APPENDIX 1a

TOM DODSON & ASSOCIATES

PRELIMINARY ENGINEERING REPORT For The WELDON REGIONAL CONSOLIDATION PROJECT

April 22, 2016

DEE JASPAR & ASSOCIATES, INC. CONSULTING CIVIL ENGINEERS 2730 UNICORN ROAD, BLDG. A BAKERSFIELD, CA 93308

PHONE (661) 393-4796

FAX (661) 393-4799

Prepared By: Kristopher Wilcox, P.E. Dee Jaspar & Associates, Inc. Ph. No.: (661) 393-4796 Email: kwilcox@djacivil.com

Table of Contents

Ι.		1
н.	EXECUTIVE SUMMARY	2
III.	WATER SYSTEM SUPPLY & DEMANDS	4
IV.	WATER SYSTEM STORAGE	8
v.	WATER QUALITY	9
VI.	PROJECT ALTERNATIVES	11
	ALTERNATIVE 1	12
	ALTERNATIVE 2	12
	ALTERNATIVE 3	13
	ALTERNATIVE 4	14
	ALTERNATIVE 5	15
VII.	PROJECT COST ANALYSIS	
VIII.	CONCLUSIONS	
APPEN	DICES	
	A – EXISTING SYSTEM WATER QUALITY RESULTS	19
	B – CALIFORNIA WATERWORKS STANDARDS	20
	C – EXISTING SYSTEM DEMAND	21
	D – PROJECT ARE MAP WITH KERN COUNTY ZONING DESIGNATIONS	22
	E – SYSTEM STORAGE REQUIREMENTS	23
	F – LONG CANYON TEST WELL STUDY	24
	G – COST ESTIMATE FOR IRON/MANGANESE WATER TREATMENT SYSTEM	25
	H – PROJECT ALTERNATIVE 2 SYSTEM LAYOUT MAP	26
	I – PROJECT ALTERNATIVE 2 CAPITAL AND O&M COST ESTIMATES	27
	J – PROJECT ALTERNATIVE 3 SYSTEM LAYOUT MAP	28
	K – PROJECT ALTERNATIVE 3 CAPITAL AND O&M COST ESTIMATES	29
	L – PROJECT ALTERNATIVE 4 SYSTEM LAYOUT MAP	30
	M – PROJECT ALTERNATIVE 4 CAPITAL AND O&M COST ESTIMATES	31
	N – PROJECT ALTERNATIVE 5 SYSTEM LAYOUT MAP	32
	O – PROJECT ALTERNATIVE 5 CAPITAL AND O&M COST ESTIMATES	33
	P – PROJECT ALTERNATIVE PRESENT WORTH ANALYSES	34
	Q – HYDRAULIC ANALYSIS REPORT	35

I. INTRODUCTION

Weldon, CA is a census designated place, located on the east side of Lake Isabella, approximately 53 miles northeast of Bakersfield, California. The population was 2,642 at the 2010 census, up from 2,387 at the 2000 census. It is comprised primarily of small residential neighborhoods located along the south side of California State Highway 178. The proposed water system consolidation project area encompasses part of the easterly portion of Weldon.

Each of the small residential neighborhoods has its own independent water system and all of them use groundwater supply wells as their sole source of water supply. The Weldon area is located within the Kern River Valley Groundwater Basin in Kern County. A list of the existing water systems within the proposed Project area is provided below:

- Long Canyon Water Company
 Rainbird Valley Mutual Water Company
 Canyon Water Company
 Canyon
- Tradewinds Water Association
- Bella Vista Mutual Water Company
- Sierra Vista Restaurant
- Lake Isabella K.O.A.

- Company
- South Fork Elementary School
- o Valley Estates P.O.A.
- o South Fork Middle School
- Weldon Methodist Church
- o South Fork Women's Club

- Indicates Project Participant
- Indicates Potential Project Participant

Several of these water systems have water quality issues and exceed the regulated maximum contaminant levels (MCL) for Uranium, Nitrate, and Arsenic. Complete water quality results for the past ten years for each of the project participants systems have been attached hereto as Appendix A. In July of 2015, two casing hammer test wells were drilled to find better water quality for the area and both test wells were successful. A recommendation was therefore made to drill, construct, and equip a municipal water well at each test well location to serve a new consolidated community water system.

The Long Canyon Water Company, Rainbird Mutual Water Company, Tradewinds Water Association, Bella Vista Mutual Water Company, Sierra Vista Restaurant, and the Lake Isabella K.O.A. have all indicated a willingness to participate in a project to consolidate these existing water systems into a single system. This will involve constructing two new municipal water wells at the test well locations as referenced above and abandoning or disconnecting the existing water supply wells that do not meet Drinking Water Standards.

In light of these water quality issues, five project alternatives have been considered and evaluated herein to consolidate these six water systems into a single system. Consideration has also been given to the other water systems nearby to ensure future consolidation with the new community water system would be feasible.

Figure 1

Vicinity Map – Weldon, California

II. EXECUTIVE SUMMARY

This preliminary engineering report considers and evaluates five project alternatives which are outlined below and discussed in greater detail herein.

- 1. Alternative No. 1 No Project
- 2. Alternative No. 2 System Consolidation Project with a 2 MG Storage Tank
- 3. Alternative No. 3 System Consolidation Project with a 2 MG Storage Tank with a Dedicated Tank Fill Line and Gravity Supply
- 4. Alternative No. 4 System Consolidation Project with two 1 MG Storage Tanks
- 5. Alternative No. 5 System Consolidation Project with two 1 MG Storage Tanks with a Dedicated Tank Fill Line and Gravity Supply

Each of the project alternatives focused on a regional consolidation to serve Long Canyon Water Company, Rainbird Valley Mutual Water Company, Tradewinds Water Association, Bella Vista Mutual Water Company, Sierra Vista Restaurant, and the Lake Isabella K.O.A.; however, each alternative allows for future system expansion to potentially connect other existing small water companies within the area. Preliminary cost estimates to connect each of these potential existing water systems have been included in Appendix I, K, M, and O.

The regional water system infrastructure is proposed to connect to the existing water system of the Long Canyon Water Company, Rainbird Valley Mutual Water Company, Tradewinds Water Association, Bella Vista Mutual Water Company, the Sierra Vista Restaurant, and the Lake Isabella K.O.A. The regional water system infrastructure would replace the existing water system pipelines, valves, hydrants, and appurtenances for the Long Canyon Water Company, Rainbird Mutual Water Company, and Bella Vista water systems and would utilize the existing water system pipelines, valves, hydrants, and appurtenances for the Tradewinds Water Association system. The existing infrastructure of each water system has been evaluated primarily on the basis of the age of the system pipelines, valves, hydrants, and appurtenances and it is recommended that any system piping, valves, and appurtenances that are over 30 years old be replaced.

This project will result in the formation of a new regional water system, which will need time to accumulate funds in a reserve account for repairs and replacement as the water system ages. By replacing the older components of the existing infrastructure, the newly formed regional water system will have a new system that should not have a need for major repairs during the first several years of its operation. The approximate age of the infrastructure of each existing water system is shown in Table 1:

System Name	Age of Ex. Infrastructure (yrs)
Rainbird Valley MWC	36
Tradewinds WA	21
Bella Vista WC	31
Long Canyon WC	45

Table 1 – Age of Existing System Infrastructure

A few of the water systems have water supply wells that currently meet Drinking Water Standards such as Long Canyon Well No. 2 and Bella Vista Well No. 1 and No. 2. These wells are recommended to be maintained and connected to the regional water system; however, this must be agreed to by the project participants. It is recommended to avoid utilizing existing storage tanks, pumping plants, and electrical for the small water systems as inevitably these will fail or develop problems and require repairs or replacement. The recommendation would be to utilize new equipment that will have a useful life that corresponds to the completion

of the regional consolidation project and the beginning of the regional water service.

The project costs for each alternative are summarized in Table 2 below and include the estimated capital, annual O&M, present worth, and the estimated monthly water cost for the project participants. The estimated monthly water cost with additional customers from consolidation with the adjacent potential project participants is also shown.

	Alternative 2	Alternative 3	Alternative 4	Alternative 5
Total Project Capital	\$18,388,305.00	\$18,387,030.00	\$18,780,367.50	\$19,874,955.00
Cost:				
Annual O&M Cost:	\$291,802.50	\$275,811.67	\$292,301.25	\$276,852.50
Net Present Worth:	\$24,852,738.16	\$24,497,210.98	\$25,255,849.70	\$26,008,194.03
Cost/Cust./Mo.:	\$55.77	\$52.72	\$55.87	\$52.92
Cost/Cust./Mo.	\$47.68	\$47.13	\$47.74	\$47.26
w/Add'l Customers:				

Table 2 –	Project	Alternatives	Cost Summarv
1 4010 -			000000000000000000000000000000000000000

The evaluation of the five different project alternatives herein shows Project Alternative 3 to be the most cost effective option to consolidate the six project participant water systems into a single community water system; however, while Alternative 3 provides a system storage capacity that meets the minimum storage requirement, it only includes a single storage tank. Alternative 4 includes adequate storage capacity that meets the recommended storage capacity for the system while also providing two separate storage tanks. It is advantageous to have two separate storage tanks on each end of the water distribution system in the event of a major pipeline break or equipment failure that requires shutting down part of the system. Furthermore, Alternative 4 includes well head treatment for each new well for the removal of Iron and Manganese. Construction of these well head treatment systems may not be necessary and will depend on the final water quality results after completion of the construction of both new municipal wells. Based on this, our recommendation for this Project is to construct Alternative 4 with the caveat that treatment will not be installed if it is deemed not necessary.

III. WATER SYSTEM SUPPLY & DEMANDS

A. PROJECT PARTICIPANTS EXISTING SUPPLY & DEMAND

Current Project participants include:

- 1- Tradewinds Water Association
- 2- Rainbird Valley Mutual Water Company
- 3- Long Canyon Water Company
- 4- Bella Vista Mutual Water Company

- 5- Sierra Vista Restaurant
- 6- Lake Isabella K.O.A.

Existing Water System Supply

The Tradewinds Water Association, Long Canyon Water Company, Rainbird Valley Mutual Water Company, Bella Vista Mutual Water Company, Sierra Vista Restaurant, and the Lake Isabella K.O.A. all rely solely on groundwater as the source of water supply. Each water system currently has two wells, with the exception of the Lake Isabella K.O.A. and the Sierra Vista Restaurant. The K.O.A. and the Restaurant each have one well, which is problematic in the event the well is inoperable. Many of the existing water system wells have water quality issues and do not meet Drinking Water Standards. Complete water quality results for the past 10 years for each system can be found in Appendix A along with a summary table showing constituents of concern and recent MCL violations for each water system.

Existing Water System Demand

The Average Day Demand (ADD), Maximum Day Demand (MDD), and Peak Hour Demand (PHD) have been estimated based on the total annual water use for each of the water systems as shown in Table 3. The ADD, MDD, and PHD were each estimated in accordance with Section 64554 of the California Waterworks Standards (CWWS). The annual usage for each existing water system was divided by 365 to obtain the ADD. A peaking factor of 2.25 was used to estimate MDD, and a peaking factor of 2.0 was used to estimate the PHD. The Maximum Day Demand for 436 service connection is estimated at approximately 500-600 gpm per Figure 14 of the CWWS. The CWWS have been attached hereto as Appendix B for reference. A more detailed breakdown of the water system demands can be found in Appendix C. In addition, a map of the project area showing the Kern County zoning designations has been attached hereto as Appendix D.

			Annual			
	System	Service	Water Use	ADD	MDD	PHD
System Name	Population	Connections	(afy)	(gpm)	(gpm)	(gpm)
Tradewinds Water Association	470	236	70.8	43.9	98.8	197.5
Rainbird Valley Mutual Water Company	188	83	33.2	20.6	46.3	92.6
Long Canyon Water Company	197	67	10.8	6.7	15.1	30.1
Bella Vista Mutual Water Company	74	47	28.2	17.5	39.3	78.7
Sierra Vista Restaurant	Varies	2	7.1	4.4	9.8	19.7
Lake Isabella K.O.A.	Varies	1	8.3	5.1	11.6	23.1
Total:	<mark>929</mark>	436	158.4	98.2	220.9	441.7

Table 3 – Project Participants Water System Demand

System Supply Requirements (per Kern County Development Standards-KCDS)

The consolidated water system must be capable of supplying half of the peak hourly flow plus the required fire flow (1,721 gpm) for two hours. The fire flow requirement is 1,500 gpm for two hours per Section 205-3 of the KCDS for commercial developments. Commercial developments include the Post Office and multi-family zoning in the Long Canyon water system, commercial zoning in the Rainbird water system, and the K.O.A. and Sierra Vista Restaurant. In addition, 2/3 of this flow (1,147 gpm) must be maintained with the most critical well or pump inoperative. Also in accordance with KCDS the MDD (220.9 gpm) shall be met for three days from a combined source of wells and storage, and the ADD (98.2 gpm) must be maintained continuously from the well pumping only. The proposed project alternatives have been designed so that the new regional water system meets these Kern County Developments Standards. The available supply is based on the estimated well production for the two new wells to be drilled as part of the consolidation project. Based on data from the two test wells that were drilled in July of 2015, the estimated well capacity is approximately 400 gpm each. As previously mentioned, the ADD, MDD, and PHD were estimated in accordance with Section 64554 of the CWWS from the annual water usage provided for each existing water system. A summary of the water system supply requirements is shown in Table 4 below:

Table 4 -	Water	System	Supply	Requirement	s
		2		1	

System Supply Requirement		Flow Req't (gpm)	Supply Available	Sources	Storage Used (gal)
1	1/2 PHD + F.F for 2 Hours	1,721	1,721 gpm	Well No. 1, Well No.	110,520
				2 + Storage	
2	2/3 of Item 1 with One	1,147	1,147 gpm	Well No. 1 + Storage	89,640
	Well Inoperative				
3	MDD (for Three Days)	220.9	800 gpm	Well No. 1 & No. 2	0
4	ADD (Continuous)	98.2	800 gpm	Well No. 1 & No. 2	0

B. POTENTIAL PROJECT PARTICIPANTS EXISTING SUPPLY & DEMAND

Potential Project participants include:

- 1- South Fork Elementary School
- 2- South Fork Women's Club
- 3- Weldon Methodist Church
- 4- Valley Estates P.O.A.
- 5- South Fork Middle School
- 6- Hillview Acres Mutual Water Company
- 7- Lakeview Ranchos Mutual Water Company

Existing Water Supply

All of the potential project participants listed above rely solely on groundwater as the source of supply for their respective water systems. Some of them including the Lakeview Ranchos Mutual Water Company are in violation of Drinking Water Standards with contaminants above the regulated MCL.

Existing Water System Demand

The ADD, MDD, and PHD have been estimated based on the total annual water use for each of the water systems in accordance with the CWWS as explained in the previous section for the project participants, and as shown in Table 5:

			Annual			
	System	Service	Water	ADD	MDD	PHD
System Name	Population	Connections	Use (afy)	(gpm)	(gpm)	(gpm)
South Fork Elementary School	135	1	2.8	1.7	3.8	7.7
South Fork Women's Club	N/A	1	6.8	4.2	9.4	18.8
Weldon Methodist Church	N/A	1	5.2	3.2	7.3	14.6
Valley Estates P.O.A.	300	121	184.1	114.1	256.8	513.7
South Fork Middle School	135	1	2.2	1.3	3.0	6.0
Hillview Acres Mutual Water Company	25	47	14.7	9.1	20.5	41.1
Lakeview Ranchos Mutual Water Company	120	73	18.4	11.4	25.7	51.4
Total:	715	245	234.2	145.2	326.6	653.2

Table 5 - Potential Project Participants Water System Demand

Water System Supply Requirements (per Kern County Development Standards)

In the event the water systems listed above elect to participate in the project and tie in to the proposed consolidated water system, the water system must be capable of supplying half of the peak hourly flow plus the required fire flow (2,047 gpm) for two hours. This is the demand for the project participants and potential project participants combined. The fire flow requirement for commercial developments is 1,500 gpm for two hours per KCDS. In addition, 2/3 of this flow (1,365 gpm) must be maintained for two hours with the most critical well or pump inoperative.

Also, in accordance with KCDS, the MDD (220.9 gpm + 326.6 gpm = 547.5 gpm) shall be met for three days from a combined source of wells and storage, and the ADD (98.2 gpm + 145.2 gpm = 243.4 gpm) must be maintained continuously from the well pumping only. As mentioned previously, the ADD, MDD, and PHD were estimated in accordance with Section 64554 of the CWWS from the annual water usage provided for each existing water system. A summary of the water system supply requirements is shown in Table 6:

System Supply Requirement		Flow Req't (gpm)	Supply Available	Sources	Storage Used (gal)
1	1/2 PHD + F.F for 2	2,047	2,047	Well No. 1, Well No. 2	149,640
	Hours			+ Storage	
2	2/3 of Item 1 with One	1,365	1,365	Well No. 1 + Storage	115,800
	Well Inoperative				
3	MDD (for Three Days)	486.6	800	Well No. 1 & No. 2	0
4	ADD (Continuous)	243.4	800	Well No. 1 & No. 2	0

Table 6 – Water System Supply Requirements

C. SUPPLY FROM NEW MUNICIPAL WATER WELLS

Based on the data from the drilling of the two casing hammer test wells, the new water well to be constructed at the Test Well #1 location is estimated to have a production rate of approximately 400 gpm, and the new water well to be constructed at the Test Well #2 location is estimated to have a production rate of approximately 400-600 gpm, see Appendix F.

IV. WATER SYSTEM STORAGE

The system storage requirements for the proposed consolidated water system have been calculated and are shown in Table 7. These requirements are based on historical usage for each of the existing water systems and Kern County Development Standards. The minimum storage volume for 436 service connections per Figure 15 of the CWWS is approximately 420,000 gallons. This is based on the CWWS philosophy of providing a minimum of one maximum day of storage, however due to the remote location of this water system and the mountainous geography additional storage for emergency needs is recommended. The primary emergency of concern is lost power from rain storms or power supply lines being destroyed by flood or fire and being out for an extended period of time. A more detailed breakdown of the water system storage requirements can be found in Appendix E.

		Potential Project
	Project Participants	Participants & Project
Storage Requirement	(gallons)	Participants (gallons)
Fire Storage*	180,000	180,000
Operational Storage (MDD for One Day)	318,000	788,000
Emergency Storage (Three Days)	954,000	2,365,000
Recommended Storage:	1,479,000	3,399,000

*per Kern County Development Standards

The recommended storage for the project participants is approximately 1.5 million gallons net capacity. The project alternatives considered have been designed to meet the storage requirements shown above for the project participants. Project Alternatives 2 and 3 include a single 2 MG storage tank and Project Alternatives 4 and 5 include two 1 MG storage tanks. It is estimated that 2.0 million gallons of gross storage capacity will equate to approximately 1.5 million gallons of net storage capacity.

V. WATER QUALITY

Existing System Water Quality

Several of the existing project participant water systems have water quality issues where one or more of their water wells are either currently or have previously been in violation of primary Drinking Water Standards. Water quality results for the project participants are attached hereto in Appendix A. The most recent water quality results for the contaminants of concern for five of the existing project participant water systems is shown on Table 8 with current MCL violations highlighted in bold. Bella Vista does not have any water quality violations.

Table 8 -	- Project	Participants	Existing	System	Water	Quality	Violations
-----------	-----------	--------------	----------	--------	-------	---------	------------

	Long C	ng Canyon Rainbird Valley Tradewinds		Sierra Vista	Lake			
	Wa	Water		Mutual Water		ater	Restaurant	Isabella
	Com	pany	Com	ipany	Association			KOA
Contaminant (MCL)	Well 1*	Well 2	Well 1	Well 2	Well 2 Well 3		Well 1	Well 1
Arsenic (10 ppb)	<2.0	<2.0	<2.0	2.1	<2.0	<2.0	10**	10**
Nitrate as N (10 ppm)	<0.44	0.86	2.4	17	1.5	2.2	14	15
Uranium (20 pCi/L)	20.0	18.0	43	25	16	23	N/A	N/A

*Standby Well

**Results from 1990

In addition to the violations listed above for five of the project participant water systems, the Lakeview Ranchos Mutual Water Company is also in violation of the MCL for arsenic. Furthermore, several of the potential project participants currently have only one well as their sole source of water supply which decreases the water system's reliability, including:

- Hillview Acres Mutual Water Company
- South Fork Elementary School
- South Fork Middle School
- Weldon Methodist Church
- South Fork Women's Club

Casing Hammer Test Well Water Quality

Two casing hammer test wells were drilled in mid-July 2015 to find suitable locations to construct new municipal water wells that meet Drinking Water Standards. During the drilling of the two test wells, samples were collected at selected depth intervals for water quality analysis. Abbreviated summaries of the depth sampling water quality results from the two casing hammer test wells are shown in Tables 9 and 10. Water quality results shown below in bold represent results that exceed the MCL. Shaded cells represent tested zones of the aquifer that will be within the proposed perforated interval or production zones.

Cased Depth (ft)	Drilled Depth (ft)	Sample Type	Iron (ppm)	Manganese (ppm)	Nitrate as NO ₃ (ppm)	Arsenic (ppb)	Hexavalent Chromium (ppb)	Gross Alpha (pCi/L)
55	58	Airlift	<0.03	0.84	0.4	<2	<0.2	2.3
155	158	Airlift	<0.03	0.48	2.3	<2	-	1.3
215	218	Airlift	< 0.03	0.88	8.0	<2	-	6.0
274	277	Airlift	<0.03	0.026	53	<2	0.32	1.6
274	277	Pumped	< 0.03	0.2	53	<2	<0.2	3.4

Table 9 – Depth Sampling Results for Test Well #1

¹Uranium tests were not conducted by the lab.

Table	10 -	Depth	Sampling	Results	for	Test	Well	#2
I uoic	10	Depui	Sumpring	results	101	1050		11 2

Cased Depth	Drilled Depth	Sample Type	Iron (ppm)	Manganese (ppm)	Nitrate as NO ₂	Arsenic (ppb)	Hexavalent Chromium	Gross Alpha
(ft)	(ft)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(PP)	(66)	(ppm)	(66~)	(ppb)	(pCi/L)
83	86	Airlift	<0.03	0.0025	4.4	3	0.3	25
100	103	Airlift	<0.03	0.0056	26	<2	0.9	41
100	103	Pumped	<0.03	0.02	27	<2	1.5	40.0
170	173	Airlift	<0.03	0.0043	14	<2	<0.2	9.4
214	220	Airlift	<0.03	0.0077	9.1	<2	0.4	13
214	220	Pumped	0.730	0.02	8.9	<2	<0.2	15
260	263	Airlift	<0.03	0.019	4.2	<2	0.3	31
295	298	Airlift	<0.03	0.056	5.2	<2	<0.2	41
295	298	Pumped	<0.03	0.02	5.3	<2	<0.2	46
344	347	Airlift	<0.03	0.049	3.0	<2	<0.2	43

¹Uranium tests were not conducted by the lab.

Based on an evaluation of the groundwater quality results, a recommendation was made to construct a new municipal water well at each test well location.

All project alternatives propose to construct a 230-ft deep well at the Test Hole #1 location with a perforated interval from 100-ft to 220-ft. However, the well may

have Manganese above the MCL and would require treatment by oxidation/filtration. The deepest zone, Zone #4, has high Nitrate but it would be approximately 40-ft below the well depth and there is a cemented sand lense at about 268-ft to 274-ft that would retard the upward movement of that water.

All project alternatives also propose to construct a 250-ft deep well at the Test Hole #2 location with a perforated interval from 170-ft to 240-ft. The two shallow zones above this perforated interval have high gross alpha which is assume to equate to high Uranium, but there is a good clay layer (clay, silty clay, and silt) from about 120-ft to 170-ft. The deeper zones below 260-ft have high gross alpha as well which is assume to equate to high Uranium. However, there is a layer of cemented sands from 258-ft to 260-ft that would provide a barrier from the upward movement of that deeper water. There was a high iron concentration from 214-ft to 220-ft but this may blend down with the water from an approximate depth of 170-ft to 173-ft, otherwise oxidation/filtration may be necessary for iron removal.

A copy of the test well report has been attached hereto in Appendix F for reference.

After the two new municipal wells are constructed, the water quality for each well will be evaluated to determine whether treatment is required to meet the Secondary Standards for Iron and Manganese. Alternatives 3 and 5 allow for potential blending of the well water in the storage tanks prior to going to the distribution system while Alternatives 2 and 4 will require treatment. If treatment is required, then an oxidation/filtration treatment system would be installed at each well site as necessary. The proposed treatment vessels would be loaded with Katalox Light oxidation/filtration media in order to limit or eliminate chemical pretreatment as much as possible. The system would backwash automatically as necessary and discharge into an adjacent retention pond. Backwashing will be based on either a set timer or totalized volume treated and the system will be capable of operating in either mode.

The estimated capital cost to furnish and install a single 400 gpm Iron/Manganese removal water treatment system is \$420,000. For more detail please see the attached copy of the capital estimate for the proposed Iron/Manganese treatment system as Appendix G.

VI. PROJECT ALTERNATIVES

The following project alternatives were considered to consolidate the existing Rainbird Valley Mutual Water Company, Tradewinds Water Association, Long Canyon Water Company, Bella Vista Mutual Water Company, Sierra Vista Restaurant, and Lake Isabella K.O.A. water systems:

Alternative 1 – No Project Alternative 2 – System Consolidation Project with 2 MG Storage Tank

Alternative 3 –	System Consolidation Project with a 2 MG Storage Tank with
	a Dedicated Tank Fill Line and Gravity Supply
Alternative 4 –	System Consolidation Project with two 1 MG Storage Tanks
Alternative 5 –	System Consolidation Project with two 1 MG Storage Tanks
	with a Dedicated Tank Fill Line and Gravity Supply

ALTERNATIVE 1 – No Project

Alternative 1 considers not implementing a project to consolidate the six water systems or construct new municipal water wells that meet Drinking Water Standards. In this alternative the six water systems would continue supplying water that does not meet Drinking Water Standards which would lead to continued MCL violations for several regulated contaminants and would put water system customers' health at risk. For this reason this alternative is considered not feasible.

ALTERNATIVE 2 – System Consolidation Project with a 2 MG Storage Tank

Alternative 2 considers consolidating the six Project Participant water systems into a single distribution system. The proposed project alternative is summarized as follows:

Alternative 2 includes the drilling, construction, and equipping of two new municipal water wells. Both wells will be equipped with a chemical feed pump for chlorination of the raw groundwater in order to maintain a free chlorine residual of ± 0.5 ppm in the water system. Furthermore, the well equipping piping will be designed to facilitate the addition of a water treatment system for the removal of iron and manganese from the raw groundwater should treatment be necessary in order to meet the secondary MCL standards.

This alternative also includes the construction of $\pm 33,150$ LF of 12" C900 PVC piping to convey water from the two new wells to the 2 MG storage tank and to the six existing water systems. In addition, approximately 26,525 LF of 6" C900 PVC piping will be installed to replace the aging infrastructure of existing water systems that are more than 30 years old including the piping, valving, and appurtenances for the Long Canyon Water Company, Rainbird Mutual Water Company, and the Bella Vista Mutual Water Company water systems. This alternative utilizes Tradewinds Water Association's existing water distribution system with the exception of the existing storage tanks and booster station. These will not be incorporated as part of the new regional water system. This alternative includes the construction of a two million gallon welded steel AWWA D100 water storage tank and a booster station to pump water into the Bella Vista MWC system. This project is being proposed so that the six existing systems can disconnect and abandon the existing wells that have water quality violations from their water systems.

A map of the proposed project alternative is attached hereto in Appendix H.

The estimated cost for Alternative 2 includes:

- Drilling and equipping of two new water supply wells
- Abandonment of six existing wells that do not meet Drinking Water Standards
- Well head treatment for Fe & Mn removal at each of the well sites
- Construction of a two million gallon welded steel water storage tank
- Construction of ±33,150 LF of 12" DR14 C900 PVC Pipe
- Construction of ±26,525 LF of 6" DR14 C900 PVC Pipe
- New Distribution System for Rainbird M.W.C., Long Canyon W.C., Bella Vista MWC, and system tie-ins for Tradewinds W.A., the Sierra Vista Restaurant, and the Lake Isabella K.O.A.

The total capital cost for Alternative 2 is estimated to be \$18,388,305. Nonconstruction costs for engineering and design, construction inspection, contract administration, and construction management are included. The itemized project estimate as well as estimates to connect potential project participants to the system have been attached hereto in Appendix I.

The annual operating and maintenance cost for Alternative 2 is estimated to be \$291,802.50. A detailed breakdown of the analyzed operating costs can be found attached hereto in Appendix I.

ALTERNATIVE 3 – System Consolidation Project with a 2 MG Storage Tank and a Dedicated Tank Fill Line and Gravity Supply

Alternative 3 considers consolidating the six Project Participant water systems into a single distribution system. The proposed project alternative is summarized as follows:

Alternative 3 includes the drilling, construction, and equipping of two new municipal water wells. Both wells will be equipped with a chemical feed pump for chlorination of the raw groundwater in order to maintain a free chlorine residual of ± 0.5 ppm in the water system. Furthermore, the well equipping piping will be designed to facilitate the addition of a water treatment system for the removal of iron and manganese from the raw groundwater should treatment be necessary in order to meet the secondary MCL standards. However, for this altarnative it is prposed to blend the water from the two new wells in the storage tank to reduce the concentrations of Iron and Manganese prior to conveyance to the distribution system.

This alternative also includes the construction of $\pm 43,700$ LF of 12" C900 PVC piping to convey water from the two new wells through a dedicated line to the 1 MG storage tank, and a gravity distribution system from the tank to the six existing water systems. In addition, approximately 26,525 LF of 6" C900 PVC piping will be installed to replace the aging infrastructure of existing water systems that are more than 30 years old including the piping, valving, and

appurtenances for the Long Canyon Water Company, Rainbird Mutual Water Company, and the Bella Vista Mutual Water Company water systems. This alternative utilizes Tradewinds Water Association's existing water distribution system with the exception of the existing storage tanks and booster station. These will not be incorporated as part of the new regional water system. This alternative includes the construction of a two million gallon welded steel AWWA D100 water storage tank and a booster station to pump water into the Bella Vista MWC system. This project is being proposed so that the six existing systems can disconnect and abandon the existing wells that have water quality violations from their water systems.

A map of the proposed project alternative is attached hereto in Appendix J.

The estimated cost for Alternative 3 includes:

- Drilling and equipping of two new water supply wells
- Abandonment of six existing wells that do not meet Drinking Water Standards
- Construction of a two million gallon welded steel water storage tank
- Construction of ±43,700 LF of 12" DR14 C900 PVC Pipe
- Construction of ±26,525 LF of 6" DR14 C900 PVC Pipe
- New Distribution System for Rainbird M.W.C., Long Canyon W.C., and system tie-ins for Tradewinds W.A., Bella Vista MWC, Sierra Vista Restaurant, and the Lake Isabella K.O.A.

The total capital cost for Alternative 3 is estimated to be \$18,387,030.00. Nonconstruction costs for engineering and design, construction inspection, contract administration, and construction management are included. The itemized project estimate as well as estimates to connect potential project participants to the system have been attached hereto in Appendix K.

The annual operating and maintenance cost for Alternative 3 is estimated to be \$275,811.67. A detailed breakdown of the analyzed operating costs can be found attached hereto in Appendix K.

ALTERNATIVE 4 – System Consolidation Project with Two 1 MG Storage Tanks

Alternative 4 considers consolidating the six Project Participant water systems into a single distribution system. The proposed project alternative is summarized as follows:

Alternative 4 includes the drilling, construction, and equipping of two new municipal water wells. Both wells will be equipped with a chemical feed pump for chlorination of the raw groundwater in order to maintain a free chlorine residual of ± 0.5 ppm in the water system. Furthermore, the well equipping piping will be designed to facilitate the addition of a water treatment system for

the removal of iron and manganese from the raw groundwater should treatment be necessary in order to meet the secondary MCL standards.

This alternative also includes the construction of $\pm 34,675$ LF of 12" C900 PVC piping to convey water from the two new wells to the two 1 MG storage tanks and six existing water systems. In addition, approximately 26,525 LF of 6" C900 PVC piping will be installed to replace the aging infrastructure of existing water systems that are more than 30 years old including the piping, valving, and appurtenances for the Long Canyon Water Company, Rainbird Mutual Water Company, and the Bella Vista Mutual Water Company water systems. This alternative utilizes Tradewinds Water Association's existing water distribution system with the exception of the existing storage tanks and booster station. These will not be incorporated as part of the new regional water system. This alternative includes the construction of two one million gallon welded steel AWWA D100 water storage tanks and a booster station to pump water into the Bella Vista MWC system. This project is being proposed so that the six existing systems can disconnect the existing wells that have water quality violations from their water systems.

A map of the proposed project alternative is attached hereto as Appendix L.

The estimated cost for Alternative 4 includes:

- Drilling and equipping of two new water supply wells
- Abandonment of six existing wells that do not meet Drinking Water Standards
- Well head treatment for Fe & Mn removal at each of the well sites.
- Construction of two one million gallon welded steel water storage tanks
- Construction of ±34,675 LF of 12" DR14 C900 PVC Pipe
- Construction of ±26,525 LF of 6" DR14 C900 PVC Pipe
- New Distribution System for Rainbird M.W.C., Long Canyon W.C., and Bella Vista M.W.C., and system tie-ins for Tradewinds W.A., the Sierra Vista Restaurant, and the Lake Isabella K.O.A.

The total capital cost for Alternative 4 is estimated to be \$18,780,367.50. Nonconstruction costs for engineering and design, construction inspection, contract administration, and construction management are included. The itemized project estimate as well as estimates to connect potential project participants to the system have been attached hereto in Appendix M.

The annual operating and maintenance cost for Alternative 4 is estimated to be \$292,301.25. A detailed breakdown of the analyzed operating costs can be found attached hereto in Appendix M.

<u>ALTERNATIVE 5</u> – System Consolidation Project with Two 1 MG Storage Tanks with a Dedicated Tank Fill Line and Gravity Supply

Alternative 5 considers consolidating the six Project Participant water systems into a single distribution system. The proposed project alternative is summarized as follows:

Alternative 5 includes the drilling, construction, and equipping of two new municipal water wells. Both wells will be equipped with a chemical feed pump for chlorination of the raw groundwater in order to maintain a free chlorine residual of ± 0.5 ppm in the water system. Furthermore, the well equipping piping will be designed to facilitate the addition of a water treatment system for the removal of iron and manganese from the raw groundwater should treatment be necessary in order to meet the secondary MCL standards. However, for this alternative it is proposed to blend the water from the two new wells in the storage tank to reduce the concentrations of Iron and Manganese prior to conveyance to the distribution system.

This alternative also includes the construction of $\pm 54,550$ LF of 12" C900 PVC piping to convey water from the two new wells through a dedicated line to the two 1 MG welded steel storage tanks and a separate gravity distribution system from the two storage tanks to the six existing water systems. In addition, approximately 26,525 LF of 6" C900 PVC piping will be installed to replace the aging infrastructure of existing water systems that are more than 30 years old including the piping, valving, and appurtenances for the Long Canyon Water Company, Rainbird Mutual Water Company, and the Bella Vista Mutual Water This alternative utilizes Tradewinds Water Company water systems. Association's existing water distribution system with the exception of the existing storage tanks and booster station. These will not be incorporated as part of the new regional water system. This alternative includes the construction of two one million gallon welded steel AWWA D100 water storage tanks and a booster station to pump water into the Bella Vista MWC system. This project is being proposed so that the six existing systems can disconnect the existing wells that have water quality violations from their water systems.

A map of the proposed project alternative is attached hereto in Appendix N.

The estimated cost for Alternative 5 includes:

- Drilling and equipping of two new water supply wells
- Abandonment of six existing wells that do not meet Drinking Water Standards
- Construction of two one million gallon welded steel water storage tanks
- Construction of ±54,550 LF of 12" DR14 C900 PVC Pipe
- Construction of ±26,525 LF of 6" DR14 C900 PVC Pipe

• New Distribution System for Rainbird M.W.C., Long Canyon W.C., and Bella Vista M.W.C., and system tie-ins for Tradewinds W.A., the Sierra Vista Restaurant, and the Lake Isabella K.O.A.

The total capital cost for Alternative 5 is estimated to be \$19,874,955.00. Nonconstruction costs for engineering and design, construction inspection, contract administration, and construction management are included. The itemized project estimate as well as estimates to connect potential project participants to the system have been attached hereto in Appendix O.

The annual operating and maintenance cost for Alternative 5 is estimated to be \$276,852.50. A detailed breakdown of the analyzed operating costs can be found attached hereto in Appendix O.

DESIGN CRITERIA & COMPLIANCE ISSUES:

All the proposed Project Alternatives address the project need to consolidate the six water systems. The new wells at the two test well locations will be designed in accordance with County and State Standards and will serve to address water quality issues in the area.

New water mains have been sized to meet Kern County fire flow requirements and C900 PVC pipe has been chosen for the new water mains in accordance with California Waterworks Standards. The system Average Day Demand, Maximum Day Demand, and Peak Hourly Demand have been estimated per Kern County Development Standards and also in accordance with the California Waterworks Standards. All new hydrants will be the dry barrel type in accordance with Kern County Development Standards for elevations above 2,500'.

A hydraulic analysis of the regional water system has been performed using Haested Methods WaterCad V8 and is attached in Appendix Q. The hydraulic analysis illustrates the approximate pressure zones of the system and the associated pressure reducing stations for the recommended alternative (#4). The system ahs a normal operating pressure range of 40-80 psi per the California Waterworks Standards. The backbone system of piping along Highway 178 and Vista Grande is required to be a 12-inch pipeline in order to convey fire flows of 1,500 gpm.

Pipeline easements would be needed for any locations along the proposed alignments that are not in the existing County or State road rights-of-way; however, it is anticipated that the majority of the new proposed pipeline alignments will be within County or State road rights-of-way.

The anticipated permit requirements for the project will include County and State Encroachments permits for the installation of the new water services within the County and State rights-of-way, a County Franchise Permit, a State Franchise Permit, County of Kern Well Drilling Permits, and a County of Kern Building Permit for the equipping of the new wells, the administration building, and construction of the new water storage tanks.

VII. PROJECT COST ANALYSIS

A twenty year present worth analysis was performed for the project alternatives using a 1.7% interest rate and a 2.24% annual inflation rate. The 1.7% interest rate is based on the most recent interest rate published by the State Water Resources Control Board Clean Water State Revolving Fund. The 2.24% inflation rate is an approximate average of the annual inflation rate for the past 20 years. The results of the analyses are summarized in Table 11 below and are attached are attached hereto in Appendix P.

	Alternative 2	Alternative 3	Alternative 4	Alternative 5
Total Project Capital	\$18,388,305.00	\$18,387,030.00	\$18,780,367.50	\$19,874,955.00
Cost:				
Annual O&M Cost:	\$291,802.50	\$275,811.67	\$292,301.25	\$276,852.50
Present Worth O&M:	\$6,464,433.16	\$6,110,180.98	\$6,475,482.20	\$6,133,239.03
Net Present Worth:	\$24,852,738.16	\$24,497,210.98	\$25,255,849.70	\$26,008,194.03
Estimated	\$55.77	\$52.72	\$55.87	\$52.92
Cost/Customer/Month:				

Table 11 – 20 Year Present Worth Analysis

VIII. CONCLUSIONS

Alternative 3 is the most cost effective project alternative for the consolidation of the six water systems that have indicated a willingness to participate in the Project. This alternative provides the six existing system service areas with adequate system storage and supply.

However, while Alternative 3 provides a system storage capacity that meets the minimum storage requirement, it only includes a single storage tank. Alternative 4 includes adequate storage capacity that meets the recommended storage capacity for the system while also providing two separate storage tanks. It is advantageous to have two separate storage tanks on each end of the water distribution system in the event of a major pipeline break or equipment failure that requires shutting down part of the system. Furthermore, Alternative 4 includes well head treatment for each new well for the removal of Iron and Manganese. Construction of these well head treatment systems may not be necessary and will depend on the final water quality results after completion of the construction of both new municipal wells. Based on this, our recommendation for this Project is to construct Alternative 4 with the caveat that treatment will not be installed if it is deemed not necessary.

APPENDIX A Existing System Water Quality Results

APPENDIX A Existing System Water Quality Results

			Weld	don Regional W	ater Study			
	Project Participants	Potential Project Participants	Number of Connections	Population	System Classification	Number of Wells	Water Quality Violation(s)	Comments
1	Long Canyon Water Company		67	197	CWS	2	Uranium	Uranium above MCL in Well 1 (standy well) only.
2	Rainbird Valley Mutual Water Company		83	188	CWS	2	Uranium, Nitrate	MCL violations for both Wells.
Э	Tradewinds Water Association		236	470	CWS	2	Uranium	
4	Bella Vista Mutual Water Company		47	74	CWS	2	None	
5	Sierra Vista Restaurant		2		TNC	1	Nitrate	
6	Lake Isabella K.O.A.		1		TNC	1	Nitrate	
7	7	Hillview Acres Mutual Water Company	47	25	CWS	1	Unknown	
8	3	Lakeview Ranchos Mutual Water Company	73	120	CWS	3	Arsenic	
9)	South Fork Elementary School	1		NTNC	1	None	
10		Valley Estates P.O.A.	121	300	CWS	2	None	
11		South Fork Middle School	1		NTNC	1	Uranium	Last result above MCL from 2005 sampling.
12	2	Weldon Methodist Church	1		TNC	1	Unknown	
13	3	South Fork Women's Club	1		TNC	1	Nitrate	Last result above MCL from 2005 sampling.
		Totals	681	1374		20		

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COLOR	3/22/2007	5	15	0	15	UNITS
COLOR	6/11/2012	0	15	0	15	UNITS
COLOR	9/1/2015	0	15	0	15	UNITS
ODOR THRESHOLD @ 60 C	3/22/2007	1	3	1	3	TON
ODOR THRESHOLD @ 60 C	6/11/2012	0	3	1	3	TON
ODOR THRESHOLD @ 60 C	9/1/2015	0	3	1	3	TON
SPECIFIC CONDUCTANCE	3/22/2007	620	1600	0	900	US
SPECIFIC CONDUCTANCE	6/11/2012	540	1600	0	900	US
SPECIFIC CONDUCTANCE	9/1/2015	560	1600	0	900	US
PH, LABORATORY	1/2/2007	7.9	0	0	0	
PH, LABORATORY	3/22/2007	7.8	0	0	0	
PH, LABORATORY	6/11/2012	8	0	0	0	
PH, LABORATORY	9/1/2015	7.6	0	0	0	
ALKALINITY (TOTAL) AS CACO3	1/2/2007	200	0	0	0	MG/L
ALKALINITY (TOTAL) AS CACO3	6/11/2012	160	0	0	0	MG/L
ALKALINITY (TOTAL) AS CACO3	9/1/2015	170	0	0	0	MG/L
BICARBONATE ALKALINITY	1/2/2007	240	0	0	0	MG/L
BICARBONATE ALKALINITY	6/11/2012	190	0	0	0	MG/L
BICARBONATE ALKALINITY	9/1/2015	210	0	0	0	MG/L
CARBONATE ALKALINITY	1/2/2007	1	0	0	0	MG/L
CARBONATE ALKALINITY	6/11/2012	0	0	0	0	MG/L
CARBONATE ALKALINITY	9/1/2015	0	0	0	0	MG/L
NITRATE (as N)	9/1/2015	3.6	10	0.4	5	mg/L
NITRITE (AS N)	6/11/2012	0	1	0.4	0.5	mg/L
NITRITE (AS N)	9/1/2015	0	1	0.4	0.5	mg/L
HARDNESS (TOTAL) AS CACO3	1/2/2007	190	0	0	0	MG/L
HARDNESS (TOTAL) AS CACO3	6/11/2012	160	0	0	0	MG/L
HARDNESS (TOTAL) AS CACO3	9/1/2015	180	0	0	0	MG/L
CALCIUM	1/2/2007	51	0	0	0	MG/L
CALCIUM	6/11/2012	44	0	0	0	MG/L
CALCIUM	9/1/2015	48	0	0	0	MG/L
MAGNESIUM	1/2/2007	15	0	0	0	MG/L
MAGNESIUM	6/11/2012	12	0	0	0	MG/L
MAGNESIUM	9/1/2015	14	0	0	0	MG/L
SODIUM	3/22/2007	64	0	0	0	MG/L
SODIUM	6/11/2012	51	0	0	0	MG/L
SODIUM	9/1/2015	51	0	0	0	MG/L
POTASSIUM	6/11/2012	4.2	0	0	0	MG/L
POTASSIUM	9/1/2015	5	0	0	0	MG/L
CHLORIDE	3/22/2007	39	500	0	250	MG/L
CHLORIDE	6/11/2012	28	500	0	250	MG/L
CHLORIDE	9/1/2015	28	500	0	250	MG/L
SULFATE	3/22/2007	49	500	0.5	250	MG/L
SULFATE	6/11/2012	53	500	0.5	250	MG/L
SULFATE	9/1/2015	60	500	0.5	250	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	3/22/2007	0.39	2	0.1	2	MG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
FLUORIDE (F) (NATURAL-SOURCE)	6/11/2012	0.27	2	0.1	2	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	9/1/2015	0.22	2	0.1	2	MG/L
ARSENIC	3/22/2007	0	10	2	5	UG/L
ARSENIC	6/11/2012	0	10	2	5	UG/L
ARSENIC	9/1/2015	0	10	2	5	UG/L
BARIUM	3/22/2007	100	1000	100	1000	UG/L
BARIUM	6/11/2012	0	1000	100	1000	UG/L
BARIUM	9/1/2015	100	1000	100	1000	UG/L
BERYLLIUM	3/22/2007	0	4	1	4	UG/L
BERYLLIUM	6/11/2012	0	4	1	4	UG/L
BERYLLIUM	9/1/2015	0	4	1	4	UG/L
CADMIUM	3/22/2007	0	5	1	5	UG/L
CADMIUM	6/11/2012	0	5	1	5	UG/L
CADMIUM	9/1/2015	0	5	1	5	UG/L
CHROMIUM, HEXAVALENT	8/3/2014	0	10	1	10	UG/L
CHROMIUM (TOTAL)	3/22/2007	0	50	10	50	UG/L
CHROMIUM (TOTAL)	6/11/2012	0	50	10	50	UG/L
CHROMIUM (TOTAL)	9/1/2015	0	50	10	50	UG/L
COPPER	3/22/2007	0	1000	50	1000	UG/L
COPPER	6/11/2012	0	1000	50	1000	UG/L
COPPER	9/1/2015	0	1000	50	1000	UG/L
IRON	3/22/2007	0	300	100	300	UG/L
IRON	6/11/2012	0	300	100	300	UG/L
IRON	9/1/2015	0	300	100	300	UG/L
LEAD	6/11/2012	0	0	5	15	UG/L
LEAD	9/1/2015	0	0	5	15	UG/L
MANGANESE	3/22/2007	0	50	20	50	UG/L
MANGANESE	6/11/2012	0	50	20	50	UG/L
MANGANESE	9/1/2015	0	50	20	50	UG/L
THALLIUM	3/22/2007	0	2	1	2	UG/L
THALLIUM	6/11/2012	0	2	1	2	UG/L
THALLIUM	9/1/2015	0	2	1	2	UG/L
NICKEL	6/11/2012	0	100	10	100	UG/L
NICKEL	9/1/2015	0	100	10	100	UG/L
SILVER	3/22/2007	0	100	10	100	UG/L
SILVER	6/11/2012	0	100	10	100	UG/L
SILVER	9/1/2015	0	100	10	100	UG/L
ZINC	3/22/2007	0	5000	50	5000	UG/L
ZINC	6/11/2012	0	5000	50	5000	UG/L
ZINC	9/1/2015	0	5000	50	5000	UG/L
ANTIMONY	3/22/2007	0	6	6	6	UG/L
ANTIMONY	6/11/2012	0	6	6	6	UG/L
ANTIMONY	9/1/2015	0	6	6	6	UG/L
ALUMINUM	3/22/2007	0	1000	50	200	UG/L
ALUMINUM	6/11/2012	0	1000	50	200	UG/L
ALUMINUM	9/1/2015	0	1000	50	200	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
SELENIUM	3/22/2007	0	50	5	50	UG/L
SELENIUM	6/11/2012	0	50	5	50	UG/L
SELENIUM	9/1/2015	0	50	5	50	UG/L
ETHYLBENZENE	7/2/2012	0	300	0.5	0.5	UG/L
1,1-DICHLOROETHYLENE	7/2/2012	0	6	0.5	0.5	UG/L
1,1,1-TRICHLOROETHANE	7/2/2012	0	200	0.5	0.5	UG/L
1,1,2-TRICHLOROETHANE	7/2/2012	0	5	0.5	0.5	UG/L
1,1,2,2-TETRACHLOROETHANE	7/2/2012	0	1	0.5	0.5	UG/L
1,2-DICHLOROETHANE	7/2/2012	0	0.5	0.5	0.5	UG/L
1,2-DICHLOROBENZENE	7/2/2012	0	600	0.5	0.5	UG/L
1,2-DICHLOROPROPANE	7/2/2012	0	5	0.5	0.5	UG/L
TRANS-1,2-DICHLOROETHYLENE	7/2/2012	0	10	0.5	0.5	UG/L
1,2,4-TRICHLOROBENZENE	7/2/2012	0	5	0.5	5	UG/L
1,3-DICHLOROPROPENE (TOTAL)	7/2/2012	0	0.5	0.5	0.5	UG/L
1,3-DICHLOROBENZENE	7/2/2012	0	0	0.5	600	UG/L
1,4-DICHLOROBENZENE	7/2/2012	0	5	0.5	0.5	UG/L
DICHLORODIFLUOROMETHANE (FREON 12)	7/2/2012	0	1000	0.5	1000	UG/L
NAPHTHALENE	7/2/2012	0	170	0.5	170	UG/L
FOAMING AGENTS (MBAS)	3/22/2007	0.05	0.5	0	0.5	MG/L
FOAMING AGENTS (MBAS)	6/11/2012	0	0.5	0	0.5	MG/L
FOAMING AGENTS (MBAS)	9/1/2015	0	0.5	0	0.5	MG/L
ATRAZINE	6/11/2012	0	1	0.5	1	UG/L
SIMAZINE	6/11/2012	0	4	1	1	UG/L
VINYL CHLORIDE	7/2/2012	0	0.5	0.5	0.5	UG/L
TRICHLOROETHYLENE	7/2/2012	0	5	0.5	0.5	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	7/2/2012	0	13	3	3	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	9/1/2015	0	13	3	3	UG/L
TOTAL DISSOLVED SOLIDS	3/22/2007	390	1000	0	500	MG/L
TOTAL DISSOLVED SOLIDS	6/11/2012	380	1000	0	500	MG/L
TOTAL DISSOLVED SOLIDS	9/1/2015	380	1000	0	500	MG/L
LANGELIER INDEX @ 60 C	6/11/2012	0.3	0	0	0	
LANGELIER INDEX @ 60 C	9/1/2015	0	0	0	0	
HYDROXIDE ALKALINITY	1/2/2007	1	0	0	0	MG/L
HYDROXIDE ALKALINITY	6/11/2012	0	0	0	0	MG/L
HYDROXIDE ALKALINITY	9/1/2015	0	0	0	0	MG/L
NITRATE (AS NO3)	3/22/2007	20	45	2	23	MG/L
NITRATE (AS NO3)	1/4/2012	29	45	2	23	MG/L
NITRATE (AS NO3)	6/11/2012	22	45	2	23	MG/L
NITRATE (AS NO3)	1/6/2014	22	45	2	23	MG/L
NITRATE (AS NO3)	9/1/2015	16	45	2	23	MG/L
MERCURY	3/22/2007	0	2	1	2	UG/L
MERCURY	6/11/2012	0	2	1	2	UG/L
MERCURY	9/1/2015	0	2	1	2	UG/L
TERT-BUTYL ALCOHOL (TBA)	7/2/2012	0	12	2	12	UG/L
CIS-1,2-DICHLOROETHYLENE	7/2/2012	0	6	0.5	0.5	UG/L
STYRENE	7/2/2012	0	100	0.5	0.5	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
O-XYLENE	7/2/2012	0	0	0.5	0	UG/L
1,1-DICHLOROPROPENE	7/2/2012	0	0	0.5	0.5	UG/L
2,2-DICHLOROPROPANE	7/2/2012	0	0	0.5	0.5	UG/L
1,3-DICHLOROPROPANE	7/2/2012	0	0	0.5	0.5	UG/L
1,2,4-TRIMETHYLBENZENE	7/2/2012	0	330	0.5	330	UG/L
ISOPROPYLBENZENE	7/2/2012	0	770	0.5	770	UG/L
N-PROPYLBENZENE	7/2/2012	0	260	0.5	260	UG/L
1,3,5-TRIMETHYLBENZENE	7/2/2012	0	330	0.5	330	UG/L
SEC-BUTYLBENZENE	7/2/2012	0	260	0.5	0.5	UG/L
TERT-BUTYLBENZENE	7/2/2012	0	260	0.5	0.5	UG/L
1,1,1,2-TETRACHLOROETHANE	7/2/2012	0	0	0.5	0.5	UG/L
DIBROMOMETHANE	7/2/2012	0	0	0.5	0.5	UG/L
1,2,3-TRICHLOROBENZENE	7/2/2012	0	0	0.5	0.5	UG/L
ALACHLOR	6/11/2012	0	2	1	1	UG/L
XYLENES (TOTAL)	7/2/2012	0	1750	0	1750	UG/L
ACETONE	7/2/2012	0	0	0	0	UG/L
BROMOBENZENE	7/2/2012	0	0	0.5	0.5	UG/L
METHYL ETHYL KETONE	7/2/2012	0	0	5	0	UG/L
METHYL ISOBUTYL KETONE	7/2/2012	0	120	5	120	UG/L
TRICHLOROTRIFLUOROETHANE (FREON 113)	7/2/2012	0	1200	10	10	UG/L
ASBESTOS	6/11/2012	0	7	0.2	7	MFL
TURBIDITY, LABORATORY	3/22/2007	0.1	5	0.1	5	NTU
TURBIDITY, LABORATORY	6/11/2012	0.18	5	0.1	5	NTU
TURBIDITY, LABORATORY	9/1/2015	0	5	0.1	5	NTU
TOTAL TRIHALOMETHANES	7/2/2012	0	80	0	80	UG/L
AGGRSSIVE INDEX (CORROSIVITY)	1/2/2007	12	0	0	0	
AGGRSSIVE INDEX (CORROSIVITY)	6/11/2012	12	0	0	0	
AGGRSSIVE INDEX (CORROSIVITY)	9/1/2015	12	0	0	0	
2-CHLOROTOLUENE	7/2/2012	0	140	0.5	0.5	UG/L
4-CHLOROTOLUENE	7/2/2012	0	140	0.5	140	UG/L
N-BUTYLBENZENE	7/2/2012	0	260	0.5	70	UG/L
P-ISOPROPYLTOLUENE	7/2/2012	0	0	0	0	UG/L
BROMOCHLOROMETHANE	7/2/2012	0	0	0.5	0.5	UG/L
M,P-XYLENE	7/2/2012	0	0	0.5	0	UG/L
PERCHLORATE	6/11/2012	0	6	4	4	UG/L
PERCHLORATE	9/1/2015	0	6	4	4	UG/L
ETHYL-TERT-BUTYL ETHER	7/2/2012	0	0	3	0	UG/L
TERT-AMYL-METHYL ETHER	7/2/2012	0	0	3	0	UG/L
DIISOPROPYL ETHER	7/2/2012	0	0	3	0	UG/L
GROSS ALPHA MDA95	6/11/2012	1.09	3.001	0	0	PCI/L
RADIUM 228 MDA95	9/1/2015	0.39	1.001	0	0	PCI/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COLOR	3/4/2013	0	15	0	15	UNITS
ODOR THRESHOLD @ 60 C	3/4/2013	0	3	1	3	TON
SPECIFIC CONDUCTANCE	10/7/2008	590	1600	0	900	US
SPECIFIC CONDUCTANCE	3/4/2013	560	1600	0	900	US
PH, LABORATORY	3/4/2013	8	0	0	0	
ALKALINITY (TOTAL) AS CACO3	3/4/2013	200	0	0	0	MG/L
BICARBONATE ALKALINITY	3/4/2013	250	0	0	0	MG/L
CARBONATE ALKALINITY	3/4/2013	0	0	0	0	MG/L
NITRITE (AS N)	3/4/2013	0	1	0.4	0.5	mg/L
HARDNESS (TOTAL) AS CACO3	3/4/2013	180	0	0	0	MG/L
CALCIUM	3/4/2013	46	0	0	0	MG/L
MAGNESIUM	3/4/2013	16	0	0	0	MG/L
SODIUM	3/4/2013	49	0	0	0	MG/L
POTASSIUM	3/4/2013	7.3	0	0	0	MG/L
CHLORIDE	3/4/2013	27	500	0	250	MG/L
SULFATE	3/4/2013	46	500	0.5	250	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	3/4/2013	0.26	2	0.1	2	MG/L
ARSENIC	3/4/2013	0	10	2	5	UG/L
BARIUM	3/4/2013	0	1000	100	1000	UG/L
BERYLLIUM	3/4/2013	0	4	1	4	UG/L
CADMIUM	3/4/2013	0	5	1	5	UG/L
CHROMIUM, HEXAVALENT	8/3/2014	0	10	1	10	UG/L
CHROMIUM (TOTAL)	3/4/2013	0	50	10	50	UG/L
COPPER	3/4/2013	0	1000	50	1000	UG/L
IRON	10/7/2008	690	300	100	300	UG/L
IRON	4/7/2009	0	300	100	300	UG/L
IRON	3/4/2013	0	300	100	300	UG/L
LEAD	3/4/2013	0	0	5	15	UG/L
MANGANESE	10/7/2008	0	50	20	50	UG/L
MANGANESE	4/7/2009	0	50	20	50	UG/L
MANGANESE	3/4/2013	0	50	20	50	UG/L
THALLIUM	3/4/2013	0	2	1	2	UG/L
NICKEL	3/4/2013	0	100	10	100	UG/L
SILVER	3/4/2013	0	100	10	100	UG/L
ZINC	3/4/2013	0	5000	50	5000	UG/L
ANTIMONY	3/4/2013	0	6	6	6	UG/L
ALUMINUM	10/7/2008	450	1000	50	200	UG/L
ALUMINUM	4/7/2009	0	1000	50	200	UG/L
ALUMINUM	3/4/2013	0	1000	50	200	UG/L
SELENIUM	3/4/2013	0	50	5	50	UG/L
GROSS ALPHA	10/7/2008	4.9	15	3	5	PCI/L
GROSS ALPHA	4/7/2009	13	15	3	5	PCI/L
GROSS ALPHA	3/4/2013	7.18	15	3	5	PCI/L
GROSS ALPHA	9/2/2013	0	15	3	5	PCI/L
GROSS ALPHA COUNTING ERROR	10/7/2008	0.42	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	4/7/2009	0.64	0	0	0	PCI/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
GROSS ALPHA COUNTING ERROR	3/4/2013	0.426	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	9/2/2013	0.22	0	0	0	PCI/L
RADIUM 226	4/7/2009	1	0	1	0	PCI/L
RADIUM 226 COUNTING ERROR	4/7/2009	0.422	0	0	0	PCI/L
RADIUM 228	4/7/2009	1	0	1	0	
RADIUM 228	3/4/2013	1	0	1	0	
RADIUM 228 COUNTING ERROR	4/7/2009	0.319	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	3/4/2013	0.439	0	0	0	PCI/L
URANIUM (PCI/L)	4/7/2009	5.2	20	1	20	PCI/L
URANIUM (PCI/L)	3/4/2013	5.2	20	1	20	PCI/L
URANIUM (PCI/L)	9/2/2013	2.6	20	1	20	PCI/L
BROMODICHLOROMETHANE (THM)	3/4/2013	0	0	1	0	UG/L
CARBON TETRACHLORIDE	3/4/2013	0	0.5	0.5	0.5	UG/L
BROMOFORM (THM)	3/4/2013	0	0	1	0	UG/L
DIBROMOCHLOROMETHANE (THM)	3/4/2013	0	0	1	0	UG/L
CHLOROFORM (THM)	3/4/2013	0	0	1	0	UG/L
TOLUENE	3/4/2013	0	150	0.5	0.5	UG/L
BENZENE	3/4/2013	0	1	0.5	0.5	UG/L
MONOCHLOROBENZENE	3/4/2013	0	70	0.5	0.5	UG/L
CHLOROETHANE	3/4/2013	0	0	0.5	0.5	UG/L
ETHYLBENZENE	3/4/2013	0	300	0.5	0.5	UG/L
HEXACHLOROBUTADIENE	3/4/2013	0	0	0.5	0.5	UG/L
BROMOMETHANE	3/4/2013	0	0	0.5	0.5	UG/L
CHLOROMETHANE	3/4/2013	0	0	0.5	0.5	UG/L
DICHLOROMETHANE	3/4/2013	0	5	0.5	0.5	UG/L
TETRACHLOROETHYLENE	3/4/2013	0	5	0.5	0.5	UG/L
TRICHLOROFLUOROMETHANE	3/4/2013	0	150	5	5	UG/L
1,1-DICHLOROETHANE	3/4/2013	0	5	0.5	0.5	UG/L
1,1-DICHLOROETHYLENE	3/4/2013	0	6	0.5	0.5	UG/L
1,1,1-TRICHLOROETHANE	3/4/2013	0	200	0.5	0.5	UG/L
1,1,2-TRICHLOROETHANE	3/4/2013	0	5	0.5	0.5	UG/L
1,1,2,2-TETRACHLOROETHANE	3/4/2013	0	1	0.5	0.5	UG/L
1,2-DICHLOROETHANE	3/4/2013	0	0.5	0.5	0.5	UG/L
1,2-DICHLOROBENZENE	3/4/2013	0	600	0.5	0.5	UG/L
1,2-DICHLOROPROPANE	3/4/2013	0	5	0.5	0.5	UG/L
TRANS-1,2-DICHLOROETHYLENE	3/4/2013	0	10	0.5	0.5	UG/L
1,2,4-TRICHLOROBENZENE	3/4/2013	0	5	0.5	5	UG/L
1,3-DICHLOROPROPENE (TOTAL)	3/4/2013	0	0.5	0.5	0.5	UG/L
1,3-DICHLOROBENZENE	3/4/2013	0	0	0.5	600	UG/L
1,4-DICHLOROBENZENE	3/4/2013	0	5	0.5	0.5	UG/L
DICHLORODIFLUOROMETHANE (FREON 12)	3/4/2013	0	1000	0.5	1000	UG/L
NAPHTHALENE	3/4/2013	0	170	0.5	170	UG/L
TRANS-1,3-DICHLOROPROPENE	3/4/2013	0	0.5	0.5	0	UG/L
CIS-1,3-DICHLOROPROPENE	3/4/2013	0	0.5	0.5	0.5	UG/L
FOAMING AGENTS (MBAS)	3/4/2013	0	0.5	0	0.5	MG/L
ATRAZINE	3/4/2013	0	1	0.5	1	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
SIMAZINE	3/4/2013	0	4	1	1	UG/L
VINYL CHLORIDE	3/4/2013	0	0.5	0.5	0.5	UG/L
TRICHLOROETHYLENE	3/4/2013	0	5	0.5	0.5	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	3/4/2013	0	13	3	3	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	9/1/2015	0	13	3	3	UG/L
TOTAL DISSOLVED SOLIDS	3/4/2013	360	1000	0	500	MG/L
LANGELIER INDEX @ 60 C	3/4/2013	0.42	0	0	0	
HYDROXIDE ALKALINITY	3/4/2013	0	⁻ 0	0	0	MG/L
NITRATE (AS NO3)	3/4/2013	18	45	2	23	MG/L
NITRATE (AS NO3)	9/2/2014	14	45	2	23	MG/L
NITRATE (AS NO3)	9/1/2015	16	45	2	23	MG/L
MERCURY	3/4/2013	0	2	1	2	UG/L
TERT-BUTYL ALCOHOL (TBA)	3/4/2013	0	12	2	12	UG/L
CIS-1,2-DICHLOROETHYLENE	3/4/2013	0	6	0.5	0.5	UG/L
STYRENE	3/4/2013	0	100	0.5	0.5	UG/L
O-XYLENE	3/4/2013	0	0	0.5	0	UG/L
1,1-DICHLOROPROPENE	3/4/2013	0	0	0.5	0.5	UG/L
2,2-DICHLOROPROPANE	3/4/2013	0	0	0.5	0.5	UG/L
1,3-DICHLOROPROPANE	3/4/2013	0	0	0.5	0.5	UG/L
1,2,4-TRIMETHYLBENZENE	3/4/2013	0	330	0.5	330	UG/L
ISOPROPYLBENZENE	3/4/2013	0	770	0.5	770	UG/L
N-PROPYLBENZENE	3/4/2013	0	260	0.5	260	UG/L
1,3,5-TRIMETHYLBENZENE	3/4/2013	0	330	0.5	330	UG/L
SEC-BUTYLBENZENE	3/4/2013	0	260	0.5	0.5	UG/L
TERT-BUTYLBENZENE	3/4/2013	0	260	0.5	0.5	UG/L
1,1,1,2-TETRACHLOROETHANE	3/4/2013	0	0	0.5	0.5	UG/L
DIBROMOMETHANE	3/4/2013	0	0	0.5	0.5	UG/L
1,2,3-TRICHLOROBENZENE	3/4/2013	0	0	0.5	0.5	UG/L
ALACHLOR	3/4/2013	0	2	1	1	UG/L
XYLENES (TOTAL)	3/4/2013	0	1750	0	1750	UG/L
ACETONE	3/4/2013	0	0	0	0	UG/L
BROMOBENZENE	3/4/2013	0	0	0.5	0.5	UG/L
METHYL ETHYL KETONE	3/4/2013	0	0	5	0	UG/L
METHYL ISOBUTYL KETONE	3/4/2013	0	120	5	120	UG/L
TRICHLOROTRIFLUOROETHANE (FREON 113)	3/4/2013	0	1200	10	10	UG/L
ASBESTOS	3/4/2013	0	7	0.2	7	MFL
TURBIDITY, LABORATORY	3/4/2013	0	5	0.1	5	NTU
TOTAL TRIHALOMETHANES	3/4/2013	0	80	0	80	UG/L
AGGRSSIVE INDEX (CORROSIVITY)	3/4/2013	12	0	0	0	
2-CHLOROTOLUENE	3/4/2013	0	140	0.5	0.5	UG/L
4-CHLOROTOLUENE	3/4/2013	0	140	0.5	140	UG/L
N-BUTYLBENZENE	3/4/2013	0	260	0.5	70	UG/L
P-ISOPROPYLTOLUENE	3/4/2013	0	0	0	0	UG/L
BROMOCHLOROMETHANE	3/4/2013	0	0	0.5	0.5	UG/L
M,P-XYLENE	3/4/2013	0	0	0.5	0	UG/L
PERCHLORATE	10/7/2008	0	6	4	4	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
PERCHLORATE	3/4/2013	0	6	4	4	UG/L
ETHYL-TERT-BUTYL ETHER	3/4/2013	0	0	3	0	UG/L
TERT-AMYL-METHYL ETHER	3/4/2013	0	0	3	0	UG/L
DIISOPROPYL ETHER	3/4/2013	0	0	3	0	UG/L
GROSS ALPHA MDA95	3/4/2013	1.16	3.001	0	0	PCI/L
GROSS ALPHA MDA95	9/2/2013	1.16	3.001	0	0	PCI/L

Lake Isabella KOA Campground PS ID# 1500464-001 Well 1 Water Quality Results

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
NITRATE (as N)	1/13/2016	15	10	0.4	5	mg/L
NITRITE (AS N)	10/18/2011	50	1	0.4	0.5	mg/L
NITRITE (AS N)	7/16/2014	50	1	0.4	0.5	mg/L
NITRATE (AS NO3)	8/10/2006	29	45	2	23	MG/L
NITRATE (AS NO3)	10/3/2006	30	45	2	23	MG/L
NITRATE (AS NO3)	1/9/2007	20	45	2	23	MG/L
NITRATE (AS NO3)	4/18/2007	58	45	2	23	MG/L
NITRATE (AS NO3)	6/21/2007	44.3	45	2	23	MG/L
NITRATE (AS NO3)	10/24/2007	38.7	45	2	23	MG/L
NITRATE (AS NO3)	1/10/2008	44	45	2	23	MG/L
NITRATE (AS NO3)	4/8/2008	38	45	2	23	MG/L
NITRATE (AS NO3)	1/14/2009	55.4	45	2	23	MG/L
NITRATE (AS NO3)	4/2/2009	45.2	45	2	23	MG/L
NITRATE (AS NO3)	7/7/2009	67	45	2	23	MG/L
NITRATE (AS NO3)	10/14/2009	43	45	2	23	MG/L
NITRATE (AS NO3)	1/4/2010	47	45	2	23	MG/L
NITRATE (AS NO3)	4/6/2010	50	45	2	23	MG/L
NITRATE (AS NO3)	7/13/2010	55	45	2	23	MG/L
NITRATE (AS NO3)	1/19/2011	44	45	2	23	MG/L
NITRATE (AS NO3)	4/13/2011	51	45	2	23	MG/L
NITRATE (AS NO3)	7/5/2011	58	45	2	23	MG/L
NITRATE (AS NO3)	10/18/2011	59	45	2	23	MG/L
NITRATE (AS NO3)	1/3/2012	54	45	2	23	MG/L
NITRATE (AS NO3)	4/2/2012	57	45	2	23	MG/L
NITRATE (AS NO3)	7/2/2012	64	45	2	23	MG/L
NITRATE (AS NO3)	10/4/2012	62	45	2	23	MG/L
NITRATE (AS NO3)	1/7/2013	60	45	2	23	MG/L
NITRATE (AS NO3)	4/4/2013	61	45	2	23	MG/L
NITRATE (AS NO3)	7/17/2013	67	45	2	23	MG/L
NITRATE (AS NO3)	10/9/2013	62	45	2	23	MG/L
NITRATE (AS NO3)	4/16/2014	64	45	2	23	MG/L
NITRATE (AS NO3)	7/16/2014	67	<mark>4</mark> 5	2	23	MG/L
NITRATE (AS NO3)	12/15/2014	64	45	2	23	MG/L
NITRATE (AS NO3)	1/14/2015	66	45	2	23	MG/L
NITRATE (AS NO3)	4/8/2015	69	45	2	23	MG/L
NITRATE (AS NO3)	7/15/2015	69	45	2	23	MG/L
NITRATE (AS NO3)	10/14/2015	68	45	2	23	MG/L

Long Canyon Well No. 1 PS ID# 1500578-001 Water Quality Results

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COLOR	4/1/2009	3	15	0	15	UNITS
ODOR THRESHOLD @ 60 C	4/1/2009	0	3	1	3	TON
SPECIFIC CONDUCTANCE	4/1/2009	600	1600	0	900	US
PH, LABORATORY	4/1/2009	7.66	0	0	0	
ALKALINITY (TOTAL) AS CACO3	4/1/2009	250	0	0	0	MG/L
BICARBONATE ALKALINITY	4/1/2009	310	0	0	0	MG/L
CARBONATE ALKALINITY	4/1/2009	2.5	0	0	0	MG/L
NITRITE (AS N)	4/1/2009	50	1	0.4	0.5	mg/L
HARDNESS (TOTAL) AS CACO3	4/1/2009	220	0	0	0	MG/L
CALCIUM	4/1/2009	66	0	0	0	MG/L
MAGNESIUM	4/1/2009	13	0	0	0	MG/L
SODIUM	4/1/2009	62	0	0	0	MG/L
POTASSIUM	4/1/2009	3.2	0	0	0	MG/L
CHLORIDE	4/1/2009	19	500	0	250	MG/L
SULFATE	4/1/2009	42	500	0.5	250	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	4/1/2009	0.53	2	0.1	2	MG/L
ARSENIC	4/1/2009	2	10	2	5	UG/L
BARIUM	4/1/2009	68	1000	100	1000	UG/L
BERYLLIUM	4/1/2009	1	4	1	4	UG/L
CADMIUM	4/1/2009	1	5	1	5	UG/L
CHROMIUM, HEXAVALENT	12/28/2014	0.2	10	1	10	UG/L
CHROMIUM (TOTAL)	4/1/2009	10	50	10	50	UG/L
COPPER	4/1/2009	10	1000	50	1000	UG/L
IRON	4/1/2009	180	300	100	300	UG/L
LEAD	4/1/2009	1	0	5	15	UG/L
MANGANESE	4/1/2009	13	50	20	50	UG/L
THALLIUM	4/1/2009	1	2	1	2	UG/L
NICKEL	4/1/2009	10	100	10	100	UG/L
	4/1/2009	10	100	10	100	UG/L
	4/1/2009	130	5000	50	5000	UG/L
	4/1/2009	2	0	6	6	UG/L UC/L
	4/1/2009	50	1000	50	200	UG/L
SELENIUM CROSS ALDUA	4/1/2009	10.0	15	5	50	DG/L DCI/L
GROSS ALPHA	7/12/2007 5/22/2008	18.2	15	3	5	PCI/L DCI/L
CROSS ALPHA	5/23/2008	20.4	15	3	5	PCI/L DCI/L
CROSS ALPHA	7/12/2007	20.4	15	3	3	PCI/L DCI/L
GROSS ALPHA COUNTING ERROR	5/22/2009	4.2	0	0	0	PCI/L PCI/L
GROSS ALPHA COUNTING ERROR	5/23/2008	1.44	0	0	0	PCI/L PCI/L
PADILIM 228	5/23/2008	0.8	0	1	0	I CI/L
RADIUM 228 RADIUM 228 COUNTING ERROR	5/23/2008	0.36	0	0	0	PCI/I
URANILIM (PCI/I)	7/12/2007	23.9	20	1	20	PCI/L
URANIUM (PCI/I)	5/23/2008	20.	20	1	20	PCI/L
URANIUM (PCI/I)	5/23/2008	20	20	1	20	PCI/L
FOAMING AGENTS (MBAS)	4/1/2009	0.2	0.5	0	0.5	MG/L
DIBROMOCHLOROPROPANE (DBCP)	4/1/2009	0.01	0.2	0.01	0.01	UG/L
TOTAL DISSOLVED SOLIDS	4/1/2009	400	1000	0.01	500	MG/L
HYDROXIDE ALKALINITY	4/1/2009	1.4	0	0	0	MG/L
NITRATE (AS NO3)	7/12/2007	17	45	2	23	MG/L
NITRATE (AS NO3)	4/1/2009	0.44	45	2	23	MG/L
MERCURY	4/1/2009	0.2	2	1	2	UG/L
ETHYLENE DIBROMIDE (EDB)	4/1/2009	0.01	0.05	0.02	0.02	UG/L
TURBIDITY, LABORATORY	4/1/2009	0.46	5	0.1	5	NTU
PERCHLORATE	4/1/2009	4	6	4	4	UG/L
GROSS ALPHA MDA95	5/23/2008	0.422	3.001	0	0	PCI/L

Long Canyon Well No. 1 PS ID# 1500578-001 Water Quality Results

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
GROSS ALPHA MDA95	5/23/2008	0.422	3.001	0	0	PCI/L

Long Canyon Well No. 2 PS ID# 1500578-002 Water Quality Results

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COLOR	7/21/2011	10	15	0	15	UNITS
COLOR	8/19/2015	1	15	0	15	UNITS
ODOR THRESHOLD @ 60 C	7/21/2011	0	3	1	3	TON
ODOR THRESHOLD @ 60 C	8/19/2015	0	3	1	3	TON
SPECIFIC CONDUCTANCE	7/21/2011	614	1600	0	900	US
SPECIFIC CONDUCTANCE	8/19/2015	679	1600	0	900	US
PH, LABORATORY	7/21/2011	7.53	0	0	0	
PH, LABORATORY	8/19/2015	8.24	0	0	0	
ALKALINITY (TOTAL) AS CACO3	7/21/2011	240	0	0	0	MG/L
ALKALINITY (TOTAL) AS CACO3	8/19/2015	260	0	0	0	MG/L
BICARBONATE ALKALINITY	7/21/2011	290	0	0	0	MG/L
BICARBONATE ALKALINITY	8/19/2015	320	0	0	0	MG/L
CARBONATE ALKALINITY	7/21/2011	2.5	0	0	0	MG/L
CARBONATE ALKALINITY	8/19/2015	2.5	0	0	0	MG/L
NITRATE (as N)	8/19/2015	0.86	10	0.4	5	mg/L
NITRITE (AS N)	7/21/2011	50	1	0.4	0.5	mg/L
NITRITE (AS N)	8/19/2015	50	1	0.4	0.5	mg/L
HARDNESS (TOTAL) AS CACO3	7/21/2011	190	0	0	0	MG/L
HARDNESS (TOTAL) AS CACO3	8/19/2015	240	0	0	0	MG/L
CALCIUM	7/21/2011	60	0	0	0	MG/L
CALCIUM	8/19/2015	73	0	0	0	MG/L
MAGNESIUM	7/21/2011	11	0	0	0	MG/L
MAGNESIUM	8/19/2015	14	0	0	0	MG/L
SODIUM	7/21/2011	58	0	0	0	MG/L
SODIUM	8/19/2015	57	0	0	0	MG/L
POTASSIUM	7/21/2011	2.9	0	0	0	MG/L
POTASSIUM	8/19/2015	3.3	0	0	0	MG/L
CHLORIDE	7/21/2011	20	500	0	250	MG/L
CHLORIDE	8/19/2015	28	500	0	250	MG/L
SULFATE	7/21/2011	41	500	0.5	250	MG/L
SULFATE	8/19/2015	57	500	0.5	250	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	7/21/2011	0.65	2	0.1	2	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	8/19/2015	0.58	2	0.1	2	MG/L
ARSENIC	7/21/2011	2	10	2	5	UG/L
ARSENIC	8/19/2015	2	10	2	5	UG/L
BARIUM	7/21/2011	66	1000	100	1000	UG/L
BARIUM	8/19/2015	77	1000	100	1000	UG/L
BERYLLIUM	7/21/2011	1	4	1	4	UG/L
BERYLLIUM	8/19/2015	1	4	1	4	UG/L
CADMIUM	7/21/2011	1	5	1	5	UG/L
CADMIUM	8/19/2015	1	5	1	5	UG/L
CHROMIUM, HEXAVALENT	12/28/2014	0.2	10	1	10	UG/L
CHROMIUM (TOTAL)	7/21/2011	10	50	10	50	UG/L
CHROMIUM (TOTAL)	8/19/2015	10	50	10	50	UG/L
COPPER	7/21/2011	10	1000	50	1000	UG/L
COPPER	8/19/2015	10	1000	50	1000	UG/L
IRON	7/21/2011	88	300	100	300	UG/L
Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
----------------------------------	---------------	--------	------	-----	---------	-------
IRON	8/19/2015	50	300	100	300	UG/L
LEAD	7/21/2011	1	0	5	15	UG/L
LEAD	8/19/2015	1	0	5	15	UG/L
MANGANESE	7/21/2011	37	50	20	50	UG/L
MANGANESE	8/19/2015	20	50	20	50	UG/L
THALLIUM	7/21/2011	1	2	1	2	UG/L
THALLIUM	8/19/2015	1	2	1	2	UG/L
NICKEL	7/21/2011	10	100	10	100	UG/L
NICKEL	8/19/2015	10	100	10	100	UG/L
SILVER	7/21/2011	10	100	10	100	UG/L
SILVER	8/19/2015	10	100	10	100	UG/L
ZINC	7/21/2011	50	5000	50	5000	UG/L
ZINC	8/19/2015	50	5000	50	5000	UG/L
ANTIMONY	7/21/2011	2	6	6	6	UG/L
ANTIMONY	8/19/2015	2	6	6	6	UG/L
ALUMINUM	7/21/2011	50	1000	50	200	UG/L
ALUMINUM	8/19/2015	50	1000	50	200	UG/L
SELENIUM	7/21/2011	2	50	5	50	UG/L
SELENIUM	8/19/2015	2	50	5	50	UG/L
GROSS ALPHA	7/18/2007	9.78	15	3	5	PCI/L
GROSS ALPHA	10/25/2007	9.31	15	3	5	PCI/L
GROSS ALPHA	5/23/2008	16	15	3	5	PCI/L
GROSS ALPHA	5/23/2008	16	15	3	5	PCI/L
GROSS ALPHA	8/11/2008	10.2	15	3	5	PCI/L
GROSS ALPHA	11/22/2008	6.8	15	3	5	PCI/L
GROSS ALPHA	8/24/2011	14.1	15	3	5	PCI/L
GROSS ALPHA	8/19/2015	12.5	15	3	5	PCI/L
GROSS ALPHA COUNTING ERROR	7/18/2007	2.8	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	10/25/2007	2.8	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	5/23/2008	1.3	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	5/23/2008	1.3	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	8/11/2008	1.28	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	11/22/2008	1.13	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	8/24/2011	2.24	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	8/19/2015	0.55	0	0	0	PCI/L
RADIUM 226	8/11/2008	0.16	0	1	0	PCI/L
RADIUM 226	11/22/2008	0.16	0	1	0	PCI/L
RADIUM 226 COUNTING ERROR	8/11/2008	0.15	0	0	0	PCI/L
RADIUM 226 COUNTING ERROR	11/22/2008	0.1	0	0	0	PCI/L
RADIUM 228	5/23/2008	0.58	0	1	0	
RADIUM 228	8/11/2008	0.58	0	1	0	
RADIUM 228	11/22/2008	0.38	0	1	0	
RADIUM 228 COUNTING ERROR	5/23/2008	0.37	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	8/11/2008	0.35	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	11/22/2008	0.29	0	0	0	PCI/L
COMBINED RA 226 + RA 228	8/11/2008	0.74	5	0	5	
COMBINED $PA 226 \pm PA 228$	11/22/2008	0.48	5	0	5	

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COMBINED RA 226 + RA 228 COUNTING ERROR	8/11/2008	0.36	0	0	0	PCI/L
COMBINED RA 226 + RA 228 COUNTING ERROR	11/22/2008	0.3	0	0	0	PCI/L
URANIUM (PCI/L)	5/23/2008	13	20	1	20	PCI/L
URANIUM (PCI/L)	5/23/2008	13	20	1	20	PCI/L
URANIUM (PCI/L)	8/11/2008	12	20	1	20	PCI/L
URANIUM (PCI/L)	11/22/2008	12	20	1	20	PCI/L
URANIUM (PCI/L)	8/24/2011	15	20	1	20	PCI/L
URANIUM (PCI/L)	8/19/2015	18	20	1	20	PCI/L
BROMODICHLOROMETHANE (THM)	8/24/2011	3	0	1	0	UG/L
CARBON TETRACHLORIDE	8/24/2011	0.5	0.5	0.5	0.5	UG/L
BROMOFORM (THM)	8/24/2011	0.5	0	1	0	UG/L
DIBROMOCHLOROMETHANE (THM)	8/24/2011	2.6	0	1	0	UG/L
CHLOROFORM (THM)	8/24/2011	2.4	0	1	0	UG/L
TOLUENE	8/24/2011	0.5	150	0.5	0.5	UG/L
BENZENE	8/24/2011	0.5	1	0.5	0.5	UG/L
MONOCHLOROBENZENE	8/24/2011	0.5	70	0.5	0.5	UG/L
CHLOROETHANE	8/24/2011	0.5	0	0.5	0.5	UG/L
ETHYLBENZENE	8/24/2011	0.5	300	0.5	0.5	UG/L
HEXACHLOROBUTADIENE	8/24/2011	0.5	0	0.5	0.5	UG/L
BROMOMETHANE	8/24/2011	0.5	0	0.5	0.5	UG/L
CHLOROMETHANE	8/24/2011	0.5	0	0.5	0.5	UG/L
DICHLOROMETHANE	8/24/2011	0.5	5	0.5	0.5	UG/L
TETRACHLOROETHYLENE	8/24/2011	0.5	5	0.5	0.5	UG/L
TRICHLOROFLUOROMETHANE	8/24/2011	0.5	150	5	5	UG/L
1,1-DICHLOROETHANE	8/24/2011	0.5	5	0.5	0.5	UG/L
1,1-DICHLOROETHYLENE	8/24/2011	0.5	6	0.5	0.5	UG/L
1,1,1-TRICHLOROETHANE	8/24/2011	0.5	200	0.5	0.5	UG/L
1,1,2-TRICHLOROETHANE	8/24/2011	0.5	5	0.5	0.5	UG/L
1,1,2,2-TETRACHLOROETHANE	8/24/2011	0.5	1	0.5	0.5	UG/L
1.2-DICHLOROETHANE	8/24/2011	0.5	0.5	0.5	0.5	UG/L
1,2-DICHLOROBENZENE	8/24/2011	0.5	600	0.5	0.5	UG/L
1.2-DICHLOROPROPANE	8/24/2011	0.5	5	0.5	0.5	UG/L
TRANS-1.2-DICHLOROETHYLENE	8/24/2011	0.5	10	0.5	0.5	UG/L
1.2.4-TRICHLOROBENZENE	8/24/2011	0.5	5	0.5	5	UG/L
1,3-DICHLOROPROPENE (TOTAL)	8/24/2011	0.5	0.5	0.5	0.5	UG/L
1.3-DICHLOROBENZENE	8/24/2011	0.5	0	0.5	600	UG/L
1.4-DICHLOROBENZENE	8/24/2011	0.5	5	0.5	0.5	UG/L
DICHLORODIFLUOROMETHANE (FREON 12)	8/24/2011	0.5	1000	0.5	1000	UG/L
NAPHTHALENE	8/24/2011	0.5	170	0.5	170	UG/L
TRANS-1.3-DICHLOROPROPENE	8/24/2011	0.5	0.5	0.5	0	UG/L
CIS-1.3-DICHLOROPROPENE	8/24/2011	0.5	0.5	0.5	0.5	UG/L
FOAMING AGENTS (MBAS)	7/21/2011	0.1	0.5	0	0.5	MG/L
FOAMING AGENTS (MBAS)	8/19/2015	0.1	0.5	0	0.5	MG/L
DIBROMOCHLOROPROPANE (DBCP)	7/21/2011	0.01	0.2	0.01	0.01	UG/L
ATRAZINE	8/19/2015	0.3	1	0.5	1	UG/L
SIMAZINE	8/19/2015	0.3	4	1	1	UG/L
VINYL CHLORIDE	8/24/2011	0.5	0.5	0.5	0.5	UG/L
			i de la companya de la		-	1

TRICHORDETHYLENE 8/24/2011 0.5 1.3 3.5 0.50 UG1. METHYL-TERT-BUTYL-ETHER (MTBE) 8/24/2011 0.5 13.0 0.0 MG0. TOTAL DISSOLVED SOLIDS 8/19/2015 470 1000 0.0 MG1. TOTAL DISSOLVED SOLIDS 8/19/2015 1.4 0 0.0 MG1. HYDROXED ALKALINTY 8/19/2015 1.4 0 0.0 MG1. NITRATE (AS NO3) 7/21/2011 0.44 45.0 2.2 2.3 MG1. NITRATE (AS NO3) 7/21/2011 0.44 45.0 2.0 2.3 MG1. NITRATE (AS NO3) 6/2/21/2013 0.44 45.0 2.0 0.0 MG1. NITRATE (AS NO3) 6/2/21/2013 0.44 45.0 2.0 0.0 MG1. MERCURY 8/19/2015 0.2 2 1.0 0.0 MG1. MERCURY 8/19/2015 0.2 0.0 1.0 0.0 MG1. TERT BUTYL ALCOHOL (THA)	Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
METRYL-TERT.BUTYL-ETHER (MTBE) 8242011 0.5 13 3 3 UGL TOTAL DISSOLVED SOLIDS 771/2011 400 1000 0 500 MG4. TOTAL DISSOLVED SOLIDS 819/2015 140 0 0 0 MG4. HYDROXIDE ALKALINITY 819/2015 14 0 0 MG4. NITRATE (AS NO3) 71/12011 1.4 45 2 23 MG1. NITRATE (AS NO3) 721/2011 0.44 45 2 23 MG1. NITRATE (AS NO3) 721/2011 0.24 45 2 23 MG1. NITRATE (AS NO3) 721/2011 0.2 2 1 2 UG4. CIS1.2-DICHLORONTHYLEN 8/242011 0.5 6 0.5 UG4. GIS1.2-DICHLORONTHYLEN 8/242011 0.5 0 0.5 UG4. CIS1.2-DICHLORONTHYLEN 8/242011 0.5 0.5 UG4. 1DICHLOROPROPENE 8/242011 0.5 0	TRICHLOROETHYLENE	8/24/2011	0.5	5	0.5	0.5	UG/L
TOTAL DISSOLVED SOLIDS 721/2011 400 1000 0 800 MGL TOTAL DISSOLVED SOLIDS 8/19/2015 1.4 0 0 0 MGL HYDROXIDE ALKALINITY 721/2011 1.4 0 0 0 MGL NITRATE (AS NO3) 7/18/2007 1 4.5 2 2.3 MGL NITRATE (AS NO3) 102/5/2007 3.2 4.5 2 2.3 MGL NITRATE (AS NO3) 721/2011 0.44 4.5 2 2.3 MGL NITRATE (AS NO3) 69/2013 0.92 4.5 2 2.0 MGL MERCURY 721/2011 0.2 2 1 2 UGL MERCURY 8/19/2015 0.2 2 1 2 UGL TERT-BUTYL ALCOHOL (TBA) 8/24/2011 0.5 100 0.5 0.5 UGL CSTYRENE 8/24/2011 0.5 0.0 0.5 0.5 UGL J-JOCHICROROPOPANE	METHYL-TERT-BUTYL-ETHER (MTBE)	8/24/2011	0.5	13	3	3	UG/L
TOTAL DISSOLVED SOLIDS 8/19/2015 470 1000 0 500 MGL HYDROXIDE ALKALINITY 7/12/2011 1.4 0 0 MGL HYDROXIDE ALKALINITY 8/19/2015 1.4 0 0 MGL NITRATE (AS NO3) 10/25/2007 3.2 45 2 2.3 MGL NITRATE (AS NO3) 7/21/2011 0.44 45 2 2.3 MGL NITRATE (AS NO3) 6/2/2013 0.92 45 2 2.3 MGL MERCURY 7/21/2011 0.2 2 1 2 UGL MERCURY 7/21/2011 0 12 2 UGL UGL CIS1-2DICHLOROETHYLENE 8/24/2011 0.5 6 0.5 UGL CJDLCLOROPROPANE 8/24/2011 0.5 0 0.5 UGL LJ-DICHLOROPROPANE 8/24/2011 0.5 0.5 UGL LJ-DICHLOROPROPANE 8/24/2011 0.5 0.5 UGL	TOTAL DISSOLVED SOLIDS	7/21/2011	400	1000	0	500	MG/L
HYDROXIDE ALKALINITY 7212011 1.4 0 0 0 MGL. HYDROXIDE ALKALINITY 8/19/2015 1.4 0 0 0 MGL. NITRATE (AS NO3) 7/18/2007 1.2 45 2 2.3 MGL. NITRATE (AS NO3) 7/21/2011 0.44 45 2 2.3 MGL. NITRATE (AS NO3) 2/21/2013 0.44 45 2 2.3 MGL. MERCURY 7/21/2011 0.2 2 1.4 2.0 UGL. MERCURY 8/19/2015 0.2 2 1.0 2.0 UGL. CIS-1.2:DICHLOROETHYLENE 8/24/2011 0.5 1.00 0.5 0.5 UGL. 0.XYLENE 8/24/2011 0.5 0 0.5 0.5 UGL. 1.J-DICHLOROPROPENE 8/24/2011 0.5 0.0 0.5 UGL. 1.J-DICHLOROPROPENE 8/24/2011 0.5 3.0 UGL. 1.J-DICHLOROPROPANE 8/24/2011 0.5 <td>TOTAL DISSOLVED SOLIDS</td> <td>8/19/2015</td> <td>470</td> <td>1000</td> <td>0</td> <td>500</td> <td>MG/L</td>	TOTAL DISSOLVED SOLIDS	8/19/2015	470	1000	0	500	MG/L
HYDROXIDE ALKALINITY 8/19/2015 1.4 0 0 0.01 NITRATE (AS NO3) 7/18/207 1 45 2 23 MGL NITRATE (AS NO3) 10/25/2007 3.2 45 2 23 MGL NITRATE (AS NO3) 7/21/2011 0.44 45 2 23 MGL NITRATE (AS NO3) 6/9/013 0.92 45 2 23 MGL NITRATE (AS NO3) 6/9/013 0.22 2 1 2 UGL MERCURY 7/21/2011 0.2 2 1 2 UGL TERT BUTY LALCOHOL (TBA) 8/24/2011 0.5 6 0.5 0.5 UGL C/S1_2-DICHLOROETHYLENE 8/24/2011 0.5 0 0.5 0.5 UGL J.3DCHLOROPROPENE 8/24/2011 0.5 0 0.5 0.5 UGL J.3DCHLOROPROPANE 8/24/2011 0.5 200 0.5 UGL J.3DCHLOROPROPANE 8/24/2011	HYDROXIDE ALKALINITY	7/21/2011	1.4	0	0	0	MG/L
NITRATE (AS NO3) 7(18/2007 3.2 45 2 23 MGL NITRATE (AS NO3) 1025/2007 3.2 45 2 23 MGL NITRATE (AS NO3) 721/2011 0.44 45 2 23 MGL NITRATE (AS NO3) 221/2013 0.44 45 2 23 MGL NITRATE (AS NO3) 69/2013 0.92 45 2 10 10 MERCURY 721/2011 0.2 2 1 2 UGL MERCURY 721/2011 0.5 6 0.5 0.5 UGL CIS_1_2-DICHLOROETHYLENE 8/24/2011 0.5 100 0.5 0.6 UGL 0.JDICHLOROPROPENE 8/24/2011 0.5 0 0.5 UGL 1.JDICHLOROPROPANE 8/24/2011 0.5 30 0.5 UGL 1.JJCHLOROPROPANE 8/24/2011 0.5 30 0.5 UGL 1.JJCHLOROPROPANE 8/24/2011 0.5 30	HYDROXIDE ALKALINITY	8/19/2015	1.4	0	0	0	MG/L
NITRATE (AS NO3) 1025/2007 3.2 45 2 23 MGL NITRATE (AS NO3) 7/21/2011 0.44 45 2 2.3 MGL NITRATE (AS NO3) 69/2013 0.92 45 2.0 2.3 MGL MERCURY 7/21/2011 0.2 2 1 2 UGL MERCURY 7/21/2011 0.2 2 1 2 UGL TERT-BUTYL ALCOHOL (TBA) 8/24/2011 0.5 100 0.5 0.5 UGL O-XYLENE 8/24/2011 0.5 10 0.5 0.5 UGL 1_1-DICHLOROPROPENE 8/24/2011 0.5 0.5 0.5 UGL 1_2-DICHLOROPROPANE 8/24/2011 0.5 3.0 0.5 3.0 UGL 1_2-DICHLOROPROPANE 8/24/2011 0.5 3.00 0.5 UGL 1_2-DICHLOROPROPANE 8/24/2011 0.5 3.00 0.5 UGL 1_2-DICHLOROPROPANE 8/24/2011 0.5	NITRATE (AS NO3)	7/18/2007	1	45	2	23	MG/L
NITRATE (AS NO3) 721/2011 0.44 45 2 23 MG/L NITRATE (AS NO3) 221/2013 0.44 45 2 23 MG/L NITRATE (AS NO3) 0.221/2013 0.24 45 2 23 MG/L MERCURY 7/21/2011 0.2 2 1 2 UG/L MERCURY 7/21/2011 0.2 2 1 2 UG/L CIS-1,2-DICHLOROETHYLENE 8/24/2011 0.5 6 0.5 0.5 UG/L O.XYLENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,-DICHLOROPROPENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2-DICHLOROPROPANE 8/24/2011 0.5 3.00 0.5 3.00 UG/L 1,2-TRIMETHYLENZENE 8/24/2011 0.5 3.00 0.5 3.00 UG/L 1,3-DICHLOROPROPANE 8/24/2011 0.5 3.00 0.5 0.5 UG/L 1,3-TIC	NITRATE (AS NO3)	10/25/2007	3.2	45	2	23	MG/L
NITRATE (AS NO3) 221/2013 0.44 45 2 23 MGL NITRATE (AS NO3) 69/2013 0.92 45 2 23 MGL NITRATE (AS NO3) 69/2013 0.22 2 1 2 UGAL MERCURY 8/19/2015 0.2 2 1 2 UGAL CIS:12-DICHLOROETHYLENE 8/24/2011 0.5 6 0.5 0.5 UGAL CIS:12-DICHLOROETHYLENE 8/24/2011 0.5 0 0.5 UGAL J.JDICHLOROFOPPENE 8/24/2011 0.5 0 0.5 UGAL 1.JDICHLOROPROPANE 8/24/2011 0.5 0 0.5 UGAL 1.JDICHLOROPROPANE 8/24/2011 0.5 300 0.5 UGAL 1.SATRIMETHYLBROZENE 8/24/2011 0.5 260 0.5 UGAL N-ROPYLBENZENE 8/24/2011 0.5 260 0.5 UGAL 1.SATRIMETHYLBENZENE 8/24/2011 0.5 260 0.5	NITRATE (AS NO3)	7/21/2011	0.44	45	2	23	MG/L
NTRATE (AS NO3) 69/2013 0.92 45 2 23 MGL MERCURY 7/21/2011 0.2 2 1 2 UGAL TERT-BUTYL ALCOHOL (TBA) 8/24/2011 10 12 2 12 UGAL TERT-BUTYL ALCOHOL (TBA) 8/24/2011 0.5 6 0.5 0.5 UGAL STYRENE 8/24/2011 0.5 100 0.5 0 UGAL 1.j-DICHLOROPROPENE 8/24/2011 0.5 0 0.5 0.5 UGAL 1.3-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UGAL 1.3-DICHLOROPROPANE 8/24/2011 0.5 330 0.5 330 UGAL 1.3-DICHLOROPROPANE 8/24/2011 0.5 770 0.5 770 UGAL 1.3-DICHLOROPROPANE 8/24/2011 0.5 260 0.5 0.5 UGAL 1.3-DICHLOROPROPANE 8/24/2011 0.5 260 0.5 UGAL 1.3-STRI	NITRATE (AS NO3)	2/21/2013	0.44	45	2	23	MG/L
MERCURY 721/2011 0.2 2 1 2 UGAL MERCURY &192015 0.2 2 1 2 UGAL CIS12-DICHLOROETHYLENE &242011 0.5 6 0.5 UGAL STYRENE &242011 0.5 100 0.5 0.5 UGAL O.XYLENE &242011 0.5 0 0.5 0.5 UGAL 1.J-DICHLOROPROPENE &242011 0.5 0 0.5 0.5 UGAL 1.J-DICHLOROPROPANE &242011 0.5 0 0.5 0.5 UGAL 1.2.4-TRIMETHYLBENZENE &242011 0.5 300 0.5 300 UGAL N-PROPYLBENZENE &242011 0.5 330 UGAL 0.5 330 UGAL N-ROPYLBENZENE &242011 0.5 260 0.5 UGAL 1.J.3-TRIMETHYLENZENE &242011 0.5 260 0.5 UGAL 1.J.3-TRIMENEYLENZENE &242011 0.5	NITRATE (AS NO3)	6/9/2013	0.92	45	2	23	MG/L
MERCURY 8/19/2015 0.2 2 1 2 UGAL TERT-BUTYL ALCOHOL (TBA) 8/24/2011 10 12 2 12 UGAL CIS-1,2-DICHLOROETHYLENE 8/24/2011 0.5 6 0.5 0.5 UGAL STYRENE 8/24/2011 0.5 100 0.5 0.5 UGAL 0.XYLENE 8/24/2011 0.5 0 0.5 0.5 UGAL 2,2-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UGAL 1,3-DICHLOROPROPANE 8/24/2011 0.5 300 0.5 300 UGAL 1,2,4-TRIMETHYLBENZENE 8/24/2011 0.5 770 0.5 770 UGAL N-ROPYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UGAL 1,3-5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UGAL 1,3-5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UGAL	MERCURY	7/21/2011	0.2	2	1	2	UG/L
TERT-BUTYL ALCOHOL (TBA) 8/24/2011 10 12 2 12 UG/L CIS-L2DICHLOROETHYLENE 8/24/2011 0.5 6 0.5 0.5 UG/L STYRENE 8/24/2011 0.5 100 0.5 0.5 UG/L O-XYLENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.1-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.3-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2,4-TRIMETHYLBENZENE 8/24/2011 0.5 330 0.5 330 UG/L 1.3-TRICHLOROPROPANE 8/24/2011 0.5 260 0.5 0.5 UG/L 1.3.5-TRINETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1.1,1.2-TERTHYLBENZENE 8/24/2011 0.5 0.6 0.5 0.5 UG/L 1.1,1.2-TERTHYLBENZENE 8/24/2011 0.5 0.5 0.5 UG/L	MERCURY	8/19/2015	0.2	2	1	2	UG/L
CIS-1,2-DICHLOROETHYLENE 8/24/2011 0.5 6 0.5 0.5 UGA. STYRENE 8/24/2011 0.5 100 0.5 0.5 UGA. O-XYLENE 8/24/2011 0.5 0 0.5 0.5 UGA. 1,-DICHLOROPROPENE 8/24/2011 0.5 0 0.5 UGA. 1,2-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UGA. 1,2.4-TRIMETHYLBENZENE 8/24/2011 0.5 330 0.5 330 UGA. ISOPROPYLEBENZENE 8/24/2011 0.5 770 0.5 100 ISOPROPYLEBENZENE 8/24/2011 0.5 260 0.5 0.5 UGA. 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UGA. 1.3.3-TRICHLOROPROPANE (1,2,3,-TCP) 8/24/2011 0.5 0 0.5 0.5 UGA. 1.2.3-TRICHLOROPENPANE (1,2,3,-TCP) 8/24/2011 0.5 0 0.5 0.5 UGA. <	TERT-BUTYL ALCOHOL (TBA)	8/24/2011	10	12	2	12	UG/L
STYRENE 824/2011 0.5 100 0.5 0.5 UG/L 0.YUENE 824/2011 0.5 0 0.5 0.5 UG/L 1,1-DICHLOROPROPENE 824/2011 0.5 0 0.5 0.5 UG/L 2.2DICHLOROPROPANE 824/2011 0.5 0 0.5 0.5 UG/L 1.3-DICHLOROPROPANE 824/2011 0.5 330 0.5 330 UG/L 1.2.4-TRIMETHYLBENZENE 824/2011 0.5 770 0.5 770 UG/L 1.3.5-TRIMETHYLBENZENE 824/2011 0.5 260 0.5 260 UG/L 1.3.5-TRIMETHYLBENZENE 824/2011 0.5 260 0.5 UG/L 1.3.5-TRIMETHYLBENZENE 824/2011 0.5 260 0.5 UG/L 1.3.5-TRIMEDRYLBENZENE 824/2011 0.5 260 0.5 UG/L 1.1.1.2-TETRACHLOROPORPANE (1.2.3TCP) 824/2011 0.5 0.5 UG/L 1.2.3-TRICHLOROPORPANE (1.2.3TCP) 824	CIS-1,2-DICHLOROETHYLENE	8/24/2011	0.5	6	0.5	0.5	UG/L
O-XYLENE 824/2011 0.5 0 0.5 0 UG/L 1,1-DICHLOROPROPENE 8/24/2011 0.5 0 0.5 UG/L 2.2-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 UG/L 1.3-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 UG/L 1.2-TRIMETHYLBENZENE 8/24/2011 0.5 330 UG/L UG/L 1.2-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 260 UG/L 1.3-STRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 UG/L 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 UG/L 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 UG/L 1.2.3-TRICHLOROPROPANE (1,2,3,-TCP) 8/24/2011 0.5 0 0.5 UG/L 1.1,1,2-TETRACHLOROPETHANE 8/24/2011 0.5 0 0.5 UG/L 1.1,1,2-TETRACHLOROPENZENE 8/24/2011 0.5 0 0.5	STYRENE	8/24/2011	0.5	100	0.5	0.5	UG/L
1,1-DICHLOROPROPENE 8/24/2011 0.5 0 0.5 0.5 UG/L 2.2-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.3-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2,4-TRIMETHYLBENZENE 8/24/2011 0.5 770 0.5 770 UG/L 1.3-STRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 260 UG/L 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1.3.5-TRICHLOROPROPANE (1,2,3TCP) 8/24/2011 0.5 260 0.5 0.5 UG/L 1.2.3-TRICHLOROPROPANE (1,2,3TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROPROPANE (1,2,3TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.1,1.2-TETRACHLOROPETHANE 8/24/2011 0.5	O-XYLENE	8/24/2011	0.5	0	0.5	0	UG/L
2.2-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.3-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.4-TRIMETHYLBENZENE 8/24/2011 0.5 330 0.5 330 UG/L ISOPROPYLBENZENE 8/24/2011 0.5 260 0.5 260 UG/L 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1.2.3-TRICHLOROPOPANE (1,2,3,-TCP) 8/24/2011 0.5 260 0.5 0.5 UG/L 1.1,1.2-TETRACHLOROPENAE (1,2,3,-TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2,3-TRICHLOROPENAE (1,2,3,-TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2,3-TRICHLOROPENAENE 8/24/2011 0.5 0 0.5 UG/L 1.2,3-TRICHLOROPENAENE 8/24/2011 0.5 0 0	1,1-DICHLOROPROPENE	8/24/2011	0.5	0	0.5	0.5	UG/L
1.3-DICHLOROPROPANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.4-TRIMETHYLBENZENE 8/24/2011 0.5 330 0.5 330 UG/L ISOPROPYLBENZENE 8/24/2011 0.5 770 0.5 770 UG/L N-PROPYLBENZENE 8/24/2011 0.5 260 0.5 260 UG/L 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L SEC-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1.2.3-TRICHLOROPROPANE (1.2.3,-TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROPROPANE (1.2.3,-TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.	2,2-DICHLOROPROPANE	8/24/2011	0.5	0	0.5	0.5	UG/L
1.2.4-TRIMETHYLBENZENE 8/24/2011 0.5 330 0.5 330 UG/L ISOPROPYLBENZENE 8/24/2011 0.5 770 0.5 770 UG/L N-PROPYLBENZENE 8/24/2011 0.5 260 0.5 260 UG/L 1.3.5-TRIMETHYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L SEC-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1.2.3-TRICHLOROPROPANE (1.2.3TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROPROPANE (1.2.3TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROPROPANE (1.2.3TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1.2.3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L ALACHLOR 8/19/2015	1,3-DICHLOROPROPANE	8/24/2011	0.5	0	0.5	0.5	UG/L
ISOPROPYLBENZENE 8/24/2011 0.5 770 0.5 770 UG/L N-PROPYLBENZENE 8/24/2011 0.5 260 0.5 260 UG/L 1,3,5-TRIMETHYLBENZENE 8/24/2011 0.5 330 0.5 330 UG/L SEC-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L TERT-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1,2,3-TRICHLOROPROPANE (1,2,3,-TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L DIBROMOMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,1,2-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L ETHYLENE DIBROMIDE (EDB) 7/21/2011 0.01 0.05 0.02 0.02 UG/L XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10	1,2,4-TRIMETHYLBENZENE	8/24/2011	0.5	330	0.5	330	UG/L
N-PROPYLBENZENE 8/24/2011 0.5 260 0.5 260 UG/L 1,3,5-TRIMETHYLBENZENE 8/24/2011 0.5 330 0.5 330 UG/L SEC-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L TERT-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1,2,3-TRICHLOROPROPANE (1,2,3,-TCP) 8/24/2011 0.5 0 0.5 0.5 UG/L 1,1,1,2-TETRACHLOROETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.01 0.05 0.02 0.02 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.01 0.05 0.02 0.02 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 0.5 0 0.5 0.	ISOPROPYLBENZENE	8/24/2011	0.5	770	0.5	770	UG/L
1.3,5-TRIMETHYLBENZENE 8/24/2011 0.5 330 0.5 330 UG/L SEC-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L TERT-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1,2,3-TRICHLOROPROPANE (1,2,3,-TCP) 8/24/2011 1 0.005 0.005 0.005 UG/L 1,1,1,2-TETRACHLOROETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L DIBROMOMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.01 0.05 0.02 0.02 UG/L 1,2,3-TRICHLORO 8/19/2015 0.2 2 1 1 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200	N-PROPYLBENZENE	8/24/2011	0.5	260	0.5	260	UG/L
SEC-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L TERT-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1,2,3-TRICHLOROPROPANE (1,2,3,-TCP) 8/24/2011 1 0.005 0.005 0.005 UG/L 1,1,1,2-TETRACHLOROETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L DIBROMOMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.01 0.05 0.02 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 0.5 100 105 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 UG/L	1,3,5-TRIMETHYLBENZENE	8/24/2011	0.5	330	0.5	330	UG/L
TERT-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0.5 UG/L 1,2,3-TRICHLOROPROPANE (1,2,3,-TCP) 8/24/2011 1 0.005 0.005 0.005 UG/L 1,1,1,2-TETRACHLOROETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L DIBROMOMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L ETHYLENE DIBROMIDE (EDB) 7/21/2011 0.01 0.05 0.02 0.02 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L ROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 <	SEC-BUTYLBENZENE	8/24/2011	0.5	260	0.5	0.5	UG/L
1,2,3-TRICHLOROPROPANE (1,2,3,-TCP) 8/24/2011 1 0.005 0.005 UG/L 1,1,1,2-TETRACHLOROETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L DIBROMOMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L ETHYLENE DIBROMIDE (EDB) 7/21/2011 0.01 0.05 0.02 0.02 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L BROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 0.5 140 0.5 140 0.5 UG/L -CHLOROTOLUENE 8/24/2011 0.5 140 <td>TERT-BUTYLBENZENE</td> <td>8/24/2011</td> <td>0.5</td> <td>260</td> <td>0.5</td> <td>0.5</td> <td>UG/L</td>	TERT-BUTYLBENZENE	8/24/2011	0.5	260	0.5	0.5	UG/L
1,1,1,2-TETRACHLOROETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L DIBROMOMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L ETHYLENE DIBROMIDE (EDB) 7/21/2011 0.01 0.05 0.02 0.02 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L BROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 0.5 140 0.5 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 0 0 UG/L	1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	8/24/2011	1	0.005	0.005	0.005	UG/L
DIBROMOMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L 1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L ETHYLENE DIBROMIDE (EDB) 7/21/2011 0.01 0.05 0.02 0.02 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L BROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 0.5 140 0.5 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 UG/L N-BUTYLBENZENE	1,1,1,2-TETRACHLOROETHANE	8/24/2011	0.5	0	0.5	0.5	UG/L
1,2,3-TRICHLOROBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L ETHYLENE DIBROMIDE (EDB) 7/21/2011 0.01 0.05 0.02 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L BROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TURBIDITY, LABORATORY 8/19/2015 0.15 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 8 80 0 80 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 UG/L N-BUTYLBENZENE 8/24/2011 0.5 260 0.5 0 UG/L P-	DIBROMOMETHANE	8/24/2011	0.5	0	0.5	0.5	UG/L
ETHYLENE DIBROMIDE (EDB) 7/21/2011 0.01 0.05 0.02 0.02 UG/L ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L BROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 0.5 140 0.5 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 0 0 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 <t< td=""><td>1.2.3-TRICHLOROBENZENE</td><td>8/24/2011</td><td>0.5</td><td>0</td><td>0.5</td><td>0.5</td><td>UG/L</td></t<>	1.2.3-TRICHLOROBENZENE	8/24/2011	0.5	0	0.5	0.5	UG/L
ALACHLOR 8/19/2015 0.2 2 1 1 UG/L XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L BROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TURBIDITY, LABORATORY 8/19/2015 0.15 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 8 80 0 80 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 0 0 0 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0 UG/L PERCHL	ETHYLENE DIBROMIDE (EDB)	7/21/2011	0.01	0.05	0.02	0.02	UG/L
XYLENES (TOTAL) 8/24/2011 1 1750 0 1750 UG/L BROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TURBIDITY, LABORATORY 8/19/2015 0.15 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 8 80 0 80 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 260 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 UG/L PERCHLORATE 7/21/2011 4 6 4 UG/L <t< td=""><td>ALACHLOR</td><td>8/19/2015</td><td>0.2</td><td>2</td><td>1</td><td>1</td><td>UG/L</td></t<>	ALACHLOR	8/19/2015	0.2	2	1	1	UG/L
BROMOBENZENE 8/24/2011 0.5 0 0.5 0.5 UG/L TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TURBIDITY, LABORATORY 8/19/2015 0.15 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 8 80 0 80 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 260 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0 UG/L	XYLENES (TOTAL)	8/24/2011	1	1750	0	1750	UG/L
TRICHLOROTRIFLUOROETHANE (FREON 113) 8/24/2011 0.5 1200 10 10 UG/L TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TURBIDITY, LABORATORY 8/19/2015 0.15 5 0.1 5 NTU TURBIDITY, LABORATORY 8/19/2015 0.15 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 8 80 0 80 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 260 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L M.P-XYLENE 8/24/2011 0.5 0 0.5 0 UG/L PERCHLORATE 7/21/2011 4 6 4 4 U	BROMOBENZENE	8/24/2011	0.5	0	0.5	0.5	UG/L
TURBIDITY, LABORATORY 7/21/2011 0.38 5 0.1 5 NTU TURBIDITY, LABORATORY 8/19/2015 0.15 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 8 80 0 80 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 140 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0 UG/L M,P-XYLENE 8/24/2011 0.5 0 0.5 0 UG/L PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L	TRICHLOROTRIFLUOROETHANE (FREON 113)	8/24/2011	0.5	1200	10	10	UG/L
TURBIDITY, LABORATORY 8/19/2015 0.15 5 0.1 5 NTU TOTAL TRIHALOMETHANES 8/24/2011 8 80 0 80 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 260 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0 UG/L M,P-XYLENE 8/24/2011 0.5 0 0.5 0 UG/L PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L	TURBIDITY, LABORATORY	7/21/2011	0.38	5	0.1	5	NTU
TOTAL TRIHALOMETHANES 8/24/2011 8 80 0 80 UG/L 2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 140 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0 UG/L M,P-XYLENE 8/24/2011 0.5 0 0.5 UG/L PERCHLORATE 7/21/2011 4 6 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L	TURBIDITY, LABORATORY	8/19/2015	0.15	5	0.1	5	NTU
2-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 0.5 UG/L 4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 260 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L M,P-XYLENE 8/24/2011 0.5 0 0.5 0 UG/L PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L	TOTAL TRIHALOMETHANES	8/24/2011	8	80	0	80	UG/L
4-CHLOROTOLUENE 8/24/2011 0.5 140 0.5 140 UG/L N-BUTYLBENZENE 8/24/2011 0.5 260 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L M,P-XYLENE 8/24/2011 0.5 0 0.5 0 UG/L PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L	2-CHLOROTOLUENE	8/24/2011	0.5	140	0.5	0.5	UG/L
N-BUTYLBENZENE 8/24/2011 0.5 260 0.5 70 UG/L P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L M,P-XYLENE 8/24/2011 0.5 0 0.5 0.5 UG/L PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L	4-CHLOROTOLUENE	8/24/2011	0.5	140	0.5	140	UG/L
P-ISOPROPYLTOLUENE 8/24/2011 0.5 0 0 0 UG/L BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L M,P-XYLENE 8/24/2011 0.5 0 0.5 0 UG/L PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L	N-BUTYLBENZENE	8/24/2011	0.5	260	0.5	70	UG/L
BROMOCHLOROMETHANE 8/24/2011 0.5 0 0.5 0.5 UG/L M,P-XYLENE 8/24/2011 0.5 0 0.5 0 UG/L PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L TERT-AMYL-METHYL ETHER 8/24/2011 0.5 0 3 0 UG/L	P-ISOPROPYLTOLUENE	8/24/2011	0.5	0	0	0	UG/L
M,P-XYLENE 8/24/2011 0.5 0 0.5 0 UG/L PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L TERT-AMYL-METHYL ETHER 8/24/2011 0.5 0 3 0 UG/L	BROMOCHLOROMETHANE	8/24/2011	0.5	0	0.5	0.5	UG/L
PERCHLORATE 7/21/2011 4 6 4 4 UG/L ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L TERT-AMYL-METHYL ETHER 8/24/2011 0.5 0 3 0 UG/L	M,P-XYLENE	8/24/2011	0.5	0	0.5	0	UG/L
ETHYL-TERT-BUTYL ETHER 8/24/2011 0.5 0 3 0 UG/L TERT-AMYL-METHYL ETHER 8/24/2011 0.5 0 3 0 UG/L	PERCHLORATE	7/21/2011	4	6	4	4	UG/L
TERT_AMYL_METHYL ETHER 8/24/2011 0.5 0 2 0 UC/	ETHYL-TERT-BUTYL ETHER	8/24/2011	0.5	0	3	0	UG/L
$0/24/2011 \qquad 0.0 \qquad 0.0 \qquad 0 \qquad 0.0 \qquad 0 \qquad 0.0 \qquad 0 \qquad 0$	TERT-AMYL-METHYL ETHER	8/24/2011	0.5	0	3	0	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
DIISOPROPYL ETHER	8/24/2011	0.5	0	3	0	UG/L
GROSS ALPHA MDA95	5/23/2008	0.422	3.001	0	0	PCI/L
GROSS ALPHA MDA95	5/23/2008	0.422	3.001	0	0	PCI/L
GROSS ALPHA MDA95	8/11/2008	0.343	3.001	0	0	PCI/L
GROSS ALPHA MDA95	11/22/2008	0.343	3.001	0	0	PCI/L
GROSS ALPHA MDA95	8/19/2015	0.758	3.001	0	0	PCI/L

wen .		esuits				
Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COLOR	10/1/2014	1	15	0	15	UNITS
ODOR THRESHOLD @ 60 C	10/1/2014	0	3	1	3	TON
SPECIFIC CONDUCTANCE	2/13/2008	901	1600	0	900	US
SPECIFIC CONDUCTANCE	10/1/2014	1130	1600	0	900	US
PH, LABORATORY	10/1/2014	7.89	0	0	0	
ALKALINITY (TOTAL) AS CACO3	2/13/2008	230	0	0	0	MG/L
ALKALINITY (TOTAL) AS CACO3	4/22/2010	200	0	0	0	MG/L
ALKALINITY (TOTAL) AS CACO3	10/1/2014	220	0	0	0	MG/L
BICARBONATE ALKALINITY	1/30/2013	260	0	0	0	MG/L
BICARBONATE ALKALINITY	10/1/2014	270	0	0	0	MG/L
CARBONATE ALKALINITY	2/13/2008	5	0	0	0	MG/L
CARBONATE ALKALINITY	10/1/2014	5	0	0	0	MG/L
NITRATE (as N)	2/3/2016	2.4	10	0.4	5	mg/L
NITRITE (AS N)	10/1/2014	50	1	0.4	0.5	mg/L
HARDNESS (TOTAL) AS CACO3	2/13/2008	370	0	0	0	MG/L
HARDNESS (TOTAL) AS CACO3	10/1/2014	450	0	0	0	MG/L
CALCIUM	2/13/2008	120	0	0	0	MG/L
CALCIUM	10/1/2014	140	0	0	0	MG/L
MAGNESIUM	2/13/2008	19	0	0	0	MG/L
MAGNESIUM	10/1/2014	23	0	0	0	MG/L
SODIUM	2/13/2008	63	0	0	0	MG/L
SODIUM	10/1/2014	80	0	0	0	MG/L
POTASSIUM	10/1/2014	3.3	0	0	0	MG/L
CHLORIDE	10/1/2014	45	500	0	250	MG/L
SULFATE	10/1/2014	200	500	0.5	250	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	10/1/2014	0.52	2	0.1	2	MG/L
ARSENIC	10/1/2014	2	10	2	5	UG/L
BARIUM	10/1/2014	140	1000	100	1000	UG/L
BERYLLIUM	10/1/2014	1	4	1	4	UG/L
CADMIUM	10/1/2014	1	5	1	5	UG/L
CHROMIUM, HEXAVALENT	10/1/2014	2.2	10	1	10	UG/L
CHROMIUM (TOTAL)	10/1/2014	10	50	10	50	UG/L
COPPER	10/1/2014	10	1000	50	1000	UG/L
IRON	10/1/2014	150	300	100	300	UG/L
LEAD	10/1/2014	1	0	5	15	UG/L
MANGANESE	10/1/2014	10	50	20	50	UG/L
THALLIUM	10/1/2014	1	2	1	2	UG/L
NICKEL	10/1/2014	10	100	10	100	UG/L
SILVER	10/1/2014	10	100	10	100	UG/L
ZINC	10/1/2014	120	5000	50	5000	UG/L
ANTIMONY	10/1/2014	2	6	6	6	UG/L
ALUMINUM	10/1/2014	50	1000	50	200	UG/L
SELENIUM	10/1/2014	2.2	50	5	50	UG/L
GROSS ALPHA	11/20/2008	19.4	15	3	5	PCI/L
GROSS ALPHA	11/4/2010	44.4	15	3	5	PCI/L
GROSS ALPHA	12/7/2011	50.8	15	3	5	PCI/L
GROSS ALPHA	2/1/2012	43.5	15	3	5	PCI/L
RADIUM 228	10/1/2014	1	0	1	0	1.0.1.0
URANIUM (PCI/L)	11/20/2008	31	20	1	20	PCI/L
URANIUM (PCI/L)	12/7/2011	42	20	1	20	PCI/I
URANIUM (PCI/L)	7/10/2013	29	20	1	20	PCI/I
URANIUM (PCI/I)	11/26/2013	27	20	1	20	PCI/I
	5/7/2014	31	20	1	20	PCI/L
	7/1/2014	21	20	1	20	
	11/5/2014	21	20	1	20	
	2/4/2015	20	20	1	20	PCI/L
	2/4/2013	29	20	1	20	ru/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
URANIUM (PCI/L)	5/6/2015	37	20	1	20	PCI/L
URANIUM (PCI/L)	7/8/2015	34	20	1	20	PCI/L
URANIUM (PCI/L)	2/3/2016	43	20	1	20	PCI/L
BROMODICHLOROMETHANE (THM)	10/1/2014	0.5	0	1	0	UG/L
CARBON TETRACHLORIDE	10/1/2014	0.5	0.5	0.5	0.5	UG/L
BROMOFORM (THM)	10/1/2014	0.5	0	1	0	UG/L
DIBROMOCHLOROMETHANE (THM)	10/1/2014	0.5	0	1	0	UG/L
CHLOROFORM (THM)	10/1/2014	0.5	0	1	0	UG/L
TOLUENE	10/1/2014	0.5	150	0.5	0.5	UG/L
BENZENE	10/1/2014	0.5	1	0.5	0.5	UG/L
MONOCHLOROBENZENE	10/1/2014	0.5	- 70	0.5	0.5	UG/L
CHLOROETHANE	10/1/2014	0.5	0	0.5	0.5	UG/L
ETHYLBENZENE	10/1/2014	0.5	300	0.5	0.5	UG/L
HEXACHLOROBUTADIENE	10/1/2014	0.5	0	0.5	0.5	UG/L
BROMOMETHANE	10/1/2014	1	0	0.5	0.5	UG/L
CHLOROMETHANE	10/1/2014	0.5	0	0.5	0.5	UG/L
DICHLOROMETHANE	10/1/2014	0.5	5	0.5	0.5	UG/L
TETRACHLOROETHYLENE	10/1/2014	0.5	5	0.5	0.5	UG/L
TRICHLOROFLUOROMETHANE	10/1/2014	0.5	150	5	5	UG/L
1,1-DICHLOROETHANE	10/1/2014	0.5	5	0.5	0.5	UG/L
1,1-DICHLOROETHYLENE	10/1/2014	0.5	6	0.5	0.5	UG/L
1,1,1-TRICHLOROETHANE	10/1/2014	0.5	200	0.5	0.5	UG/L
1,1,2-TRICHLOROETHANE	10/1/2014	0.5	5	0.5	0.5	UG/L
1,1,2,2-TETRACHLOROETHANE	10/1/2014	0.5	1	0.5	0.5	UG/L
1,2-DICHLOROETHANE	10/1/2014	0.5	0.5	0.5	0.5	UG/L
1,2-DICHLOROBENZENE	10/1/2014	0.5	600	0.5	0.5	UG/L
1,2-DICHLOROPROPANE	10/1/2014	0.5	5	0.5	0.5	UG/L
TRANS-1,2-DICHLOROETHYLENE	10/1/2014	0.5	10	0.5	0.5	UG/L
1,2,4-TRICHLOROBENZENE	10/1/2014	0.5	5	0.5	5	UG/L
1,3-DICHLOROPROPENE (TOTAL)	1/30/2013	0.5	0.5	0.5	0.5	UG/L
1,3-DICHLOROPROPENE (TOTAL)	10/1/2014	0.5	0.5	0.5	0.5	UG/L
1,3-DICHLOROBENZENE	10/1/2014	0.5	0	0.5	600	UG/L
1,4-DICHLOROBENZENE	10/1/2014	0.5	5	0.5	0.5	UG/L
2-CHLOROETHYLVINYL ETHER	10/1/2014	10	0	0	0	UG/L
DICHLORODIFLUOROMETHANE (FREON 12)	10/1/2014	0.5	1000	0.5	1000	UG/L
NAPHTHALENE	10/1/2014	0.5	170	0.5	170	UG/L
FOAMING AGENTS (MBAS)	10/1/2014	0.1	0.5	0	0.5	MG/L
DIBROMOCHLOROPROPANE (DBCP)	4/11/2012	0.01	0.2	0.01	0.01	UG/L
ATRAZINE	10/1/2014	0.3	1	0.5	1	UG/L
SIMAZINE	10/1/2014	0.3	4	1	1	UG/L
VINYL CHLORIDE	10/1/2014	0.5	0.5	0.5	0.5	UG/L
TRICHLOROETHYLENE	10/1/2014	0.5	5	0.5	0.5	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	2/13/2008	0.5	13	3	3	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	10/1/2014	0.5	13	3	3	UG/L
TOTAL DISSOLVED SOLIDS	2/13/2008	620	1000	0	500	MG/L
TOTAL DISSOLVED SOLIDS	10/1/2014	790	1000	0	500	MG/L
HYDROXIDE ALKALINITY	2/13/2008	5	0	0	0	MG/L
HYDROXIDE ALKALINITY	10/1/2014	2.8	0	0	0	MG/L
NITRATE (AS NO3)	4/1/2008	49	45	2	23	MG/L
NITRATE (AS NO3)	8/28/2008	49	45	2	23	MG/L
NITRATE (AS NO3)	1/8/2009	35	45	2	23	MG/L
NITRATE (AS NO3)	12/21/2011	75	45	2	23	MG/L
NITRATE (AS NO3)	1/9/2013	62	45	2	23	MG/L
NITRATE (AS NO3)	7/10/2013	100	45	2	23	MG/L
NITRATE (AS NO3)	10/16/2013	110	45	2	23	MG/L
NITRATE (AS NO3)	5/7/2014	110	45	2	23	MG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
NITRATE (AS NO3)	7/16/2014	8.7	45	2	23	MG/L
NITRATE (AS NO3)	10/1/2014	110	45	2	23	MG/L
NITRATE (AS NO3)	11/5/2014	86	45	2	23	MG/L
NITRATE (AS NO3)	2/4/2015	83	45	2	23	MG/L
NITRATE (AS NO3)	5/6/2015	99	45	2	23	MG/L
NITRATE (AS NO3)	7/8/2015	88	45	2	23	MG/L
MERCURY	10/1/2014	0.2	2	1	2	UG/L
TERT-BUTYL ALCOHOL (TBA)	10/1/2014	10	12	2	12	UG/L
CIS-1,2-DICHLOROETHYLENE	10/1/2014	0.5	6	0.5	0.5	UG/L
STYRENE	10/1/2014	0.5	100	0.5	0.5	UG/L
1,1-DICHLOROPROPENE	10/1/2014	0.5	0	0.5	0.5	UG/L
2,2-DICHLOROPROPANE	10/1/2014	0.5	0	0.5	0.5	UG/L
1,3-DICHLOROPROPANE	10/1/2014	0.5	0	0.5	0.5	UG/L
1,2,4-TRIMETHYLBENZENE	10/1/2014	0.5	330	0.5	330	UG/L
ISOPROPYLBENZENE	10/1/2014	0.5	770	0.5	770	UG/L
N-PROPYLBENZENE	10/1/2014	0.5	260	0.5	260	UG/L
1,3,5-TRIMETHYLBENZENE	10/1/2014	0.5	330	0.5	330	UG/L
SEC-BUTYLBENZENE	10/1/2014	0.5	260	0.5	0.5	UG/L
TERT-BUTYLBENZENE	10/1/2014	0.5	260	0.5	0.5	UG/L
1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	10/1/2014	1	0.005	0.005	0.005	UG/L
1,1,1,2-TETRACHLOROETHANE	10/1/2014	0.5	0	0.5	0.5	UG/L
DIBROMOMETHANE	10/1/2014	0.5	0	0.5	0.5	UG/L
1,2,3-TRICHLOROBENZENE	10/1/2014	0.5	0	0.5	0.5	UG/L
ETHYLENE DIBROMIDE (EDB)	4/11/2012	0.01	0.05	0.02	0.02	UG/L
XYLENES (TOTAL)	10/1/2014	1	1750	0	1750	UG/L
BROMOBENZENE	10/1/2014	0.5	0	0.5	0.5	UG/L
TRICHLOROTRIFLUOROETHANE (FREON 113)	10/1/2014	0.5	1200	10	10	UG/L
ASBESTOS	4/24/2010	0	7	0.2	7	MFL
TURBIDITY, LABORATORY	10/1/2014	1.5	5	0.1	5	NTU
TOTAL TRIHALOMETHANES	10/1/2014	2	80	0	80	UG/L
2-CHLOROTOLUENE	10/1/2014	0.5	140	0.5	0.5	UG/L
4-CHLOROTOLUENE	10/1/2014	0.5	140	0.5	140	UG/L
N-BUTYLBENZENE	10/1/2014	0.5	260	0.5	70	UG/L
P-ISOPROPYLTOLUENE	10/1/2014	0.5	0	0	0	UG/L
BROMOCHLOROMETHANE	10/1/2014	0.5	0	0.5	0.5	UG/L
PERCHLORATE	5/6/2008	4	6	4	4	UG/L
PERCHLORATE	6/3/2015	4	6	4	4	UG/L
ETHYL-TERT-BUTYL ETHER	10/1/2014	0.5	0	3	0	UG/L
TERT-AMYL-METHYL ETHER	10/1/2014	0.5	0	3	0	UG/L
GROSS ALPHA MDA95	11/20/2008	0.343	3.001	0	0	PCI/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COLOR	3/13/2007	4	15	0	15	UNITS
COLOR	4/22/2010	15	15	0	15	UNITS
ODOR THRESHOLD @ 60 C	3/13/2007	0	3	1	3	TON
ODOR THRESHOLD @ 60 C	4/22/2010	0	3	1	3	TON
SPECIFIC CONDUCTANCE	3/13/2007	823	1600	0	900	US
SPECIFIC CONDUCTANCE	4/22/2010	766	1600	0	900	US
PH, LABORATORY	3/13/2007	7.77	0	0	0	
PH, LABORATORY	4/22/2010	7.52	0	0	0	
ALKALINITY (TOTAL) AS CACO3	3/13/2007	260	0	0	0	MG/L
ALKALINITY (TOTAL) AS CACO3	4/22/2010	240	0	0	0	MG/L
BICARBONATE ALKALINITY	3/13/2007	320	0	0	0	MG/L
BICARBONATE ALKALINITY	4/22/2010	300	0	0	0	MG/L
CARBONATE ALKALINITY	3/13/2007	3	0	0	0	MG/L
CARBONATE ALKALINITY	4/22/2010	2.5	0	0	0	MG/L
NITRATE (as N)	11/4/2015	2.8	10	0.4	5	mg/L
NITRATE (as N)	2/3/2016	17	10	0.4	5	mg/L
NITRITE (AS N)	3/13/2007	50	1	0.4	0.5	mg/L
NITRITE (AS N)	4/22/2010	50	1	0.4	0.5	mg/L
HARDNESS (TOTAL) AS CACO3	3/13/2007	300	0	0	0	MG/L
HARDNESS (TOTAL) AS CACO3	4/22/2010	270	0	0	0	MG/L
CALCIUM	3/13/2007	93	0	0	0	MG/L
CALCIUM	4/22/2010	82	0	0	0	MG/L
MAGNESIUM	3/13/2007	17	0	0	0	MG/L
MAGNESIUM	4/22/2010	16	0	0	0	MG/L
SODIUM	3/13/2007	67	0	0	0	MG/L
SODIUM	4/22/2010	71	0	0	0	MG/L
POTASSIUM	3/13/2007	3.6	0	0	0	MG/L
POTASSIUM	4/22/2010	3.4	0	0	0	MG/L
CHLORIDE	3/13/2007	30	500	0	250	MG/L
CHLORIDE	4/22/2010	30	500	0	250	MG/L
SULFATE	3/13/2007	120	500	0.5	250	MG/L
SULFATE	4/22/2010	110	500	0.5	250	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	3/13/2007	0.86	2	0.1	2	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	4/22/2010	0.84	2	0.1	2	MG/L
ARSENIC	3/13/2007	3.1	10	2	5	UG/L
ARSENIC	4/22/2010	2.1	10	2	5	UG/L
BARIUM	3/13/2007	180	1000	100	1000	UG/L
BARIUM	4/22/2010	170	1000	100	1000	UG/L
BERYLLIUM	3/13/2007	1	4	1	4	UG/L
BERYLLIUM	4/22/2010	1	4	1	4	UG/L
CADMIUM	3/13/2007	1	5	1	5	UG/L
CADMIUM	4/22/2010	1	5	1	5	UG/L
CHROMIUM, HEXAVALENT	9/3/2014	0.57	10	1	10	UG/L
CHROMIUM (TOTAL)	3/13/2007	10	50	10	50	UG/L
CHROMIUM (TOTAL)	4/22/2010	10	50	10	50	UG/L
COPPER	3/13/2007	12	1000	50	1000	UG/L
COPPER	4/22/2010	10	1000	50	1000	UG/L
IRON	3/13/2007	480	300	100	300	UG/L
IRON	4/22/2010	520	300	100	300	UG/L
LEAD	3/13/2007	1.6	0	5	15	UG/L
LEAD	4/22/2010	1	0	5	15	UG/L
MANGANESE	3/13/2007	46	50	20	50	UG/L
MANGANESE	4/22/2010	39	50	20	50	UG/L
THALLIUM	3/13/2007	1	2	1	2	UG/L
THALLIUM	4/22/2010	1	2	1	2	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
NICKEL	3/13/2007	10	100	10	100	UG/L
NICKEL	4/22/2010	10	100	10	100	UG/L
SILVER	3/13/2007	10	100	10	100	UG/L
SILVER	4/22/2010	10	100	10	100	UG/L
ZINC	3/13/2007	50	5000	50	5000	UG/L
ZINC	4/22/2010	50	5000	50	5000	UG/L
ANTIMONY	3/13/2007	2	6	6	6	UG/L
ANTIMONY	4/22/2010	2	6	6	6	UG/L
ALUMINUM	3/13/2007	50	1000	50	200	UG/L
ALUMINUM	4/22/2010	50	1000	50	200	UG/L
SELENIUM	3/13/2007	2	50	5	50	UG/L
SELENIUM	4/22/2010	2	50	5	50	UG/L
GROSS ALPHA	11/20/2008	44.7	15	3	5	PCI/L
GROSS ALPHA	8/3/2011	58.3	15	3	5	PCI/L
GROSS ALPHA	5/9/2012	49.5	15	3	5	PCI/L
GROSS ALPHA	8/1/2012	46	15	3	5	PCI/L
URANIUM (PCI/L)	11/20/2008	60	20	1	20	PCI/L
URANIUM (PCI/L)	12/8/2009	48	20	1	20	PCI/L
URANIUM (PCI/L)	8/3/2011	36	20	1	20	PCI/L
URANIUM (PCI/L)	8/1/2012	41	20	1	20	PCI/I
URANIUM (PCI/L)	7/10/2012	29	20	1	20	PCI/I
URANIUM (PCI/L)	10/31/2013	29	20	1	20	PCI/I
URANIUM (PCI/L)	11/13/2013	29	20	1	20	PCI/L
URANIUM (PCI/L)	2/5/2014	20	20	1	20	PCI/L
	5/7/2014	20	20	1	20	PCI/L
UDANIUM (DCI/L)	7/16/2014	30	20	1	20	
UDANIUM (PCI/L)	8/6/2014	20	20	1	20	
UDANIUM (PCI/L)	11/5/2014	20	20	1	20	
UDANIUM (PCI/L)	2/4/2015	24	20	1	20	
UDANIUM (PCI/L)	5/6/2015	12	20	1	20	
URANIUM (PCI/L)	8/5/2015	42	20	1	20	PCI/L
UDANIUM (PCI/L)	0/3/2013	10	20	1	20	
URANIUM (PCI/L)	2/2/2016	45	20	1	20	PCI/L DCI/L
DRAMON (FCI/L)	2/3/2010	25	20	1	20	FCI/L
CARDON TETRACULORIDE	1/30/2013	0.5	05	1	0	UG/L
	1/30/2013	0.5	0.5	1	0.5	
	1/30/2013	0.5	0	1	0	
	1/30/2013	0.5	0	1	0	
	1/30/2013	0.5	150	1	0.5	UG/L
	1/30/2013	0.5	130	0.5	0.5	
DEINZEINE MONOCUI ODODENZENE	1/30/2013	0.5	1 70	0.5	0.5	
WUNUCHLUKUBENZENE	1/30/2013	0.5	70	0.5	0.5	UG/L
URLUKUETHANE	1/30/2013	0.5	200	0.5	0.5	
	1/30/2013	0.5	300	0.5	0.5	UG/L
HEAACHLUKUBU I ADIENE	1/30/2013	0.5	0	0.5	0.5	UG/L
BRUMOMETHANE	1/30/2013	0.5	0	0.5	0.5	UG/L
CHLOKOMETHANE	1/30/2013	0.5	0	0.5	0.5	UG/L
DICHLOROMETHANE	1/30/2013	0.5	5	0.5	0.5	UG/L
TETRACHLOROETHYLENE	1/30/2013	0.5	5	0.5	0.5	UG/L
TRICHLOROFLUOROMETHANE	1/30/2013	0.5	150	5	5	UG/L
1,1-DICHLOROETHANE	1/30/2013	0.5	5	0.5	0.5	UG/L
1,1-DICHLOROETHYLENE	1/30/2013	0.5	6	0.5	0.5	UG/L
1,1,1-TRICHLOROETHANE	1/30/2013	0.5	200	0.5	0.5	UG/L
1,1,2-TRICHLOROETHANE	1/30/2013	0.5	5	0.5	0.5	UG/L
1,1,2,2-TETRACHLOROETHANE	1/30/2013	0.5	1	0.5	0.5	UG/L
1,2-DICHLOROETHANE	1/30/2013	0.5	0.5	0.5	0.5	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
1,2-DICHLOROBENZENE	1/30/2013	0.5	600	0.5	0.5	UG/L
1,2-DICHLOROPROPANE	1/30/2013	0.5	5	0.5	0.5	UG/L
TRANS-1,2-DICHLOROETHYLENE	1/30/2013	0.5	10	0.5	0.5	UG/L
1,2,4-TRICHLOROBENZENE	1/30/2013	0.5	- 5	0.5	5	UG/L
1,3-DICHLOROPROPENE (TOTAL)	1/30/2013	0.5	0.5	0.5	0.5	UG/L
1,3-DICHLOROBENZENE	1/30/2013	0.5	0	0.5	600	UG/L
1,4-DICHLOROBENZENE	1/30/2013	0.5	5	0.5	0.5	UG/L
DICHLORODIFLUOROMETHANE (FREON 12)	1/30/2013	0.5	1000	0.5	1000	UG/L
NAPHTHALENE	1/30/2013	0.5	- 170	0.5	170	UG/L
TRANS-1,3-DICHLOROPROPENE	1/30/2013	0.5	0.5	0.5	0	UG/L
CIS-1,3-DICHLOROPROPENE	1/30/2013	0.5	0.5	0.5	0.5	UG/L
FOAMING AGENTS (MBAS)	3/13/2007	0.2	0.5	0	0.5	MG/L
FOAMING AGENTS (MBAS)	4/22/2010	0.2	0.5	0	0.5	MG/L
ATRAZINE	4/11/2012	0.3	1	0.5	1	UG/L
ATRAZINE	3/20/2013	0.3	1	0.5	1	UG/L
SIMAZINE	4/11/2012	0.3	4	1	1	UG/L
SIMAZINE	3/20/2013	0.3	4	1	1	UG/L
VINYL CHLORIDE	1/30/2013	0.5	0.5	0.5	0.5	UG/L
TRICHLOROETHYLENE	1/30/2013	0.5	5	0.5	0.5	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	1/30/2013	0.5	13	3	3	UG/L
TOTAL DISSOLVED SOLIDS	3/13/2007	520	1000	0	500	MG/L
TOTAL DISSOLVED SOLIDS	4/22/2010	470	- 1000	0	500	MG/L
HYDROXIDE ALKALINITY	3/13/2007	1.6	0	0	0	MG/L
HYDROXIDE ALKALINITY	4/22/2010	1.4	0	0	0	MG/L
NITRATE (AS NO3)	12/19/2006	10	45	2	23	MG/L
NITRATE (AS NO3)	3/13/2007	3.1	45	2	23	MG/L
NITRATE (AS NO3)	5/20/2008	16	45	2	23	MG/L
NITRATE (AS NO3)	3/11/2010	15	45	2	23	MG/L
NITRATE (AS NO3)	4/22/2010	2.4	45	2	23	MG/L
NITRATE (AS NO3)	1/9/2013	3.9	45	2	23	MG/L
NITRATE (AS NO3)	10/31/2013	5.7	45	2	23	MG/L
NITRATE (AS NO3)	11/13/2013	5.8	45	2	23	MG/L
NITRATE (AS NO3)	2/5/2014	6.2	45	2	23	MG/L
NITRATE (AS NO3)	5/7/2014	8.4	45	2	23	MG/L
NITRATE (AS NO3)	7/16/2014	120	45	2	23	MG/L
NITRATE (AS NO3)	11/19/2014	7.7	45	2	23	MG/L
NITRATE (AS NO3)	2/4/2015	6.8	45	2	23	MG/L
NITRATE (AS NO3)	5/6/2015	7.8	45	2	23	MG/L
MERCURY	3/13/2007	0.2	2	1	2	UG/L
MERCURY	4/22/2010	0.2	2	1	2	UG/L
TERT-BUTYL ALCOHOL (TBA)	1/30/2013	10	12	2	12	UG/L
CIS-1.2-DICHLOROETHYLENE	1/30/2013	0.5	6	0.5	0.5	UG/L
STYRENE	1/30/2013	0.5	100	0.5	0.5	UG/L
O-XYLENE	1/30/2013	0.5	0	0.5	0	UG/L
1.1-DICHLOROPROPENE	1/30/2013	0.5	0	0.5	0.5	UG/L
2.2-DICHLOROPROPANE	1/30/2013	0.5	0	0.5	0.5	UG/L
1 3-DICHLOROPROPANE	1/30/2013	0.5	0	0.5	0.5	UG/L
1 2 4-TRIMETHYL BENZENE	1/30/2013	0.5	330	0.5	330	UG/L
ISOPROPYLBENZENE	1/30/2013	0.5	770	0.5	770	UG/L
N-PROPYL BENZENE	1/30/2013	0.5	260	0.5	260	UG/L
1 3 5-TRIMETHYL BENZENE	1/30/2013	0.5	330	0.5	330	UG/L
SEC-BUTYI BENZENE	1/30/2013	0.5	260	0.5	0.5	UG/L
TERT-BUTYL BENZENE	1/30/2013	0.5	260	0.5	0.5	UG/I
1 2 3-TRICHLOROPROPANE (1 2 3 -TCP)	10/25/2006	0.005	0.005	0.005	0.005	UG/I
1,2,3 TRICHLOROPROPANE (1,2,3,-TCP)	1/30/2013	1	0.005	0.005	0.005	UG/L
1,2,5 INTEREDICTION (1,2,5,-101)	1/50/2015	1	0.005	0.005	0.005	00/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
1,1,1,2-TETRACHLOROETHANE	1/30/2013	0.5	0	0.5	0.5	UG/L
DIBROMOMETHANE	1/30/2013	0.5	0	0.5	0.5	UG/L
1,2,3-TRICHLOROBENZENE	1/30/2013	0.5	0	0.5	0.5	UG/L
ALACHLOR	3/20/2013	0.2	2	1	1	UG/L
XYLENES (TOTAL)	1/30/2013	1	1750	0	1750	UG/L
BROMOBENZENE	1/30/2013	0.5	0	0.5	0.5	UG/L
TRICHLOROTRIFLUOROETHANE (FREON 113)	1/30/2013	0.5	1200	10	10	UG/L
ASBESTOS	4/24/2010	0	7	0.2	7	MFL
TURBIDITY, LABORATORY	3/13/2007	2.9	5	0.1	5	NTU
TURBIDITY, LABORATORY	4/22/2010	0.1	5	0.1	5	NTU
TOTAL TRIHALOMETHANES	1/30/2013	2	80	0	80	UG/L
2-CHLOROTOLUENE	1/30/2013	0.5	140	0.5	0.5	UG/L
4-CHLOROTOLUENE	1/30/2013	0.5	140	0.5	140	UG/L
N-BUTYLBENZENE	1/30/2013	0.5	260	0.5	70	UG/L
P-ISOPROPYLTOLUENE	1/30/2013	0.5	0	0	0	UG/L
BROMOCHLOROMETHANE	1/30/2013	0.5	0	0.5	0.5	UG/L
M,P-XYLENE	1/30/2013	0.5	0	0.5	0	UG/L
PERCHLORATE	11/28/2007	4	6	4	4	UG/L
PERCHLORATE	5/6/2008	4	6	4	4	UG/L
PERCHLORATE	6/3/2015	4	6	4	4	UG/L
ETHYL-TERT-BUTYL ETHER	1/30/2013	0.5	0	3	0	UG/L
TERT-AMYL-METHYL ETHER	1/30/2013	0.5	0	3	0	UG/L
DIISOPROPYL ETHER	1/30/2013	0.5	0	3	0	UG/L
GROSS ALPHA MDA95	11/20/2008	0.343	3.001	0	0	PCI/L
GROSS ALPHA MDA95	5/9/2012	1.09	3.001	0	0	PCI/L
GROSS ALPHA MDA95	8/1/2012	1.16	3.001	0	0	PCI/L

Sierra Vista Restaurant PS ID# 1502194-001 Well 1 Water Quality Results

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
NITRATE (as N)	9/21/2015	14	10	0.4	5	mg/L
NITRATE (as N)	12/29/2015	14	10	0.4	5	mg/L
NITRITE (AS N)	3/17/2014	50	1	0.4	0.5	mg/L
NITRATE (AS NO3)	3/9/2007	61	45	2	23	MG/L
NITRATE (AS NO3)	7/30/2007	64	45	2	23	MG/L
NITRATE (AS NO3)	1/15/2008	64	45	2	23	MG/L
NITRATE (AS NO3)	4/8/2008	68	45	2	23	MG/L
NITRATE (AS NO3)	7/14/2008	67	45	2	23	MG/L
NITRATE (AS NO3)	10/6/2008	69	45	2	23	MG/L
NITRATE (AS NO3)	1/13/2009	60	45	2	23	MG/L
NITRATE (AS NO3)	4/13/2009	72	45	2	23	MG/L
NITRATE (AS NO3)	8/17/2009	72	45	2	23	MG/L
NITRATE (AS NO3)	11/30/2009	72	45	2	23	MG/L
NITRATE (AS NO3)	3/1/2010	67	45	2	23	MG/L
NITRATE (AS NO3)	7/6/2010	71	45	2	23	MG/L
NITRATE (AS NO3)	10/25/2010	64	45	2	23	MG/L
NITRATE (AS NO3)	1/10/2011	62	45	2	23	MG/L
NITRATE (AS NO3)	8/8/2011	64	45	2	23	MG/L
NITRATE (AS NO3)	11/8/2011	58	45	2	23	MG/L
NITRATE (AS NO3)	2/27/2012	57	45	2	23	MG/L
NITRATE (AS NO3)	6/18/2012	54	45	2	23	MG/L
NITRATE (AS NO3)	11/5/2012	52	45	2	23	MG/L
NITRATE (AS NO3)	2/12/2013	54	45	2	23	MG/L
NITRATE (AS NO3)	9/9/2013	56	45	2	23	MG/L
NITRATE (AS NO3)	12/16/2013	54	45	2	23	MG/L
NITRATE (AS NO3)	3/3/2014	56	45	2	23	MG/L
NITRATE (AS NO3)	6/9/2014	55	45	2	23	MG/L
NITRATE (AS NO3)	9/22/2014	56	45	2	23	MG/L
NITRATE (AS NO3)	12/29/2014	56	45	2	23	MG/L
NITRATE (AS NO3)	3/23/2015	57	45	2	23	MG/L
NITRATE (AS NO3)	6/8/2015	59	45	2	23	MG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COLOR	4/22/2010	1	15	0	15	UNITS
COLOR	6/5/2013	1	15	0	15	UNITS
ODOR THRESHOLD @ 60 C	4/22/2010	0	3	1	3	TON
ODOR THRESHOLD @ 60 C	6/5/2013	0	3	1	3	TON
SPECIFIC CONDUCTANCE	4/22/2010	578	1600	0	900	US
SPECIFIC CONDUCTANCE	6/5/2013	608	1600	0	900	US
PH, LABORATORY	4/22/2010	7.51	0	0	0	
PH, LABORATORY	6/5/2013	7.62	0	0	0	
ALKALINITY (TOTAL) AS CACO3	4/22/2010	220	0	0	0	MG/L
ALKALINITY (TOTAL) AS CACO3	6/5/2013	220	0	0	0	MG/L
BICARBONATE ALKALINITY	4/22/2010	270	0	0	0	MG/L
BICARBONATE ALKALINITY	6/5/2013	270	0	0	0	MG/L
CARBONATE ALKALINITY	4/22/2010	2.5	0	0	0	MG/L
CARBONATE ALKALINITY	6/5/2013	2.5	0	0	0	MG/L
NITRATE (as N)	12/2/2015	1.5	10	0.4	5	mg/L
NITRITE (AS N)	4/22/2010	50	1	0.4	0.5	mg/L
NITRITE (AS N)	6/5/2013	50	1	0.4	0.5	mg/L
HARDNESS (TOTAL) AS CACO3	4/22/2010	180	0	0	0	MG/L
HARDNESS (TOTAL) AS CACO3	6/5/2013	190	0	0	0	MG/L
CALCIUM	4/22/2010	54	0	0	0	MG/L
CALCIUM	6/5/2013	57	0	0	0	MG/L
MAGNESIUM	4/22/2010	10	0	0	0	MG/L
MAGNESIUM	6/5/2013	11	0	0	0	MG/L
SODIUM	4/22/2010	54	0	0	0	MG/L
SODIUM	6/5/2013	49	0	0	0	MG/L
POTASSIUM	4/22/2010	2.6	0	0	0	MG/L
POTASSIUM	6/5/2013	3.3	0	0	0	MG/L
CHLORIDE	4/22/2010	20	500	0	250	MG/L
CHLORIDE	6/5/2013	25	500	0	250	MG/L
SULFATE	4/22/2010	41	500	0.5	250	MG/L
SULFATE	6/5/2013	43	500	0.5	250	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	4/22/2010	0.66	2	0.1	2	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	6/5/2013	0.44	2	0.1	2	MG/L
ARSENIC	4/22/2010	2	10	2	5	UG/L
ARSENIC	6/5/2013	2	10	2	5	UG/L
BARIUM	4/22/2010	41	1000	100	1000	UG/L
BARIUM	6/5/2013	53	1000	100	1000	UG/L
BERYLLIUM	4/22/2010	1	4	1	4	UG/L
BERYLLIUM	6/5/2013	1	4	1	4	UG/L
CADMIUM	4/22/2010	1	5	1	5	UG/L
CADMIUM	6/5/2013	1	5	1	5	UG/L
CHROMIUM, HEXAVALENT	9/10/2014	0.33	10	1	10	UG/L
CHROMIUM (TOTAL)	4/22/2010	10	50	10	50	UG/L
CHROMIUM (TOTAL)	6/5/2013	10	50	10	50	UG/L
COPPER	4/22/2010	10	1000	50	1000	UG/L
COPPER	6/5/2013	10	1000	50	1000	UG/L
MAGNESIUM SODIUM SODIUM POTASSIUM POTASSIUM CHLORIDE CHLORIDE SULFATE SULFATE FLUORIDE (F) (NATURAL-SOURCE) FLUORIDE (F) (NATURAL-SOURCE) ARSENIC ARSENIC BARIUM BARIUM BERYLLIUM BERYLLIUM CADMIUM CADMIUM CADMIUM, HEXAVALENT CHROMIUM, HEXAVALENT CHROMIUM (TOTAL) COPPER COPPER	6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010 6/5/2013 9/10/2014 4/22/2010 6/5/2013 9/10/2014 4/22/2010 6/5/2013 9/10/2014 4/22/2010 6/5/2013 4/22/2010 6/5/2013 4/22/2010	11 54 49 2.6 3.3 20 25 41 43 0.66 0.44 2 21 53 1 1 1 0.33 10 10 10 10 10	0 0 0 0 0 500 500 500 2 2 10 1000 4 4 5 10 500 50 1000 4000 1000 1000 1000 1000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.1 0.1 2 100 1 1 1 10 50 50	0 0 0 0 0 250 250 250 250 250 2 5 1000 4 4 5 10 50 50 1000 1000	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
IRON	4/22/2010	50	300	100	300	UG/L
IRON	6/5/2013	-50	300	100	300	UG/L
LEAD	4/22/2010	1	0	5	15	UG/L
LEAD	6/5/2013	1	0	5	15	UG/L
MANGANESE	4/22/2010	10	50	20	50	UG/L
MANGANESE	6/5/2013	10	50	20	50	UG/L
THALLIUM	4/22/2010	1	2	1	2	UG/L
THALLIUM	6/5/2013	1	2	1	2	UG/L
NICKEL	4/22/2010	10	100	10	100	UG/L
NICKEL	6/5/2013	10	100	10	100	UG/L
SILVER	4/22/2010	10	100	10	100	UG/L
SILVER	6/5/2013	10	100	10	100	UG/L
ZINC	4/22/2010	210	5000	50	5000	UG/L
ZINC	6/5/2013	50	5000	50	5000	UG/L
ANTIMONY	4/22/2010	2	6	6	6	UG/L
ANTIMONY	6/5/2013	2	6	6	6	UG/L
ALUMINUM	4/22/2010	50	1000	50	200	UG/L
ALUMINUM	6/5/2013	50	1000	50	200	UG/L
SELENIUM	4/22/2010	2	50	5	50	UG/L
SELENIUM	6/5/2013	_2	50	5	50	UG/L
GROSS ALPHA	5/7/2007	15.1	15	3	5	PCI/L
GROSS ALPHA	8/6/2007	15.6	15	3	5	PCI/L
GROSS ALPHA	5/20/2008	15.2	15	3	5	PCI/L
GROSS ALPHA	9/18/2008	13.1	15	3	5	PCI/L
GROSS ALPHA	3/23/2011	14.6	15	3	5	PCI/L
GROSS ALPHA	5/4/2011	13.2	15	3	5	PCI/L
GROSS ALPHA	8/10/2011	19.9	15	3	5	PCI/L
GROSS ALPHA	10/19/2011	15.2	15	3	5	PCI/L
GROSS ALPHA	12/7/2011	15	15	3	5	PCI/L
GROSS ALPHA	3/14/2012	13.1	15	3	5	PCI/L
GROSS ALPHA	6/13/2012	11.5	15	3	5	PCI/L
GROSS ALPHA	2/3/2016	21.4	15	3	5	PCI/L
GROSS ALPHA COUNTING ERROR	5/7/2007	3.1	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	8/6/2007	3.6	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	5/20/2008	1.37	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	9/18/2008	1.4	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	3/23/2011	0.54	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	5/4/2011	0.52	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	8/10/2011	0.44	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	3/14/2012	0.658	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	6/13/2012	0.539	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	2/3/2016	0.73	0	0	0	PCI/L
RADIUM 226	5/7/2007	0.13	0	1	0	PCI/L
RADIUM 226	11/16/2011	1	0	1	0	PCI/L
RADIUM 226	3/14/2012	1	0	1	0	PCI/L
RADIUM 226 COUNTING ERROR	5/7/2007	0.08	0	0	0	PCI/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
RADIUM 226 COUNTING ERROR	11/16/2011	0.137	0	0	0	PCI/L
RADIUM 226 COUNTING ERROR	3/14/2012	0.484	0	0	0	PCI/L
RADIUM 228	5/7/2007	0.94	0	1	0	
RADIUM 228	5/20/2008	0.05	0	1	0	
RADIUM 228	11/16/2011	1.59	0	1	0	1
RADIUM 228	3/14/2012	2.88	0	1	0	
RADIUM 228 COUNTING ERROR	5/7/2007	0.28	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	5/20/2008	0.24	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	11/16/2011	0.568	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	3/14/2012	0.634	0	0	0	PCI/L
COMBINED RA 226 + RA 228	5/7/2007	1.07	5	0	5	
COMBINED RA 226 + RA 228 COUNTING ERROR	5/7/2007	0.36	0	0	0	PCI/L
URANIUM (PCI/L)	8/6/2007	26.8	20	1	20	PCI/L
URANIUM (PCI/L)	5/20/2008	17	20	1	20	PCI/L
URANIUM (PCI/L)	9/18/2008	21	20	1	20	PCI/L
URANIUM (PCI/L)	3/30/2009	10.005	20	1	20	PCI/L
URANIUM (PCI/L)	3/23/2011	16	20	1	20	PCI/L
URANIUM (PCI/L)	5/4/2011	17	20	1	20	PCI/L
URANIUM (PCI/L)	8/10/2011	16	20	1	20	PCI/L
URANIUM (PCI/L)	10/19/2011	14	20	1	20	PCI/L
URANIUM (PCI/L)	12/7/2011	15	20	1	20	PCI/L
URANIUM (PCI/L)	3/14/2012	17	20	1	20	PCI/L
URANIUM (PCI/L)	6/13/2012	15	20	1	20	PCI/L
URANIUM (PCI/L)	12/11/2013	14	20	1	20	PCI/L
URANIUM (PCI/L)	3/19/2014	15	20	1	20	PCI/L
URANIUM (PCI/L)	6/17/2014	17	20	1	20	PCI/L
URANIUM (PCI/L)	9/10/2014	13	20	1	20	PCI/L
URANIUM (PCI/L)	12/4/2014	14	20	1	20	PCI/L
URANIUM (PCI/L)	3/3/2015	15	20	1	20	PCI/L
URANIUM (PCI/L)	6/3/2015	14	20	1	20	PCI/L
URANIUM (PCI/L)	9/23/2015	17	20	1	20	PCI/L
URANIUM (PCI/L)	12/2/2015	18	20	1	20	PCI/L
URANIUM (PCI/L)	3/2/2016	16	20	1	20	PCI/L
BROMODICHLOROMETHANE (THM)	11/5/2013	0.5	0	1	0	UG/L
CARBON TETRACHLORIDE	11/5/2013	0.5	0.5	0.5	0.5	UG/L
BROMOFORM (THM)	11/5/2013	0.5	0	1	0	UG/L
DIBROMOCHLOROMETHANE (THM)	11/5/2013	0.5	0	1	0	UG/L
CHLOROFORM (THM)	11/5/2013	0.5	0	1	0	UG/L
TOLUENE	11/5/2013	0.5	150	0.5	0.5	UG/L
BENZENE	11/5/2013	0.5	1	0.5	0.5	UG/L
MONOCHLOROBENZENE	11/5/2013	0.5	70	0.5	0.5	UG/L
CHLOROETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L
ETHYLBENZENE	11/5/2013	0.5	300	0.5	0.5	UG/L
HEXACHLOROBUTADIENE	11/5/2013	0.5	0	0.5	0.5	UG/L
BROMOMETHANE	11/5/2013	1	0	0.5	0.5	UG/L
CHLOROMETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
DICHLOROMETHANE	11/5/2013	0.5	5	0.5	0.5	UG/L
TETRACHLOROETHYLENE	11/5/2013	0.5	5	0.5	0.5	UG/L
TRICHLOROFLUOROMETHANE	11/5/2013	0.5	150	5	5	UG/L
1,1-DICHLOROETHANE	11/5/2013	0.5	5	0.5	0.5	UG/L
1,1-DICHLOROETHYLENE	11/5/2013	0.5	6	0.5	0.5	UG/L
1,1,1-TRICHLOROETHANE	11/5/2013	0.5	200	0.5	0.5	UG/L
1,1,2-TRICHLOROETHANE	11/5/2013	0.5	5	0.5	0.5	UG/L
1,1,2,2-TETRACHLOROETHANE	11/5/2013	0.5	1	0.5	0.5	UG/L
1,2-DICHLOROETHANE	11/5/2013	0.5	0.5	0.5	0.5	UG/L
1,2-DICHLOROBENZENE	11/5/2013	0.5	600	0.5	0.5	UG/L
1,2-DICHLOROPROPANE	11/5/2013	0.5	5	0.5	0.5	UG/L
TRANS-1,2-DICHLOROETHYLENE	11/5/2013	0.5	10	0.5	0.5	UG/L
1,2,4-TRICHLOROBENZENE	11/5/2013	0.5	5	0.5	5	UG/L
1,3-DICHLOROPROPENE (TOTAL)	11/5/2013	0.5	0.5	0.5	0.5	UG/L
1,3-DICHLOROBENZENE	11/5/2013	0.5	0	0.5	600	UG/L
1,4-DICHLOROBENZENE	11/5/2013	0.5	5	0.5	0.5	UG/L
2-CHLOROETHYLVINYL ETHER	11/5/2013	10	0	0	0	UG/L
DICHLORODIFLUOROMETHANE (FREON 12)	11/5/2013	0.5	1000	0.5	1000	UG/L
NAPHTHALENE	11/5/2013	0.5	170	0.5	170	UG/L
FOAMING AGENTS (MBAS)	4/22/2010	0.1	0.5	0	0.5	MG/L
FOAMING AGENTS (MBAS)	6/5/2013	0.2	0.5	0	0.5	MG/L
ATRAZINE	6/5/2013	0.3	1	0.5	1	UG/L
SIMAZINE	6/5/2013	0.3	4	1	1	UG/L
VINYL CHLORIDE	11/5/2013	0.5	0.5	0.5	0.5	UG/L
TRICHLOROETHYLENE	11/5/2013	0.5	5	0.5	0.5	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	11/5/2013	0.5	13	3	3	UG/L
TOTAL DISSOLVED SOLIDS	4/22/2010	360	1000	0	500	MG/L
TOTAL DISSOLVED SOLIDS	6/5/2013	380	1000	0	500	MG/L
HYDROXIDE ALKALINITY	4/22/2010	1.4	0	0	0	MG/L
HYDROXIDE ALKALINITY	6/5/2013	1.4	0	0	0	MG/L
NITRATE (AS NO3)	4/22/2010	3.7	45	2	23	MG/L
NITRATE (AS NO3)	5/1/2013	4.2	45	2	23	MG/L
NITRATE (AS NO3)	6/5/2013	3.9	45	2	23	MG/L
NITRATE (AS NO3)	12/17/2014	4.6	45	2	23	MG/L
MERCURY	4/22/2010	0.2	2	1	2	UG/L
MERCURY	6/5/2013	0.2	2	1	2	UG/L
TERT-BUTYL ALCOHOL (TBA)	11/5/2013	10	12	2	12	UG/L
CIS-1,2-DICHLOROETHYLENE	11/5/2013	0.5	6	0.5	0.5	UG/L
STYRENE	11/5/2013	0.5	100	0.5	0.5	UG/L
1,1-DICHLOROPROPENE	11/5/2013	0.5	0	0.5	0.5	UG/L
2,2-DICHLOROPROPANE	11/5/2013	0.5	0	0.5	0.5	UG/L
1,3-DICHLOROPROPANE	11/5/2013	0.5	0	0.5	0.5	UG/L
1,2,4-TRIMETHYLBENZENE	11/5/2013	0.5	330	0.5	330	UG/L
ISOPROPYLBENZENE	11/5/2013	0.5	770	0.5	770	UG/L
N-PROPYLBENZENE	11/5/2013	0.5	260	0.5	260	UG/L
1,3,5-TRIMETHYLBENZENE	11/5/2013	0.5	330	0.5	330	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
SEC-BUTYLBENZENE	11/5/2013	0.5	260	0.5	0.5	UG/L
TERT-BUTYLBENZENE	11/5/2013	0.5	260	0.5	0.5	UG/L
1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	11/5/2013	1	0.005	0.005	0.005	UG/L
1,1,1,2-TETRACHLOROETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L
DIBROMOMETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L
1,2,3-TRICHLOROBENZENE	11/5/2013	0.5	0	0.5	0.5	UG/L
ALACHLOR	6/5/2013	0.2	2	1	1	UG/L
XYLENES (TOTAL)	11/5/2013	1	1750	0	1750	UG/L
BROMOBENZENE	11/5/2013	0.5	0	0.5	0.5	UG/L
TRICHLOROTRIFLUOROETHANE (FREON 113)	2/3/2016	0.5	1200	10	10	UG/L
ASBESTOS	11/5/2013	0	7	0.2	7	MFL
TURBIDITY, LABORATORY	4/22/2010	0.1	5	0.1	5	NTU
TURBIDITY, LABORATORY	6/5/2013	0.1	5	0.1	5	NTU
TOTAL TRIHALOMETHANES	11/5/2013	2	80	0	80	UG/L
2-CHLOROTOLUENE	11/5/2013	0.5	140	0.5	0.5	UG/L
4-CHLOROTOLUENE	11/5/2013	0.5	140	0.5	140	UG/L
N-BUTYLBENZENE	11/5/2013	0.5	260	0.5	70	UG/L
P-ISOPROPYLTOLUENE	11/5/2013	0.5	0	0	0	UG/L
BROMOCHLOROMETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L
PERCHLORATE	11/28/2007	4	6	4	4	UG/L
PERCHLORATE	5/20/2008	4	6	4	4	UG/L
PERCHLORATE	11/5/2013	4	6	4	4	UG/L
ETHYL-TERT-BUTYL ETHER	11/5/2013	0.5	0	3	0	UG/L
TERT-AMYL-METHYL ETHER	11/5/2013	0.5	0	3	0	UG/L
GROSS ALPHA MDA95	5/20/2008	0.348	3.001	0	0	PCI/L
GROSS ALPHA MDA95	9/18/2008	0.343	3.001	0	0	PCI/L
GROSS ALPHA MDA95	3/14/2012	0.016	3.001	0	0	PCI/L
GROSS ALPHA MDA95	6/13/2012	1.09	3.001	0	0	PCI/L
GROSS ALPHA MDA95	2/3/2016	0.747	3.001	0	0	PCI/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
COLOR	4/22/2010	1	15	0	15	UNITS
COLOR	6/5/2013	1	15	0	15	UNITS
ODOR THRESHOLD @ 60 C	4/22/2010	0	3	1	3	TON
ODOR THRESHOLD @ 60 C	6/5/2013	0	3	1	3	TON
SPECIFIC CONDUCTANCE	4/22/2010	528	1600	0	900	US
SPECIFIC CONDUCTANCE	6/5/2013	608	1600	0	900	US
PH, LABORATORY	4/22/2010	7.48	0	0	0	
PH, LABORATORY	6/5/2013	7.65	0	0	0	
ALKALINITY (TOTAL) AS CACO3	4/22/2010	180	0	0	0	MG/L
ALKALINITY (TOTAL) AS CACO3	6/5/2013	220	0	0	0	MG/L
BICARBONATE ALKALINITY	4/22/2010	230	0	0	0	MG/L
BICARBONATE ALKALINITY	6/5/2013	270	0	0	0	MG/L
CARBONATE ALKALINITY	4/22/2010	2.5	0	0	0	MG/L
CARBONATE ALKALINITY	6/5/2013	2.5	0	0	0	MG/L
NITRATE (as N)	12/2/2015	2.2	10	0.4	5	mg/L
NITRITE (AS N)	4/22/2010	50	1	0.4	0.5	mg/L
NITRITE (AS N)	6/5/2013	50	1	0.4	0.5	mg/L
HARDNESS (TOTAL) AS CACO3	4/22/2010	150	0	0	0	MG/L
HARDNESS (TOTAL) AS CACO3	6/5/2013	190	0	0	0	MG/L
CALCIUM	4/22/2010	45	0	0	0	MG/L
CALCIUM	6/5/2013	57	0	0	0	MG/L
MAGNESIUM	4/22/2010	9.4	0	0	0	MG/L
MAGNESIUM	6/5/2013	11	0	0	0	MG/L
SODIUM	4/22/2010	49	0	0	0	MG/L
SODIUM	6/5/2013	49	0	0	0	MG/L
POTASSIUM	4/22/2010	2.7	0	0	0	MG/L
POTASSIUM	6/5/2013	3.2	0	0	0	MG/L
CHLORIDE	4/22/2010	19	500	0	250	MG/L
CHLORIDE	6/5/2013	25	500	0	250	MG/L
SULFATE	4/22/2010	39	500	0.5	250	MG/L
SULFATE	6/5/2013	43	500	0.5	250	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	4/22/2010	0.58	2	0.1	2	MG/L
FLUORIDE (F) (NATURAL-SOURCE)	6/5/2013	0.46	2	0.1	2	MG/L
ARSENIC	4/22/2010	2	10	2	5	UG/L
ARSENIC	6/5/2013	2	10	2	5	UG/L
BARIUM	4/22/2010	52	1000	100	1000	UG/L
BARIUM	6/5/2013	52	1000	100	1000	UG/L
BERYLLIUM	4/22/2010	1	4	1	4	UG/L
BERYLLIUM	6/5/2013	1	4	1	4	UG/L
CADMIUM	4/22/2010	1	5	1	5	UG/L
CADMIUM	6/5/2013	1	5	1	5	UG/L
CHROMIUM, HEXAVALENT	12/23/2014	0.22	10	1	10	UG/L
CHROMIUM (TOTAL)	4/22/2010	10	50	10	50	UG/L
CHROMIUM (TOTAL)	6/5/2013	10	50	10	50	UG/L
COPPER	4/22/2010	10	1000	50	1000	UG/L
COPPER	6/5/2013	10	1000	50	1000	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
IRON	4/22/2010	50	300	100	300	UG/L
IRON	6/5/2013	50	300	100	300	UG/L
LEAD	4/22/2010	1	0	5	15	UG/L
LEAD	6/5/2013	1	0	5	15	UG/L
MANGANESE	4/22/2010	10	50	20	50	UG/L
MANGANESE	6/5/2013	10	50	20	50	UG/L
THALLIUM	4/22/2010	1	2	1	2	UG/L
THALLIUM	6/5/2013	1	2	1	2	UG/L
NICKEL	4/22/2010	10	100	10	100	UG/L
NICKEL	6/5/2013	10	100	10	100	UG/L
SILVER	4/22/2010	10	100	10	100	UG/L
SILVER	6/5/2013	10	100	10	100	UG/L
ZINC	4/22/2010	89	5000	50	5000	UG/L
ZINC	6/5/2013	50	5000	50	5000	UG/L
ANTIMONY	4/22/2010	2	6	6	6	UG/L
ANTIMONY	6/5/2013	2	6	6	6	UG/L
ALUMINUM	4/22/2010	50	1000	50	200	UG/L
ALUMINUM	6/5/2013	50	1000	50	200	UG/L
SELENIUM	4/22/2010	2	50	5	50	UG/L
SELENIUM	6/5/2013	2	50	5	50	UG/L
GROSS ALPHA	8/22/2007	21.5	15	3	5	PCI/L
GROSS ALPHA	5/20/2008	16	15	3	5	PCI/L
GROSS ALPHA	9/18/2008	18.3	15	3	5	PCI/L
GROSS ALPHA	3/23/2011	10.6	15	3	5	PCI/L
GROSS ALPHA	5/4/2011	10.6	15	3	5	PCI/L
GROSS ALPHA	8/10/2011	22.9	15	3	5	PCI/L
GROSS ALPHA	10/19/2011	24.3	15	3	5	PCI/L
GROSS ALPHA	12/7/2011	17.1	15	3	5	PCI/L
GROSS ALPHA	3/14/2012	15	15	3	5	PCI/L
GROSS ALPHA	6/13/2012	18.2	15	3	5	PCI/L
GROSS ALPHA	2/3/2016	14.3	15	3	5	PCI/L
GROSS ALPHA COUNTING ERROR	8/22/2007	4.1	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	5/20/2008	1.6	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	9/18/2008	1.58	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	3/23/2011	0.47	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	5/4/2011	0.47	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	8/10/2011	0.47	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	3/14/2012	0.725	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	6/13/2012	0.678	0	0	0	PCI/L
GROSS ALPHA COUNTING ERROR	2/3/2016	0.602	0	0	0	PCI/L
RADIUM 226	3/23/2011	1	0	1	0	PCI/L
RADIUM 226	11/16/2011	1	0	1	0	PCI/L
RADIUM 226	3/14/2012	1	0	1	0	PCI/L
RADIUM 226 COUNTING ERROR	3/23/2011	0.166	0	0	0	PCI/L
RADIUM 226 COUNTING ERROR	11/16/2011	0.202	0	0	0	PCI/L
RADIUM 226 COUNTING ERROR	3/14/2012	0.545	0	0	0	PCI/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
RADIUM 228	5/20/2008	0.52	0	1	0	
RADIUM 228	3/23/2011	1.81	0	1	0	
RADIUM 228	11/16/2011	1.06	0	1	0	
RADIUM 228	3/14/2012	1	0	1	0	
RADIUM 228 COUNTING ERROR	5/20/2008	0.27	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	3/23/2011	0.616	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	11/16/2011	0.5	0	0	0	PCI/L
RADIUM 228 COUNTING ERROR	3/14/2012	0.474	0	0	0	PCI/L
URANIUM (PCI/L)	8/22/2007	30.9	20	1	20	PCI/L
URANIUM (PCI/L)	5/20/2008	16	20	1	20	PCI/L
URANIUM (PCI/L)	9/18/2008	20	20	1	20	PCI/L
URANIUM (PCI/L)	3/30/2009	8.671	20	1	20	PCI/L
URANIUM (PCI/L)	3/23/2011	20	20	1	20	PCI/L
URANIUM (PCI/L)	5/4/2011	13	20	1	20	PCI/L
URANIUM (PCI/L)	8/10/2011	17	20	1	20	PCI/L
URANIUM (PCI/L)	10/19/2011	20	20	1	20	PCI/L
URANIUM (PCI/L)	12/7/2011	20	20	1	20	PCI/L
URANIUM (PCI/L)	3/14/2012	19	20	1	20	PCI/L
URANIUM (PCI/L)	6/13/2012	14	20	1	20	PCI/L
URANIUM (PCI/L)	12/11/2013	17	20	1	20	PCI/L
URANIUM (PCI/L)	3/12/2014	11	20	1	20	PCI/L
URANIUM (PCI/L)	6/17/2014	19	20	1	20	PCI/L
URANIUM (PCI/L)	12/4/2014	14	20	1	20	PCI/L
URANIUM (PCI/L)	3/3/2015	22	20	1	20	PCI/L
URANIUM (PCI/L)	6/3/2015	18	20	1	20	PCI/L
URANIUM (PCI/L)	9/23/2015	21	20	1	20	PCI/L
URANIUM (PCI/L)	12/2/2015	13	20	1	20	PCI/L
URANIUM (PCI/L)	3/2/2016	23	20	1	20	PCI/L
BROMODICHLOROMETHANE (THM)	11/5/2013	0.5	0	1	0	UG/L
CARBON TETRACHLORIDE	11/5/2013	0.5	0.5	0.5	0.5	UG/L
BROMOFORM (THM)	11/5/2013	0.5	0	1	0	UG/L
DIBROMOCHLOROMETHANE (THM)	11/5/2013	0.5	0	1	0	UG/L
CHLOROFORM (THM)	11/5/2013	0.5	0	1	0	UG/L
TOLUENE	11/5/2013	0.5	150	0.5	0.5	UG/L
BENZENE	11/5/2013	0.5	1	0.5	0.5	UG/L
MONOCHLOROBENZENE	11/5/2013	0.5	70	0.5	0.5	UG/L
CHLOROETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L
ETHYLBENZENE	11/5/2013	0.5	300	0.5	0.5	UG/L
HEXACHLOROBUTADIENE	11/5/2013	0.5	0	0.5	0.5	UG/L
BROMOMETHANE	11/5/2013	1	0	0.5	0.5	UG/L
CHLOROMETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L
DICHLOROMETHANE	11/5/2013	0.5	5	0.5	0.5	UG/L
TETRACHLOROETHYLENE	11/5/2013	0.5	5	0.5	0.5	UG/L
TRICHLOROFLUOROMETHANE	11/5/2013	0.5	150	5	5	UG/L
1,1-DICHLOROETHANE	11/5/2013	0.5	5	0.5	0.5	UG/L
1,1-DICHLOROETHYLENE	11/5/2013	0.5	6	0.5	0.5	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
1,1,1-TRICHLOROETHANE	11/5/2013	0.5	200	0.5	0.5	UG/L
1,1,2-TRICHLOROETHANE	11/5/2013	0.5	5	0.5	0.5	UG/L
1,1,2,2-TETRACHLOROETHANE	11/5/2013	0.5	1	0.5	0.5	UG/L
1,2-DICHLOROETHANE	11/5/2013	0.5	0.5	0.5	0.5	UG/L
1,2-DICHLOROBENZENE	11/5/2013	0.5	600	0.5	0.5	UG/L
1,2-DICHLOROPROPANE	11/5/2013	0.5	5	0.5	0.5	UG/L
TRANS-1,2-DICHLOROETHYLENE	11/5/2013	0.5	10	0.5	0.5	UG/L
1,2,4-TRICHLOROBENZENE	11/5/2013	0.5	5	0.5	5	UG/L
1,3-DICHLOROPROPENE (TOTAL)	11/5/2013	0.5	0.5	0.5	0.5	UG/L
1,3-DICHLOROBENZENE	11/5/2013	0.5	0	0.5	600	UG/L
1,4-DICHLOROBENZENE	11/5/2013	0.5	5	0.5	0.5	UG/L
2-CHLOROETHYLVINYL ETHER	11/5/2013	10	0	0	0	UG/L
DICHLORODIFLUOROMETHANE (FREON 12)	11/5/2013	0.5	1000	0.5	1000	UG/L
NAPHTHALENE	11/5/2013	0.5	170	0.5	170	UG/L
FOAMING AGENTS (MBAS)	4/22/2010	0.1	0.5	0	0.5	MG/L
FOAMING AGENTS (MBAS)	6/5/2013	0.1	0.5	0	0.5	MG/L
ATRAZINE	6/5/2013	0.3	1	0.5	1	UG/L
SIMAZINE	6/5/2013	0.3	4	1	1	UG/L
VINYL CHLORIDE	11/5/2013	0.5	0.5	0.5	0.5	UG/L
TRICHLOROETHYLENE	11/5/2013	0.5	5	0.5	0.5	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	11/5/2013	0.5	13	3	3	UG/L
METHYL-TERT-BUTYL-ETHER (MTBE)	2/3/2016	0.5	13	3	3	UG/L
TOTAL DISSOLVED SOLIDS	4/22/2010	280	1000	0	500	MG/L
TOTAL DISSOLVED SOLIDS	6/5/2013	400	1000	0	500	MG/L
HYDROXIDE ALKALINITY	4/22/2010	1.4	0	0	0	MG/L
HYDROXIDE ALKALINITY	6/5/2013	1.4	0	0	0	MG/L
NITRATE (AS NO3)	4/22/2010	13	45	2	23	MG/L
NITRATE (AS NO3)	5/1/2013	4.1	45	2	23	MG/L
NITRATE (AS NO3)	6/5/2013	4	45	2	23	MG/L
NITRATE (AS NO3)	12/17/2014	3.7	45	2	23	MG/L
MERCURY	4/22/2010	0.2	2	1	2	UG/L
MERCURY	6/5/2013	0.2	2	1	2	UG/L
TERT-BUTYL ALCOHOL (TBA)	11/5/2013	10	12	2	12	UG/L
CIS-1,2-DICHLOROETHYLENE	11/5/2013	0.5	6	0.5	0.5	UG/L
STYRENE	11/5/2013	0.5	100	0.5	0.5	UG/L
1,1-DICHLOROPROPENE	11/5/2013	0.5	0	0.5	0.5	UG/L
2,2-DICHLOROPROPANE	11/5/2013	0.5	0	0.5	0.5	UG/L
1,3-DICHLOROPROPANE	11/5/2013	0.5	0	0.5	0.5	UG/L
1,2,4-TRIMETHYLBENZENE	11/5/2013	0.5	330	0.5	330	UG/L
ISOPROPYLBENZENE	11/5/2013	0.5	770	0.5	770	UG/L
N-PROPYLBENZENE	11/5/2013	0.5	260	0.5	260	UG/L
1,3,5-TRIMETHYLBENZENE	11/5/2013	0.5	330	0.5	330	UG/L
SEC-BUTYLBENZENE	11/5/2013	0.5	260	0.5	0.5	UG/L
TERT-BUTYLBENZENE	11/5/2013	0.5	260	0.5	0.5	UG/L
1,2,3-TRICHLOROPROPANE (1,2,3,-TCP)	11/5/2013	1	0.005	0.005	0.005	UG/L
1,1,1,2-TETRACHLOROETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L

Group/Constituent Identification	Sampling Date	Result	MCL	DLR	Trigger	Unit
DIBROMOMETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L
1,2,3-TRICHLOROBENZENE	11/5/2013	0.5	0	0.5	0.5	UG/L
ALACHLOR	6/5/2013	0.2	2	1	1	UG/L
XYLENES (TOTAL)	11/5/2013	1	1750	0	1750	UG/L
BROMOBENZENE	11/5/2013	0.5	0	0.5	0.5	UG/L
TRICHLOROTRIFLUOROETHANE (FREON 113)	2/3/2016	0.5	1200	10	10	UG/L
ASBESTOS	11/5/2013	0	7	0.2	7	MFL
TURBIDITY, LABORATORY	4/22/2010	0.12	5	0.1	5	NTU
TURBIDITY, LABORATORY	6/5/2013	0.15	5	0.1	5	NTU
TOTAL TRIHALOMETHANES	11/5/2013	2	80	0	80	UG/L
2-CHLOROTOLUENE	11/5/2013	0.5	140	0.5	0.5	UG/L
4-CHLOROTOLUENE	11/5/2013	0.5	140	0.5	140	UG/L
N-BUTYLBENZENE	11/5/2013	0.5	260	0.5	70	UG/L
P-ISOPROPYLTOLUENE	11/5/2013	0.5	0	0	0	UG/L
BROMOCHLOROMETHANE	11/5/2013	0.5	0	0.5	0.5	UG/L
PERCHLORATE	11/28/2007	4	6	4	4	UG/L
PERCHLORATE	5/20/2008	4	6	4	4	UG/L
PERCHLORATE	11/5/2013	4	6	4	4	UG/L
ETHYL-TERT-BUTYL ETHER	11/5/2013	0.5	0	3	0	UG/L
TERT-AMYL-METHYL ETHER	11/5/2013	0.5	0	3	0	UG/L
GROSS ALPHA MDA95	5/20/2008	0.11	3.001	0	0	PCI/L
GROSS ALPHA MDA95	9/18/2008	0.343	3.001	0	0	PCI/L
GROSS ALPHA MDA95	3/14/2012	0.016	3.001	0	0	PCI/L
GROSS ALPHA MDA95	6/13/2012	1.09	3.001	0	0	PCI/L
GROSS ALPHA MDA95	2/3/2016	0.747	3.001	0	0	PCI/L

APPENDIX B California Waterworks Standards

*FIGURES 14 AND 15 TAKEN FROM PREVIOUS VERSION OF THE CALIFORNIA WATERWORKS STANDARDS

California Code of Regulations Title 22. Social Security Division 4 – Environmental Health CHAPTER 16 – CALIFORNIA WATERWORKS STANDARDS

ARTICLE 1. DEFINITIONS

Section 64551.10. Distribution Reservoir.

"Distribution reservoir" means any tank or other structure located within or connected to the distribution system and used to store treated/finished drinking water.

Section 64551.20. Distribution System.

"Distribution system" means all physical parts of the water system, including, but not limited to: Pipes, valves, pumping stations, storage tanks or reservoirs, and user service lines, that are located between the water treatment plant, or the source if there is no treatment, and the consumer's service connection.

Section 64551.30. Maximum Day Demand (MDD).

"Maximum day demand (MDD)" means the amount of water utilized by consumers during the highest day of use (midnight to midnight), excluding fire flow, as determined pursuant to Section 64554.

Section 64551.35. Peak Hour Demand (PHD).

"Peak hour demand (PHD)" means the amount of water utilized by consumers during the highest hour of use during the maximum day, excluding fire flow, as determined pursuant to Section 64554.

Section 64551.40. Source Capacity.

"Source capacity" means the total amount of water supply available, expressed as a flow, from all active sources permitted for use by the water system, including approved surface water, groundwater, and purchased water.

Section 64551.60. User Service Line.

"User service line" means the pipe, tubing, and fittings connecting a water main to an individual water meter or service connection.

Section 64551.70. Water Main.

"Water main" means any pipeline, except for user service lines, within the distribution system.

ARTICLE 1.5. WAIVERS AND ALTERNATIVES Section 64551.100. Waivers and Alternatives.

(a) A water system that proposes to use an alternative to a requirement in this chapter shall:

(1) Demonstrate to the Department that the proposed alternative would provide at least the same level of protection to public health; and (2) Obtain written approval from the Department prior to implementation of the alternative.

ARTICLE 2. PERMIT REQUIREMENTS

Section 64552. Initial Permit for Public Water System.

(a)Each public water system applying for an initial domestic public water system permit shall submit an application that includes:

(1) A map and description of the entire existing and proposed service area, showing:

(A) The location of each water source, as well as wells that are abandoned, out-of-service, destroyed, standby, or inactive (not physically connected to the water system), together with:

1. Any valid water rights owned by the system for surface water sources, including information on any limitations or restrictions of those rights;

2. For a groundwater aquifer, the groundwater levels and drawdown

3. Permits or approvals for groundwater extraction if pumping from an adjudicated groundwater basin;

4. Existing and planned source pumping capability and distribution storage capacity for the system as a whole and for each pressure zone;

5. The calculated sustained well yields of existing wells if groundwater sources are used;

6. Permits for any waters proposed for use to offset potable water demand; and

(B) Treatment facilities and pumping plants;

(C) Distribution system piping, pressure zones, hydropneumatic tanks, and

reservoirs;

patterns:

(D) Valves, sample taps, and other system appurtenances;

(E) Recycled water and sewage systems;

(F) Conveyance facilities;

(G) Any flood plains in the projected service area; and

(H) The 100 year flood or highest recorded flood level, whichever is higher.

(2) The population, and number and type of residential, commercial,

agricultural, and industrial service connections, in the system's projected service area;

(3) Design drawings of proposed facilities drawn to scale, showing location, size, and construction material;

(4) As-built drawings of existing facilities, drawn to scale, showing location, size, construction materials, and year of installation of any water main or other facility that has already been constructed;

(5) The estimated MDD and PHD with the methods, assumptions, and calculations used for the estimations;

(6) A source water assessment and description of each source of water proposed for use to meet the estimated MDD and information demonstrating that the sources are

adequate to do so, such as, but not limited to, well pump tests, the capacities of all pumping facilities, and the hydraulic capacity of surface water treatment facilities,

(A) If the system plans to use surface water, the system shall demonstrate that it holds a valid water right to that amount of water including any allowable reductions or limitations on its availability, as stated in the water rights contract;

(B) If groundwater is to be used, the system shall demonstrate that the groundwater aquifer is sufficient, or in the case of adjudicated groundwater basins, that approval has been obtained to allow that amount of sustained withdrawal including any allowable reductions or limitations on its availability, as stated in the water rights contract;

(C) If purchased water is to be used, the system shall provide contracted amount and the hydraulic capacity at each turnout and any allowable reductions or limitations on its availability, as stated in the purchased water contract; and

(7) Information that demonstrates how the system proposes to reliably meet four hours of PHD using, but not limited to, available source capacity and distribution reservoirs.

(b) The information in subsection (a) shall be prepared by a professional civil engineer registered in the State of California with experience in water supply engineering.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116525, 116555 and 131051, Health and Safety Code.

Section 64554. New and Existing Source Capacity.

(a) At all times, a public water system's water source(s) shall have the capacity to meet the system's maximum day demand (MDD). MDD shall be determined pursuant to subsection (b).

(1) For systems with 1,000 or more service connections, the system shall be able to meet four hours of peak hourly demand (PHD) with source capacity, storage capacity, and/or emergency source connections.

(2) For systems with less than 1,000 service connections, the system shall have storage capacity equal to or greater than MDD, unless the system can demonstrate that it has an additional source of supply or has an emergency source connection that can meet the MDD requirement.

(3) Both the MDD and PHD requirements shall be met in the system as a whole and in each individual pressure zone.

(b) A system shall estimate MDD and PHD for the water system as a whole (total source capacity and number of service connections) and for each pressure zone within the system (total water supply available from the water sources and interzonal transfers directly supplying the zone and number of service connections within the zone), as follows:

(1) If daily water usage data are available, identify the day with the highest usage during the past ten years to obtain MDD; determine the average hourly flow during MDD and multiply by a peaking factor of at least 1.5 to obtain the PHD.

(2) If no daily water usage data are available and monthly water usage data are available:

(A) Identify the month with the highest water usage (maximum month) during at least the most recent ten years of operation or, if the system has been operating for less than ten years, during its period of operation;

(B) To calculate average daily usage during maximum month, divide the total water usage during the maximum month by the number of days in that month; and

(C) To calculate the MDD, multiply the average daily usage by a peaking factor that is a minimum of 1.5; and

(D) To calculate the PHD, determine the average hourly flow during MDD and multiply by a peaking factor that is a minimum of 1.5.

(3) If only annual water usage data are available:

(A) Identify the year with the highest water usage during at least the most recent ten years of operation or, if the system has been operating for less than ten years, during its years of operation;

(B) To calculate the average daily use, divide the total annual water usage for the year with the highest use by 365 days; and

(C) To calculate the MDD, multiply the average daily usage by a peaking factor of 2.25.

(D) To calculate the PHD, determine the average hourly flow during MDD and multiply by a peaking factor that is a minimum of 1.5.

(4) If no water usage data are available, utilize records from a system that is similar in size, elevation, climate, demography, residential property size, and metering to determine the average water usage per service connection. From the average water usage per service connection, calculate the average daily demand and follow the steps in paragraph (3) to calculate the MDD and PHD.

(c) Community water systems using only groundwater shall have a minimum of two approved sources before being granted an initial permit The system shall be capable of meeting MDD with the highest-capacity source off line.

(d) A public water system shall determine the total capacity of its groundwater sources by summing the capacity of its individual active sources. If a source is influenced by concurrent operation of another source, the total capacity shall be reduced to account for such influence. Where the capacity of a source varies seasonally, it shall be determined at the time of MDD.

(e) The capacity of a well shall be determined from pumping data existing prior to March 9, 2008 or in accordance with subsection (f) or (g). Prior to conducting a well capacity test pursuant to subsection (g), a system shall submit the information listed below to the Department for review and approval. For well capacity tests conducted pursuant to subsection (f), the information shall be submitted to the Department if requested by the Department.

(1) The name and qualifications of the person who will be conducting the test;

(2) The proposed test's pump discharge rate, based on the design rate determined during well development and/or a step-drawdown test.

(3) A copy of a United States Geological Survey 7 ¹/₂-minute topographic map of the site at a scale of 1:24,000 or larger (1 inch equals 2,000 feet or 1 inch equals less than 2,000 feet) or, if necessary, a site sketch at a scale providing more detail, that clearly indicates;

(A) The well discharge location(s) during the test, and

(B) The location of surface waters, water staff gauges, and other production wells within a radius of 1000 feet;

(4) A well construction drawing, geologic log, and electric log, if available;

(5) Dates of well completion and well development, if known;

(6) Specifications for the pump that will be used for the test and the depth at which it will draw water from the well;

(7) A description of the methods and equipment that will be used to measure and maintain a constant pumping rate;

(8) A description of the water level measurement method and measurement schedule;

(9) For wells located in or having an influence on the aquifer from which the new well will draw water, a description of the wells' operating schedules and the estimated amount of groundwater to be extracted, while the new well is tested and during normal operations prior to and after the new well is in operation;

(10) A description of the surface waters, water staff gauges, and production wells-shown in (3)(B);

(11) A description of how the well discharge will be managed to ensure the discharge doesn't interfere with the test;

(12) A description of how the initial volume of water in the well's casing, or bore hole if there is no casing at the time, will be addressed to ensure it has no impact on the test results; and

(13) A written description of the aquifer's annual recharge.

(f) To determine the capacity of a well drilled in alluvial soils when there is no existing data to determine the capacity, a water system shall complete a constant discharge (pumping rate) well capacity test and determine the capacity as follows:

(1) Take an initial water level measurement (static water level) and then pump the well continuously for a minimum of eight hours, maintaining the pump discharge rate proposed in subsection (e)(2);

(2) While pumping the well, take measurements of the water level drawdown and pump discharge rates for a minimum of eight hours at a frequency no less than every hour;

(3) Plot the drawdown data versus the time data on semi-logarithmic graph paper, with the time intervals on the horizontal logarithm axis and the drawdown data on the vertical axis;

(4) Steady-state is indicated if the last four hours of drawdown measurements and the elapsed time yield a straight line in the plot developed pursuant to subsection (3). If steady-state is not achieved, the pump discharge rate shall be continued for a longer period of time or adjusted, with paragraphs (2) and (3) above repeated, until steady-state is achieved.

(5) Discontinue pumping and take measurements of the water level drawdown no less frequently than every 15 minutes for the first two hours and every hour thereafter for at least six hours or until the test is complete; and

(6) To complete the test, the well shall demonstrate that, within a length of time not exceeding the duration of the pumping time of the well capacity test, the water level has recovered to within two feet of the static water level measured at the beginning of the test or to a minimum of ninety-five percent of the total drawdown measured during the test, whichever is more stringent.

(7) The capacity of the well shall be the pump discharge rate determined by a completed test.

(g) The capacity of a well whose primary production is from a bedrock formation, such that the water produced is yielded by secondary permeability features (e.g. fractures or cracks), shall be determined pursuant to either paragraph (1) or (2) below.

(1) The public water system shall submit a report, for Department review and approval, proposing a well capacity based on well tests and the evaluation and management of the aquifer from which the well draws water. The report shall be prepared and signed by a California registered geologist with at least three years of experience with groundwater hydrology, a California licensed engineer with at least five years of experience with groundwater hydrology, or a California certified hydrogeologist. Acceptance of the proposed well capacity by the Department shall, at a minimum, be based on the Department's review and approval of the following information presented in the report in support of the proposed well capacity:

(A) The rationale for the selected well test method and the results;

- (B) The geological environment of the well;
- (C) The historical use of the aquifer;
- (D) Data from monitoring of other local wells;

(E) A description of the health risks of contaminants identified in a Source Water Assessment, as defined in section 63000.84 of Title 22, and the likelihood of such contaminants being present in the well's discharge;

(F) Impacts on the quantity and quality of the groundwater;

(G) How adjustments were made to the estimated capacity based on drawdown, length of the well test, results of the wells test, discharge options, and seasonal variations and expected use of the well; and

(H) The well test(s) results and capacity analysis.

(2) During the months of August, September, or October, conduct either a 72hour well capacity test or a 10-day well capacity test, and determine the well capacity using the following procedures:

(A) Procedures for a 72 hour well capacity test:

1. For the purpose of obtaining an accurate static water level value, at least twelve hours before initiating step 2., pump the well at the pump discharge rate proposed in subsection (e)(2) for no more than two hours, then discontinue pumping;

2. Measure and record the static water level and then pump the well continuously for a minimum of 72 hours starting at the pump discharge rate proposed in (e)(2);

3. Measure and record water drawdown levels and pump discharge

rate:

a. Every thirty minutes during the first four hours of pumping,

b. Every hour for the next four hours, and

c. Every four hours thereafter until the water drawdown level is constant for at least the last four remaining measurements, and;

4. Plot the drawdown and pump discharge rate data versus time data on semi-logarithmic graph paper, with the time intervals on the horizontal logarithmic axis and the drawdown and pump discharge rate data on the vertical axis.

(B) Procedures for a 10 day well capacity test:

1. For the purpose of obtaining an accurate static water level value, at least twelve hours before initiating step 2., pump the well at the pump discharge rate proposed in subsection (e)(2) for no more than two hours, then discontinue pumping;

2. Measure and record the static water level and then pump the well continuously for a minimum of 10 days starting at the pump discharge rate proposed in (e)(2);

3. Measure and record water drawdown levels and pumping rate:

- a. Every thirty minutes during the first four hours of pumping,
- b. Every hour for the next four hours,
- c. Every eight hours for the remainder of the first four days,

d. Every 24 hours for the next five days, and

e. Every four hours thereafter until the water drawdown level is constant for at least the last four remaining measurements, and;

4. Plot the drawdown and pump discharge rate data versus time data on semi-logarithmic graph paper, with the time intervals on the horizontal logarithmic axis and the drawdown and pump discharge rate data on the vertical axis.

(C) To complete either the 72-hour or 10-day well capacity test the well shall demonstrate that, within a length of time not exceeding the duration of the pumping time of the well capacity test, the water level has recovered to within two feet of the static water level measured at the beginning of the well capacity test or to a minimum of ninety-five percent of the total drawdown measured during the test, whichever is more stringent. If the well recovery does not meet these criteria, the well capacity cannot be determined pursuant to subsection (g)(2) using the proposed pump rate. To demonstrate meeting the recovery criteria, the following water level data in the well shall be measured, recorded, and compared with the criteria:

1. Every 30 minutes during the first four hours after pumping stops,

2. Hourly for the next eight hours, and

3. Every 12 hours until either the water level in the well recovers to within two feet of the static water level measured at the beginning of the well capacity test or to a at least ninety-five percent of the total drawdown measured during the test, which ever occurs first.

(D) Following completion of a 72-hour or 10-day well capacity test, the well shall be assigned a capacity no more than:

1. For a 72-hour test, 25 percent of the pumping rate at the end of a completed test's pumping.

2. For a 10-day test, 50 percent of the pumping rate at the end a completed test's pumping.

(h) The public water system shall submit a report to the Department that includes all data and observations associated with a well capacity test conducted pursuant to subsection (f) or (g), as well as the estimated capacity determination methods and calculations. The data collected during pumping and recovery phases of the well capacity tests shall be submitted in an electronic spreadsheet format in both tabular and graphic files.

(i) An assigned well capacity may be revised by the Department if pumping data collected during normal operations indicates that the assigned well capacity was not representative of the actual well capacity.

(j) If directed by the Department to do so, based on adverse conditions that may lead or may have led to a regional aquifer's inability to meet a water system's demand on such an aquifer, the water system shall submit a report to the Department that includes regional aquifer recharge estimates and a water balance analysis. The report shall be prepared and signed by a California registered geologist with at least three years of experience with groundwater hydrology, a California licensed engineer with at least five years of experience with groundwater hydrology, or a California certified hydrogeologist.

(k) The source capacity of a surface water supply or a spring shall be the lowest anticipated daily yield based on adequately supported and documented data.

(1) The source capacity of a purchased water connection between two public water systems shall be included in the total source capacity of the purchaser if the purchaser has sufficient storage or standby source capacity to meet user requirements during reasonable foreseeable shutdowns by the supplier.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116540, 116555 and 131051, Health and Safety Code.

Section 64556. Permit Amendments.

(a) An application for an amended domestic water supply permit shall be submitted to the Department prior to any of the following:

(1) Addition of a new distribution reservoir (100,000 gallon capacity or greater) to the distribution system;

(2) Modification or extension of an existing distribution system using an alternative to the requirements in this chapter;

(3) Modification of the water supply by:

A. Adding a new source;

B. Changing the status of an existing source (e.g., active to standby); or

C. Changing or altering a source, such that the quantity or quality of supply could be affected;

(4) Any addition or change in treatment, including:

A. Design capacity; or

B. Process;

(5) Expansion of the existing service area (by 20% or more of the number of service connections specified in the most recent permit or permit amendment);

(6) Consolidation with one or more other water systems;

(7) Change in regulatory jurisdiction;

(8) Change in type of public water system;

(9) Obtaining a water quality standard exemption from the Department;

(10) Obtaining a secondary standard waiver from the Department;

(11) Proposal for modifications of existing recreational uses on a water supply reservoir;

(12) Request for a hand washing exclusion by a transient noncommunity water system, pursuant to section 116282 of the Health and Safety Code; or

(13) Proposal for offsetting domestic water needs with an unapproved water supply.

(b) A water system shall submit an application to the Department if it has been notified by the Department that changes to the water system require an amended permit based on the Department's review of system operations, source type and capacity, geographical location, system size, and distribution system complexity.

(c) Except as set forth in subsections(a) and (b) any modifications or extensions to an existing distribution system may be made without applying for and receiving an amended domestic water supply permit provided the modifications comply with all of the requirements of this chapter.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535, 116550 and 131051, Health and Safety Code.

Section 64558. Source Capacity Planning Study.

(a) If directed by the Department to do so based on its determination that there is an existing or potential problem with the system's source capacity or a proposed expansion pursuant to section 64556(a)(5), a water system shall submit a Source Capacity Planning Study (Study) containing the following information:

(1) The anticipated growth of the water system over a projected period of at least ten years in terms of the population and number and type of residential, commercial, and industrial service connections to be served by the water system.

(2) Estimates of the amount of water needed to meet the total annual demand and the MDD over the projected ten-year growth period (projected system demand). Methods, assumptions, and calculations used to estimate the projected system demand shall be included. (3) A map and description of the entire existing and proposed service area, showing:

(A) The location of each water source, including wells that are abandoned, out-of-service, destroyed, standby, or inactive;

1. Any valid water rights owned by the system for surface water sources, including information on any limitations or restrictions of those rights;

2. For a groundwater aquifer, the groundwater levels and drawdown patterns;

3. Permits or approvals for groundwater extraction if pumping from an adjudicated groundwater basin;

4. Existing and planned source pumping capability and distribution storage capacity for the system as a whole and for each pressure zone;

5. The calculated sustained well yields of existing wells if groundwater sources are used;

6. Permits, if required, for any waters proposed for use to offset potable water demand; and

7. A Source Water Assessment for each potable water source.

(B) Distribution system piping, pressure zones, hydropneumatic tanks, and reservoirs;

(C) Valves, sample taps, flow meters, unmetered service connections, and other system appurtenances;

(D) Conveyance facilities;

(E) Any flood plains in the projected service area; and

(F) The 100 year flood or highest recorded flood level, whichever is higher.

(b) If directed by the Department to do so based on its determination that a study is out of date, a water system shall update and submit the Study to the Department.

(c) Water systems that have submitted an Urban Water Management Plan to the Department of Water Resources pursuant to Water Code Part 2.6 commencing with section 10610, may submit a copy of that report in lieu of some or all of the requirements of subsection (a) to the extent such information is included in the plan.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116555 and 131051, Health and Safety Code.

RTICLE 3. WATER SOURCES

Section 64560. New Well Siting, Construction, and Permit Application.

(a) To receive a new or amended domestic water supply permit for a proposed well, the water system shall provide the following information to the Department in the technical report as part of its permit application:

(1) A source water assessment as defined in Section 63000.84 for the proposed site;

(2) Documentation demonstrating that a well site control zone with a 50-foot radius around the site can be established for protecting the source from vandalism, tampering, or other threats at the site by water system ownership, easement, zoning, lease, or an alternative approach approved by the Department based on its potential effectiveness in providing protection of the source from contamination;

(3) Design plans and specifications for the well; and

(4) Documentation required for compliance with the California Environmental Quality Act (CEQA).

(b) After the Department has provided written or oral approval of the initial permit amendment application and the water system has constructed the well, the water system shall submit the following additional materials for its permit application:

(1) A copy of the well construction permit if required by the county or local agency;

(2) Department of Water Resources well completion report;

(3) A copy of any pump tests required by the Department;

(4) Results of all required water quality analyses; and

(5) As-built plans.

(c) Each new public water supply well shall:

(1) As a minimum, be constructed in accordance with the community water system well requirements in California Department of Water Resources Bulletins 74-81 and 74-90, which are hereby incorporated by reference;

(2) Be constructed in accordance with American Water Works Association (AWWA) Standard A100-06 (Water Wells), which is hereby incorporated by reference;

(3) Be installed such that:

(A) All equipment is accessible for operation, maintenance, and removal;

(B) Protection is provided against flooding;

(C) The wellhead terminates a minimum of 18 inches above the finished

grade;

(D) Wellhead and electrical controls are not installed in vaults;

(E) The well is equipped with:

1. Fittings and electrical connections to enable chlorination facilities to be readily installed;

2. A non-threaded down-turned sampling tap located on the discharge line between the wellhead and the check valve. Sampling taps used for obtaining samples for bacteriological analysis shall not have a screen, aerator, or other such appurtenance; (F) Provisions are made to allow the well to be pumped to waste with a waste discharge line that is protected against backflow.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116530, 116535 and 131051, Health and Safety Code.

Section 64560.5. Well Destruction.

Destruction of a public drinking water supply well shall be in accordance with the California Department of Water Resources Bulletins 74-81 and 74-90.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64561. Source Flow Meters.

Each water system shall:

(a) Except for inactive sources, install a flow meter at a location between each water source and the entry point to the distribution system;

(b) Meter the quantity of water flow from each source, and record the total monthly production each month.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116555 and 131051, Health and Safety Code.
ARTICLE 4. MATERIALS AND INSTALLATION OF WATER MAINS AND APPURTENANCES

Section 64570. Materials and Installation.

(a) All newly installed water mains shall comply with the materials and installation standards of the American Water Works Association pursuant to tables 64570-A and 64570-B. The standards are hereby incorporated by reference.

Table 64570-AMaterials Standards for Water Mains

Type of Material	Diameter of Main	Applicable Standard			
PVC	4 in. through 12 in.	C900-97			
PVC	14 in. through 48 in.	C905-97			
Polyethylene (HDPE)	4 in. through 63 in.	C906-99			
Fiberglass	All sizes	C950-01			
Ductile Iron	All sizes	C150/A21.50-02			
Ductile Iron, Centrifugally cast	All sizes	C151/A21.51-02			
Steel	6 inches and larger	C200-97			
Copper	All sizes	C800-05			
Concrete Reinforced steel-cylinder	All sizes	C300-04			
Prestressed steel-cylinder	All sizes	C301-99, C304-99			
Reinforced noncylinder	All sizes	C302-04			
Bar wrapped/steel cylinder	All sizes	C303-02			
PVC, Molecularly oriented poly	vinyl chloride – All sizes	C909-02			

Table 64570-B

Installation Standards for Water Mains

Type of Installation	Applicable Standard			
Steel Pipe-Design and Installation	M-11 (2004)			
Ductile-Iron Water Mains and Their Appurtenances	C600-05			
Underground Installation of PVC Pressure Pipe and	l			
Fittings	C605-05			
Concrete Pressure Pipe	M9(1995)			

(b) Water mains shall:

Concrete Pressure Pipe

(1) Be installed below the frost line or be otherwise protected to prevent freezing; and

(2) Be protected against crushing under loads that could pass above the installation.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64572. Water Main Separation.

(a) New water mains and new supply lines shall not be installed in the same trench as, and shall be at least 10 feet horizontally from and one foot vertically above, any parallel pipeline conveying:

(1) Untreated sewage,

(2) Primary or secondary treated sewage,

(3) Disinfected secondary-2.2 recycled water (defined in section 60301.220),

(4) Disinfected secondary-23 recycled water (defined in section 60301.225), and

(5) Hazardous fluids such as fuels, industrial wastes, and wastewater sludge.

(b) New water mains and new supply lines shall be installed at least 4 feet horizontally from, and one foot vertically above, any parallel pipeline conveying:

(1) Disinfected tertiary recycled water (defined in section 60301.230), and

(2) Storm drainage.

(c) New supply lines conveying raw water to be treated for drinking purposes shall be installed at least 4 feet horizontally from, and one foot vertically below, any water main.

(d) If crossing a pipeline conveying a fluid listed in subsection (a) or (b), a new water main shall be constructed no less than 45-degrees to and at least one foot above that pipeline. No connection joints shall be made in the water main within eight horizontal feet of the fluid pipeline.

(e) The vertical separation specified in subsections (a), (b), and (c) is required only when the horizontal distance between a water main and pipeline is less than ten feet.

(f) New water mains shall not be installed within 100 horizontal feet of the nearest edge of any sanitary landfill, wastewater disposal pond, or hazardous waste disposal site, or within 25 horizontal feet of the nearest edge of any cesspool, septic tank, sewage leach field, seepage pit, underground hazardous material storage tank, or groundwater recharge project site.

(g) The minimum separation distances set forth in this section shall be measured from the nearest outside edge of each pipe barrel.

(h) With Department approval, newly installed water mains may be exempt from the separation distances in this section, except subsection (f), if the newly installed main is:

- (1) less than 1320 linear feet,
- (2) replacing an existing main, installed in the same location, and has a diameter no greater than six inches more than the diameter of the main it is replacing, and
- (3) installed in a manner that minimizes the potential for contamination, including, but not limited to:

(A) sleeving the newly installed main, or

(B) utilizing upgraded piping material

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375 and 131051, Health and Safety Code.

Section 64573. Minimum Water Main Size for Community Water Systems.

Newly installed water mains in a community water system shall have a nominal diameter of at least four inches.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375 and 131051, Health and Safety Code.

Section 64575. Flushing.

(a) A flushing valve or blowoff shall be provided at the end of each +ly installed dead-end water main. Fire hydrants meeting the criteria of this section may be considered flushing valves.

(b) Flushing valves and blowoffs shall not discharge to a sanitary sewer without an air gap separation between the sewer and the valve or blowoff.

(c) The flushing velocity in the main shall not be less than 2.5 ft/s unless it is determined that conditions do not permit the required flow to be discharged to waste.

(d) Newly installed flushing valves and blowoffs shall be designed to maintain the minimum continuous flushing flows as indicated below to produce a minimum velocity of 2.5ft/s in commonly used sizes of pipe.

Table 64575-A. Minimum Flushing Flows for Different Size Water Mains.

Nominal Main Size <i>Diameter (inches)</i>	Minimum Flushing Flow (gallons per minute)
2	25
3	50
4	100
6	225
8	400
10	600
12	900
14	1200
16	1600

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64576. Air-Release, Air Vacuum, and Combination Valves.

Each new air-release, air vacuum, or combination valve, and any such valve installed to replace an existing valve shall be:

(a) Installed such that its vent opening is above grade, above the calculated 100-year flood water level, and, if recorded data are available, above the highest recorded water level;

(b) Readily accessible for inspection, maintenance and replacement;

(c) Constructed and designed to prevent exposure to rainwater or runoff, vandalism, and birds, insects, rodents, or other animals;

(d) Fitted with a downward-facing screened vent or a domed and screened cap; and

(e) Installed pursuant to American Water Works Association Standard C512-04 and Manual M51 (2001), which are hereby incorporated by reference.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64577. Isolation Valves.

As a minimum, isolation valves shall be installed on all new water mains within the distribution system as follows:

(a) No farther than 1,320 linear feet apart on all mains having a diameter of 12 inches or less.

(b) At each tee or crossing connection between mains that have a diameter of 12 inches or less, within 100 feet of the tee or crossing connection with the primary main.

(c) Between the water main and each fire hydrant served by the main.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64578. Water Main Valve Construction.

Newly installed valves constructed on water mains shall comply with the following:

(a) A valve box shall be installed over each buried valve stem to aid in locating and operating the valve.

(b) For valves buried in trenches greater than five feet below the finished grade, either a valve stem riser to permit the use of a normal key or a notation on valve records indicating that a long key will be required shall be provided.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

ARTICLE 5. DISINFECTION REQUIREMENTS

Section 64580. Disinfection of New or Repaired Mains.

Prior to use, newly installed water mains, or water mains that have been taken out of service for maintenance or repair, shall be disinfected and sampled for bacteriological quality in accordance with American Water Works Association Standard C651-05, which is hereby incorporated by reference. Samples from new mains shall be negative for coliform bacteria prior to the new main(s) being placed into service.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64582. Disinfection of Reservoirs.

A newly-installed distribution reservoir or distribution reservoir that has been taken out of service for repair or inspection shall be disinfected and sampled for bacteriological quality in accordance with the American Water Works Association Standard C652-02, which is hereby incorporated by reference. If the results of the bacteriological sampling are positive for coliform bacteria, the reservoir shall be resampled for bacteriological quality and the test results shall be submitted to the Department for review and approval before the reservoir is placed into service.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64583. Disinfection of Wells.

A new or repaired well, or a well that has not been in operation for more than three months shall be sampled for bacteriological quality prior to use. If the results of the bacteriological sampling are positive for coliform bacteria, the well shall be disinfected in accordance with the American Water Works Association C654-03, which is hereby incorporated by reference, and resampled for bacteriological quality and the test results shall be submitted to the Department for review and approval before the well is placed into service.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

ARTICLE 6. DISTRIBUTION RESERVOIRS

Section 64585. Design and Construction.

(a) Each distribution reservoir shall meet the following:

(1) Any reservoir coatings or linings shall be installed in accordance with manufacturer's instructions;

(2) Vents and other openings shall be constructed and designed to prevent the entry of rainwater or runoff, and birds, insects, rodents, or other animals;

(3) At least one sampling tap shall be available to enable representative sampling of the water in the reservoir that will be entering the distribution system; the tap shall be protected against freezing, if necessary; and

(4) A reservoir shall not be designed, constructed, or used for any activity that creates a contamination hazard.

(b) The water supplier shall submit to the Department for review the design drawings and specifications for each proposed distribution reservoir prior to its construction. Each new distribution reservoir shall be:

(1) If it is a tank, constructed in accordance with American Water Works Association (AWWA) standards, which are hereby incorporated by reference, as follows: AWWA D100-05 (Welded Carbon Steel Tanks for Water Storage), D102-03 (Coating Steel Water-Storage Tanks), D103-97 (Factory-Coated Bolted Steel Tanks for Water Storage), D110-04 (Wire-and Strand-Wound, Circular, Prestressed Concrete Water Tanks), and D120-02 (Thermosetting Fiberglass-Reinforced Plastic Tanks);

(2) Constructed of an impervious material that prevents the movement of water into or out of the reservoir;

(3) Covered with

(A) A rigid structural roof made of impervious material that prevents the movement of water or other liquids into or out of the reservoir; or

(B) A floating cover designed, constructed, and maintained in conformance with the AWWA California-Nevada Section's "Reservoir Floating Cover Guidelines" (April 1999), AWWA Manual M25 (2000), and AWWA D130-02 (Flexible-Membrane Materials for Potable Water Applications), which are hereby incorporated by reference.

(4) Equipped with at least one separate inlet and outlet (internal or external), and designed to minimize short-circuiting and stagnation of the water flow through the reservoir;

(5) Equipped with drainage facilities that allow the tank to be drained and all residual sediment removed, and an overflow device. The reservoir drainage facilities and overflow device shall not be connected directly to a sewer or storm drain and shall be free of cross-connections;

(6) Equipped with controls to maintain and monitor reservoir water levels;

(7) Equipped to prevent access by unauthorized persons;

(8) Designed to allow authorized access and adequate lighting of reservoir interior for inspections, cleaning or repair;

(9) Equipped with isolation valves, and designed and operated to allow continued distribution of water when the reservoir is removed from service. The isolation valves shall be located within 100 feet of the reservoir. For a reservoir used to

meet the disinfectant contact time requirements of chapter 17 (Surface Water Treatment), bypass lines shall be blind-flanged closed during normal operations;

(10) Designed and constructed to prevent the entry of surface runoff, subsurface flow, or drainage into the reservoir;

(11) Designed to prevent corrosion of the interior walls of the reservoir;

(12) For a subsurface reservoir,

(A) Protected against flooding (both reservoir and vents);

(B) Equipped with underdrain facilities to divert any water in proximity to the reservoir away from the reservoir;

(C) Sited a minimum of 50 feet horizontally from a sanitary sewer and 100 feet horizontally from any other waste facilities and any force main;

(D) Constructed so as to have the reservoir bottom located above the highest anticipated groundwater level, based on a site investigation that includes actual measurements of the groundwater level during peak rainfall periods; extraction wells shall not be used to influence the highest anticipated groundwater level;

(E) Provided with a minimum of two groundwater level monitoring wells drilled to a depth at least 20 feet below the reservoir bottom and sited within 100 feet and on opposite sides (upgradient and downgradient) of the reservoir; and

(F) If the roof is to be buried and have a function (e.g., recreation, landscape, parking) in addition to covering the reservoir:

1. Designed and constructed pursuant to AWWA D110-04 (Wire-Strand-Wound, Circular, Prestressed Concrete Water Tanks), which is hereby incorporated by reference;

2. Equipped with an impervious connection, such as a pvc waterstop, between the wall and buried roof; and

3. Watertight, sloped for drainage and coated with a damp proofing material.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

ARTICLE 7. ADDITIVES

Section 64590. Direct Additives.

No chemical or product shall be added to drinking water by a water supplier unless the chemical or product is certified as meeting the specifications of NSF International/American National Standard Institute (NSF/ANSI) 60-2005 (Drinking Water Treatment Chemicals—Health Effects), which is hereby incorporated by reference. Certification shall be from an ANSI accredited product certification organization whose certification system includes, as a minimum, the following criteria for ensuring the chemical or product meets NSF/ANSI Standard 60.

- (a) Annual product testing,
- (b) Annual facility inspections,
- (c) Annual quality assurance and quality control review,
- (d) Annual manufacturing practice reviews, and
- (e) Annual chemical stock inspections.

NOTE: Authority cited: Section 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116550 and 131051, Health and Safety Code.

Section 64591. Indirect Additives.

(a) Except as provided in Section 64593 or where a more stringent statutory requirement exists, after March 9, 2008, a water system shall not use any chemical, material, lubricant, or product in the production, treatment or distribution of drinking water that will result in its contact with the drinking water including process media (carbon, sand), protective materials (coatings, linings, liners), joining and sealing materials (solvent cements, welding materials, gaskets, lubricating oils), pipes and related products (pipes, tanks, fittings), and mechanical devices used in treatment/transmission/distribution systems (valves, chlorinators, separation membranes) that has not been tested and certified as meeting the specifications of NSF International/American National Standard Institute (NSF/ANSI) 61-2005 / Addendum 1.0-2005 (Drinking Water System Components—Health Effects), which is hereby incorporated by reference. This requirement shall be met under testing conducted by a product certification organization accredited for this purpose by the American National Standards Institute.

(b) If a treatment chemical is generated on site,

(1) No equipment used in the generation process shall be in contact with a drinking water, or a chemical to be applied to drinking water, after March 9, 2008, unless the equipment has been tested and certified as meeting the specifications of NSF International/American National Standard Institute (NSF/ANSI) Standard 61-2005/Addendum 1.0-2005 (Drinking Water System Components—Health Effects). This requirement shall be met under testing conducted by a product certification organization accredited for this purpose by the American National Standards Institute; and

(2) No input chemical used in the generation process shall be in contact with a drinking water after March 9, 2008 unless the chemical meets the requirements of section 64590.

(c) Any chemical used to clean on-line or off-line drinking water treatment facilities that may subsequently come into contact with drinking water to be distributed to the public shall meet the requirements of section 64590.

(d) Any contract for the purchase of chemicals, materials, or products that was signed by a public water system and effective prior to March 9, 2008 shall be exempt from the provisions of subsections (a) and (b) until March 9, 2009.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64593. Use of Uncertified Chemicals, Materials or Products.

(a) A water supplier may use a chemical, material or product that has not been certified pursuant to sections 64590 or 64591 if the chemical, material or product is in the process of being tested and certified and there are no certified alternatives.

(b) Prior to use of an uncertified chemical, material or product, the water supplier shall provide the Department with an explanation of the need for the chemical, material or product; the date that the chemical, material or product was submitted for testing; the name of the accredited product certification organization conducting the testing; and a statement that certified alternatives are not available.

(c) Unless directed otherwise by the Department to ensure a pure and wholesome drinking water supply, a water supplier may use the following chemicals, materials, or products that have not been and are not in the process of being certified pursuant to section 64590 or 64591:

(1) a material or product previously approved by the Department for use or installation on or before March 9, 2008;

(2) a material or product constructed of components meeting the requirements of sections 64590 and 64591;

(3) chemical by-products necessary for meeting drinking water standards, such as sodium hypochlorite for disinfection, generated by chemicals certified pursuant to section 64590 or 64591; and

(4) atmospheric air and small parts, such as probes, sensors, wires, nuts, bolts, and tubing for which there are no certified alternatives.

NOTE: Authority cited: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 1310514021, Health and Safety Code.

ARTICLE 8. DISTRIBUTION SYSTEM OPERATION

Section 64600. Water System Operations and Maintenance Plan.

(a) If directed by the Department to do so based on an identified deficiency in the system's operations, a water system shall develop and submit a Water System Operations and Maintenance Plan (Plan); the water system shall include those elements in the following list that are deemed by the Department to be relevant to the deficiency:

(1) The operations and maintenance schedule for each unit process for each treatment plant that treats an approved surface water;

(2) The operations and maintenance schedule for each groundwater source and unit process;

(3) The schedule and procedure for flushing dead end mains, and the procedures for disposal of the flushed water including dechlorination;

(4) The schedule for routine inspection of reservoirs, and the procedures for cleaning reservoirs;

(5) The schedule and procedures for inspecting, repairing, and replacing water mains;

(6) The plan and procedures for responding to water supply emergencies;

(7) The plan and procedures for responding to consumer complaints;

(8) The schedule and procedures for testing backflow prevention assemblies;

(9) The schedule and procedures for routine exercising of water main valves;

(10) The schedule and program for maintenance and calibration of source flow meters and other online instruments used to determine the quality or quantity of water;

(11) The qualifications and training of operating personnel;

(12) The program for control of biological organisms on the interior walls of water mains; and

(13) For an underground reservoir with a buried roof designed for a function in addition to covering the reservoir, a comprehensive routine inspection and monitoring plan to ensure that there is no contamination of the reservoir as a result of that additional function.

(b) Each water system that has prepared a Plan pursuant to subsection (a) shall operate in accordance with its Department-approved Plan.

(c) Each water system that has prepared a Plan pursuant to subsection (a) shall update the Plan at least once every five years and, in addition, following any change in the method of treatment or any other modification to the system requiring a change in the systems operations and maintenance.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535 and 131051, Health and Safety Code.

Section 64602. Minimum Pressure.

(a) Each distribution system shall be operated in a manner to assure that the minimum operating pressure in the water main at the user service line connection throughout the distribution system is not less than 20 pounds per square inch at all times.

(b) Each new distribution system that expands the existing system service connections by more than 20 percent or that may otherwise adversely affect the distribution system pressure shall be designed to provide a minimum operating pressure throughout the new distribution system of not less than 40 pounds per square inch at all times excluding fire flow.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116535, 116555 and 131051, Health and Safety Code.

Section 64604. Preparation and Maintenance of Records.

(a) Each public water system subject to this chapter shall prepare:

(1) "As built" plans, maps, and drawings of all new water system facilities including updated information for all existing facilities in the same location or connected to the new facilities. The plans, maps, and drawings shall be clear and legible and shall include the location, size, construction material, and year of installation of each new water main or other facility.

(2) A schematic drawing or map showing the location of each water source, treatment facility, pumping plant, reservoir, water main and isolation valve.

(b) The plans, drawings, and maps prepared pursuant to subsection (a) shall be updated as changes occur, and maintained until replaced or superseded by updated plans or drawings. The most current plans, drawings, and maps shall be available for Department review.

(c) Results of laboratory analyses of samples taken pursuant to sections 64580, 64582, and 64583, records of flushing of mains; and records of reservoir inspections and cleaning shall be maintained for at least three years.

NOTE: Authority: Sections 116350, 116375 and 131200, Health and Safety Code. Reference: Sections 116275, 116375, 116450, 116535 and 131051, Health and Safety Code.

APPENDIX C Existing System Demand

		We	ldon Regional Cons	solidation Proje	ect - Water Syste	em Demand				
	Annual Average Day			Peak Hourly			Water Use Per		Fire Flow	
	Water Use	Demand	Maximum Day	Demand	Number of		Connection		Requirement	Water Use Per
System Name	(afy)	(gpm)*	Demand (gpm)**	(gpm)***	Connections	Population	(gpd)	County Zoning	(gpm)	Capita (gpd)
Project Participants										
Tradewinds Water Association	70.8	43.9	98.8	197.5	236	470	268	E(1/2) MH; E (2 1/2) MH	500	134
Rainbird Valley MWC	33.2	20.6	46.3	92.6	83	188	357	CH; E(1/2) RS MH	500	158
Long Canyon Water Co.	10.8	6.7	15.1	30.1	67	197	144	MS(1/4); R-3 PD, C-2 PD	1,500	49
Sierra View Restaurant	7.1	4.4	9.8	19.7	2	N/A	3,151	СН	1,500	N/A
Lake Isabella K.O.A.	8.3	5.1	11.6	23.1	1	N/A	7,400	СН	1,500	N/A
								E(2 1/2) RS MH; E(1) RS		
Bella Vista MWC	28.2	17.5	39.3	78.7	47	74	536	MH	500	340
Subtotal	158.4	98.2	220.9	441.7	436	929				
			Pote	ntial Project Pa	rticipants					
South Fork Elementary School	2.8	1.7	3.8	7.7	1	135	2,464	A-1 MH	1,500	N/A
South Fork Women's Club	6.8	4.2	9.4	18.8	1	N/A	6,026	A-1	500	N/A
Weldon Methodist Church	5.2	3.2	7.3	14.6	1	N/A	4,660	A	500	N/A
Valley Estates P.O.A.	184.1	114.1	256.8	513.7	121	300	1,358	E(1/2) RS MH	500	548
South Fork Middle School	2.2	1.3	3.0	6.0	1	135	1,919	E(2 1/2)	1,500	N/A
Hillview Acres MWC	14.7	9.1	20.5	41.1	47	25	280	E(1/4) MH	500	526
Lakeview Ranchos MWC	18.4	11.4	25.7	51.4	73	120	225	A-1 MH	500	137
Subtotal	234.2	145.2	326.6	653.2	245	715				
Total:	392.5	243.3	547.5	1,094.9	681	1,644				

*ADD estimated by dividing annual usage by 365 per CCR, Title 22, Division 4, Chapter 16, Article 2, Section 64554

**Peaking factor of 2.25 used to estimate MDD per CCR, Title 22, Division 4, Chapter 16, Article 2, Section 64554

***Peaking factor of 2.0 used to estimate PHD per CCR, Title 22, Division 4, Chapter 16, Article 2, Section 64554 & Section 202-3.03 of the KCDS

Kern County Zoning Definitions

A - Exclusive Agriculture

A-1 - Limited Agriculture

A-1 MH - Limited Agriculture, Mobilehome Combining

C-2 PD - General Commercial, Precise Development Combining

CH - Highway Commercial

E (2 1/2) - Estate 2.5 Acres

E(1/4) MH - Estate 0.25 Acres, Mobilehome Combining

E(1/2) MH - Estate 0.5 Acres, Mobilehome Combining

E(2 1/2) MH - Estate 0.5 Acres, Mobilehome Combining

E(1) RS MH - Estate 1 Acre, Residential Suburban Combining, Mobilehome Combining

E(1/2) RS MH - Estate .5 Acres, Residential Suburban Combining, Mobilehome Combining

E(2 1/2) RS MH - Estate 2.5 Acres, Residential Suburban Combining, Mobilehome Combining

APPENDIX D Project Area Map with Kern County Zoning Designations

APPENDIX E System Storage Requirements

Weldon Regional Consolidation Project - Water System Storage Requirement											
				Peak Hourly	Requirement for	Requirement for 3	Requirement for 5		Minimum Req.		
	Annual Water	Average Day	Maximum Day	Demand	Operational Demand	Days of MDD Storage	Days of MDD Storage	System Service	Storage per Acre		
System Name	Use (afy)	Demand (gpm)*	Demand (gpm)**	(gpm)***	Storage (gal)	(gal)	(gal)	Area (acres)	(Gal/Acre)		
	Project Participants										
Tradewinds Water Association	70.8	43.9	98.8	197.5	142,204	426,613	711,021	204	697		
Rainbird Valley MWC	33.2	20.6	46.3	92.6	66,683	200,050	333,417	65.4	1,020		
Long Canyon Water Co.	10.8	6.7	15.1	30.1	21,692	65,076	108,461	30.3	716		
Sierra View Restaurant	7.1	4.4	9.8	19.7	14,180	42,541	70,901	N/A	N/A		
Lake Isabella K.O.A.	8.3	5.1	11.6	23.1	16,651	49,952	83,254	N/A	N/A		
Bella Vista MWC	28.2	17.5	39.3	78.7	56,641	169,922	283,203	293	193		
Subtotal:	158.4	98.2	220.9	441.7	318,051	954,154	1,590,257				
			Potent	ial Project Particip	ants						
South Fork Elementary School	2.8	1.7	3.8	7.7	5,544	16,631	27,718	N/A	N/A		
South Fork Women's Club	6.8	4.2	9.4	18.8	13,558	40,673	67,788	N/A	N/A		
Weldon Methodist Church	5.2	3.2	7.3	14.6	10,485	31,454	52,423	N/A	N/A		
Valley Estates P.O.A.	184.1	114.1	256.8	513.7	369,831	1,109,494	1,849,157	138	2,680		
South Fork Middle School	2.2	1.3	3.0	6.0	4,318	12,955	21,592	N/A	N/A		
Hillview Acres MWC	14.7	9.1	20.5	41.1	29,586	88,757	147,929	241	123		
Lakeview Ranchos MWC	18.4	11.4	25.7	51.4	36,977	110,931	184,886	244	152		
Subtotal:	234.2	145.2	326.6	653.2	470,298	1,410,894	2,351,491	Average:	797		
Total:	392.5	243.3	547.5	1,094.9	788,349	2,365,048	3,941,747				

*ADD estimated by dividing annual usage by 365 per CCR, Title 22, Division 4, Chapter 16, Article 2, Section 64554

**Peaking factor of 2.25 used to estimate MDD per CCR, Title 22, Division 4, Chapter 16, Article 2, Section 64554

***Peaking factor of 2.0 used to estimate PHD per CCR, Title 22, Division 4, Chapter 16, Article 2, Section 64554

APPENDIX F Long Canyon Test Well Study

LONG CANYON WATER COMPANY

TEST WELL REPORT

November 2015

DEE JASPAR & ASSOCIATES, INC. CONSULTING CIVIL ENGINEERS 2730 UNICORN ROAD, BLDG. A BAKERSFIELD, CA 93308 PHONE (661) 393-4796 FAX (661) 393-4799

TECHNICAL MEMORANDUM

PREPARED FOR:	State Water Boards
	Drinking Water Program
	4925 Commerce Drive, Suite 120
	Bakersfield, CA 93309

- PREPARED BY:Curtis M. Skaggs, P.E.Dee Jaspar and Associates, Inc.2730 Unicorn Road, Bldg ABakersfield, CA 93308
- **DATE:** August 26th, 2015
- SUBJECT: Long Canyon Water Company Test Well Project

Test Holes - General

The Test Hole No. 1 was drilled on the Prince Property from July 21st through July 24th, 2015. The Test Hole No. 1 is located near the south side of Hwy 178 approximately 2,500-ft east of Sierra Way. The Test Hole No. 1 was drilled to a depth of 305-ft using the casing hammer drilling method. The depth to water was approximately 15-ft to 25-ft. Water samples were collected from four different depth intervals: 55-58-ft (Zone #1), 155-158-ft (Zone #2), 215-218-ft (Zone #3), and 274-277-ft (Zone #4).

The Test Hole No. 2 was drilled on the Hochman Property from July 13th through July 20th, 2015. The Test Hole No. 2 is located near the south side of Hwy 178 approximately 1,400-ft east of Fay Ranch Road. The Test Hole No. 2 was drilled to a depth of 347-ft using the casing hammer drilling method. The depth to water was approximately 13-ft to 15-ft. Water samples were collected from seven different depth intervals: 83-86-ft (Zone #1), 100-103-ft (Zone #2), 170-173-ft (Zone #3), 214-220-ft (Zone #4), 260-263-ft (Zone #5), 295-298-ft (Zone #6), and 344-347-ft (Zone #7).

Both of the test holes will be destroyed in accordance with the Kern County Well Drilling Permit requirements. The test holes will be scheduled for destruction upon approval of this Test Well Report by the State Water Board.

Figure 1 – Test Well Locations

Test Hole - Water Quality

Test Hole #1 had four different zones sampled as noted above. Manganese was above the maximum contaminant level (MCL) in all four samples and Nitrate was above the MCL in the deepest zone at 247-ft to 277-ft.

Test Hole #2 had seven different zones sampled as noted above. Iron was above the maximum contaminant level (MCL) in one sample which was at a depth of 214-ft to 220-ft while the Gross Alpha was above the MCL in the two shallow zones (83-ft to 86-ft and 100-ft to 103-ft) and in the three deepest zones (260-ft to 263-ft, 295-ft to 298-ft, and 344-ft to 347-ft).

Test Well - Conclusions

A municipal water well can be constructed at both test well sites.

It is recommended to construct a 230-ft deep well at the Test Hole #1 location with a perforated interval from 100-ft to 220-ft. This well is estimated to have a production rate of approximately 400 gpm. However the well will likely have Manganese above the MCL and would require treatment by oxidation/filtration. The deepest zone, Zone #4, has high Nitrate but it would be approximately 40-ft below the well depth and there is a cemented sand lense at about 268-ft to 274-ft that would retard the upward movement of that water.

It is recommended to construct a 250-ft deep well at the Test Hole #2 location with a perforated interval from 170-ft to 240-ft. This well is estimated to have a production rate of approximately 400-600 gpm. The two shallow zones above this perforated interval had high gross alpha but there is a good clay layer (clay, silty clay, and silt) from about 120-ft to 170-ft. The deeper zones below 260-ft had high gross alpha as well, however there is a layer of cemented sands from 258-ft to 260-ft that would provide a barrier from the upward movement of

that deeper water. There was a high iron concentration from 214-ft to 220-ft but this may blend down with the water from an approximate depth of 170-ft to 173-ft otherwise oxidation/filtration treatment may be necessary for iron removal.

It is proposed to not design for iron and manganese removal at this stage and to wait until the well construction phase and final blended water quality is complete to determine if this will be necessary.

It is hereby requested that the State Water Board provide authorization to proceed with the preparation of the Preliminary Design Report based upon the above conclusions.

Attachments:

Well Construction Diagrams – Appendix A Ken Schmidt Test Hole Report – Appendix B Well Completion Reports – Appendix C Water Quality Data – Appendix D

APPENDIX A

WELL DIAGRAMS

APPENDIX B

TEST HOLE REPORT KEN SCHMIDT & ASSOCIATES, INC.

KENNETH D. SCHMIDT AND ASSOCIATES

GROUNDWATER QUALITY CONSULTANTS 3701 PEGASUS DRIVE, SUITE 112 BAKERSFIELD, CALIFORNIA 93308 TELEPHONE (661) 392-1630

August 11, 2015

Mr. Curtis Skaggs Dee Jaspar & Associates 2730 Unicorn Road, Bldg. A Bakersfield, CA 93308

Re: Long Canyon WC TW-1

Dear Curtis:

During July 21-24, 2015, Johnson Drilling Co., Inc. of Reedley completed a test well by the casing hammer method to a depth of 305 feet. We logged the drill cuttings and a geologic log is attached. Alluvial deposits were encountered above a depth of 302 feet, where the hardrock was encountered. Except for a blue and brown silty clay, which was found from 27 to 54 feet in depth, the alluvial deposits were brown. Depth to water was about 15 to 25 feet at the time of drilling. Fine-grained layers that could function as confining beds were present in the following depth intervals:

> 65 to 101 feet 150 to 185 feet 110 to 125 feet 212 to 215 feet.

Water samples were collected from four different depth intervals for analyses of selected constituents. At one of these intervals (274 to 277 feet) a pumped sample was also collected for more comprehensive analyses. FGL Environmental of Santa Paula analyzed the samples for inorganic constituents and for alpha activity. BC Laboratories analyzed the samples for hexavalent chromium.

TDS concentrations ranged from 300 to 380 mg/l. Nitrate concentrations ranged from 0.4 to 53 mg/l. The highest nitrate concentration was in a sample from below a depth of 270 feet and exceeded the MCL of 45 mg/l. The nitrate concentrations in the samples from above a depth of 220 feet were 8 mg/l or less, well below the MCL. Iron concentrations in all of the samples were less than 0.05 mg/l, well below the recommended MCL of 0.3 mg/l. Manganese concentrations in all of the sampled zones were greater than the recommended MCL of 0.05 mg/l. Arsenic concentrations in all of the samples were less than 2 ppb, well below the MCL of 10 ppb. Alpha activities in the samples ranged from 1.3 to 6.0 picocuries per liter, below the MCL of 15 picocuries per liter.

A supply well can be constructed at the site, but manganese treatment would need to be provided. Blank casing would be installed from the surface to 100 feet in depth and from 220 to 230 feet in depth. Perforated casing would be installed from 100 to 220 feet in depth. Based on sieve analyses selected drill cutting samples by Roscoe Moss Co., a slot size of 0.06-inch and gravel gradation of 4 X 16 are recommended. Such a well would tap about 50 feet of sand and gravel. The estimated short-term pumping rate for a properly constructed and developed well is about 700 gpm. However, because of the hardrock outcrops to the southwest of the site, boundary conditions could reduce the yield to about 400 gpm under long-term pumping.

Please call me if you have any questions.

Sincerely Yours,

K finito

Kenneth D. Schmidt

KDS/td

GEOLOGIC LOG FOR LONG CANYON W.C. TW-1

Depth (feet)	Description
0-12	Brown silty fine sand with some gravel
12-17	Brown fine to medium sand with some gravel
17-27	Brown sandy clay
27-54	Blue and brown-gray silty clay
54-55	Brown silty clay
55-65	Brown fine to coarse sand with some gravel
65-81	Brown clayey silt
81-95	Brown silty clay with some gravel
95-101	Brown sandy clay with some gravel
101-110	Brown coarse sand and gravel
110-125	Brown sandy clay with gravel
125-130	Brown clayey medium to coarse sand with gravel
130-140	Brown medium to coarse sand with gravel
140-150	Brown medium to coarse sand with gravel and clay
150-170	Brown sandy clay with gravel
170-185	Brown sandy silty clay with some gravel
185-190	Brown coarse sand with some gravel
190-200	Brown fine to coarse sand
200-212	Brown medium to coarse sand with gravel
212-215	Brown silty clay
215-220	Brown medium to coarse sand with gravel
220-230	Brown medium to coarse sand with clay
230-268	Brown medium to coarse sand with gravel
268-274	Brown cemented sand
274-280	Brown silty fine sand with some gravel
280-302	Brown fine to coarse sand with some gravel
302-305	Hard rock

DEPTH SAMPLING RESULTS FOR LONG CANYON WC TW-1 (JULY 2015)

Cased Depth (feet)	Drilled Depth (feet)	Sample Type	Nitrate (mg/L)	pH	Electrical Conductivity (umhos/cm@25°C)	Total Dissolved Solids (mg/l) (@180°C)	Iron (mg/l)	Manganese (mg/l)	Arsenic (ppb)	Hexavalent Chromium (ppb)	Alpha Activity (pCi/l)
55	58	Airlift	0.4	7.8	524	350	<0.05	0.84	<2	<0.2	2.3
155	158	Airlift	2.3	7.0	548	340	<0.05	0.48	<2	<0.2	1.3
215	218	Airlift	8.0	7.8	576	380	<0.05	0.88	<2	<0.2	6.0
274	277	Airlift	53	7.6	434	300	<0.05	0.03	<2	0.3	1.6
274	277	Pumped	53	7.2	433	300	<0.05	0.20	<2	<0.2	3.4

Laboratory analyses by FGL Environmental of Santa Paula (inorganic, and alpha activity) and BC Laboratories, Inc. of Bakersfield (hexavalent chromium). Nitrate concentrations are reported as nitrate.

KENNETH D. SCHMIDT AND ASSOCIATES GROUNDWATER QUALITY CONSULTANTS 3701 PEGASUS DRIVE, SUITE 112 BAKERSFIELD, CALIFORNIA 93308 TELEPHONE (661) 392-1630

August 21, 2015

Mr. Curtis Skaggs Dee Jaspar & Associates 2730 Unicorn Road, Bldg. A Bakersfield, CA 93308

Re: Long Canyon WC TW-2

Dear Curtis:

During July 13-20, 2015, Johnson Drilling Co., Inc. of Reedley completed a test well by the casing hammer method to a depth of 347 feet. We logged the drill cuttings and a geologic log is attached. The top of the hardrock was encountered at 344 feet in depth. Except for a blue and gray clay, from 28 to 53 feet, and a gray-brown clay, from 120 to 124 feet in depth, the alluvial deposits were brown. Below a depth of 80 feet, finegrained layers that could be confining beds were present in the following depth intervals:

> 97 to 101 feet 208 to 214 feet. 120 to 170 feet

Depth to water was about 13 to 15 feet at the time of drilling. Water samples were collected from seven different depth intervals below a depth of 80 feet for analyses of selected constituents. At three of these intervals (100 to 103 feet, 214 to 220 feet, and 295 to 298 feet in depth), pumped samples were also collected for more comprehensive analyses. FGL Environmental of Santa Paula analyzed the samples for inorganic constituents and for alpha activity and uranium. BC Laboratories of Bakersfield analyzed the samples for hexavalent chromium.

The attached table summarizes the results of analyses. TDS concentrations ranged from 320 to 560 mg/l and were 390 mg/l or less in samples from below a depth of 170 feet. Nitrate concentrations ranged from 3 to 27 mg/l, and were less than 10 mg/l in samples from below a depth of 210 feet. Iron concentrations were less than the recommended MCL of 0.3 mg/l, except for one sample. An iron concentration of 0.73 mg/l, exceeding the recommended MCL of 0.3 mg/l, was in the pumped sample from 214 to 220 feet in depth. Manganese concentrations were 0.02 mg/l or

KENNETH D. SCHMIDT AND ASSOCIATES GROUNDWATER QUALITY CONSULTANTS

less except for two airlifted samples from below a depth of 295 feet. These higher concentrations ranged from 0.05 to 0.06 mg/l, compared to the MCL of 0.05 mg/l, but don't appear to be representative, when considering the result for the pumped sample from 295 to 298 feet in depth (0.02 mg/l). Arsenic concentrations were 3 ppb or less in all of the samples, well below the MCL.

Alpha activities in samples from above a depth of 105 feet ranged from 25 to 41 picocuries per liter, exceeding the MCL of 15 picocuries per liter. Alpha activities in samples between 170 and 220 feet in depth ranged from about 9 to 15 picocuries per liter. Uranium activities samples from this interval ranged from 8 to 15 picocuries per liter, less than the MCL of 20 picocuries per liter. Alpha activities in samples from below a depth of 260 feet ranged from 31 to 46 picocuries per liter, exceeding the MCL.

The fine-grained layers between 120 and 170 feet appear to separate overlying groundwater with higher alpha activities from underlying groundwater with lower alpha activities. However, there is no apparent confining bed that separates the base of the lower alpha activity groundwater above 240 feet in depth from deeper high alpha activity groundwater below a depth of 260 feet. The cemented deposits between 258 and 260 feet in depth could be responsible for the difference.

Strata between 170 and 240 feet could be tapped by a new well, but iron treatment could be necessary. Such a well would tap about 65 feet of coarse grained deposits and should yield at least about 600 to 700 gpm. Blank casing would be installed from the surface to 170 feet in depth and from 240 to 250 feet in depth. Ful-flow louvered casing would be installed from 170 to 240 feet in depth. I recommend not over pumping the well during development (i.e. limiting drawdowns to less than 50 feet), and collecting samples for alpha and uranium activity at the end of each step for the pump test.

Please call me if you have any questions.

Sincerely Yours,

Fir Schidt

Kenneth D. Schmidt

KDS/td

GEOLOGIC LOG FOR LONG CANYON W.C. TW-2

Depth (feet)	Description
0-11	Brown silty sandy clay
11-16	Brown silty fine to medium sand
16-28	Brown sandy clay
28-53	Blue and gray clay with fine sand
53-62	Gray fine sand with silt and clay
62-70	Brown silty fine sand
70-83	Brown fine to medium sand
83-97	Brown fine to coarse sand
97-101	Brown clay
101-110	Brown fine to medium sand with gravel
110-112	Brown clay
112-120	Brown medium to coarse sand with gravel
120-124	Gray-brown clay
124-132	Brown sandy clay
132-150	Brown clay
150-169	Brown silty clay
169-170	Brown silt
170-189	Brown fine to medium sand
189-208	Brown medium to coarse sand with some
	gravel
208-214	Brown clay
214-218	Brown medium to coarse sand with some
	gravel
218-240	Brown medium to coarse sand with gravel
240-255	Brown coarse sand with gravel
255-258	Brown cobbles and coarse sand
258-260	Brown cemented medium to coarse sand with
	gravel
260-265	Brown medium to coarse sand with gravel
265-280	Brown medium to coarse sand with some
	gravel
280-293	Brown gravel and coarse sand
293-295	Brown silty clay
295-300	Brown gravel and medium to coarse sand
300-310	Brown medium to coarse sand
310-320	Brown coarse sand with gavel
320-342	Brown medium to coarse sand
342-344	Brown clay with gravel
344-347	Hard rock

DEPTH SAMPLING RESULTS FOR LONG CANYON WC TW-2

(JULY 2015)

Cased Depth (feet)	Drilled Depth (feet)	Sample Type	Nitrate (mg/L)	рн	Electrical Conductivity (umhos/cm@25°C)	Total Dissolved Solids (mg/l) (@180°C)	Iron (mg/l)	Manganese (mg/l)	Arsenic (ppb)	Hexavalent Chromium (ppb)	Alpha Activity (pCi/l)	Uranium Activity (pCi/l)
83	86	Airlift	4	7.7	683	410	<0.05	<0.01	3	0.3	25	-
100	103	Airlift	26	7.7	848	560	<0.05	<0.01	<2	0.9	41	-
		Pumped	27	7.6	848	530	<0.05	0.02	<2	1.5	40	-
170	173	Airlift	14	7.1	609	390	<0.05	<0.01	<2	<0.2	9	3.5
214	220	Airlift	9	7.4	538	350	<0.05	<0.01	<2	0.4	13	12
		Pumped	9	7.5	546	360	0.73	0.02	<2	<0.2	15	12
260	263	Airlift	4	7.4	495	320	<0.05	0.02	<2	0.3	31	
295	298	Airlift	5	7.6	513	330	<0.05	0.06	<2	<0.2	41	~
		Pumped	5	7.2	527	340	<0.05	0.02	<2	<0.2	46	-
344	347	Airlift	3	8.2	649	390	<0.05	0.05	<2	<0.2	43	-

Laboratory analyses by FGL Rnvironmental of Santa Paula (inorganic, and alpha and uranium activities), and BC Laboratories, Inc. of Bakersfield (hexavalent chromium). Nitrate concentrations are reported as nitrate.

FIGURE 1-LOCATION OF TEST WELLS

.
APPENDIX C

WELL COMPLETION REPORTS

TRIPLICATE						STATE C	OF CALIFO	RNIA	DWR US	E ONL	Y	DO	NOT FILL IN
Owner's Copy					WELL (COMP	LETIO	N REPOR	T	11	1	1	
Page 1 of 2						Refer to In:	struction F	amphlet	5	TATE W	ELL NC)./ STAT	ION NO.
Owner's Wall No.	TW1					No	<u>د د ام ا</u>	R2067		,]			
Data Wash Dagas	7/20/201	5			T 1 7/27/20	15	CUL	52007		ł			
Date work began _	TILOILOI			-,	Ended) 1	1.		
Local Permit A	gency K	ern (;o En	VII	onmental Hea	uth			-		MITES		
Permit No. W	P16283				Permit I	Date _6/18	8/2015		_	Ar	N/Inor	JINEN	
		GEO.	LOG	IC	LOG				WELL O	WNEI	₹		
	VE	RTICAL		нс		NGLE	(SPECIEV)	Name Prince Fa	amily Trust				
	DRILLING	3						Mailing Address	7008 Calle Torci	do			
DEPTH FROM	METHOD				FLL	UID		Rakorefield	S 1900 Galle TOTOL	<u></u>		C	A 93309
SURFACE	,	Dascrit	ho m	U ate	ESCRIPTION	color et	~		······································				TE 71P
$r_{\rm L}$ to $r_{\rm L}$	Brown	hilty fi		200	d with some or	couol	ч .		WELL LO	CATI	ON-		
	Drowna	Sincy II		41.	a with some gi			Address Highwa	ay 178	•			
		inte u	<u>, mec</u>	JIU	in sano with s	ome grav	/91	City Weldon C/	A 93283				
1/ 2/	Browns	sandy	/ clay					County Kern					
27: 54	Blue an	nd bro	wn-g	ra	y silty clay			APN Book 426	Page 400	Parcel	06		
54 55	Brown a	silty c	lay					Township 26 S	Range 34 E	Section	22		
55 65	Brown f	fine to	o coa	rse	e sand with so	me grave	əl	Lotitudo	Kangoo	occuo.	u <u>=</u>		
65 81	Brown	clave	v silt			¥		DEG. N	MIN. SEC.		-	DEG.	MiN. SEC.
811 05	Brown	eilty o	lav w	,it}-	some dravel			LO	CATION SKETCH-			AC	TIVITY (🗹) —
		Silly C	alay w		the some graver	-1		······································	NORTH			\mathbf{I}	NEW WELL
95 101	Brown	sandy	/ clay	w	ith some grave	81						MODIF	ICATION/REPAIR
101; 110	Brown	coars	e sar	ld	and gravel							-	Deepen
110; 125	Brown s	sandy	/ clay	W	ith gravel							-	Other (Specify)
125; 130	Brown	claye	y me	dit	im to coarse s	and with	gravel						
130! 140	Brown	mediu	um to	C	parse sand wit	h gravel						P	ESTROY (Describe rocedures and Materials
140 150	Brown	medi	im to	CI	parse sand wit	haravel						U	inder "GEOLOGIC LOG"
	and da	v			Juioo baila ila	an grattor						PLAN	NED USES (\measuredangle)
150/ 170		y nondi			ith evenuel			۲.			F	WATEP	(SUPPLY
	DIOWILS	sanuy	/ Clay		illi graver			NES.			AS	łr	rigation Industrial
1/0, 185	Brown	sandy	/ Silty	Cl	ay with some	gravel		>			ш		
185 190	Brown	coars	e sar	nd	with some gra	ivel							TEST WELL
190 200	Brown	fine to	o coa	rs	e sand							CATHOR	DIC PROTECTION
200 212	Brown	mediu	um to	C	parse sand wit	h gravel						F	IEAT EXCHANGE
212 215	Brown	silty c	lav										DIRECT PUSH
215 220	Brown	modi	im to	0	oarse sand wit	h gravol							INJECTION
210, 220	Drown				Salac sand wit	h elev						VAPC	DR EXTRACTION
2201 230		medii	um to		Jaise saliu wi	in ciay							SPARGING
230 268	Brown	meaii	um to		oarse sand wit	in gravei		Illustrate or Describe I	Distance of Well from Roads.	Buildings			REMEDIATION
268 274	Brown	ceme	ented	Sa	Ind			Fences, Rivers, etc. and	attach a map. Use addition:	d paper i	ſ	0	THER (SPECIFY)
274 280	Brown	silty f	ine sa	an	d with some gi	ravel		necessary, Therase b	E ACCORATE & COM	LUID.			
280 302	Brown	fine to	o coa	rs	e sand wtih so	me grave	el	WATE	R LEVEL & YIELD	OF CC	MPL	ETED	WELL
302 305	Hard R	ock						DEPTH TO FIRST V	WATER (Ft.) BE	LOW SI	JRFAC	Ξ	
1	1				·····			DEPTH OF STATIC					
	llong C	anvo	n Wa	t۵	r Co. Test Wel	11 #1	••••	WATER LEVEL	(Ft.) & DATE	MEASU	RED _		·····
1	Long O	anyo	11 990		00.1031 4461	11 77 1		ESTIMATED YIELD	*(GPM) & 1	EST TY	'PE		
TOTAL DEPTH OF	BORING .	305		(Fe	et)			TEST LENGTH		DOWN_		(Ft.)	
TOTAL DEPTH OF	COMPLE	TED V	VELL	<u>30</u>	5 (Feet)			May not be repr	esentative of a well's l	ono-ter	m viel	, d	
j									r	<u>, , , , , , , , , , , , , , , , , , , </u>			
DEP TH	DODE				CA	SING (S)			DEPTH		ANNU	JLAR	MATERIAL
FROM SURFACE	HOLE	TYP	E (⊻)						FROMSURFACE			TY	PE
	DIA.	¥Ë	żő	<u></u>	MATERIAL /	INTERNAL	GAUGE	SLOT SIZE		CE-	BEN-		
Ft. to Ft.	(inches)	N N	83	1	GRADE	(inches)		S (inches)	Ft. to Ft.	MENT	TONITI	FILL	(TYPE/SIZE)
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ΠŪ	Ē	E		((\mathbf{X})	(⊻)	$(\underline{\mathcal{X}})$	
+3 302	8-5/8"			_	STEEL	8.125		50	I				
t													
i									1				
1									i.				
1									1				
1	· · · · · · · · · · · · · · · · · · ·			\neg					1				
ATTACHMENTS (/)						CERTIFICA	TION STATEMEN'	<u>г</u>					
Geologic Log						is complete and accurat	ie to the best of my knowled	⊾ 1ge and i	belief.				
Well Construction Diagram NAME_JOHNSON DRILLING (COMPANY			w				
Geophysical Log(s) (PERSON, FIRM, OR CORPORAT					ATION) (TYPED OR PR	(INTED)			C A	02654 0700			
Soli/Water Chemical Analysis Z3489 East Kings Canyon ADDRESS					CITY			STATE					
	ATTACH ADDITIONAL INFORMATION JE IT EVIETE Signed							9/03/1	5	{	45802		
A THOR ADDITIONAL		201, IT I	I EAIGI	<i>а</i> .	WEL	L DRILLER/A	UTHORIZED	REPRESENTATIVE	DA	TE SIGN	IED	(2-57 LICENSE NUMBER

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

.

TRIPLICATE Owner's Copy						W	रूम म	STATE O	OF CALIFO		FDAT	- -	<u> </u>	SE ONLY	<u> </u>	- <u>DO</u>	NOT FILL IN
Page 2 of 2						YY.	ELL	Refer to In	Struction F	Panıphlet	EPUP			STATE W	ELL NO	D./ STAT	ION NO.
Owner's Well No	. TW1							No	[.] e028	8206	7					1	
Date Work Began	7/20/201	15				. Ende	d7/27/2	015		0_00	•		LATITUDI	E!		LO	NGITUDE
Local Permit A	gency K	lern	C	οE	nvi	ronme	ental He	alth				_					
Permit No. <u>M</u>	/P16283	0.0			~ * *	11.00	– Permit	Date 6/1	8/2015			_ L		AP	N/TRS/	OTHER	
		GE	0	-00	310	LOG				_			WELL C	OWNEF	≀ –		
ORIENTATION (✓)		RTIC	CAL	-	_ н	ORIZON	TAL	ANGLE	(SPECIFY)	Name <u>†</u>	Prince F	amily I	rust				
DEPTH FROM	METHOD	í _					FL			Mailing	Addres	s <u>7908</u>	Calle Torc	ido		<u> </u>	02200
SURFACE	1	Desc	crib	ne n	L nate	DESCR erial. s	IPTION grain, size	e, color, et	с.	CITY	meiu					STA	ATE ZIP
	S of Hv	vy 1	78	3 N	of	Pauls	Place R	d-Weldor	<u> </u>	Address	Highw	av 178	- WELL LO	OCATI	0N		
l I	1									City W	eldon C	A 9328	3				
2	1									County	Kern						
	1									APN BO	ook 426	Pag	ze 4 0 0	Parcel	06		
 	I .									Townsh	ip <u>26 S</u>	Ra	nge <u>34 E</u>	Section	n <u>22</u>		
	+									Latitude	۔ 				-	1	<u> </u>
	+					-					- LC	MIN. CATIO	SEC. N SKETCH			DEG.	MIN. SEC. CTIVITY (1)
												NOI	атн ———			<u> </u>	NEW WELL
	i															MODIF	ICATION/REPAIR
	1																 Deepen Other (Specify)
	1																
	1															— P	ESTROY (Describe rocedures and Materials
	1									[nder "GEOLOGIC LOG"
	I															WATEF	NINED USES (*) I SUPPLY
	1									EST					AST	D	omestic Public rigation Industrial
	1									3					ш		
	3							•								CATHOD	IC PROTECTION
	1															+	DIRECT PUSH
	 																INJECTION
																VAPC	R EXTRACTION
1	1											sou	J T H				SPARGING
I	1									Illustrate of Fences, Riv	or Describe vers, etc. and	<i>Distance of</i> 1 attach a	Well from Roads, map. Use addition	Buildings, al paper i	f	0	THER (SPECIFY)
	1									necessary.	PLEASE I	BE ACCU	RATE & COM	PLÊTE.			
1											WATE	RLEVI	EL & YIELD	OF CO	MPL	ETED	WELL
1	1									DEPTH 1	O FIRST	WATER		ELOW SU	JRFAC	E	
I	۱ ۱									DEPTH C	OF STATIC						
I I	1 									ESTIMATI		•	(GPM) & CAT	TEST TY	PF		
TOTAL DEPTH OF	BORING.	30	5		- (F	eet)				TEST LE	NGTH	(Hrs.) TOTAL DRAV	NDOWN_	•	(Ft.)	
TOTAL DEPTH OF	COMPLE	TED) W	'ELJ	<u>_30</u>)5	(Feet)			May n	ot be rep	resentati	ve of a well's	long-ter	m yiel	<u>ld.</u>	
Dept		1					C	ASINC (S)						<u> </u>	ANINI		
FROM SURFACE	BORE -	T	YPE	Ξ (⊻	()		<u> </u>					FROM	DEPTH I SURFACE		AININ	TY	PF
	DIA.	¥	N E N	ż	JPE	MA	TERIAL /	INTERNAL	GAUGE	SLC	T SIZE			CE-	BEN-		
Ft. to Ft.	(inches)	BLA	SCRE	85	IL F	G	RADE	(Inches)	THICKNES	L IF SS (Ir	nches)	Ft.	to Ft.	MENT		FILL	(TYPE/SIZE)
+3 302	8-5/8"			<u> </u>		STE	FI	8 1 2 5	2	50			i 1		<u>(*)</u>	<u>, (×)</u>	
1				1									1				
													1				
													1				
1					-												
		Ļ.	Ļ	<u> </u>				<u> </u>			DETT			<u> </u>		<u> </u>	
ATTAC	Log	(⊻)				the undersi	aned, certify th	hat this report	is comolete	and accura	ATION ite to the h	STATEMEN	dae and k	oelief.		
Well Co	instruction D	iagra	m				NAME_J	<u> </u>	DRILLING	COMPA	VY			- 9- 01,0 1			
Geophys	ical Log(s) er Chemical	Ana	alvsi	s			(PER 23489 Ea	ast Kings C	anyon	4110N) (TY	PED OR PI	NINIED)	Reedlev			CA	93654-9760
Other						- 11	ADDRESS						CITY	00/02/11		STATE	ZIP
ATTACH ADDITIONAL	INFORMATIO	ON, I	F IT	EXI	STS.	['	Signea WE	LL DRILLER/A	UTHORIZED	REPRESE	TATIVE		D/	ATE SIGN	IED		

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

TRIPLICATE					STATE (OF CALIFO	RNIA	DWR US	E ONLY -	- DO N	OT FILL IN
Owner's Copy				WELL	COMP	LETIC	N REPOR	$\mathbf{T} \parallel 1 \parallel 1$	111		
Page 1 of 2					Refer to In	struction H	Pamphlet	S	TATE WELL N	O./ STATIO	N NO.
Owner's Well No.	. <u>TW2</u>				No	[.] e028	82066				
Date Work Began	7/13/2015			Ended7/20/2	015			LATITUDE		LON	JITUDE
Local Permit A	gency Ker	n Co l	Envi	ronmental He	alth						
Permit No. W	ĬР16282			Permit	Date 6/1	8/2015			APN/TRS	/OTHER	
	G	EOLO	GIC	LOG			[WELL C	WNER -		
	🖌 VERT	ICAL	— но	DRIZONTAL	ANGLE	(SPECIFY)	Name Hochmai	n Family Trust			
	DRILLING	CASIN	G H				Mailing Address	s 7908 Calle Torci	do		
DEPTH FROM SURFACE			D	ESCRIPTION			Bakersfield			CA	93309
FI. to Ft.	De	scribe	mate	rial, grain, size	e, color, et	с.	CITY		OCATION-	STATE	E ZIP
	Brown sil	ty san	ay c	ay		······································	Address Highwa	ay 178 "ELD D			
	Brown sil	ty fine	to n	nedium sand			City Weldon C/	A 93283			
16: 28	Brown sa	nay ci	ay				County Kern				
281 53	Blue and	gray o	lay	with fine sand			APN Book 426_	Page <u>032</u>	Parcel 13		
53 62	Gray fine	sand		-1			Township 26 S	Range3 <u>4 E</u>	Section 13		
021 70	Brown Si	ty nne	san				Latitude				1
	Brown fin		ieail	im sano				MIN. SEC. CATION SKETCH-			IVITY (1)
	Brown III		oars	e sano				NORTH		L NE'	W WELL
97: 101	Brown fin	ay a ta m	ndu	m and with	aroual					MODIFIC	ATION/REPAIR
	Brown ol		ieun	ini sanu witi g	graver						- Deepen - Other (Specify)
112 120	Brown m	ay adium	tale	oarse sand w	ith gravel						
120' 124	Grav-bro	wn cla	<u>v</u>	Carse Sand W	nii giavei					DES	TROY (Describe
124' 132	Brown sa	ndy cl	y av							Und	er "GEOLOGIC LOG"
132' 150	Brown cla		uy							PLANN	$\overline{\mathbf{ED}} \mathbf{USES} (\checkmark)$
150 169	Brown sil	tv clav	,		×٠,		ST		ta ta	WATER S	vestic Public
169 170	Brown sil	†			1.00		ME N		EAS	Irrig	ation Industrial
170, 189	Brown fin	e to m	nedii	im sand							MONITORING
189; 208	Brown m	edium	to c	oarse sand w	ith some of	oravel				CATHODIC	
208; 214	Brown cla	av				<u> </u>				HE	AT EXCHANGE
214 218	Brown m	edium	to c	oarse sand w	ith some o	gravel				1	DIRECT PUSH
218 240	Brown m	edium	to c	oarse sand w	ith gravel						INJECTION
240 255	Brown co	arse s	and	with gravel						VAPOR	SPARGING
255 258	Brown co	bbles	and	coarse sand			·	SOUTH		-	REMEDIATION
258 260	Brown ce	mente	ed m	edium to coar	se sand v	with grave	Finite or Describe le Fences, Rivers, etc. and	Disiance of Well from Roads, attach a map. Use additione	Buildings, nl paper lí	от⊦	IER (SPECIFY)
260 265	Brown m	edium	to c	oarse sand w	ith gravel		necessary. PLEASE B	E ACCURATE & COM	PLETE.	ļ	
265 280	¦ Brown m	edium	to c	oarse sand w	ith some g	gravel	WATE	R LEVEL & YIELD	OF COMPL	ETED W	/ELL
280; 293	¦Brown gr	avel a	nd c	oarse sand			DEPTH TO FIRST V	WATER (Ft.) BE	LOW SURFAC	Æ	
293 295	¦Brown sil	ty clay	/				DEPTH OF STATIC				
295¦ 300	¦Brown gr	avel a	nd n	nedium to coa	rse sand		WATER LEVEL	(Ft.) & DATE	MEASURED		
TOTAL DEPTH OF	BORING 3	47	— (Fi	eet)			TEST LENGTH	(Um) TOTAL DEAM	IESI IYPE	(5.)	
TOTAL DEPTH OF	COMPLETE	D WEI	<u>г34</u>	7 (Feet)			May not be repr	asontative of a well's l	ona-tarm via	(FL) Id	
	,						inter not be repr	r	Ung-term yte		
DEPTH	BORE			C	ASING (S)			DEPTH	ANN	ULAR M	ATERIAL
FROM SURFACE	HOLE	TYPE (ᆕᆔ		INTERNAL	0.000	ALOT DITE	FROM SURFACE	1		
	(Inches)	ŧ i la	g el	MATERIAL / GRADE	DIAMETER	OR WAL	L IF ANY		GE- BEN-	E FILL	FILTER PACK
	1		걸문		(Inches)	THICKNES	SS (Inches)	F1. to Ft.	(\checkmark) (\checkmark)	(\checkmark)	(TYPE/SIZE)
+3 344	8-5/8"	4		STEEL	8.125	.2	50	1			
1								1			
I	-										
			$\left \right $		+			i		<u> </u>	
ļ	-		+					E		<u> </u>	
	UMENEO					I	CEDMING		D		
Geologic	: Log			I, the undersi	gned, certify th	nat this report	is complete and accurat	te to the best of my knowled	dge and belief.		

Geologic Lag	I, the undersigned, certify that this report is complete and accurate to the t	est of my knowledge and belief.		
	NAME JOHNSON DRILLING COMPANY	· -		
Geophysical Log(s)	(PERSON, FIRM, OR CORPORATION) (TYPED OR PRINTED)			
Soil/Water Chemical Analysis	23489 East Kings Canyon	Reedley	CA	93654-9760
Other	ADDRESS	CITY	STATE	ZIP
ATTACH ADDITIONAL INFORMATION IF IT EXISTS	Signed	09/03/15	245	802
	I WELL DBILLEB/AUTHORIZED REPRESENTATIVE	DATE SIGNED	C-57	LICENSE NUMBE

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

TRIPLIC	ATE								STATE (OF CALIFO	DRN	AIA	ſ		DWR_U	SE ON	LY	- DO	NOT FILL IN
Owner's	Сору						V	VELL	COMP	LETIC)N	REPOR	Τİ			11			
Page 2 of	2								Refer to In.	struction H	Pan	nphlet	-			STATE I	WELL NO	D./ STAT	ION NO.
Owner's	- Well No	TW2							No	-e02	8	2066					1	1	
Date Wor	rk Degon	7/13/20-	15				D _m	 47/20/20)15		0	2000			LATITUD	E	- [] _		
			/	<u> </u>		,	Elle		. 141.						i i l		1.	1	
Local	Permit Ag	gency h	vern i	UU) III (IVI	LO LI LI	nental.Hea		0/004 5			~			A	PN/TBS/	OTHER	
Perm	iit No. <u>V</u>	P 16282		\ Y		TC		Permit	Date _ 6/1	8/2015							110	omen	
			GEU	յլ	'UG	1U	: LU	6			1				- WELL	OWNE	R —		
ORIENTA	ATION (ビ)	_√_ VE	ERTICA	ι.		- но	ORIZO	NTAL A	NGLE	(SPECIFY)	N	_{Name} <u>Hochmar</u>	n Fan	nily '	Trust				·····
			G G CA	SI	NG	Н	AMN	MER FI	מוו		N	Mailing Address	s 790	8 Ca	alle Torc	ido			
DEPTH SUB	H FROM		, —			D	ESC	RIPTION			E	Bakersfield						C.	A 93309
Ft. t	to Ft.		Descr	ibe	e m	ate	rial,	grain, size	, color, et	с.		ITY						ST	ATE ZIP
300	310	Brown	med	iur	m to) C	oars	se sand				Adress Highwa	av 17	8	WELL L	OCAT	ION		······································
310	320	Brown	coar	se	sa	nd	with	gravel			[2	Weldon C/	A 932	283					
320	342	Brown	med	iur	m tc	b c	oars	se sand				Juy <u>Korn</u>	1001						
342	344	Brown	clay	wi	ith c	ira	vel				14	Jounty Nem							
244	047	Hardro	olay Volk	**1	mg	jiu	101				- A	APN Book 426	Pa	age 🖸)32	Parce	1 <u>13</u>		
044	547	haiuic	JUN					······			- T	`ownship <u>26 S</u>	R	ange	<u>34 E</u>	. Sectio	on <u>13</u>		
		<u> </u>				-					- I	Latitude					_		<u> </u>
	 	Long C	anyo	<u>n</u>	<u>vv</u> a	ate	r Go	. Test We	11 #2		Ŀ	DEG. ۸	AIN. CATTI		C. Svetch			DEG.	MIN. SEC.
	1	S of Hv	vy 17	78	Eo	of F	ay	Ranch Rd	Weldon		⊢	LO		ORTH					NEW WELL
	ł.	t 1.																	
	1	1																	-ICATION/REPAIR Deepen
	1	1				• •		- <u>-</u>											Other (Specify)
	1	L																	
	1	1																— [ESTROY (Describe)
	1 I	<u>)</u> I						··· ·			-							ί	Inder "GEOLOGIC LOG"
	1										-							PLA	NNED USES (∠)
	i	I									<u>ا</u> ب						L-	WATE	R SUPPLY
	i	1									<u>[</u>]	}					AST	L	rigation Industrial
}	1	1									3						Щ		
	1	1																	
	1	r																САТНОГ	
	+	i I																	HEAT EXCHANGE
																			DIRECT PUSH
	;	1 																	INJECTION
	1 	1									-							VAPO	OR EXTRACTION
	 	1 }																	SPARGING
	1	1									L,	Illustrate en Deseribe I	SC	OUTH	from Boads	Duilding			REMEDIATION
	1	1									H	Fences, Rivers, etc. and	attach	a map	Use addition	nal paper	if		THER (SPECIFY)
	1	1									- n	necessary. PLEASE B	E ACC	URAT	E & COM	PLETE.			
	1	1										WATE	R LEV	VEL	& YIELD	OF C	OMPL	ETED	WELL
	1	! !								·	۰ ۱	DEPTH TO FIRST V	NATER		(Ft.) B	ELOW S	SURFACE	Ε	
	1	1 \$									1.	DEPTH OF STATIC			() =				
	1	1									۰ v	WATER LEVEL			(Ft.) & DAT	E MEAS	URED _		
	i										- F	ESTIMATED VIELD			(GPM) &	TEST T	YPF		
TOTAL D	DEPTH OF	BORING	347			(F	eet)					TEST ENGTH	/H	rs) T				(E+)	
TOTAL I	DEPTH OF	COMPLE	TED	Ŵ	ELL	<u>3</u> 4	7	(Feet)				May not be repr	asanta	tiva i	of a wall's	long ta	rm vial	- (**) a	
L				-							4	Tatty not be repi			y u wens	iong-ie	THE YEEL		
DE	ртн							CA	ASING (S)						оти		ANNU	JLAR	MATERIAL
FROMS	URFACE	HOLE -	ΤY	ΡE	(<)							FRO	эмs	URFACE	-		TY	PE
		DIA.	Ϋ́	Z	÷8	đ	Ν	/ATERIAL /	INTERNAL	GAUGE	1	SLOT SIZE				CE-	BEN-		
Ft. t	o Ft.	(Inches)	A	뷨	18g	4		GRADE	DIAMETER		L.	IF ANY (Inches)	l F	н. I	to Et.	MENT	TONITE	E FILL	FILTER PACK
			<u> m i</u>	й 	- 7	Ē			(mones)	THORNES		(increa)	Ľ	•		(⊻)	(⊻)	(🗹)	
+3	344	8-5/8"	1		\square		ST	EEL	8.125	.2	50		L		 				
	i														<u> </u>				
	1		T	T	Τ														
	1														1				
1	.		++	+	\square		•								1	-	<u> </u>		
<u> </u>	,		++	+	\vdash	_									r				
	<u>:</u>	AIPANG	╷╷		<u> </u>				<u> </u>	<u> </u>					י - ריצא איזערע א	(/m		<u> </u>	
	- ATTACI Geologia		(⊻)	-				the undersit	aned costify th	at this report	t ie	 CERTIFICA complete and accurate 		N STA	A LEMEN		belief		
	Well Co	nstruction E	Diagran	n				NAME JC	DHNSON [RILLING		OMPANY		- ues(or my know	suye and	, Dellet.		
	Geophys	ical Log(s)	-					(PER	SON, FIRM, C	R CORPOR	ATI	ION) (TYPED OR PR	INTED))					
	Soll/Wate	er Chemical	I Analy	ysis	;			23489 Ea	<u>ist Kings C</u>	anyon				F	Reedley	••• • •		CA	93654-9760
	Other						-	Sinced							ULLA	09/03/	15	STATE	245802
ATTACHA	ADDITIONAL I	NFORMATI	ION, IF	IT	EXIS	TS.		WEL	L DRILLER/A	UTHORIZED) Ř	EPRESENTATIVE			D	ATE SIG	NED		C-57 LICENSE NUMBER

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

APPENDIX D

WATER QUALITY DATA

DEPTH	SAMPLING	RESULTS	FOR	LONG	CANYON	MC	TW-1
		(JUL)	201	15)			

Cased Depth (feet)	Drilled Depth (feet)	Sample Type	Nitrate (mg/L)	PH	Electrical Conductivity (µmhos/cm@25°C)	Total Dissolved Solids (mg/l) (@180°C)	Iron (mg/l)	Manganese (mg/l)	Arsenic (ppb)	Hexavalent Chromium (ppb)	Alpha Activity (pci/l)
V 55	58	Airlift	0.4	7.8	524	350	<0.05	0.84	<2		2.3
🗸 155	158	Airlift	2.3	7.0	548	340	<0.05	0.48			1.3
V 215	218	Airlift	8.0	7.8	576	380	<0.05	0.88			6.0
V 274	277	Airlift	53	7.6	434	300	<0.05	0.03			1.6
✓ 274	277	Pumped	53		433	300	<0.05	0.20			3.4

Laboratory analyses by FGL Environmental of Santa Paula (inorganic and alpha activity), APPL, Inc. of Clovis (trace organics), and BC Laboratories of Bakersfield (hexavalent chromium).

	ENVIRONMENTAL Analytic	GID AGRICULTU al Chemists	RAL
August 7, 2015		Lab ID	: VI 1542981-002
0 /		Customer ID	: 4-16320
Dee Jaspar & A	Associates		
2730 Unicorn R	.d. Bldg A	Sampled On	: July 21, 2015-11:00
Bakersfield, CA	93308	Sampled By	: M.H.
		Received On	: July 23, 2015-11:15
		Matrix	: Ground Water
Description :	TW-1 Airlift Csd:55' Dld:58'		
Project :	Long Canyon WC		
	Sample Resu	lt - Inorganic	

Constituent	Result	POI	Unite	Note	Sample	Preparation	Sample Analysis		
Constituent	Result	TQL	Ошь	Note	Method	Date/ID	Method	Date/ID	
Metals, Diss ^{P:1}									
Arsenic	ND	2	ug/L		200.8	07/24/15:208577	200.8	07/24/15:210964	
Iron	ND	30	ug/L		200.7	07/24/15:208574	200.7	07/24/15:210839	
Manganese	840	10	ug/L		200.7	07/24/15:208574	200.7	07/24/15:210839	
Wet Chemistry ^{P:1}									
Chloride	17	1	mg/L		300.0	07/23/15:208618	300.0	07/23/15:211061	
Specific Conductance	524	1	umhos/cm		2510B	07/24/15:208546	2510B	07/24/15:210792	
Nitrate	0.4	0.4	mg/L		4500NO3F	07/24/15:208576	4500NO3F	07/24/15:210917	
pH	7.8		units		4500-Н В	07/24/15:208583	4500HB	07/24/15:210851	
Solids, Total Dissolved (TDS)	350	20	mg/L		2540CE	07/23/15:208513	2540C	07/24/15:210796	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution.

 Corporate Offices & Laboratory
 Office & Labor

Page 5 of 9

	ENVIRONMENTAL Analyti	AGRICULTU cal Chemists	<u>RAL</u>
August 7, 201	5	Lab ID	: VI 1542981-002
		Customer ID	: 4-16320
Dee Jaspar &	z Associates		
2730 Unicorn	Rd. Bldg A	Sampled On	: July 21, 2015-11:00
Bakersfield, C	CA 93308	Sampled By	: M.H.
		Received On	: July 23, 2015-11:15
		Matrix	: Ground Water
Description	: TW-1 Airlift Csd:55' Dld:58'		
Project	: Long Canyon WC		
	Sample R	esult - Radio	

Constituent	Result + Error	MDA	Units	MCL/AL	Sample	Preparation	Sample Analysis		
Constituent	itestit + Enor		Onna		Method	Date/ID	Method	Date/ID	
Radio Chemistry ^{P:1}									
Gross Alpha	2.32 ± 1.80	1.64	pCi/L		900.0	07/24/15-07:30 2P1508542	900.0	07/29/15-08:00 2A1511167	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the followingIf Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L

Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

				Page 6 of 9
Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 CA ELAP Certification No. 1573	Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423 CA ELAP Certification No. 1563	Office & Laboratory 553 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807 CA ELAP Certification No. 2670	Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (905)783-2912 CA ELAP Certification No. 2775	Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No, 2810

. **D**-

ВС	<i>Laborator</i> Environmental Testing L	<i>ies, Inc.</i> aboratory Since 1	1949						
Kenneth D. Schmidt & Associates, Inc. 3701 Pegasus Drive Suite 112 Suite 112 Bakersfield, CA 93308				Reported: 07/24/2015 10:44 Project: Long Canyon WC Project Number: [none] Project Manager: James Appell					M 1 100 1
1			M	letals A	Analys	sis			
BCL Sample ID:	1 51 7843-02	Client Samp	le Name:	TW-1 Airl	ift 55, 7/21/	2015 1 1:00:00A	AM, M. Hooker		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #

0.20

Analyst

BMW

Method

EPA-218.6

Instrument

IC-4

Dilution

1

0.055

Bias

ND

QC

Batch ID

BYG1987

Quals

Run #

1

Result

NÐ

Prep Date

07/22/15

Units

ug/L

Run

Date/Time

07/22/15 23:26

Constituent

Hexavalent Chromium

Run #

1

Method

EPA-218.6

Dee Jaspar & Associates
2730 Unicorn Rd. Bldg A
Bakersfield, CA 93308

Lab ID : VI 1543003 Customer : 4-16320

AGRICULTURAL

Laboratory Report

Ę

Analytical Chemists

Introduction: This report package contains total of 9 pages divided into 3 sections:

ENVIRONMENTAI

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(4 pages) : Results for each sample submitted.
Quality Control	(3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-1 Airlift Csd:155' Dld:158'	07/22/2015	07/24/2015	VI 1543003-001	GW
TW-1 Airlift Csd:215' Dld:218'	07/23/2015	07/24/2015	VI 1543003-002	GW

Sampling and Receipt Information: All samples were received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time
VI 1543003-001	pH	15	2908.2 Minutes
VI 1543003-002	pH	15	7351.8 Minutes

All samples arrived at 2 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/29/2015:211072 All analysis quality controls are within established criteria
	07/29/2015:208726 All preparation quality controls are within established criteria
200.8	08/07/2015:211583 All analysis quality controls are within established criteria

Page 1 of 9

August 31, 2015 Dee Jaspar & Associates

Lab ID : VI 1543003 Customer : 4-16320

Inorganic - Metals QC

	200.8	08/06/2015:209114 All preparation quality controls are within established criteria
łł		

Radio QC

900.0	07/30/2015:211293 All analysis quality controls are within established criteria
	07/28/2015:208670 All preparation quality controls are within established criteria

Inorganic - Wet Chemistry QC

2510B	07/27/2015:210913 All analysis quality controls are within established criteria					
	07/27/2015:208633 All preparation quality controls are within established criteria					
2540CE	07/24/2015:208569 All preparation quality controls are within established criteria					
300.0	07/24/2015:210834 All analysis quality controls are within established criteria					
	07/24/2015:208635 All preparation quality controls are within established criteria					
4500-Н В	07/24/2015:208583 All preparation quality controls are within established criteria					
	07/28/2015:208690 All preparation quality controls are within established criteria					
4500HB	07/24/2015:210851 All analysis quality controls are within established criteria					
	07/28/2015:210982 All analysis quality controls are within established criteria					

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Digitally signed by Kelly A. Dunnahoo, B.S. Title: Laboratory Director Date: 2015-08-31

	ENVIRONMENTAL	AGRICULTU AGRICULTU	RAL
August 31, 20	15	Lab ID	: VI 1543003-001
		Customer ID	: 4-16320
Dee Jaspar &	z Associates		
2730 Unicorn	Rd. Bldg A	Sampled On	: July 22, 2015-16:00
Bakersfield, C	CA 93308	Sampled By	: Justin
		Received On	: July 24, 2015-11:00
		Matrix	: Ground Water
Description	: TW-1 Airlift Csd:155' Dld:158'		
Project	: Long Canyon WC		
	Sample Resu	lt - Inorganic	

			·		_			
Constituent	Result	POL	Units	Note	Sample	Preparation	Samp.	le Analysis
Constituent	xcoun	1 2	Omis	11010	Method	Date/ID	Method	Date/ID
Metals, Diss ^{P:1}								
Arsenic	ND	2	ug/L		200.8	08/06/15:209114	200.8	08/07/15:211583
Iron	ND	30	ug/L		200.7	07/29/15:208726	200.7	07/29/15;211072
Manganese	480	10	ug/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Wet Chemistry ^{P:1}		,						
Chloride	19	1	mg/L		300.0	07/24/15:208635	300.0	07/24/15:210834
Specific Conductance	548	1	umhos/cm		2510B	07/27/15:208633	2510B	07/27/15:210913
Nitrate	2.3	0.5	mg/L		300.0	07/24/15:208635	300.0	07/24/15:210834
pH	7.0		units		4500-H B	07/24/15:208583	4500HB	07/24/15:210851
Total Dissolved Solids	340	20	ma/I		2540CE	07/24/15-208560	25400	07/27/15/210879
(TFR)	540	20	IIIg/L		LUHUCE	0/12-0/13.200309	20700	0//2//15.2108/9

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution.

Corporate Offices & LaboratoryOffice & Laboratory853 Corporation Street2500 Stagecoach RoadSanta Paula, CA 93060Stockton, CA 95215TEL: (805)392-2000TEL: (209)942-0182Env FAX: (805)525-4172 / Ag FAX: (805)392-2063FAX: (209)942-0423CA ELAP Certification No. 1573CA ELAP Certification No.

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA EL AD Cost ficture Na 077

Page 3 of 9

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

	ENVIRONMENTAL Analyticz	AGRICULTU AGRICULTU	RAL
August 31, 20	015	Lab ID	: VI 1543003-001
		Customer ID	: 4-16320
Dee Jaspar &	& Associates		
2730 Unicorn	n Rd. Bldg A	Sampled On	: July 22, 2015-16:00
Bakersfield, C	CA 93308	Sampled By	: Justin
		Received On	: July 24, 2015-11:00
		Matrix	: Ground Water
Description	: TW-1 Airlift Csd:155' Dld:158'		
Project	: Long Canyon WC		
	Sample Re	sult - Radio	

Constituent	Result + Error	MDA	Unite	MCL/AL	Sample	Preparation	Sample Analysis	
Constituent	Result ± Entor	MUM	Onns	MCUAL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	1.30 ± 1.32	1.37	pCi/L		900.0	07/28/15-07:15 2P1508670	900.0	07/30/15-11:00 2A1511293

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Office & Laboratory 563 E. Lindo Avenue Office & Laboratory 3442 Empresa Drive, Suite D Page 4 of 9

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473

	ENVIRONMENTAL Analytic	AGRICULTU	RAL
August 31, 20	15	Lab ID	: VI 1543003-002
		Customer ID	: 4-16320
Dee Jaspar &	Associates		
2730 Unicorn	Rd. Bldg A	Sampled On	: July 23, 2015-11:00
Bakersfield, C	A 93308	Sampled By	: Justin
		Received On	: July 24, 2015-11:00
		Matrix	: Ground Water
Description Project	: TW-1 Airlift Csd:215' Dld:218' : Long Canyon WC		

Constituent	Result POL		POL Units N		Sample	Preparation	Sample Analysis		
Constituent	Result	1 QL	Units	TYOLE	Method	Date/ID	Method	Date/ID	
Metals, Diss ^{P:1}									
Arsenic	ND	2	ug/L		200.8	08/06/15:209114	200.8	08/07/15:211583	
Iron	ND	30	ug/L		200.7	07/29/15:208726	200.7	07/29/15:211072	
Manganese	880	10	ug/L		200.7	07/29/15;208726	200.7	07/29/15:211072	
Wet Chemistry ^{P;1}									
Chloride	23	1	mg/L		300.0	07/24/15:208635	300.0	07/24/15:210834	
Specific Conductance	576	1	umhos/cm		2510B	07/27/15:208633	2510B	07/27/15:210913	
Nitrate	8.0	0.5	mg/L		300.0	07/24/15:208635	300.0	07/24/15:210834	
pH	7.8		units		4500-H B	07/28/15:208690	4500 HB	07/28/15:210982	
Total Dissolved Solids (TFR)	380	20	mg/L		2540CE	07/24/15:208569	2540C	07/27/15:210879	

Sample Result - Inorganic

ND=Non-Detected, PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A \$Surrogate. * PQL adjusted for dilution.

 Corporate Offices & Laboratory
 Office & Laboratory
 Distain & Casera & Casera & Casera & Casera & Caser

Page 5 of 9

	ENVIRONMENTAL Analytice	AGRICULTU AGRICULTU	RAL
August 31, 2015		Lab ID	: VI 1543003-002
		Customer ID	: 4-16320
Dee Jaspar & A	ssociates		
2730 Unicorn Rd	l. Bldg A	Sampled On	: July 23, 2015-11:00
Bakersfield, CA	93308	Sampled By	: Justin
		Received On	: July 24, 2015-11:00
	·	Matrix	: Ground Water
Description : 7	ΓW-1 Airlift Csd:215' Dld:218'		
Project : I	Long Canyon WC		
	Sample Re	sult - Radio	

Constituent	Result + Error	MDA	Unite	MCL/AL	Sample	Preparation	Sample Analysis	
Constituent	Result I Ellor	MDA	Omts	MCDAD	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	6.03 ± 1.79	1.09	pCi/L		900.0	07/28/15-07:15 2P1508670	900.0	07/30/15-13:00 2A1511293

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Corporate Offices & Laboratory
 853 Corporation Street
 2500 Stagecoach Road

 Santa Paula, CA 93060
 Stockton, CA 95215

 TEL: (805)392-2000
 TEL: (209)942-0182

 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063
 FAX: (209)942-0423
 CA ELAP Certification No. 1573

Office & Laboratory

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 6 of 9

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

68 Ê **ENVIRONMENTAL** AGRICULTURAL Analytical Chemists

August 31, 2015 Dee Jaspar & Associates

Lab ID Customer : VI 1543003 : 4-16320

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals								
Iron	200.7		мs	ug/L	4000	102 %	75-125	
		(SP 1508241-001)	MSD	ug/L	4000	109 %	75-125	
			MSRPD	ug/L	800.0	6.3%	≤20.0	
	200.7	07/29/15:211072AC	CCV	ppm	5.000	99.2 %	90-110	
			CCB	ppm	F 000	-0.00006	0.03	
			CCB	ррт	5.000	0 0000	90-110	
Manganese	200.7		MS	<u>рріі.</u> 110/І.	800.0	97.9 %	75-125	
mungunoso	200.7	(SP 1508241-001)	MSD	ug/L	800.0	104 %	75-125	
		(MSRPD	ug/L	800.0	5.6%	≤20.0	
	200.7	07/29/15:211072AC	CCV	ppm	1.000	95.6 %	90-110	
	1		CCB	ppm		0.00002	0.01	
			CCV	ppm	1.000	97.7 %	90-110	
·			CCB	ppm		0.000004	0.01	
Arsenic	200.8	(111542026 001)	MS	ug/L	5.000	106 %	75-125	
		(V11543036-001)	MSD	ug/L	5.000	83.3 %	/3-125	
	200.8	08/07/15·211583 AC	CCV	ug/L	120.0	00.0 %	00-110	
	200.0	00/07/13.211303AC	CCB	ppo	120.0	0.56	2	
			CCV	dad	120.0	101 %	90-110	
			CCB	ppb		-0.43	2	
			CCV	ppb	120.0	101 %	90-110	
			CCB	ppb		-0.24	2	
Wet Chem								
Conductivity	2510B	07/27/15:210913JMG	ICB	umhos/cm		0.07	1	
			CCV	umhos/cm	999.0	101 %	95-105	
			CCV	umhos/cm	999.0	100 %	95-105	
E. C.	2510B	07/27/15:208633jmg	Blank	umhos/cm		ND	<1	
		(VI 1542997-006)	Dup	umhos/cm		0.09%	5	
Total Dissolved Solids (TFR)	2540CE	07/24/15:208569CTL	Blank	mg/L		9.8	20	
		(0D 1500107 002)	LCS	mg/L	999.1	99.4 %	90-110	
Chlorida	200.0	(SP 1508187-003)		mg/L	500.0	0.9%	95 101	
Chloride	300.0	(STK1538045 001)	MSD	mg/L	500.0	101 %	85 121	
		(31K1558045-001)	MSRPD	mg/L	100.0	02%	<10	
			Blank	mg/L	100.0	ND	<1	
			LCS	mg/L	25.00	90.9 %	90-110	
			MS	mg/L	500.0	110 %	85-121	
		(VIM15D208A-023)	MSD	mg/L	500.0	108 %	85-121	
			MSRPD	mg/L	100.0	1.5%	≤19	
	300.0	07/24/15:210834KD	ICV	ppm	25.00	92.3 %	90-110	
			ICB	ppm		0.05	1	
			CCB	ppm	25.00	0.07		
			CCB	PPM npm	25.00	0.0%	90-110	
			CCV	ppm	25.00	912m	90-110	
		-	ССВ	ppm	23.00	0.06	1	
			CCV	ppm	25.00	93.4 %	90-110	
Nitrate	300.0		MS	mg/L	400.0	100 %	85-119	
	1	(STK1538045-001)	MSD	mg/L	400.0	99.8 %	85-119	
			MSRPD	mg/L	100.0	0.2%	≤19	
			Blank	mg/L		ND	<0.5	
			LCS	mg/L	20.00	90.2 %	90-110	
			MS	mg/L	400.0	96.7 %	85-119	
<u> </u>		(VIM15D208A-023)	LWSD	1 mg/L	400.0	94.7 %	85-119	l

Corporate Offices & Laboratory
 Corporate Onlice & Laboratory
 State & Laboratory</th

Office & Laboratory

Office & Laboratory

Office & Laboratory

Page 7 of 9

Office & Laboratory

August 31, 2015 Dee Jaspar & Associates

Customer

: VI 1543003 : 4-16320

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Wet Chem									
Nitrate		300.0	07/24/15:208635MCA	MSRPD	mg/L	100.0	2.0%	≤19	
		300.0	07/24/15:210834KD	ICV	ppm	20.00	90.5 %	90-110	
				ICB	ppm		0.000	0.5	1
				CCB	ppm		0.000	0.5	
				CCV	PPM	20.00	0.0 %	90-110	
				CCB	ppm		0.000	0.5	
				CCV	ppm	20.00	90.5 %	90-110	
				CCB	ppm		0.000	0.5	
				CCV	ppm	20.00	92.6 %	90-110	
pH		4500-H B	(VI 1542911-002)	Dup	units		0.0%	4.80	
		4500-H B	(STK1538050-001)	Dup	units		0.3%	4.80	
		4500HB	07/24/15:210851JMG	CCV	units	8.000	101 %	95-105	
				CCV	units	8.000	101 %	95-105	
		4500HB	07/28/15:210982JMG	CCV	units	8.000	101 %	95-105	
		ł		CCV	units	8.000	101 %	95-105	
Definition			· · ·						
ICV	: Initial Calibration	on Verification	- Analyzed to verify the i	instrument c	alibration is v	vithin criteri	a.		
ICB	: Initial Calibration	on Blank - Anal	yzed to verify the instrur	ment baselin	e is within cri	teria.			
CCV	: Continuing Cali	bration Verifica	tion - Analyzed to verify	y the instrun	nent calibratio	n is within c	riteria.		
ССВ	: Continuing Cali	bration Blank -	Analyzed to verify the in	nstrument ba	aseline is with	in criteria.			
Blank	: Method Blank -	Prepared to ver	ify that the preparation p	process is no	ot contributing	contaminat	on to the sam	ples.	
LCS	: Laboratory Con	trol Standard/S	ample - Prepared to verif	y that the pr	eparation pro	cess is not a	fecting analyt	e recovery.	
MS	: Matrix Spikes -	A random sam	ple is spiked with a know	n amount o	f analyte. The	recoveries a	re an indicatio	on of how the	ut sample
	matrix affects and	alyte recovery.					2		
MSD	: Matrix Spike D	uplicate of MS/	MSD pair - A random sa	mple duplic	ate is spiked v	with a known	n amount of an	alyted. The	recoveries
	are an indication	of how that san	ple matrix affects analy	te recovery.				. 11.00	
Dup	: Duplicate Samp	ole - A random s	ample with each batch is	s prepared a	nd analyzed ir	i duplicate.	The relative pe	rcent differe	nce 1s an
F	indication of pred	cision for the pr	eparation and analysis.	.1	1' 66 -			. C. (b.)	
MSRPD	: MS/MSD Relat	ive Percent Diff	erence (RPD) - The MS	relative per	cent afferenc	e is an indica	ation of precisi	ion for the pi	reparation
ND	and analysis.	ault was hal	the DOO listed for the av	naluta					
	: INON-GELECT - Re	suit was below	the DQU listed for the al	uaryte.	an control data		1		
וועט	: Data Quanty OI	ojective - 1 mis i	s the criteria against white	en me quant	y control data	is compared	1.		1

,

Quality Control - Inorganic

Lab ID

August 31, 2015	
Dee Jaspar & Associates	

.

Lab ID Customer

: VI 1543003 : 4-16320

Quality Control - Radio

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	07/30/15:211293caa	CCV CCB	cpm cpm	8889	40.4 % 0.100	38 - 46 0.14	
Gross Alpha		900.0	07/28/15:208670caa	Blank LCS MS	pCi/L pCi/L pCi/L	180.6 180.6	1.12 88.4 % 113 %	3 75-125 60-140	
			(SP 1507965-001)	MSD MSRPD	pCi/L pCi/L pCi/L	180.6 180.6 180.6	90.0 % 21.9%	60-140 ≤30	
Definition									
CCV	: Continuing Calib	ration Verifica	ion - Analyzed to verif	fy the instru	ment calibration	on is within	criteria.		
CCB	: Continuing Calib	ration Blank -	Analyzed to verify the	instrument b	aseline is with	hin criteria.		_	
Blank	: Method Blank - F	repared to veri	fy that the preparation	process is n	ot contributing	g contaminal	tion to the sam	ples.	
LCS	: Laboratory Contr	ol Standard/Sa	mple - Prepared to veri	fy that the p	reparation pro	cess is not a	ffecting analyt	e recovery.	
MS	: Matrix Spikes - A matrix affects anal	v random samp yte recovery.	le is spiked with a know	wn amount o	of analyte. The	e recoveries	are an indicatio	on of how th	at sample
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery						recoveries		
MSRPD .	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.								
DQO	: Data Quality Obj	ective - This is	the criteria against wh	ich the quali	ty control data	a is compare	d.		

١

August 7, 2015

Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308 Lab ID Customer : VI 1543036 : 4-16320

Laboratory Report

Introduction: This report package contains total of 7 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-1 Airlift Csd:274' Dld:277'	07/24/2015	07/28/2015	VI 1543036-001	GW

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Lab ID Analyte/Method		Actual Holding Time
VI 1543036-001	pH	15	7381.2 Minutes

All samples arrived at 5 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/29/2015:211072 All analysis quality controls are within established criteria.					
	07/29/2015:208726 All preparation quality controls are within established criteria.					
200.8	08/06/2015:211519 All analysis quality controls are within established criteria.					
	08/06/2015:209114 All preparation quality controls are within established criteria.					

Radio QC

900.0	07/30/2015:211178 All analysis quality controls are within established criteria.
	07/29/2015:208702 All preparation quality controls are within established criteria.

Inorganic - Wet Chemistry QC

2510B	07/29/2015:211008 All analysis quality controls are within established criteria.				
	07/29/2015:208709 All preparation quality controls are within established criteria.				
2540CE	07/29/2015:208730 All preparation quality controls are within established criteria.				
300.0	07/29/2015:211020 All analysis quality controls are within established criteria.				
	07/28/2015:208721 All preparation quality controls are within established criteria, except: The following note applies to Chloride: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.				
4500-Н В	07/29/2015:208745 All preparation quality controls are within established criteria.				
4500HB	07/29/2015:211045 All analysis quality controls are within established criteria.				
4500NO3F	07/29/2015:211109 All analysis quality controls are within established criteria.				
	07/29/2015:208731 All preparation quality controls are within established criteria.				

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Page 2 of 7

	ENVIRONMENTAL AGRICULTU Analytical Chemists	<u>IRAL</u>
August 7, 2015	Lab ID	: VI 1543036-001
	Customer ID	: 4-16320
Dee Jaspar & Associates		
2730 Unicorn Rd. Bldg A	Sampled On	: July 24, 2015-11:30
Bakersfield, CA 93308	Sampled By	: Justin
·	Received On	: July 28, 2015-11:30
	Matrix	: Ground Water
Description : TW-1 Airlift Project : Long Canyor	: Csd:274' Dld:277' n WC	

Sample Result - Inorganic

Constituent	Regult	POI	Units	Unite Note		Sample Preparation		Sample Analysis	
Constituent	Kesun	түг		INOLE	Method	Date/ID	Method	Date/ID	
Metals, Diss ^{P:1}									
Arsenic	ND	2	ug/L		200.8	08/06/15:209114	200.8	08/06/15:211519	
Iron	ND	30	ug/L		200.7	07/29/15:208726	200.7	07/29/15:211072	
Manganese	25.9	0.5	ug/L		200.8	08/06/15:209114	200.8	08/06/15:211519	
Wet Chemistry ^{P:1}									
Chloride	30	1	mg/L		300.0	07/28/15:208721	300.0	07/29/15:211020	
Specific Conductance	434	1	umhos/cm		2510B	07/29/15:208709	2510B	07/29/15:211008	
Nitrate	53.4	0.4	mg/L		4500NO3F	07/29/15:208731	4500NO3F	07/29/15:211109	
pH	7.6		units		4500-H B	07/29/15:208745	4500HB	07/29/15:211045	
Solids, Total Dissolved (TDS)	300	20	mg/L		2540CE	07/29/15:208730	2540C	07/30/15:211079	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution.

Corporate Office & LaboratoryOffice & LaboratoryOffi

Page 3 of 7

<u>DN1</u>	AGRICULTURAL Analytical Chemists
August 7, 2015	Lab ID : VI 1543036-001
	Customer ID : 4-16320
Dee Jaspar & Associates	
2730 Unicom Rd. Bldg A	Sampled On : July 24, 2015-11:30
Bakersfield, CA 93308	Sampled By : Justin
	Received On : July 28, 2015-11:30
	Matrix : Ground Water
Description : TW-1 Airlift Csd:	274' Dld:277'
Project : Long Canvon WC	

Sample Result - Radio

Constituent	Result + Error	МПА	Units	MCL/AL	Sample Preparation		Sample Analysis	
	Restit ± Error	INDA			Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	1.60 ± 0.956	1.01	pCi/L		900.0	07/29/15-08:00 2P1508702	900.0	07/30/15-18:00 2A1511178

ND=Non-Detected, PQL=Practical Quantitation Limit, Containers: (P) Plastic Preservatives; N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000
 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063
 FAX: (209)942-0423
 FAX: (530)343-3807
 FAX: (805)783-2912
 FAX: (559)734-8435

 CA ELAP Certification No. 1573
 CA ELAP Certification No. 1563
 CA ELAP Certification No. 2670
 CA ELAP Certification No. 2775
 CA ELAP Certification No. 2810

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E, Lindo Avenue Chico, CA 95926 TEL: (530)343-5818

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL (805)783-2940

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435

Page 4 of 7

				- 12
	ENVIRONMENTAL	AGRICI	ULTURAL	
	Analyt	ical Chemists		
August 11, 2015				#*****

Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308

Lab ID Customer : VI 1543035 : 4-16320

Laboratory Report

Introduction: This report package contains total of 8 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(4 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-1 Pumped Csd:274' D1d:277'	07/24/2015	07/28/2015	VI 1543035-001	GW

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time
VI 1543035-001	Nitrate	48	97.67 Hours
VI 1543035-001	Nitrate Nitrogen	48	97.67 Hours
VI 1543035-001	pH	15	20445 Minutes

All samples arrived at 5 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/29/2015:211072 All analysis quality controls are within established criteria.
	07/30/2015:211155 All analysis quality controls are within established criteria.
	07/29/2015:208726 All preparation quality controls are within established criteria.

Page 1 of 8

August 11, 2015	Lab ID	: VI 1543035
Dee Jaspar & Associates	Customer	: 4-16320

Inorganic - Metals QC

200.8	08/06/2015:211519 All analysis quality controls are within established criteria.
	08/06/2015:209114 All preparation quality controls are within established criteria.

Radio QC

900.0	07/30/2015:211178 All analysis quality controls are within established criteria.
	07/29/2015:208702 All preparation quality controls are within established criteria.

Inorganic - Wet Chemistry QC

2320B	07/30/2015:211152 All analysis quality controls are within established criteria.
	07/30/2015:208828 All preparation quality controls are within established criteria.
2510B	07/29/2015:211008 All analysis quality controls are within established criteria.
	07/29/2015:208709 All preparation quality controls are within established criteria.
2540CE	07/29/2015:208730 All preparation quality controls are within established criteria.
300.0	07/29/2015:211020 All analysis quality controls are within established criteria.
	07/28/2015:208721 All preparation quality controls are within established criteria, except:The following note applies to Chloride, Nitrate, Sulfate:435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
4500-Н В	08/07/2015:209180 All preparation quality controls are within established criteria.
4500HB	08/07/2015:211580 All analysis quality controls are within established criteria.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Digitally signed by Kelly A. Dunnahoo, B.S. Title: Laboratory Director Date: 2015-08-11

Page 2 of 8

<u>Environm</u>	ENTAL AGRICULTURAL Analytical Chemists
August 11, 2015	Lab ID : VI 1543035-001
Ç, ,	Customer ID : 4-16320
Dee Jaspar & Associates	
2730 Unicom Rd. Bldg A	Sampled On : July 24, 2015-11:30
Bakersfield, CA 93308	Sampled By : Justin
	Received On : July 28, 2015-11:30
	Matrix : Ground Water
Description : TW-1 Pumped Csd:274' D	ld:277'
Project : Long Canyon WC	

Sample	Result -	- In	organic
--------	----------	------	---------

Constituent	Desult	POI	Unite	Nota	Sample	Preparation	Samp	le Analysis
Constituent	Readin	TQL	Oms	INOLE	Method	Date/ID	Method	Date/ID
Irrigation Suit ^{P:1}								
Total Hardness as CaCO3	119		mg/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Calcium	33	1	mg/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Magnesium	9	1	mg/L		200.7	07/29/15:208726	200,7	07/29/15:211072
Potassium	5	1	mg/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Sodium	32	1	mg/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Total Cations	3.9		meq/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Boron	0.1	0.1	mg/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Copper	ND	10	ug/L		200.7	07/29/15:208726	200.7	07/30/15:211155
Iron	ND	30	ug/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Manganese	200	10	ug/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Zinc	ND	20	ug/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Gypsum Requirement	0.03		Tons/AF		200.7	07/29/15:208726	200.7	07/29/15:211072
SAR	1.3				200.7	07/29/15:208726	200.7	07/29/15:211072
Total Alkalinity	60	10	mg/L		2320B	07/30/15:208828	2320B	07/30/15:211152
Hydroxide	ND	10	mg/L		2320B	07/30/15:208828	2320B	07/30/15:211152
Carbonate	ND	10	mg/L		2320B	07/30/15:208828	2320B	07/30/15:211152
Bicarbonate	70	10	mg/L		2320B	07/30/15:208828	2320B	07/30/15:211152
Sulfate	31	2	mg/L		300.0	07/28/15:208721	300.0	07/29/15:211020
Chloride	29	1	mg/L		300.0	07/28/15:208721	300.0	07/29/15:211020
Nitrate	53.3	0.5	mg/L		300.0	07/28/15:208721	300.0	07/29/15;211020
Nitrate Nitrogen	12.0	0.1	mg/L		300.0	07/28/15:208721	300.0	07/29/15:211020
Fluoride	0.5	0.1	mg/L		300.0	07/28/15:208721	300.0	07/29/15:211020
Total Anions	3.5		meq/L		2320B	07/30/15:208828	2320B	07/30/15:211152
pН	7.2		units		4500-H B	08/07/15:209180	4500HB	08/07/15:211580
E. C.	433	1	umhos/cm		2510B	07/29/15:208709	2510B	07/29/15:211008
TDS by Summation	263		mg/L		200.7	07/29/15:208726	200.7	07/29/15:211072
Metals, Diss ^{P:1}								
Arsenic	ND	2	ug/L		200.8	08/06/15:209114	200.8	08/06/15:211519
Wet Chemistry ^{P:1}								
Solids, Total Dissolved (TDS)	300	20	mg/L		2540CE	07/29/15:208730	2540C	07/30/15:211079

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A \$Surrogate. * PQL adjusted for dilution.

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060
 Call and a second sec

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 Page 3 of 8

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291

<u>i</u>		RAL
August 11, 2015	Lab ID	: VI 1543035-001
	Customer ID	: 4-16320
Dee Jaspar & Associates		
2730 Unicom Rd. Bldg A	Sampled On	: July 24, 2015-11:30
Bakersfield, CA 93308	Sampled By	: Justin
<i>.</i>	Received On	: July 28, 2015-11:30
	Matrix	: Ground Water
Description : TW-1 Pumped Project : Long Canyon V	Csd:274' Dld:277' WC	
Description : TW-1 Pumped Project : Long Canyon V	Received On Matrix WC	: July 28, 2015-11:30 : Ground Water

Sample Result - Radio

Constituent	Result + Firror	MDA	Unite	MCL/AL	Sample	Preparation	Sample Analysis		
Constituent	Result + Enfor	MDA	Ontis		Method	Date/ID	Method	Date/ID	
Radio Chemistry ^{P:1}									
Gross Alpha	3.42 ± 1.27	1.05	pCi/L		900.0	07/29/15-08:00 2P1508702	900.0	07/30/15-16:00 2A1511178	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

				Page 4 of 8
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	583 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA \$3060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5816	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3607	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1553	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

	ţ	Ň	ľ	Ι		3	0	r	Iſ	M	E	ŗ	ľ	Ľ	A	Ì					1	A	C	R	1	С	U	Π	Т	U	R	A	L
2			1		2	ľ		ľ		1	3	1	1	ſ,	a	Ň	ti	ca	IĽ	Ċľ	1e	m	is	ts							Č.	10	÷

August 10, 2015 Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308

Lab ID	: VI 1543035-001
Customer ID	: 4-16320
Sampled On	: July 24, 2015
Sampled By	: Justin
Received On	: July 28, 2015

Description : TW-1 Pumped Csd:274' Dld:277' : Long Canyon WC Project

		Gene	1 11 11 11 12	sauon Sui	ability A	marysis			
Test Description		Result				Graphical I	Results Pres	sentation	
Cations	mg/L	Meq/L	% Meq	Lbs/AF	Good	Possible Problem	Moderate Problem	Increasing Problem	Severe Problem
Calcium	33	1.6	42	90	**				
Magnesium	9	0.74	19	24	**				
Potassium	5	0.13	3	14	**				
Sodium	32	1.4	36	87					
Anions									
Carbonate	< 10	0	0	0					
Bicarbonate	70	1.1	33	190	**				
Sulfate	31	0.65	18	84	**				
Chloride	29	0.82	23	79					
Nitrate	53.3	0.86	25	140					
Nitrate Nitrogen	12.0			33					
Fluoride	0.5	0.026	1	1					
Minor Elements									
Boron	0.10			0.27					
Copper	< 0.01			0.00					
Iron	< 0.03			0.00					
Manganese	0.20			0.54					
Zinc	< 0.02			0.00					
TDS by Summation	263			720					
Other									
pH	7.2			units					
E. C.	0.433			dS/m					
SAR	1.3								
Crop Suitability									
No Amendments	Good								
With Amendments	Good								
Amendments									
Gypsum Requirement	0.03			Tons/AF					
Sulfuric Acid (98%)	4.2			oz/1000Gal	Or 10 oz.	/1000Gal of	urea Sulfu	ric Acid (15	5/49).
Leaching Requirement	3.2			%					

Convel Imigation Suitability Analysis

Problem Good

Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations. Note:

** Used in various calculations; mg/L = Milligrams Per Liter (ppm) meq/L = Milliequivalents Per Liter

Office & Laboratory

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435

August 10, 2015

Dee Jaspar & Associates

Lab ID : VI 1543035-001 Customer ID : 4-16320 Description : TW-1 Pumped Csd:274' Dld:277'

		guiton 2joren	<u> </u>					
Test Description	Re	sult	Graph	Graphical Results Presentation				
Chemical			Slight	Moderate	Severe			
Manganese	0.2	mg/L						
Iron	< 0.03	mg/L						
TDS by Summation	263	mg/L						
No Amendments								
pH	7.2	units						
Alkalinity (As CaCO3)	60	mg/L	TANDING PART					
Total Hardness	119	mg/L						
With Amendments								
Alkalinity (As CaCO3)	12	mg/L						
Total Hardness	12	mg/L						
pH	5.4 - 6.7	units	70000000000000000000000000000000000000					

Micro Irrigation System Plugging Hazard

Good Problem 1 STATES

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

Water Amendments Application Notes:

The Amendments recommended on the previous pages include:

Gypsum:

This should be applied at least once a year to the irrigated soil surface area. Gypsum can also be applied in smaller quantities in the irrigation water. Apply the smaller (bracketed) amount of gypsum when also applying the recommended amount of Sulfuric Acid and the larger amount when applying only Gypsum.

Sulfuric Acid:

These products should be applied as needed to prevent emitter plugging in micro irrigation systems and/or as a soil amendment to adjust soil pH to improve nutrient availability and to facilitate leaching of salts. Please exercise caution when using this material as excesses may be harmful to the system and/or the plants being irrigated. The reported Acid requirement is intended to remove approximately 80 % of the alkalinity. The final pH should range from 5.4 to 6.7. We recommend a field pH determination to confirm that the pH you designate is being achieved. This application is based upon the use of a 98% Sulfuric Acid product. The application of Urea Sulfuric Acid is based upon the use of a product that contains 15% Urea (1.89 lbs Nitrogen), 49% Sulfuric Acid and has a specific gravity of 1.52 at 68 °F.

Guidelines for the above interpretations are sourced from USDA & U.C. Cooperative Extension Service publications. Please contact us if you have any questions.

FRUIT GROWERS LABORATORY, INC.

Scott Bury Scott Bucy, Director of Ag. Services

SB1:KDM

Kenneth D. Schmidt & Associates, Inc. 07/31/2015 11:59 Reported: 3701 Pegasus Drive Suite 112 Project: Long Canyon WC Suite 112 Project Number: [none] Bakersfield, CA 93308 Project Manager: James Angell

Metals Analysis

BCL Sample ID:	1518221-01	Client Sample	e Name:	TW- Airlift	274, 7/24/	2015 11:30:004	AM, Justin		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Hexavalent Chromium		0.32	ug/L	0.20	0.055	EPA-218.6	ND		1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-218.6	07/24/15	07/24/15 22:23	BMW	IC-4	1	BYG2166

Laboratories, Inc.	Lu
Environmental Testing Laboratory Since 1949	
Kenneth D. Schmidt & Associates, Inc.	Reported: 07/31/2015 11:59
3701 Pegasus Drive Suite 112	Project: Long Canyon WC
Suite 112	Project Number: [none]
Bakersfield, CA 93308	Project Manager: James Angell
N	letals Analysis

1

BCL Sample ID:	1518220-01	Client Sampl	e Name:	TW- Pum	ped 274, 7	/24/2015 2:30:0	0PM, Justin		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quais	Run #
Hexavalent Chromium		ND	ug/L	0.20	0.055	EPA-218.6	ND		1

Γ			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-218.6	07/24/15	07/24/15 22:12	BMW	IC-4	1	BYG2168	

DEPTH SAMPLING RESULTS FOR LONG CANYON WC TW-2

(JULY 2015)

Cased Depth (feet)	Drilled Depth (feet)	Sample Type	Nitrate (mg/L)	PH	Electrical Conductivity (µmhos/cm@25°C)	Total Dissolved Solids (mg/l) (@180°C)	Iron (mg/l)	Manganese (mg/l)	Arsenic (ppb)	Hexavalent Chromium (ppb)	Alpha Activity (pci/l)
√ 83	86	Airlift	4.4	7.7	683	410	<0.05	<0.01	3	0.3	25
V 100	103	Airlift	26	7.7	848	560	<0.05	<0.01	<2	0.9	41
\checkmark		Pumped	27	7.6	848	530	<0.05	0.02	<2	1.5	40.0
🛹 170	173	Airlift	14	7.1	609	390	<0.05	<0.01	<2	<0.2	9.4
🗸 214	220	Airlift	9.1	7.4	538	350	<0.05	<0.01	<2	0.4	13
\checkmark		Pumped	8.9	7.5	546	360	0.73	0.02	<2	<0.2	15
V 260	263	Airlift	4.2	7.4	495	320	<0.05	0.02	<2	0.3	31
√ 295	298	Airlift	5.2	7.6	513	330	<0.05	0.06	<2	<0.2	41
\checkmark		Pumped	5.3	7.2	527	340	<0.05	0.02	<2	<0.2	46
🖌 344	347	Airlift	3.0	8.2	649	390	<0.05	0.05	<2	<0.2	43

Laboratory analyses by FGL Environmental of Santa Paula (inorganic and alpha activity) , and BC Laboratories of Bakersfield (hexavalent chromium).

ENVIRONMENTA AGRICULTURAL Analytical Chemists

July 22, 2015

Dee Jaspar & Associates 2730 Unicom Rd. Bldg A Bakersfield, CA 93308

Lab ID Customer : VI 1542870 : 4-16320

Laboratory Report

Introduction: This report package contains total of 9 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(4 pages) : Results for each sample submitted.
Quality Control	(3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-2 Airlift Csd:83' Dld:86'	07/14/2015	07/16/2015	VI 1542870-001	GW
TW-2 Airlift Csd:100' Dld:103'	07/14/2015	07/16/2015	VI 1542870-002	GW

Sampling and Receipt Information: All samples were received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time
VI 1542870-001	pH	15	3562.8 Minutes
VI 1542870-002	pH	15	3948 Minutes

All samples arrived at 5 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/17/2015:210501 All analysis quality controls are within established criteria
	07/17/2015:208265 All preparation quality controls are within established criteria
200.8	07/20/2015:210562 All analysis quality controls are within established criteria

Page 1 of 9

Inorganic - Metals QC

200.8	07/19/2015:208235 All preparation quality controls are within established criteria
Construction of the second	

Radio QC

900.0	07/20/2015:210641 All analysis quality controls are within established criteria					
	07/20/2015:210642 All analysis quality controls are within established criteria					
07/17/2015:208259 All preparation quality controls are within established criteria						

Inorganic - Wet Chemistry QC

2510B	07/17/2015:210438 All analysis quality controls are within established criteria					
	07/17/2015:208258 All preparation quality controls are within established criteria					
2540CE	07/16/2015:208223 All preparation quality controls are within established criteria					
300.0	07/17/2015:210468 All analysis quality controls are within established criteria					
	07/16/2015:208287 All preparation quality controls are within established criteria					
4500-Н В	07/17/2015:208280 All preparation quality controls are within established criteria					
4500HB	07/17/2015:210452 All analysis quality controls are within established criteria					
4500NO3F	07/16/2015:210420 All analysis quality controls are within established criteria					
	07/16/2015:208234 All preparation quality controls are within established criteria					

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

	ENVIRONMENTAL AGRICUL Analytical Chemists	L <u>TURAL</u>
July 22, 2015	Lab ID	: VI 1542870-001
	Customer	ID : 4-16320
Dee Jaspar & Associates		
2730 Unicorn Rd. Bldg A	Sampled C	On : July 14, 2015-22:30
Bakersfield, CA 93308	Sampled F	Ву : М.Н.
	Received	On : July 16, 2015-12:00
	Matrix	: Ground Water
Description : TW-2 Airl	lift Csd:83' Dld:86'	
Project : Long Can	yon WC	

Sample Result - Inorganic

Constituent	Result	POI	Units	Note	Sample Preparation		Sample Analysis	
Constituent	itesuit	TQL			Method	Date/ID	Method	Date/ID
Metals, Diss ^{P:1}								
Arsenic	3	2	ug/L		200.8	07/19/15:208235	200.8	07/20/15:210562
Iron	ND	30	ug/L		200.7	07/17/15:208265	200.7	07/17/15:210501
Manganese	2.5	0.5	ug/L		200.8	07/19/15:208235	200.8	07/20/15:210562
Wet Chemistry ^{P:1}								
Chloride	20	1	mg/L		300.0	07/16/15:208287	300.0	07/17/15:210468
Specific Conductance	683	1	umhos/cm		2510B	07/17/15:208258	2510B	07/17/15:210438
Nitrate	4.4	0.4	mg/L		4500NO3F	07/16/15:208234	4500NO3F	07/16/15:210420
pH	7.7		units		4500-Н В	07/17/15:208280	4500HB	07/17/15:210452
Solids, Total Dissolved (TDS)	410	20	mg/L		2540CE	07/16/15:208223	2540C	07/17/15:210439

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution.

 Corporate Offices & Laboratory
 Office & Labor

Page 3 of 9

	ENVIRONMENTAL AGRICULTUR Analytical Chemisis	<u>AL</u>
July 22, 2015	Lab ID :	: VI 1542870-001
	Customer ID :	: 4-16320
Dee Jaspar & Associates		
2730 Unicom Rd. Bldg A	Sampled On :	: July 14, 2015-22:30
Bakersfield, CA 93308	Sampled By	: M.H.
	Received On :	: July 16, 2015-12:00
	Matrix	: Ground Water
Description : TW-2 Airlift C	'sd:83' Dld:86'	
Project : Long Canyon	WC	

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample Preparation		Sample Analysis	
Constituent					Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P;1}						#6/12		
Gross Alpha	25.4 ± 3.63	1.18	pCi/L		9 0 0.0	07/17/15-07:55 2P1508259	900.0	07/20/15-17:00 2A1510641

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Corporate Offices & LaboratoryOffice & LaboratoryOffice & LaboratoryOffice & Laboratory853 Corporation Street2500 Stagecoach Road563 E. Lindo Avenue3442 Empresa Drive, Suite DSanta Paula, CA 93060Stockton, CA 95215Chico, CA 95926San Luis Obispo, CA 93401TEL: (805)392-2000TEL: (209)942-0182TEL: (530)343-5818TEL: (805)783-2940Env FAX: (805)525-4172 / Ag FAX: (805)392-2023FAX: (209)942-0423FAX: (530)343-3807FAX: (805)783-2912CA ELAP Certification No. 1573CA ELAP Certification No. 1563CA ELAP Certification No. 2670CA ELAP Certification No. 2775

Page 4 of 9

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810
ENVIRONMENTAL AGRICULTU Analytical Chemists	RAL
Lab ID	: VI 1542870-002
Customer ID	: 4-16320
Sampled On	: July 14, 2015-16:05
Sampled By	: M.H.
Received On	: July 16, 2015-12:00
Matrix	: Ground Water
Csd:100' Dld:103' a WC	
	ENVIRONMENTAL AGRICULTU Analytical Chemists Lab ID Customer ID Sampled On Sampled By Received On Matrix Csd:100' D1d:103'

Sample Result - Inorganic

Constituent	Regult	POI	Unite	Note	Sample Preparation		Sample Analysis	
Constituent	monuem result rQL Units Note		Method	Date/ID	Method	Date/ID		
Metals, Diss ^{P:1}			· · · · · · · · · · · · ·					
Arsenic	ND	2	ug/L		200.8	07/19/15:208235	200.8	07/20/15:210562
Iron	ND	30	ug/L		200.7	07/17/15:208265	200.7	07/17/15:210501
Manganese	5.6	0.5	ug/L		200.8	07/19/15:208235	200.8	07/20/15:210562
Wet Chemistry ^{P:1}								
Chloride	34	1	mg/L		300.0	07/16/15:208287	300.0	07/17/15:210468
Specific Conductance	848	1	umhos/cm		2510B	07/17/15:208258	2510B	07/17/15:210438
Nitrate	25.6	0.4	mg/L		4500NO3F	07/16/15:208234	4500NO3F	07/16/15:210420
pH	7.7		units		4500-Н В	07/17/15:208280	4500HB	07/17/15:210452
Solids, Total Dissolved (TDS)	560	20	mg/L		2540CE	07/16/15:208223	2540C	07/17/15:210439

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A \$Surrogate. * PQL adjusted for dilution.

.

Corporate Offices & Laboratory
853 Corporation StreetOffice & Laboratory
2500 Stagecoach RoadOffice & Laboratory
563 E. Lindo AvenueOffice & Laboratory
3442 Empresa Drive, Suite D
3442 Empresa Drive, Suite D
9415 W. Goshen AvenueSanta Paula, CA 93060Stockton, CA 95215
TEL: (209)942-0182Chico, CA 95926
TEL: (530)343-5818
Stockton, CA 952-2000San Luis Obispo, CA 93401
TEL: (305)592-24172 / Ag FAX: (805)392-2003
FAX: (209)942-0423
CA ELAP Certification No. 1573TEL: (305/83-2912
CA ELAP Certification No. 2670TEL: (305/783-2912
CA ELAP Certification No. 2670FAX: (305/783-2912
CA ELAP Certification No. 2775FAX: (250)734-8435
CA ELAP Certification No. 2810

1

	ENVIRONMENTA An	AGRICULTU	RAL
July 22, 2015		Lab ID Customer ID	: VI 1542870-002 : 4-16320
Dee Jaspar & Assoc	ciates		
2730 Unicorn Rd. Bl	dg A	Sampled On	: July 14, 2015-16:05
Bakersfield, CA 933	08	Sampled By	: M.H.
		Received On	: July 16, 2015-12:00
		Matrix	: Ground Water
Description : TW-	2 Airlift Csd:100' Dld:103	,	
Project : Long	g Canyon WC		

Sample Result - Radio

Constituent	Result + Error MD		MDA Linite		Sample	Preparation	Sample Analysis	
Constituent	MCLAR		Method	Date/ID	Method	Date/ID		
Radio Chemistry ^{P:1}								
Gross Alpha	41.1 ± 4.59	1.40	pCi/L		900.0	07/17/15-07:55 2P1508259	900.0	07/20/15-16:00 2A1510642

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level, Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + $(0.84 \times \text{Error})$). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L

Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Corporate Offices & Laboratory 853 Corporation Street
 Santa Paula, CA 93060
 Stockton, CA 95215

 TEL: (805)392-2000
 TEL: (805)992-20182

 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063
 FAX: (209)942-0182

 CA ELAP Certification No. 1573
 CA ELAP Certification

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 6 of 9

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810 July 22, 2015 Dee Jaspar & Associates

Lab ID Customer

: VI 1542870 : 4-16320

Quality Control - Inorganic

Definition	
ICV	: Initial Calibration Verification - Analyzed to verify the instrument calibration is within criteria.
ICB	: Initial Calibration Blank - Analyzed to verify the instrument baseline is within criteria.
CCV	: Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.
ССВ	: Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria.
Blank	: Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.
LCS	: Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.
MS	: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample
1410	matrix affects analyte recovery.
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries
11100	are an indication of how that sample matrix affects analyte recovery.
Dun	: Duplicate Sample - A random sample with each batch is prepared and analyzed in duplicate. The relative percent difference is an
2 up	indication of precision for the preparation and analysis.
MSRPD	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation
linera D	and analysis.
ND	: Non-detect - Result was below the DQO listed for the analyte.
DQO	: Data Quality Objective - This is the criteria against which the quality control data is compared.

July 22, 2015 Dee Jaspar & Associates

Lab ID Customer

: VI 1542870 : 4-16320

Quality Control - Radio

Constituent	Method Date/ID Type Units Conc. QC Data DQO Not								Note
Radio									
Alpha		900.0	07/20/15:210641caa	ccv	cpm	8896	41.8 %	38 - 46	
				CCB	cpm		0.100	0.14	
		900.0	07/20/15:210642caa	CCV	cpm	8896	41.1 %	37 - 45	
				CCB	cpm		0.0800	0.18	
Gross Alpha		900.0	07/17/15:208259caa	Blank	pCi/L		0.32	3	
				LCS	pCi/L	180.6	102 %	75-125	
				MS	pCi/L	180.6	108 %	60-140	
			(SP 1507661-001)	MSD	pCi/L	180.6	90.5 %	60-140	
			the second s	MSRPD	pCi/L	180.6	16.3%		
Definition									
CCV	: Continuing Calif	oration Verifica	tion - Analyzed to veri	Ty the instru	ment calibrati	on is within	criteria.		
CCB	: Continuing Calif	pration Blank -	Analyzed to verify the	instrument t	baseline is wit	un criteria.		1	
Blank	: Method Blank -	Prepared to ver	ry that the preparation	process is n	ot contributin	g contaminal	tion to the sam	pies.	
LUS	: Laboratory Cont	roi Standaru/Sa	mple - Prepared to veri	iy mat me p	reparation pro	cess is not a	meeting analy	e recovery.	et comela
MS	matrix affects and	A random samp lyte recovery	ie is spiked with a know	wit amount (of analyte. The	recoveries	are an indication	on or now th	at sample
	Matrix Snike Da	nlicate of MSA	ASD nair - A random s	ample duoli	cate is sniked	with a know	n amount of a	alvied The	recoveries
MSD	are an indication of	of how that sam	ole matrix affects analy	te recoverv	outo io opinica	with a fallo		iaijioa. me	
	: MS/MSD Relati	ve Percent Diffe	rence (RPD) - The MS	relative ne	rcent differenc	e is an indic	ation of precis	ion for the p	reparation
MSRPD	and analysis.		()					r and p	1
DQO	: Data Quality Ob	jective - This is	the criteria against wh	ich the quali	ity control dat	a is compare	d.		

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 9306() 805-392-2000

5-JAN RUNSM

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

RUS

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

CHAIN OF CUSTODY/WAT	SR ANALYSIS	S RECORD	
Project: Long Canyon WC	<u></u>		
Sampled by: <u>M Hookr</u>			USF
Analysis Requested: See Attached detection limit for As <2ppb, ple	List (5-da) ase call J	y Rush) (1 im with la	Low ab #.
Sample ID	Date	Time	Number of Containers
TW-) Airlift Cased: <u>83</u> Drilled: <u>84</u>	7/14/15	10: 30pm	X4
TW-2_Airlift Cased: 100 Drilled: 103	7/14/15	4:05p-	74
TW-> Airlift Cased: Drilled:			
COURIER: FEA EX			
RECEIPT NUMBER: 808220	47 6'	195	
RELINQUISHED BY: Mattle Host	7/157	DATE/TIME	1
RECEIVED BY:	7/15	DATE/TIME):00Am
RELINQUISHED BY:	7/15/	DATE/TIME	3:45P
RECEIVED DE:	う	DATE/TIME	1200
052 2047 6495	FOR	050	

154281

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

WATER ANALYSIS REQUEST

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

ب ا

Invoice to:

Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

Project:	Long Canyon WC
NOTE: Please f alpha activity, gross alpha.	ilter with 0.45 micron filter for metals and and acidify for metals. Non-Potable water for
	Fe 🔀 (Dissolved)
NO3 X	Mn X (Dissolved)
Electrical Conductivity	As X (Dissolved)
pH X	Gross Alpha 📉
Total Dissolved Solids (@ 180°)	Note: only analyze for U if alpha activity is > MCL of alpha activity
Chloride X	- · · · · · · · · · · · · · · · · · · ·
	RUSH

Condition Upon Receipt (Attach to COC)

Sample Receipt at S	P:								
1. Number of ice ches	ts/packages rec	eived:	1						
2. Shipper tracking nu	imbers	80822047649	5						
3. Were samples rece Temps:	ived in a c hilled	condition?	5	1	/	/	/	/	/
4. Surface water (SW should be flagged u	TR) bact sample inless the time s	es: A sample th since sample co	at has a f filection h	temperat nas beer	ture upo i less th	on reciep an two h	t of >10C ours.	, whether	riced or not,
5. Do the number of b COC?	ottles received a	agree with the	Yes] No	N/A				
6. Verify sample date,	time, sampler		Yes] No	N/A				
7. Were the samples r bottles, leaks, etc.)	eceived intact?	(i.e. no broken	Yes	No					
8. Were sample custo	dy seals intact?		Yes	No [N/A]			
Sample Verification,	Labeling and	Distribution:		_					
1. Were all requested acceptable?	analyses under	stood and	Yes	No					
2. Did bottle labels col	rrespond with th	e client's ID's?	Yes] No					
3. Were all bottles req properly preserved	uiring sample p ? & Grease, VOA and	reservation CrVI verified in lab	Yes] No	N/A	FGL			
4. VOAs checked for I	Headspace?		Yes	No	N/A	7			
5. Were all analyses v reciept?	vithin holding tin	nes at time of	Yes	No		-			
6. Have rush or project accepted?	t due dates bee	en checked and	Yes] No	N/A				
Include a copy of the	COC for lab del	iverv. (Bacti. In	organics	and Rad	lio)				
Sample Receipt, Logi	n and Verification	on completed b	y:		Review Approv	ved and sved By	Shawn Pe	ck 🔞 🖥	vigitally signed by Shawn Peck itle: Sample Receiving vate: 07/17/2015-15:58:51
Discrepency Docum	entation:								
Any items above which	h are "No" or do	o not meet spec	cifications	s (i.e. ten	nps) mu	ist be res	solved.		
1. Person Contacted:			Pho	one Num	ber:				
Initiated By:	srp		Dat	e:		2015-0	7-16		
Problem:	-2 N03 spilled	in shipment							
Resolution:	Wet chem will	split/preserve	. Nitrate	still rec	eived v	vithin H/	Т		
2. Person Contacted:			Pho	one Num	iber:				
Initiated By:	srp		Dat	e:		2015-0	7-16		
Problem:	pH received p	ast holding tin	ne						
Resolution:	Jim Angell is a	aware of this					(40	16320)	
					Г	Dee Ja	spar &	Assor	ciates. Inc.
					_		VI 1	54287	Λ
								UTLU/	v

SRP-07/17/2015-15:58:51

July 29,2015 Dee Jaşar & Associates 2730 Uicorn Rd. Bldg A Bakersfild, CA 93308

Lab ID	: VI 1542871-00
Customer ID	: 4-16320
Sampled On	: July 14, 2015
Sampled By	: M.H.
Received On	: July 16, 2015
Matrix	: Ground Water

Description : TW-2 Pumped Csd: 100' Dld: 103' Project :Long Canyon WC

Test Description	Result				Graphical Results Presentation				
Cations	mg/L	Meq/L	% Meq	Lbs/AF	Good	Possible Problem	Moderate Problem	Increasing Problem	Severe Problem
Calciun	90	4.5	55	240	**				
Magnesium	16	1.3	16	44	**				
Potassim	3	0.077	1	8	**				
Sodium	53	2.3	28	140					
Anions									
Carbonite	< 10	0	0	0					
Bicarbonate	300	4.9	57	820	**				
Sulfate	107	2.2	26	290	**				
Chloride	36	1	12	98					
Nitrate	26.5	0.43	5	72					
Nitrate Nitrogen	6.0			16					
Fluoride	0.7	0.037	0	2	調約				
Minor Elements									
Boron	0.30			0.82					
Copper	< 0.01			0.00					
Iron	< 0.03			0.00					
Manganese	0.020			0.054					
Zinc	< 0.02			0.00					
TDS by Summation	632		L	1700					
Other									
pH	7.5			units					
E. C.	0.848			dS/m					
SAR	1.4								
Crop Suitability									
No Amendments	Fairly		Good		SECONDECTION OF THE PARTY OF THE	3833-635			
With Amendments	Good								
Amendments									
Gypsum Requirement	0.2			Tons/AF					
Sulfuric Acid (98%)	17		(oz/1000Gal	Or 42 oz/1	1000Gal of	urea Sulfur	ic Acid (15	/49).
Leaching Requirement	6.4			%					

General Irrigation Suitability Analysis

Good **新教**社 Problem

Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations. Note:

** Used in various calculations; mg/L = Milligrams Per Liter (ppm) meq/L = Milliequivalents Per Liter

9415 W. Goshen Avenue

July 29, 2015

Dee Jaspar & Associates

Lab ID : VI 1542871-001 Customer ID : 4-16320 Description : TW-2 Pumped Csd:100' Dld:103'

Test Description	Result Graphical Results Presentation				
Chemical			Slight	Moderate	Severe
Manganese	0.02	mg/L		,	
Iron	< 0.03	mg/L			
TDS by Summation	632	mg/L			
No Amendments					
pH	7.5	units			
Alkalinity (As CaCO3)	250	mg/L			
Total Hardness	290	mg/L			
With Amendments					
Alkalinity (As CaCO3)	50	mg/L			
Total Hardness	50	mg/L			
рН	5.4 - 6.7	units			

Micro Irrigation System Plugging Hazard

Problem Good

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

Water Amendments Application Notes:

The Amendments recommended on the previous pages include:

Gypsum:

This should be applied at least once a year to the irrigated soil surface area. Gypsum can also be applied in smaller quantities in the irrigation water. Apply the smaller (bracketed) amount of gypsum when also applying the recommended amount of Sulfuric Acid and the larger amount when applying only Gypsum.

Sulfuric Acid:

These products should be applied as needed to prevent emitter plugging in micro irrigation systems and/or as a soil amendment to adjust soil pH to improve nutrient availability and to facilitate leaching of salts. Please exercise caution when using this material as excesses may be harmful to the system and/or the plants being irrigated. The reported Acid requirement is intended to remove approximately 80 % of the alkalinity. The final pH should range from 5.4 to 6.7. We recommend a field pH determination to confirm that the pH you designate is being achieved. This application is based upon the use of a 98% Sulfuric Acid product. The application of Urea Sulfuric Acid is based upon the use of a product that contains 15% Urea (1.89 lbs Nitrogen), 49% Sulfuric Acid and has a specific gravity of 1.52 at 68 °F.

Guidelines for the above interpretations are sourced from USDA & U.C. Cooperative Extension Service publications. Please contact us if you have any questions.

FRUIT GROWERS LABORATORY, INC.

Scott Bury Scott Bucy, Director of Ag. Services

SB1:KDM

July 24, 2015

Dee Jaspar & Associates 2730 Unicom Rd. Bldg A Bakersfield, CA 93308 Lab ID : Customer :

AGRICULTURAL

: VI 1542904 : 4-16320

Laboratory Report

61

Analytical Chemists

Introduction: This report package contains total of 7 pages divided into 3 sections:

ENVIRONMENTAL

Case Narrative	(2 pages) : An overview of the work performed at FGL
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-2 Airlift Csd:170' Drl:173'	07/15/2015	07/17/2015	VI 1542904-001	W

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time
VI 1542904-001	pH	15	8779.8 Minutes

All samples arrived at 4 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/23/2015:210784 All analysis quality controls are within established criteria
	07/23/2015:208502 All preparation quality controls are within established criteria
200.8	07/23/2015:210782 All analysis quality controls are within established criteria
	07/23/2015:208515 All preparation quality controls are within established criteria

July 24, 2015	Lab ID	: VI 1542904
Dee Jaspar & Associates	Customer	: 4-16320

Radio QC

900.0	07/22/2015:210738 All analysis quality controls are within established criteria	in the second se
	07/21/2015:208361 All preparation quality controls are within established criteria	And a second sec

Inorganic - Wet Chemistry QC

2510B	07/21/2015:210583 All analysis quality controls are within established criteria					
	07/21/2015:208378 All preparation quality controls are within established criteria					
2540CE	07/20/2015:208321 All preparation quality controls are within established criteria					
300.0	07/17/2015:210534 All analysis quality controls are within established criteria					
	07/17/2015:208342 All preparation quality controls are within established criteria					
4500-Н В	07/21/2015:208407 All preparation quality controls are within established criteria					
4500HB	07/21/2015:210605 All analysis quality controls are within established criteria					

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By David Terz, B.A., M.B.A.

Digitally signed by David Terz, B.A., M.B.A. Title: QA Director Date: 2015-07-24

	ENVIRONMENTAL Analytic	GU AGRICULTU al Chemists	RAL
July 24, 2015		Lab ID	: VI 1542904-001
Dec Issuer (A	Customer ID	: 4-16320
Dee Jaspar &	Associates		
2730 Unicom	Rd. Bldg A	Sampled On	: July 15, 2015-14:20
Bakersfield, C	A 93308	Sampled By	: M. Hooker
		Received On	: July 17, 2015-11:00
		Matrix	: Water
Description Project	: TW-2 Airlift Csd:170' Drl:173' : Long Canyon WC		

Sample Result - Inorganic

Constituent	Regult	Regult POI		Units Note		Preparation	Sample Analysis	
Constituent	onstituent Result PQL Onits Note		Method	Date/ID	Method	Date/ID		
Metals, Diss ^{P:1}								
Arsenic	ND	2	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Iron	ND	30	ug/L		200.7	07/23/15:208502	200.7	07/23/15:210784
Manganese	4.3	0.5	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Wet Chemistry ^{P:1}								
Chloride	22	1	mg/L		300.0	07/17/15:208342	300.0	07/17/15:210534
Specific Conductance	609	1	umhos/cm		2510B	07/21/15:208378	2510B	07/21/15:210583
Nitrate	13.7	0.5	mg/L		300.0	07/17/15:208342	300.0	07/17/15:210534
pH	7.1		units		4500-H B	07/21/15:208407	4500HB	07/21/15:210605
Solids, Total Dissolved (TDS)	390	20	mg/L		2540CE	07/20/15:208321	2540C	07/21/15:210578

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ⁺Surrogate. * PQL adjusted for dilution.

Corporate Offices & LaboratoryOffice & LaboratoryOffice & LaboratoryOffice & LaboratoryOffice & Laboratory853 Corporation Street2500 Stagecoach Road563 E. Lindo Avenue3442 Empresa Drive, Suite D9415 W. Goshen AvenueSanta Paula, CA 93060Stockton, CA 95215Chico, CA 95926San Luis Obispo, CA 93401Visalia, CA 93291TEL: (805)392-2000TEL: (209)942-0182TEL: (530)343-5818TEL: (805)783-2940TEL: (559)734-9473Env FAX: (805)525-4172 / Ag FAX: (805)392-2003FAX: (209)942-0423FAX: (530)343-3807FAX: (805)783-2912FAX: (559)734-8435CA ELAP Certification No. 1573CA ELAP Certification No. 1563CA ELAP Certification No. 2670CA ELAP Certification No. 2775CA ELAP Certification No. 2810

Page 3 of 7

۲. ۲. ۸. ۲. در ۲. د. ۲. د. د.

Sample Result - Radio

Constituent	Result + Error	MDA Units		MCLAI	Sample Preparation		Sample Analysis	
Collatilitetit	Result ± Ellor	MDA	Onto		Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	9.42 ± 1.99	0.995	pCi/L	15/5	900.0 07/21/15-07:00 2P1508361		900.0	07/22/15-15:00 2A1510738

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance: Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Corporate Offices & Laboratory Office & Laboratory Office & Laboratory Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 853 Corporation Street 2500 Stagecoach Road 3442 Empresa Drive, Suite D Stockton, CA 95215 TEL: (209)942-0182 San Luis Obispo, CA 93401 TEL: (805)783-2940 Santa Paula, CA 93060 TEL: (805)392-2000 TEL: (530)343-5818 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (205)942-0423 CA ELAP Certification No. 1573 CA ELAP Certification FAX: (530)343-3807 FAX: (805)783-2912 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435

Page 4 of 7

ihi **ENVIRONMENTAL** AGRICULTURAL Analytical Chemists

July 24, 2015 Dee Jaspar & Associates Lab ID Customer : VI 1542904 : 4-16320

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals		·						
Iron	200.7		мѕ	uø/L	4000	104 %	75-125	
		(V1 1542920-001)	MSD	ug/L	4000	113 %	75-125	
			MSRPD	ug/L	800.0	8.2%	≤20.0	
	200.7	07/23/15:210784AC	CCV	ppm	5.000	103 %	90-110	
			CCB	ррлі	5 000	0.0096	0.03	
			CCB	ppm ppm	5.000	0.0063	90-110	
Arsenic	200.8		MS	110/[.	5,000	94.8 %	75-125	
[(CH 1575660-001)	MSD	ug/L	5.000	105 %	75-125	
			MSRPD	ug/L	5.000	0.52	≤2	
	200.8	07/23/15:210782AC	CCV	ppb	120.0	93.4 %	90-110	
			CCB	ppb		0.18	2	
			CCV	ppb	120.0	91.6%	90-110	
Managanaga	200.8		MO	ppb	5 000	0.22	2	
ivianganese	200.8	(CH 1575660-001)	MSD	ug/L 110/I	5.000	94,0 %	75-125	
		(011 15/15000 001)	MSRPD	ug/L ug/L	5.000	9.0%	<20	
	200,8	07/23/15:210782AC	CCV	daa	120.0	97.2 %	90-110	
			ССВ	ррь		0.104	0.5	
			CCV	ppb	120.0	95.0 %	90-110	
			CCB	ppb		0.162	0.5	
Wet Chem								
Conductivity	2510B	07/21/15:210583JMG	ICB	umhos/cm		0.07	1	
			CCV	umhos/cm	999.0	99.1 %	95-105	
			CCV	umhos/cm	999.0	100 %	95-105	
E. C.	2510B	07/21/15:208378JMG	Blank	umhos/cm		ND	<1	
	2510.05	(VI 1542897-001)	Dup	umhos/cm		0.0%	5	
Solids, Total Dissolved	2540CE	0//20/15:208321CTL	Blank	mg/L mg/l	000 1		<20	
		(STK1537799-001)	Dun	mg/L	222,1	0.6%	50-110	
Chloride	300.0	(01111007752 001)	MS	mg/L	500.0	101 %	85-121	
		(VI 1542903-001)	MSD	mg/L	500.0	101 %	85-121	
			MSRPD	mg/L	100.0	0.3%	≤19	
			Blank	mg/L		ND	<1	
			LCS	mg/L	25.00	95.7%	90-110	
		(STK1537733-001)	MSD	mg/L mg/l	500.0	100 %	85-121	
		(011(1007700-001)	MSRPD	mg/L	100.0	0.4%	<19	
	300.0	07/17/15:210534MCA	ICV	ppm	25.00	95.1%	90-110	
			1CB	ppm		0.03	1	
			CCB	ppm		0.01	1	
			CCV	ppm	25.00	97.0 %	90-110	
Nitrate	300.0	(1711640002-001)	MSD	mg/L	400.0	99.1 %	85-119	
		(V11542903~001)	MSD	mg/L	400.0	99.7%	85-119	
			Blank	mg/L	100.0	0.370 ND	<0.5	
			LCS	mg/L	20.00	95.4 %	90-110	
			MS	mg/L	400.0	98.4 %	85-119	
		(STK1537733-001)	MSD	mg/L	400.0	98.0 %	85-119	
			MSRPD	mg/L	100.0	0.5%		
	300.0	07/17/15:210534MCA		ppm	20.00	95.0%	90-110	
			ICB	ppm ppm		0.000	0.5	
			CCV	ppm	20.00	95.6%	90-110	
pH	4500-H B	(SP 1508021-001)	Dup	units		0.3%	4.80	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060
 Charlen and a state
 Construction
 Constructin
 Construction
 Constru

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291

Page 5 of 7

July 24, 2015 Dee Jaspar & Associates

Lab ID Customer : VI 1542904 : 4-16320

Quality Control - Inorganic

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Wet Chem									
рН	4500HF		07/21/15:210605JMG	CCV CCV	units units	8.000 8.000	101 % 101 %	95-105 95-105	
Definition									
ICV	: Initial Calibration	Nerification	Analyzed to verify the	instrument	calibration is	within criter	ia.		
ICB	: Initial Calibration	ı Blank - Anal	yzed to verify the instru	ment baseli	ne is within cr	iteria.			
CCV	: Continuing Calib	ration Verifica	ation - Analyzed to verif	y the instru	ment calibration	on is within	criteria.		
CCB	: Continuing Calib	: Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria.							
Blank	: Method Blank - H	: Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.							
LCS	: Laboratory Contr	ol Standard/S	ample - Prepared to veri	fy that the p	reparation pro	ocess is not a	ffecting analyt	e recovery.	
мs	: Matrix Spikes - A matrix affects anal	: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample matrix affects analyte recovery.							
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery.								
Dup	: Duplicate Sample - A random sample with each batch is prepared and analyzed in duplicate. The relative percent difference is an indication of precision for the preparation and analysis.								
MSRPD	: MS/MSD Relativ and analysis.	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.							
ND	: Non-detect - Rest	ult was below	the DQO listed for the a	nalyte.					
DQO	: Data Quality Obj	ective - This is	s the criteria against whi	ch the quali	ty control data	a is compare	d.		

July 24, 2015 Dee Jaspar & Associates

Lab ID Customer

: VI 1542904 : 4-16320

Constituent	Method Date/ID Type Units Conc. QC Data DQO N								Note
Radio									
Alpha		900.0	07/22/15:210738caa	CCV CCB	cpm cpm	8895	40.6 % 0.10	39 - 48 0.2	
Gross Alpha		900.0	07/21/15:208361elc	Blank LCS MS	pCi/L pCi/L pCi/L	180.6 180.6	0.04 94.3 % 132 %	3 75-125 60-140	
			(SP 1507679-001)	MSD MSRPD	pCi/L pCi/L pCi/L	180.6 180.6	124 % 6.2%	60-140 ≤30	
Definition CCV CCB Blank LCS MS MSD MSD	Imition Imition Imition Imition <td< td=""></td<>								
DQO	: Data Quality Obj	ective - This is	the criteria against wh	ich the quali	ty control data	a is compare	d.		

Quality Control - Radio

ISH

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

1542904 5-JM2 RNS/

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

Project: Long Canyon W	٩C					
sampled by: M Wooker			,			
Analysis Requested: See Attached List (5-day Rush) (Low detection limit for As ≤2ppb, please call Jim with lab #.						
Sample ID		Date	Time	Number of Containers		
TW- 1^{2} Airlift Cased: 170' Drilled: 173'		7/15/15	2:20pm	۲ĺ		
TW- \$ A irlift Cased: Drilled:	-					
TW- \$ Airlift Cased: Drilled:	-					
COURIER: FAFEX RECEIPT NUMBER: $$08220476484$						
RELINQUISHED BY: Marthe Harl ON		1/15/15	DATE/TIME			
RECEIVED, BY: 7/16/15 8:30 AN						
RELINQUISHED BY:		7/16/19		PM		
RECEIVED BY:		• •	DATE/TIME			
FOREX	_	1/17	0011			

CHAIN OF CUSTODY/WATER ANALYSIS RECORD

FGL ENVIRONMENTAL

- *

853 Corporation Street Santa Paula, CA 93061 805-392-2000

WATER ANALYSIS REQUEST

Analyses to:	Invoice to:
Kenneth D. Schmidt and Assoc.	Dee Jaspar & Assoc, Inc.
3701 Pegasus Drive, Suite 112	2730 Unicorn Rd., Bldg.A
Bakersfield, CA 93308	Bakersfield, CA 93308
Attn: James Angell	Attn: Curtis Skaggs
Phone: 661-392-1630	Phone: 661-393-4796
Email: kdschmidt@bak.rr.com	Email: cskaggs@djacivil.com

Project:	Long Canyon WC
NOTE: Please f: alpha activity, gross alpha.	ilter with 0.45 micron filter for metals and and acidify for metals. Non-Potable water for
	Fe X (Dissolved)
№3 X	Mn (Dissolved)
Electrical Conductivity	As X (Dissolved)
pH X	Gross Alpha
Total Dissolved Solids (@ 180°)	Note: only analyze for U if alpha activity is > MCL of alpha activity
Chloride	

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:						
1. Number of ice chests/packages received:	1					
2. Shipper tracking numbers						,
3. Were samples received in a chilled condition? Temps:	4/	1	/	/	1	/
4. Surface water (SWTR) bact samples: A sample that has should be flagged unless the time since sample collect	as a tempe tion has be	erature up een less f	oon reciept han two ho	of >10C, [,] urs.	whether ic	ed or not,
5. Do the number of bottles received agree with the COC?	'es No	N/A				
6. Verify sample date, time, sampler Υ	'es No	N/A				
 Were the samples received intact? (i.e. no broken Y bottles, leaks, etc.) 	'es No	•				
8. Were sample custody seals intact? Y	'es No	N/A				
Sample Verification, Labeling and Distribution:						
1. Were all requested analyses understood and acceptable?	′es No)				
2. Did bottle labels correspond with the client's ID's?	'es No	•				
3. Were all bottles requiring sample preservation properly preserved?	′es No) N/A	FGL			
4. VOAs checked for Headspace? Y	'es No	N/A				
5. Were all analyses within holding times at time of reciept?	/es No)				
 6. Have rush or project due dates been checked and accepted? 	'es No	N/A				
Include a copy of the COC for lab delivery. (Bacti, Inorga	nics and F	(adio)				
Sample Receipt, Login and Verification completed by:		, Reviewe Approve	d and Nico d By	le Parsor	Digitally Title: S Date: 0	y signed by Nicole Parson ample Receiving 7/17/2015-11:46:35
Discrepency Documentation:						
Any items above which are "No" or do not meet specifica	itions (i.e.	temps) m	iust be resc	lved.		
1. Person Contacted:	Phone	Number:				
Initiated By:	Date:					
Problem:						
Resolution:						
2. Person Contacted:	Phone	Number:				
Initiated By:	Date:		<u> </u>			
Problem:						
Resolution:				(401	6320)	
			Dee Jas	spar & /	Associa	ates, Inc.
				VI 15	42904	

NMP-07/17/2015-11:46:35

July 24, 2015

Dee Jaspar & Associates 2730 Unicom Rd. Bldg A Bakersfield, CA 93308 Lab ID Customer

AGRICULTURAL

: VI 1542903 : 4-16320

Laboratory Report

Analytical Chemists

Introduction: This report package contains total of 7 pages divided into 3 sections:

ENVIRONMENTA

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-2 Airlift Csd:214' Drl:220'	07/16/2015	07/17/2015	VI 1542903-001	W

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time	
VI 1542903-001	pH	15	7675.2 Minutes	

All samples arrived at 4 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/23/2015:210784 All analysis quality controls are within established criteria
	07/23/2015:208502 All preparation quality controls are within established criteria
200.8	07/23/2015:210782 All analysis quality controls are within established criteria
	07/23/2015:208515 All preparation quality controls are within established criteria

	ENVIRONMENTAL AGRICULTU Analytical Chemists	RAL	
July 24, 2015	Lab ID Customer ID	: VI 1542903-001	
Dee Jaspar & Associates		. 4-10320	
2730 Unicom Rd. Bldg A Bakersfield, CA 93308	Sampled On Sampled By Received On Matrix	: July 16, 2015-08:45 : Justin : July 17, 2015-11:00 : Water	
Description : TW-2 Airlift Project : Long Canyor	Csd:214' Dr1:220' n WC		

Sample Result - Inorganic

Constituent	Result	POT	Units	Note	Sample Preparation		Sample Analysis	
Constituent	Iteaun	TQL			Method	Date/ID	Method	Date/ID
Metals, Diss ^{P:1}								
Arsenic	ND	2	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Iron	ND	30	ug/L		200.7	07/23/15:208502	200.7	07/23/15:210784
Manganese	7.7	0.5	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Wet Chemistry ^{P:1}								
Chloride	17	1	mg/L		300.0	07/17/15:208342	300.0	07/17/15:210534
Specific Conductance	538	1	umhos/cm		2510B	07/21/15:208378	2510B	07/21/15:210583
Nitrate	9.1	0.5	mg/L		300.0	07/17/15:208342	300.0	07/17/15:210534
рН	7.4		units		4500-H B	07/21/15:208407	4500HB	07/21/15:210605
Solids, Total Dissolved (TDS)	350	20	mg/L		2540CE	07/20/15:208321	2540C	07/21/15:210578

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution.

 Corporate Offices & Laboratory
 Office & Laboratory
 Display
 Display
 D

Page 3 of 7

ENVIRONMENTAL AGRICULTURAL Analytical Chemists

11 and 5

July 24, 2015 Dee Jaspar & Associates

Lab ID Customer : VI 1542903 : 4-16320

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals								
Iron	200.7		мѕ	ug/L	4000	104 %	75-125	
		(VI 1542920-001)	MSD	ug/L	4000	113 %	75-125	
	4		MSRPD	ug/Ľ	800,0	8.2%	≤20.0	
	200.7	07/23/15:210784AC	CCV	ppm	5.000	103 %	90-110	
			CCB	ppm	5 000	0.0096	0.03	
			ССВ	ppm ppm	5.000	0.0063	0.03	
Arsenic	200.8		MS	ug/L	5.000	94.8 %	75-125	
		(CH 1575660-001)	MSD	ug/L	5.000	105 %	75-125	
			MSRPD	ug/L	5.000	0.52	≤2	
	200.8	07/23/15:210782AC	CCV	ppb	120.0	93.1 %	90-110	
			CCB	ppb	120.0	0.14	2	
			CCB	ppo ppb	120.0	95.7%	90-110 2	
Manganese	200.8		MS	<u>11971</u>	5.000	94.6%	75-125	
mulgunote	20010	(CH 1575660-001)	MSD	ug/L	5.000	105 %	75-125	
			MSRPD	ug/L	5.000	9.0%	≤20	
	200.8	07/23/15:210782AC	CCV	ppb	120.0	96.2 %	90-110	
			CCB	ppb		0.090	0.5	
			CCV	ррь	120.0	96.4 %	90-110	
				ppo		0.110	0.5	
Wet Chem								
Conductivity	2510B	07/21/15:210583JMG	ICB	umhos/cm		0.07	1	
			CCV	umhos/cm	999.0	99.1 %	95-105	
R.C.	2510D	07/21/15:209279 TMG	Rionk	umhos/cm	999.0	100 %	95-105	
в. О.	25100	(VI 1542897-001)	Dup	umhos/cm		0.0%	5	
Solids, Total Dissolved	2540CE	07/20/15:208321CTL	Blank	mg/L		ND	<20	
,			LCS	mg/L	999.1	102 %	90-110	
		(STK1537799-001)	Dup	mg/L		0.6%	5	
Chloride	300.0		MS	mg/L	500.0	101 %	85-121	
		(VI 1542903-001)	MSD	mg/L	500.0	101 %	85-121	
			Blank	mg/L mg/I	100.0	0.3% ND	<u><1</u>	
			LCS	mg/L	25.00	95.7 %	90-110	
			MS	mg/L	500.0	100 %	85-121	
		(STK1537733-001)	MSD	mg/L	500.0	99.6 %	85-121	
			MSRPD	mg/L	100.0	0.4%	<u>≤19</u>	
	300.0	07/17/15:210534MCA	CCB	ppm	25.00	0.01	1	
			CCB	ррш	25.00	97.0%	90-110	
			CCV	ppm ppm	25.00	97.6%	90-110	
Nitrate	300.0		MS	mg/L	400.0	99.1 %	85-119	
		(VI 1542903-001)	MSD	mg/L	400.0	99.7 %	85-119	
			MSRPD	mg/L	100.0	0.5%	≤19	
			Blank	mg/L	20.00	ND OS 4 BZ	< 0.5	
			MS	mg/L me/I	20.00 200 0	92,4 % 98 / 0/	90-110	
		(STK1537733-001)	MSD	mø/Ľ	400.0	98.0 %	85-119	
			MSRPD	mg/L	100.0	0.5%	≤19	
	300.0	07/17/15:210534MCA	CCB	ррт		0.043	0.5	
			CCV	ppm	20.00	96.6 %	90-110	
			CCB	ppm		0.050	0.5	
	4500 11 12	(CD 1502021 001)	Dup	ppm	20.00	97.5%	400	
pn	4300-H B	(Sr 1308021-001)	Dup	units	1	0.3%	4.80	

Corporate Offices & Laboratory
 Contract a Laboratory
 Contract Laboratory
 Contract a Laboratory
 <

Office & Laboratory

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 Page 5 of 7

Office & Laboratory 9415 W. Goshen Avenue

July 24, 2015 **Dee Jaspar & Associates**

and analysis.

MSRPD

DQO

Lab ID Customer

: VI 1542903 : 4-16320

Constituent Method Date/ID OC Data 000 Туре Units Conc. Note Radio Alpha 900.0 07/22/15:210738caa CCV cpm 8895 40.6 % 39 - 48 0.2 CCB 0.10 cpm 900.0 07/21/15:208361elc Gross Alpha Blank pCi/L 0.04 3 pCi/L 180.6 94.3 % 75-125 LCS 60-140 180.6 132 % MS pCi/L (SP 1507679-001) MSD pCi/L 180.6 124 % 60-140 MSRPD 180.6 pCi/L 6.2% ≤30 Definition : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria. CCV CCB : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria. : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples. Blank : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. LCS ; Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS matrix affects analyte recovery. : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD are an indication of how that sample matrix affects analyte recovery. : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation

Quality Control - Radio

: Data Quality Objective - This is the criteria against which the quality control data is compared.

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

WATER ANALYSIS REQUEST

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

3

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

Project:I	ong Canyon WC
NOTE: Please filter alpha activity, and a gross alpha.	with 0.45 micron filter for metals and cidify for metals. Non-Potable water for
	Fe X (Dissolved)
NO3 X	Mn X (Dissolved)
Electrical Conductivity	As X (Dissolved)
рн 📕	Gross Alpha 📉
Total Dissolved Solids (0 180°) X Chloride X	Note: only analyze for U if alpha activity is > MCL of alpha activity

l		l	Ĩ	ľ	0	D	Ĩ	Ÿ.	li	Ţ	ľ		à	I	}					1	1		C	ł	\	C	Ľ	J	Ľ	Ì	Ú	R	Ą	L
1	į,				14			驟			7	۲		Ľ	1	f	ca	1	C	h	er	n	is	ts										

July 24, 2015

Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308 Lab ID : VI 1542902 Customer : 4-16320

Laboratory Report

Introduction: This report package contains total of 8 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(4 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-2 Pump Csd:214' Dr1:220'	07/16/2015	07/17/2015	VI 1542902-001	DW

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time
VI 1542902-001	pH	15	10255.2 Minutes

All samples arrived at 4 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/20/2015:210661 All analysis quality controls are within established criteria.
	 07/20/2015:208328 All preparation quality controls are within established criteria, except: The following note applies to Boron, Copper, Iron, Potassium, Magnesium, Manganese, Zinc: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery. The following note applies to Boron, Calcium, Copper, Iron, Potassium, Magnesium, Manganese, Sodium, Zinc: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

Page 1 of 8

	ENVIRONMENTAL AGRICULTUI Analytical Chemists	RAL
July 24, 2015	Lab ID	: VI 1542902-001
-	Customer ID	: 4-16320
Dee Jaspar & Associates		
2730 Unicom Rd. Bldg A	Sampled On	: July 16, 2015-11:15
Bakersfield, CA 93308	Sampled By	: Jim Angell
	Received On	: July 17, 2015-11:00
	Matrix	: Drinking Water
Description : TW-2 Pump	Csd;214' Drl:220'	-
Project : Long Canyor	1 WC	

Sample Result - Inorganic

Constituent	Popult	POI	Unita	MCI /AI	Sample	Preparation	Sampl	le Analysis
Constituent	Result	rųr	OIIIIs	MCL/AL	Method	Date/ID	Method	Date/ID
Irrigation Suit ^{P:1}								
Total Hardness as CaCO3	176		mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Calcium	54	1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Magnesium	10	1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Potassium	2	1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Sodium	37	1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Total Cations	5.2		meq/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Boron	0.2	0.1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Copper	ND	10	ug/L	1000^{2}	200.7	07/20/15:208328	200,7	07/20/15:210661
Iron	/ 730	30	ug/L	300 ²	200.7	07/20/15:208328	200.7	07/20/15:210661
Manganese	20	10	ug/L	50^{2}	200.7	07/20/15:208328	200.7	07/20/15:210661
Zinc	30	20	ug/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Gypsum Requirement	0.09		Tons/AF		200.7	07/20/15:208328	200.7	07/20/15:210661
SAR	1.2				200.7	07/20/15:208328	200.7	07/20/15:210661
Total Alkalinity	130	10	mg/L		2320B	07/20/15:208311	2320B	07/20/15:210585
Hydroxide	ND	10	mg/L		2320B	07/20/15:208311	2320B	07/20/15:210585
Carbonate	ND	10	mg/L		2320B	07/20/15:208311	2320B	07/20/15:210585
Bicarbonate	160	10	mg/L		2320B	07/20/15:208311	2320B	07/20/15:210585
Sulfate	60	2	mg/L	500 ²	300.0	07/17/15:208342	300,0	07/18/15:210534
Chloride	17	1	mg/L	500^{2}	300.0	07/17/15:208342	300.0	07/18/15:210534
Nitrate	8.9	0.5	mg/L	45	300.0	07/17/15:208342	300.0	07/18/15:210534
Nitrate Nitrogen	2.0	0.1	mg/L	10	300.0	07/17/15:208342	300.0	07/18/15:210534
Fluoride	1.1	0.1	mg/L	2	300.0	07/17/15:208342	300.0	07/18/15:210534
Total Anions	4.6		meq/L		2320B	07/20/15:208311	2320B	07/20/15:210585
pH	7.5	e	units		4500-H B	07/23/15:208501	4500HB	07/23/15:210745
E. C.	546	1	umhos/cm	1600 ²	2510B	07/21/15:208378	2510B	07/21/15:210583
TDS by Summation	350	~~	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661
Metals, Diss ^{P:1}								
Arsenic	ND	2	ug/L	10	200.8	07/23/15:208515	200.8	07/23/15:210782
Wet Chemistry ^{P:1}				_				
Solids, Total Dissolved (TDS)	360	20	mg/L	1000^{2}	2540CE	07/22/15:208457	2540C	07/23/15:210719

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

 Ourporate Offices & Laboratory
 Office & Laboratory

 853 Corporation Street
 2500 Stagecoach Road

 Santa Faula, CA 93060
 Stockton, CA 95215

 TEL: (805)392-2000
 TEL: (209)942-0182

 Env FAX: (805)525-4172 / Ag FAX: (805)392-2003
 FAX: (209)942-0423

 CA ELAP Certification No. 1573
 CA ELAP Certification No.

Office & Laboratory

Office & Laboratory
 Onice & Laboratory
 Onice & Laboratory
 Onice & Laboratory

 2500 Stagecoach Road
 563 E. Lindo Avenue
 3442 Empresa Drive, Suite D

 Stockton, CA 95215
 Chico, CA 9526
 San Luis Obispo, CA 93401

 TEL: (209)942-0182
 TEL: (530)343-5818
 TEL: (805)783-2940

 FAX: (209)942-0423
 FAX: (530)343-3807
 FAX: (805)783-2912

 CA ELAP Certification No. 1563
 CA ELAP Certification No. 2670
 CA ELAP Certification No. 2775

Page 3 of 8

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810

1 and ENVIRONMENTAL AGRICULTURAL Analytical Chemists

July 24, 2015 Dee Jaspar & Associates Lab ID Customer : VI 1542902 : 4-16320

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals								
Boron	200.7		мѕ	mg/L	4.000	101 %	75-125	
		(SP 1508013-001)	MSD	mg/L	4.000	-10.2 %	75-125	435
			MSRPD	mg/L	4000	194%	≤20.0	435
	200.7	07/20/15:210661AC	CCV	ppm	5.000	94.6 %	90-110	
			CCB	ppm	5 000	-0.0003	0.1	
			ICCB	ppm	5.000	-0.0009	90-110	
Calcium	200.7		MS	mø/ľ.	12.00	101 %	75-125	
		(SP 1508013-001)	MSD	mg/L	12.00	-675 %	<1/4	
			MSRPD	mg/L	4000	194%	≤20.0	435
	200.7	07/20/15:210661AC	CCV	ppm	25.00	101 %	90-110	
			CCB	ppm		0.001	1	
			CCV	ppm	25.00	93.2 %	90-110	
	200.7		ICCB	ppm	800.0	-0.03	1	
Copper	200.7	(SP 1508013-001)	MSD	ug/L	800.0 800.0	103 %	75-125	135
			MSRPD	ug/L	4000	187%	<20.0	435
	200.7	07/20/15:210661AC	CCV	op <u>n</u>	1.000	101 %	90-110	
			CCB	ppm		-0.0003	0.01	
			CCV	ppm	1.000	95.7 %	90-110	
			CCB	ppm		-0.0005	0.01	
Iron	200.7		MS	ug/L	4000	102 %	75-125	
		(SP 1508013-001)	MSD	ug/L	4000	-6,4 %	75-125	435
	200.7	07/20/15/210/(14.0	MSRPD	ug/L	4000	190%	<u>≤20.0</u>	435
	200,7	07/20/15:210001AC	ICCB	ppm ppm	5,000	103 %	90-110	
			CCV	ppn ppm	5.000	98.3 %	90-110	
	1		CCB	ppm		0.0001	0.03	
Magnesium	200.7		MS	mg/L	12.00	96.3 %	75-125	
		(SP 1508013-001)	MSD	mg/L	12.00	-230 %	75-125	435
			MSRPD	mg/L	4000	194%	≤20.0	435
	200.7	07/20/15:210661AC	CCV	ppm	25.00	99.9 %	90-110	
			CCB	ppm	25.00	-0,008		
			CCB	ppin	23.00	-0.01	90-110	
Manganese	200.7		MS	ug/L	800.0	102 %	75-125	
		(SP 1508013-001)	MSD	ug/L	800.0	-6.8 %	75-125	435
			MSRPD	ug/L	4000	190%	≤20.0	435
	200.7	07/20/15:210661AC	CCV	ррш	1.000	102 %	90-110	
			CCB	ppm	1.000	-0.00002	0.01	
	1		CCP	ppm	1.000	98.3 %	90-110	
Potessium	200.7		MS	ppin mg/I	12.00	104.94	75 125	
i Massiulu	200.7	(SP 1508013-001)	MSD	mg/L	12.00	-29.5%	75-125	435
			MSRPD	mg/L	4000	176%	≤20.0	435
	200.7	07/20/15:210661AC	CCV	ppm	25.00	101 %	90-110	
			CCB	ppm		0.33	1	
	1		CCV	ppm	25.00	94.0 %	90-110	
- 11			ICCB	ppm		0,02	1	
Sodium	200.7	(CD 1502012 001)	MS	mg/L	12.00	97.6%	75-125	
		(3P 1508013-001)	MSRPD	mg/L mg/l	4000	-/22 %	<% <20.0	425
	200.7	07/20/15-2106614C	CCV		25.00	100 %	90-110	55
	200.7	0,720,10.210001AO	ССВ	ppm	10.00	0.75	1	
			CCV	ppm	25.00	94.5 %	90-110	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060
 Call
 Control
 C

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291

Page 5 of 8

Lab ID Customer

: VI 1542902 : 4-16320

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Wet Chem									
Nitrate		300.0	07/18/15:210534MCA	CCV CCB CCV	ppm ' ppm ppm	20.00 20.00	96.5 % 0.098 98.2 %	90-110 0.5 90-110	
Sulfate		300.0	07/17/15:208342MCA (VI 1542902-001)	Blank LCS MS MSD MSDPD	mg/L mg/L mg/L mg/L mg/L	50.00 1000 1000 1000	ND 95.4 % 99.4 % 100 % 0.8%	<2.0 90-110 82-124 82-124 <23	
		300.0	07/18/15:210534MCA	CCB CCV CCB CCV	ppm ppm ppm ppm ppm	50.00 50.00	0.06 93.0 % 1.0 95.7 %	2 90-110 2 90-110	
рН		4500-H B 4500HB	(STK1537802-001) 07/23/15:210745JMG	Dup CCV CCV	units units units	8.000 8.000	0.4% 99.9 % 101 %	4.80 95-105 95-105	
Definition ICB CCV CCB Blank LCS MS MSD Dup MSRPD ND <¼ DQO	 Initial Calibration Blank - Analyzed to verify the instrument baseline is within criteria. Continuing Calibration Verification - Analyzed to verify the instrument baseline is within criteria. Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria. Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria. Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples. Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample matrix affects analyte recovery. Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery. Duplicate Sample - A random sample with each batch is prepared and analyzed in duplicate. The relative percent difference is an indication of precision for the preparation and analysis. MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis. Non-detect - Result was below the DQO listed for the analyte. High Sample Background - Spike concentration was less than one forth of the sample concentration. 								
Explanation 435 440	: Sample matrix 1 : Sample nonhom	nay be affecting ogeneity may b	g this analyte. Data was a e affecting this analyte.	iccepted bas Data was ac	ed on the LCS	S or CCV re	covery. or CCV recove	rv.	

Quality Control - Inorganic

July 24, 2015 Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308

Lab ID	: VI 1542902-001
Customer ID	: 4-16320
Sampled On	: July 16, 2015
Sampled By	: Jim Angell
Matrix	: July 17, 2015 : Drinking Water

Description : TW-2 Pump Csd:214' Drl:220' : Long Canyon WC Project

Test Description		Result			Graphical Results Presentation						
Cations	mg/L	Meq/L	% Meq	Lbs/AF	Good	Possible Problem	Moderate Problem	Increasing Problem	Severe Problem		
Calcium	54	2.7	52	150	**						
Magnesium	10	0.82	16	27	**						
Potassium	2	0.051	1	5	**						
Sodium	37	1.6	31	100							
Anions				-							
Carbonate	< 10	0	0	0							
Bicarbonate	160	2.6	58	440	**						
Sulfate	60	1.2	27	160	**						
Chloride	17	0.48	11	46							
Nitrate	8.9	0.14	3	24							
Nitrate Nitrogen	2.0			5							
Fluoride	1.1	0.058	1	3							
Minor Elements											
Boron	0.20			0.54							
Copper	< 0.01			0.00							
Iron	0.73			2.0							
Manganese	0.020			0.054							
Zinc	0.030			0.082	i dan di						
TDS by Summation	350			950							
Other											
pH	7.5			units	e hautsontat						
E. C.	0.546			dS/m							
SAR	1.2										
Crop Suitability											
No Amendments	Fairly		Good								
With Amendments	Good										
Amendments											
Gypsum Requirement	0.09			Tons/AF							
Sulfuric Acid (98%)	9.1		(oz/1000Gal	Or 22 oz/1	.000Gal of	urea Sulfur	ic Acid (15	/49).		
Leaching Requirement	4.1			%							

General Irrigation Suitability Analysis

Good Problem

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

** Used in various calculations; mg/L = Milligrams Per Liter (ppm) meq/L = Milliequivalents Per Liter

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060
 Optimized
 <thOptimized</th>
 <thOptimized</th>
 <thO

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401

Office & Laboratory 9415 W. Goshen Avenue

Visalia, CA 93291

1542902

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

r · P

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

CHAIN OF CUSTODY/WATER ANALYSIS RECORD								
Project: Long Canyon WC								
sampled by: J. ANGR	11							
Analysis Requested: See Attached List (5-day Rush) (Low detection limit for As <2ppb), and Irrigation Suitability (Normal Turn-around) analysis, please call Jim with lab #.								
Sample ID	Date	Time	Number of Containers					
TW-2 Pumped Cased: 24 Drilled: 220	7/16/15	11:15A	4					
TW- Pumped Cased: Drilled:								
TW- Pumped Cased: Drilled:								
COURIER: KerkEX								
RECEIPT NUMBER: 808	2 204	7 64	f84					
RELINQUISHED BY:	7/16/15	DATE/TIME	30pm					
RECEIVED BY: FRAFX		DATE/TIME						
RELINQUISHED BY:	7/17		1					
RECEIVED BY:		DATE/TIME	1					

FGL Environmental Revision Date: 10/09/14

٢

.

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers							
3. Were samples received in a chilled condition?							
Temps:	4	/	/	/.	/	/	/
Surface water (SWTR) bact samples: A sample that should be flagged unless the time since sample colle	has a te action h	emper as bee	ature uj en less :	pon rec than two	iept of >10C o hours.	, whether i	ced or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
7. Were the samples received intact? (i.e. no broken [bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
1. Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrV! verified in lab]	Yes	No	N/A	FG	L		
4. VOAs checked for Headspace?	Yes	No	N/A				
5. Were all analyses within holding times at time of [reciept?	Yes	No					
6. Have rush or project due dates been checked and [accepted?	Yes	No	N/A	,			
Include a copy of the COC for lab delivery. (Bacti. Inorg	ganics a	and Ra	adio)				
Sample Receipt, Login and Verification completed by:			Reviewe Approve	d and N d By	licole Parso	on 🕡 Digital Title: S Date: (ly signed by Nicole Parson Sample Receiving 07/17/2015-11:46:05
Discrepency Documentation:							
Any items above which are "No" or do not meet specifi	cations	(i.e. te	emps) m	nust be	resolved.		
1. Person Contacted:	Ph	one N	lumber:				
Initiated By:	Da	ite:					
Problem:							
Resolution:							
2. Deveen Contexted:	Dh	ono N	lumbor				
2. Person Contacted.	Pi	ione in	iumper.				
Droblem	Da	ue.				,	
Problem.							
Resolution:					(40	16220)	
				Doo	(40	Acces	atao Inc
				Dee .	Jashal g	ASSUCI	ates, Inc.
					VI 1	542902	
				1	MP-07/17	/2015-11:4	46:05

ENVIRONMENTAL AGRICULTURAL Analytical Chemists

July 24, 2015

Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308 Lab ID : Customer :

: VI 1542920 : 4-16320

Page 1 of 9

Laboratory Report

Introduction: This report package contains total of 9 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL
Sample Results	(4 pages) : Results for each sample submitted.
Quality Control	(3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-2 Airlft Csd:260' Dr1:263'	07/17/2015	07/20/2015	VI 1542920-001	GW
TW-2 Airlft Csd:295' Dr1:298'	07/17/2015	07/20/2015	VI 1542920-002	GW

Sampling and Receipt Information: All samples were received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time	
VI 1542920-001	Nitrate	48	79.5 Hours	
VI 1542920-001	pH	15	6310.2 Minutes	
VI 1542920-002	Nitrate	48	77 Hours	
VI 1542920-002	pH	15	6160.2 Minutes	

All samples arrived at 3 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/23/2015:210784 All analysis quality controls are within established criteria
	07/23/2015:208502 All preparation quality controls are within established criteria

	ENVIRONMENTAL AGRICULTU Analytical Chemists	IRAL
July 24, 2015	Lab ID	: VI 1542920-001
	Customer ID	: 4-16320
Dee Jaspar & Associates		
2730 Unicorn Rd. Bldg A	Sampled On	: July 17, 2015-07:30
Bakersfield, CA 93308	Sampled By	: M.H.
	Received On	: July 20, 2015-11:30
	Matrix	: Ground Water
Description :/TW-2 Airlft Project : Long Canyo	Csd:260' Drl:263' n WC	

Sample Result - Inorganic

Constituent	Result	POI	Unite	Note	Note Sample Preparation		Sample Analysis		
Constituent	Result	ТQL	Onts	INOLE	Method	Date/ID	Method	Date/ID	
Metals, Diss ^{P:1}									
Arsenic	ND	2	ug/L		200.8	07/23/15:208515	200,8	07/23/15:210782	
Iron	ND	30	ug/L		200.7	07/23/15:208502	200.7	07/23/15:210784	
Manganese	19.0	0.5	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782	
Wet Chemistry ^{P:1}		,							
Chloride	14	1	mg/L		300.0	07/20/15:208379	300.0	07/20/15:210593	
Specific Conductance	495	1	umhos/cm		2510B	07/21/15:208378	2510B	07/21/15:210583	
Nitrate	4.2	0.5	mg/L		300.0	07/20/15:208379	300.0	07/20/15:210593	
pH	7.4		units		4500-H B	07/21/15:208407	4500HB	07/21/15:210605	
Solids, Total Dissolved (TDS)	320	20	mg/L		2540CE	07/21/15:208397	2540C	07/22/15:210646	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A \$Surrogate. * PQL adjusted for dilution.

Corporate Offices & LaboratoryOffice & LaboratoryOffice & LaboratoryOffice & LaboratoryOffice & LaboratoryOffice & Laboratory653 Corporation Street2500 Stagecoach Road563 E. Lindo Avenue3442 Empresa Drive, Suite D9415 W. Goshen AvenueSanta Paula, CA 93060Stockton, CA 95215Chico, CA 95926San Luis Obispo, CA 93401Visalia, CA 93291TEL: (805)392-2000TEL: (209)942-0182TEL: (530)343-5818TEL: (805)783-2940TEL: (559)734-9473Env FAX: (805)525-4172 / Ag FAX: (805)392-2063FAX: (209)942-0423FAX: (530)343-3807FAX: (805)783-2912FAX: (559)734-8435CA ELAP Certification No. 1573CA ELAP Certification No. 2670CA ELAP Certification No. 2775CA ELAP Certification No. 2810

Page 3 of 9

ENVIRONMENTAL AGRICULTURAL Analytical Chemists									
July 24, 2015	Lab ID : VI 1542920-002 Customer ID : 4-16320								
Dee Jaspar & Associates									
2730 Unicorn Rd. Bldg A	Sampled On : July 17, 2015-10:00								
Bakersfield, CA 93308	Sampled By : M.H.								
	Received On : July 20, 2015-11:30								
	Matrix : Ground Water								
Description : TW-2 Airlft C	sd:295' Drl:298'								
Project : Long Canyon	WC								
	Sample Result - Inorganic								

Constituent	Regult	νΩι	Unite	Note	Sample	Preparation	Sample Analysis		
Constituent	Result	IQL	Omts	Note	Method	Date/ID	Method	Date/ID	
Metals, Diss ^{P:1}									
Arsenic	ND	2	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782	
Iron	ND	30	ug/L		200.7	07/23/15:208502	200.7	07/23/15:210784	
Manganese	55.9	0.5	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782	
Wet Chemistry ^{P:1}									
Chloride	20	1	mg/L		300.0	07/20/15:208379	300.0	07/20/15:210593	
Specific Conductance	513	1	umhos/cm		2510B	07/21/15:208378	2510B	07/21/15:210583	
Nitrate	5.2	0.5	mg/L		300.0	07/20/15:208379	300.0	07/20/15:210593	
pH	7.6		units		4500-H B	07/21/15:208407	4500HB	07/21/15:210605	
Solids, Total Dissolved (TDS)	330	20	mg/L		2540CE	07/21/15:208397	2540C	07/22/15:210646	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution.

Corporate Offices & LaboratoryOffice & LaboratoryStataro

<u>x</u>fi **ENVIRONMENTAL** AGRICULTURAL

Analytical Chemists

July 24, 2015 Dee Jaspar & Associates Lab ID Customer : VI 1542920 : 4-16320

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals								
Iron	200,7		MS	ug/L	4000	104 %	75-125	
		(VI 1542920-001)	MSD	ug/L	4000	113 %	75-125	
			MSRPD	ug/L	800.0	8.2%	≤20.0	
	200.7	07/23/15:210784AC	CCV	ppm	5.000	103 %	90-110	
			CCN	ppm	5 000	103 %	0.03	
			CCB	ppm mgg	2,000	0.0063	0.03	
Arsenic	200.8		MS	ug/L	5.000	94.8 %	75-125	
		(CH 1575660-001)	MSD	ug/L	5.000	105 %	75-125	
			MSRPD	ug/L	5.000	0.52	≤2	
	200.8	07/23/15:210782AC	CCV	ppb	120,0	93.1 %	90-110	
			CCB	ppb	120.0	0.14	2	
			CCB	ppo ppb	120.0	93.7%	90-110 2	
Manganese	200.8		MS	11g/L	5.000	94.6%	75-125	
	200.0	(CH 1575660-001)	MSD	ug/L	5.000	105 %	75-125	
			MSRPD	ug/L	5.000	9.0%	≤20	
	200.8	07/23/15:210782AC	CCV	ppb	120.0	96.2 %	90-110	
			CCB	ppb		0.090	0.5	
			CCV	ppb	120.0	96.4 %	90-110	
				рро		0.110	0.5	
Wet Chem								
Conductivity	2510B	07/21/15:210583JMG	ICB	umhos/cm		0.07	1	
			CCV	umhos/cm	999.0	100 %	95-105	
E C	25108	07/21/15/208378TMG	Blank	umhos/cm	777.0	99.0 70 ND	95-105	
<i></i>	20100	(VI 1542911-003)	Dun	umhos/cm		0.2%	5	
Solids, Total Dissolved	2540CE	07/21/15:208397CTL	Blank	mg/L		ND	<20	
,			LCS	mg/L	999.1	101 %	90-110	
		(STK1537787-001)	Dup	mg/L		1.6%	5	
Chloride	300.0		MS	mg/L	500.0	97.8 %	85-121	
		(VI 1542765-001)	MSD	mg/L	500.0	97.4 %	85-121	
			Blank	mg/L mg/I	100.0	0.3% ND	<1	
			LCS	me/L	25.00	93.6%	90-110	
			MS	mg/L	500,0	96.9 %	85-121	
		(VI 1542820-001)	MSD	mg/L	500.0	97.8 %	85-121	
			MSRPD	mg/L	100.0	0.9%	≤19	
	300.0	07/20/15;210593KD		ppm	25.00	92.5 %	90-110	
			CCB	ppm		0.02		
			ccv	PPM	25.00	0.0 %	90-110	
			CCV	ppm	25.00	94.2 %	90-110	
			ССВ	ppm		0.00	1	
			CCV	PPM	25.00	0.0 %	90-110	
Nitrate	300.0	AVE 1640000 0010	MS	mg/L	400.0	96.5 %	85-119	
		(V11542/65-001)	MSRDD	mg/L mg/I	400.0	90.2%	×3-119 <10	l
			Blank	mg/L	100.0	ND	<0.5	
	1		LCS	mg/L	20.00	92.7 %	90-110	
	1		MS	mg/L	400.0	95.9 %	85-119	
	l	(VI 1542820-001)	MSD	mg/L	400.0	96.9 %	85-119	
			MSRPD	mg/L	100.0	1.0%	≤19	
	300.0	07/20/15:210593KD		ppm nom	20.00	91.8%	90-110	ļ
11	1	1	1.00	I PPin	L	0.000	U.J	1

Page 7 of 9

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (805)942-0423 CA ELAP Certification No. 1573 CA ELAP Certification

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473
 FAX:
 (209)442-0423
 FAX:
 (530)343-3807
 FAX:
 (605)783-2912
 FAX:
 (559)734-8435

 CA ELAP Certification No.
 1563
 CA ELAP Certification No.
 2870
 CA ELAP Certification No.
 2775
 CA ELAP Certification No.
 2810

July 24, 2015 Dee Jaspar & Associates

Lab ID Customer : VI 1542920 : 4-16320

Constituent Method Date/ID QC Data DQO Туре Units Conc. Note Radio Alpha 900.0 07/23/15:210736caa CCV 8895 41.1 % 37 - 45 cpm ССВ cpm 0.0800 0.18 CCV 900.0 07/23/15:210739caa 8895 40.5 % 38 - 46 cpm CCB 0.100 0.14 cpm Gross Alpha 900.0 07/21/15:208361elc 0.04 Blank pCi/L 3 LCS pCi/L 180.6 94.3 % 75-125 pCi/L 180,6 MS 132 % 60-140 (SP 1507679-001) MSD 180.6 124 % 60-140 pCi/L MSRPD pCi/L 180.6 6.2% ≤30 Definition CCV CCB : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria. : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria. Blank ; Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples. LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS matrix affects analyte recovery. : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD are an indication of how that sample matrix affects analyte recovery. : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD and analysis. DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Quality Control - Radio
1542904 5-JM BASH

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

CHAIN OF COSTODI/WATER ANALYSIS RECORD							
Project: Long Canyon WC							
Sampled by: <u>M Hooker</u>							
Analysis Requested: See Attached detection limit for As ≤2ppb, pl	lease	t (5-day call J:	y Rush) (1 im with la	Low ab #.			
Sample ID		Date	Time	Number of Containers			
TW-f Airlift Cased: 170 Drilled: 173	- 5	115/15	2:20pm	Ц			
TW-đ Airlift Cased: Drilled:	-						
TW-3 Airlift Cased: Drilled:	TW-\$ Airlift Cased: Drilled:						
COURIER: Fat EX							
RECEIPT NUMBER: $$	<u>20</u>	47	648	<u> </u>			
RELINQUISHED BY:		-1.1.	DATE/TIME				
PECETUERIERY:		$\frac{7/16/15}{100} = 830a$					
	7	<u> 6 5</u>	5 8:3	OAM			
RELINQUISHED BY:	7	116/19		, PM			
RECEIVED BY: DATE/TIME							
FOREL	-1	17	(100)				

FGL ENVIRONMENTAL 853 Corporation Street Santa Paula, CA 93061 805-392-2000

ANATH AN ANAMADA (WAMAD ANATHATA DEGADD

hush

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

WATER ANALYSIS REQUEST

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

• -1

ĥ

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

Project:	Long Canyon WC
NOTE: Please fil alpha activity, a gross alpha.	ter with 0.45 micron filter for metals and and acidify for metals. Non-Potable water for
	Fe 🔀 (Dissolved)
NO3 X	Mn (Dissolved)
Electrical Conductivity	As (Dissolved)
рн 🔀	Gross Alpha 📉
Total Dissolved Solids (@ 180°) _	Note: only analyze for U if alpha activity is > MCL of alpha activity
Chloride	

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers							
 Were samples received in a chilled condition? Temps: 	4	1	/	/	/	/	
Surface water (SWTR) bact samples: A sample the should be flagged unless the time since sample c	nat has a t ollection h	emper as bee	ature up en less t	oon recier han two h	ot of >10C, nours.	whether ic	ced or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
 Were the samples received intact? (i.e. no broker bottles, leaks, etc.) 	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
 Were all requested analyses understood and acceptable? 	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lat	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?	Yes	No	N/A	7			
5. Were all analyses within holding times at time of reciept?	Yes	No	<u> </u>				
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A				
Include a copy of the COC for lab delivery (Bacti In	organics a	and Ra	(oihe				
Sample Receipt, Login and Verification completed b)V:		Reviewed	and	- I- D	Digital	y signed by Nicole Parson
			Approve	d By	ole Parson	Date: 0	ample Receiving 17/17/2015-11:46:35
Discrepency Documentation:		<i>.</i> .					
Any items above which are "No" or do not meet spe	cifications	(I.e. te	emps) m	ust be re-	solved.		
1. Person Contacted:	Pr	ione N	lumber:				
Initiated By:	Da	ate:					
Problem:							
Resolution:							
2. Person Contacted:	Pr	none N	lumber:		www.co.co.co.co.titi.y-		
Initiated By:	Da	ate:					
Problem:							
Resolution:					(401	6320)	
				Dee Ja	aspar & /	Associa	ates, Inc.
					VI 15	42904	,
				NN	/IP-07/17/2	2015-11:4	46:35

July 24, 2015

Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308

Lab ID : VI 1542903 : 4-16320 Customer

AGRICULTURAL

Laboratory Report

Analytical Chemists

Introduction: This report package contains total of 7 pages divided into 3 sections:

ENVIRONMENTAI

Case Narrative	(2 pages) : An overview of the work performed at FGL
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	DateDateSampledReceived		FGL Lab ID #	Matrix
TW-2 Airlift Csd:214' Drl:220'	07/16/2015	07/17/2015	VI 1542903-001	W

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time
VI 1542903-001	pH	15	7675.2 Minutes

All samples arrived at 4 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Ouality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/23/2015:210784 All analysis quality controls are within established criteria
	07/23/2015:208502 All preparation quality controls are within established criteria
200.8	07/23/2015:210782 All analysis quality controls are within established criteria
	07/23/2015:208515 All preparation quality controls are within established criteria

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Page 1 of 7 Office & Laboratory 3442 Empresa Drivé, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435

July 24, 2015	Lab ID	: VI 1542903
Dee Jaspar & Associates	Customer	: 4-16320

Radio QC

900.0	07/22/2015:210738 All analysis quality controls are within established criteria
	07/21/2015:208361 All preparation quality controls are within established criteria

Inorganic - Wet Chemistry QC

2510B	07/21/2015:210583 All analysis quality controls are within established criteria						
	07/21/2015:208378 All preparation quality controls are within established criteria						
2540CE	07/20/2015:208321 All preparation quality controls are within established criteria						
300.0	07/17/2015:210534 All analysis quality controls are within established criteria						
	07/17/2015:208342 All preparation quality controls are within established criteria						
4500-H B	07/21/2015:208407 All preparation quality controls are within established criteria						
4500HB	07/21/2015:210605 All analysis quality controls are within established criteria						

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By David Terz, B.A., M.B.A.

Page 2 of 7

Digitally signed by David Terz, B.A., M.B.A. Title: QA Director Date: 2015-07-24

ENVIRONMENTAL Analytical	AGRICULTURAL I Chemists
July 24, 2015	Lab ID : VI 1542903-001 Customer ID : 4-16320
Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308	Sampled On : July 16, 2015-08:45 Sampled By : Justin Received On : July 17, 2015-11:00 Matrix : Water
Description : TW-2 Airlift Csd:214' Drl:220' Project : Long Canyon WC	

1

Sample Result - Inorganic

Constituent	Regult	POI	Unite	Note	Sample Preparation		Sample Analysis	
Constituent	Result	TQL	Omis	INOLE	Method	Date/ID	Method	Date/ID
Metals, Diss ^{P:1}								
Arsenic	ND	2	ug/L		200.8	07/23/15:208515	200,8	07/23/15:210782
Iron	ND	30	ug/L		200.7	07/23/15:208502	200.7	07/23/15:210784
Manganese	7.7	0.5	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Wet Chemistry ^{P:1}								
Chloride	17	1	mg/L		300.0	07/17/15:208342	300.0	07/17/15:210534
Specific Conductance	538	1	umhos/cm		2510B	07/21/15:208378	2510B	07/21/15:210583
Nitrate	9.1	0.5	mg/L		300.0	07/17/15:208342	300.0	07/17/15:210534
pH	7.4		units		4500-H B	07/21/15:208407	4500HB	07/21/15:210605
Solids, Total Dissolved (TDS)	350	20	mg/L		2540CE	07/20/15:208321	2540C	07/21/15:210578

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A \$Surrogate. * PQL adjusted for dilution.

Corporate Offices & LaboratoryOffice & Laboratory9415 W. Goshen AvenueSanta Paula, CA 93060Stockton, CA 95215Chico, CA 95926San Luis Obispo, CA 93401Visalia, CA 93291Visalia, CA 93291TEL: (805)392-2000TEL: (209)942-0182TEL: (530)343-5818TEL: (805)783-2940TEL: (559)734-9473Env FAX: (805)525-4172 / Ag FAX: (805)392-2063FAX: (209)942-0423FAX: (530)343-3807FAX: (805)763-2912FAX: (559)734-8435CA ELAP Certification No. 1573CA ELAP Certification No. 1563CA ELAP Certification No. 2670CA ELAP Certification No. 2775CA ELAP Certification No. 2810

	ENVIRONMENTAL Analytica	AGRICULTU I Chemists	RAL
July 24, 2015		Lab ID	: VI 1542903-001
		Customer ID	: 4-16320
Dee Jaspar & .	Associates		
2730 Unicorn R	ld. Bldg A	Sampled On	: July 16, 2015-08:45
Bakersfield, CA	x 93308	Sampled By	: Justin
		Received On	: July 17, 2015-11:00
		Matrix	: Water
Description :	TW-2 Airlift Csd:214' Drl:220'		
Project :	Long Canyon WC		
	Sample Res	sult - Radio	

Constituent	Result + Error	MDA	Unite	MCLAT	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Entor	MDV	Onits	NICHAL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}				ſ				
Gross Alpha	13.4 ± 2.37	1.02	pCi/L	15/5	900.0	07/21/15-07:00 2P1508361	900.0	07/22/15-13:00 2A1510738

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

 $\begin{array}{l} MDA = Minimum \ Detectable \ Activity (Calculated at the 95\% \ confidence \ level) = Data utilized \ by DHS to determine matrix interference. \\ MCL / AL = Maximum \ Contamination \ Level \ / \ Action \ Level. \ Alpha's \ Action \ Level \ of 5 \ pCi/L \ is \ based \ on the \ Assigned \ Value \ (AV). \\ AV = Assigned \ Value \ (Gross \ Alpha \ Result + \ (0.84 \ x \ Error)). \ CCR \ Section \ 64442: \ Drinking \ Water \ Compliance \ Note: \ Do \ the \ following \ If \ Gross \ Alpha's \ (AV) \ minus \ Uranium \ exceeds \ 5 \ pCi/L \ run \ Radium \ 226. \end{array}$

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

				Page 4 of 7
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95925	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

t i **ENVIRONMENTAL** AGRICULTURAL Analytical Chemists

July 24, 2015 Dee Jaspar & Associates Lab ID

Customer

: VI 1542903 : 4-16320

Quality Control - Inorganic

Vietals ron 200.7 (V1 1542920-001) MS MSL MSRPD ug/L ug/L ug/L 4000 4000 11.04 % T5-125 T5-125 T5-125 200.7 07/23/15:210784AC CCB ppm 5.000 10.04 % 4000 90-110 200.7 07/23/15:210784AC CCB ppm 5.000 0.0096 0.03 Arsenic 200.8 (CH 1575660-001) MSD ug/L 5.000 10.5 % 75-125 200.8 07/23/15:210782AC CCC ppb 120.0 93.1 % 90-110 200.8 07/23/15:210782AC CCC ppb 120.0 93.1 % 90-110 200.8 07/23/15:210782AC CCB ppb 0.016 2 2 danganese 200.8 07/23/15:210782AC CCV ppb 120.0 95.1 % 90-110 CCB ppb 120.0 96.2 % 90-110 20.0 90.0 % 52.0 danganese CCH 157560-001 MSP ug/L 5.000 10.0 % 53-125 conductivity <th>Constituent</th> <th>Method</th> <th>Date/ID</th> <th>Туре</th> <th>Units</th> <th>Conc.</th> <th>QC Data</th> <th>DQO</th> <th>Note</th>	Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
$ \begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	Metals								
V(1 1542920-001) MSD MSRPD ug/L ug/L 4000 113 % 800.0 75-125 200.7 07/23/15-210784AC CCV ppm 5.000 103 % 90-110 CCB ppm 5.000 103 % 90-110 0.036 0.03 Arsenic 200.8 (CH 1575660-001) MS ug/L 5.000 105 % 75-125 200.8 07/23/15:210782AC CCV ppb 120.0 93.1 % 90-110 CCV ppb 120.0 93.1 % 90-110 2 CCV ppb 120.0 93.1 % 90-110 2 CCV ppb 120.0 93.7 % 90-110 2 CCV ppb 120.0 93.7 % 90-110 2 CCV ppb 120.0 94.6 % 75-125 3 MSRPD ug/L 5.000 14 2 2 2 200.8 07/23/15:210782AC CCV ppb 120.0 96.4 % 75-125	fron	200.7		MS	ug/L	4000	104 %	75-125	
MSRPD ug/L 80.00 8.2% <20.0 200.7 07/23/15.210784AC CV ppm 5.000 103 % 90-110 CCB ppm 5.000 103 % 90-110 0.0096 0.03 Arsenic 200.8 (CH 1575660-001) MS ug/L 5.000 94.8 % 75-125 200.8 07/23/15.210782AC CCV ppb 120.0 93.1 % 90-110 CCB ppb 120.0 93.1 % 90-110 CCB ppb 120.0 93.1 % 90-110 CCB ppb 120.0 93.1 % 90-110 CCB ppb 120.0 93.7 % 90-110 CCB ppb 10.0 93.7 % 90-110 CCB ppb 10.0 95.4 % 90-110 CCB 120.0 94.6 % 75-125 MSRPD ug/L 5.000 90.9 % 520 CCV ppb 120.0 96.4 % 90-110 CCB ppb 10.00 0.5 CCV pp			(VI 1542920-001)	MSD	ug/L	4000	113 %	75-125	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				MSRPD	ug/L	800.0	8.2%	≤20.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		200.7	07/23/15:210784AC	CCV	ррип	5,000	103 %	90-110	
CCV ppm 3.000 103 % 90-110 Arsenic 200.8 (CH 1575660-001) MS ug/L 5.000 94.8 % 75-125 Arsenic (CH 1575660-001) MSD ug/L 5.000 0.052 -52 200.8 07/23/15:210782AC CCV ppb 120.0 93.1 % 90-110 CCB ppb 0.04 2 CCV ppb 120.0 93.7 % 90-110 danganese 200.8 07/23/15:210782AC CCV ppb 120.0 94.6 % 75-125 danganese 200.8 (CH 1575660-001) MSD ug/L 5.000 94.6 % 75-125 CCV ppb 120.0 96.4 % 90-110 0.5 CCV ppb 120.0 96.4 % 90-10 0.5 CCV ppb 120.0 96.4 % 90-10 0.5 CCV ppb 120.0 96.4 % 90-10 0.5 CCV ppb				CCB	ppm		0.0096	0.03	
Arsenic 200.8 CCB ppm 0.0003 0.033 Arsenic 200.8 (CH 1575660-001) MSRD ug/L 5.000 105 % 75-125 200.8 07/23/15:210782AC CCV ppb 120.0 93.1 % 90-110 CCV ppb 120.0 93.1 % 90-110 2 danganese 200.8 07/23/15:210782AC CCV ppb 120.0 94.6 % 75-125 danganese 200.8 07/23/15:210782AC CCV ppb 0.16 2 200.8 07/23/15:210782AC CCV ppb 120.0 96.2 % 90-110 CCB ppb 0.009 0.5 200 0.5 200 200.8 07/23/15:210782AC CCV ppb 120.0 96.2 % 90-110 CCV umhos/cm 0.07 1 0.7 1 0.7 Conductivity 2510B 07/21/15:2083781MG Blank umhos/cm 0.0% 5 0.100 % <td></td> <td></td> <td></td> <td>CCV</td> <td>ppm</td> <td>5.000</td> <td>103 %</td> <td>90-110 - 0.02</td> <td></td>				CCV	ppm	5.000	103 %	90-110 - 0.02	
Masenic 200.8 (CH 1575660-001) (CH 1575660-001) MSD MSD MSD MSRPD ug/L ug/L ug/L 5.000 5.000 0.52 0.52 -22 5.00 200.8 07/23/15:210782AC CCV CCB ppb 120.0 93.1 % 90.110 90.110 danganese 200.8 07/23/15:210782AC CCV Ppb ppb 120.0 93.1 % 93.7 % 90.110 200.8 07/23/15:210782AC CCV Ppb ppb 120.0 96.4 % 90.110 75-125 200.8 07/23/15:210782AC CCV Ppb ppb 120.0 96.4 % 90.100 90.0 % 200.8 07/23/15:210782AC CCV CCV ppb 120.0 96.4 % 90-110 CCB ppb 120.0 96.4 % 90-110 0.05 0.05 Wet Chem CCB ppb 120.0 96.4 % 90-110 0.07 1 Conductivity 2510B 07/21/15:205831MG ICB umhos/cm 0.07 1 CV umhos/cm 999.1 100 % 95-105 5 Solids,	Amonio	200.8		Me	ppm	5.000	0.0003	75 125	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Aiseine	200.8	(CH 1575660-001)	MSD	ug/L ng/I	5.000	105 %	75-125	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(CII 15/5000-001)	MSRPD	$\frac{ug/L}{ug/L}$	5.000	0.52	$\langle \gamma \rangle$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		200.8	07/23/15:210782AC	CCV	nnb	120.0	93.1 %	90-110	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ССВ	ppb	12010	0.14	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				CCV	ppb	120.0	93.7 %	90-110	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				CCB	ppb		0.16	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Manganese	200.8		MS	ug/L	5.000	94.6 %	75-125	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(CH 1575660-001)	MSD	ug/L	5.000	105 %	75-125	
200.8 07/23/15:210782AC CCV CCV ppb ppb 120.0 96.2 % 0.090 90-110 0.090 Wet Chem CCV ppb 120.0 96.2 % 90-110 Conductivity 2510B 07/21/15:210583JMG CCV ppb 0.010 0.5 Solids, Total Dissolved 2510B 07/21/15:208378JMG Blank umhos/cm 999.0 99.1 % 95-105 Solids, Total Dissolved 2540CE 07/20/15:20832ICTL Blank mg/L ND <1				MSRPD	ug/L	5.000	9.0%	≤20	
Wet Chem 0.0390 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.010 0.05 Wet Chem CCB ppb 120.0 96.4 % 90-110 0.5 Conductivity 2510B 07/21/15:210583JMG ICB umhos/cm 999.0 99.1 % 95-105 3.C. 2510B 07/21/15:208378JMG Blank umhos/cm 999.0 100 % 95-105 3.C. 2540CE 07/20/15:208321CTL Blank umhos/cm 0.0% 5 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Blank mg/L 999.1 102 % 90-110 (STK1537799-001) Dup mg/L 500.0 101 % 85-121 Chloride 300.0 (V1 1542903-001) MSD mg/L 500.0 101 % 85-121 (STK1537733-001) MSD mg/L 500.0 100 % 85-121 (STK1537733-001) MSD mg/L 500.0 100 % 85-121 (S		200.8	07/23/15:210782AC	CCV	ppb	120.0	96.2 %	90-110	
Wet Chem CCV ppb 120.0 96,4 % 90-110 0.5 Conductivity 2510B 07/21/15:210583JMG ICB umhos/cm 999.0 99.1 % 95-105 3. C. 2510B 07/21/15:208378JMG ICB umhos/cm 999.0 100 % 95-105 3. C. 2510B 07/21/15:208378JMG Biank umhos/cm 0.07 1 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Biank umhos/cm 0.0% 5 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Biank mg/L ND <20				CCB	ppb	100.0	0.090	0,5	
Wet Chem 2510B 07/21/15:210583JMG ICB umhos/cm 999.0 0.07 1 Conductivity 2510B 07/21/15:210583JMG ICB umhos/cm 999.0 99.1 % 95-105 3. C. 2510B 07/21/15:208378JMG Blank umhos/cm 999.0 100 % 95-105 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Blank umhos/cm ND <1				CCV	ppb	120.0	96.4 %	90-110	
Wet Chem 2510B 07/21/15:210583JMG ICB urmhos/cm 0.07 1 Conductivity 2510B 07/21/15:210583JMG ICB urmhos/cm 999.0 99.1 % 95-105 3. C. 2510B 07/21/15:208378JMG Blank urmhos/cm 0.07 1 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Blank urmhos/cm 0.0% 5 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Blank mg/L MD <1				CCB	ppo		0.110	0.5	
Conductivity 2510B 07/21/15:210583JMG ICB CCV umhos/cm umhos/cm 999.0 99.1 % 999.0 99.1 % 999.0 95-105 3. C. 2510B 07/21/15:208378JMG Blank umhos/cm 999.0 100 % 95-105 3. C. 2510B 07/21/15:208378JMG Blank umhos/cm 0.0% 5 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Blank mg/L 999.1 102 % 90-110 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Blank mg/L 0.0% 5 Chloride 300.0 (STK1537799-001) Dup mg/L 500.0 101 % 85-121 MSRPD mg/L 500.0 101 % 85-121 100.0 0.3% ≤19 Blank mg/L 500.0 100 % 85-121 100.0 0.4% ≤19 (V1 1542903-001) MSP mg/L 500.0 100 % 85-121 (STK1537733-001) MSD mg/L 500.0 90.6%	Wet Chem								
CCV umhos/cm 999.0 99.1 % 95-105 3. C. 2510B 07/21/15;208378JMG Blank umhos/cm 999.0 100 % 95-105 3olids, Total Dissolved 2540CE 07/20/15;208321CTL Blank umhos/cm 0.0% 5 Solids, Total Dissolved 2540CE 07/20/15;208321CTL Blank mg/L 999.1 102 % 90-110 Chloride 300.0 (STK1537799-001) Dup mg/L 500.0 101 % 85-121 MSRPD mg/L 100.0 0.3% ≤19 Blank mg/L 100.0 0.3% ≤19 Blank mg/L 25.00 95.7 % 90-110 MSRPD mg/L 100.0 0.3% ≤19 Blank mg/L 100.0 0.3% ≤19 MSR mg/L 100.0 101 % 85-121 (STK1537733-001) MSD mg/L 500.0 99.6 % 85-121 MSRPD mg/L 100.0 0.4% ≤19 10 <	Conductivity	2510B	07/21/15:210583 JM G	ICB	umhos/cm		0.07	1	
CCV umhos/cm 999.0 100% 95.105 3. C. 2510B $07/21/15:208378JMG$ Blank umhos/cm ND <1				CCV	umhos/cm	999.0	99.1 %	95-105	
3. C. 2510B 07/21/15:2083783MG Blank umhos/cm ND <1 Solids, Total Dissolved 2540CE 07/20/15:208321CTL Blank mg/L ND <20				CCV	umhos/cm	999.0	100 %	95-105	
Solids, Total Dissolved 2540CE 07/20/15:208321CTL Biank LCS mg/L mg/L 999.1 102 % 0.6% 90-110 Chloride 300.0 (STK1537799-001) Dup mg/L 500.0 101 % 85-121 Chloride 300.0 (V1 1542903-001) MS mg/L 500.0 101 % 85-121 MSRPD mg/L 500.0 101 % 85-121 MSRPD mg/L 100.0 0.3% ≤19 Blank mg/L 500.0 101 % 85-121 MSRPD mg/L 100.0 0.3% ≤19 Blank mg/L 25.00 95.7 % 90-110 MS mg/L 500.0 100 % 85-121 (STK1537733-001) MSD mg/L 500.0 100 % 85-121 MSRPD mg/L 100.0 0.4% ≤19 300.0 07/17/15:210534MCA CCB ppm 0.01 1 CCV ppm 0.08 1 CCV ppm 0.08 1 CCV<	E. C.	2510B	07/21/15:208378JMG	Blank	umhos/cm		ND	<1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2540CE	(V11542897-001)	Dup	umnos/cm		0.0%	200	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Solids, Total Dissolved	2540CE	0//20/15:208321011	Blank	mg/L	000.1		<20	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(STK1537799-001)	Dun	mg/L	799.1	0.6%	5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chloride	300.0	(511(15511))-001)	MS	mg/J	500.0	101 %	85-121	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	emorido	300.0	(VI 1542903-001)	MSD	mg/L	500.0	101 %	85-121	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				MSRPD	mg/L	100.0	0.3%	≤19	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Blank	mg/L		ND	<1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				LCS	mg/L	25.00	95.7 %	90-110	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				MS	mg/L	500.0	100 %	85-121	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(STK1537733-001)	MSD	mg/L	500.0	99.6 %	85-121	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		200.0	07/17/17 2105241 504	MSRPD	mg/L	100.0	0.4%	<u></u>	
Nitrate 300.0 $(VI 1542903-001)$ MS mg/L 400.0 99.7% $90-110$ Nitrate 300.0 MS mg/L 400.0 99.1% $85-119$ Nitrate MSD mg/L 400.0 99.7% $85-119$ Note MSD mg/L 100.0 0.5% ≤ 19		300.0	07/17/15:210534MCA	CCB	ppm	25.00	0.01	I 00.110	
Nitrate 300.0 MS mg/L 400.0 99.1% $85-119$ Nitrate 300.0 (VI 1542903-001) MSD mg/L 400.0 99.7% $85-119$ MSRPD mg/L 400.0 99.7% $85-119$ MSRPD mg/L 100.0 0.5% ≤ 19				CCB	ppin ppm	23.00	97.0 %	90-110	
Nitrate 300.0 MS mg/L 400.0 99.1% 85-119 (VI 1542903-001) MSD mg/L 400.0 99.7% 85-119 MSRPD mg/L 100.0 0.5% ≤ 19				lccv	ppm	25.00	97.6%	90-110	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrate	300.0		MS	mg/L	400.0	99.1 %	85-119	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>*</i>		(VI 1542903-001)	MSD	mg/L	400,0	99.7 %	85-119	
		1		MSRPD	mg/L	100.0	0.5%	≤19	
		1		Blank	mg/L		ND	<0.5	
LCS mg/L 20.00 95.4 % 90-110				LCS	mg/L	20.00	95.4 %	90-110	
MS mg/L 400.0 98.4 % 85-119			(07771) 107720 0000	MS	mg/L	400.0	98.4 %	85-119	
(S1K1537733-001) MSD mg/L 400.0 98.0% 85-119			(STK1537733-001)	MSD	mg/L	400.0	98.0%	85-119	
200.0 07/17/15-21.0521/MCA CCP mg/L 100.0 0.3% \$19		200.0	07/17/15-01052/04/04	MSKPD	mg/L	100.0	0.5%	519	
300.0 0//1/15/210534MCA_CCBppm 0.043 0.5		300.0	0//1//15:210534MCA	CCV	ppm ppm	20.00	0.043	0.5	
				ICCB	ppm -	20.00	90.076	0.5	
CCV ppm 20.00 97.3 % 90-110				lccv	ppm	20.00	97.3 %	90-110	
oH 4500-H B (SP 1508021-001) Dup units 0.3% 4.80	pH	4500-H B	(SP 1508021-001)	Dup	units	<u> </u>	0.3%	4.80	

Page 5 of 7

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 FAX: (209)942-0423 CA 51 AD Codification N

Office & Laboratory 563 E. Lindo Avenue

Office & Laboratory 3442 Empresa Drive, Suite D

Office & Laboratory 9415 W. Goshen Avenue
 Zstor stage construction
 Stork (CA 95215
 Chico, CA 95926
 San Luis Objapo, CA 93401
 Visalia, CA 93291

 TEL: (209)942-0182
 TEL: (530)343-5818
 TEL: (605)783-2940
 TEL: (559)734-9473

 FAX: (209)942-0423
 FAX: (530)343-3807
 FAX: (805)783-2912
 FAX: (559)734-8435

 CA ELAP Certification No. 1563
 CA ELAP Certification No. 2670
 CA ELAP Certification No. 2775
 CA ELAP Certification No. 2810

Lab ID Customer : VI 1542903 : 4-16320

Quality Control - Inorganic

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Wet Chem									
рН		4500HB	07/21/15:210605JMG	CCV CCV	units units	8.000 8.000	101 % 101 %	95-105 95-105	
Definition									
ICB	: Initial Calibratio	n Blank - Analy	zed to verify the instru	ment baselir	e is within cr	iteria.			
CCV	: Continuing Calil	bration Verifica	tion - Analyzed to verif	y the instruc	nent calibratio	on is within (criteria.		
CCB	: Continuing Cali	bration Blank -	Analyzed to verify the i	nstrument b	aseline is with	un criteria.			
Blank	: Method Blank -	Prepared to ver	ify that the preparation j	process is no	ot contributing	, contami n at	ion to the sam	ples.	
LCS	: Laboratory Cont	rol Standard/Sa	mple - Prepared to verif	fy that the p	reparation pro	cess is not a	ffecting analyt	e recovery.	
MS	: Matrix Spikes - matrix affects and	A random samp lyte recovery.	le is spiked with a know	vn amount o	f analyte. The	recoveries	are an indicatio	on of how the	at sample
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery.					recoveries			
Dup	: Duplicate Sample - A random sample with each batch is prepared and analyzed in duplicate. The relative percent difference is an indication of precision for the preparation and analysis.					nce is an			
MSRPD	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.					eparation			
ND	: Non-detect - Res	ult was below t	he DQO listed for the a	nalyte.					
DQO	: Data Quality Ob	jective - This is	the criteria against whi-	ch the quali	y control data	is compare	1.		

DQO

Lab ID Customer : VI 1542903 : 4-16320

OC Data D00 Constituent Method Date/ID Туре Units Conc. Note Radio Alpha 40.6 % 39 - 48 900.0 07/22/15:210738caa CCV 8895 cpm CCB 0.10 0.2 epm 900.0 07/21/15:208361elc 0.04 Gross Alpha Blank pCi/L 3 pCi/L LCS 180.6 94.3 % 75-125 MS pCi/L 180.6 132 % 60-140 (SP 1507679-001) MSD pCi/L 180.6 124 % 60-140 MSRPD pCi/L 180.6 6.2% ≤30 Definition . CCV : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria. CCB : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria. : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples. Blank LCS : Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample MS matrix affects analyte recovery. : Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries MSD are an indication of how that sample matrix affects analyte recovery. : MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation MSRPD and analysis.

: Data Quality Objective - This is the criteria against which the quality control data is compared.

Quality Control - Radio

FGL ENVIRONMENTAL 853 Corporation Street Santa Paula, CA 93061 RL

805-392-2000

1542913

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

5

f

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

CHAIN OF CUSTODY/WATER ANALYSIS RECORD					
Project: Long Canyon W	с				
sampled by: Justin					
Analysis Requested: See Attached List (5-day Rush) (Low detection limit for As ≤2ppb, please call Jim with lab #.					
Sample ID	Date	Time	Number of Containers		
TW-2.Airlift Cased: 244 Drilled: 22V	7/16/19	B:45A	4		
TW- Airlift Cased: Drilled:					
TW- Airlift Cased: Drilled:					
COURIER: Fell EX					
RECEIPT NUMBER:	0822	347 6	484		
RELINQUISHED BY?	7/16/1	DATE/TIME	;30pm		
RECEIVED BY	•	DATE/TIME			
RELINQUISHED BY:		DATE/TIME	2		
RECEIVED BY	1		D		

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

WATER ANALYSIS REQUEST

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

7

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

Project: Long	Canyon WC
NOTE: Please filter with alpha activity, and acidi gross alpha.	0.45 micron filter for metals and fy for metals. Non-Potable water for
**************************************	Fe X (Dissolved)
NO3 X	Mn X (Dissolved)
Electrical Conductivity	As X (Dissolved)
рн на	Gross Alpha 🔀
Total Dissolved Solids (@ 180°) X Chloride	Note: only analyze for U if alpha activity is > MCL of alpha activity

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:								
1. Number of ice chests/packages received:	1							
2. Shipper tracking numbers								
 Were samples received in a chilled condition? Temps: 	4	1	/	/	/	/	/	/
4. Surface water (SWTR) bact samples: A sample that should be flagged unless the time since sample colling to the sample colling to	at has a te	emper as bee	ature u en less	pon re than tv	ciept of vo hour	[*] >10C, v ·s.	whether i	ced or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A	L .				
6. Verify sample date, time, sampler	Yes	No	N/A					
7. Were the samples received intact? (i.e. no broken bottles, leaks, etc.)	Yes	No						
8. Were sample custody seals intact?	Yes	No	N/A					
Sample Verification, Labeling and Distribution:								
 Were all requested analyses understood and acceptable? 	Yes	No						
2. Did bottle labels correspond with the client's ID's?	Yes	No						
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab]	Yes	No	N/A	FC	9L			
4. VOAs checked for Headspace?	Yes	No	N/A					
5. Were all analyses within holding times at time of reciept?	Yes	No						
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A	L.				
Include a copy of the COC for lab delivery. (Bacti. Ino	rganics a	and Ra	adio)					
Sample Receipt, Login and Verification completed by	:		Approve	d and ed By	Nicole	Parsor	Title: S Date: 0	ample Receiving 7/17/2015-11:46:21
Discrepency Documentation:								
Any items above which are "No" or do not meet speci	fications	(i.e. te	emps) n	nust be	e resolv	ed.		
1. Person Contacted:	Ph	ione N	lumber:					
Initiated By:	Da	ite:						
Problem:								
Resolution:								
2. Person Contacted:	Ph	ione N	lumber:					
Initiated By:	Da	ate:						
Problem:								
Resolution:						(401	6320)	
				Dee	Jasr	ar & /	Associ	ates, Inc
					10200	11 15	12000	
						VI IJ 07/17/2	76303 0015-110	16.21
						0111112	.010-11.4	+0.41

July 24, 2015

Dee Jaspar & Associates 2730 Unicom Rd. Bldg A Bakersfield, CA 93308 Lab ID : VI 1542902 Customer : 4-16320

Laboratory Report

Introduction: This report package contains total of 8 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(2 pages) : Results for each sample submitted.
Quality Control	(4 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-2 Pump Csd:214' Drl:220'	07/16/2015	07/17/2015	VI 1542902-001	DW

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time	
VI 1542902-001	pH	15	10255.2 Minutes	

All samples arrived at 4 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/20/2015:210661 All analysis quality controls are within established criteria.
	 07/20/2015:208328 All preparation quality controls are within established criteria, except: The following note applies to Boron, Copper, Iron, Potassium, Magnesium, Manganese, Zinc: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery. The following note applies to Boron, Calcium, Copper, Iron, Potassium, Magnesium, Manganese, Sodium, Zinc: 435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

Page 1 of 8

July 24, 2015	Lab ID	: VI 1542902
Dee Jaspar & Associates	Customer	: 4-16320

Inorganic - Metals QC

200.8	07/23/2015:210782 All analysis quality controls are within established criteria.
	07/23/2015:208515 All preparation quality controls are within established criteria.

Radio QC

900.0	07/22/2015:210738 All analysis quality controls are within established criteria.
	07/21/2015:208361 All preparation quality controls are within established criteria.

Inorganic - Wet Chemistry QC

2320B	07/20/2015:210585 All analysis quality controls are within established criteria.
	07/20/2015:208311 All preparation quality controls are within established criteria.
2510B	07/21/2015:210583 All analysis quality controls are within established criteria.
	07/21/2015:208378 All preparation quality controls are within established criteria.
2540CE	 07/22/2015:208457 All preparation quality controls are within established criteria, except: The following note applies to Solids, Total Dissolved: 440 Sample nonhomogeneity may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
300.0	07/18/2015:210534 All analysis quality controls are within established criteria.
	07/17/2015:208342 All preparation quality controls are within established criteria.
4500-H B	07/23/2015:208501 All preparation quality controls are within established criteria.
4500HB	07/23/2015:210745 All analysis quality controls are within established criteria.

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By David Terz, B.A., M.B.A.

Digitally signed by David Terz, B.A., M.B.A. Title: QA Director Date: 2015-07-24

Page 2 of 8

	ENVIRONMENTAL Analytica	AGRICULTU	RAL
July 24, 2015		Lab ID Customer ID	: VI 1542902-001 : 4-16320
Dee Jaspar &	Associates		
2730 Unicom	Rd. Bldg A	Sampled On	: July 16, 2015-11:15
Bakersfield, C	A 93308	Sampled By	: Jim Angell
		Received On	: July 17, 2015-11:00
		Matrix	: Drinking Water
Description	:/TW-2 Pump Csd:214' Drl:220' /		-
Project	: Long Canyon WC		
	Sample Resul	t - Inorganic	

Constituent	Decult	POI	Linita	MCL/AL	Sample	Preparation	Sample Analysis		
Constituent	Result	rQL	Units	WICL/AL	Method Date/ID		Method	Date/ID	
Irrigation Suit ^{P:1}									
Total Hardness as CaCO3	176		mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Calcium	54	1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Magnesium	10	1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Potassium	2	1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Sodium	37	1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Total Cations	5.2		meq/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Boron	0.2	0.1	mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Copper	ND	10	ug/L	1000 ²	200.7	07/20/15:208328	200.7	07/20/15:210661	
Iron	730	30	ug/L	300 ²	200.7	07/20/15:208328	200.7	07/20/15:210661	
Manganese	20	10	ug/L	50 ²	200.7	07/20/15:208328	200.7	07/20/15:210661	
Zinc	30	20	ug/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Gypsum Requirement	0.09		Tons/AF		200.7	07/20/15:208328	200.7	07/20/15:210661	
SAR	1.2				200.7	07/20/15:208328	200.7	07/20/15:210661	
Total Alkalinity	130	10	mg/L		2320B	07/20/15:208311	2320B	07/20/15:210585	
Hydroxide	ND	10	mg/L		2320B	07/20/15:208311	2320B	07/20/15:210585	
Carbonate	ND	10	mg/L		2320B	07/20/15:208311	2320B	07/20/15:210585	
Bicarbonate	160	10	mg/L		2320B	07/20/15:208311	2320B	07/20/15:210585	
Sulfate	60	2	mg/L	500 ²	300.0	07/17/15:208342	300.0	07/18/15:210534	
Chloride	17	1	mg/L	500 ²	300.0	07/17/15:208342	300.0	07/18/15:210534	
Nitrate	8.9	0.5	mg/L	45	300.0	07/17/15:208342	300.0	07/18/15:210534	
Nitrate Nitrogen	2.0	0.1	mg/L	10	300.0	07/17/15:208342	300.0	07/18/15:210534	
Fluoride	1.1	0.1	mg/L	2	300.0	07/17/15:208342	300.0	07/18/15:210534	
Total Anions	4.6		meq/L		2320B	07/20/15:208311	2320B	07/20/15:210585	
pH	7.5		units		4500-H B	07/23/15:208501	4500HB	07/23/15:210745	
E. C.	546	1	umhos/cm	1600^{2}	2510B	07/21/15:208378	2510B	07/21/15:210583	
TDS by Summation	350		mg/L		200.7	07/20/15:208328	200.7	07/20/15:210661	
Metals, Diss ^{P:1}									
Arsenic	ND	2	ug/L	10	200.8	07/23/15:208515	200.8	07/23/15:210782	
Wet Chemistry ^{P:1}									
Solids, Total Dissolved (TDS)	360	20	mg/L	1000 ²	2540CE	07/22/15:208457	2540C	07/23/15:210719	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

Page 3 of 8Corporate Offices & LaboratoryOffice & LaboratoryOffice & LaboratoryOffice & LaboratoryOffice & Laboratory853 Corporation Street2500 Stagecoach Road563 E. Lindo Avenue3442 Empresa Drive, Suite D9415 W. Goshen AvenueSanta Paula, CA 93060Stockton, CA 95215Chico, CA 95926San Luis Obispo, CA 93401Visalia, CA 93291TEL: (805)392-2000TEL: (209)942-0182TEL: (530)343-5818TEL: (805)783-2940TEL: (559)734-9473Env FAX: (805)525-4172 / Ag FAX: (805)392-2063FAX: (209)942-0423FAX: (530)343-3807FAX: (805)783-2912FAX: (559)734-8435CA ELAP Certification No. 1573CA ELAP Certification No. 2870CA ELAP Certification No. 2775CA ELAP Certification No. 2775CA ELAP Certification No. 2870

	ENVIRONMENTAL AGRICULTU Analytical Chemists	RAL	
July 24, 2015	Lab ID	: VI 1542902-001	
	Customer ID	: 4-16320	
Dee Jaspar & Associates			
2730 Unicom Rd. Bldg A	Sampled On	: July 16, 2015-11:15	
Bakersfield, CA 93308	Sampled By	: Jim Angell	
	Received On	: July 17, 2015-11:00	
	Matrix	: Drinking Water	
Description : TW-2 Pump	Csd:214' Dr1:220'	C	
Project : Long Canyor	l WC		

Sample Result - Radio

Constituent	Regult + Error MDA		IInite	MOLAT	Sample	Preparation	Sample Analysis	
Constituent	Result - Entor		Ощіз	MCDAL	Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	15.1 ± 2.51	/ 1.02	pCi/L		900.0	07/21/15-07:00 2P1508361	900.0	07/22/15-11:00 2A1510738

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442; Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

				Page 4 of 8
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0162	TEL: (530)343-5618	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2610

action **ENVIRONMENTAL** AGRICULTURAL Analytical Chemists

July 24, 2015 **Dee Jaspar & Associates**

Lab ID Customer : VI 1542902 : 4-16320

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals								
Boron	200.7		MS	mg/L	4.000	101 %	75-125	
		(SP 1508013-001)	MSD	mg/L	4.000	-10.2 %	75-125	435
			MSRPD	mg/L	4000	194%	≤20.0	435
	200,7	07/20/15:210661AC	CCV	ppm	5,000	94.6 %	90-110	
			CCB	ppm		-0.0003	0.1	
				ppm	5.000	90.7%	90-110	
Calainm	200.7		Me	ppin mg/I	12.00	-0.0009	75 125	
Catchulli	200,7	(SP 1508013-001)	MSD	mg/L	12.00	-675 %	<1/4	
			MSRPD	mg/L	4000	194%	<20.0	435
	200.7	07/20/15:210661AC	CCV	ppm	25.00	101 %	90-110	
			ССВ	ppm		0.001	1	
			CCV	ppm	25.00	93.2 %	90-110	
			CCB	ppm		-0.03	1	
Copper	200.7		MS	ug/L	800.0	103 %	75-125	
		(SP 1508013-001)	MSD	ug/L	800.0	3.4 %	75-125	435
	200.7	07/20/15-210/61 4.0	MSRPD	ug/L	4000	18/%	520.0	435
	200.7	07/20/15;210001AC	CCR	ppm	1.000	101 %	90-110	
			CCV	ppm npm	1.000	95.7 %	90-110	
			ССВ	ppm		-0.0005	0.01	
Iron	200.7		MS	ug/L	4000	102 %	75-125	
		(SP 1508013-001)	MSD	ug/L	4000	-6.4 %	75-125	435
			MSRPD	ug/L	4000	190%	≤20.0	435
	200.7	07/20/15:210661AC	CCV	ppm	5.000	103 %	90-110	
			CCB	ppm		0,00007	0.03	
				ppm	5.000	98.3 %	90-110	
	200.7		LCCB	ppm ma/T	12.00	0.0001	0.03	
Magnestum	200.7	(SP 1508012-001)	MSD	mg/L mg/I	12.00	220 %	75-125	125
		(51 1508015-001)	MSRPD	mg/L	4000	194%	<20.0	435
	200.7	07/20/15:210661AC	CCV	maa	25.00	99.9 %	90-110	
			ССВ	ppm		-0.008	1	
			CCV	ppm	25.00	93.2 %	90-110	
			CCB	ppm		-0.01	1	
Manganese	200.7		MS	ug/L	800.0	102 %	75-125	
		(SP 1508013-001)	MSD	ug/L	800.0	-6.8 %	75-125	435
	200 7	07/00/15-01066140	MSRPD	ug/L	4000	190%	<u>\$20.0</u>	435
	200.7	0//20/15:210001AC	CCB	ppm	1.000	102 %	90-110	
			CCV	i ppm	1.000	98.3 %	90-110	
			ССВ	andd	1.000	-0.00001	0.01	
Potassium	200.7		MS	mg/L	12.00	104 %	75-125	
		(SP 1508013-001)	MSD	mg/L	12.00	-29.5 %	75-125	435
			MSRPD	mg/L	4000	176%	≤20.0	435
	200.7	07/20/15:210661AC	CCV	ppm	25.00	101 %	90-110	
			CCB	ppm		0.33		
				ppm	25.00	94.0 %	90-110	
Codium	200.7		Me	ppm mg/I	12.00	0.02	75 125	ļ
Bouluin	200.7	(SP 1508013-001)	MSD	mg/L mg/I	12.00	91.0%	/3-123	
	1	(100-6100011 10)	MSRPD	mg/L	4000	-122 %	<20.0	435
	280.7	07/20/15:210661AC	CCV	DDDm	25.00	100 %	90-110	
	200.7		CCB	ppm		0.75	1	
			CCV	ppm	25.00	94.5 %	90-110	

Page 5 of 8

 Corporate Offices & Laboratory
 Office & Laboratory
 9415 W. Goshen Avenue

 Santa Paula, CA 93060
 Stockton, CA 95215
 Chico, CA 95926
 San Luis Obispo, CA 93401
 Visalia, CA 93291
 Visalia, CA 93291
 TEL: (805)392-2000
 TEL: (209)942-0182
 TEL: (530)343-5818
 TEL: (805)783-2940
 TEL: (559)734-9473

 Env FAX: (805)525-4172 / Ag FAX; (605)392-2063
 FAX: (209)942-0423
 FAX: (530)343-3807
 FAX: (605)783-2912
 FAX: (559)734-8435

 CA ELAP Certification No. 1573
 CA ELAP Certification No. 1563
 CA ELAP Certification No. 2670
 CA ELAP Certification No. 2775
 CA ELAP Certification No. 2810

Lab ID Customer

: VI 1542902 : 4-16320

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals			1					
Sodium	200.7	07/20/15:210661AC	ССВ	ppm		-0.0006	1	
Zinc	200.7		MS	ug/L	800.0	98.6 %	75-125	
		(SP 1508013-001)	MSD	ug/L	800.0	21.8 %	75-125	435
			MSRPD	ug/L	4000	125%	≤20.0	435
	200.7	07/20/15:210661AC	CCV	ppm	1.000	103 %	90-110	
			CCB	ppm		0.0004	0.02	
			ICCV	ррт	1.000	100 %	90-110	
<u> </u>			CCB	ppm		0.0001	0.02	
Arsenic	200.8		MS	ug/L	5.000	94.8 %	75-125	
		(CH 1575660-001)	MSD	ug/L	5.000	105 %	75-125	
	200.9	07/22/15/210792 4 C	MSRPD	ug/L	3,000	0.52	54	
	200.8	0//23/15:210/82AC		ppb	120.0	93.1%	90-110	
			CCV	ppo p=b	120.0	07.794	2	
		1	CCR	ppo	120,0	93.770	30-110	
Wet Chem				<u></u>		0.10	<u></u>	
Alkalinity (as CaCO3)	2320B	(VI 1542900-004)	Dun	ma/I.		35	10	
	2320B	07/20/15:210585AMB	CCV	mg/L	234.9	95.6%	90-110	
	23202	on Lon Ion 100001 Like	ccv	mg/L	234.9	89.8 %	90-110	
Bicarbonate	2320B	(VI1542900-004)	Dun	mg/1.		4.4	10	
Carbonate	2320B	(VI 1542900-004)	Dun	mg/L		0.0	10	
Hydroxide	2320B	(VI 1542900-004)	Dup	mg/L		0.0	10	
Conductivity	2510B	07/21/15-210583TMG		umbos/am		0.07	10	
Conductivity	20100	0//2//15.2105655040	CCV	umbos/cm	0000	0.07	95,105	
	1		CCV	umhos/cm	999.0	100 %	95-105	
E. C.	2510B	07/21/15·208378TMG	Blank	umbos/cm	////		<1	
	10105	(VI 1542897-001)	Dup	umhos/cm		0.0%	5	
Solids, Total Dissolved	2540CE	07/22/15:208457CTL	Blank	mg/L		ND	<20	
			LCS	mg/L	999.1	100 %	90-110	
		(CC 1582537-001)	Dup	mg/L		13.2%	5	440
Chloride	300.0	07/17/15:208342MCA	Blank	mg/L		ND	<1	
			LCS	mg/L	25.00	98.0 %	90-110	
			MS	mg/L	500.0	103 %	85-121	
		(V11542902-001)	MSD	mg/L	500.0	103 %	85-121	
		05110115 01050 0 401	MSRPD	mg/L	100.0	0.8%	≤19	
	300.0	07/18/15:210534MCA	CCB	ppm	25.00	0.004		
			CCP	ppm	25.00	90.7%	90-110	
			CCV	ppm	25.00	0.00	90.110	
Fluoride	300.0	07/17/15-2082420404	Blank	руш тел	23,00	NT1	<0.1	
riuonue	500.0	01/1//15.200342IVICA	LCS	mg/L	2 500	102.94	90.110	
			MS	mg/L	50.00	104 %	87-120	
		(VI 1542902-001)	MSD	mg/L	50.00	106 %	87-120	
			MSRPD	mg/L	100.0	1.3%	<16	
	300.0	07/18/15:210534MCA	CCB	ppm		0.000	0.1	
			ccv	ppm	2,500	100 %	90-110	
			ССВ	ppm		0.030	0,1	1
			CCV	ppm	2.500	103 %	90-110	
Nitrate	300.0	07/17/15:208342MCA	Blank	mg/L		ND	<0.5	
			LCS	mg/L	20.00	97.7 %	90-110	Ì
			MS	mg/L	400.0	101 %	85-119	
		(VI 1542902-001)	MSD	mg/L	400.0	102 %	85-119	
			MSRPD	mg/L	100.0	0.6%	≤19	
	300.0	07/18/15:210534MCA	CCB	ppm		0.000	0.5	1

Page 6 of 8

Lab ID Customer

: VI 1542902 : 4-16320

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Wet Chem									
Nitrate		300.0	07/18/15:210534MCA	ccv	ppm	20.00	96.5 %	90-110	
				CCB	ppm		0.098	0.5	
				CCV	ppm	20.00	98.2 %	90-110	
Sulfate		300.0	07/17/15:208342MCA	Blank	mg/L		ND	<2.0	
				LCS	mg/L	50.00	95.4 %	90-110	
				MS	mg/L	1000	99.4 %	82-124	
			(VI 1542902-001)	MSD	mg/L	1000	100 %	82-124	
8				MSRPD	mg/L	100.0	0.8%	≤23	
		300.0	07/18/15:210534MCA	CCB	ppm		0.06	2	
				CCV	ppm	50.00	93.0 %	90-110	
				CCB	ppm		1.0	2	
				CCV	ppm	50.00	95.7 %	90-110	:
pН		4500-H B	(STK1537802-001)	Dup	units		0.4%	4.80	
l.		4500HB	07/23/15:210745JMG	CCV	units	8.000	99.9 %	95-105	
				CCV	units	8.000	101 %	95-105	
Definition									
ICB	: Initial Calibratio	on Blank - Anal	yzed to verify the instru	ment baselin	e is within cri	teria.			
CCV	: Continuing Cali	bration Verifica	tion - Analyzed to verify	y the instrun	nent calibratio	n is within c	riteria.		
CCB	: Continuing Cali	bration Blank -	Analyzed to verify the i	nstrument ba	aseline is with	in criteria.			
Blank	: Method Blank -	Prepared to ver	ify that the preparation p	process is no	t contributing	contaminat	ion to the samp	oles.	
LCS	: Laboratory Con	trol Standard/Sa	ample - Prepared to verif	y that the pr	eparation pro-	cess is not a	ffecting analyte	e recovery.	
MS	: Matrix Spikes -	A random sam	ole is spiked with a know	vn amount o	f analyte. The	recoveries a	are an indicatio	on of how the	it sample
	matrix affects and	alyte recovery.					-		
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries								
	are an indication of how that sample matrix affects analyte recovery.								
Dup	: Duplicate Samp	le - A random s	sample with each batch is	s prepared a	nd analyzed in	i duplicate.	l he relative pe	rcent differe	nce is an
	indication of prec	siston for the pr	eparation and analysis.		1:00				
MSRPD	: MS/MSD Relat	ive Percent Din	erence (RPD) - The WIS	relative per	cent difference	e is an indica	ation of precisi	ion for the p	reparation
NTD	Mon detect. De	cultures below	the DOO listed for the n	nalute					
21/	· High Sample R	aun was delow	ke concentration was les	naryio. Is than one f	orth of the sar	onle concen	tration		
000	· Data Quality Of	iective - This i	s the criteria against whi	ch the cualit	v control data	is compared	1		
Explanation	· Data Quality Of		and critoria against with	on nio quant	,	10 Volinparo			
A15	· Sample matrix •	nav he affectio	this analyte. Data was	accepted bas	ed on the I CS	S or CCV re	overv		
440	· Sample matrix i	nay ue attecting	s uns analyte. Data Was i	Data was an	cented based	on the ICS	or CCV recove	151	
1770	, paratic normon	ogeneny may r	c anothing uns analyte,	Data was au	ochien nasen	ou die ryo i		лy.	

Quality Control - Inorganic

Lab ID Customer

: VI 1542902 : 4-16320

Quality Control - Radio

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	07/22/15:210738caa	CCV CCB	cpm cpm	8895	40.6 % 0.10	39 - 48 0.2	
Gross Alpha		900.0	07/21/15:208361elc	Blank LCS MS	pCi/L pCi/L	180.6	0.04 94.3 %	3 75-125	
			(SP 1507679-001)	MSD MSRPD	pCi/L pCi/L pCi/L	180.6 180.6 180.6	132 % 124 % 6.2%	60-140 60-140 ≤30	
Definition									
CCV	: Continuing Calib	oration Verificat	ion - Analyzed to verif	fy the instru	nent calibratio	on is within	criteria.		
CCB	: Continuing Calib	oration Blank -	Analyzed to verify the	instrument b	aseline is with	un criteria.			
Blank	: Method Blank -	: Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.							
LCS	: Laboratory Cont	: Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery.							
MS	: Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample matrix affects analyte recovery.								
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery.								
MSRPD	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.								
DQO	: Data Quality Obj	ective - This is	the criteria against whi	ich the quali	ty control data	i is compare	d.		

STS ENVIRONMENTAI AGRICULTURAL Analytical Chemists

July 24, 2015 **Dee Jaspar & Associates** 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308

Lab ID : VI 1542902-001 Customer ID : 4-16320 : July 16, 2015 Sampled On Sampled By : Jim Angell Received On : July 17, 2015 : Drinking Water Matrix

Description : TW-2 Pump Csd:214' Drl:220' Project : Long Canyon WC

Test Description		Result				Graphical F	Results Pres	sentation	
Cations	mg/L	Meq/L	% Meq	Lbs/AF	Good	Possible Problem	Moderate Problem	Increasing Problem	Severe Problem
Calcium	54	2.7	52	150	**				
Magnesium	10	0.82	16	27	**				
Potassium	2	0.051	1	5	**				
Sodium	37	1.6	31	100					
Anions									
Carbonate	< 10	0	0	0	14.5P				
Bicarbonate	160	2.6	58	440	**				
Sulfate	60	1.2	27	160	**				
Chloride	17	0.48	11	46					
Nitrate	8.9	0.14	3	24					
Nitrate Nitrogen	2.0			5					
Fluoride	1.1	0.058	1	3					
Minor Elements									
Boron	0.20			0.54					
Copper	< 0.01			0.00					
Iron	0.73			2.0					
Manganese	0.020			0.054					
Zinc	0.030			0.082					
TDS by Summation	350			950					
Other									
pН	7.5			units					
E. C.	0.546			dS/m					
SAR	1.2								
Crop Suitability									
No Amendments	Fairly		Good						
With Amendments	Good								
Amendments									
Gypsum Requirement	0.09			Tons/AF					
Sulfuric Acid (98%)	9.1		(oz/1000Gal	Or 22 oz/1	1000Gal of	urea Sulfur	ric Acid (15	5/49).
Leaching Requirement	4.1			%					

General Irrigation Suitability Analysis

Los Conto Problem Good

Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations. Note:

** Used in various calculations; mg/L = Milligrams Per Liter (ppm) meq/L = Milliequivalents Per Liter

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 1583 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810 July 24, 2015

Dee Jaspar & Associates

Lab ID : VI 1542902-001 Customer ID : 4-16320 Description : TW-2 Pump Csd:214' Drl:220'

Test Description	Rea	sult	Graphi	cal Results Present	ation
Chemical			Slight	Moderate	Severe
Manganese	0.02	mg/L			
Iron	0.73	mg/L		1.202.0010101040210	
TDS by Summation	350	mg/L			
No Amendments					
pH	7.5	units			
Alkalinity (As CaCO3)	130	mg/L	Martin Contraction of the		
Total Hardness	176	mg/L			
With Amendments					
Alkalinity (As CaCO3)	26	mg/L			
Total Hardness	26	mg/L			
pH	5.4 - 6.7	units			

Micro Irrigation System Plugging Hazard

Good Problem A CONTRACTOR OF

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

Water Amendments Application Notes:

The Amendments recommended on the previous pages include:

Gypsum:

This should be applied at least once a year to the irrigated soil surface area. Gypsum can also be applied in smaller quantities in the irrigation water. Apply the smaller (bracketed) amount of gypsum when also applying the recommended amount of Sulfuric Acid and the larger amount when applying only Gypsum.

Sulfuric Acid:

These products should be applied as needed to prevent emitter plugging in micro irrigation systems and/or as a soil amendment to adjust soil pH to improve nutrient availability and to facilitate leaching of salts. Please exercise caution when using this material as excesses may be harmful to the system and/or the plants being irrigated. The reported Acid requirement is intended to remove approximately 80 % of the alkalinity. The final pH should range from 5.4 to 6.7. We recommend a field pH determination to confirm that the pH you designate is being achieved. This application is based upon the use of a 98% Sulfuric Acid product. The application of Urea Sulfuric Acid is based upon the use of a product that contains 15% Urea (1.89 lbs Nitrogen), 49% Sulfuric Acid and has a specific gravity of 1.52 at 68 °F.

Guidelines for the above interpretations are sourced from USDA & U.C. Cooperative Extension Service publications. Please contact us if you have any questions.

FRUIT GROWERS LABORATORY, INC.

Scott Bucy, Scott Bucy, Director of Ag. Services

SB1:DMB

1542902

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

SH

F

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

NUNTUATA DUGADD

Project: Long Canyon WC						
Sampled by: J. ANGR	Sampled by: J. ANGRII					
Analysis Requested: See Attached	List (5-dag	y Rush) (Low			
detection limit for As <2ppb), and (Normal Turn-around) analysis, p	nd Irrigati lease call	on Suitab Jim with	ility lab #.			
Sample ID Date Time Containers						
TW-2 Pumped Cased: 24 Drilled: 220	7/16/15	INISA	4			
TW- Pumped Cased: Drilled:	•					
TW- Pumped Cased: Drilled:						
COURIER: KERKY	· · · · · · · · · · · · · · · · · · ·	-				
RECEIPT NUMBER: 8082	2 204	7 64	<u>484</u>			
RELINQUISHED BY:	7/16/15	DATE/TIME	30 pm			
RECEIVED BY: FROEX	DATE/TIME					
RELINQUISHED BY:	JIT LIOO					
RECEIVED BY:	1	DATE/TIME	E			

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

WATER ANALYSIS REQUEST

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angel1 Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

۰.

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

Project: _	Long Canyon WC
NOTE: Plea alpha activ gross alpha	ase filter with 0.45 micron filter for metals and wity, and acidify for metals. Non-Potable water for A.
NO ₃ X Electrical Conductivity pH X Total Disso	Fe X (Dissolved) Mn X (Dissolved) Ly X As X (Dissolved) Gross Alpha X Note: only analyze for U if
Chloride	alpha activity

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:	
1. Number of ice chests/packages received: 1	
2. Shipper tracking numbers	
3. Were samples received in a chilled condition? Temps: <u>4</u>	
4. Surface water (SWTR) bact samples: A sample that has should be flagged unless the time since sample collection	a temperature upon reciept of >10C, whether iced or not, on has been less than two hours.
5. Do the number of bottles received agree with the COC?	s No N/A
6. Verify sample date, time, sampler Yes	s No N/A
7. Were the samples received intact? (i.e. no broken Yes bottles, leaks, etc.)	s No
8. Were sample custody seals intact? Yes	s No N/A
Sample Verification, Labeling and Distribution:	
1. Were all requested analyses understood and Ye : acceptable?	s No
2. Did bottle labels correspond with the client's ID's? Yes	s No
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab]	s No N/A FGL
4. VOAs checked for Headspace? Yes	s No N/A
5. Were all analyses within holding times at time of reciept?	s No
6. Have rush or project due dates been checked and Yes accepted?	s No N/A
Include a copy of the COC for lab delivery. (Bacti. Inorgania	cs and Radio)
Sample Receipt, Login and Verification completed by:	Reviewed and Nicole Parson Wighted by Muste Parson Title: Sample Receiving Date: 07/17/2015-11:48:05
Discrepency Documentation:	
Any items above which are "No" or do not meet specification	ons (i.e. temps) must be resolved.
1. Person Contacted:	Phone Number:
Initiated By:	Date:
Problem:	
Resolution:	
2 Person Contacted	Phone Number
Initiated By:	Date:
Problem:	
Resolution:	(4016320)
	Dee Jaspar & Associates Inc
	\sim
	VI 4E42002

NMP-07/17/2015-11:46:05

July 24, 2015

Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308 Lab ID Customer

AGRICULTURAL

: VI 1542920 : 4-16320

Laboratory Report

Analytical Chemists

Introduction: This report package contains total of 9 pages divided into 3 sections:

ENVIRONMENTA

Case Narrative	(2 pages) : An overview of the work performed at FGL
Sample Results	(4 pages) : Results for each sample submitted.
Quality Control	(3 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
TW-2 Airlft Csd:260' Drl:263'	07/17/2015	07/20/2015	VI 1542920-001	GW
TW-2 Airlft Csd:295' Drl:298'	07/17/2015	07/20/2015	VI 1542920-002	GW

Sampling and Receipt Information: All samples were received, prepared and analyzed within the method specified holding except those as listed in the table below. The holding time for pH is listed as immediate. Logistically this is very difficult to obtain. FGL policy is to analyze all samples requiring pH on the same day of receipt at the laboratory. If this presents any problem please call.

Lab ID	Analyte/Method	Required Holding Time	Actual Holding Time
VI 1542920-001	Nitrate	48	79.5 Hours
VI 1542920-001	pH	15	6310.2 Minutes
VI 1542920-002	Nitrate	48	77 Hours
VI 1542920-002	pH	15	6160.2 Minutes

All samples arrived at 3 °C. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Inorganic - Metals QC

200.7	07/23/2015:210784 All analysis quality controls are within established criteria
	07/23/2015:208502 All preparation quality controls are within established criteria

Page 1 of 9

July 24, 2015	Lab ID	: VI 1542920
Dee Jaspar & Associates	Customer	: 4-16320

Inorganic - Metals QC

200.8	07/23/2015:210782 All analysis quality controls are within established criteria
	07/23/2015:208515 All preparation quality controls are within established criteria

Radio QC

900.0	07/23/2015:210736 All analysis quality controls are within established criteria
	07/23/2015:210739 All analysis quality controls are within established criteria
	07/21/2015:208361 All preparation quality controls are within established criteria

Inorganic - Wet Chemistry QC

2510B	07/21/2015:210583 All analysis quality controls are within established criteria
	07/21/2015:208378 All preparation quality controls are within established criteria
2540CE	07/21/2015:208397 All preparation quality controls are within established criteria
300.0	07/20/2015:210593 All analysis quality controls are within established criteria
	07/20/2015:208379 All preparation quality controls are within established criteria
4500-Н В	07/21/2015:208407 All preparation quality controls are within established criteria
4500HB	07/21/2015:210605 All analysis quality controls are within established criteria

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By David Terz, B.A., M.B.A.

Digitally signed by David Terz, B.A., MB.A. Title: QA Director Date: 2015-07-24

	ENVIRONMENTAL AGRICULTU Analytical Chemists	RAL
July 24, 2015	Lab ID Customer ID	: VI 1542920-001
Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308	Sampled On Sampled By Received On Matrix	: 4-16320 : July 17, 2015-07:30 : M.H. : July 20, 2015-11:30 : Ground Water
Description :/TW-2 Airlft Project : Long Canyo	Csd:260' Drl:263' n WC	

Sample Result - Inorganic

Constituent	Regult	POI	Linita	Note	Sample Preparation		Sample Analysis	
	ICount	TQL	Onts		Method	Date/ID	Method	Date/ID
Metals, Diss ^{P:1}								
Arsenic	ND	2	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Iron	ND	30	ug/L		200.7	07/23/15:208502	200.7	07/23/15:210784
Manganese	19.0	0.5	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Wet Chemistry ^{P:1}								
Chloride	14	1	mg/L		300.0	07/20/15:208379	300.0	07/20/15:210593
Specific Conductance	495	1	umhos/cm		2510B	07/21/15:208378	25 10B	07/21/15:210583
Nitrate	4.2	0.5	mg/L		300.0	07/20/15:208379	300.0	07/20/15:210593
pH	7.4		units		4500-H B	07/21/15:208407	4500HB	07/21/15:210605
Solids, Total Dissolved (TDS)	320	20	mg/L		2540CE	07/21/15:208397	2540C	07/22/15:210646

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A \$Surrogate. * PQL adjusted for dilution.

Corporate Offices & LaboratoryOffice & Laboratory9415 W. Goshen AvenueSanta Paula, CA 93060Stockton, CA 95215Chico, CA 95928San Luis Obispo, CA 93401Viselia, CA 93291Viselia, CA 93291TEL: (805)392-2000TEL: (209)942-0182TEL: (530)343-5818TEL: (805)783-2940TEL: (559)734-9473Env FAX: (805)525-4172 / Ag FAX: (805)392-2063FAX: (209)942-0423FAX: (530)343-3807FAX: (805)783-2912FAX: (559)734-8435CA ELAP Certification No. 1573CA ELAP Certification No. 1563CA ELAP Certification No. 2670CA ELAP Certification No. 2775CA ELAP Certification No. 2810

	ENVIRONMENTAL Analytical Chemists	
July 24, 2015	Lab ID : VI 1542920-001 Customer ID : 4-16320	
Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308	Sampled On : July 17, 2015-07:30 Sampled By : M.H. Received On : July 20, 2015-11:30 Matrix : Ground Water	
Description : TW-2 Airlft Project : Long Canyor	Csd:260' Drl:263' n WC	

Sample Result - Radio

Constituent	Result + Error MDA		Unite	MCLAT	Sample	Preparation	Sample Analysis	
Constituent	Result ± Ellor	MDA	Onics		Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	30.9 ± 3.59	्री 1.14	pCi/L		900.0	07/21/15-07:00 2P1508361	900.0	07/23/15-08:00 2A1510736

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Office & Laboratory **Corporate Offices & Laboratory** Office & Laboratory Office & Laboratory Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 2500 Stagecoach Road Stockton, CA 95215 9415 W. Goshen Avenue 853 Corporation Street Santa Paula, CA 93060 563 E. Lindo Avenue Chico, CA 95926 Visalia, CA 93291 TEL: (805)392-2000 TEL: (209)942-0182 TEL: (530)343-5818 TEL: (805)783-2940 TEL: (559)734-9473 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573 CA ELAP Certification FAX: (530)343-3807 FAX: (805)783-2912 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Page 4 of 9

	ENVIRONMENTAL AGRICULTURAL Analytical Chemists
July 24, 2015	Lab ID : VI 1542920-002 Customer ID : 4-16320
Dee Jaspar & Associates 2730 Unicorn Rd. Bldg A	Sampled On : July 17, 2015-10:00
Bakersfield, CA 93308	Sampled By : M.H. Received On : July 20, 2015-11:30 Matrix : Ground Water
Description : (TW-2 Airlft Project : Long Canyor	Sd:295' Drl:298'/ WC

Sample Result - Inorganic

Constituent	Result	POI	Unite	Note	Sample	Preparation	Sample Analysis	
	Result	TVL	Ullus	NOIC	Method	Date/ID	Method	Date/ID
Metals, Diss ^{P:1}								
Arsenic	ND	2	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Iron	ND	30	ug/L		200.7	07/23/15:208502	200.7	07/23/15:210784
Manganese	55.9	0.5	ug/L		200.8	07/23/15:208515	200.8	07/23/15:210782
Wet Chemistry ^{P:1}								
Chloride	20	1	mg/L		300.0	07/20/15:208379	300.0	07/20/15:210593
Specific Conductance	513	1	umhos/cm		2510B	07/21/15:208378	2510B	07/21/15:210583
Nitrate	5.2	0.5	mg/L		300.0	07/20/15:208379	300.0	07/20/15:210593
pH	7.6		units		4500-H B	07/21/15:208407	4500HB	07/21/15:210605
Solids, Total Dissolved (TDS)	330	20	mg/L		2540CE	07/21/15:208397	2540C	07/22/15:210646

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A ‡Surrogate. * PQL adjusted for dilution.

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926
 TEL: (805)392-2000
 TEL: (209)942-0182
 TEL: (530)343-5818
 TEL: (805)783-2940
 TEL: (559)734-9473

 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063
 FAX: (209)942-0182
 FAX: (530)343-3807
 FAX: (805)783-2912
 FAX: (559)734-8435

 CA ELAP Certification No. 1573
 CA ELAP Certification No. 1563
 CA ELAP Certification No. 2670
 CA ELAP Certification No. 2775
 CA ELAP Certification No. 2810

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291

Page 5 of 9

ENVIRONMENTAL AGRICULTURAL Analytical Chemists						
July 24, 2015	Lab ID : VI 1542920-002 Customer ID : 4-16320					
Dee Jaspar & Associates 2730 Unicom Rd. Bldg A Bakersfield, CA 93308	Sampled On : July 17, 2015-10:00 Sampled By : M.H. Received On : July 20, 2015-11:30					
Description : TW-2 Airlft Csd:295' Drl:298' Project : Long Canyon WC	Matrix : Ground water					
Sample R	Result - Radio					

Constituent	Result + Error	МПА	Unite	MCL/AL	Sample	Preparation	Sample Analysis	
Collstituent	Result ± EII01	MDA	Oms		Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}						-		
Gross Alpha	40.8±4.55	1.17	pCi/L		900.0	07/21/15-07:00 2P1508361	900.0	07/23/15-09:00 2A1510739

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

 $\begin{array}{l} MDA = Minimum \ Detectable \ Activity (Calculated at the 95\% \ confidence \ level) = Data utilized \ by DHS to determine matrix interference. \\ MCL / AL = Maximum \ Contamination \ Level \ / \ Action \ Level. \ Alpha's \ Action \ Level \ of 5 \ pCi/L \ is based \ on the \ Assigned \ Value \ (AV). \\ AV = \ Assigned \ Value(Gross \ Alpha \ Result + (0.84 \ x \ Error)). \ CCR \ Section \ 64442: \ Drinking \ Water \ Compliance \ Note: \ Do \ the \ following \ If \ Gross \ Alpha's \ (AV) \ minus \ Uranium \ exceeds \ 5 \ pCi/L \ run \ Radium \ 226. \end{array}$

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L

Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Office & Laboratory 9415 W. Goshen Avenue Corporate Offices & Laboratory Office & Laboratory Office & Laboratory Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0162 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 853 Corporation Street
 Sonta Paula, CA 93060
 Stockton, CA 95215

 TEL: (805)392-2000
 TEL: (209)942-0182

 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063
 FAX: (209)942-0423

 CA ELAP Certification No. 1573
 CA ELAP Certification
 Visalia, CA 93291 TEL: (559)734-9473 FAX: (530)343-3807 FAX: (805)783-2912 FAX: (559)734-8435 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Page 6 of 9

1 H **ENVIRONMENTAL** AGRICULTURAL **Analytical Chemists**

July 24, 2015 Dee Jaspar & Associates Lab ID Customer : VI 1542920 : 4-16320

Quality Control - Inorganic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Metals								
Iron	200.7		MS	ug/L	4000	104 %	75-125	
		(VI 1542920-001)	MSD	ug/L	4000	113 %	75-125	
			MSRPD	ug/L	800.0	8.2%	≤20.0	
	200.7	07/23/15:210784AC	CCV	ppm	5.000	103 %	90-110	
			CCB	ppm	5 000	0.0096	0.03	
				ppm	5.000	103 %	90-110	
Arsenic	200.8		Me	ppin uc/I	5.000	0.0003	75 125	
Alseine	200.8	(CH 1575660-001)	MSD		5.000	105 %	75-125	
		(011 15/5000 001)	MSRPD	11g/L	5.000	0.52	<2	
	200.8	07/23/15:210782AC	CCV	nph	120.0	93.1 %	90-110	
	20010	0.020,000200,02000	ССВ	ppb	12010	0.14	2	
			CCV	ppb	120.0	93.7 %	90-110	
			ССВ	ppb		0.16	2	
Manganese	200.8		MS	ug/L	5.000	94.6 %	75-125	
		(CH 1575660-001)	MSD	ug/L	5.000	105 %	75-125	
			MSRPD	ug/L	5.000	9.0%	<u>≤</u> 20	
	200.8	07/23/15:210782AC	CCV	ppb	120.0	96.2 %	90-110	
			CCB	ppb		0.090	0.5	
			CCV	ppb	120.0	96.4 %	90-110	
			ССВ	ppb		0.110	0.5	
Wet Chem								
Conductivity	2510B	07/21/15:210583JMG	ICB	umhos/cm		0.07	1	
			CCV	umhos/cm	999.0	100 %	95-105	
			CCV	umhos/cm	999.0	99.6 %	95-105	
E. C.	2510B	07/21/15:208378JMG	Blank	umhos/cm		ND	<1	
		(VI 1542911-003)	Dup	umhos/cm		0.2%	5	
Solids, Total Dissolved	2540CE	07/21/15:208397CTL	Blank	mg/L		ND	<20	
		(07777 00770 001)	LCS	mg/L	999.1	101 %	90-110	
		(STK1537787-001)	Dup	mg/L		1.6%	5	
Chloride	300.0	(111 15427(5.001)	MS	mg/L	500.0	97.8%	85-121	
		(V11542765-001)	MSD	mg/L	500.0	97.4%	85-121	
			Blank	mg/L	100.0	0.3%	<u>≤19</u>	
			LCS	mg/L	25.00	93.6%	90-110	
			MS	mg/L	500.0	96.9 %	85-121	
		(VI 1542820-001)	MSD	mg/L	500.0	97.8 %	85-121	
			MSRPD	mg/L	100.0	0.9%	≤19	
	300.0	07/20/15:210593KD	ICV	ppm	25.00	92.5 %	90-110	
			ICB	ppm		0.02	1.	
			CCB	ppm		0.02	1	
			CCV	PPM	25.00	0.0 %	90-110	
				ррш	25.00	94.2 %	90-110	
			CCB	ppm	25.00	0.00		
Nitrata	200.0		MS	mc/	25.00	06.5 %	90-110	
In the second se	300.0	(VI 1542765-001)	MSD	ma/L	400.0	90.3 %	85 110	
		(*11342/03-001)	MSRPD	mg/L	100.0	0.2 %	<10	
ll			Blank	mg/L	100.0	ND	<0.5	
			LCS	mg/L	20.00	92.7 %	90-110	
	1		MS	mg/L	400.0	95.9 %	85-119	
	1	(VI 1542820-001)	MSD	mg/L	400.0	96.9 %	85-119	
		´	MSRPD	mg/L	100.0	1.0%	≤19	
	300.0	07/20/15:210593KD	ICV	ppm	20.00	91.8 %	90-110	
			ICB	ppm	h	0.000	0.5	

Page 7 of 9

Corporate Offices & Laboratory 853 Corporation Street
 Santa Paula, CA 93060
 Stockton, CA 95215

 TEL: (805)392-2000
 TEL: (209)942-0182

 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063
 FAX: (209)942-0423

 CA ELAP Certification No. 1573
 CA ELAP Certification

Office & Laboratory

Office & Laboratory

Office & Laboratory
 Onice & Laboratory
 Onice & Laboratory
 Onice & Laboratory
 Onice & Laboratory

 2500 Stagecoach Road
 563 E. Lindo Avenue
 3442 Empresa Drive, Suite D
 9415 W. Goshen Avenue

 Stockton, CA 95215
 Chico, CA 95926
 San Luis Obispo, CA 93401
 Visalia, CA 93291

 TEL: (209)942-0182
 TEL: (530)343-5818
 TEL: (805)783-2940
 TEL: (559)734-9473

 FAX: (209)942-0423
 FAX: (530)343-3807
 FAX: (805)783-2912
 FAX: (559)734-8435

 CA ELAP Certification No. 1563
 CA ELAP Certification No. 2670
 CA ELAP Certification No. 2775
 CA ELAP Certification No. 2810

Office & Laboratory

July 24,	2015	
Dee Jas	par &	Associates

.

Lab ID : VI 1542920 Customer : 4-16320

Quality Control - Inorganic

Constituent		Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Wet Chem Nitrate		300.0	07/20/15:210593KD	CCB CCV CCV CCB CCV	ppm PPM ppm ppm PPM	20.00 20.00 20.00	0.000 0.0 % 93.4 % 0.000 0.0 %	0.5 90-110 90-110 0.5 90-110	
рН		4500-H B 4500HB	(SP 1508021-001) 07/21/15:210605JMG	Dup CCV CCV	units units units	8.000 8.000	0.3% 101 % 101 %	4.80 95-105 95-105	
Definition ICV ICB CCV CCB Blank LCS MS MSD Dup MSRPD ND DQO	: Initial Calibratio : Initial Calibratio : Continuing Calil : Continuing Calil : Method Blank - : Laboratory Cont : Matrix Spikes - matrix affects ana : Matrix Spike Du are an indication of : Duplicate Sampl indication of prec : MS/MSD Relati and analysis. : Non-detect - Res : Data Quality Ob	n Verification - n Blank - Analy oration Verifica oration Blank - Prepared to ver. rol Standard/Sa A random samp lyte recovery. plicate of MS/A of how that sam e - A random si ision for the pre ve Percent Diffi- sult was below t jective - This is	Analyzed to verify the rzed to verify the instru- tion - Analyzed to verif Analyzed to verify the i ify that the preparation j mple - Prepared to verif le is spiked with a know ASD pair - A random sa ple matrix affects analy ample with each batch is paration and analysis. erence (RPD) - The MS he DQO listed for the a the criteria against whi	instrument of ment baselin by the instrument by process is not fy that the provention of the provention mple duplic te recovery. s prepared a relative per nalyte, ch the qualit	calibration is we the is within or nent calibratic aseline is with ot contributing reparation pro- f analyte. The tate is spiked with and analyzed in cent difference ty control data	vithin criteri iteria. on is within o in criteria. contaminati cess is not a recoveries a with a known duplicate. e is an indic	ia. criteria. ion to the samj ffecting analyt are an indication n amount of ar The relative pe ation of precis d.	ples. e recovery. in of how the alyted. The ison tor the pr ion for the pr	at sample recoveries nce is an reparation

Lab ID Customer : VI 1542920 : 4-16320

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	07/23/15:210736caa	CCV CCB	cpm cpm	8895	41.1 % 0.0800	37 - 45 0,18	
		900.0	07/23/15:210739caa	CCV CCB	cpm cpm	8895	40.5 % 0.100	38 - 46 0.14	
Gross Alpha		900.0	07/21/15:208361elc	Blank LCS MS	pCi/L pCi/L pCi/L	180.6 180.6	0.04 94.3 % 132 %	3 75-125 60-140	
			(SP 1507679-001)	MSD MSRPD	pCi/L pCi/L	180.6 180.6	124 % 6.2%	60-140 ≤30	
Definition									
CCV	: Continuing Calil	bration Verifica	tion - Analyzed to veri	fy the instru	ment calibrati	on is within	criteria.		
ССВ	: Continuing Calil	bration Blank -	Analyzed to verify the	instrument b	paseline is wit	hin criteria.			
Blank	: Method Blank -	Prepared to veri	fy that the preparation	process is n	ot contributin	g contaminal	tion to the sam	ples.	
LCS	: Laboratory Cont	rol Standard/Sa	mple - Prepared to veri	ify that the p	reparation pro	cess is not a	ffecting analyl	e recovery.	
MS	: Matrix Spikes matrix affects ana	A random samp lyte recovery.	le is spiked with a kno	wn amount o	of analyte. The	e recoveries	are an indicatio	on of how the	at sample
MSD	: Matrix Spike Du are an indication of	plicate of MS/N of how that sam	ASD pair - A random sole matrix affects analysis	ample dupli vte recovery.	cate is spiked	with a know	n amount of a	alyted. The	recoveries
MSRPD	: MS/MSD Relati and analysis.	ve Percent Diffe	erence (RPD) - The MS	S relative pe	rcent differenc	e is an indic	ation of precis	ion for the p	reparation
DQO	: Data Quality Ob	jective - This is	the criteria against wh	ich the quali	ity control dat	a is compare	d.		

Quality Control - Radio

1542920

FGL ENVIRONMENTAL

Serve 2

853 Corporation Street Santa Paula, CA 93061 805-392-2000

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

Invoice to:	RUSH
Dee Jaspar &	Assoc, Inc.
2730 Unicorn	Rd., Bldg.A
Bakersfield,	CA 93308
Attn: Curtis	Skaggs
Phone: 661-3	93-4796
Email: cskag	gs@djacivil.com

CHAIN OF CUSTODY/WA	TER ANALYSIS	S RECORD	
Project: Long Canyon W	1C		4
Sampled by: MHooked		•	
Analysis Requested: See Attached detection limit for As <2ppb, pl	l List (5-da) lease call J	y Rush) (: im with l:	Low ab #.
Sample ID	Date	Time	Number of Containers
TW-2 ² Airlift Cased: <u>263</u> Drilled: <u>263</u>	- 7/17/13	7 30 a m	4
TW-# ² Airlift Cased: <u>29</u> J Drilled: <u>298</u>	7/17/15	10:00 m	4
TW-¥ Airlift			
Cased: Drilled:			
COURIER:	noct la	173	
RELINQUISHED BY:	7/17/15	DATE/TIME] _
RECEIVED BY:	7/17/15	DATE/TIME	1pm
RELINQUISHED BY:	7/18/15		UpM
RECEIVED TY:	7 bdi	DATE/TIM	0
FOU		37	Xcoon

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

RU

. .

WATER ANALYSIS REQUEST

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr:com Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

Project:	Long Canyon WC
NOTE: Please filter alpha activity, and a gross alpha.	with 0.45 micron filter for metals and acidify for metals. Non-Potable water for
	Fe X (Dissolved)
	Mn 🔀 (Dissolved)
Electrical Conductivity	As X (Dissolved)
рн _ X _	Gross Alpha 🔜
Total Dissolved Solids (@ 180°)	Note: only analyze for U if alpha activity is > MCL of alpha activity
Chloride X	
	RUSH
^ 、	

Condition Upon Receipt (Attach to COC)

Sample Receipt at S	SP:							
1. Number of ice ches	sts/packages received:	1						
2. Shipper tracking n	umbers 808220476473	3						
3. Were samples rece Temps:	eived in a chilled condition?	/		_/	/	/	/	/
4. Surface water (SW should be flagged up	/TR) bact samples: A sample the unless the time since sample co	at has a tei Ilection ha	mperat s been	ure upo less th	on reciept an two ho	t of >10C, v ours.	vhether ic	ed or not,
5. Do the number of b COC?	oottles received agree with the	Yes	No	N/A				
6. Verify sample date	, time, sampler	Yes	No	N/A				
7. Were the samples bottles, leaks, etc.)	received intact? (i.e. no broken	Yes	No					
8. Were sample custo	ody seals intact?	Yes	No [N/A]			
Sample Verification	, Labeling and Distribution:							
1. Were all requested acceptable?	l analyses understood and	Yes	No					
2. Did bottle labels co	rrespond with the client's ID's?	Yes	No					
3. Were all bottles rec properly preserved [Exception: Oil a	quiring sample preservation ? & Grease, VOA and CrVI verified in Jabi	Yes	No	N/A	FGL			
4. VOAs checked for	Headspace?	Yes	No [N/A	1			
5. Were all analyses v reciept?	within holding times at time of	Yes	No		4			
6. Have rush or project accepted?	ct due dates been checked and	Yes	No	N/A				
Include a copy of the	COC for lab delivery. (Bacti. Inc	organics ar	nd Rad	io)				
Sample Receipt, Log	in and Verification completed by	<i> </i> :		Review Approv	red and side of the second sec	hawn Pecl	C Digital Title: S Date: (ly signed by Shawn Peck Sample Receiving 07/20/2015-14:02:27
Discrepency Docum	nentation:							
Any items above which	ch are "No" or do not meet spec	ifications (i	i.e. tem	nps) mu	ist be res	olved.		
1. Person Contacted:		Phon	e Num	ber:				
Initiated By:	srp	Date:			2015-07	-20		
Problem:	pH received past holding tim	e						
Resolution:	Jim Angell is aware of this							
2. Person Contacted:	:	Pho	one Nu	mber:				
Initiated By:	***************************************	 Dat	e:					
Problem:								
Resolution:						(1014	3201	
				г		(40) 2 enar & /	leencia	itae Ina
				L	Jee Ja	יאר ארי עו ארי	1330018 13030	uco, mc.
					_	VI 154	+2320	

SRP-07/20/2015-14:02:27

ENVIRONMENTAL AGRICULTURAL

Analytical Chemists

August 11, 2015 **Dee Jaspar & Associates** 2730 Unicorn Rd. Bldg A Bakersfield, CA 93308

Lab ID : VI 1542919-001 Customer ID : 4-16320 Sampled On : July 17, 2015 Sampled By : M.H. Received On : July 20, 2015 : Ground Water Matrix

Description : TW-2 Pumped Csd:295' Drl:298' : Long Canyon WC Project

General Infigation Suitability						uarysis			
Test Description		Result				Graphical F	lesults Pres	sentation	
Cations	mg/L	Meq/L	% Meq	Lbs/AF	Good	Possible Problem	Moderate Problem	Increasing Problem	Severe Problem
Calcium	50	2.5	47	140	**				
Magnesium	11	0.91	17	30	**				
Potassium	3	0.077	1	8	**				
Sodium	42	1.8	34	110					
Anions									
Carbonate	< 10	0	0	0					
Bicarbonate	230	3.8	68	630	**				
Sulfate	53	1.1	20	140	**				
Chloride	19	0.54	10	52					
Nitrate	5.3	0.085	2	14					
Nitrate Nitrogen	1.2			3					
Fluoride	1.0	0.053	1	3					
Minor Elements									
Boron	0.20			0.54					
Copper	< 0.01			0.00					
Iron	< 0.03			0.00					
Manganese	0.020			0.054					
Zinc	< 0.02			0.00					
TDS by Summation	414			1100					
Other									
pН	7.2			units					
E. C.	0.527			dS/m					
SAR	1.4								
Crop Suitability									
No Amendments	Good								
With Amendments	Good								
Amendments									
Gypsum Requirement	0.3			Tons/AF					
Sulfuric Acid (98%)	13		(oz/1000Gal	Or 32 oz/3	1000Gal of	urea Sulfur	ric Acid (15	/49).
Leaching Requirement	3.9			%					

Conseal Irrigation Suitability Analysis

Problem Good

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

** Used in various calculations; mg/L = Milligrams Per Liter (ppm) meq/L = Milliequivalents Per Liter

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182 Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 CA ELAP Certification No. 2810

Office & Laboratory 9415 W. Gosheri Avenue Visalia, CA 93291

TEL: (559)734-9473 FAX: (559)734-8435 August 11, 2015

Dee Jaspar & Associates

Lab ID : VI 1542919-001 Customer ID : 4-16320 Description : TW-2 Pumped Csd:295' Drl:298'

Test Description	Res	sult	Graphical Results Presentation			
Chemical			Slight	Moderate	Severe	
Manganese	0.02	mg/L				
Iron	< 0.03	mg/L				
TDS by Summation	414	mg/L				
No Amendments						
pH	7.2	units				
Alkalinity (As CaCO3)	190	mg/L				
Total Hardness	170	mg/L				
With Amendments						
Alkalinity (As CaCO3)	38	mg/L	150.190.78			
Total Hardness	38	mg/L				
pH	5.4 - 6.7	units				

Micro Irrigation System Plugging Hazard

Good Problem He and

Note: Color coded bar graphs have been used to provide you with 'AT-A-GLANCE' interpretations.

Water Amendments Application Notes:

The Amendments recommended on the previous pages include:

Gypsum:

This should be applied at least once a year to the irrigated soil surface area. Gypsum can also be applied in smaller quantities in the irrigation water. Apply the smaller (bracketed) amount of gypsum when also applying the recommended amount of Sulfuric Acid and the larger amount when applying only Gypsum.

Sulfuric Acid:

These products should be applied as needed to prevent emitter plugging in micro irrigation systems and/or as a soil amendment to adjust soil pH to improve nutrient availability and to facilitate leaching of salts. Please exercise caution when using this material as excesses may be harmful to the system and/or the plants being irrigated. The reported Acid requirement is intended to remove approximately 80 % of the alkalinity. The final pH should range from 5.4 to 6.7. We recommend a field pH determination to confirm that the pH you designate is being achieved. This application is based upon the use of a 98% Sulfuric Acid product. The application of Urea Sulfuric Acid is based upon the use of a product that contains 15% Urea (1.89 lbs Nitrogen), 49% Sulfuric Acid and has a specific gravity of 1.52 at 68 °F.

Guidelines for the above interpretations are sourced from USDA & U.C. Cooperative Extension Service publications. Please contact us if you have any questions.

FRUIT GROWERS LABORATORY, INC.

Scott Bucy, Scott Bucy, Director of Ag. Services

SB1:KDM

1542910

FGL ENVIRONMENTAL

853 Corporation Street Santa Paula, CA 93061 805-392-2000

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

: 5.

R

Invoice to: Dee Jaspar & Assoc, Inc. 2730 Unicorn Rd., Bldg.A Bakersfield, CA 93308 Attn: Curtis Skaggs Phone: 661-393-4796 Email: cskaggs@djacivil.com

CHAIN OF CUSTODY/WATER ANALYSIS RECORD								
Project: Long Canyon WC		<u></u>						
Sampled by: Mach		a ya ya mada ba ƙafa ya ƙwasar manifa						
Analysis Requested: See Attached List (5-day Rush) (Low								
(Normal Turn-around) analysis, please call Jim with lab #.								
Sample IDDateNumber of Containers								
TW-# Pumped Cased: <u>295</u> Drilled: <u>298</u>	2/17/18	12:45pm	Ц					
TW-# ² Pumped								
Cased: Drilled:								
TW- Z Pumped								
Cased: Drilled:								
COURIER:		_						
RECEIPT NUMBER: 405 h AV	F 04	15						
RELINQUISHED BY:		DATE/TIME						
mallel	7/17/1.	5 4:0	opm					
RECEIVED BY	<i>ה</i> ורור	DATE/TIME	00pm					
RELINQUISHED BY: A THE TIME 7/18/15 C 1:00 MM								
RECEIVED BY DATE/TIME								
1 7204		31	< Xrum.					

FGL ENVIRONMENTAL RUSH

853 Corporation Street Santa Paula, CA 93061 805-392-2000

19

WATER ANALYSIS REQUEST

Analyses to: Kenneth D. Schmidt and Assoc. 3701 Pegasus Drive, Suite 112 Bakersfield, CA 93308 Attn: James Angell Phone: 661-392-1630 Email: kdschmidt@bak.rr.com

Involce to:
Dee Jaspar & Assoc, Inc.
2730 Unicorn Rd., Bldg.A
Bakersfield, CA 93308
Attn: Curtis Skaggs
Phone: 661-393-4796
Email: cskaggs@djacivil.com

Project:	Long Canyon WC
NOTE: Please f: alpha activity, gross alpha.	ilter with 0.45 micron filter for metals and and acidify for metals. Non-Potable water for
	Fe X (Dissolved)
NO3 X	Mn X (Dissolved)
Electrical Conductivity	As X (Dissolved)
рн 📕	Gross Alpha 🔀
Total Dissolved Solids (@ 180°) Chloride	Note: only analyze for U if alpha activity is > MCL of alpha activity
	RUSH

APPENDIX G

<u>Cost Estimate for Iron/Manganese Water Treatment</u> <u>System</u>

Weldon Regional Consolidation Water Project - Alternative No. 2							
Iron/Manganese Removal Treatme	nt System (4	100 gpm Se	ervice Flow Rat	e)			
Engineer's Estimate							
Item Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Extended Cost			
96" Dia. x 60"H Filter Vessel (250 psi Rating)	3	EA	\$60,000.00	\$180,000.00			
Furnish & Install Katalox Light Media	375	CF	\$120.00	\$45,000.00			
16'x44' Concrete Pad	18	CY	\$1,000.00	\$18,000.00			
6" EPLC Fabricated Steel Header Piping	200	LF	\$250.00	\$50,000.00			
6" Butterfly Valve w/EMO	12	EA	\$6,000.00	\$72,000.00			
6" Mag Meter	3	EA	\$5,000.00	\$15,000.00			
6" Check Valve	1	EA	\$2,000.00	\$2,000.00			
SS ARI Valves	3	EA	\$3,000.00	\$9,000.00			
CMU Treatment System Building	1	LS	\$100,000.00	\$100,000.00			
Pipe Supports	12	EA	\$1,000.00	\$12,000.00			
Electrical & Controls	1	LS	\$50,000.00	\$50,000.00			
			Subtotal:	\$553,000.00			
Engineering	Design & Co	onstruction	Management:	\$41,475.00			
	\$110,600.00						
			Total:	\$705,075.00			

APPENDIX H Project Alternative 2 System Layout Map

APPENDIX I Project Alternative 2 Capital and O&M Cost Estimates

	Project Alternativ	/e #2			
	Engineer's Estima	ie			
1 1	Item Description Mobilization/Demobilization/Cleanup	Quantity	Unit	\$350,000,00	\$350,000,00
2	Potholing of Existing Utilities	1	LS	\$75,000.00	\$75,000.00
3	Permitting with KCBID & Caltrans	1	LS	\$20,000.00	\$20,000.00
4	Traffic Control	1	LS	\$100,000.00	\$100,000.00
5	Kern County Potable Water Pipeline Franchise Permit	1	LS	\$5,000.00	\$5,000.00
6	Caltrans Potable Water Pipeline Pipeline Franchise Permit	1	LS	\$10,000.00	\$10,000.00
	Construct New Well at Test We	II #1 Locati	on	Subiolai.	\$300,000.00
7	36" Conductor Casing	50	LF	\$1,000.00	\$50,000.00
8	18" Pilot Hole Construction	250	LF	\$150.00	\$37,500.00
9	Ream Pilot Hole to 28"	250	LF	\$150.00	\$37,500.00
10	16" I.D. X 5/16" COR-TEN Blank Casing	110	LF	\$300.00	\$33,000.00
11	16" I.D. X 5/16" COR-TEN Perforated Casing	120		\$400.00	\$48,000.00
12	2" Sounding Tube	105		\$25.00	\$3,150.00
14	Gravel Envelope (4x16 Colorado Silica Sand)	130	LF	\$100.00	\$13.000.00
15	Cement Seal	50	LF	\$110.00	\$5,500.00
16	Swabbing and Airlifting Development	60	HRS	\$500.00	\$30,000.00
17	Pumping and Surging Development	48	HRS	\$450.00	\$21,600.00
18	Production Testing	24	HRS	\$450.00	\$10,800.00
19	Well Video	1	LS	\$3,000.00	\$3,000.00
	Construct New Well at Test We	ll #2 Locati	on	Subtotal:	\$295,550.00
20	36" Conductor Casing	50	LF	\$1.000.00	\$50.000.00
21	18" Pilot Hole Construction	270	LF	\$150.00	\$40,500.00
22	Ream Pilot Hole to 28"	270	LF	\$150.00	\$40,500.00
23	16" I.D. X 5/16" COR-TEN Blank Casing	180	LF	\$300.00	\$54,000.00
24	16" I.D. X 5/16" COR-TEN Perforated Casing	70	LF	\$400.00	\$28,000.00
25	4" Gravel Feed Tube	175		\$30.00	\$5,250.00
26 27	2 Sounding Tube Gravel Envelope (4x16 Colorado Silica Sand)	1/0		\$25.00	\$4,250.00 \$8,000.00
28	Cement Seal	50		\$110.00	\$5,500.00
29	Swabbing and Airlifting Development	60	HRS	\$500.00	\$30,000.00
30	Pumping and Surging Development	48	HRS	\$450.00	\$21,600.00
31	Production Testing	24	HRS	\$450.00	\$10,800.00
32	Well Video	1	LS	\$3,000.00	\$3,000.00
				Subtotal:	\$301,400.00
22	Well Equipping & Discharge Piping at	Test Well #	1 Location	¢c0 000 00	¢c0.000.00
33	Well Site Grading and Earthwork	300	TON	\$60,000.00	\$60,000.00
35	Deep Well Pump Concrete Foundation	1	EA	\$15.000.00	\$15.000.00
36	Furnish & Install 400 gpm Pump w/100 HP Motor	1	EA	\$50,000,00	\$50,000.00
37	Furnish & Install 36" Dia. RCP Dry Well	1	EA	\$17,500.00	\$17,500.00
38	FBE Steel Well Discharge Piping & Appurtenances	1	EA	\$45,000.00	\$45,000.00
39	Well Building Enclosures	1	EA	\$40,000.00	\$40,000.00
40	1,500 Gallon Hydropneumatic Tank & Concrete Footings	1	EA	\$65,000.00	\$65,000.00
41	275 Gallon Chlorine Storage Tank and Feed Pump	1	EA	\$10,000.00	\$10,000.00
42	Administration Building	1	EA	\$50,000.00	\$50,000.00
43	Electrical Switchgear Foundation & Shade Structure	1	ES FA	\$30,000.00	\$30,000.00
45	Electrical and Controls including Site Lighting and SCADA	1	EA	\$200.000.00	\$200.000.00
46	Electric Utility Costs	1	EA	\$50,000.00	\$50,000.00
47	System Painting	1	EA	\$10,000.00	\$10,000.00
48	Site Fencing w/Two Double Drive Gates	600	LF	\$35.00	\$21,000.00
49	Well Head Treatment System for Fe/Mn Removal	1	LS	\$553,000.00	\$553,000.00
50	Pipe insulation w/Heat Trace	1	EA	\$15,000.00	\$15,000.00
	Well Equipping & Discharge Pining at	Tost Woll #	2 Location	Subiolai.	\$1,404,000.00
51	Well Site Grading and Earthwork	1	EA	\$60.000.00	\$60.000.00
52	Well Site Agg. Base Ground Cover	300	TON	\$75.00	\$22,500.00
53	Deep Well Pump Concrete Foundation	1	EA	\$15,000.00	\$15,000.00
54	Furnish & Install 400 gpm Pump w/100 HP Motor	1	EA	\$50,000.00	\$50,000.00
55	Furnish & Install 36" Dia. RCP Dry Well	1	EA	\$17,500.00	\$17,500.00
56	IN Steel Well Discharge Piping & Appurtenances	1	EA	\$45,000.00	\$45,000.00
58	1 500 Gallon Hydronneumatic Tank & Concrete Footings	1	EA FA	\$65,000.00	\$65,000,00
59	275 Gallon Chlorine Storage Tank and Feed Pump	1	EA	\$10.000.00	\$10.000.00
60	FRP Chemical Storage Building & Concrete Foundation	1	EA	\$50,000.00	\$50,000.00
61	Electrical Switchgear Foundation & Shade Structure	1	EA	\$30,000.00	\$30,000.00
62	Electrical and Controls including Site Lighting and SCADA	1	EA	\$200,000.00	\$200,000.00
63	Electric Utility Costs	1	EA	\$50,000.00	\$50,000.00
64	System Painting	1	EA	\$10,000.00	\$10,000.00
60	Dite Fending W/TWO DOUDle Drive Gates	1000		\$35.00 \$553.000.00	\$21,000.00 \$553.000.00
67	Pipe Insulation w/Heat Trace	1	EA	\$15,000.00	\$15,000.00
				Subtotal:	\$1,254.000.00
	2 MG Kelso Valley Road Stora	ge Tank Si	te		. ,,
68	Tank Site and Access Road Grading	7,500	CY	\$30.00	\$225,000.00
69	Gravel Rock Ground Cover for Access Road & Tank Site	1,000	TON	\$75.00	\$75,000.00
70	2MG Welded Steel Storage Tank & Concrete Ringwall Fdn	1	LS	\$2,000,000.00	\$2,000,000.00
/1		1		\$∠50,000.00	\$250,000.00
73	Site Fencing w/Two Double Drive Gates	800	15	\$35.00	\$28,000,00
74	Site Painting	1	LS	\$10.000 00	\$10.000.00
75	Tank Site Property Acquisition	1	LS	\$50,000.00	\$50,000.00
				Subtotal:	\$2,678,000.00
	Bella Vista Drive Booster	Station			
76	Booster Station Site and Access Road Grading	2,000	CY	\$30.00	\$60,000.00
77	Gravel Rock Ground Cover for Access Road & Tank Site	500	TON	\$75.00	\$37,500.00
78	A 500 Caller Liveraneux dis Testin (Feet)	1	LS	\$400,000.00	\$400,000.00
79	1,500 Galion Hydropheumatic Tank W/Footings 30k Gal AW/WA D103 Storage Tank w/Concrete Ringwall Etc.	1		\$75,000.00	\$75,000.00 \$75,000.00
	Site Electrical	1	1.5	\$250,000,00	\$250.000.00
81		· ·		\$40,000.00	\$40,000.00
81 82	Electric Utility Costs	1	LS	540,000.00	540,000.00
81 82 83	Electric Utility Costs Site Fencing w/Two Double Drive Gates	1 800	LS LF	\$40,000.00	\$28,000.00
80 81 82 83 84	Electric Utility Costs Site Fencing w/Two Double Drive Gates Site Painting	1 800 1	LS LF LS	\$40,000.00 \$35.00 \$10,000.00	\$40,000.00 \$28,000.00 \$10,000.00
80 81 82 83 84 85	Electric Utility Costs Site Fencing w/Two Double Drive Gates Site Painting Booster Station Site Property Acquisition	1 800 1 1	LS LF LS LS	\$40,000.00 \$35.00 \$10,000.00 \$40,000.00	\$40,000.00 \$28,000.00 \$10,000.00 \$40,000.00

	Weldon Regional Consolida	tion Wate	er Project		
	Project Alternat	ive #2			
	Engineer's Estim	ate			
Item No.	Item Description	Quantity	Unit	Unit Cost	Extended Cost
	Distribution System	Piping			
86	Furnish & Install 12" DR14 C900 PVC Pipe	33,150	LF	\$100.00	\$3,315,000.00
87	Furnish & Install 12" Gate Valve	10	EA	\$4,000.00	\$40,000.00
88	Furnish & Install Dry Barrel Fire Hydrant Assembly	1	EA	\$5,500.00	\$5,500.00
89	Remote Read Meter Equipment w/One Year Technical Support	1	LS	\$12,500.00	\$12,500.00
				Subtotal:	\$3,373,000.00
	Sierra View Restaurant & KOA C	ampground	Tie-In		
90	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
91	Furnish & Install Dry Barrel Fire Hydrant Assembly	2	EA	\$5,500.00	\$11,000.00
92	Furnish & Install 2" Long Meter Service	2	EA	\$4,750.00	\$9,500.00
93	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
94	Well Abandonment per KCEHS Standards	2	EA	\$30,000.00	\$60,000.00
-				Subtotal:	\$210,500.00
	Bella Vista Water System In	nprovement	s		
95	Furnish & Install 6" DR14 C900 PVC Pipe	13,675	LF	\$60.00	\$820,500.00
96	Furnish & Install Dry Barrel Fire Hydrant Assembly	15	EA	\$5,500.00	\$82,500.00
97	Furnish & Install 6" Gate Valve	22	EA	\$2,500.00	\$55,000.00
98	Furnish & Install 1" Long Meter Service	47	EA	\$2,000.00	\$94,000.00
99	Pressure Reducing Valve & Precast Vault	2	EA	\$40,000.00	\$80,000.00
				Subtotal:	\$1,132,000.00
	Rainbird Water System Im	provements		-	
100	Furnish & Install 6" DR14 C900 PVC Pipe	6,200	LF	\$60.00	\$372,000.00
101	Furnish & Install Dry Barrel Fire Hydrant Assembly	13	EA	\$5,500.00	\$71,500.00
102	Furnish & Install 6" Gate Valve	9	EA	\$2,500.00	\$22,500.00
103	Pressure Reducing Valve & Precast Vault	1	EA	\$40,000.00	\$40,000.00
104	Furnish & Install 1" Long Meter Service	83	EA	\$2,000.00	\$166,000.00
100	Well Abandonment per KCEHS Standards	2	EA	\$30,000.00	\$60,000.00
				Subtotal:	\$732,000.00
	Long Canyon Water System	Improvemen	nts		
101	Furnish & Install 6" DR14 C900 PVC Pipe	3,925	LF	\$70.00	\$274,750.00
102	Furnish & Install Dry Barrel Fire Hydrant Assembly	6	EA	\$5,500.00	\$33,000.00
103	Furnish & Install 6" Gate Valve	10	EA	\$2,500.00	\$25,000.00
104	Pressure Reducing Valve & Precast Vault	2	EA	\$40,000.00	\$80,000.00
105	Furnish & Install 1" Long Meter Service	67	EA	\$2,000.00	\$134,000.00
106	Well Abandonment per KCEHS Standards	1	EA	\$30,000.00	\$30,000.00
				Subtotal:	\$576,750.00
107	Tradewinds Water Associ	ation Tie-In		* ***	A (A A A A A A A A A A
107	Furnish & Install 6" DR14 C900 PVC Pipe	2,725		\$60.00	\$163,500.00
108	System Lie-In and Pressure Reducing Valve	4	EA	\$40,000.00	\$160,000.00
109	Furnish & Install 1" Meter	236	EA	\$1,000.00	\$236,000.00
110	Existing Tradewinds USDA Loan			\$300,000.00	\$300,000.00
111	weii Abandonment per KCEHS Standards	1	EA	\$30,000.00	\$30,000.00
		_		Subtotal:	\$889,500.00
				Subtotal:	\$14,422,200.00
	Contract Adn	ninistration,	& Constructi	on Management:	\$1,081,665.00
			20	% Contingency:	\$2,884,440.00
				Total:	\$18,388,305.00

*Existing wells to be abandoned in accordance with KCEHS Standards with Cernent Sand Slurry **Tradewinds existing water system infrastructure shall remain and shall be incorporated into the new regional water system **Ball Victes wells to remain for possible use as standhy wells for the new regional water system

Bella Vista s wells t	o remain for possible	e use as standby wells	for the new regional w	ater system

	Cost Estimates to Tie-In Potential Project Participants to Consolidated Water System								
	Valley Estates P.O.A.	. Tie-In							
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00				
2	Furnish & Install 12" DR14 C900 PVC Pipe	2,750	LF	\$100.00	\$275,000.00				
				Subtotal:	\$355,000.00				
			25	% Contingency:	\$88,750.00				
				Total:	\$443,750.00				
	South Fork Middle School Sup	ply Line & T	ie-In						
1	System Tie-In and Pressure Reducing Valve	1	EA	\$40,000.00	\$40,000.00				
2	Furnish & Install 12" DR14 C900 PVC Pipe	1,500	LF	\$100.00	\$150,000.00				
				Subtotal:	\$190,000.00				
			25	\$47,500.00					
				Total:	\$237,500.00				
Weldon Methodist Church Supply Line & Tie-In									
1	System Tie-In and Pressure Reducing Valve	1	EA	\$40,000.00	\$40,000.00				
2	Furnish & Install 12" DR14 C900 PVC Pipe	175	LF	\$100.00	\$17,500.00				
3	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00				
				Subtotal:	\$107,500.00				
			25	% Contingency:	\$26,875.00				
				Total:	\$134,375.00				
	South Fork Women's Club/South Fork Elemen	tary School	Supply Line &	Tie-In					
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00				
2	Furnish & Install 12" DR14 C900 PVC Pipe	475	LF	\$100.00	\$47,500.00				
3	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00				
				Subtotal:	\$177,500.00				
			25	% Contingency:	\$44,375.00				
				Total:	\$221,875.00				
	Hillview Acres MWC Supply	Line & Tie-I	n						
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00				
2	Furnish & Install 12" DR14 C900 PVC Pipe	6,250	LF	\$100.00	\$625,000.00				
				Subtotal:	\$705,000.00				
			25	% Contingency:	\$176,250.00				
				Total:	\$881,250.00				
	Lakeview Ranchos MWC Sup	ply Line & Ti	e-In						
1	System Tie-In and Pressure Reducing Valve	3	EA	\$40,000.00	\$120,000.00				
2	Furnish & Install 12" DR14 C900 PVC Pipe	2,600	LF	\$100.00	\$260,000.00				
				Subtotal:	\$380,000.00				
			25	% Contingency:	\$95,000.00				
				Total:	\$475,000.00				

Total Cost to Tie In All Surrounding Water Systems: \$2,393,750.00

	CAPITAL IMPROVEME	NT PLAI	N (CIP) f	or Projec	t Alternativ	e 2			
					Quet	Date:	2/23/2016		
	Sustan Nama: Woldon Ca	naclidated \	Notor Com		Syste	em ID NO.:	426		
	System Name: weidon Co	nsolidated	valer Com	pany	Service Connections: 436				
	*Enter information only in VELLOW ch			1		AVC			
		aueu celis							DED
	COMPONENT		COST	COST					
x I I ,	Drilled Well 16" steel casing	Depth	275	1100	605000	60	10083.33	840.28	1 93
,	Wellhead Electrical Controls	Doptin.	210	100000	200000	40	5000.00	416.67	0.96
	Well Pump, 100 HP			50000	100000	15	6666.67	555.56	1.27
;	Pressure Tank	Gallons:	1500	40.0	180000	60	3000.00	250.00	0.57
5	Storage Tank, Plastic	Gallons:	275	20.0	16500	10	1650.00	137.50	0.32
	Storage Tank, Steel	Gallons:	2,000,000	0.6	1200000	60	20000.00	1666.67	3.82
	Storage Tank, Steel	Gallons:	30,000	0.6	18000	50	360.00	30.00	0.07
2	Well Discharge Flow Meter, 8"			3500	7000	30	233.33	19.44	0.04
	Hypochlorinator w/ Tank & Pump, Complete			3500	7000	<mark>10</mark>	700.00	58.33	0.13
3,150	Pipe w/ sand bedding, 12" (Enter linea	ar feet for qua	antity)	55	1823250	<mark>100</mark>	18232.50	1519.38	3.48
6,525	Pipe w/ sand bedding, 6" (Enter linear	r feet for quar	ntity)	40	1061000	100	10610.00	884.17	2.03
	Well head Treatment System for Fe/M	n Removal		<u>325000</u>	650000	<mark>50</mark>	13000.00	1083.33	2.48
7	Standpipe Hydrant, 2-1/2"			5000	185000	<mark>50</mark>	3700.00	308.33	0.71
-36	Customer Meter w/ Box & Shutoff, Cor	mplete		500	218000	25	8720.00	726.67	1.67
0	Distribution Valve, 12"			2000	20000	50	400.00	33.33	0.08
1	Distribution Valve, 6"			1500	61500	50	1230.00	102.50	0.24
0	Air & Vacuum Relief Valve, Typical			500	15000	20	750.00	62.50	0.14
)	Pressure Reducing Valve			10000	90000	20	4500.00	375.00	0.86
	SCADA Upgrades			50000	50000	30	1666.67	138.89	0.32
	Painting/Coating Upgrades			200000	20000	50	4000.00	333.33	0.76
-	SUBTOTAL Existing CIP Costs			-	\$6 707 250 00		\$114 502 50	\$9,541,88	\$21.89
-	COSIS				ψ0,101,200.00	-	ψ11 4 ,302.30	ψ3,341.00	φ21.09
	Report Prepared by (Title):							Date:	
	NOTE: Installed costs ar	e averages a	nd include al	Il materials an	d contracted labo	r and equipm	ent.		

NOTE S:

FIVE YEAR BUDGET PROJECTION - PROJECT ALTERNATIVE 2

INSTRUCTIONS: Yellow-shaded cells are for data entry; all other cells are locked except line item descriptions which can be changed if needed. Years 2 through 5 will be compounded automatically by the inflation factor in Cell G6.

	System Name: Weldon Consolidated Water Company		Infl: Sv	ation Factor (%): stem ID Number:	3.0	
LINE	EXPENSES AND SOURCE OF FUNDS	2016	2017	2018	2019	2020
1	OPERATIONS AND MAINTENANCE (O&M) EXPENSES					
2	Salaries and Benefits	50,000.00	51,500.00	53,045.00	54,636.35	56,275.44
3	Contract Operation and Maintenance	6,000.00	6,180.00	6,365.40	6,556.36	6,753.05
4	Power and Other Utilities	30,000.00	30,900.00	31,827.00	32,781.81	33,765.26
5	Fees Regulatory	5,000.00	5,150.00	5,304.50	5,463.64	5,627.54
6	NaCIO Chemical Supply	5,000.00	5,150.00	5,304.50	5,463.64	5,627.54
7	Coliform Monitoring	3,500.00	3,605.00	3,713.15	3,824.54	3,939.28
8	Chemical Monitoring	7,500.00	7,725.00	7,956.75	8,195.45	8,441.32
9	Wellhead Treatment for Fe/Mn Removal	11,500.00	11,845.00	12,200.35	12,566.36	12,943.3
10	Transportation	2,000.00	2,060.00	2,121.80	2,185.45	2,251.02
11	Materials, Supplies, and Parts	5,000.00	5,150.00	5,304.50	5,463.64	5,627.54
12	Office Supplies	4,000.00	4,120.00	4,243.60	4,370.91	4,502.04
12	Miscellaneous	4,000.00	4,120.00	4,243.60	4,370.91	4,502.04
14	Total O&M Expenses:	133,500.00	137,505.00	141,630.15	145,879.05	150,255.43
16	GENERAL AND ADMINISTRATIVE EXPENSES					
17	Engineering and Professional Services	10,000.00	10,300.00	10,609.00	10,927.27	11,255.09
18	Depreciation and Amortization	0.00	0.00	0.00	0.00	0.00
19	Insurance	10,000.00	10,300.00	10,609.00	10,927.27	11,255.09
20	Existing Contribution to CIP (From CIP)	114,502.50	117,937.58	121,475.70	125,119.97	128,873.57
21	O&M Reserve	2,500.00	2,575.00	2,652.25	2,731.82	2,813.77
22	Other Reserves	2,000.00	2,060.00	2,121.80	2,185.45	2,251.02
23	Miscellaneous	100.00	103.00	106.09	109.27	112.5
26	** Debt Service	19,200.00	19,200.00	19,200.00	19,200.00	19,200.00
27	Total General and Administrative Expenses:	158,302.50	162,475.58	166,773.84	171,201.06	175,761.0
28	TOTAL EXPENSES (Line 14+ Line 27):	291,802.50	299,980.58	308,403.99	317,080.11	326,016.5
30	REVENUES RECEIVED					
21	Cash Devenues (Weter Dates)	201 202 50	200 080 581	209 402 00	217 090 11	226.046.51
22	** Depreciation Records	291,002.30	299,900.00	0.00	0.00	320,010.32
33	** Fees and Services	0.00	0.00	0.00	0.00	0.00
34	** Hookup Charges	0.00	0.00	0.00	0.00	0.00
35	** Withdrawal from CIP or Other Reserves	0.00	0.00	0.00	0.00	0.00
36	** Other Fund Sources: Interest Etc	0.00	0.00	0.00	0.00	0.00
37	** Grants	0.00	0.00	0.00	0.00	0.00
38	** SRELoan	0.00	0.00	0.00	0.00	0.00
39	** Business Loans	0.00	0.00	0.00	0.00	0.00
40	TOTAL REVENUE (Lines 31 through 39):	291,802.50	299,980.58	308,403.99	317,080.11	326,016.52
41	NET LOSS OR GAIN:	0.00	0.00	0.00	0.00	0.00
Repo	rt Prepared by (Name and Title):				Date:	
(** Infla	ation factor not applied to future year projections)	2016	2017	2018	2019	2020
	Number of Customers:	436	436	436	436	436
	Average Monthly Revenue Needed Per Customer:	55.77	57.34	58.95	60.60	62.31

Average Monthly Revenue Needed Per Customer:

(total expenses ÷ # of customers ÷ 12)

APPENDIX J Project Alternative 3 System Layout Map

APPENDIX K Project Alternative 3 Capital and O&M Cost Estimates

_	Project Alterna	ative #3			
n No	Item Description Engineer's Esti	Quantity	Unit	Unit Cost	Extended Cost
1	Mobilization/Demobilization/Cleanup	1	LS	\$400,000.00	\$400,000.00
2	Potholing of Existing Utilities	1	LS	\$75,000.00	\$75,000.00
3	Permitting with KCBID & State	1	LS	\$20,000.00	\$20,000.00
4	Traffic Control	1	LS	\$100,000.00	\$100,000.00
5	Kern County Potable Water Pipeline Franchise Permit	1	LS	\$5,000.00	\$5,000.00
6	Caltrans Potable Water Pipeline Pipeline Franchise Permit	1	LS	\$10,000.00	\$10,000.00
	Construct New Well at Test	Well #1 Locati	on	Subtotal:	\$610,000.00
7	36" Conductor Casing	50		\$1,000,00	\$50,000,00
8	18" Pilot Hole Construction	250	LI	\$150.00	\$37,500.00
9	Ream Pilot Hole to 28"	250	LF	\$150.00	\$37,500.00
10	16" I.D. X 5/16" COR-TEN Blank Casing	110	LF	\$300.00	\$33,000.00
11	16" I.D. X 5/16" COR-TEN Perforated Casing	120	LF	\$400.00	\$48,000.00
12	4" Gravel Feed Tube	105	LF	\$30.00	\$3,150.00
13	2" Sounding Tube	100	LF	\$25.00	\$2,500.00
14	Gravel Envelope (4x16 Colorado Silica Sand)	130	LF	\$100.00	\$13,000.00
15	Cement Seal	50	LF	\$110.00	\$5,500.00
16	Swabbing and Airlitting Development	60	HKS	\$500.00	\$30,000.00
10	Pumping and Surging Development	40		\$450.00	\$21,600.00
10	Well Video	24	18	\$400.00	\$10,800.00
10			20	Subtotal:	\$295 550 00
	Construct New Well at Test	Well #2 Locati	on	Subiolai.	\$295,550.00
20	36" Conductor Casing	50	LF	\$1.000.00	\$50.000.00
21	18" Pilot Hole Construction	270	LF	\$150.00	\$40.500.00
22	Ream Pilot Hole to 28"	270	LF	\$150.00	\$40,500.00
23	16" I.D. X 5/16" COR-TEN Blank Casing	180	LF	\$300.00	\$54,000.00
24	16" I.D. X 5/16" COR-TEN Perforated Casing	70	LF	\$400.00	\$28,000.00
25	4" Gravel Feed Tube	175	LF	\$30.00	\$5,250.00
26	2" Sounding Tube	170	LF	\$25.00	\$4,250.00
27	Gravel Envelope (4x16 Colorado Silica Sand)	80	LF	\$100.00	\$8,000.00
28	Cement Seal	50	LF	\$110.00	\$5,500.00
29	Swabbing and Airlifting Development	60	HRS	\$500.00	\$30,000.00
30	Pumping and Surging Development	48	HRS	\$450.00	\$21,600.00
31	Production Testing	24	HRS	\$450.00	\$10,800.00
32		1	15	\$3,000.00	\$3,000.00
	Well Environment & Discharge Black			Subtotal:	\$301,400.00
22	Well Equipping & Discharge Piping	at lest well #	Location	¢c0.000.00	£60.000.00
33	Well Site Grading and Earthwork	200	TON	\$60,000.00	\$60,000.00
35	Deen Well Pump Concrete Foundation	1	FA	\$15,000,00	\$15,000,00
36	Eurnish & Install 400 gpm Pump w/100 HP Motor	1	FA	\$50,000,00	\$50,000,00
37	Furnish & Install 36" Dia, RCP Dry Well	1	EA	\$17,500.00	\$17,500.00
38	FBE Steel Well Discharge Piping & Appurtenances	1	EA	\$45,000.00	\$45,000.00
39	Well Building Enclosures	1	EA	\$40,000.00	\$40,000.00
40	1,500 Gallon Hydropneumatic Tank & Concrete Footings	1	EA	\$65,000.00	\$65,000.00
41	275 Gallon Chlorine Storage Tank and Feed Pump	1	EA	\$10,000.00	\$10,000.00
42	FRP Chemical Storage Building & Concrete Foundation	1	EA	\$50,000.00	\$50,000.00
43	Administration Building	1	LS	\$150,000.00	\$150,000.00
44	Electrical Switchgear Foundation & Shade Structure	1	EA	\$30,000.00	\$30,000.00
45	Electrical and Controls including Site Lighting and SCADA	1	EA	\$200,000.00	\$200,000.00
46	Electric Utility Costs	1	EA	\$50,000.00	\$50,000.00
4/	System Painting	1	EA	\$10,000.00	\$10,000.00
40	Sile Fending w/Two Double Drive Gales	600		\$35.00 \$15.000.00	\$21,000.00
49			EA	\$15,000.00	\$15,000.00
	Well Equipping & Discharge Dising	At Test Well #	21.0004100	Subtotal:	\$851,000.00
50	Well Site Grading and Earthwork	at rest weil #		\$60,000,00	00,000,032
51	Well Site Agg. Base Ground Cover	300		\$75.00	\$22,500,00
52	Deen Well Pump Concrete Foundation	1	FA	\$15,000,00	\$15,000.00
53	Eurnish & Install 400 gpm Pump w/100 HP Motor	1	EA	\$50,000,00	\$50,000.00
54	Furnish & Install 36" Dia, RCP Dry Well	1	EA	\$17,500.00	\$17,500.00
55	FBE Steel Well Discharge Piping & Appurtenances	1	EA	\$45,000.00	\$45,000.00
56	Well Building Enclosures	1	EA	\$40,000.00	\$40,000.00
57	1,500 Gallon Hydropneumatic Tank & Concrete Footings	1	EA	\$65,000.00	\$65,000.00
58	275 Gallon Chlorine Storage Tank and Feed Pump	1	EA	\$10,000.00	\$10,000.00
59	FRP Chemical Storage Building & Concrete Foundation	1	EA	\$50,000.00	\$50,000.00
60	Electrical Switchgear Foundation & Shade Structure	1	EA	\$30,000.00	\$30,000.00
61	Electrical and Controls including Site Lighting and SCADA	1	EA	\$200,000.00	\$200,000.00
62	Electric Utility Costs	1	EA	\$50,000.00	\$50,000.00
63	Site Fancing	1	EA	\$10,000.00	\$10,000.00
65	Dite Fencing W/ I wo Double Drive Gates	600		\$35.00	\$21,000.00
co		1	EA	\$15,000.00	\$15,000.00
	2 MG Koleo Vollov Bood S	orage Tank Ci	te .	Subtotal:	\$701,000.00
50	Z MG Kelso Valley Road S	7 500		\$30.00	\$225,000,00
51	Gravel Rock Ground Cover for Access Road and Tank Site	1,000		\$75.00	\$75,000.00
52	2 MG Welded Steel Storage Tank & Concrete Ringwall Edg	1	IS	\$2,000 000 00	\$2,000.00
53	Site Electrical/SCADA	1	1.5	\$250,000,00	\$250,000,00
54	Electric Utility Costs	1	LS	\$40,000.00	\$40,000.00
55	Site Fencing w/Two Double Drive Gates	800	LF	\$35.00	\$28.000.00
56	Site Painting	1	LS	\$10,000.00	\$10,000.00
57	Tank Site Property Acquisition	1	LS	\$50,000.00	\$50,000.00
			-	Subtotal	\$2,678,000.00
	Bella Vista Drive Boo	ster Station			
58	Tank Site and Access Road Grading	2,000	CY	\$30.00	\$60,000.00
59	Gravel Rock Ground Cover for Access Road and Tank Site	500	TON	\$75.00	\$37,500.00
	Booster Station	1	LS	\$400,000.00	\$400,000.00
60	1 500 Gallon Hydropheumatic Tank w/Footings	1	LS	\$75,000.00	\$75,000.00
60 61	n,ooo Salleri Hyaropheanado Talik Mr Sodingo				
60 61 62	30k Gal AWWA D103 Storage Tank w/Concrete Ringwall Ftg.	1	LS	\$75,000.00	\$75,000.00
60 61 62 63	30k Gal AWWA D103 Storage Tank w/Concrete Ringwall Ftg. Site Electrical	1	LS LS	\$75,000.00 \$250,000.00	\$75,000.00 \$250,000.00
60 61 62 63 64	30k Gal AWWA D103 Storage Tank w/Concrete Ringwall Ftg. Site Electrical Electric Utility Costs	1 1 1	LS LS LS	\$75,000.00 \$250,000.00 \$40,000.00	\$75,000.00 \$250,000.00 \$40,000.00
60 61 62 63 64 65	30k Gal AWWA D103 Storage Tank w/Concrete Ringwall Ftg. Site Electrical Electric Utility Costs Site Fencing w/Two Double Drive Gates	1 1 1 800	LS LS LS LF	\$75,000.00 \$250,000.00 \$40,000.00 \$35.00	\$75,000.00 \$250,000.00 \$40,000.00 \$28,000.00
60 61 62 63 64 65 66 66	30k Gal AVWA D103 Storage Tank w/Concrete Ringwall Ftg. Site Electrical Electric Utility Costs Site Pencing w/Two Double Drive Gates Site Painting Parenter States Site Present: A suicibian	1 1 1 800 1	LS LS LS LF LS	\$75,000.00 \$250,000.00 \$40,000.00 \$35.00 \$10,000.00	\$75,000.00 \$250,000.00 \$40,000.00 \$28,000.00 \$10,000.00 \$40,000.00
60 61 62 63 64 65 66 66 67	30k Gal AWWA D103 Storage Tank w/Concrete Ringwall Ftg. Site Electrical Electric Utility Costs Site Fencing w/Two Double Drive Gates Site Painting Booster Station Site Property Acquisition	1 1 800 1 1	LS LS LS LF LS LS	\$75,000.00 \$250,000.00 \$40,000.00 \$35.00 \$10,000.00 \$40,000.00	\$75,000.00 \$250,000.00 \$40,000.00 \$28,000.00 \$10,000.00 \$40,000.00

	Weldon Regional Consolida	tion Wate	er Project		
	Project Alternat	tive #3			
	Engineer's Estim	nate			
Item No	Item Description	Quantity	<u>Unit</u>	Unit Cost	Extended Cost
00	Dedicated Fill Line to St	orage Tank		¢100.00	¢4 440 000 00
68	Furnish & Install 12" DR14 C900 PVC Pipe	11,100	LF	\$100.00	\$1,110,000.00
				Subtotal:	\$1,110,000.00
	Distribution System	Piping		¢100.00	¢0,000,000,00
69	Furnish & Install 12" DR14 C900 PVC Pipe	32,600		\$100.00	\$3,260,000.00
70	Furnish & Install 12" Gate Valve	10	EA	\$4,000.00	\$40,000.00
72	Putrish & Install Dry Barrel File Hydrani Assembly	1	EA	\$5,500.00	\$5,500.00
12	Remote Read Meter Equipment w/One Year Technical Support	- '	L3	\$12,500.00	\$12,500.00
				Subtotal:	\$3,318,000.00
70	Sierra View Restaurant & KOA C	ampground	lie-In	¢ 40,000,00	¢00.000.00
73	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
74	Furnish & Install Dry Barrel Fire Hydrant Assembly	2	EA	\$5,500.00	\$11,000.00
75	Furnish & Install 2" Long Meter Service	2	EA	\$4,750.00	\$9,500.00
74	24" O.D. Steel Cased Crossing under Hwy 178	100		\$500.00	\$50,000.00
/5	Well Abandonment per KCEHS Standards	2	EA	\$30,000.00	\$60,000.00
				Subtotal:	\$210,500.00
	Bella Vista Water System I	mprovements	3		****
76	Furnish & Install 6" DR14 C900 PVC Pipe	13,675		\$60.00	\$820,500.00
11	Furnish & Install Dry Barrel Fire Hydrant Assembly	15	EA	\$5,500.00	\$82,500.00
78	Furnish & Install 6" Gate Valve	22	EA	\$2,500.00	\$55,000.00
79	Furnish & Install 1" Long Meter Service	4/	EA	\$2,000.00	\$94,000.00
80	Pressure Reducing valve & Precast valit	2	EA	\$40,000.00	\$80,000.00
				Subtotal:	\$1,132,000.00
	Rainbird Water System In	provements		A 00.00	A 070 000 00
81	Furnish & Install 6" DR14 C900 PVC Pipe	6,200	LF	\$60.00	\$372,000.00
82	Furnish & Install Dry Barrel Fire Hydrant Assembly	13	EA	\$5,500.00	\$71,500.00
83	Furnish & Install 6" Gate Valve	9	EA	\$2,500.00	\$22,500.00
84	Pressure Reducing Valve & Precast Vault	1	EA	\$40,000.00	\$40,000.00
85	Furnish & Install 1" Long Meter Service	83	EA	\$2,000.00	\$166,000.00
86	VVell Abandonment per KCEHS Standards	2	EA	\$30,000.00	\$60,000.00
				Subtotal:	\$732,000.00
	Long Canyon Water System	Improvemen	ts		
87	Furnish & Install 6" DR14 C900 PVC Pipe	3,925	LF	\$70.00	\$274,750.00
88	Furnish & Install Dry Barrel Fire Hydrant Assembly	6	EA	\$5,500.00	\$33,000.00
89	Furnish & Install 6" Gate Valve	10	EA	\$2,500.00	\$25,000.00
90	Pressure Reducing Valve & Precast Vault	2	EA	\$40,000.00	\$80,000.00
91	Furnish & Install 1" Long Meter Service	67	EA	\$2,000.00	\$134,000.00
92	Well Abandonment per KCEHS Standards	1	EA	\$30,000.00	\$30,000.00
				Subtotal:	\$576,750.00
	Tradewinds Water Assoc	iation Tie-In			
93	Furnish & Install 6" DR14 C900 PVC Pipe	2,725	LF	\$60.00	\$163,500.00
94	System Lie-In and Pressure Reducing Valve	4	EA	\$40,000.00	\$160,000.00
95	Furnish & Install 1" Meter	236	EA	\$1,000.00	\$236,000.00
96	Existing Tradewinds USDA Loan		LS	\$300,000.00	\$300,000.00
97	Well Abandonment per KCEHS Standards	1	EA	\$30,000.00	\$30,000.00
				Subtotal:	\$889,500.00
				Subtotal:	\$14,421,200.00
	Contract Adr	ministration,	& Constructi	on Management:	\$1,081,590.00
			20	0% Contingency:	\$2,884,240.00
				Total:	\$18,387,030.00

*Existing wells to be abandoned in accordance with KCEHS Standards with Cement Sand Slurry
**Tradewinds existing water system infrastructure shall remain and shall be incorporated into the new regional water system
***Bella Vista's existing wells to remain for possible use as standby wells for the new regional water system

	Cost Estimates to Tie-In Potential Project	Participants to Cons	olidated Wa	ter System	
	Valley Estate	s P.O.A. Tie-In		-	
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	2,750	LF	\$100.00	\$275,000.00
				Subtotal:	\$355,000.00
			2	5% Contingency:	\$88,750.00
				Total:	\$443,750.00
	South Fork Middle Sch	ool Supply Line & Ti	e-In		
1	System Tie-In and Pressure Reducing Valve	1	EA	\$40,000.00	\$40,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	1,500	LF	\$100.00	\$150,000.00
				Subtotal:	\$190,000.00
			2	5% Contingency:	\$47,500.00
				Total:	\$237,500.00
	Weldon Methodist Chu	rch Supply Line & Ti	e-In		
1	System Tie-In and Pressure Reducing Valve	1	EA	\$40,000.00	\$40,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	175	LF	\$100.00	\$17,500.00
3	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
				Subtotal:	\$107,500.00
			2	5% Contingency:	\$26,875.00
				Total:	\$134,375.00
	South Fork Women's Club/South Fork	Elementary School S	Supply Line	& Tie-In	
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	475	LF	\$100.00	\$47,500.00
3	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
				Subtotal:	\$177,500.00
			2	5% Contingency:	\$44,375.00
				Total:	\$221,875.00
	Hillview Acres MWC	Supply Line & Tie-I	າ		
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	6,250	LF	\$100.00	\$625,000.00
				Subtotal:	\$705,000.00
			2	5% Contingency:	\$176,250.00
				Total:	\$881,250.00
	Lakeview Ranchos MV	VC Supply Line & Tie	e-In		
1	System Tie-In and Pressure Reducing Valve	3	EA	\$40,000.00	\$120,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	2,600	LF	\$100.00	\$260,000.00
				Subtotal:	\$380,000.00
			2	5% Contingency:	\$95,000.00
				Total:	\$475,000.00

Total Cost to Tie In All Surrounding Water Systems: \$2,393,750.00

	CAPITAL IMPROVEME	NT PLAN	I (CIP) f	or Projec	t Alternativ	e 3			
						Date:	1/13/2016		
					Syste	em ID No.:			
	System Name: Weldon Co	onsolidated V	Vater Com	pany	Service Cor	nnections: 🏻	436		
									MONTHLY
	*Enter information only in YELLOW sl	naded cells				AVG			RESERVE
	COMPONENT		UNIT	INSTALLED	LIFE,	ANNUAL	MONTHLY	PER	
ΩTY			COST	COST	YEARS	RESERVE	RESERVE	CUSTOMER	
2	Drilled Well, 16", steel casing	Depth: 2	275	1100	605000	60	10083.33	840.28	1.93
2	Wellhead Electrical Controls			100000	200000	40	5000.00	416.67	0.96
2	Well Pump, 100 HP			50000	100000	15	6666.67	555.56	1.27
3	Pressure Tank	Gallons:	1500	40.0	180000	60	3000.00	250.00	0.57
3	Storage Tank, Plastic	Gallons:	275	20.0	16500	10	1650.00	137.50	0.32
1	Storage Tank, Steel	Gallons:	2,000,000	0.6	1200000	<mark>60</mark>	20000.00	1666.67	3.82
1	Storage Tank, Steel	Gallons:	30,000	0.6	18000	<mark>50</mark>	360.00	30.00	0.07
2	Well Discharge Flow Meter, 8"			3500	7000	<mark>30</mark>	233.33	19.44	0.04
2	Hypochlorinator w/ Tank & Pump, Complete		3500	7000	10	700.00	58.33	0.13	
3,700	Pipe w/ sand bedding, 12" (Enter line	ar feet for qua	ntity)	<mark>55</mark>	2403500	100	24035.00	2002.92	4.59
26,525	Pipe w/ sand bedding, 6" (Enter linea	ir feet for quan	tity)	40	1061000	100	10610.00	884.17	2.03
37	Standpipe Hydrant, 2-1/2"			5000	185000	<mark>50</mark>	3700.00	308.33	0.71
1 36	Customer Meter w/ Box & Shutoff, Co	mplete		<u>500</u>	218000	25	8720.00	726.67	1.67
0	Distribution Valve, 12"			2200	22000	<mark>50</mark>	440.00	36.67	0.08
11	Distribution Valve, 6"			1500	61500	<mark>50</mark>	1230.00	102.50	0.24
30	Air & Vacuum Relief Valve, Typical			500	15000	20	750.00	62.50	0.14
)	Pressure Reducing Valve			10000	90000	20	4500.00	375.00	0.86
1	SCADA Upgrades			50000	50000	30	1666.67	138.89	0.32
1	Painting/Coating Upgrades			200000	200000	30	6666.67	555.56	1.27
	SUBTOTAL Existing CIP Costs				\$6,639,500.00		\$110,011.67	\$9,167.64	\$21.03
	Report Prepared by (Title): NOTE: Installed costs a	re averages ar	nd include al	I materials an	d contracted labor	r and equipm	ent.	Date:	

NOTES:

FIVE YEAR BUDGET PROJECTION - PROJECT ALTERNATIVE 3

INSTRUCTIONS: Yellow-shaded cells are for data entry; all other cells are locked except line item descriptions which can be changed if needed. Years 2 through 5 will be compounded automatically by the inflation factor in Cell G6.

	System Name:		Infl	ation Factor <mark>(%</mark>):	3.0	
	Weldon Consolidated Water Company		Sy	stem ID Number:		
LINE	EXPENSES AND SOURCE OF FUNDS	2016	2017	2018	2019	2020
1 0	PERATIONS AND MAINTENANCE (O&M) EXPENSES		_			_
2	Salaries and Benefits	50,000.00	51,500.00	53,045.00	54,636.35	56,275.4
3	Contract Operation and Maintenance	6,000.00	6,180.00	6,365.40	6,556.36	6,753.0
4	Power and Other Utilities	30,000.00	30,900.00	31,827.00	32,781.81	33,765.2
5	Fees Regulatory	5,000.00	5,150.00	5,304.50	5,463.64	5,627.5
6	Treatment Chemicals	5,000.00	5,150.00	5,304.50	5,463.64	5,627.5
7	Coliform Monitoring	3,500.00	3,605.00	3,713.15	3,824.54	3,939.2
8	Chemical Monitoring	7,500.00	7,725.00	7,956.75	8,195.45	8,441.3
9	Transportation	2,000.00	2,060.00	2,121.80	2,185.45	2,251.0
10	Materials, Supplies, and Parts	5,000.00	5,150.00	5,304.50	5,463.64	5,627.5
11	Office Supplies	4,000.00	4,120.00	4,243.60	4,370.91	4,502.0
12	Miscellaneous	4,000.00	4,120.00	4,243.60	4,370.91	4,502.0
14	Total O&M Expenses:	122,000.00	125,660.00	129,429.80	133,312.69	137,312.0
16 G	ENERAL AND ADMINISTRATIVE EXPENSES					
17	Engineering and Professional Services	10.000.00	10.300.00	10.609.00	10.927.27	11.255.0
18	Depreciation and Amortization	0.00	0.00	0.00	0.00	0.0
19		10,000.00	10,300.00	10,609.00	10,927.27	11,255.0
20	Existing Contribution to CIP (From CIP)	110,011.67	113,312.02	116,711.38	120,212.72	123,819.1
21	O&M Reserve	2,500.00	2,575.00	2,652.25	2,731.82	2,813.7
22	Other Reserves	2,000.00	2,060.00	2,121.80	2,185.45	2,251.0
23	Miscellaneous	100.00	103.00	106.09	109.27	112.5
26	** Debt Service	19,200.00	19,200.00	19,200.00	19,200.00	19,200.0
27	Total General and Administrative Expenses:	153,811.67	157,850.02	162,009.52	166,293.80	170,706.6
28	TOTAL EXPENSES (Line 14+ Line 27):	275,811.67	283,510.02	291,439.32	299,606.50	308,018.6
30 R	EVENUES RECEIVED					
31	Cash Revenues (Water Rates)	275,811.67	283,510.02	291,439.32	299,606.50	308,018.6
32	** Depreciation Reserves	0.00	0.00	0.00	0.00	0.0
33	** Fees and Services	0.00	0.00	0.00	0.00	0.0
34	** Hookup Charges	0.00	0.00	0.00	0.00	0.0
35	** Withdrawal from CIP or Other Reserves	0.00	0.00	0.00	0.00	0.0
36	** Other Fund Sources: Interest, Etc.	0.00	0.00	0.00	0.00	0.0
37	** Grants	0.00	0.00	0.00	0.00	0.0
38	** SRF Loan	0.00	0.00	0.00	0.00	0.0
39	** Business Loans	0.00	0.00	0.00	0.00	0.0
40	TOTAL REVENUE (Lines 31 through 39):	275,811.67	283,510.02	291,439.32	299,606.50	308,018.6
41	NET LOSS OR GAIN:	0.00	0.00	0.00	0.00	0.0
Report	Prepared by (Name and Title)				Date:	

(** Inflation factor not applied to future year projections)	2016	2017	2018	2019	2020
Number of Customers:	436	436	436	436	436
Average Monthly Revenue Needed Per Customer:	52.72	54.19	55.70	57.26	58.87

(total expenses ÷ # of customers ÷ 12)

APPENDIX L Project Alternative 4 System Layout Map

APPENDIX M Project Alternative 4 Capital and O&M Cost Estimates

Project Alternative #4								
em No.	Engineer's Est Item Description	imate Quantity	Unit	Unit Cost	Extended Co			
1	Mobilization/Demobilization/Cleanup	1	LS	\$400,000.00	\$400,000.00			
3	Permitting with KCBID & State	1	LS	\$20.000.00	\$75,000.00			
4	Traffic Control	1	LS	\$100,000.00	\$100,000.00			
5	Kern County Potable Water Pipeline Franchise Permit	1	LS	\$5,000.00	\$5,000.00			
0	Califans Potable Water Pipeline Pipeline Pranchise Permit		1.5	Subtotal:	\$610,000.00			
	Construct New Well at Tes	Well #1 Locatio	n					
7	36" Conductor Casing	50	LF	\$1,000.00	\$50,000.00			
9	Ream Pilot Hole to 28"	250	LF	\$150.00	\$37,500.00			
10	16" I.D. X 5/16" COR-TEN Blank Casing	110	LF	\$300.00	\$33,000.00			
11	16" I.D. X 5/16" COR-TEN Perforated Casing	120	LF	\$400.00	\$48,000.00			
12	2" Sounding Tube	105	LF	\$25.00	\$3,150.00			
14	Gravel Envelope (4x16 Colorado Silica Sand)	130	LF	\$100.00	\$13,000.00			
15	Cement Seal	50	LF	\$110.00	\$5,500.00			
16	Pumping and Surging Development	48	HRS	\$500.00	\$30,000.00			
18	Production Testing	24	HRS	\$450.00	\$10,800.00			
19	Well Video	1	LS	\$3,000.00	\$3,000.00			
-	Construct New Well at Test	Well #2 Locatio	n	Subtotal:	\$295,550.00			
20	36" Conductor Casing	50	LF	\$1,000.00	\$50,000.00			
22	Ream Pilot Hole to 28"	270	LF	\$150.00	\$40,500.00			
23	16" I.D. X 5/16" COR-TEN Blank Casing	180	LF	\$300.00	\$54,000.00			
24	16" I.D. X 5/16" COR-TEN Perforated Casing	70	LF	\$400.00	\$28,000.00			
25 26	2" Sounding Tube	1/5	LF	\$30.00	\$5,250.00			
27	Gravel Envelope (4x16 Colorado Silica Sand)	80	LF	\$100.00	\$8,000.00			
28	Cement Seal	50	LF	\$110.00	\$5,500.00			
29	Swabbing and Airlifting Development	60	HRS	\$500.00	\$30,000.00			
31	Production Testing	24	HRS	\$450.00	\$21,800.00			
32	Well Video	1	LS	\$3,000.00	\$3,000.00			
-	Well Equipping & Discharge Piping	at Test Well #1	Location	Subtotal:	\$301,400.00			
33	Well Site Grading and Earthwork	1	EA	\$60,000.00	\$60,000.00			
34	Well Site Agg. Base Ground Cover	300	TON	\$75.00	\$22,500.00			
36	Furnish & Install 400 gpm Pump w/100 HP Motor	1	EA	\$50,000.00	\$50,000.00			
37	Furnish & Install 36" Dia. RCP Dry Well	1	EA	\$17,500.00	\$17,500.00			
38	FBE Steel Well Discharge Piping & Appurtenances	1	EA	\$45,000.00	\$45,000.00			
40	1.500 Gallon Hydropneumatic Tank & Concrete Footings	1	EA	\$65,000.00	\$65.000.00			
41	275 Gallon Chlorine Storage Tank and Feed Pump	1	EA	\$10,000.00	\$10,000.00			
42	FRP Chemical Storage Building & Concrete Foundation	1	EA	\$50,000.00	\$50,000.00			
43	Administration Building	1	EA	\$150,000.00	\$150,000.00			
45	Electrical and Controls including Site Lighting and SCADA	1	EA	\$200,000.00	\$200,000.00			
46	Electric Utility Costs	1	EA	\$50,000.00	\$50,000.00			
47	System Painting Site Fencing w/Two Double Drive Gates	600	LF	\$10,000.00	\$10,000.00			
49	Well Head Treatment System for Fe/Mn Removal	1	LS	\$553,000.00	\$553,000.00			
50	Pipe Insulation w/Heat Trace	1	EA	\$15,000.00 Subtotal:	\$15,000.00			
	Well Equipping & Discharge Piping	at Test Well #2	Location	Cubiotai.	φ1,404,000.0			
51 52	Well Site Grading and Earthwork	1	EA	\$60,000.00 \$75.00	\$60,000.00			
53	Deep Well Pump Concrete Foundation	- 1	EA	\$15,000.00	\$15,000.00			
54	Furnish & Install 400 gpm Pump w/100 HP Motor	1	EA	\$50,000.00	\$50,000.00			
55	Furnish & Install 36" Dia. RCP Dry Well	1	EA	\$17,500.00	\$17,500.00			
57	Well Building Enclosures		EA	\$40,000.00	\$40.000.00			
58	1,500 Gallon Hydropneumatic Tank & Concrete Footings	1	EA	\$65,000.00	\$65,000.00			
59	275 Gallon Chlorine Storage Tank and Feed Pump	1	EA	\$10,000.00	\$10,000.00			
61	Electrical Switchgear Foundation & Shade Structure	1	EA	\$30,000.00	\$30,000.00			
62	Electrical and Controls including Site Lighting and SCADA	1	EA	\$200,000.00	\$200,000.00			
63 64	Electric Utility Costs	1	EA	\$50,000.00	\$50,000.00			
65	Site Fencing w/Two Double Drive Gates	600	LF	\$35.00	\$21,000.00			
66	Well Head Treatment System for Fe/Mn Removal	1	LS	\$553,000.00	\$553,000.00			
67	Pipe Insulation w/Heat Trace	1	EA	\$15,000.00 Subtotal:	\$15,000.00			
	1 MG Kelso Valley Road S	torage Tank Site	_	Subiolai.	\$1,234,000.0			
68 69	Tank Site and Access Road Grading	7,500	CY	\$30.00	\$225,000.00			
70	1 MG Welded Steel Storage Tank & Concrete Ringwall Fdn	1	LS	\$1,000,000.00	\$1,000.000.0			
71	Site Electrical/SCADA	1	LS	\$250,000.00	\$250,000.00			
72	Electric Utility Costs	1	LS	\$40,000.00	\$40,000.00			
74	Site Painting	1	LS	\$10,000.00	\$10,000.00			
75	Tank Site Property Acquisition	1	LS	\$50,000.00	\$50,000.00			
-	1 MG Bella Vista Storage Tank	Site & Booster S	tation	Subtotal:	\$1,678,000.0			
76	Tank Site and Access Road Grading	4,000	CY	\$30.00	\$120,000.00			
78	1 MG Welded Steel Storage Tank & Concrete Ringwall Edu	1	LS	\$75.00	\$52,500.00			
79	Booster Station	1	LS	\$400,000.00	\$400,000.00			
80	Chemical Storage Building	1	LS	\$50,000.00	\$50,000.00			
81	1,500 Gallon Hydropneumatic Tank & Concrete Footings	1	LS	\$75,000.00	\$75,000.00			
82	SILE LIEULIUdi/JUADA		10	\$300,000.00	\$300,000.00			
82 83	Electric Utility Costs	1 1	LO	\$25,000.00	\$25.000.00			
82 83 84	Electric Utility Costs System Painting	1	LS	\$12,500.00	\$12,500.00			
82 83 84 85	Electric Utility Costs System Painting Tank Site Property Acquisition Dise leaving will be trace	1 1 1	LS LS	\$23,000.00 \$12,500.00 \$50,000.00	\$25,000.00 \$12,500.00 \$50,000.00			

-	weidon Regional Consolid	ation Water	Project		_
-	Project Alterna	tive #4	_		
tem No	Litem Description	nate Quantity	Unit	Unit Cost	Extended Cos
tenn reo.	Distribution System	n Piping	Unit	Unit Cost	Extended 00.
87	Furnish & Install 12" DR14 C900 PVC Pipe	34,675	LF	\$100.00	\$3,467,500.00
88	Furnish & Install Dry Barrel Fire Hydrant Assembly	1	EA	\$5,500.00	\$5,500.00
89	Furnish & Install 12" Gate Valve	10	EA	\$4,000.00	\$40,000.00
90	Remote Read Meter Equipment w/One Year Technical Support	1	LS	\$12,500.00	\$12,500.00
		4 10		Subtotal:	\$3,525,500.0
	Sierra View Restaurant & KOA	Campground Ti	ie-In		
91	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
92	Furnish & Install Dry Barrel Fire Hydrant Assembly	2	EA	\$5,500.00	\$11,000.00
93	Furnish & Install 2" Long Meter Service	2	EA	\$4,750.00	\$9,500.00
94	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
95	Well Abandonment per KCEHS Standards	2	EA	\$30,000.00	\$60,000.00
		1.0		Subtotal:	\$210,500.00
	Bella Vista Water System	Improvements			
96	Furnish & Install 6" DR14 C900 PVC Pipe	13,675	LF	\$60.00	\$820,500.00
97	Furnish & Install Dry Barrel Fire Hydrant Assembly	15	EA	\$5,500.00	\$82,500.00
98	Furnish & Install 6" Gate Valve	22	EA	\$3,000.00	\$66,000.00
99	Furnish & Install 1" Long Meter Service	- 47	EA	\$2,000.00	\$94,000.00
100	Pressure Reducing Valve & Precast Vault	2	EA	\$40,000.00	\$80,000.00
_	Delabled Were Destand		_	Subtotal:	\$1,143,000.0
404	Rainbird water System I	nprovements	15	#00.00	\$070.000 of
101	Furnish & Install 6" DR14 C900 PVC Pipe	6,200		\$60.00	\$372,000.00
102	Furnish & Install Dry Barrel Fire Hydranit Assembly	- 13	EA	\$5,500.00	\$71,500.00
103	Procesure Reducing Value & Procest Vault	9	EA	\$3,000.00	\$27,000.00
104	Furnish & Install 1" Long Meter Service	83	EA	\$2,000,00	\$40,000.00
105	Well Abandonment per KCEHS Standards	2	EA	\$30,000,00	\$60,000,00
100	Weil Abandonment per Kollino Standards		LA	Subtotal:	\$736 500.00
-	Long Canvon Water System	Improvements		Subiotal.	\$730,300.00
107	Furnish & Install 6" DR14 C900 PVC Pine	3 925	IF	\$70.00	\$274 750 00
108	Furnish & Install Dry Barrel Fire Hydrant Assembly	6	FA	\$5,500,00	\$33,000,00
109	Furnish & Install 6" Gate Valve	10	FA	\$3,000,00	\$30,000,00
110	Pressure Reducing Valve & Precast Vault	2	EA	\$40.000.00	\$80,000.00
111	Furnish & Install 1" Long Meter Service	67	EA	\$2,000.00	\$134.000.00
112	Well Abandonment per KCEHS Standards	1	EA	\$30,000,00	\$30,000,00
		71		Subtotal:	\$581,750.00
_	Tradewinds Water Sys	stem Tie-in		Cubiotai	0001,100.00
113	Furnish & Install 6" DR14 C900 PVC Pipe	2,725	LF	\$60.00	\$163,500.00
114	System Tie-In and Pressure Reducing Valve	4	EA	\$40,000.00	\$160,000.00
115	Furnish & Install 1" Meter	236	EA	\$1,000.00	\$236,000.00
116	Existing Tradewinds USDA Loan	1	LS	\$300,000.00	\$300,000.00
117	Well Abandonment per KCEHS Standards	1	EA	\$30,000.00	\$30,000.00
			_	Subtotal:	\$889,500.00
		1		Subtotal:	\$14,729,700.0
	Design, Contract A	dministration, 8	Construct	ion Management:	\$1,104,727.5
			2	0% Contingency:	\$2,945,940.0

**Xisting wells to be abandoned in accordance with KCEHS Standards with Cement Sand Slurry
**Tradewinds existing water system infrastructure underground piping shall remain and shall be incorporated into the new regional water system
***Bella Vista's existing wells to remain for possible use as standby wells for the new regional water system

	Cost Estimates to Tie-In Potential Project Pa	rticipants to Cons	olidated Wat	er System	
	Valley Estates P	.O.A. Tie-In			
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	2,750	LF	\$100.00	\$275,000.00
				Subtotal:	\$355,000.00
			2	5% Contingency:	\$88,750.00
				Total:	\$443,750.00
	South Fork Middle School	I Supply Line & Ti	e-In		
1	System Tie-In and Pressure Reducing Valve	1	EA	\$40,000.00	\$40,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	1,500	LF	\$100.00	\$150,000.00
				Subtotal:	\$190,000.00
			2	5% Contingency:	\$47,500.00
				Total:	\$237,500.00
	Weldon Methodist Church	Not Supply Line & Tie	e-In		
1	System Tie-In and Pressure Reducing Valve	1	EA	\$40,000.00	\$40,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	175	LF	\$100.00	\$17,500.00
3	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
				Subtotal:	\$107,500.00
			2	5% Contingency:	\$26,875.00
				Total:	\$134,375.00
	South Fork Women's Club/South Fork Ele	mentary School S	Supply Line 8	Tie-In	
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	475	LF	\$100.00	\$47,500.00
3	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
				Subtotal:	\$177,500.00
			2	5% Contingency:	\$44,375.00
				Total:	\$221,875.00
	Hillview Acres MWC Su	upply Line & Tie-Ir	า		
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	6,250	LF	\$100.00	\$625,000.00
				Subtotal:	\$705,000.00
			2	5% Contingency:	\$176,250.00
				Total:	\$881,250.00
	Lakeview Ranchos MWC	Supply Line & Tie	⊦-In		
1	System Tie-In and Pressure Reducing Valve	3	EA	\$40,000.00	\$120,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	2,600	LF	\$100.00	\$260,000.00
				Subtotal:	\$380,000.00
			2	5% Contingency:	\$95,000.00
				Total:	\$475,000.00

Total Cost to Tie In All Surrounding Water Systems: \$2,393,750.00

System Name: Weldon Co Enter information only in YELLOW sh COMPONENT Drilled Well, 16", steel casing	nsolidated Naded cells	Water Comp	Dany	Syste Service Cor	em ID No.:			
System Name: Weldon Co Enter information only in YELLOW sh COMPONENT Drilled Well, 16", steel casing	nsolidated N naded cells	Nater Comp	bany	Service Cor	nections:			
Enter information only in YELLOW sh COMPONENT Drilled Well, 16", steel casing	aded cells					136		
Enter information only in YELLOW sh COMPONENT Drilled Well, 16", steel casing	aded cells							
COMPONENT Drilled Well, 16", steel casing		Enter information only in YELLOW shaded cells						RESERVE
COMPONENT Drilled Well, 16", steel casing					LIFE.	ANNUAL	MONTHLY	PER
Drilled Well, 16", steel casing	COMPONENT		COST	COST	YEARS	RESERVE	RESERVE	CUSTOMER
	Depth:	275	1100	605000	60	10083.33	840.28	1.93
Vellhead Electrical Controls			100000	200000	40	5000.00	416.67	0.96
Well Pump, 100 HP			50000	100000	15	6666.67	555.56	1.27
Pressure Tank	Gallons:	1500	40.0	180000	60	3000.00	250.00	0.57
Storage Tank, Plastic	Gallons:	275	20.0	16500	10	1650.00	137.50	0.32
Storage Tank, Steel	Gallons:	1,000,000	0.6	1200000	<mark>60</mark>	20000.00	1666.67	3.82
Vell Discharge Flow Meter, 8"	-		<u>3500</u>	7000	<mark>30</mark>	233.33	19.44	0.04
Hypochlorinator w/ Tank & Pump, Complete			<mark>3500</mark>	7000	<mark>10</mark>	700.00	58.33	0.13
Pipe w/ sand bedding, 12" (Enter linear feet for quantity)		<u>55</u>	1907125	100	19071.25	1589.27	3.65	
Pipe w/ sand bedding, 8" (Enter linea	r feet for quai	ntity)	40	1061000	100	10610.00	884.17	2.03
Vell Head Treatment System for Fe/N	In Removal		325000	650000	<mark>50</mark>	13000.00	1083.33	2.48
Standpipe Hydrant, 2-1/2"			5000	185000	<mark>50</mark>	3700.00	308.33	0.71
Customer Meter w/ Box & Shutoff, Cor	mplete		500	218000	25	8720.00	726.67	1.67
Distribution Valve, 12"			2200	22000	<mark>50</mark>	440.00	36.67	0.08
Distribution Valve, 6"			<u>1500</u>	61500	<mark>50</mark>	1230.00	102.50	0.24
ir & Vacuum Relief Valve, Typical			500	15000	20	750.00	62.50	0.14
Pressure Reducing Valve			10000	90000	20	4500.00	375.00	0.86
SCADA Upgrades			50000	50000	30	1666.67	138.89	0.32
ainting/Coating Upgrades			200000	200000	50	4000.00	333.33	0.76
					_			
SUBTOTAL Existing CIP Costs			2	\$6,775,125.00		\$115,021.25	\$9,585.10	\$21.98
	ressure Tank torage Tank, Plastic torage Tank, Steel /ell Discharge Flow Meter, 8" ypochlorinator w/ Tank & Pump, Cor ipe w/ sand bedding, 12" (Enter linea ipe w/ sand bedding, 8" (Enter linea /ell Head Treatment System for Fe/M tandpipe Hydrant, 2-1/2" ustomer Meter w/ Box & Shutoff, Cor istribution Valve, 12" istribution Valve, 6" ir & Vacuum Relief Valve, Typical ressure Reducing Valve CADA Upgrades ainting/Coating Upgrades UBTOTAL Existing CIP Costs eport Prepared by (Title):	ressure Tank Gallons: torage Tank, Plastic Gallons: torage Tank, Steel Gallons: /ell Discharge Flow Meter, 8" gallons: ypochlorinator w/ Tank & Pump, Complete ipe w/ sand bedding, 12" (Enter linear feet for quarities of the second secon	ressure Tank Gallons: 1500 torage Tank, Plastic Gallons: 275 torage Tank, Steel Gallons: 1,000,000 /ell Discharge Flow Meter, 8" ypochlorinator w/ Tank & Pump, Complete ipe w/ sand bedding, 12" (Enter linear feet for quantity) ipe w/ sand bedding, 8" (Enter linear feet for quantity) /ell Head Treatment System for Fe/Mn Removal tandpipe Hydrant, 2-1/2" ustomer Meter w/ Box & Shutoff, Complete istribution Valve, 12" istribution Valve, 6" tandpipe Hydrant, 2-1/2" ir & Vacuum Relief Valve, Typical ressure Reducing Valve CADA Upgrades ainting/Coating Upgrades ustomer Deter Vrepared by (Title):	ressure TankGallons: 150040.0torage Tank, PlasticGallons: 27520.0torage Tank, SteelGallons: 1,000,0000.6/ell Discharge Flow Meter, 8"3500ypochlorinator w/ Tank & Pump, Complete3500ipe w/ sand bedding, 12" (Enter linear feet for quantity)55ipe w/ sand bedding, 8" (Enter linear feet for quantity)40/ell Head Treatment System for Fe/Mn Removal325000tandpipe Hydrant, 2-1/2"5000ustomer Meter w/ Box & Shutoff, Complete500istribution Valve, 12"2200istribution Valve, 6"1500ir & Vacuum Relief Valve, Typical500cADA Upgrades50000ustomer Meter with Valve200000ustomer Meter with Valve200000complete5000istribution Valve, 6"10000complete5000eport Prepared by (Title):	Gallons: 1500 40.0 180000 torage Tank, Plastic Gallons: 275 20.0 16500 torage Tank, Steel Gallons: 1,000,000 0.6 1200000 /ell Discharge Flow Meter, 8" 3500 7000 7000 ypochlorinator w/ Tank & Pump, Complete 3500 7000 ipe w/ sand bedding, 12" (Enter linear feet for quantity) 55 1907125 ipe w/ sand bedding, 8" (Enter linear feet for quantity) 40 1061000 /ell Head Treatment System for Fe/Mn Removal 325000 650000 tandpipe Hydrant, 2-1/2" 5000 185000 ustomer Meter w/ Box & Shutoff, Complete 500 218000 istribution Valve, 6" 1500 61500 ir & Vacuum Relief Valve, Typical 500 15000 ressure Reducing Valve 10000 90000 CADA Upgrades 50000 50000 ainting/Coating Upgrades 200000 200000 eport Prepared by (Title):	Gallons: 1500 40.0 180000 60 torage Tank, Plastic Gallons: 275 20.0 16500 10 torage Tank, Steel Gallons: 1,000,000 0.6 1200000 60 Vell Discharge Flow Meter, 8" 3500 7000 30 30 300	ressure Tank Gallons: 1500 40.0 180000 60 3000.00 torage Tank, Plastic Gallons: 275 20.0 16500 10 1650.00 torage Tank, Steel Gallons: 1,000,000 0.6 1200000 60 20000.00 fell Discharge Flow Meter, 8" 3500 7000 30 233.33 ypochlorinator w/ Tank & Pump, Complete 3500 7000 10 700.00 ipe w/ sand bedding, 12" (Enter linear feet for quantity) 55 1907125 100 19071.25 ipe w/ sand bedding, 8" (Enter linear feet for quantity) 40 1061000 100 10610.00 fell Head Treatment System for Fe/Mn Removal 325000 650000 50 13000.00 tandpipe Hydrant, 2-1/2" 500 185000 25 8720.00 istribution Valve, 6" 1500 61500 50 1230.00 istribution Valve, 6" 1500 61500 50 1230.00 ir & Vacuum Relief Valve, Typical 5000 15000 20 750.00 ressure Reducing Valve 10000 90000 20 4500.00	ressure rank Gallons: 1500 40.0 180000 60 3000.00 250.00 torage Tank, Plastic Gallons: 275 20.0 16500 10 1650.00 137.50 torage Tank, Steel Gallons: 1,000,000 0.6 1200000 60 20000.00 1666.67 (ell Discharge Flow Meter, 8" 3500 7000 30 233.33 19.44 ypochlorinator w/ Tank & Pump, Complete 3500 7000 10 700.00 58.33 ipe w/ sand bedding, 12" (Enter linear feet for quantity) 55 1907125 100 19071.25 1589.27 ipe w/ sand bedding, 8" (Enter linear feet for quantity) 40 1061000 100 10610.00 884.17 fell Head Treatment System for Fe/Mn Removal 325000 650000 50 13000.00 1083.33 tandpipe Hydrant, 2-1/2" 5000 185000 50 3700.00 308.33 ustomer Meter w/ Box & Shutoff, Complete 5000 218000 25 8720.00 726.67 istribution Valv

NOTES:

FIVE YEAR BUDGET PROJECTION - PROJECT ALTERNATIVE 4

INSTRUCTIONS: Yellow-shaded cells are for data entry; all other cells are locked except line item descriptions which can be changed if needed. Years 2 through 5 will be compounded automatically by the inflation factor in Cell G6.

	System Name: Weldon Consolidated Water Company		Infla Sy	ation Factor (%): stem ID Number:	3.0	
LINE	EXPENSES AND SOURCE OF FUNDS	2016	2017	2018	2019	2020
1 0	DERATIONS AND MAINTENANCE (0&M) EXPENSES					
2	Salaries and Benefits	50.000.00	51.500.00	53.045.00	54.636.35	56.275.44
3	Contract Operation and Maintenance	6.000.00	6,180.00	6.365.40	6,556,36	6.753.05
4	Power and Other Utilities	30,000.00	30,900.00	31,827.00	32,781.81	33,765.26
5	Fees Regulatory	5,000.00	5,150.00	5,304.50	5,463.64	5,627.54
6	Treatment Chemicals	5,000.00	5,150.00	5,304.50	5,463.64	5,627.54
7	Coliform Monitoring	3,500.00	3,605.00	3,713.15	3,824.54	3,939.28
8	Chemical Monitoring	7,500.00	7,725.00	7,956.75	8,195.45	8,441.32
9	Wellhead Treatment for Fe/Mn Removal	11,500.00	11,845.00	12,200.35	12,566.36	12,943.35
10	Transportation	2,000.00	2,060.00	2,121.80	2,185.45	2,251.02
11	Materials, Supplies, and Parts	<u>5,000.00</u>	5,150.00	5,304.50	5,463.64	5,627.54
12	Office Supplies	4,000.00	4,120.00	4,243.60	4,370.91	4,502.04
12	Miscellaneous	4,000.00	4,120.00	4,243.60	4,370.91	4,502.04
14	Total O&M Expenses:	133,500.00	137,505.00	141,630.15	145,879.05	150,255.43
16	SENERAL AND ADMINISTRATIVE EXPENSES					
17	Engineering and Professional Services	10,000.00	10,300.00	10,609.00	10,927.27	11,255.09
18	Depreciation and Amortization	0.00	0.00	0.00	0.00	0.00
19	Insurance	10,000.00	10,300.00	10,609.00	10,927.27	11,255.09
20	Existing Contribution to CIP (From CIP)	115,021.25	118,471.89	122,026.04	125,686.83	129,457.43
21	O&M Reserve	2,500.00	2,575.00	2,652.25	2,731.82	2,813.7
22	Other Reserves	2,000.00	2,060.00	2,121.80	2,185.45	2,251.02
23	Miscellaneous	100.00	103.00	106.09	109.27	112.5
26	** Debt Service	19,200.00	19,200.00	19,200.00	19,200.00	19,200.00
27	Total General and Administrative Expenses:	158,821.25	163,009.89	167,324.18	171,767.91	176,344.9
28	TOTAL EXPENSES (Line 14+ Line 27):	292,321.25	300,514.89	308,954.33	317,646.96	326,600.37
30 F	REVENUES RECEIVED					
31	Cash Revenues (Water Rates)	292,321.25	300,514.89	308,954.33	317,646.96	326,600.3
32	** Depreciation Reserves	0.00	0.00	0.00	0.00	0.0
33	** Fees and Services	0.00	0.00	0.00	0.00	0.0
34	** Hookup Charges	0.00	0.00	0.00	0.00	0.00
35	** Withdrawal from CIP or Other Reserves	0.00	0.00	0.00	0.00	0.00
36	** Other Fund Sources: Interest, Etc.	0.00	0.00	0.00	0.00	0.00
37	** Grants	0.00	0.00	0.00	0.00	0.0
38	** SRF Loan	0.00	0.00	0.00	0.00	0.0
39	** Business Loans	0.00	0.00	0.00	0.00	0.00
40	TOTAL REVENUE (Lines 31 through 39):	292,321.25	300,514.89	308,954.33	317,646.96	326,600.37
41	NET LOSS OR GAIN:	0.00	0.00	0.00	0.00	0.00
Report	Prepared by (Name and Title):				Date:	

(** Inflation factor not applied to future year projections)	2016	2017	2018	2019	2020
Number of Customer <mark>s:</mark>	436	436	436	436	436
Average Monthly Revenue Needed Per Customer:	55.87	57.44	59.05	60.71	62.42

(total expenses ÷ # of customers ÷ 12)

APPENDIX N Project Alternative 5 System Layout Map

APPENDIX O Project Alternative 5 Capital and O&M Cost Estimates

-	Weldon Regional Consoli Project Altern	ation Water ative #5	Project		_
tem No.	Item Description Engineer's Es	Quantity	Unit	Unit Cost	Extended Co
1	Mobilization/Demobilization/Cleanup	1	LS	\$400,000.00	\$400,000.00
2	Potholing of Existing Utilities	1	LS	\$75,000.00	\$75,000.00
4	Traffic Control		LS	\$20,000.00	\$20,000.00
5	Kern County Potable Water Pipeline Franchise Permit	1	LS	\$2,500.00	\$2,500.00
6	Caltrans Potable Water Pipeline Pipeline Franchise Permit	1	LS	\$10,000.00	\$10,000.00
1.1			_	Subtotal:	\$607,500.00
7	Construct New Well at Tes	t Well #1 Locatio	n IF	\$1 000 00	\$50,000,00
8	18" Pilot Hole Construction	250	LF	\$150.00	\$37.500.00
9	Ream Pilot Hole to 28"	250	LF	\$150.00	\$37,500.00
10	16" I.D. X 5/16" COR-TEN Blank Casing	110	LF	\$300.00	\$33,000.00
11	16" I.D. X 5/16" COR-TEN Perforated Casing	120	LF	\$400.00	\$48,000.00
12	4" Gravel Feed Tube	105	LF	\$30.00	\$3,150.00
14	Gravel Envelope (4x16 Colorado Silica Sand)	130	LF	\$25.00	\$2,500.00
15	Cement Seal	50	LF	\$110.00	\$5,500.00
16	Swabbing and Airlifting Development	60	HRS	\$500.00	\$30,000.00
17	Pumping and Surging Development	48	HRS	\$450.00	\$21,600.00
18	Production Testing	24	HRS	\$450.00	\$10,800.00
19	Well Video	1	LS	\$3,000.00	\$3,000.00
-	Construct New Well at Tes	t Well #2 Locatio	n	Subiolai.	\$295,550.00
20	36" Conductor Casing	50	LF	\$1,000.00	\$50,000.00
21	18" Pilot Hole Construction	270	LF	\$150.00	\$40,500.00
22	Ream Pilot Hole to 28"	270	LF	\$150.00	\$40,500.00
23	16" LD X 5/16 COR-TEN Blank Casing	180		\$300.00 \$400.00	\$28,000.00
25	4" Gravel Feed Tube	175	LF	\$30.00	\$5.250.00
26	2" Sounding Tube	170	LF	\$25.00	\$4,250.00
27	Gravel Envelope (4x16 Colorado Silica Sand)	80	LF	\$100.00	\$8,000.00
28	Cement Seal	50	LF	\$110.00	\$5,500.00
29	Swabbing and Airlifting Development	60	HRS	\$500.00	\$30,000.00
30	Pumping and Surging Development	48	HRS	\$450.00	\$21,600.00
31	Well Video	24	HKS	\$450.00	\$10,800.00
02				Subtotal:	\$301,400.00
	Well Equipping & Discharge Pipin	g at Test Well #1	Location		
33	Well Site Grading and Earthwork	1	LS	\$60,000.00	\$60,000.00
34	Well Site Agg. Base Ground Cover	300	TON	\$75.00	\$22,500.00
35	Euroish & Install 400 gpm Pump w/100 HP Motor	1	EA	\$15,000.00	\$15,000.00
37	Furnish & Install 36" Dia RCP Dry Well		FA	\$17,500,00	\$17,500.00
38	FBE Steel Well Discharge Piping & Appurtenances	1	EA	\$45,000.00	\$45,000.00
39	Well Building Enclosures	1	EA	\$40,000.00	\$40,000.00
40	1,500 Gallon Hydropneumatic Tank & Concrete Footings	1	EA	\$65,000.00	\$65,000.00
41	275 Gallon Chlorine Storage Tank and Feed Pump	1	EA	\$10,000.00	\$10,000.00
42	Administration Building	1	LS	\$150,000.00	\$150,000.00
44	Electrical Switchgear Foundation & Shade Structure	1	EA	\$30,000,00	\$30,000.00
45	Electrical and Controls including Site Lighting and SCADA	1	EA	\$200,000.00	\$200,000.00
46	Electric Utility Costs	1	EA	\$50,000.00	\$50,000.00
47	System Painting	1	EA	\$10,000.00	\$10,000.00
48	Site Fencing w/Two Double Drive Gates	600	LF	\$35.00	\$21,000.00
43			10	Subtotal:	\$851,000.00
	Well Equipping & Discharge Pipin	g at Test Well #2	Location		
50	Well Site Grading and Earthwork	1	LS	\$60,000.00	\$60,000.00
51	Well Site Agg. Base Ground Cover	300	TON	\$75.00	\$22,500.00
52	Euroish & Install 400 gpm Pump w/100 HP Motor	1	EA	\$15,000.00	\$15,000.00
54	Furnish & Install 36" Dia. RCP Dry Well	1	EA	\$17,500.00	\$17,500.00
55	FBE Steel Well Discharge Piping & Appurtenances	1	EA	\$45,000.00	\$45,000.00
56	Well Building Enclosures	1	EA	\$40,000.00	\$40,000.00
57	1,500 Gallon Hydropneumatic Tank & Concrete Footings	1	EA	\$65,000.00	\$65,000.00
50	ERP Chemical Storage Building & Concrete Foundation		EA	\$10,000.00	\$10,000.00
60	Electrical Switchgear Foundation & Shade Structure	1	EA	\$30,000.00	\$30.000.00
61	Electrical and Controls including Site Lighting and SCADA	1	EA	\$200,000.00	\$200,000.00
62	Electric Utility Costs	1	EA	\$50,000.00	\$50,000.00
63	System Painting	1	EA	\$10,000.00	\$10,000.00
64	Site Fencing W/I wo Double Drive Gates	600	LF	\$35.00	\$21,000.00
60	Pipe insulation wheat trace		1.5	\$15,000.00 Subtotal:	\$15,000.00
-	Dedicated Fill Line to	Storage Tanks	-	Subiotai.	\$701,000.00
50	Furnish & Install 12" DR14 C900 PVC Pipe	21,050	LF	\$100.00	\$2,105,000.0
				Subtotal:	\$2,105,000.0
E4	1 MG Kelso Valley Road S	Storage Tank Site	01/	£20.00	\$205 000 ar
52	Gravel Rock Ground Cover for Access Road and Tank Site	1,500	TON	\$75.00	\$75,000.00
53	1 MG Welded Steel Storage Tank & Concrete Ringwall Fdn	1	LS	\$1,000,000.00	\$1,000,000.0
54	Site Electrical/SCADA	1	LS	\$250,000.00	\$250,000.00
55	Electric Utility Costs	1	LS	\$40,000.00	\$40,000.00
56	Site Fencing w/Two Double Drive Gates	800	LF	\$35.00	\$28,000.00
57 58	Tank Site Property Acquisition	1	LS	\$10,000.00	\$10,000.00
30			20	Subtotal:	\$1.678.000.00
	1 MG Bella Vista Storage Tank	& Booster Statio	n Site	Cabiotal.	÷.,0.0,000.0
59	Tank Site and Access Road Grading	4,000	CY	\$30.00	\$120,000.00
60	Gravel Rock Ground Cover for Access Road and Tank Site	700	TON	\$75.00	\$52,500.00
61	1 MG Welded Steel Storage Tank & Concrete Ringwall Fdn	1	LS	\$1,000,000.00	\$1,000,000.0
62	Chemical Storage Building	1	LS	\$400,000.00	\$400,000.00
64	1.500 Gallon Hydropneumatic Tank & Concrete Footings	1	LS	\$75,000.00	\$75,000.00
65	Site Electrical/SCADA		LS	\$300,000.00	\$300,000.00
66	Electric Utility Costs	1	LS	\$25,000.00	\$25,000.00
67	System Painting	1	LS	\$12,500.00	\$12,500.00
68	Tank Site Property Acquisition	1	LS	\$50,000.00	\$50,000.00
69	Pipe insulation w/Heat Trace	1	LS	\$15,000.00	\$15,000.00
				Subtotal:	⇒∠,100,000.0

-	weidon Regional Consolid	ation water	Project		_
-	Project Alterna	tive #5	_		_
tem No	Litem Description	Quantity	Unit	Unit Cost	Extended Cos
	Distribution System	n Piping	01115	01111 00001	Extended dec
70	Furnish & Install 12" DR14 C900 PVC Pipe	33,500	LF	\$100.00	\$3,350,000.00
71	Furnish & Install Dry Barrel Fire Hydrant Assembly	1	EA	\$5,500.00	\$5,500.00
72	Furnish & Install 12" Gate Valve	10	EA	\$4,000.00	\$40,000.00
73	Remote Meter Read Equipment w/One Year Technical Support	1	LS	\$12,500.00	\$12,500.00
		4 p		Subtotal:	\$3,408,000.0
	Sierra View Restaurant & KOA Can	pground Syste	m Tie-In		
74	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
75	Furnish & Install Dry Barrel Fire Hydrant Assembly	2	EA	\$5,500.00	\$11,000.00
76	Furnish & Install 2" Long Meter Service	2	EA	\$4,750.00	\$9,500.00
77	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
78	Well Abandonment per KCEHS Standards	2	EA	\$30,000.00	\$60,000.00
		1.0		Subtotal:	\$210,500.00
	Bella Vista Water System	Improvements	_		
79	Furnish & Install 6" DR14 C900 PVC Pipe	13,675	LF	\$60.00	\$820,500.00
80	Furnish & Install Dry Barrel Fire Hydrant Assembly	15	EA	\$5,500.00	\$82,500.00
81	Furnish & Install 6" Gate Valve	22	EA	\$2,500.00	\$55,000.00
82	Furnish & Install 1" Long Meter Service	47	EA	\$2,000.00	\$94,000.00
83	Pressure Reducing Valve & Precast Vault	2	EA	\$40,000.00	\$80,000.00
				Subtotal:	\$1,132,000.0
_	Rainbird Water System I	nprovements			
84	Furnish & Install 6" DR14 C900 PVC Pipe	6,200	LF	\$60.00	\$372,000.00
85	Furnish & Install Dry Barrel Fire Hydrant Assembly	13	EA	\$5,500.00	\$71,500.00
86	Furnish & Install 6" Gate Valve	9	EA	\$2,500.00	\$22,500.00
87	Pressure Reducing Valve & Precast Vault	1	EA	\$40,000.00	\$40,000.00
88	Furnish & Install 1" Long Meter Service	83	EA	\$2,000.00	\$166,000.00
89	Well Abandonment per KCEHS Standards	2	EA	\$30,000.00	\$60,000.00
1.1		1		Subtotal:	\$732,000.00
	Long Canyon Water System	n Improvements			
90	Furnish & Install 6" DR14 C900 PVC Pipe	3,925	LF	\$70.00	\$274,750.00
91	Furnish & Install Dry Barrel Fire Hydrant Assembly	6	EA	\$5,500.00	\$33,000.00
92	Furnish & Install 6" Gate Valve	10	EA	\$2,500.00	\$25,000.00
93	Pressure Reducing Valve & Precast Vault	2	EA	\$40,000.00	\$80,000.00
94	Furnish & Install 1" Long Meter Service	- 67	EA	\$2,000.00	\$134,000.00
95	Well Abandonment per KCEHS Standards	1	EA	\$30,000.00	\$30,000.00
_	The device de Marce Area	distant The last		Subtotal:	\$576,750.00
06	Furnich & Install 6" DR14 C000 BVC Dine	L 2 725	15	00.032	\$162 E00 00
90	System Tip-In and Pressure Poducing Valve	2,725	EA	\$40,000,00	\$160,000.00
97	Furnish & Install 1" Mater	236	EA	\$1,000.00	\$236,000.00
90	Existing Tradewinds USDA Loan	230	LS	\$300.000.00	\$300,000.00
100	Well Abandonment per KCEHS Standards		FΔ	\$30,000,00	\$30,000,00
100	Wein Abandonment per ROEno Standards		LA	Subtotal	\$889 500 00
_				Subiolal:	\$15 599,000.00
	Design Contract A	dministration	Construct	Subtotal:	\$1,000,200.0 \$1,160,115,0
-	Design, Contract A	uninistration, d	Construct	0% Contingency	\$3 117 640.0
					\$0,117,040.0

*Existing wells to be abandoned in accordance with KCEHS Standards with Cement Sand Slurry
**Tradewinds existing water system infrastructure underground piping shall remain and shall be incorporated into the new regional water system
***Bella Vista's existing wells to remain for possible use as standby wells for the new regional water system

	Cost Estimates to Tie-In Potential Project Part	icipants to Cons	olidated Wate	er System	
	Valley Estates P.0	O.A. Tie-In			
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	2,750	LF	\$100.00	\$275,000.00
				Subtotal:	\$355,000.00
			2	5% Contingency:	\$88,750.00
				Total:	\$443,750.00
	South Fork Middle School S	Supply Line & Tie	e-In		
1	System Tie-In and Pressure Reducing Valve	1	EA	\$40,000.00	\$40,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	1,500	LF	\$100.00	\$150,000.00
				Subtotal:	\$190,000.00
			2	5% Contingency:	\$47,500.00
				Total:	\$237,500.00
	Weldon Methodist Church	Supply Line & Tie	e-In		
1	System Tie-In and Pressure Reducing Valve	1	EA	\$40,000.00	\$40,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	175	LF	\$100.00	\$17,500.00
3	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
				Subtotal:	\$107,500.00
			2	5% Contingency:	\$26,875.00
				Total:	\$134,375.00
	South Fork Women's Club/South Fork Elen	nentary School S	upply Line &	Tie-In	
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	475	LF	\$100.00	\$47,500.00
3	24" O.D. Steel Cased Crossing under Hwy 178	100	LF	\$500.00	\$50,000.00
				Subtotal:	\$177,500.00
			2	5% Contingency:	\$44,375.00
				Total:	\$221,875.00
	Hillview Acres MWC Sup	oply Line & Tie-Ir	1		
1	System Tie-In and Pressure Reducing Valve	2	EA	\$40,000.00	\$80,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	6,250	LF	\$100.00	\$625,000.00
				Subtotal:	\$705,000.00
			2	5% Contingency:	\$176,250.00
				Total:	\$881,250.00
	Lakeview Ranchos MWC S	Supply Line & Tie	-In		
1	System Tie-In and Pressure Reducing Valve	3	EA	\$40,000.00	\$120,000.00
2	Furnish & Install 12" DR14 C900 PVC Pipe	2,600	LF	\$100.00	\$260,000.00
				Subtotal:	\$380,000.00
			2	5% Contingency:	\$95,000.00
				Total:	\$475,000.00

Total Cost to Tie In All Surrounding Water Systems: \$2,393,750.00

					Syste	em ID No.:	4/13/2016		
	System Name: Weldon Co	pany	Service Cor	nnections: <mark>4</mark>	436				
1	*Enter information only in YELLOW sh	naded cells	_] UNIT	INSTALLED	AVG LIFE,	ANNUAL	MONTHLY	MONTHLY RESERVE PER
QTY	COMPONENT			COST	COST	YEARS	RESERVE	RESERVE	CUSTOMER
2	Drilled Well, 16", steel casing	Depth:	275	1100	605000	60	10083.33	840.28	1.93
2	Wellhead Electrical Controls			100000	200000	40	5000.00	416.67	0.96
2	Viell Pump, 100 HP	Callerat	4500	50000	100000	15	6666.67	555.56	1.27
2	Storage Tank Plastic	Gallons.	1500	40.0	160000	10	3000.00	250.00	0.57
2 2	Storage Tank, Flastic	Gallons:	275	20.0	120000	01	20000.00	1666.67	3.82
2	Well Discharge Flow Meter 8"	Galions.	1,000,000	3500	7000	30	20000.00	19 44	0.02
2	Hypochlorinator w/ Tank & Pump, Co	nolete		3500	7000	10	700.00	58.33	0.13
4.550	Pipe w/ sand bedding, 12" (Enter line	ar feet for qua	antity)	55	3000250	100	30002.50	2500.21	5.73
26,525	Pipe w/ sand bedding, 6" (Enter linea	r feet for quai	ntity)	40	1061000	100	10610.00	884.17	2.03
8	Standpipe Hydrant, 2-1/2"		<u>,</u>	5000	90000	50	1800.00	150.00	0.34
136	Customer Meter w/ Box & Shutoff, Co	mplete		500	218000	25	8720.00	726.67	1.67
10	Distribution Valve, 12"			2200	22000	50	440.00	36.67	0.08
11	Distribution Valve, 8"			1500	61500	<mark>50</mark>	1230.00	102.50	0.24
30	Air & Vacuum Relief Valve, Typical			500	15000	20	750.00	62.50	0.14
)	Pressure Reducing Valve			10000	90000	20	4500.00	375.00	0.86
1	SCADA Upgrades			50000	50000	<mark>30</mark>	1666.67	138.89	0.32
1	Painting/Coating Upgrades			200000	200000	50	4000.00	333.33	0.76
_	SUBTOTAL Existing CIP Costs			1	\$7,123,250.00		\$111,052.50	\$9,254.38	\$21.23

NOTES:

FIVE YEAR BUDGET PROJECTION - PROJECT ALTERNATIVE 5

INSTRUCTIONS: Yellow-shaded cells are for data entry; all other cells are locked except line item descriptions which can be changed if needed. Years 2 through 5 will be compounded automatically by the inflation factor in Cell G6.

	System Name:		Infl	ation Factor <mark>(%</mark>):	3.0	
	Weldon Consolidated Water Company		Sy	stem ID Number:		
LINE	EXPENSES AND SOURCE OF FUNDS	2016	2017	2018	2019	2020
1 0	PERATIONS AND MAINTENANCE (O&M) EXPENSES		_			_
2	Salaries and Benefits	50,000.00	51,500.00	53,045.00	54,636.35	56,275.4
3	Contract Operation and Maintenance	6,000.00	6,180.00	6,365.40	6,556.36	6,753.0
4	Power and Other Utilities	30,000.00	30,900.00	31,827.00	32,781.81	33,765.2
5	Fees Regulatory	5,000.00	5,150.00	5,304.50	5,463.64	5,627.5
6	Treatment Chemicals	5,000.00	5,150.00	5,304.50	5,463.64	5,627.5
7	Coliform Monitoring	3,500.00	3,605.00	3,713.15	3,824.54	3,939.2
8	Chemical Monitoring	7,500.00	7,725.00	7,956.75	8,195.45	8,441.3
9	Transportation	2,000.00	2,060.00	2,121.80	2,185.45	2,251.0
10	Materials, Supplies, and Parts	5,000.00	5,150.00	5,304.50	5,463.64	5,627.5
11	Office Supplies	4,000.00	4,120.00	4,243.60	4,370.91	4,502.0
12	Miscellaneous	4,000.00	4,120.00	4,243.60	4,370.91	4,502.0
14	Total O&M Expenses:	122,000.00	125,660.00	129,429.80	133,312.69	137,312.0
16 G	ENERAL AND ADMINISTRATIVE EXPENSES					
17	Engineering and Professional Services	10,000.00	10,300.00	10,609.00	10,927.27	11,255.0
18	Depreciation and Amortization	0.00	0.00	0.00	0.00	0.0
19	Insurance	10,000.00	10,300.00	10,609.00	10,927.27	11,255.0
20	Existing Contribution to CIP (From CIP)	111,052.50	114,384.08	117,815.60	121,350.07	124,990.5
21	O&M Reserve	2,500.00	2,575.00	2,652.25	2,731.82	2,813.7
22	Other Reserves	2,000.00	2,060.00	2,121.80	2,185.45	2,251.0
23	Miscellaneous	100.00	103.00	106.09	109.27	112.5
26	** Debt Service	19,200.00	19,200.00	19,200.00	19,200.00	19,200.0
27	Total General and Administrative Expenses:	154,852.50	158,922.08	163,113.74	167,431.15	171,878.0
28	TOTAL EXPENSES (Line 14+ Line 27):	276,852.50	284,582.08	292,543.54	300,743.84	309,190.1
30 R	EVENUES RECEIVED					
31	Cash Revenues (Water Rates)	276,852.50	284,582.08	292,543.54	300,743.84	309,190.1
32	** Depreciation Reserves	0.00	0.00	0.00	0.00	0.0
33	** Fees and Services	0.00	0.00	0.00	0.00	0.0
34	** Hookup Charges	0.00	0.00	0.00	0.00	0.0
35	** Withdrawal from CIP or Other Reserves	0.00	0.00	0.00	0.00	0.0
36	** Other Fund Sources: Interest, Etc.	0.00	0.00	0.00	0.00	0.0
37	** Grants	0.00	0.00	0.00	0.00	0.0
38	** SRF Loan	0.00	0.00	0.00	0.00	0.0
39	** Business Loans	0.00	0.00	0.00	0.00	0.0
40	TOTAL REVENUE (Lines 31 through 39):	276,852.50	284,582.08	292,543.54	300,743.84	309,190.1
41	NET LOSS OR GAIN:	0.00	0.00	0.00	0.00	0.0
Report I	Prenared by (Name and Title)				Date:	

(** Inflation factor not applied to future year projections)	2016	2017	2018	2019	2020
Number of Customers:	436	436	436	436	436
Average Monthly Revenue Needed Per Customer:	52.92	54.39	55.91	57.48	59.10

(total expenses ÷ # of customers ÷ 12)
APPENDIX P Project Alternative Present Worth Analyses

Weldon Regional Consolidation Project																					
Alternative 2 - Consolidation Project with a 2 MG Storage Tank																					
	Annual O&M Cost Yr	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M
Capital Cost	0	Cost Yr 1	Cost Yr 2	Cost Yr 3	Cost Yr 4	Cost Yr 5	Cost Yr 6	Cost Yr 7	Cost Yr 8	Cost Yr 9	Cost Yr 10	Cost Yr 11	Cost Yr 12	Cost Yr 13	Cost Yr 14	Cost Yr 15	Cost Yr 16	Cost Yr 17	Cost Yr 18	Cost Yr 19	Cost Yr 20
\$18,388,305.00	\$291,802.50	\$298,338.88	\$305,021.67	\$311,854.15	\$318,839.69	\$325,981.69	\$333,283.68	\$340,749.24	\$348,382.02	\$356,185.78	\$364,164.34	\$372,321.62	\$380,661.63	\$389,188.45	\$397,906.27	\$406,819.37	\$415,932.12	\$425,249.00	\$434,774.58	\$444,513.53	\$454,470.63
Year	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Annual Payment	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91	\$1,092,274.91
Total Annual Costs	\$1,384,077.41	\$1,390,613.79	\$1,397,296.58	\$1,404,129.07	\$1,411,114.60	\$1,418,256.61	\$1,425,558.60	\$1,433,024.15	\$1,440,656.94	\$1,448,460.69	\$1,456,439.25	\$1,464,596.54	\$1,472,936.54	\$1,481,463.36	\$1,490,181.18	\$1,499,094.28	\$1,508,207.04	\$1,517,523.92	\$1,527,049.49	\$1,536,788.44	\$1,546,745.55
*\$/1000 gallon	\$26.81734	\$26.94399	\$27.07347	\$27.20586	\$27.34120	\$27.47958	\$27.62107	\$27.76572	\$27.91360	\$28.06481	\$28.21940	\$28.37745	\$28.53904	\$28.70425	\$28.87317	\$29.04586	\$29.22243	\$29.40295	\$29.58751	\$29.77621	\$29.96914
*\$/ccf:	\$20.05937	\$20.15410	\$20.25096	\$20.34998	\$20.45122	\$20.55473	\$20.66056	\$20.76875	\$20.87938	\$20.99248	\$21.10811	\$21.22633	\$21.34720	\$21.47078	\$21.59713	\$21.72631	\$21.85838	\$21.99341	\$22.13146	\$22.27261	\$22.41691
Avg. Monthly Costs	\$115,339.78	\$115,884.48	\$116,441.38	\$117,010.76	\$117,592.88	\$118,188.05	\$118,796.55	\$119,418.68	\$120,054.74	\$120,705.06	\$121,369.94	\$122,049.71	\$122,744.71	\$123,455.28	\$124,181.77	\$124,924.52	\$125,683.92	\$126,460.33	\$127,254.12	\$128,065.70	\$128,895.46
Avg. Monthly O&M Costs	\$24,316.88	\$24,861.57	\$25,418.47	\$25,987.85	\$26,569.97	\$27,165.14	\$27,773.64	\$28,395.77	\$29,031.84	\$29,682.15	\$30,347.03	\$31,026.80	\$31,721.80	\$32,432.37	\$33,158.86	\$33,901.61	\$34,661.01	\$35,437.42	\$36,231.21	\$37,042.79	\$37,872.55
O&M Cost per connection per month	\$55.77	\$57.02	\$58.30	\$59.61	\$60.94	\$62.31	\$63.70	\$65.13	\$66.59	\$68.08	\$69.60	\$71.16	\$72.76	\$74.39	\$76.05	\$77.76	\$79.50	\$81.28	\$83.10	\$84.96	\$86.86
Present Worth of Op. Costs:	\$291,802.50	\$293,351.89	\$294,909.51	\$296,475.41	\$298,049.61	\$299,632.18	\$301,223.14	\$302,822.56	\$304,430.47	\$306,046.91	\$307,671.94	\$309,305.59	\$310,947.93	\$312,598.98	\$314,258.79	\$315,927.42	\$317,604.92	\$319,291.31	\$320,986.66	\$322,691.02	\$324,404.42
Total Present Worth of Operating Costs	\$6,464,433.16																				(
Total Present Worth Op. + Cap. Costs	\$24,852,738.16																				1
Annual Operating and Maintenance Costs based on 1	58.4 acre-feet of pumped wa	ter																			
\$/1000 Gallon and \$/ccf based on estimate annual we	ell production of 158.4 acre-fe	et of delivered watered																			
Estimated Annual Water Use	: 158.4																				
Annual Operating and Maintenance Cost for includes	cost for electricity, chlorine, v	ater quality monitoring,	capital improvement, a	nd general and administ	rative																
Annual Operating and Maintenance Costs increased	at 3% per year for inflation																				
x8M Cost per connection based on an estimated 436 connections for Long Canyon Water Company, Rainbird Valley MWC, Tradewinds Water Association, Bella Vista MWC, Sierra Vista Restaurant, and the Lake Isabella K.O.A.																					
Number of Customers	: 436																				

Loan Duration:	20	(years)

Loan Juration: 20 (years) Loan Iurerest Rate: 1.70% (based on most recent posted Interest Rate from CWSRF website) Inflation Rate: 2.24% (based on 20 yr average)

Weldon Regional Consolidation Project																					
Alternative 3 - Consolidation Project with one 2 MG Storage Tank																					
Annual O&M																					
Capital Cost	Annual O&M Cost Yr 0	Cost Yr 1	Cost Yr 2	Cost Yr 3	Cost Yr 4	Cost Yr 5	Cost Yr 6	Cost Yr 7	Cost Yr 8	Cost Yr 9	Cost Yr 10	Cost Yr 11	Cost Yr 12	Cost Yr 13	Cost Yr 14	Cost Yr 15	Cost Yr 16	Cost Yr 17	Cost Yr 18	Cost Yr 19	Cost Yr 20
\$18,387,030.00	\$275,811.67	\$281,989.85	\$288,306.42	\$294,764.48	\$301,367.21	\$308,117.83	\$315,019.67	\$322,076.11	\$329,290.62	\$336,666.73	\$344,208.06	\$351,918.32	\$359,801.30	\$367,860.84	\$376,100.93	\$384,525.59	\$393,138.96	\$401,945.27	\$410,948.85	\$420,154.10	\$429,565.55
Year:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Annual Payment:	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18	\$1,092,199.18
Total Annual Costs:	\$1,368,010.85	\$1,374,189.03	\$1,380,505.60	\$1,386,963.66	\$1,393,566.39	\$1,400,317.01	\$1,407,218.85	\$1,414,275.29	\$1,421,489.80	\$1,428,865.91	\$1,436,407.24	\$1,444,117.50	\$1,452,000.47	\$1,460,060.02	\$1,468,300.11	\$1,476,724.77	\$1,485,338.14	\$1,494,144.45	\$1,503,148.03	\$1,512,353.28	\$1,521,764.73
*\$/1000 gallon:	\$26.50604	\$26.62575	\$26.74814	\$26.87327	\$27.00120	\$27.13199	\$27.26572	\$27.40244	\$27.54223	\$27.68515	\$27.83126	\$27.98066	\$28.13339	\$28.28955	\$28.44921	\$28.61244	\$28.77933	\$28.94996	\$29.12441	\$29.30277	\$29.48512
*\$/ccf:	\$19.82652	\$19.91606	\$20.00761	\$20.10120	\$20.19690	\$20.29473	\$20.39476	\$20.49703	\$20.60159	\$20.70849	\$20.81779	\$20.92953	\$21.04378	\$21.16058	\$21.28001	\$21.40211	\$21.52694	\$21.65457	\$21.78506	\$21.91847	\$22.05487
Avg. Monthly Costs:	\$114,000.90	\$114,515.75	\$115,042.13	\$115,580.31	\$116,130.53	\$116,693.08	\$117,268.24	\$117,856.27	\$118,457.48	\$119,072.16	\$119,700.60	\$120,343.13	\$121,000.04	\$121,671.67	\$122,358.34	\$123,060.40	\$123,778.18	\$124,512.04	\$125,262.34	\$126,029.44	\$126,813.73
Avg. Monthly O&M Costs:	\$22,984.31	\$23,499.15	\$24,025.54	\$24,563.71	\$25,113.93	\$25,676.49	\$26,251.64	\$26,839.68	\$27,440.88	\$28,055.56	\$28,684.01	\$29,326.53	\$29,983.44	\$30,655.07	\$31,341.74	\$32,043.80	\$32,761.58	\$33,495.44	\$34,245.74	\$35,012.84	\$35,797.13
O&M Cost per connection per month:	\$52.72	\$53.90	\$55.10	\$56.34	\$57.60	\$58.89	\$60.21	\$61.56	\$62.94	\$64.35	\$65.79	\$67.26	\$68.77	\$70.31	\$71.88	\$73.49	\$75.14	\$76.82	\$78.55	\$80.30	\$82.10
Present Worth of O&M Costs:	\$275,811.67	\$277,276.15	\$278,748.42	\$280,228.50	\$281,716.44	\$283,212.27	\$284,716.06	\$286,227.82	\$287,747.62	\$289,275.48	\$290,811.46	\$292,355.59	\$293,907.92	\$295,468.49	\$297,037.35	\$298,614.54	\$300,200.10	\$301,794.09	\$303,396.53	\$305,007.49	\$306,627.00
Total Present Worth of Operating Costs:	\$6,110,180.98																				1
Total Present Worth Op. + Capital Costs:	\$24,497,210.98																				1
Annual Operating and Maintenance Costs based on 15	8.4 acre-feet of pumped water																				
\$/1000 Gallon and \$/ccf based on estimate annual well	production of 158.4 acre-feet of de	elivered watered																			
Estimated Annual Water Use (acre-feet)	: 158.4																				
Annual Operating and Maintenance Cost for includes of	ost for electricity, chlorine, water qu	ality monitoring, capita	I improvement, and gen	eral and administrative																	
nnual Operating and Maintenance Costs increased at 3% per year for inflation																					
&M Cost per connection based on an estimated 436 connections for Long Canyon Water Company, Rainbird Valley MWC, Tradewinds Water Association, Bella Vista MWC, Sierra Vista Restaurant, and the Lake Isabella K.O.A.																					
Number of Customers:	436																				

Loan Duration: Loan Interest Rate:	20 1.70% 2.24%	(years) (based on most recent posted Interest Rate from CWSRF website) (based on 20 yr averane)
initation Rate:	2.2478	(based on 20 yr average)

	Weldon Regional Consolidation Project																				
Alternative 4 - Consolidation Project with two 1 MG Storage Tanks																					
	Annual O&M Cost Yr	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M
Capital Cost	0	Cost Yr 1	Cost Yr 2	Cost Yr 3	Cost Yr 4	Cost Yr 5	Cost Yr 6	Cost Yr 7	Cost Yr 8	Cost Yr 9	Cost Yr 10	Cost Yr 11	Cost Yr 12	Cost Yr 13	Cost Yr 14	Cost Yr 15	Cost Yr 16	Cost Yr 17	Cost Yr 18	Cost Yr 19	Cost Yr 20
\$18,780,367.50	\$292,321.25	\$298,869.25	\$305,563.92	\$312,408.55	\$319,406.50	\$326,561.21	\$333,876.18	\$341,355.00	\$349,001.36	\$356,818.99	\$364,811.73	\$372,983.51	\$381,338.34	\$389,880.32	\$398,613.64	\$407,542.59	\$416,671.54	\$426,004.98	\$435,547.50	\$445,303.76	\$455,278.56
Years	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Annual Payment	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63	\$1,115,563.63
Total Annual Costs	\$1,407,884.88	\$1,414,432.88	\$1,421,127.55	\$1,427,972.18	\$1,434,970.13	\$1,442,124.84	\$1,449,439.81	\$1,456,918.63	\$1,464,564.99	\$1,472,382.62	\$1,480,375.36	\$1,488,547.15	\$1,496,901.98	\$1,505,443.95	\$1,514,177.27	\$1,523,106.22	\$1,532,235.17	\$1,541,568.62	\$1,551,111.13	\$1,560,867.39	\$1,570,842.20
*\$/1000 gallon:	\$27.27863	\$27.40550	\$27.53521	\$27.66783	\$27.80342	\$27.94205	\$28.08378	\$28.22869	\$28.37684	\$28.52831	\$28.68317	\$28.84151	\$29.00339	\$29.16889	\$29.33811	\$29.51111	\$29.68799	\$29.86883	\$30.05372	\$30.24276	\$30.43602
*\$/ccf	\$20.40441	\$20.49931	\$20.59634	\$20.69554	\$20.79696	\$20.90065	\$21.00667	\$21.11506	\$21.22587	\$21.33918	\$21.45501	\$21.57345	\$21.69453	\$21.81833	\$21.94490	\$22.07431	\$22.20662	\$22.34188	\$22.48018	\$22.62158	\$22.76615
Avg. Monthly Costs	\$117,323.74	\$117,869.41	\$118,427.30	\$118,997.68	\$119,580.84	\$120,177.07	\$120,786.65	\$121,409.89	\$122,047.08	\$122,698.55	\$123,364.61	\$124,045.60	\$124,741.83	\$125,453.66	\$126,181.44	\$126,925.52	\$127,686.26	\$128,464.05	\$129,259.26	\$130,072.28	\$130,903.52
Avg. Monthly O&M Costs	\$24,360.10	\$24,905.77	\$25,463.66	\$26,034.05	\$26,617.21	\$27,213.43	\$27,823.01	\$28,446.25	\$29,083.45	\$29,734.92	\$30,400.98	\$31,081.96	\$31,778.20	\$32,490.03	\$33,217.80	\$33,961.88	\$34,722.63	\$35,500.42	\$36,295.62	\$37,108.65	\$37,939.88
O&M Cost per connection per month	\$55.87	\$57.12	\$58.40	\$59.71	\$61.05	\$62.42	\$63.81	\$65.24	\$66.71	\$68.20	\$69.73	\$71.29	\$72.89	\$74.52	\$76.19	\$77.89	\$79.64	\$81.42	\$83.25	\$85.11	\$87.02
Present Worth of Op. Costs:	\$292,321.25	\$293,873.40	\$295,433.79	\$297,002.46	\$298,579.47	\$300,164.84	\$301,758.64	\$303,360.90	\$304,971.66	\$306,590.98	\$308,218.90	\$309,855.46	\$311,500.71	\$313,154.70	\$314,817.47	\$316,489.06	\$318,169.54	\$319,858.93	\$321,557.30	\$323,264.68	\$324,981.13
Total Present Worth of Operating Costs	\$6,475,925.27																				
Total Present Worth Op. + Cap. Costs	\$25,256,292.77																				
Annual Operating and Maintenance Costs based on 1	58.4 acre-feet of pumped wa	ter																			
\$/1000 Gallon and \$/ccf based on estimate annual we	Il production of 158.4 acre-fe	et of delivered watered																			
Estimated Annual Water Use (acre-feet)	:158.4																				
Annual Operating and Maintenance Cost for includes	cost for electricity, chlorine, w	ater quality monitoring,	capital improvement, a	nd general and administ	rative																
Annual Operating and Maintenance Costs increased	at 3% per year for inflation																				
O&M Cost per connection based on an estimated 436	J&M Cost per connection based on an estimated 436 connections for Long Canyon Water Company, Rainbird Valley MWC, Tradewinds Water Association, Bella Vista MWC, Sierra Vista Restaurant, and the Lake Isabella KOA																				
Number of Customers	436																				

Loan Duration:	20	(years)

Loan Juration: 20 (years) Loan Interest Rate: 1.70% (based on most recent posted Interest Rate from CWSRF website) Inflation Rate: 2.24% (based on 20 yr average)

	Weldon Regional Consolidation Project																				
Alternative 5 - Consolidation Project with two 1 MG Storage Tanks																					
	Annual O&M Cost Yr	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M	Annual O&M
Capital Cost	0	Cost Yr 1	Cost Yr 2	Cost Yr 3	Cost Yr 4	Cost Yr 5	Cost Yr 6	Cost Yr 7	Cost Yr 8	Cost Yr 9	Cost Yr 10	Cost Yr 11	Cost Yr 12	Cost Yr 13	Cost Yr 14	Cost Yr 15	Cost Yr 16	Cost Yr 17	Cost Yr 18	Cost Yr 19	Cost Yr 20
\$19,874,955.00	\$276,852.50	\$283,054.00	\$289,394.41	\$295,876.84	\$302,504.48	\$309,280.58	\$316,208.47	\$323,291.54	\$330,533.27	\$337,937.21	\$345,507.01	\$353,246.36	\$361,159.08	\$369,249.04	\$377,520.22	\$385,976.68	\$394,622.55	\$403,462.10	\$412,499.65	\$421,739.64	\$431,186.61
Years:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Annual Payment:	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70	\$1,180,582.70
Total Annual Costs:	\$1,457,435.20	\$1,463,636.70	\$1,469,977.11	\$1,476,459.54	\$1,483,087.18	\$1,489,863.28	\$1,496,791.17	\$1,503,874.24	\$1,511,115.97	\$1,518,519.91	\$1,526,089.71	\$1,533,829.06	\$1,541,741.78	\$1,549,831.74	\$1,558,102.92	\$1,566,559.38	\$1,575,205.25	\$1,584,044.80	\$1,593,082.35	\$1,602,322.34	\$1,611,769.31
*\$/1000 gallon:	\$28.23869	\$28.35885	\$28.48170	\$28.60730	\$28.73572	\$28.86701	\$29.00124	\$29.13848	\$29.27879	\$29.42225	\$29.56892	\$29.71887	\$29.87219	\$30.02893	\$30.18919	\$30.35304	\$30.52056	\$30.69183	\$30.86694	\$31.04597	\$31.22901
*\$/ccf:	\$21.12254	\$21.21242	\$21.30431	\$21.39826	\$21.49432	\$21.59252	\$21.69293	\$21.79558	\$21.90054	\$22.00784	\$22.11755	\$22.22972	\$22.34439	\$22.46164	\$22.58152	\$22.70407	\$22.82938	\$22.95749	\$23.08847	\$23.22239	\$23.35930
Avg. Monthly Costs:	\$121,452.93	\$121,969.72	\$122,498.09	\$123,038.30	\$123,590.60	\$124,155.27	\$124,732.60	\$125,322.85	\$125,926.33	\$126,543.33	\$127,174.14	\$127,819.09	\$128,478.48	\$129,152.65	\$129,841.91	\$130,546.61	\$131,267.10	\$132,003.73	\$132,756.86	\$133,526.86	\$134,314.11
Avg. Monthly O&M Costs:	\$23,071.04	\$23,587.83	\$24,116.20	\$24,656.40	\$25,208.71	\$25,773.38	\$26,350.71	\$26,940.96	\$27,544.44	\$28,161.43	\$28,792.25	\$29,437.20	\$30,096.59	\$30,770.75	\$31,460.02	\$32,164.72	\$32,885.21	\$33,621.84	\$34,374.97	\$35,144.97	\$35,932.22
O&M Cost per connection per month:	\$52.92	\$54.10	\$55.31	\$56.55	\$57.82	\$59.11	\$60.44	\$61.79	\$63.18	\$64.59	\$66.04	\$67.52	\$69.03	\$70.58	\$72.16	\$73.77	\$75.42	\$77.11	\$78.84	\$80.61	\$82.41
Present Worth of Op. Costs:	\$276,852.50	\$278,322.51	\$279,800.33	\$281,286.00	\$282,779.55	\$284,281.04	\$285,790.49	\$287,307.96	\$288,833.49	\$290,367.12	\$291,908.89	\$293,458.85	\$295,017.04	\$296,583.50	\$298,158.28	\$299,741.43	\$301,332.97	\$302,932.97	\$304,541.46	\$306,158.50	\$307,784.12
Total Present Worth of Operating Costs:	\$6,133,239.03																				
Total Present Worth Op. + Cap. Costs:	\$26,008,194.03																				
Annual Operating and Maintenance Costs based on 15	8.4 acre-feet of pumped wat	er																			
\$/1000 Gallon and \$/ccf based on estimate annual well	production of 158.4 acre-fee	t of delivered watered																			
Estimated Annual Water Use (acre-feet): 1	158.4																				
Annual Operating and Maintenance Cost for includes co	ost for electricity, chlorine, w	ater quality monitoring,	capital improvement, ar	d general and administ	rative																
Annual Operating and Maintenance Costs increased at	3% per year for inflation																				
J&M Cost per connection based on an estimated 436 connections for Long Canyon Water Company, Rainbird Valley MWC, Tradewinds Water Association, Bella Vista MWC, Sierra Vista Restaurant, and the Lake Isabella K.O.A.																					
Number of Customers: 4	436																				

Number	of	Customers:	436	

Loan Duration:	20	(yrs)
Loan Interest Rate:	1.70%	(based on most recent posted Interest Rate from CWSRF website)
Inflation Rate:	2.24%	(based on the running 20 yr average)

APPENDIX Q Hydraulic Analysis Report

S/UPEDON REDOWL WARR PROJECT/ORANNOS//EXSBLTY STREW LINCUT-PRESSURE ZONE WIP DWC 4/22/2018 833 W

Rainburd Valley Mutual Water Co. Pk Hr Municopal Demand FlexTable: Junction Table

ID	Label	Elevation (ft)	Zone	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
66	J-19	2,699.00	<none></none>	9	2,837.15	60
71	J-21	2,698.00	<none></none>	9	2,837.15	60
60	J-16	2,695.00	<none></none>	9	2,837.23	62
54	J-13	2,693.00	<none></none>	9	2,837.56	63
56	J-14	2,692.00	<none></none>	9	2,837.35	63
68	J-20	2,691.00	<none></none>	9	2,837.15	63
58	J-15	2,690.00	<none></none>	9	2,837.34	64
62	J-17	2,689.00	<none></none>	9	2,837.17	64
64	J-18	2,688.00	<none></none>	9	2,837.16	65

Hydraulic Model 2016.wtg 4/18/2016

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Long Canyon Water Company Pk Hr Municipal Demand FlexTable: Junction Table

ID	Label	Elevation (ft)	Zone	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
161	J-63	2,758.00	<none></none>	3	2,851.94	41
157	J-61	2,751.00	<none></none>	3	2,851.94	44
159	J-62	2,740.00	<none></none>	3	2,851.94	48
154	J-60	2,731.00	<none></none>	3	2,851.94	52
146	J-56	2,721.00	<none></none>	3	2,851.96	57
150	J-58	2,718.00	<none></none>	3	2,851.95	58
152	J-59	2,714.00	<none></none>	3	2,851.95	60
144	3-55	2,705.00	<none></none>	3	2,851.97	64
148	3-57	2,697.00	<none></none>	3	2,851.96	67
140	J-53	2,688.00	<none></none>	3	2,852.00	71
142	J-54	2,684.00	<none></none>	3	2,852.00	73

Hydraulic Model 2016.wtg 4/18/2016 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Tradewinds Water System Pk Hr Municipal Demand - Lower Helf FlexTable: Junction Table

ID	Label	Elevation (ft)	Zone	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
161	J-63	2,758.00	<none></none>	3	2,851.94	41
157	J-61	2,751.00	<none></none>	3	2,851.94	44
171	J-68	2,754.00	<none></none>	7	2,863.80	48
159	J-62	2,740.00	<none></none>	3	2,851.94	48
167	J-66	2,746.00	<none></none>	7	2,863.83	51
154	J-60	2,731.00	<none></none>	3	2,851.94	52
165	J-65	2,739.00	<none></none>	7	2,863.87	54
146	J-56	2,721.00	<none></none>	3	2,851.96	57
150	J-58	2,718.00	<none></none>	3	2,851.95	58
152	J-59	2,714.00	<none></none>	3	2,851.95	60
163	J-64	2,723.00	<none></none>	7	2,863.97	61
144	J-55	2,705.00	<none></none>	3	2,851.97	64
148	J-57	2,697.00	<none></none>	3	2,851.96	67
140	J-53	2,688.00	<none></none>	3	2,852.00	71
142	J-54	2,684.00	<none></none>	3	2,852.00	73
173	J-69	2,690.00	<none></none>	7	2,863.80	75
175	J-70	2,675.00	<none></none>	7	2,863.80	82
181	J-73	2,666.00	<none></none>	7	2,863.82	86
179	J-72	2,665.00	<none></none>	· 7	2,863.81	86
183	J-74	2,665.00	<none></none>	7	2,863.85	86
177	J-71	2,659.00	<none></none>	7	2,863.80	89
185	J-75	2,657.00	<none></none>	7	2,863.86	90

Hydraulic Model 2016.wtg 4/18/2016 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Tradewinds Water System Pk Hr Municipal Demand-Upper Helf FlexTable: Junction Table

ID	Label	Elevation (ft)	Zone	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
243	J-93	2,839.00	<none></none>	7	2,926.53	38
218	J-86	2,837.00	<none></none>	7	2,926.53	39
216	J-85	2,830.00	<none></none>	7	2,926.54	42
214	J-84	2,822.00	<none></none>	7	2,926.55	45
212	J-83	2,811.00	<none></none>	7	2,926.60	50
241	J-92	2,800.00	<none></none>	0	2,926.53	55
203	J-81	2,799.00	<none></none>	7	2,926.53	55
201	J-80	2,795.00	<none></none>	7	2,926.54	57
210	J-82	2,795.00	<none></none>	7	2,926.58	57
199	J-79	2,781.00	<none></none>	7	2,926.55	63
197	J-78	2,779.00	<none></none>	7	2,926.57	64
195	J-77	2,764.00	<none></none>	7	2,926.57	70
316	J-105	2,755.28	<none></none>	0	2,926.54	74
312	J-104	2,749.50	<none></none>	0	2,926.54	77
308	J-103	2,747.06	<none></none>	0	2,926.55	78
304	J-102	2,740.48	<none></none>	0	2,926.56	81
301	J-101	2,724.32	<none></none>	0	2,926.56	88

Hydraulic Model 2016.wtg 4/18/2016 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

12 Pk Hr plus 1, 500gon Fire Flow 12 Backbare Pipeline FlexTable: Junction Table

ID	Label	Elevation (ft)	Zone	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
30	J-1	2,636.00	<none></none>	1,521	2,716.69	35
31	J-2	2,633.00	<none></none>	17	2,722.03	39
34	J-3	2,627.00	<none></none>	0	2,733.04	46

Hydraulic Model 2016.wtg 4/18/2016

١

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

12 Pk Hr plus 1, 500 gpm Fire Flow 10% Backbone Ripeline FlexTable: Junction Table

ID	Label	Elevation (ft)	Zone	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
30	J-1	2,636.00	<none></none>	1,521	2,675.76	17
31	J-2	2,633.00	<none></none>	17	2,688.74	24
34	J-3	2,627.00	<none></none>	0	2,715.50	38

Hydraulic Model 2016.wtg 4/18/2016 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666