 7.1 3.1 7.1 3.1 7.1 3.1 7.1 3.1 7.1 <	Timer Results				EBL	-	EBI	WB	-	WBI	-	NBL	-	NBT	SBL		SBT	
Case Number2.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.03.02.03.03.02.03.03.02.03.03.02.03.03.02.03.03.02.03.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.02.03.03.1 </td <td>Assigned Phase</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>2</td> <td>1</td> <td>\rightarrow</td> <td>6</td> <td>4</td> <td>3</td> <td></td> <td>8</td> <td>/</td> <td>_</td> <td>4</td>	Assigned Phase				5		2	1	\rightarrow	6	4	3		8	/	_	4	
Phase Duration, s 9.1 31.0 9.9 31.8 13.5 31.7 17.4 35.6 Change Period, (Y+R c), s 4.0	Case Number				2.0		3.0	2.0	\rightarrow	3.0		2.0		3.0	2.0		3.0	
Change Period, $(Y+R_c)$, s 4.0 3.1	Phase Duration, s	3	<u>``</u>		9.1		31.0	9.9	\rightarrow	31.8		13.5	,	31.7	17.4		35.6	
Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 3.1 0.0 9.1	Change Period, (Y+R c	:), S		4.0		4.0	4.0	_	4.0	-	4.0		4.0	4.0	_	4.0	
Queue Clearance Time ($g \circ$), S S.7G.3.7G.4.7R.4G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7G.4.7 <th col<="" td=""><td>Max Allow Headw</td><td>/ay(//</td><td colspan="2">(<i>MAH</i>), s me (<i>g</i> _s), s</td><td>3.1</td><td>_</td><td>0.0</td><td>3.1</td><td>_</td><td>0.0</td><td>-</td><td>3.1</td><td>_</td><td>3.1</td><td>3.1</td><td></td><td>3.1</td></th>	<td>Max Allow Headw</td> <td>/ay(//</td> <td colspan="2">(<i>MAH</i>), s me (<i>g</i> _s), s</td> <td>3.1</td> <td>_</td> <td>0.0</td> <td>3.1</td> <td>_</td> <td>0.0</td> <td>-</td> <td>3.1</td> <td>_</td> <td>3.1</td> <td>3.1</td> <td></td> <td>3.1</td>	Max Allow Headw	/ay(//	(<i>MAH</i>), s me (<i>g</i> _s), s		3.1	_	0.0	3.1	_	0.0	-	3.1	_	3.1	3.1		3.1
Create Extension Time (g e), s0.00.00.00.00.00.00.00.00.00.00.00.00.01.001	Queue Clearance	Time (g s), s Time (g e), s			5.7		0.0	0.3	-	0.0	-	9.5		26.3	13.0		11.8 5.0	
Intrase call ribbaling0.000.001.001.001.000.05Max Out Probability1.001.000.050.05Movement Group Results $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Bhase Call Brobal	tension Time ($g e$), s			0.0		0.0	0.3	<u> </u>	0.0	-	0.2		1.4	1.00		5.0 1.00	
Max out Probability PER PER<	Max Out Brobabili	lity			1.00			1.00	,		-	0.90		1.00	0.00		1.00	
Movement Group ResultsImage: FBImage: FBImage: FBImage: FBFBImage: FBFBImage: FB <th< td=""><td></td><td>ity</td><td></td><td></td><td>1.00</td><td></td><td></td><td>1.00</td><td>,</td><td></td><td></td><td>0.00</td><td></td><td>1.00</td><td>0.00</td><td></td><td>5.05</td></th<>		ity			1.00			1.00	,			0.00		1.00	0.00		5.05	
Approach MovementLTRLTRLTRLTRLTRLTRRAssigned Movement521212161638187414Adjusted Flow Rate (v), veh/h7595810088899145154765452228522135Adjusted Saturation Flow Rate (s), veh/h1810180916101809161018101809161018101809161016101610161016101610161016101610161016101610161016101610161016101610161016	Movement Group	p Res	ults			EB			W	В	Т		NB			SB		
Assigned Movement5212161638187414Adjusted Flow Rate (v), veh/h7595811088899145154765452228522135Adjusted Saturation Flow Rate (s), veh/h/ln18101809161018091610180916101809161018091610180916101809161018091610180916101809161016101809161016101610161016101610161016101610161016101610161016101610161016101610	Approach Movem	nent			L	Т	R	L	Т	R	र	L	Т	R	L	Т	R	
Adjusted Flow Rate (v), veh/h7595811088899145154765452228522135Adjusted Saturation Flow Rate (s), veh/h1810180916101810161018101610 </td <td>Assigned Moveme</td> <td>ent</td> <td></td> <td></td> <td>5</td> <td>2</td> <td>12</td> <td>1</td> <td>6</td> <td>16</td> <td>6</td> <td>3</td> <td>8</td> <td>18</td> <td>7</td> <td>4</td> <td>14</td>	Assigned Moveme	ent			5	2	12	1	6	16	6	3	8	18	7	4	14	
Adjusted Saturation Flow Rate (s), veh/hln1810180916101809161018091610180916101809161018101809161016	Adjusted Flow Rat	ate (<i>v</i>), veh/h		75	958	110	88	89	9 14	15	154	765	452	228	522	135	
Queue Service Time (g s), s3.73.72.73.94.320.64.87.516.724.311.09.84.9Cycle Queue Clearance Time (g c), s3.72.73.94.320.64.87.516.724.311.09.84.9Green Ratio (g /C)0.60.060.300.410.70.310.460.110.310.310.150.350.41Capacity (c), veh/n1010.210.8653118111773719111154962691272657Volume-to-Capacity Ratio (x)0.730.730.411.100.810.410.410.450.800.1630.680.9110.8460.4100.201Back of Queue (Q), veh/ln (95 th percentile)3.116.41.14.114.53.26.111.514.68.67.23.1	Adjusted Saturation	on Flo	w Rate (<i>s</i>), veh/h/l	n	1810	1809	1610	1810	180)9 16 ⁻	10	1810	1809	1610	1810	1809	1610	
Cycle Queue Clearance Time (g c), s 3.7 22.7 3.9 4.3 20.6 4.8 7.5 16.7 24.3 11.0 9.8 4.9 Green Ratio (g/C) 0.0 0.06 0.30 0.41 0.07 0.31 0.46 0.11 0.31 0.31 0.15 0.31 0.41 Capacity (c), veh/h 102 102 1085 653 118 1117 737 191 1115 496 269 1272 657 Volume-to-Capacity Ratio (X) 0.734 0.88 0.169 0.745 0.805 0.197 0.808 0.686 0.911 0.846 0.410 0.205 Back of Queue (Q), veh/ln (95 th percentile) 3.1 16.4 1.1 4.1 14.5 3.2 6.1 11.5 14.6 8.6 7.2 3.1	Queue Service Tir	me (g	1 s), S		3.7	22.7	3.9	4.3	20.	6 4.	.8	7.5	16.7	24.3	11.0	9.8	4.9	
Green Ratio (g/C) 0.06 0.07 0.41 0.47 0.41 0.	Cycle Queue Clea	arance	e Time (<i>g c</i>), s		3.7	22.7	3.9	4.3	20.	6 4.	.8	7.5	16.7	24.3	11.0	9.8	4.9	
Capacity (c), veh/h 102 102 108 653 118 1117 737 191 1115 496 269 1272 657 Volume-to-Capacity Ratio (X) 0.734 0.803 0.169 0.745 0.805 0.197 0.808 0.608 0.191 0.404 0.404 0.205 Back of Queue (Q), veh/ln (95 th percentile) 3.1 16.4 1.1 4.1 14.5 3.2 6.1 14.6 8.6 7.2 3.1	Green Ratio (g/C	;)			0.06	0.30	0.41	0.07	0.3	1 0.4	46	0.11	0.31	0.31	0.15	0.35	0.41	
Volume-to-Capacity Ratio (X) 0.734 0.883 0.169 0.745 0.805 0.197 0.808 0.686 0.911 0.846 0.410 0.205 Back of Queue (Q), veh/ln (95 th percentile) 76.9 409.5 283.3 102.8 362 80.4 153.2 286.4 365.9 215.2 180.4 77.8 Back of Queue (Q), veh/ln (95 th percentile) 3.1 16.4 1.1 4.1 14.5 3.2 6.1 11.5 14.6 8.6 7.2 3.1	Capacity (c), veh	h/h			102	1085	653	118	111	7 73	37	191	1115	496	269	1272	657	
Back of Queue (Q), ft/ln (95 th percentile) 76.9 409.5 28.3 102.8 362 80.4 153.2 286.4 365.9 215.2 180.4 77.8 Back of Queue (Q), veh/ln (95 th percentile) 3.1 16.4 1.1 4.1 14.5 3.2 6.1 11.5 14.6 8.6 7.2 3.1	Volume-to-Capaci	ity Ra	tio(X)		0.734	0.883	0.169	0.745	0.80	0.1	97	0.808	0.686	0.911	0.846	0.410	0.205	
Back of Queue (Q), veh/ln (95 th percentile) 3.1 16.4 1.1 4.1 14.5 3.2 6.1 11.5 14.6 8.6 7.2 3.1	Back of Queue (G	Q), ft/l	In (95 th percentile))	76.9	409.5	28.3	102.8	36	2 80	.4	153.2	286.4	365.9	215.2	180.4	77.8	
	Back of Queue (G	Q), ve	h/ln (95 th percenti	le)	3.1	16.4	1.1	4.1	14.	5 3.	.2	6.1	11.5	14.6	8.6	7.2	3.1	
Queue Storage Ratio (RQ) (95 th percentile) 0.00 0	Queue Storage Ra	tatio (RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0	0 0.0	00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh 41.8 30.0 4.4 41.3 28.6 14.5 39.4 27.3 3.4 37.3 22.1 17.2	Uniform Delay (d	1 1), s/	veh		41.8	30.0	4.4	41.3	28.	6 14	.5	39.4	27.3	3.4	37.3	22.1	17.2	
Incremental Delay (d z), s/veh 3.8 10.4 0.6 12.5 6.2 0.6 3.1 1.3 19.5 2.8 0.1 0.1	Incremental Delay	ental Delay (<i>d</i> ₂), s/veh			3.8	10.4	0.6	12.5	6.2	2 0.	.6	3.1	1.3	19.5	2.8	0.1	0.1	
Initial Queue Delay (d 3), s/veh 0.0 <th< td=""><td>Initial Queue Dela</td><td colspan="2">al Queue Delay (d 3), s/veh</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.</td><td>.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></th<>	Initial Queue Dela	al Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.	.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh 45.6 40.4 5.0 53.8 34.8 15.1 42.4 28.6 22.9 40.1 22.2 17.3	Control Delay (d)	ntrol Delay (d), s/veh			45.6	40.4	5.0	53.8	34.	8 15	5.1	42.4	28.6	22.9	40.1	22.2	17.3	
Level of Service (LOS) D D A D C B D C C D C B	Level of Service (I	LOS)			D	D	A	D	C	B	3	D	С	С	D	С	В	
Approach Delay, s/veh / LOS 37.4 D 33.8 C 28.3 C 26.1 C	Approach Delay, s	pproach Delay, s/veh / LOS			37.4		D	33.8	3	С		28.3		С	26.1		С	
Intersection Delay, s/veh / LOS 31.5 C	Intersection Delay	y, s/ve	h / LOS				31	.5							С			
	Multimodel Desu	Itimodal Results			EP			10/	P						e P			
Initiation ED VVD INB SB Pedestrian LOS Score / LOS 2.46 R 2.43 D 2.42 D	Pedestrian LOS S	al Results			2 /6		B	2 4 2	2	D P	-	2 4 2	IND	B	2 4 2	38	B	
Bicycle LOS 143 A 142 A 162 B 122 A	Bicycle I OS Score	re / I O	S		1 43		A	1 42	·	A		1.62		B	1 22		A	

Copyright © 2020 University of Florida, All Rights Reserved.

HCS7[™] Streets Version 7.4

		1103	/ Olg	nanze		.01300		1631	uns	Sun	innar	У				
General Inform	nation								Inte	oreact	ion Inf	ormatic	n n	T	4.44.13	۰ų.
	auon									ration	b.	0 25) 		414	
Apolyot				Anolyc	via Dat	Ech 1	1 2020		Are			0.20 Othor		1		<u>د</u>
Analyst		JAS City of Moot Holly w	d	Analys			1, 2020		Are	еатур п	e			\rightarrow	w⊥r	
Jurisdiction		City of west Hollyw	000	Time F	erioa	Future	e - Alvi		PH		Denied	1.00	20	\rightarrow	8	
Urban Street		La Cienega / Meiros	se	Analys	sis rea	r 2024	E. A.		Ana	alysis	Period	>7:0	0			5
		Intersection #10			ame	10AM	- Future	e.xus	;					_	ጎተተሸ	
Project Descrip	tion	Our Lady of Mt. Let	anon P	roject												
Demand Inform	nation				EB			V	٧B			NB			SB	
Approach Move	ement			L	Т	R	L	T ·	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			56	407	36	533	9	57	40	50	668	171	62	943	163
						<u> </u>					<u> </u>		<u> </u>		<u>ب م</u>	
Signal Informa	ation				⊼ ₹	≝	4215							_		\mathbf{k}
Cycle, s	90.0	Reference Phase	2		6	י ≩ר	5	2						€ ₂	3	↓ ■
Offset, s	0	Reference Point	End	Green	22.8	17.5	37.7	0.	0	0.0	0.0			<u> </u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.	0	0.0	0.0					N
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8
			_	_	_		_	_								
Timer Results				EBL	-	EBT	WB	L	W	/BT	NBI	-	NBT	SBL		SBT
Assigned Phas	e					2	1	\rightarrow	6	6			8		\rightarrow	4
Case Number						5.3	1.0	\rightarrow	3	3.0			5.0			6.0
Phase Duration	1, S					21.5	26.8	3	48	8.3			41.7			41.7
Change Period	, (Y+R	c), S				4.0	4.0	\rightarrow	4	.0			4.0			4.0
Max Allow Hea	dway(/	MAH), s				0.0	3.1	\rightarrow	0	0.0			3.2			3.2
Queue Clearan	ce Time	e (g s), s					21.8	3					32.2			24.4
Green Extensio	on Time	(ge),s				0.0	1.0	\rightarrow	0	0.0			5.6			6.0
Phase Call Pro	bability						1.00)					1.00			1.00
Max Out Proba	bility						0.00)					0.11		(0.04
Movement Gro	oup Res	aults			FB			W	B			NB			SB	
Approach Move	ement				Т	R	1	Т		R	1	Т	R		Т	R
Assigned Move	ment			5	2	12	1	6	+	16	3	8	18	7	4	14
Adjusted Flow	Rate (v) veh/h		56	407	36	533	95	7	40	50	668	171	62	567	539
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	596	1809	1610	1810	180)9		518	1809	1610	781	1900	1802
Queue Service	Time (d	g s). S		7.5	9.2	1.7	19.8	16.	4	_	8.0	11.9	6.2	5.5	22.4	22.4
Cvcle Queue C	learanc	e Time (7.7	9.2	1.7	19.8	16.	4		30.2	11.9	6.2	17.3	22.4	22.4
Green Ratio (d	/C)	· ····· (9 ·), ·		0.19	0.19	0.19	0.47	0.4	9	_	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), y	/eh/h			196	709	316	631	178	39	_	168	1507	671	303	792	751
Volume-to-Cap	acity Ra	itio (X)		0.286	0.574	0.114	0.845	0.53	35	_	0.298	0.443	0.255	0.205	0.717	0.718
Back of Queue	(Q), ft/	/In (95 th percentile)		56.3	189.9	31	326.9	266	.4		44.7	207.1	99.4	45.1	361.2	346.3
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.3	7.6	1.2	13.1	10.	7	_	1.8	8.3	4.0	1.8	14.4	13.9
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	(d1), s	/veh		32.2	32.8	29.7	19.2	15.	6		34.4	18.8	17.1	24.9	21.8	21.8
Incremental De	lay (<i>d</i> 2), s/veh		3.6	3.4	0.7	4.2	1.2	2		0.4	0.1	0.1	0.1	0.5	0.6
Initial Queue D	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0)		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	əh		35.9	36.1	30.5	23.4	16.	8	0.0	34.7	18.9	17.2	25.1	22.4	22.4
Level of Service	e (LOS)			D	D	С	С	В		А	С	В	В	С	С	С
Approach Dela	y, s/veh	/ LOS		35.7	7	D	18.7	7	E	В	19.4	ł	В	22.5	,	С
Intersection De	lay, s/ve	h / LOS				22	2.0							С		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	S Score	/ LOS		2.45	5	В	2.26	3	E	В	2.42	2	В	2.42		В
Bicycle LOS So	ore / LC	DS		0.90)	А	1.75	5	E	В	1.22	2	A	1.45		A

Copyright © 2020 University of Florida, All Rights Reserved.

HCS7[™] Streets Version 7.4

		1103	7 Sig	nanze	u III	lersec		1621	unta	s Sun	iiiiai j	у			_	
Conserved Inform									Link	1	ion Inf			I D		хL
General Inform	nation								Int	tersect		ormatic	on	- 1	444	
Agency		LLG Engineers				E 1 4	4 0000			uration,	n	0.25				۴_
		JAS		Analys	sis Dat	e Feb 1	1, 2020		Ar	rea Type	9	Other		\rightarrow \rightarrow		
Jurisdiction		City of West Hollyw	ood	Time F	'eriod	Future	e - PM			HF	<u> </u>	1.00		\rightarrow	w+E 8	↓ ↓ ↓
Urban Street		La Cienega / Melros	se	Analys	is Yea	ir 2024			An	nalysis	Period	1> 7:(00			¥ ۲
Intersection		Intersection #10			ame	10PM	- Future	e.xus	\$						<u>ግተተኛ</u>	- /
Project Descrip	otion	Our Lady of Mt. Let	anon P	roject											4 1 47 1	
Demand Inform	mation				EB			V	VB			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			130	935	57	286	6	15	106	57	1121	361	68	937	118
										-						
Signal Informa	ation		-			╘┓,	<u> </u>							_		\mathbf{A}
Cycle, s	90.0	Reference Phase	2		1 1	8	5	7							3	4
Offset, s	0	Reference Point	End	Green	11.5	28.7	37.8	0.	0	0.0	0.0			<u>×</u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.	0	0.0	0.0	_				∇
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8
Timor Populto				EDI	_	EDT	\//D		١٨		NDI		NDT	CDI		CDT
Assigned Phas	0			EDL	-	2	1	-	V	6	INDI	-	R R	30		1
Case Number	e				-	53	1.0	\rightarrow	2	3.0			5.0			4 6.0
Phase Duration					-	32.7	15.6	;	1	18.2			0.0 /1 8			0.0 11.8
Change Period	(V+R	a) e				4.0	4.0	_		10.2			4.0		_	4.0
Max Allow Hea	, (7 . / (/	MAH)s		<u> </u>	-	0.0		-	- -	4.0 0.0			33	<u> </u>		33
	ice Time	$(a_s)_s$			+	0.0	11 ()	C	0.0			31.2			37.0
Green Extensio	on Time	(q_e) s				0.0	0.5	+	(0.0			4 4			0.8
Phase Call Pro	bability	(3,),			+	0.0	1.00)					1.00			1.00
Max Out Proba	bility						0.00)					0.77			1.00
	Ĵ															
Movement Gro	oup Res	sults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ement			5	2	12	1	6		16	3	8	18	7	4	14
Adjusted Flow	Rate (v), veh/h		130	935	57	286	61	5	106	57	1121	361	68	538	517
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n	820	1809	1610	1810	180)9		543	1809	1610	510	1900	1825
Queue Service	Time (g	g s), S		11.5	21.4	2.2	9.0	9.4	4		8.5	23.4	15.1	11.6	20.6	20.6
Cycle Queue C	learanc	e Time (<i>g c</i>), s		11.6	21.4	2.2	9.0	9.4	4		29.2	23.4	15.1	35.0	20.6	20.6
Green Ratio (g	ŋ/C)			0.32	0.32	0.32	0.47	0.4	.9	_	0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	veh/h			342	1154	514	360	1//	76 10		184	1520	6//	162	798	/6/
Volume-to-Cap		ITIO (X) //m (OF the memory tile)		0.381	0.810	0.111	0.794	0.34	46	_	0.310	0.737	0.533	0.421	0.674	0.674
Back of Queue	(Q),π/	in (95 th percentile)		110.4	372.	39.8	161.6	166	0.0 7	_	49.8	367.1	229.3	04.5	346	335.8
Back of Queue	(Q), Ve	PO(05 th percent)	ie) ile)	4.4	14.9	1.6	6.5	6.	/	_	2.0	14.7	9.2	2.6	13.8	13.4
Queue Storage	(d_{4}) s	wob	lie)	24.8	29.1	21.6	10.00	14	1		22.0	21.0	10.5	36.6	21.1	0.00
Incremental De	$(u \gamma), s$			24.0	6.2	21.0	19.7	14.	5	_	0.4	17	19.5	0.6	1.1	10
Initial Queue D	elay (d 2			0.0	0.2	0.4	0.0	0.0	5 n	_	0.4	0.0	0.4	0.0	0.0	0.0
Control Delay (d) e/v	-h		28.0	34.3	22.1	21.2	14	6	0.0	33.2	23.6	10.0	37.3	22.9	23.0
l evel of Service	e (I O.S.)			20.0 C	С 4 .5	C.	C	R		0.0 A	C.	20.0 C	B	D	C	20.0 C
Approach Dela	v. s/veh	/105		33.0		C.	14 0	, J		B	23.1		C	23.8		C
Intersection De	lav. s/ve	h / LOS	_	00.0		2:	3.9		_	-	_0.1		-	C		-
														-		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	S Score	/LOS		2.43	5	В	2.26	6		В	2.42	2	В	2.42	2	В
Bicycle LOS So	core / LC	DS		1.41		A	1.32	2		А	1.76	3	В	1.41	i i	А

Inter-section Intormation Duration, h 0.25 Analysis Date [Feb 11, 2020 Mare Type Duration, h 0.25 Analysis Date [Feb 11, 2020 Time Prior Defert Duration, h 0.25 Duration, City of West Hollywood Time Prior Defert Duration, h 0.25 Distribution of Mare Time Prior Defert Time Prior Defert Distribution of Mare Time Prior Defert Distribution of Mare Time Prior Defert Time Prior Defert State Time Prior Defert Our Lady of ML Labanon Project Time Prior Defert State Time Prior Defert Our Lady of ML Labanon Project State Time Prior Defert State Time Prior Defert Our Lady of ML Labanon Project State Time Prior Defert State Time Prior Defert Our Lady of ML Labanon Project State Time Prior Defert State Time Prior Defert Our Lady of ML Labanon Project State Time Prior Defert Our Lady of ML			1100	r olg	nanze	a me	01000				ininai j	,				
Construction Interaction into integration Interaction into integration Interaction into integration Interaction Interaction <t< td=""><td>General Inform</td><td>nation</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Intersoc</td><td>tion Inf</td><td>ormati</td><td>on</td><td></td><td>4,1,4,4,1,</td><td>به لړ</td></t<>	General Inform	nation								Intersoc	tion Inf	ormati	on		4,1,4,4,1,	به لړ
Description Los of priority Los of priorit		lation								Duration	b	0 25	011		7117	
Alta ys DAG Alta ys Alta ys Alta ys Alta ys Alta ys Old Old<	Agency				Anolyc	via Data	Ech 1	1 2020			, 11	Otho	r	1		۲. ۲.
Outside Link Circle Views Norward Inter Printer With Print Printer With Printer With Printer With P	Analyst		Gity of Most Holly		Time			1, 2020		Агеа тур		1 00			w1 F	×_ ↓
Uhan Streat Intersection Analysis Yatr 2024 Analysis Paris 1 Frain Intersection Inters	Junsaiction		City of West Hollyw	000	Time F	Peniod	Projec	e with ct - AM		PAF		1.00		4 14 P		± ₽
Intersection Intersection #4 File Name (adAM - Future + Project.sus (adam - Future + Project.sus) (adam - Future + Project.sus) (adam - Future + Project.sus) Project Description Our Lady of ML Lebanon Project I T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R R R T R R R T R R R T R R R T R	Urban Street		San Vicente / Melro	se	Analys	sis Year	2024			Analysis	Period	1> 7:	00		<u> ካ ተ ቱ</u>	^e
Project Description Que Lady of ML Lebanon Project Demand (1)/ mathema Project Reprode Movement No Reprode Movement No Crule, a No Reference Print Frind No Section 2000 Simule Gap EW On Simule Gap EW On Simule Gap EW On Simule Gap EW On Reference Print Frind Simule Gap EW On Simule Gap EW On Simule Gap EW	Intersection		Intersection #4		File Na	ame	04AM	- Future	e + Pr	roject.xus				5	[≼↑\$\$\$\$	*) *
Demand Information L T R	Project Descrip	tion	Our Lady of Mt. Leb	anon P	roject									7		
Demand Information EB WB NH B L T R L T																
Approach Movement L T R	Demand Inform	nation				EB			W	'B		NB			SB	I
Demand (\u00er), veh/h 93 521 44 270 794 171 629 109 81 467 55 Signal Information Cycle, s 00.0 Reference Point End Green 52.8 29.2 0.0 0.	Approach Move	ement			L	Т	R			R		Т	R	L	Т	R
Signal Information Cycle.s 90.0 Reference Phase 2 Offset, s 0 Reference Point End Green 52.8 29.2 0.0	Demand (v), v	eh/h			93	521	44	270	79	94 179	71	629	109	81	467	55
Log of motion	Signal Informa	tion			<u> </u>	-		Г								
Order 2000 Reference Print End Green RS R P			Reference Phase	2			- 24V							X		
Orace D No	Offect s	0	Reference Point	End		F i		7					1	2	3	4
Discontinated No Yealow A.O. Yealow A.O. Velow Velow Velow Velow A.S. Timer Results EBL EBL EBL VBL VBT NBL NBT SBL 4.0 Change Period, (Y+R c), s 6.0 5.0 6.0 3.3 3.3.3 3.3.3 Change Period, (Y+R c), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Altow Headway (MAH), s 0.0 0.0 0.0 3.4 2.6 Phase Call Probability 1.00 1.00 1.00 0.04 0.32 2.6 Phase Call Probability Image Period, (Y+R c), s 0.0 0.0 3.4 2.6 Phase Call Probability 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Uncoordinated	No	Simult Con E/M	On	Green	52.8	29.2	0.0	0.0	0.0	0.0	_		A		
Prote mode Prote M	Earoo Modo	Fixed	Simult Cap N/S	On	Yellow	4.0	4.0	0.0	0.0	0.0	0.0	- 1	5		7	·Ψ
Timer Results EBL EBT WBL WBT NBL NBT SBL SBT Assigned Phase - 2 - 6 8 - 4 Case Number - 56.8 - 56.8 - 33.2 33.2 Phase Duration, s - 4.0 - 4.0 - 4.0 - 4.0 - 4.0 Max Allow Headway (MAH), s - 0.0 0.0 0.0 3.3 - 3.3.2 Queue Clearance Time (g *), s - 0.0 0.0 3.4 - 2.6.6 Green Extension Time (g *), s - - 0.0 - 3.4 - 2.6 Phase Call Probability - - - - 1.00 - 1.00 - 3.0 3.2 Assigned Movement L T R L T R L T R L T R L T R 4 4 Adjusted Statuation Flow Rate (s), weh/h/In 53 2 12 <td>Force Mode</td> <td>Fixeu</td> <td>Simult. Gap N/S</td> <td>On</td> <td>Reu</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>10.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td>5</td> <td>0</td> <td>1</td> <td>•</td>	Force Mode	Fixeu	Simult. Gap N/S	On	Reu	0.0	0.0	0.0	10.0	0.0	0.0		5	0	1	•
Assigned Phase Image 2 6 Image 8 4 Case Number 6.0 5.0 6.0 5.0 33.2 33.2 Change Period, $(Y+R_c)$, s 6.0 4.0	Timer Results				EBI	-	EBT	WB	L	WBT	NB	_	NBT	SBI	-	SBT
Case Number 6.0 5.0 6.0 5.0 6.0 5.0 Phase Duration, s 56.8 56.8 33.2 33.2 Change Period, (Y+R_2), s 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 0.0 0.0 3.3 3.3 Queue Clearance Time (g *,), s 0.0 0.0 3.4 2.6 Phase Call Probability 0.0 0.0 3.4 2.6 Movement Group Results E 0.0 0.0 3.4 2.6 Approach Movement L T R L T R L T R 1.00 0.32 Movement Group Results E V V 1.00 1.00 0.04 0.32 Agiusted Tkork Rate (y), veh/h 93 266 279 270 794 179 71 378 360 81 47 5 Adjusted Tkork Rate (y), veh/h 93 86.6 6.6 2.1 2.6 7.4 14 14 Adjusted Sturation Flow Rate (g c), s 36.7 <t< td=""><td>Assigned Phase</td><td>е</td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td></td><td></td><td>8</td><td></td><td></td><td>4</td></t<>	Assigned Phase	е					2			6			8			4
Phase Duration, s 56.8 56.8 56.8 33.2 33.2 Change Period, (YHz), s 0.0 4.0 3.3 3.3 3.3 3.3 Queue Clearance Time (g *), s 0.0 0.0 0.0 3.4 2.6 Phase Call Probability 1.00 1.00 1.00 0.32 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0	Case Number						6.0			5.0			6.0			5.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Phase Duration	I, S					56.8			56.8			33.2			33.2
Max Allow Headway (<i>MH</i>), s 0.0 0.0 3.3 3.3 Queue Clearance Time ($g \circ$), s 0.0 0.0 0.0 17.2 26.6 Green Extension Time ($g \circ$), s 0.0 0.0 0.0 3.4 2.6 Phase Call Probability 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Max Out Probability T R L D S <th< td=""><td>Change Period</td><td>. (Y+R (</td><td>c). S</td><td></td><td></td><td></td><td>4.0</td><td></td><td>-</td><td>4.0</td><td></td><td></td><td>4.0</td><td></td><td></td><td>4.0</td></th<>	Change Period	. (Y+R (c). S				4.0		-	4.0			4.0			4.0
Queue Clearance Time ($g \circ$), s 0.0 17.2 26.6 Green Extension Time ($g \circ$), s 0.0 0.0 3.4 2.6 Phase Call Probability Image of the	Max Allow Head	dwav(/	MAH). s				0.0			0.0			3.3			3.3
Green Extension Time (g e), is 0.0 0.0 3.4 2.6 Phase Call Probability 0.0 0.0 3.4 2.6 Max Out Probability 0.0 0.0 3.4 2.6 Movement Group Results EB VB 0.04 0.04 0.32 Approach Movement L T R L Z S	Queue Clearan	ce Time	(q_s) , s						-				17.2	<u> </u>		26.6
Phase Call Probability Image: Call Probability <td>Green Extensio</td> <td>n Time</td> <td>(ge),s</td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>3.4</td> <td></td> <td></td> <td>2.6</td>	Green Extensio	n Time	(ge),s				0.0			0.0			3.4			2.6
Max Out Probability Image: Constraint of the percentile	Phase Call Pro	babilitv											1.00			1.00
Movement Group Results L T R Adjusted for the processing for the proce	Max Out Proba	bility											0.04			0.32
Movement Group ResultsIIIRITRLTRAdd		,														
Approach Movement L T R L T I Adjusted Saturation Flow Rate (v), veh/h 99 6.6 6.6 20.0 2.50 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.50	Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Assigned Movement 5 2 1 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 93 28 279 270 794 179 71 378 360 81 457 55 Adjusted Saturation Flow Rate (s), veh/h/ln 694 1900 1848 859 1900 1610 941 1900 1802 732 1809 1610 Queue Service Time (g c), s 36.6 6.6 26.7 4.6 14.7 15.1 15.2 24.6 9.0 2.2 Cycle Queue Clearance Time (g c), s 36.7 6.6 6.6 26.7 4.6 14.7 15.1 15.2 24.6 9.0 2.2 C Capacity (c), veh/h 281 11 ⁺ 188 521 11 ⁺ 945 291 6.6 6.8 19.0 2.2 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Adjusted Flow Rate (v), veh/h 93 286 279 270 794 179 71 378 360 81 4 $\overline{}$ 55 Adjusted Saturation Flow Rate (s), veh/h/ln 694 1900 1848 859 1900 1610 941 1900 1802 732 18 $\overline{}$ 1610 Queue Service Time (g s), s 367 6.6 6.6 26.8 26.7 4.6 14.7 15.1 15.2 9.0 9.0 2.2 Green Ratio (g/C) 0.59 0.59 0.59 0.59 0.59 0.59 0.32 0.33 0.47 350 Gapacity (c), veh/h 95 0.33 4.7 14.6 18.4	Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Saturation Flow Rate (s), veh/h/ln 694 1900 1848 859 1900 1610 941 1900 1802 732 1809 1610 Queue Service Time (g s), s 9.9 6.6 6.6 20.1 2.7 4.6 5.7 15.1 15.2 9.5 9.0 2.2 Cycle Queue Clearance Time (g c), s 36.7 6.6 6.6 26.8 26.7 4.6 14.7 15.1 15.2 24.6 9.0 2.2 Green Ratio (g/C) 0.59 0.59 0.59 0.59 0.59 0.59 0.32	Adjusted Flow I	Rate(<i>v</i>), veh/h		93	286	279	270	794	179	71	378	360	81	467	55
Queue Service Time (g s), s 9.9 6.6 6.6 20.1 2.6.7 4.6 5.7 15.1 15.2 9.0 2.2 Cycle Queue Clearance Time (g c), s 36.7 6.6 6.6 26.8 26.7 4.6 14.7 15.1 15.2 24.6 9.0 2.2 Green Ratio (g/C) 0.59 0.59 0.59 0.59 0.59 0.32 0.41 0.41 0.35 0.32 0.41 0.41 0.41 0.41 0.41 0.41 0.41	Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	694	1900	1848	859	190	0 1610	941	1900	1802	732	1809	1610
Cycle Queue Clearance Time (g c), s 36.7 6.6 6.6 26.8 26.7 4.6 14.7 15.1 15.2 24.6 9.0 2.2 Green Ratio (g/C) 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.22 0.32 0.417 0.417 0.34 0.417 0.34 0.417 0.34 0.417 0.418 0.417 0.418 0.417 0.417 0.417 0.417 0.417 0.4	Queue Service	Time (g	g ₅), s		9.9	6.6	6.6	20.1	26.7	7 4.6	5.7	15.1	15.2	9.5	9.0	2.2
Green Ratio (g/C) 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.32 0.31 0.32 0.31 0.47 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 1	Cycle Queue C	learance	e Time (<i>g c</i>), s		36.7	6.6	6.6	26.8	26.7	7 4.6	14.7	15.1	15.2	24.6	9.0	2.2
Capacity (c), veh/h 281 1115 1085 521 1115 945 291 616 584 194 1172 522 Volume-to-Capacity Ratio (X) 0.331 0.256 0.519 0.712 0.189 0.244 0.614 0.616 0.417 0.398 0.105 Back of Queu (Q), tr/ln (95 th percentile) 81.8 117 114.6 184.5 412.1 70.6 56.8 27.0.2 259.7 75 167 35.6 Back of Queu (Q), tr/ln (95 th percentile) 3.3 4.7 4.6 7.4 16.5 2.8 2.3 10.8 10.4 3.0 6.7 14.4 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Green Ratio (g	/C)			0.59	0.59	0.59	0.59	0.59	9 0.59	0.32	0.32	0.32	0.32	0.32	0.32
Volume-to-Capacity Ratio (X) 0.331 0.236 0.257 0.519 0.712 0.189 0.244 0.614 0.616 0.417 0.398 0.105 Back of Queu (Q), ft/ln (95 th percentile) 81.8 117 114.6 184.5 412.1 70.6 56.8 27.2 259.7 75 167 35.6 Back of Queu (Q), veh/ln (95 th percentile) 3.3 4.7 4.6 7.4 16.5 2.8 2.3 10.8 10.4 3.0 6.7 14.4 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.0 <t< td=""><td>Capacity (<i>c</i>), v</td><td>/eh/h</td><td></td><td></td><td>281</td><td>1115</td><td>1085</td><td>521</td><td>111</td><td>5 945</td><td>291</td><td>616</td><td>584</td><td>194</td><td>1172</td><td>522</td></t<>	Capacity (<i>c</i>), v	/eh/h			281	1115	1085	521	111	5 945	291	616	584	194	1172	522
Back of Queue (Q), ft/ln (95 th percentile) 81.8 117 114.6 184.5 412.1 70.6 56.8 270.2 259.7 75 167 35.6 Back of Queue (Q), veh/ln (95 th percentile) 3.3 4.7 4.6 7.4 16.5 2.8 2.3 10.8 10.4 3.0 6.7 1.4 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.0	Volume-to-Cap	acity Ra	itio(X)		0.331	0.256	0.257	0.519	0.71	2 0.189	0.244	0.614	0.616	0.417	0.398	0.105
Back of Queue (Q), veh/ln (95 th percentile) 3.3 4.7 4.6 7.4 16.5 2.8 2.3 10.8 10.4 3.0 6.7 1.4 Queue Storage Ratio (RQ) (95 th percentile) 0.00<	Back of Queue	(Q), ft/	In (95 th percentile)		81.8	117	114.6	184.5	412.	1 70.6	56.8	270.2	259.7	75	167	35.6
Queue Storage Ratio (RQ) (95 th percentile)0.00 <t< td=""><td>Back of Queue</td><td>(Q), ve</td><td>eh/In (95 th percenti</td><td>le)</td><td>3.3</td><td>4.7</td><td>4.6</td><td>7.4</td><td>16.5</td><td>5 2.8</td><td>2.3</td><td>10.8</td><td>10.4</td><td>3.0</td><td>6.7</td><td>1.4</td></t<>	Back of Queue	(Q), ve	eh/In (95 th percenti	le)	3.3	4.7	4.6	7.4	16.5	5 2.8	2.3	10.8	10.4	3.0	6.7	1.4
Uniform Delay (d 1), s/veh26.29.09.015.613.28.629.325.725.736.023.621.3Incremental Delay (d 2), s/veh3.10.60.63.73.90.40.20.50.50.50.10.0Initial Queue Delay (d 3), s/veh0.0	Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Incremental Delay (d_2), s/veh 3.1 0.6 0.6 3.7 3.9 0.4 0.2 0.5 0.5 0.1 0.0 Initial Queue Delay (d_3), s/veh 0.0 <	Uniform Delay ((d 1), si	/veh		26.2	9.0	9.0	15.6	13.2	2 8.6	29.3	25.7	25.7	36.0	23.6	21.3
Initial Queue Delay (d_3), s/veh0.0 <td>Incremental De</td> <td>lay (<i>d</i> 2</td> <td>), s/veh</td> <td></td> <td>3.1</td> <td>0.6</td> <td>0.6</td> <td>3.7</td> <td>3.9</td> <td>0.4</td> <td>0.2</td> <td>0.5</td> <td>0.5</td> <td>0.5</td> <td>0.1</td> <td>0.0</td>	Incremental De	lay (<i>d</i> 2), s/veh		3.1	0.6	0.6	3.7	3.9	0.4	0.2	0.5	0.5	0.5	0.1	0.0
Control Delay (d), s/veh29.49.69.619.217.19.129.426.126.236.623.721.3Level of Service (LOS)CAABBACCDCCApproach Delay, s/veh / LOS12.4B16.4B26.5C25.2CIntersection Delay, s/veh / LOS12.4B16.4B26.5C25.2CIntersection Delay, s/veh / LOS12.4B16.4B26.5C25.2CIntersection Delay, s/veh / LOS 2.24 B2.37 2.34 B2.54C25.2CPedestrian LOS Score / LOS 2.24 B 2.39 B 2.28 B 2.11 BBicycle LOS Score / LOS 1.03 A 2.54 C 1.16 A 0.99 A	Initial Queue De	elay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Level of Service (LOS)CAABBACCDCCApproach Delay, s/veh / LOS12.4B16.4B26.5C25.2CIntersection Delay, s/veh / LOS 12.4 B16.4B26.5C25.2CMultimodal ResultsEEWBNBSPedestrian LOS Score / LOS2.24B2.39B2.28B2.11BBicycle LOS Score / LOS1.03A2.54C1.16A0.99A	Control Delay (d), s/ve	eh		29.4	9.6	9.6	19.2	17.1	1 9.1	29.4	26.1	26.2	36.6	23.7	21.3
Approach Delay, s/veh / LOS 12.4 B 16.4 B 26.5 C 25.2 C Intersection Delay, s/veh / LOS 19.7 9.7 8 8 9.7	Level of Service	e (LOS)			С	A	A	В	В	A	С	C	С	D	C	C
Intersection Delay, s/veh / LOS 19.7 B Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.24 B 2.39 B 2.28 B 2.11 B Bicycle LOS Score / LOS 1.03 A 2.54 C 1.16 A 0.99 A	Approach Delay	y, s/veh	/LOS		12.4		В	16.4	1	В	26.5	5	С	25.2	2	С
Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 2.24 B 2.39 B 2.28 B 2.11 B Bicycle LOS Score / LOS 1.03 A 2.54 C 1.16 A 0.99 A	Intersection De	lay, s/ve	eh / LOS				19	9.7						B		
Pedestrian LOS Score / LOS 2.24 B 2.39 B 2.28 B 2.11 B Bicycle LOS Score / LOS 1.03 A 2.54 C 1.16 A 0.99 A	Multimodal Re	sulte				FR			\//F	3		NB			SB	
Bicycle LOS Score / LOS 1.03 A 2.54 C 1.16 A 0.99 A	Pedestrian I OS	Score	/108		2.2/		B	230	3	R	2.25	3	B	2 11		В
	Bicycle LOS Sc	core / I C)S		1.03	3	A	2.54	1	C.	1 16	}	A	0.00	,	A

		J							,				
General Information							Intorsoc	tion Inf	ormati	00		4.1.4.1.1	<u>د ل</u>
	C Engineers						Duration		0 25	on	- J	7117	
Agency LL		Analy	ia Data	Lah 1	1 2020				0.25	-	1		۲. ۲.
Analyst JA			Sis Dale		1,2020		Агеа тур	e				w1 e	₹ 5
Junsaiction	ity of west Hollywood	Time	erioa	Projec	t - PM		PHF		1.00		4 44		± 1
Urban Street Sa	an Vicente / Melrose	Analys	sis Year	2024			Analysis	Period	1> 7:	00		ኻተቱ	×
Intersection Int	tersection #4	File N	ame	04PM	- Future	e + Pr	oject.xus				1	41491	* (*
Project Description Ou	ur Lady of Mt. Lebanor	Project											
-		-			-		_						
Demand Information		<u> </u>	EB	-	<u> </u>	W	B		NB		<u> </u>	SB	
Approach Movement		L		R	L (50		R	L	1	R	L	1	R
Demand (v), veh/h		110	646	83	158	45	6 223	89	737	178	116	533	115
Signal Information		-	R	T JIE	Γ		1						
Cycle s 90.0 R	eference Phase 2		12	242	_						2		Φ
Offset s 0 R	Reference Point En	1	<u> </u>	<u> </u>	~					1	Y 2	3	4
Uncoordinated No S	imult Gap F/W Or	Green	43.3	38.7	0.0	0.0	0.0	0.0	- 11		Ð−		
Force Mode Fixed S	imult. Gap N/S Or	Red	4.0	4.0	0.0	0.0		0.0	-	5	K	7	Y
		Tited	0.0	0.0	0.0	0.0	0.0	0.0		Ŭ	Ŭ		ľ
Timer Results		EB	_	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase				2			6			8			4
Case Number				6.0			5.0			6.0			5.0
Phase Duration, s		-		47.3			47.3			42.7			42.7
Change Period, $(Y+R_c)$,	S			4.0		-	4.0			4.0			4.0
Max Allow Headway (MA	H), s	_		0.0			0.0			3.4			3.4
Queue Clearance Time (<i>a</i> s).s									19.0			34.8
Green Extension Time (g	(e), S			0.0			0.0			5.2			4.0
Phase Call Probability	,,									1.00			1.00
Max Out Probability										0.03			0.31
Movement Group Result	ts		EB			WB	3		NB			SB	
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v),	veh/h	110	372	357	158	456	223	89	473	442	116	533	115
Adjusted Saturation Flow	Rate (<i>s</i>), veh/h/ln	950	1900	1824	738	1900) 1610	885	1900	1771	620	1809	1610
Queue Service Time (g s), s	8.0	11.3	11.4	15.8	14.7	7.5	6.7	17.0	17.0	15.7	8.9	3.9
Cycle Queue Clearance T	Гіте (<i>g с</i>), s	22.8	11.3	11.4	27.2	14.7	7.5	15.6	17.0	17.0	32.8	8.9	3.9
Green Ratio (g/C)		0.48	0.48	0.48	0.48	0.48	3 0.48	0.43	0.43	0.43	0.43	0.43	0.43
Capacity (c), veh/h		382	915	878	342	915	775	373	816	761	229	1554	692
Volume-to-Capacity Ratio	(X)	0.288	0.406	0.407	0.462	0.49	8 0.288	0.239	0.580	0.580	0.507	0.343	0.166
Back of Queue (Q), ft/In	(95 th percentile)	87	212.9	207.1	136.7	264	123.9	61.2	286.5	270.9	103.8	157.4	62.5
Back of Queue (Q), veh/	In (95 th percentile)	3.5	8.5	8.3	5.5	10.6	6 5.0	2.4	11.5	10.8	4.2	6.3	2.5
Queue Storage Ratio (RC	Q) (95 th percentile)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (<i>d</i> 1), s/ve	h	23.7	15.0	15.0	23.8	15.9	9 14.0	22.4	19.5	19.5	32.0	17.2	15.8
Incremental Delay (d 2),	s/ven	1.9	1.3	1.4	4.4	1.9	0.9	0.1	0.2	0.3	0.6	0.0	0.0
Initial Queue Delay (d 3),	, s/ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh		25.6	16.4	16.4	28.2	17.9	15.0	22.5	19.7	19.8	32.6	17.2	15.8
Level of Service (LOS)	22	C	В	L R	C	В	В	C	В	В	C	В	В
Approach Delay, s/veh / L	.05	17.6		В	19.0)	В	20.0		C	19.3	5	В
Intersection Delay, s/veh /	105			19	9.0						В		
Multimodal Results			FR			W/B	3		NR			SB	
Pedestrian LOS Score / L	OS	2.26	3	В	241		B	2.26		В	2 10		В
Bicycle LOS Score / LOS		1.18	3	А	1.87	7	В	1.32	2	А	1.12	2	А

			. e.g.							••••		,				
General Inform	ation								Inter	rsort	ion Infr	ormatio	n		▲ \\ 中 ↓ ↓	يد اير
	lation	LLG Engineers							Dura	ation	h	0 25	///		7117	
Apolyet				Analys	ie Date	Eeb 1	1 2020		Area	a Type		Other		 		۲. ۲.
Jurisdiction		City of West Hellyw	ood	Time		Euture	1, 2020			a iype =	-	1 00		→ <u>_</u> * -⇒	w↓e	~_↓
					enou	Projec	t - AM					1.00				
Urban Street		San Vicente / Bever	ſy	Analys	sis Year	2024			Anal	Iysis I	Period	1> 7:(00		5 1 1 7	
Intersection		Intersection #6		File Na	ame	06AM	- Future	e + P	roject.	t.xus				5	41441	× (*
Project Descrip	tion	Our Lady of Mt. Leb	anon P	roject												
				_	==				<i>(</i> р							
Demand Inform	nation			<u> </u>	EB		<u> </u>	V\	/B			NB		<u> </u>	SB	
Approach Move	ement			L	1	R	L	- 10		R	L	1	R	L	1	R
Demand (V), V	en/n			56	709	152	118	12	60	137	108	/3/	124	90	527	193
Signal Informa	tion				3		2				IJ					
Cvcle, s	90.0	Reference Phase	2	1	1 2	₹, •			24	5. FA				<u> </u>	<u>.</u> .	4
Offset, s	0	Reference Point	End	L		1	Ň	2		2		ľ_	1	Y 2 ,		4
Uncoordinated	No	Simult, Gap F/W	On	Green	7.5	29.2	4.5	5.	8	1.2	21.8	┛	"	A	L	* -
Force Mode	Fixed	Simult, Gap N/S	On	Red	4.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8
	1 INOG		on	Tiou	0.0	0.0	0.0	0.	•	0.0	0.0					
Timer Results				EBL	-	EBT	WB	L	WB	3T	NBL	-	NBT	SBL	-	SBT
Assigned Phase	e			5		2	1		6		3		8	7		4
Case Number				2.0		3.0	2.0		3.0	0	2.0		3.0	2.0		3.0
Phase Duration	, s			8.5		41.7	11.5	5	44.	.7	10.9		27.0	9.8		25.8
Change Period,	(Y+R	c), S		4.0		4.0	4.0		4.0	0	4.0		4.0	4.0		4.0
Max Allow Head	dway (A	ЛАН), s		3.1		0.0	3.1		0.0	0	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	(gs),s		4.7			7.8				7.3		19.1	6.4		13.6
Green Extensio	n Time	(ge), s		0.4		0.0	0.2		0.0	0	0.2		3.8	0.0		4.0
Phase Call Prol	bability			0.75	5		0.95	5			0.93		1.00	0.89)	1.00
Max Out Proba	bility			1.00)		0.00)			0.00		0.04	0.13	; (0.02
Movement Gro	oup Res	ults			EB			WE	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	1	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		56	709	152	118	126	0 1	137	108	737	124	90	527	193
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1610	1810	180	9 16	610	1810	1809	1610	1810	1809	1610
Queue Service	Time(g	g s), S ≖ ()		2.7	31.1	4.7	5.8	26.	3 4	4.0	5.3	17.1	5.6	4.4	11.6	8.7
Cycle Queue C	learance	e lime (<i>g c</i>), s		2.7	31.1	4.7	5.8	26.	34	4.0	5.3	17.1	5.6	4.4	11.6	8.7
Green Ratio (g	/0)			0.05	0.42	0.50	0.08	0.4	5 0.	0.52	0.08	0.26	0.26	0.06	0.24	0.29
Capacity (c), v	en/n	+:- ()()		91	796	799	151	163	7 8 70 0	332	140	924	411	116	8//	4/1
Volume-to-Capa	acity Ra			0.616	0.890	0.190	0.780	0.77	0 0.	.165	0.773	0.798	0.302	0.775	0.601	0.410
Back of Queue	$(Q), \pi/$	in (95 th percentile)		56.5	565.5	/0./	118.6	411	.8 34	34.1 1 4	109.1	292.5	94.4	92.5	213.7	101.1
	Ratio (PO(95 th percent)	ile)	2.3	22.0	0.00	4.7	0.0		1.4	4.4	0.00	0.00	0.00	0.0	4.0
Uniform Delay (/veh		41.9	24.2	12.6	40.4	20	0 0. 7 1	1.00	40.8	31.3	27.0	41.5	30.2	1.4
Incremental De	av (d 2), s/veh		2.5	14.2	0.5	3.3	3.6	3 0	0.4	3.4	0.7	0.2	4.1	0.2	0.2
Initial Queue De	alav (d	3) s/veh		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d) s/ve	e), e, ven		44.4	38.5	13.1	43.7	24	3 1	1.8	44.2	32.0	27.2	45.6	30.5	1.6
Level of Service	e (LOS)			D	D	B	D	<u>с</u>		A	D	C.	C	D	C.	A
Approach Delay	()	/105		34 F		C	23.7	,]	C		32.8		C	25.3		C
Intersection Del	av. s/ve	h / LOS				- 28	3.5				02.0		-	C		-
	. <u>,</u> , e, to					_	-							-		
Multimodal Re	sults				EB			W	3			NB			SB	
Pedestrian LOS	Score	/LOS		2.42	2	В	2.46	6	В		2.29		В	2.29		В
Bicycle LOS Sc	ore / LC	DS		2.00)	В	1.74	L I	В		1.29		A	1.16	;	А

		1100	. e.g.		o inte	01000					u					
Gonoral Inform	ation								Intored	ction	Info	rmatic	'n		4.14.1	× L.
	ation								Duratio	n h		0.25	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7117	
Agency				Anolyc	via Data	Ech 1	1 2020			(no		0.25 Other		1		<u>د</u>
Analyst		JAG City of West Hellyw		Time	os Dale		1, 2020			pe		1.00		\rightarrow	w↓ F	
Junsaiction					renoa	Projec	e with st - PM		РПГ			1.00		+ - - - - - - - - - - - - - - - - - - -		1 1 1 1 1 1 1
Urban Street		San Vicente / Bever	ly	Analys	sis Year	2024			Analys	s Peri	bc	1> 7:0	00		5 1 1 7	
Intersection		Intersection #6		File Na	ame	06PM	- Future	e + P	roject.xu	s				5	414Y1	* (*
Project Descrip	tion	Our Lady of Mt. Let	anon P	roject												
							-									
Demand Inform	nation				EB		<u> </u>	V	/B			NB		<u> </u>	SB	
Approach Move	ement				1	R	L					1	R	L	1	R
Demand (v), v	eh/h			75	958	110	88	8	99 14	5 1	54	/6/	452	228	525	135
Signal Informa	tion				2		5				Л					
Cycle, s	90.0	Reference Phase	2	1	R	- La *	-	7	2000	200	ω.				<u> </u>	4
Offset s	0	Reference Point	End	L	Ľ.	<u> </u>		2	1			r	1	2 2	3	4
Uncoordinated	No	Simult Gap E/W	On	Green	5.1	18.4	5.9	9.	5 3.	$\frac{2}{2}$	27.3			A	l L	* -
Force Mode	Fixed	Simult, Gap N/S	On	Red	4.0	4.0	4.0	4.			1.U 1 0		5	6		
T OFCE MODE	TIXCU	olindit. Cap N/O	On	Reu	0.0	0.0	0.0	0.	0 0.	, (.0			Ŭ		
Timer Results				EBL	-	EBT	WB	L	WBT		NBL		NBT	SBI	-	SBT
Assigned Phase	э			5		2	1		6		3		8	7		4
Case Number				2.0		3.0	2.0		3.0		2.0		3.0	2.0		3.0
Phase Duration	, s			9.1		31.5	9.9		32.3	1	3.5		31.3	17.4		35.2
Change Period,	(Y+R	c), S		4.0		4.0	4.0		4.0		4.0		4.0	4.0		4.0
Max Allow Head	dway(A	// //АН), s		3.1		0.0	3.1		0.0		3.1		3.1	3.1		3.1
Queue Clearan	ce Time	(q s), S		5.7			6.3	\rightarrow			9.5		26.5	13.0) .	12.0
Green Extensio	n Time	(ge), s		0.0		0.0	0.3		0.0		0.2		0.8	0.4		4.9
Phase Call Prol	bability			0.85	5		0.89)		0	.98		1.00	1.00)	1.00
Max Out Proba	bility			1.00)		1.00)			0.00		1.00	0.00) (0.06
Movement Gro	oup Res	ults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R		_	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3		8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		75	958	110	88	899	9 145	15	4	767	452	228	525	135
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1810	1809	1610	1810	180	9 161) 18 ⁻	10	1809	1610	1810	1809	1610
Queue Service	Time (g	g s), S		3.7	22.5	3.9	4.3	20.	4 4.8	7.	5	16.9	24.5	11.0	10.0	4.9
Cycle Queue C	learance	e Time (<i>g c</i>), s		3.7	22.5	3.9	4.3	20.	4 4.8	7.	5	16.9	24.5	11.0	10.0	4.9
Green Ratio (g	/C)			0.06	0.31	0.41	0.07	0.3	1 0.46	0.1	1	0.30	0.30	0.15	0.35	0.40
Capacity (c), v	eh/h			102	1104	661	118	113	6 745	19	1	1096	488	269	1254	649
Volume-to-Capa	acity Ra	tio (<i>X</i>)		0.734	0.868	0.166	0.745	0.79	91 0.19	5 0.8	08	0.700	0.927	0.847	0.419	0.208
Back of Queue	(Q), ft/	In (95 th percentile)		76.9	402.3	29	102.8	357	.5 79.2	153	3.3	290.4	381.4	215.2	183.4	78.6
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	3.1	16.1	1.2	4.1	14.	3 3.2	6.	1	11.6	15.3	8.6	7.3	3.1
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0		0.0	1	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((a1), si			41.8 2.9	29.0	4.2	41.3	28.	Z 14.3 7 0.6	39	.4	21.1	3.4	37.3	22.5	0.1
	ay (u z			3.0	9.5	0.5	12.5	0.0		0		0.0	23.0	2.0	0.1	0.1
Control Delay (d) s/v	3), 3/VEII		45.6	38.8	4.7	53.8	33	0.0 0 1/ 0	42	5	20.0	26.4	40.1	22.6	17.6
Level of Sonia				4 5.0	JU.0	+./	JJ.0	- 33. - C	J 14.8	42		29.4	20.4	40.1	22.0	17.0 D
	(LU3)	/1.05		26.0			22.0							0		
		h / L OS		30.0	,	0	5	,			.9.0		0	20.3		0
	ay, s/ve					3								<u> </u>		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		2.46	;	В	2.43	3	В	2	2.43		В	2.43	;	В
Bicycle LOS Sc	ore / LC)S		1.43	3	А	1.42	2	А	1	.62		В	1.22	2	Α

		1100	r org	nanze	, a mit	01900		1001	ance	Joan	innai j	y				
Gonoral Inform	ation								Int	torcoct	ion Inf	ormativ	nn -		4	يه لي
General morn	ation									uration	lon ini	ormatic	<u>הכ</u>	- 1		
Agency				A	:- D-4		4 0000		Du	iration,	n -	0.25		1		۴_ ۲
		JAS		Analys	sis Date	Febi	1, 2020		Are	еатур	e	Other		\rightarrow		
Jurisdiction		City of West Hollyw	ood	l lime F	Period	Projec	e with		PF	11-		1.00			W + E 8	1 1 1
Urban Street		La Cienega / Melros	se	Analys	sis Year	2024			An	nalysis l	Period	1> 7:	00		5 + + 7	¥
Intersection		Intersection #10		File Na	ame	10AM	- Future	ə + P	roje	ct.xus				5	1 1 4 M	× ا ^م
Project Descrip	tion	Our Lady of Mt. Let	anon P	roject										7		
				-												
Demand Inform	nation				EB			V	∕B			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			56	407	36	533	9	57	40	50	671	171	62	944	163
Oine al la famma	4!					_				-						
Signal Informa		Defense Dhara	0	1	l S	∃.	203									ሐ
Cycle, s	90.0	Reference Phase	2		^k	- ≓ "	1 SA	7					1	\$ 2	3	4
Offset, s	0	Reference Point	End	Green	22.8	17.4	37.7	0.	0	0.0	0.0			5		
Uncoordinated	NO	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.	0	0.0	0.0	- 11				Ý
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	8
Timer Results				EBI	_	EBT	WB	L	W	VBT	NBI	_	NBT	SBI	_	SBT
Assigned Phase	е					2	1			6			8			4
Case Number				<u> </u>		5.3	1.0	-	3	3.0			5.0	<u> </u>		6.0
Phase Duration	. S					21.4	26.8	3	48	8.3			41.7			41.7
Change Period	(Y+R)	c) s				4 0	4.0	+	4	10			4.0			4.0
Max Allow Head	dwav(A	MAH), s				0.0	3.1).0			3.2			3.2
Queue Clearan	ce Time	$(a_s)_s$				0.0	21.8	3					32.3			24.4
Green Extensio	n Time	(q_{θ}) s				0.0	1.0	-	0	0			57			6.0
Phase Call Pro	hability	(90),0				0.0	1.0	,					1.00			1 00
Max Out Proba	bility						0.01			_			0.12			0.04
	onity						0.0						0.12			0.01
Movement Gro	oup Res	ults			EB			W	В			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	Т	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		56	407	36	533	95	7	40	50	671	171	62	568	539
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	596	1809	1610	1810	180	9		517	1809	1610	779	1900	1802
Queue Service	Time (g	g s), S		7.5	9.2	1.7	19.8	16.	4		8.0	11.9	6.2	5.6	22.4	22.4
Cycle Queue C	learance	e Time (<i>g c</i>), s		7.7	9.2	1.7	19.8	16.	4		30.3	11.9	6.2	17.4	22.4	22.4
Green Ratio (g	/C)			0.19	0.19	0.19	0.47	0.4	9		0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), v	/eh/h			196	707	315	631	178	88		168	1509	671	302	792	751
Volume-to-Capa	acity Ra	itio(X)		0.286	0.575	0.114	0.845	0.53	35		0.298	0.445	0.255	0.205	0.717	0.717
Back of Queue	(Q), ft/	In (95 th percentile))	56.3	190	31	327.1	266	.8		44.8	207.8	99.2	45.3	361	346.1
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	2.3	7.6	1.2	13.1	10.	7		1.8	8.3	4.0	1.8	14.4	13.8
Queue Storage	Ratio (RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay ((d1), s	/veh		32.3	32.8	29.8	19.2	15.	7		34.4	18.8	17.1	25.0	21.8	21.8
Incremental De	lay (<i>d</i> 2), s/veh		3.7	3.4	0.7	4.3	1.2	2		0.4	0.1	0.1	0.1	0.5	0.6
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0)		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh		35.9	36.2	30.5	23.5	16.	8	0.0	34.7	18.9	17.2	25.1	22.4	22.4
Level of Service	e (LOS)			D	D	С	С	В		А	С	В	В	С	С	С
Approach Delay	y, s/veh	/ LOS		35.8	3	D	18.7	7		В	19.4	l I	В	22.5	5	С
Intersection De	lay, s/ve	h / LOS				22	2.0							С		
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	S Score	/ LOS		2.45	5	В	2.26	3		В	2.42	2	В	2.42	2	В
Bicycle LOS Sc	ore / LC	DS		0.90)	А	1.75	5		В	1.22	2	А	1.45	5	А

		r eig.	Tanzo	u iiit	01000		1001	1110	Jour	innar _.	y				
General Information								Int	oraat	ion Inf	ormotic			4	× L
	Inginooro								ersect			DU	- 1	414	
Agency LLG E	Ingineers		Analys	in Dat		1 0000		Du	nation,	n -	0.25				۲ <u>ـ</u>
Analyst JAS	£ \ \ / = = + = . =	!	Analys	IS Date	Febi	1, 2020		Are	еатуре Г	9	Other		\rightarrow	"Nre	
Jurisdiction City of	t west Hollyw	000	Time F	eriod	Projec	e with st - PM		РН	11-		1.00		4 \ 1 ↓	8 W † E	1 1 1
Urban Street La Cie	enega / Melro	se	Analys	is Yea	r 2024			An	alysis l	Period	1> 7:(00		5 + + 7	×
Intersection Interse	ection #10		File Na	ame	10PM	- Future	e + P	rojeo	ct.xus				ň	4 1 4 Y 1	* /*
Project Description Our La	ady of Mt. Let	oanon P	roject												
				ED			14	(D			ND			0.0	
Demand Information				EB		<u> </u>	- 1	/B T		<u> </u>	NB		<u> </u>	SB	
			L 120	025	R F7			1		L	1400	R	L	1	R 440
Demand (V), Ven/n			130	935	57	286	6	15	106	57	1123	301	68	940	118
Signal Information			-	5	- <u>-</u>		Т		Γ						I
Cycle, s 90.0 Refer	rence Phase	2	1	E E	744	Б.Ф.	7				×		4	 	Φ
Offset, s 0 Refer	rence Point	End	0	44.5							_	1	Y 2	3	4
Uncoordinated No Simu	lt. Gap E/W	On	Green	11.5	28.7	37.8	0.0	0	0.0	0.0	_		\rightarrow		-
Force Mode Fixed Simu	lt. Gap N/S	On	Red	0.0	0.0	0.0	0.	0	0.0	0.0		5	6	7	Y
				1	1010	10.0		-	10.0	10.0					
Timer Results			EBL		EBT	WB	L	W	/BT	NBL	-	NBT	SBL	-	SBT
Assigned Phase					2	1		(6			8			4
Case Number					5.3	1.0		3	8.0			5.0			6.0
Phase Duration, s					32.7	15.5	5	48	8.2			41.8			41.8
Change Period, (Y+R c), s					4.0	4.0		4	l.0			4.0			4.0
Max Allow Headway (MAH),	S				0.0	3.1		0	0.0			3.3			3.3
Queue Clearance Time ($g s$)	, S					11.0)					31.3			37.1
Green Extension Time (g_e),	s				0.0	0.5		0	0.0			4.4			0.7
Phase Call Probability						1.00)					1.00			1.00
Max Out Probability						0.00)					0.78			1.00
Movement Group Results				EB			WE	B	_		NB			SB	
Approach Movement			L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Assigned Movement			5	2	12	1	6	+	16	3	8	18	7	4	14
Adjusted Flow Rate (v), veh/	/h		130	935	57	286	615	5	106	57	1123	361	68	540	518
Adjusted Saturation Flow Rate	e (<i>s</i>), veh/h/l	n	820	1809	1610	1810	180	9		542	1809	1610	509	1900	1825
Queue Service Time (g_s), s	() <i>i</i>		11.5	21.4	2.3	9.0	9.4	1		8.6	23.5	15.1	11.7	20.7	20.7
Cycle Queue Clearance Time	e (g c), s		11.6	21.4	2.3	9.0	9.4	1		29.3	23.5	15.1	35.1	20.7	20.7
Green Ratio (g/C)			0.32	0.32	0.32	0.47	0.4	9		0.42	0.42	0.42	0.42	0.42	0.42
Capacity (c), veh/h			341	1153	513	360	177	'5		183	1521	677	161	799	767
Volume-to-Capacity Ratio (X	·)		0.381	0.811	0.111	0.794	0.34	16		0.311	0.738	0.533	0.422	0.675	0.676
Back of Queue (Q), ft/In (95	th percentile))	110.5	372.6	39.9	162	166	.6		49.9	367.7	229.2	64.6	347.4	336.7
Back of Queue (Q), veh/ln (95 th percent	ile)	4.4	14.9	1.6	6.5	6.7	7		2.0	14.7	9.2	2.6	13.9	13.5
Queue Storage Ratio (RQ) (95 th percent	tile)	0.00	0.00	0.00	0.00	0.0	0		0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (<i>d</i> 1), s/veh			24.8	28.2	21.6	19.7	14.	1		33.0	21.9	19.5	36.7	21.1	21.1
Incremental Delay (d 2), s/ve	eh		3.2	6.2	0.4	1.5	0.5	5		0.4	1.7	0.4	0.7	1.8	1.9
Initial Queue Delay (d 3), s/v	eh		0.0	0.0	0.0	0.0	0.0)		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (<i>d</i>), s/veh			28.0	34.4	22.1	21.2	14.	6	0.0	33.3	23.6	19.9	37.3	22.9	23.0
Level of Service (LOS)			С	С	C	С	В		А	С	С	В	D	С	С
Approach Delay, s/veh / LOS			33.0		С	14.9)	I	В	23.1		С	23.9		С
Intersection Delay, s/veh / LO	S				23	3.9							C		
Multimodal Results				ER			\٨/٢	B			NR			SB	
Pedestrian I OS Score / L OS		_	2 4 3		B	2.26		ر ا	B	242		В	242		B
Bicycle LOS Score / LOS			1.41		A	1.32	2		A	1.76	;	B	1.42		A

Appendix T.2

LADOT Assessment Letter

To:

From:

CITY OF LOS ANGELES

INTER-DEPARTMENTAL CORRESPONDENCE

333 S San Vicente Bl DOT Case No. CEN18-47091

Date: April 27, 2020

Milena Zasadzien, Senior City Planner Department of City Planning

Wes Pringle, Transportation Engineer Department of Transportation

Subject: UPDATED TRANSPORTATION ASSESSMENT FOR THE PROPOSED OUR LADY OF MOUNT LEBANON MIXED-USE PROJECT AT 333 SOUTH SAN VICENTE BOULEVARD (ENV-2019-1857-EIR/CPC-2019-1856-DB-F-SPR/VTT-82229)

On August 1, 2019, the Department of Transportation (DOT) issued a traffic assessment report to the Department of City Planning for the Our Lady of Mount (Mt.) Lebanon mixed-use project located at 333 South San Vicente Boulevard, which was subject of a transportation analysis dated April 16, 2019 prepared by Linscott Law & Greenspan engineers (LLG). However, since the report was released, the project has changed slightly and a supplemental transportation analysis (February 27 and March 25, 2020) was prepared and submitted by LLG. The supplemental analysis includes a vehicle miles traveled (VMT) analysis pursuant to the City of Los Angeles adoption of VMT as the criteria by which to determine transportation impacts under CEQA Senate Bill (SB) 743 and due to the recent changes to Section 15064.3 of the State's California Environmental Quality Act (CEQA) Guidelines. Please replace the previous DOT assessment report dated August 1, 2019, in its entirety, with this report, which addresses the totality of the transportation analysis.

The DOT has reviewed the transportation analyses prepared by LLG, dated February 27 and March 25, 2020, for the proposed Our Lady of Mt. Lebanon mixed-use project located at 333 South San Vicente Boulevard within the Central Area Planning Commission (APC) area. In compliance with SB 743 and the CEQA guidelines, a VMT analysis is required to identify the project's ability to promote the reduction of green-house gas emissions, the access to diverse land uses, and the development of multi-modal networks. The significance of a project's impact in this regard is measured against the VMT thresholds established in DOT's July 2019 Transportation Assessment Guidelines (TAG), as described below.

DISCUSSION AND FINDINGS

A. <u>Project Description</u>

The project is located at 333 South San Vicente Boulevard in the area bounded by San Vicente Boulevard to the east, Burton Way to the south, Holt Avenue to the west, and an alley to the north. Four buildings, which are owned by Our Lady of Mt. Lebanon – St. Peter Cathedral, currently occupy the project site: a cathedral, rectory, social hall, and a chancery. The existing cathedral will be retained and the other three existing buildings will be removed in order to construct 153 apartments, 31,439 square feet (a slight increase from the originally proposed size of 31,342 square feet) of church floor area, and a subterranean garage with 397 vehicle parking spaces. Vehicular access to the project would be provided by the adjacent alley. Passenger loading zones are proposed along the project frontage on Burton Way as illustrated in **Attachment A**. The project is expected to be completed by 2024.

B. <u>CEQA Screening Threshold</u>

Prior to accounting for trip reductions resulting from the application of Transportation Demand Management (TDM) Strategies, a trip generation analysis was conducted to determine if the project would exceed 250 daily vehicle trips screening threshold. Using the City of Los Angeles VMT Calculator tool, which draws upon trip rate estimates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition as well as applying trip generation adjustments when applicable, based on sociodemographic data and the built environment factors of the project's surroundings, it was determined that the project <u>does</u> exceed the net 250 daily vehicle trips threshold. It should be noted that because the project Memorandum of Understanding (MOU) was approved prior to July 2019, the project is not required to use the new TAG, but the project has voluntarily submitted a VMT analysis. A copy of the VMT calculator version 1.2 summary report, with the corresponding net daily trips estimate, is provided as **Attachment B**.

C. <u>Transportation Impacts</u>

On July 30, 2019, pursuant to SB 743 and the recent changes to Section 15064.3 of the State's CEQA Guidelines, the City of Los Angeles adopted VMT as a criteria in determining transportation impacts under CEQA. The new DOT TAG provide instructions on preparing transportation assessments for land use proposals and defines the significant impact thresholds.

The DOT VMT Calculator tool measures project impact in terms of Household VMT per Capita, and Work VMT per Employee. DOT identified distinct thresholds for significant VMT impacts for each of the seven Area Planning Commission (APC) areas in the City. For the Central APC area, in which the project is located, the following thresholds have been established:

- Household VMT per Capita: 6.0
- Work VMT per Employee: 7.6

As cited in the March 25, 2020 VMT Analysis report, prepared by LLG, the project proposes to incorporate TDM strategies of providing bicycle parking per the Los Angeles Municipal Code (LAMC) and improving the pedestrian network as project features. The proposed project is projected to have a Household VMT per capita of 6.2 and Work VMT per employee of 2.8. Therefore, it is concluded that implementation of the Project would result in a significant Household VMT impact.

To mitigate this impact, the project proposes to implement the TDM strategies of unbundling parking and promoting and marketing various modes of travel. By implementing these strategies, the Household VMT is forecasted to be reduced to 5.8. A copy of the VMT Calculator summary report is provided as **Attachment B**.

D. Access and Circulation

During the preparation of the new CEQA guidelines, the State's Office of Planning and Research stressed that lead agencies can continue to apply traditional operational analysis requirements to inform land use decisions provided that such analyses were outside of the CEQA process. The authority for requiring non-CEQA transportation analysis and requiring improvements to address potential circulation deficiencies, lies in the City of Los Angeles' Site Plan Review authority as established in Section 16.05 of the Los Angeles Municipal Code (LAMC). Therefore, DOT continues to require and review a project's site access, circulation, and operational plan to determine if any access enhancements, transit amenities, intersection improvements, traffic signal upgrades, neighborhood traffic calming, or other improvements are needed. In accordance with this authority, the project has completed a circulation analysis using a "level of service" screening methodology that indicates that the trips generated by the proposed development will not likely result in adverse circulation conditions at several locations. DOT has reviewed this analysis and determined that it adequately discloses operational concerns. A copy of the circulation analysis table that summarizes these potential deficiencies is provided as **Attachment C** to this report. Additionally, the supplemental analysis included an analysis of the expected operations in the alley upon buildout of the project since the alley currently serves as vehicular access for the neighboring West Terrace residential development and will serve as vehicular access for the project. The supplemental analysis concluded that project would not materially change traffic operations on the alley.

PROJECT REQUIREMENTS

A. <u>CEQA Related Mitigation</u>

To off-set the expected significant impacts identified in the project's transportation assessment study, DOT recommends that the applicant be required to implement the TDM strategies of unbundling parking and promotions and marketing as mitigation measures.

Unbundling parking costs from property cost would require those who wish to purchase parking spaces to do so at an additional cost from the property cost. This removes the burden from those who do not wish to utilize a parking space. An assumption is made that the parking costs are passed through to the vehicle owners/drivers utilizing the parking spaces. The promotions and marketing strategy educates and informs travelers about site-specific transportation options and the effects of their travel choice.

B. Non-CEQA Related Requirements and Considerations

To comply with transportation and mobility goals and provisions of adopted City plans and ordinances, the applicant should be required to implement the following:

1. <u>Parking Requirements</u>

The project would provide 397 vehicle parking spaces within a subterranean garage. The project would also provide a total of 19 short-term (10 for the apartments and nine for the church) and 105 long-term (101 apartmentsl and four church) bicycle parking spaces. The applicant should check with the Department of Building and Safety on the number of Code-required parking spaces required for this project.

2. <u>Highway Dedication and Street Widening Requirements</u>

Per the new Mobility Element of the General Plan, **San Vicente Boulevard**, a Boulevard II, would require a 40-foot half-width roadway within a 55-foot half-width right-of-way; **Burton Way**, an Avenue II, would require a 28-foot half-width roadway within a 43-foot half-width right-of-way; and **Holt Avenue**, a Local Street, would require an 18-foot half-width roadway within a 30-foot half-width right-of-way. The applicant should check with BOE's Land Development Group to determine if there are any other applicable highway dedication, street widening and/or sidewalk requirements for this project.

3. <u>Project Access and Circulation</u>

The conceptual site plan for the project (see **Attachment A**) is acceptable to DOT. Access to the parking garage will be from the alley to the north of the project. The project also proposes to install passenger loading zones for the apartments and for the church. The project should coordinate with DOT's Western District office for the approval and installation of the passenger loading zones. In order to minimize and prevent last minute building design changes, the applicant should contact DOT's Citywide Planning Coordination Section (201 North Figueroa Street, 5th Floor, Room 550, at 213-482-7024) for driveway width and internal circulation requirements prior to the commencement of building or parking layout design. Driveway placement and design shall be approved by the Department of City Planning (City Planning) in consultation with DOT, prior to issuance of a Letter of Determination by City Planning.

4. Worksite Traffic Control Requirements

DOT recommends that a construction work site traffic control plan be submitted to DOT's Citywide Temporary Traffic Control Section or Permit Plan Review Section for review and approval prior to the start of any construction work. Refer to http://ladot.lacity.org/businesses/temporary-traffic-control-plans to determine which section to coordinate review of the work site traffic control plan. The plan should show the location of any roadway or sidewalk closures, traffic detours, haul routes, hours of operation, protective devices, warning signs and access to abutting properties. DOT also recommends that all construction related truck traffic be restricted to off-peak hours to the extent feasible.

<u>Development Review Fees</u>
 Section 19.15 of the LAMC identifies specific fees for traffic study review, condition clearance, and permit issuance. The applicant shall comply with any applicable fees per this ordinance.

If you have any questions, please contact Eileen Hunt of my staff at (213) 972-8481.

Attachments

K:\Letters\2020\CEN18-47901_333 San Vicente_mu_vmt update_ltr.docx

c: Daniel Skolnick, Council District 5 Matthew Masuda, Central District, BOE Rudy Guevara, Western District, DOT Taimour Tanavoli, Case Management, DOT David Shender/Jason Shender, LLG

CITY OF LOS ANGELES VMT CALCULATOR Version 1.2

Project Information

Proposed Project Land Use Type	Value	Unit
Housing Multi-Family	153	DU
(custom) Church Retail/Non-Retail	Non-Reta	i LU type
(custom) Church Residents	0	Person
(custom) Church Employees	6	Person
(custom) Church Daily	186	Trips
(custom) Church HBW-Attraction Split	5	Percent
(custom) Church HBO-Attraction Split	75	Percent
(custom) Church NHB-Attraction Split	10	Percent
(custom) Church HBW-Production Split	0	Percent
(custom) Church HBO-Production Split	0	Percent
(custom) Church NHB-Production Split	10	Percent

Jse 🔽 to denote if the TDM strated	gy is part of the p	proposed project or is a r	nitigation strategy
Max Home Based TDM A Max Work Based TDM A	.chieved? chieved?	Proposed Project No No	With Mitigation No No
A	Parki	ng	
B	Tran	sit	
C Educ	ation & En	couragement	
D Cor	nmute Trip	Reductions	
•	Shared N	lobility	
F B	Bicycle Infra	structure	
G Neig	hborhood	Enhancement	
Traffic Calming Improvements Proposed Prj Mitigation	25 e cal 100 e tra	rcent of streets within pr ming improvements rcent of intersections wi ffic calming improvement	roject with traffic thin project with nts
Pedestrian Network Improvements Proposed Prj Mitigation	within project	and connecting off-site	_

TDM Strategies

Analysis Results

Proposed Project	With Mitigation
618	580
Daily Vehicle Trips	Daily Vehicle Trips
3,516	3,312
Daily VMT	Daily VMT
6.2	5.8
Houseshold VMT	Houseshold VMT per Capita
	2.0
Z.8 Work VMT	Z.8 Work VMT
per Employee	per Employee
Significant	VMT Impact?
Household: Yes	Household: No
Threshold = 6.0	Threshold = 6.0
15% Below APC	15% Below APC
Work: No	Work: No

Measuring the Miles

Report 1: Project & Analysis Overview

Date: January 15, 2020 Project Name: Our Lady of Mt. Lebanon Project Scenario: Proposed Project Project Address: 333 S SAN VICENTE BLVD, 90048

Project Information											
Lanc	Land Use TypeValueSingle Family0										
	Single Family	0	DU								
	Multi Family	153	DU								
Housing	Townhouse	0	DU								
-	Hotel	0	Rooms								
	Motel	0	Rooms								
	Family	0	DU								
Affardable Housing	Senior	0	DU								
Ajjoraable Housing	Special Needs	0	DU								
	Permanent Supportive	0	DU								
	General Retail	0.000	ksf								
	Furniture Store	0.000	ksf								
	Pharmacy/Drugstore	0.000	ksf								
	Supermarket	0.000	ksf								
	Bank	0.000	ksf								
	Health Club	0.000	ksf								
Deteil	High-Turnover Sit-Down	0.000									
Retall	Restaurant	0.000	ksf								
	Fast-Food Restaurant	0.000	ksf								
	Quality Restaurant	0.000	ksf								
	Auto Repair	0.000	ksf								
	Home Improvement	0.000	ksf								
	Free-Standing Discount	0.000	ksf								
	Movie Theater	0	Seats								
Office	General Office	0.000	ksf								
OJJICe	Medical Office	0.000	ksf								
	Light Industrial	0.000	ksf								
Industrial	Manufacturing	0.000	ksf								
	Warehousing/Self-Storage	0.000	ksf								
	University	0	Students								
	High School	0	Students								
School	Middle School	0	Students								
	Elementary	0	Students								
	Private School (K-12)	0	Students								
Other	Church	186	Trips								

Project and Analysis Overview

Report 1: Project & Analysis Overview

	Analysis Res	sults						
	Total Employees:	6						
	Total Population: 345							
Propos	ed Project	With M	itigation					
618	Daily Vehicle Trips	580	Daily Vehicle Trips					
3,516	Daily VMT	3,312	Daily VMT					
6.2	Household VMT	F 0	Household VMT per					
6.2	per Capita	5.8	Capita					
2.0	Work VMT	2.0	Work VMT per					
2.8	per Employee	2.8	Employee					
	Significant VMT	Impact?						
	APC: Centr	al						
	Impact Threshold: 15% Belo	ow APC Average						
	Household = 6	5.0						
	Work = 7.6							
Propos	ed Project	With Mitigation						
VMT Threshold	Impact	VMT Threshold	Impact					
Household > 6.0	Yes	Household > 6.0	No					
Work > 7.6	No	Work > 7.6	No					

Report 2: TDM Inputs

Stra	ategy Type	Description	Proposed Project	Mitigation	
	Reduce parking	City code parking provision (spaces)	0	0	
	supply	Actual parking provision (spaces)	0	0	
	Unbundle parking	Monthly cost for parking (\$)	\$0	\$25	
Parking	Parking cash-out	Employees eligible (%)	0%	0%	
	Price workplace	Daily parking charge (\$)	\$0.00	\$0.00	
	parking	Employees subject to priced parking (%)	0%	0%	
	Residential area parking permits	Cost of annual permit (\$)	\$0	\$0	
		(cont. on following page	2)		

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.						
Strate	gy Туре	Description	Proposed Project	Mitigations		
		Reduction in headways (increase in frequency) (%)	0%	0%		
Transit	Reduce transit headways	Existing transit mode share (as a percent of total daily trips) (%)	0%	0%		
		Lines within project site improved (<50%, >=50%)	0	0		
	Implement	Degree of implementation (low, medium, high)	0	0		
	neighborhood shuttle	Employees and residents eligible (%)	0%	0%		
		Employees and residents eligible (%)	0%	0%		
	Transit subsidies	Amount of transit subsidy per passenger (daily equivalent) (\$)	\$0.00	\$0.00		
Education &	Voluntary travel behavior change program	Employees and residents participating (%)	0%	0%		
Encouragement	Promotions and marketing	Employees and residents participating (%)	0%	100%		

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.						
Strate	gy Туре	Description	Proposed Project	Mitigations		
	Required commute trip reduction program	Employees participating (%)	0%	0%		
	Alternative Work Schedules and	Employees participating (%)	0%	0%		
	Telecommute	Type of program	0	0		
Commute Trip Reductions Emp vanj		Degree of implementation (low, medium, high)	0	0		
	Employer sponsored vanpool or shuttle	Employees eligible (%)	0%	0%		
		Employer size (small, medium, large)	0	0		
	Ride-share program	Employees eligible (%)	0%	0%		
	Car share	Car share project setting (Urban, Suburban, All Other)	0	0		
Shared Mobility B	Bike share	Within 600 feet of existing bike share station - OR- implementing new bike share station (Yes/No)	0	0		
	School carpool program	Level of implementation (Low, Medium, High)	0	0		

Report 2: TDM Inputs

TDM Strategy Inputs, Cont.						
Strate	еду Туре	Description	Proposed Project	Mitigations		
	Implement/Improve on-street bicycle facility	Provide bicycle facility along site (Yes/No)	0	0		
Bicycle Infrastructure	Include Bike parking per LAMC	Meets City Bike Parking Code (Yes/No)	Yes	Yes		
	Include secure bike parking and showers	Includes indoor bike parking/lockers, showers, & repair station (Yes/No)	0	0		
	Traffic calming	Streets with traffic calming improvements (%)	0%	0%		
Neighborhood	improvements	Intersections with traffic calming improvements (%)	0%	0%		
Ennancement	Pedestrian network improvements	Included (within project and connecting off- site/within project only)	within project and connecting off-site	within project and connecting off-site		

Report 3: TDM Outputs

				TDM	Adjustm	ents by T	rip Purpo	ose & Stra	tegy					
						Place type	Urban							
		Home B	ased Work	Home B	ased Work	Ноте Во	ised Other	Home Bo	ased Other	Non-Home	Based Other	Non-Home	Based Other	
		Proc	luction	Attr	action	Prod	uction	Attr	action	Proa	luction	Attr	action	Source
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	1
	Reduce parking supply	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Unbundle parking	0%	3%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	TDM Strategy
Parking	Parking cash-out	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Parking
	Price workplace parking	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1 - 5
	Residential area parking permits	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
	Reduce transit headways	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy
Transit	Implement neighborhood shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Appendix, Transit sections 1 - 3
	Transit subsidies	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Education &	Voluntary travel behavior change program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Education &
Encouragement	Promotions and marketing	0%	4%	0%	4%	0%	4%	0%	4%	0%	4%	0%	0%	Encouragement sections 1 - 2
	Required commute trip reduction program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Commute Trip Reductions	Alternative Work Schedules and Telecommute Program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	TDM Strategy Appendix, Commute Trip
	Employer sponsored vanpool or shuttle	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	Reductions sections 1 - 4
	Ride-share program	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
	Car-share	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Shared Mobility	Bike share	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	Appendix, Shared
endred mobility	School carpool program	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Mobility sections 1 - 3

Date: January 15, 2020 Project Name: Our Lady of Mt. Lebanon Project Scenario: Proposed Project Project Address: 333 S SAN VICENTE BLVD, 90048

Report 3: TDM Outputs

	TDM Adjustments by Trip Purpose & Strategy, Cont.													
	Place type: Urban													
		Home Based Work Home Based Wo Production Attraction		ased Work action	Home Bo Prod	nsed Other Juction	Home Bo Attr	ased Other action	Non-Home Based Other Production		Non-Home Based Other Attraction		Source	
		Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
	Implement/ Improve on-street bicycle facility	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy
Bicycle Infrastructure	Include Bike parking per LAMC	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	0.6%	Appendix, Bicycle Infrastructure
	Include secure bike parking and showers	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	sections 1 - 3
Neighborhood	Traffic calming improvements	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	TDM Strategy Appendix,
Enhancement	Pedestrian network improvements	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	Neighborhood Enhancement sections 1 - 2

	Final Combined & Maximum TDM Effect												
	Home Based Work Production		Home Based Work Attraction		Home Ba Produ	Home Based Other Production		Home Based Other Attraction		Non-Home Based Other Production		Non-Home Based Other Attraction	
	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	Proposed	Mitigated	
COMBINED TOTAL	3%	9%	3%	7%	3%	9%	3%	7%	3%	7%	3%	3%	
MAX. TDM EFFECT	3%	9%	3%	7%	3%	9%	3%	7%	3%	7%	3%	7%	

= Mini	= Minimum (X%, 1-[(1-A)*(1-B)]) where X%=								
	21005 when 75 %								
PLACE	urban	75%							
ТҮРЕ	compact infill	40%							
MAX:	suburban center	20%							
	suburban	15%							

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (*Transportation Assessment Guidelines Attachment G*) for further discussion of dampening.

Report 4: MXD Methodology

MXD Methodology - Project Without TDM								
	Unadjusted Trips	MXD Adjustment	MXD Trips	Average Trip Length	Unadjusted VMT	MXD VMT		
Home Based Work Production	207	-34.3%	136	6.0	1,242	816		
Home Based Other Production	555	-47.7%	290	4.8	2,664	1,392		
Non-Home Based Other Production	19	-10.5%	17	6.3	120	107		
Home-Based Work Attraction	9	-77.8%	2	8.6	77	17		
Home-Based Other Attraction	240	-48.3%	124	7.1	1,704	880		
Non-Home Based Other Attraction	74	-13.5%	64	6.2	459	397		

MXD Methodology with TDM Measures									
		Proposed Project		Project	with Mitigation M	easures			
	TDM Adjustment	Project Trips	Project VMT	TDM Adjustment	Mitigated Trips	Mitigated VMT			
Home Based Work Production	-2.6%	133	795	-9.3%	123	740			
Home Based Other Production	-2.6%	283	1,356	-9.3%	263	1,262			
Non-Home Based Other Production	-2.6%	17	104	-6.5%	16	100			
Home-Based Work Attraction	-2.6%	2	17	-6.5%	2	16			
Home-Based Other Attraction	-2.6%	121	857	-6.5%	116	823			
Non-Home Based Other Attraction	-2.6%	62	387	-6.5%	60	371			

MXD VMT Methodology Per Capita & Per Employee									
	Total Population: 345								
Total Employees: 6									
APC: Central									
	Proposed Project	Project with Mitigation Measures							
Total Home Based Production VMT	2,151	2,002							
Total Home Based Work Attraction VMT	17	16							
Total Home Based VMT Per Capita	6.2 5.8								
Total Work Based VMT Per Employee	er Employee 2.8 2.8								
VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr & Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr & Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr & Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr & Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr & Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr & Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr & Peers, or another third party, even if the City or Fehr & Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr & Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

You, the User								
Ву:	Jash							
Print Name:	Jason Shender							
Title:	Transportation Planner II							
Company:	Linscott, Law & Greenspan, Engineers							
Address:	20931 Burbank Boulevard, Suite C Woodland Hills, CA 91367							
Phone:	(818) 835-8648							
Email Address:	jshender@llgengineers.com							
Date:	1/15/2020							

SUMMARY OF VOLUME TO CAPACITY RATIOS AND LEVELS OF SERVICE CITY OF LOS ANGELES INTERSECTIONS

			[1]				[2]		[3]		[4]			
NO	INTERSECTION	PEAK	YEAR 2018 EXISTING		YEAR 2018 EXISTING W/ PROJECT		CHANGE SIGNIF. V/C IMPACT		YEAR 2024 FUTURE PRE- PROJECT		YEAR 2024 FUTURE W/ PROJECT		CHANGE V/C	ADVERSE QUEUING
1	Robertson Boulevard /	AM	0.625	B	0.628	B	0.003	NO	0.679	B	0.682	B	0.003	NO
	3rd Street	PM	0.622	B	0.627	B	0.005	NO	0.691	B	0.695	B	0.004	NO
2	Robertson Boulevard /	AM	0.688	B	0.689	B	0.001	NO	0.748	C	0.748	C	0.000	NO
	Burton Way	PM	0.734	C	0.736	C	0.002	NO	0.796	C	0.799	C	0.003	NO
5	Willaman Drive /	AM	0.599	A	0.602	B	0.003	NO	0.643	B	0.647	B	0.004	NO
	Burton Way	PM	0.619	B	0.619	B	0.000	NO	0.664	B	0.664	B	0.000	NO
6	San Vicente Boulevard /	AM	0.669	B	0.670	B	0.001	NO	0.731	C	0.733	C	0.002	NO
	Beverly Boulevard	PM	0.695	B	0.695	B	0.000	NO	0.775	C	0.775	C	0.000	NO
7	Sherbourne Drive /	AM	0.459	A	0.463	A	0.004	NO	0.497	A	0.500	A	0.003	NO
	3rd Street	PM	0.447	A	0.451	A	0.004	NO	0.487	A	0.491	A	0.004	NO
8	San Vicente Boulevard /	AM	0.697	B	0.699	B	0.002	NO	0.776	C	0.778	C	0.002	NO
	3rd Street	PM	0.586	A	0.587	A	0.001	NO	0.667	B	0.668	B	0.001	NO
9	San Vicente Boulevard-Le Doux Road /	AM	0.527	A	0.531	A	0.004	NO	0.572	A	0.575	A	0.003	NO
	Burton Way	PM	0.576	A	0.578	A	0.002	NO	0.624	B	0.625	B	0.001	NO
11	La Cienega Boulevard /	AM	0.651	B	0.652	B	0.001	NO	0.720	C	0.720	C	0.000	NO
	Beverly Boulevard	PM	0.859	D	0.860	D	0.001	NO	0.955	E	0.957	E	0.002	NO
12	La Cienega Boulevard /	AM	0.798	C	0.803	D	0.005	NO	0.867	D	0.872	D	0.005	NO
	3rd Street	PM	0.692	B	0.693	B	0.001	NO	0.757	C	0.758	C	0.001	NO
13	La Cienega Boulevard /	AM	0.654	B	0.655	B	0.001	NO	0.715	C	0.717	C	0.002	NO
	San Vicente Boulevard	PM	0.663	B	0.667	B	0.004	NO	0.735	C	0.738	C	0.003	NO

≻