Stoneridge Commerce Center Specific Plan **ENERGY ANALYSIS COUNTY OF RIVERSIDE** PREPARED BY: Haseeb Qureshi hqureshi@urbanxroads.com Michael Tirohn mtirohn@urbanxroads.com JULY 28, 2023 ## **TABLE OF CONTENTS** | | | F CONTENTS | | |---|------------|---|---| | | | ICES | | | | | ABLES | | | | | ABBREVIATED TERMS | | | | | VE SUMMARY | | | | ES.1 | Summary of Findings | 1 | | | ES.2 | Project Requirements | | | 1 | INT | roduction | | | | 1.1 | Site Location | | | | 1.2 | Project Description | | | 2 | | STING CONDITIONS | | | _ | | | | | | 2.1 | Overview
Electricity | | | | 2.2 | Natural Gas | | | | 2.4 | Transportation Energy Resources | | | 3 | | GULATORY BACKGROUND | | | , | | | | | | 3.1
3.2 | Federal Regulations California Regulations | | | _ | _ | 5 | | | 4 | | OJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASURES | | | | 4.1 | Evaluation Criteria | | | | 4.2 | Methodology | | | | 4.3
4.4 | Construction Energy Demands Operational Energy Demands | | | | 4.4
4.5 | Summary | | | 5 | | NCLUSIONS | | | 6 | | FERENCES | | | 7 | | RTIFICATIONS | | | | | | | ## **APPENDICES** APPENDIX 4.1: CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS APPENDIX 4.2: CALEEMOD PROJECT OPERATIONS EMISSIONS MODEL OUTPUTS APPENDIX 4.3: EMFAC2021 ## **LIST OF EXHIBITS** | EXHIBIT 1-A: LOCATION MAP | 5 | |---|----| | EXHIBIT 1-B: LAND USE PLAN WITHOUT MID-COUNTY PARKWAY | 6 | | EXHIBIT 1-C: LAND USE PLAN WITH MID-COUNTY PARKWAY | | | | | | | | | <u>LIST OF TABLES</u> | | | TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS | 1 | | TABLE 2-1: TOTAL ELECRICITY SYSTEM POWER (CALIFORNIA 2021) | 10 | | TABLE 2-2: SCE 2021 POWER CONTENT MIX | 13 | | TABLE 4-1: CONSTRUCTION DURATION | 24 | | TABLE 4-2: CONSTRUCTION POWER COST | 25 | | TABLE 4-3: CONSTRUCTION ELECTRICITY USAGE | | | TABLE 4-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS | 26 | | TABLE 4-5: CONSTRUCTION EQUIPMENT FUEL CONSUMPTION ESTIMATES | | | TABLE 4-6: CONSTRUCTION TRIPS AND VMT | | | TABLE 4-7: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES | 30 | | TABLE 4-8: CONSTRUCTION VENDOR AND HAULING FUEL CONSUMPTION ESTIMATES | 33 | | TABLE 4-9: TOTAL PROJECT-GENERATED TRAFFIC ANNUAL FUEL CONSUMPTION | | | TARIE 4-10: PROJECT ANNUAL OPERATIONAL ENERGY DEMAND SUMMARY | 37 | ## **LIST OF ABBREVIATED TERMS** % Percent (1) Reference AGSP Airport Gateway Specific Plan AQIA Stoneridge Commerce Center Specific Plan Air Quality **Impact Analysis** BACM Best Available Control Measures BTU British Thermal Units CalEEMod California Emissions Estimator Model CAPCOA California Air Pollution Control Officers Association CARB California Air Resources Board CCR California Code of Regulations CEC California Energy Commission CEQA California Environmental Quality Act County County of Riverside CPEP Clean Power and Electrification Pathway CPUC California Public Utilities Commission DMV Department of Motor Vehicles EIA Energy Information Administration EPA Environmental Protection Agency EMFAC EMissions FACtor FERC Federal Energy Regulatory Commission GHG Greenhouse Gas GWh Gigawatt Hour HHD Heavy-Heavy Duty Trucks hp-hr-gal Horsepower Hours Per Gallon IEPR Integrated Energy Policy Report ISO Independent Service Operator ISTEA Intermodal Surface Transportation Efficiency Act ITE Institute of Transportation Engineers kBTU Thousand-British Thermal Units kWh Kilowatt Hour LDA Light Duty Auto LDT1/LDT2 Light-Duty Trucks LHD1/LHD2 Light-Heavy Duty Trucks MDV Medium Duty Trucks MHD Medium-Heavy Duty Trucks MMcfd Million Cubic Feet Per Day mpg Miles Per Gallon MPO Metropolitan Planning Organization PG&E Pacific Gas and Electric Project Stoneridge Commerce Center Specific Plan PV Photovoltaic SCAB South Coast Air Basin SCE Southern California Edison SDAB San Diego Air Basin sf Square Feet SoCalGas Southern California Gas TEA-21 Transportation Equity Act for the 21st Century U.S. United States VMT Vehicle Miles Traveled This page intentionally left blank #### **EXECUTIVE SUMMARY** #### **ES.1** SUMMARY OF FINDINGS The results of this *Stoneridge Commerce Center Specific Plan Energy Analysis* is summarized below based on the significance criteria in Section 5 of this report consistent with Appendix G of the *CEQA Guidelines* (*CEQA Guidelines*) (1). Table ES-1 shows the findings of significance for potential energy impacts under CEQA. **TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS** | Analysis | Report | Significance Findings | | | |--|---------|-----------------------|-----------|--| | Analysis | Section | Unmitigated | Mitigated | | | Energy Impact #1: Would the Project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation? | 5.0 | Less Than Significant | n/a | | | Energy Impact #2: Would the Project conflict with or obstruct a state or local plan for renewable energy or energy efficiency? | 5.0 | Less Than Significant | n/a | | #### **ES.2** PROJECT REQUIREMENTS The Project would be required to comply with regulations imposed by the federal and state agencies that regulate energy use and consumption through various means and programs. Those that are directly and indirectly applicable to the Project and that would assist in the reduction of energy usage include: - Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) - The Transportation Equity Act for the 21st Century (TEA-21 - Integrated Energy Policy Report (IEPR) - State of California Energy Plan - California Code Title 24, Part 6, Energy Efficiency Standards - California Code Title 24, Part 11, California Green Building Standards Code (CALGreen) - AB 1493 Pavley Regulations and Fuel Efficiency Standards - California's Renewable Portfolio Standard (RPS) - Clean Energy and Pollution Reduction Act of 2015 (SB 350) Consistency with the above regulations is discussed in detail in section 6 of this report. This page intentionally left blank #### 1 INTRODUCTION This report presents the results of the energy analysis prepared by Urban Crossroads, Inc., for the proposed Stoneridge Commerce Center Specific Plan Project (Project). The purpose of this report is to ensure that energy implication is considered by the City of Chino (Lead Agency), as the lead agency, and to quantify anticipated energy usage associated with construction and operation of the proposed Project, determine if the usage amounts are efficient, typical, or wasteful for the land use type, and to emphasize avoiding or reducing inefficient, wasteful, and unnecessary consumption of energy. #### 1.1 SITE LOCATION The Stoneridge Commerce Center Specific Plan development (Project) is located west of Lakeview Avenue, between Ramona Expressway and Nuevo Road in the City of Chino as shown on Exhibit 1-A. #### 1.2 PROJECT DESCRIPTION The Project is proposing to amend the Specific Plan with a mix of industrial and commercial uses, with an opening year of 2032. This analysis evaluates two scenarios, Without Mid-County Parkway (MCP) and With MCP, as described below: #### Without MCP: - 2,940,000 square feet of High-Cube Cold Storage Warehouse use (40% of the total Light Industrial square footage) - 2,940,000 square feet of High-Cube Fulfillment Center Warehouse use (40% of the total Light Industrial square footage) - 735,000 square feet of High-Cube Warehouse use (10% of the total Light Industrial square footage) - 735,000 square feet of Manufacturing use (10% of the total Light Industrial square footage) - 427,759 square feet of Warehousing use (40% of the total Business Park square footage) - 641,639 square feet of Industrial Park use (60% of the total Business Park square footage) - 121,968 square feet of Commercial Retail uses #### With MCP: - 2,940,000 square feet of High-Cube Cold Storage Warehouse use (40% of the total Light Industrial square footage) - 2,940,000 square feet of High-Cube Fulfillment Center Warehouse use (40% of the total Light Industrial square footage) - 735,000 square feet of High-Cube Warehouse use (10% of the total Light Industrial square footage) - 735,000 square feet of Manufacturing use (10% of the total Light Industrial square footage) - 374,616 square feet of Warehousing use (40% of the total Business Park square footage) - 561,924 square feet of Industrial Park use (60% of the total Business Park square footage) - 126,542 square feet of Commercial Retail uses As summarized in the Stoneridge Commerce Center Specific Plan Alternative Truck Route Traffic Analysis Scoping Agreement prepared by Urban Crossroads, Inc., the Without MCP scenario is expected to generate a total of approximately 23,680 two-way trips per day which include 19,236 two-way passenger car trips per day and 4,444 two-way truck trips per day. Under the With MCP scenario, the Project is anticipated to generate a total of 23,474 two-way trips per day which include 19,108 two-way passenger vehicle trips per day and 4,366 two-way truck trips per day (2). A Preliminary land use plan is shown on Exhibit 1-B (without MCP) and Exhibit 1-C (with MCP). **EXHIBIT 1-A: LOCATION MAP** **EXHIBIT 1-B: LAND USE PLAN WITHOUT MID-COUNTY PARKWAY** **EXHIBIT 1-C: LAND USE PLAN WITH MID-COUNTY PARKWAY** This page intentionally left blank #### 2 EXISTING CONDITIONS This section provides an overview of the existing energy conditions in the Project region. #### 2.1 OVERVIEW The most recent data for California's estimated total energy consumption and natural gas consumption is from 2020, released by the United States (U.S.) Energy Information Administration's (EIA) California State Profile and Energy Estimates in 2021 and included (3): - As of 2020,
approximately 6,923 trillion British Thermal Unit (BTU) of energy was consumed - As of 2020, approximately 524 million barrels of petroleum - As of 2020, approximately 2,075 billion cubic feet of natural gas - As of 2020, approximately 1 million short tons of coal The California Energy Commission's (CEC) Transportation Energy Demand Forecast released the 2018-2030 was released in order to support the 2017 Integrated Energy Policy Report. The Transportation energy Demand Forecast 2018-2030 lays out graphs and data supporting CEC's projections of California's future transportation energy demand. The projected inputs consider expected variable changes in fuel prices, income, population, and other variables. Predictions regarding fuel demand included: - Gasoline demand in the transportation sector is expected to decline from approximately 15.8 billion gallons in 2017 to between 12.3 billion and 12.7 billion gallons in 2030 (4) - Diesel demand in the transportation sector is expected to rise, increasing from approximately 3.7 billion diesel gallons in 2015 to approximately 4.7 billion in 2030 (4) - Data from the Department of Energy states that approximately 3.9 billion gallons of diesel fuel were consumed in 2019 (5) The most recent data provided by the EIA for energy use in California by demand sector is from 2020 and is reported as follows: - Approximately 34.0% transportation - Approximately 24.6% industrial - Approximately 21.8% residential - Approximately 19.6% commercial (6) In 2021, total system electric generation for California was 277,764 gigawatt hours (GWh). California's massive electricity in-state generation system generated approximately 194,127 GWh which accounted for approximately 70% of the electricity it uses; the rest was imported from the Pacific Northwest (12%) and the U.S. Southwest (18%) (7). Natural gas is the main source for electricity generation at 50.19% of the total in-state electric generation system power as shown in Table 2-1. TABLE 2-1: TOTAL ELECRICITY SYSTEM POWER (CALIFORNIA 2021) | Fuel Type | California In-State
Generation (GWh) | % of California In-
State Generation | Northwest
Imports
(GWh) | Southwest
Imports
(GWh) | Total
Imports
(GWh) | % of
Imports | Total
California
Energy
Mix | Total
California
Power Mix | |--------------------------------------|---|---|-------------------------------|-------------------------------|---------------------------|-----------------|--------------------------------------|----------------------------------| | Coal | 303 | 0.2% | 181 | 7,788 | 7,969 | 9.5% | 8,272 | 3.0% | | Natural Gas | 97,431 | 50.2% | 45 | 7,880 | 7,925 | 9.5% | 105,356 | 379.0% | | Oil | 37 | 0.0% | - | - | - | 0.0% | 37 | 0.0% | | Other
(Waste Heat/Petroleum Coke) | 382 | 0.2% | 68 | 15 | 83 | 0.1% | 465 | 0.2% | | Nuclear | 16,477 | 8.5% | 524 | 8,756 | 9,281 | 11.1% | 25,758 | 9.3% | | Large Hydro | 12,036 | 6.2% | 12,042 | 1,578 | 13,620 | 16.3% | 25,656 | 9.2% | | Unspecified | - | 0.0% | 8,156 | 10,731 | 18,887 | 22.6% | 18,887 | 6.8% | | Total Thermal and
Non-Renewables | 126,666 | 65.2% | 21,017 | 36,748 | 57,764 | 6910.0% | 184,431 | 66.4% | | Biomass | 5,381 | 2.8% | 864 | 26 | 890 | 1.1% | 6,271 | 2.3% | | Geothermal | 11,116 | 5.7% | 192 | 1,906 | 2,098 | 2.5% | 13,214 | 4.8% | | Small Hydro | 2,531 | 1.3% | 304 | 1 | 304 | 0.4% | 2,835 | 1.0% | | Solar | 33,260 | 17.1% | 220 | 5,979 | 6,199 | 7.4% | 39,458 | 14.2% | | Wind | 15,173 | 7.8% | 9,976 | 6,405 | 16,381 | 19.6% | 31,555 | 11.4% | | Total Renewables | 67,461 | 34.8% | 11,555 | 14,317 | 25,872 | 3090.0% | 93,333 | 33.6% | | SYSTEM TOTALS | 194,127 | 100.0% | 32,572 | 51,064 | 83,636 | 100.0% | 277,764 | 100.0% | Source: CECs 2021 Total System Electric Generation An updated summary of, and context for energy consumption and energy demands within the State is presented in "U.S. Energy Information Administration, California State Profile and Energy Estimates, Quick Facts" excerpted below (8): - In 2021, California was the seventh-largest producer of crude oil among the 50 states, and, as of January 2021, it ranked third in crude oil refining capacity. - California is the largest consumer of jet fuel and second-largest consumer of motor gasoline among the 50 states and, the state accounted for 15% of the nation's jet fuel consumption and 10% of motor gasoline consumption in 2020. - In 2019, California was the second-largest total energy consumer among the states, but its per capita energy consumption was less than in all other states except Rhode Island, due in part to its mild climate and its energy efficiency programs. - In 2021, California was the nation's top producer of electricity from solar, geothermal, and biomass energy. The state was fourth in the nation in conventional hydroelectric power generation, down from second in 2019, in part because of drought and increased water demand. - In 2021, California was the fourth-largest electricity producer in the nation, but the state was also the nation's second-largest consumer of electricity, and in 2020, it received about 30% of its electricity supply from generating facilities outside of California, including imports from Mexico. As indicated above, California is one of the nation's leading energy-producing states, and California's per capita energy use is among the nation's most efficient. Given the nature of the Project, the remainder of this discussion will focus on the three sources of energy that are most relevant to the Project—namely, electricity, natural gas, and transportation fuel for vehicle trips associated with the uses planned for the Project. #### 2.2 ELECTRICITY The usage associated with electricity use were calculated using CalEEMod Version 2022.1. The Southern California region's electricity reliability has been of concern for the past several years due to the planned retirement of aging facilities that depend upon once-through cooling technologies, as well as the June 2013 retirement of the San Onofre Nuclear Generating Station (San Onofre). While the once-through cooling phase-out has been ongoing since the May 2010 adoption of the State Water Resources Control Board's once-through cooling policy, the retirement of San Onofre complicated the situation. California Independent Service Operator (ISO) studies revealed the extent to which the South Coast Air Basin (SCAB) and the San Diego Air Basin (SDAB) region were vulnerable to low-voltage and post-transient voltage instability concerns. A preliminary plan to address these issues was detailed in the 2013 Integrative Energy Policy Report (IEPR) after a collaborative process with other energy agencies, utilities, and air districts (9). Similarly, the subsequent 2021 IEPR's provides information and policy recommendations on advancing a clean, reliable, and affordable energy system. California's electricity industry is an organization of traditional utilities, private generating companies, and state agencies, each with a variety of roles and responsibilities to ensure that electrical power is provided to consumers. The California ISO is a nonprofit public benefit corporation and is the impartial operator of the State's wholesale power grid and is charged with maintaining grid reliability, and to direct uninterrupted electrical energy supplies to California's homes and communities. While utilities still own transmission assets, the ISO routes electrical power along these assets, maximizing the use of the transmission system and its power generation resources. The ISO matches buyers and sellers of electricity to ensure that enough power is available to meet demand. To these ends, every five minutes the ISO forecasts electrical demands, accounts for operating reserves, and assigns the lowest cost power plant unit to meet demands while ensuring adequate system transmission capacities and capabilities (10). Part of the ISO's charge is to plan and coordinate grid enhancements to ensure that electrical power is provided to California consumers. To this end, utilities file annual transmission expansion/modification plans to accommodate the State's growing electrical needs. The ISO reviews and either approves or denies the proposed additions. In addition, and perhaps most importantly, the ISO works with other areas in the western United States electrical grid to ensure that adequate power supplies are available to the State. In this manner, continuing reliable and affordable electrical power is assured to existing and new consumers throughout the State. Electricity is currently provided to the Project site by Southern California Edison (SCE). SCE provides electric power to more than 15 million persons in 15 counties and in 180 incorporated cities, within a service area encompassing approximately 50,000 square miles. Based on SCE's 2018 Power Content Label Mix, SCE derives electricity from varied energy resources including: fossil fuels, hydroelectric generators, nuclear power plants, geothermal power plants, solar power generation, and wind farms. SCE also purchases from independent power producers and utilities, including out-of-state suppliers (11). Table 2-2, SCE's specific proportional shares of electricity sources in 2021. As indicated in Table 2-2, the 2021 SCE Power Mix has renewable energy at 31.4% of the overall energy resources. Geothermal resources are at 5.7%, wind power is at 10.2%, large hydroelectric sources are at 2.3%, solar energy is at 14.9%, and coal is at 0% (12). **TABLE 2-2: SCE 2021 POWER CONTENT MIX** | Energy Resources | 2021 SCE Power Mix | |-------------------------------|--------------------| | Eligible Renewable | 31.4% | | Biomass & Waste | 0.1% | | Geothermal | 5.7% | | Eligible Hydroelectric | 0.5% | | Solar | 14.9% | | Wind | 10.2% | | Coal | 0.0% | | Large Hydroelectric | 2.3% | | Natural Gas | 22.3% | | Nuclear | 9.2% | | Other | 0.2%
 | Unspecified Sources of power* | 34.6% | | Total | 100% | ^{* &}quot;Unspecified sources of power" means electricity from transactions that are not traceable to specific generation sources #### 2.3 NATURAL GAS The following summary of natural gas customers and volumes, supplies, delivery of supplies, storage, service options, and operations is excerpted from information provided by the California Public Utilities Commission (CPUC). "The CPUC regulates natural gas utility service for approximately 10.8 million customers that receive natural gas from Pacific Gas and Electric (PG&E), Southern California Gas (SoCalGas), San Diego Gas & Electric (SDG&E), Southwest Gas, and several smaller natural gas utilities. The CPUC also regulates independent storage operators: Lodi Gas Storage, Wild Goose Storage, Central Valley Storage and Gill Ranch Storage. California's natural gas utilities provide service to over 11 million gas meters. SoCalGas and PG&E provide service to about 5.9 million and 4.3 million customers, respectively, while SDG&E provides service to over 800, 000 customers. In 2018, California gas utilities forecasted that they would deliver about 4740 million cubic feet per day (MMcfd) of gas to their customers, on average, under normal weather conditions. The overwhelming majority of natural gas utility customers in California are residential and small commercials customers, referred to as "core" customers. Larger volume gas customers, like electric generators and industrial customers, are called "noncore" customers. Although very small in number relative to core customers, noncore customers consume about 65% of the natural gas delivered by the state's natural gas utilities, while core customers consume about 35%. A significant amount of gas (about 19%, or 1131 MMcfd, of the total forecasted California consumption in 2018) is also directly delivered to some California large volume consumers, without being transported over the regulated utility pipeline system. Those customers, referred to as "bypass" customers, take service directly from interstate pipelines or directly from California producers. SDG&E and Southwest Gas' southern division are wholesale customers of SoCalGas, i.e., they receive deliveries of gas from SoCalGas and in turn deliver that gas to their own customers. (Southwest Gas also provides natural gas distribution service in the Lake Tahoe area.) Similarly, West Coast Gas, a small gas utility, is a wholesale customer of PG&E. Some other wholesale customers are municipalities like the cities of Palo Alto, Long Beach, and Vernon, which are not regulated by the CPUC. Natural gas from out-of-state production basins is delivered into California via the interstate natural gas pipeline system. The major interstate pipelines that deliver out-of-state natural gas to California gas utilities are Gas Transmission Northwest Pipeline, Kern River Pipeline, Transwestern Pipeline, El Paso Pipeline, Ruby Pipeline, Mojave Pipeline, and Tuscarora. Another pipeline, the North Baja - Baja Norte Pipeline takes gas off the El Paso Pipeline at the California/Arizona border and delivers that gas through California into Mexico. While the Federal Energy Regulatory Commission (FERC) regulates the transportation of natural gas on the interstate pipelines, and authorizes rates for that service, the California Public Utilities Commission may participate in FERC regulatory proceedings to represent the interests of California natural gas consumers. The gas transported to California gas utilities via the interstate pipelines, as well as some of the California-produced gas, is delivered into the PG&E and SoCalGas intrastate natural gas transmission pipelines systems (commonly referred to as California's "backbone" pipeline system). Natural gas on the utilities' backbone pipeline systems is then delivered to the local transmission and distribution pipeline systems, or to natural gas storage fields. Some large volume noncore customers take natural gas delivery directly off the high-pressure backbone and local transmission pipeline systems, while core customers and other noncore customers take delivery off the utilities' distribution pipeline systems. The state's natural gas utilities operate over 100,000 miles of transmission and distribution pipelines, and thousands more miles of service lines. Bypass customers take most of their deliveries directly off the Kern/Mojave pipeline system, but they also take a significant amount of gas from California production. PG&E and SoCalGas own and operate several natural gas storage fields that are located within their service territories in northern and southern California, respectively. These storage fields, and four independently owned storage utilities - Lodi Gas Storage, Wild Goose Storage, Central Valley Storage, and Gill Ranch Storage - help meet peak seasonal and daily natural gas demand and allow California natural gas customers to secure natural gas supplies more efficiently. PG&E is a 25% owner of the Gill Ranch Storage field. These storage fields provide a significant amount of infrastructure capacity to help meet California's natural gas requirements, and without these storage fields, California would need much more pipeline capacity in order to meet peak gas requirements. Prior to the late 1980s, California regulated utilities provided virtually all natural gas services to all their customers. Since then, the Commission has gradually restructured the California gas industry in order to give customers more options while assuring regulatory protections for those customers that wish to, or are required to, continue receiving utility-provided services. The option to purchase natural gas from independent suppliers is one of the results of this restructuring process. Although the regulated utilities procure natural gas supplies for most core customers, core customers have the option to purchase natural gas from independent natural gas marketers, called "core transport agents" (CTA). Contact information for core transport agents can be found on the utilities' web sites. Noncore customers, on the other hand, make natural gas supply arrangements directly with producers or with marketers. Another option resulting from the restructuring process occurred in 1993, when the Commission removed the utilities' storage service responsibility for noncore customers, along with the cost of this service from noncore customers' transportation rates. The Commission also encouraged the development of independent storage fields, and in subsequent years, all the independent storage fields in California were established. Noncore customers and marketers may now take storage service from the utility or from an independent storage provider (if available), and pay for that service, or may opt to take no storage service at all. For core customers, the Commission assures that the utility has adequate storage capacity set aside to meet core requirements, and core customers pay for that service. In a 1997 decision, the Commission adopted PG&E's "Gas Accord", which unbundled PG&E's backbone transmission costs from noncore transportation rates. This decision gave customers and marketers the opportunity to obtain pipeline capacity rights on PG&E's backbone transmission pipeline system, if desired, and pay for that service at rates authorized by the Commission. The Gas Accord also required PG&E to set aside a certain amount of backbone transmission capacity in order to deliver gas to its core customers. Subsequent Commission decisions modified and extended the initial terms of the Gas Accord. The "Gas Accord" framework is still in place today for PG&E's backbone and storage rates and services and is now simply referred to as PG&E Gas Transmission and Storage (GT&S). In a 2006 decision, the Commission adopted a similar gas transmission framework for Southern California, called the "firm access rights" system. SoCalGas and SDG&E implemented the firm access rights (FAR) system in 2008, and it is now referred to as the backbone transmission system (BTS) framework. As under the PG&E backbone transmission system, SoCalGas backbone transmission costs are unbundled from noncore transportation rates. Noncore customers and marketers may obtain, and pay for, firm backbone transmission capacity at various receipt points on the SoCalGas system. A certain amount of backbone transmission capacity is obtained for core customers to assure meeting their requirements. Many if not most noncore customers now use a marketer to provide for several of the services formerly provided by the utility. That is, a noncore customer may simply arrange for a marketer to procure its supplies, and obtain any needed storage and backbone transmission capacity, in order to assure that it will receive its needed deliveries of natural gas supplies. Core customers still mainly rely on the utilities for procurement service, but they have the option to take procurement service from a CTA. Backbone transmission and storage capacity is either set aside or obtained for core customers in amounts to assure very high levels of service. In order properly operate their natural gas transmission pipeline and storage systems, PG&E and SoCalGas must balance the amount of gas received into the pipeline system and delivered to customers or to storage fields. Some of these utilities' storage capacity is dedicated to this service, and under most circumstances, customers do not need to precisely match their deliveries with their consumption. However, when too much or too little gas is expected to be delivered into the utilities' systems, relative to the amount being consumed, the utilities require customers to more precisely match up their deliveries with their consumption. And, if customers do not meet certain delivery requirements, they could face financial penalties. The utilities do not profit from these financial penalties the amounts are then returned to customers
as a whole. If the utilities find that they are unable to deliver all the gas that is expected to be consumed, they may even call for a curtailment of some gas deliveries. These curtailments are typically required for just the largest, noncore customers. It has been many years since there has been a significant curtailment of core customers in California." (13) As indicated in the preceding discussions, natural gas is available from a variety of in-state and out-of-state sources and is provided throughout the state in response to market supply and demand. Complementing available natural gas resources, biogas may soon be available via existing delivery systems, thereby increasing the availability and reliability of resources in total. The CPUC oversees utility purchases and transmission of natural gas to ensure reliable and affordable natural gas deliveries to existing and new consumers throughout the State. #### 2.4 Transportation Energy Resources The Project would generate additional vehicle trips with resulting consumption of energy resources, predominantly gasoline and diesel fuel. The Department of Motor Vehicles (DMV) identified 36.2 million registered vehicles in California (14), and those vehicles consume an estimated 17.2 billion gallons of fuel each year¹. Gasoline (and other vehicle fuels) are commercially provided commodities and would be available to the Project patrons and employees via commercial outlets. ¹ Fuel consumptions estimated utilizing information from EMFAC2021. California's on-road transportation system includes 396,616 lane miles, more than 26.6 million passenger vehicles and light trucks, and almost 9.0 million medium- and heavy-duty vehicles (14). While gasoline consumption has been declining since 2008 it is still by far the dominant fuel. California is the second-largest consumer of petroleum products, after Texas, and accounts for 10% of the nation's total consumption. The state is the largest U.S. consumer of motor gasoline and jet fuel, and 85% of the petroleum consumed in California is used in the transportation sector (15). California accounts for less than 1% of total U.S. natural gas reserves and production. As with crude oil, California's natural gas production has experienced a gradual decline since 1985. In 2019, about 37% of the natural gas delivered to consumers went to the state's industrial sector, and about 28% was delivered to the electric power sector. Natural gas fueled more than two-fifths of the state's utility-scale electricity generation in 2019. The residential sector, where two-thirds of California households use natural gas for home heating, accounted for 22% of natural gas deliveries. The commercial sector received 12% of the deliveries to end users and the transportation sector consumed the remaining 1% (15). This page intentionally left blank #### 3 REGULATORY BACKGROUND Federal and state agencies regulate energy use and consumption through various means and programs. On the federal level, the United States Department of Transportation, the United States Department of Energy, and the United States Environmental Protection Agency (EPA) are three federal agencies with substantial influence over energy policies and programs. On the state level, the CPUC and the CEC are two agencies with authority over different aspects of energy. Relevant federal and state energy-related laws and plans are summarized below. #### 3.1 FEDERAL REGULATIONS #### 3.1.1 Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) ISTEA promoted the development of inter-modal transportation systems to maximize mobility as well as address national and local interests in air quality and energy. ISTEA contained factors that Metropolitan Planning Organizations (MPOs) were to address in developing transportation plans and programs, including some energy-related factors. To meet the new ISTEA requirements, MPOs adopted explicit policies defining the social, economic, energy, and environmental values guiding transportation decisions. #### 3.1.2 THE TRANSPORTATION EQUITY ACT FOR THE 21ST CENTURY (TEA-21) TEA-21 was signed into law in 1998 and builds upon the initiatives established in the ISTEA legislation, discussed above. TEA-21 authorizes highway, highway safety, transit, and other efficient surface transportation programs. TEA-21 continues the program structure established for highways and transit under ISTEA, such as flexibility in the use of funds, emphasis on measures to improve the environment, and focus on a strong planning process as the foundation of good transportation decisions. TEA-21 also provides for investment in research and its application to maximize the performance of the transportation system through, for example, deployment of Intelligent Transportation Systems, to help improve operations and management of transportation systems and vehicle safety. #### 3.2 CALIFORNIA REGULATIONS #### 3.2.1 Integrated Energy Policy Report (IEPR) Senate Bill 1389 (Bowen, Chapter 568, Statutes of 2002) requires the CEC to prepare a biennial integrated energy policy report that assesses major energy trends and issues facing the state's electricity, natural gas, and transportation fuel sectors and provides policy recommendations to conserve resources; protect the environment; ensure reliable, secure, and diverse energy supplies; enhance the state's economy; and protect public health and safety (Public Resources Code § 25301[a]). The CEC prepares these assessments and associated policy recommendations every two years, with updates in alternate years, as part of the Integrated Energy Policy Report. The 2021 IEPR was adopted February 2022, and continues to work towards improving electricity, natural gas, and transportation fuel energy use in California. The 2021 IEPR provides the results of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the state is to meet its climate, energy, air quality, and other environmental goals while maintaining reliability and controlling costs. Additionally, the 2021 IEPR provides the results of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the state is to meet its climate, energy, air quality, and other environmental goals while maintaining reliability and controlling costs (16). #### 3.2.2 STATE OF CALIFORNIA ENERGY PLAN The CEC is responsible for preparing the State Energy Plan, which identifies emerging trends related to energy supply, demand, conservation, public health and safety, and the maintenance of a healthy economy. The Plan calls for the state to assist in the transformation of the transportation system to improve air quality, reduce congestion, and increase the efficient use of fuel supplies with the least environmental and energy costs. To further this policy, the plan identifies several strategies, including assistance to public agencies and fleet operators and encouragement of urban designs that reduce vehicle miles traveled (VMT) and accommodate pedestrian and bicycle access. #### 3.2.3 CALIFORNIA CODE TITLE 24, PART 6, ENERGY EFFICIENCY STANDARDS California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on August 1, 2009, and is administered by the California Building Standards Commission. CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that became effective on January 1, 2023. The Project would be required to comply with the applicable standards in place at the time plan check submittals are made (17). #### 3.2.4 AB 1493 Pavley Regulations and Fuel Efficiency Standards California AB 1493, enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. Under this legislation, CARB adopted regulations to reduce GHG emissions from non-commercial passenger vehicles (cars and light-duty trucks). Although aimed at reducing GHG emissions, specifically, a co-benefit of the Pavley standards is an improvement in fuel efficiency and consequently a reduction in fuel consumption. #### 3.2.5 CALIFORNIA'S RENEWABLE PORTFOLIO STANDARD (RPS) First established in 2002 under Senate Bill (SB) 1078, California's Renewable Portfolio Standards (RPS) requires retail sellers of electric services to increase procurement from eligible renewable resources to 33% of total retail sales by 2020 (18). #### 3.2.6 CLEAN ENERGY AND POLLUTION REDUCTION ACT OF 2015 (SB 350) In October 2015, the legislature approved, and the Governor signed SB 350, which reaffirms California's commitment to reducing its GHG emissions and addressing climate change. Key provisions include an increase in the renewables portfolio standard (RPS), higher energy efficiency requirements for buildings, initial strategies towards a regional electricity grid, and improved infrastructure for electric vehicle charging stations. Specifically, SB 350 requires the following to reduce statewide GHG emissions: - Increase the amount of electricity procured from renewable energy sources from 33% to 50% by 2030, with interim targets of 40% by 2024, and 25% by 2027. - Double the energy efficiency in existing buildings by 2030. This target will be achieved through the California Public Utility Commission (CPUC), the CEC, and local publicly owned utilities. - Reorganize the Independent System Operator (ISO) to develop more regional electrify transmission
markets and to improve accessibility in these markets, which will facilitate the growth of renewable energy markets in the western United States (California Leginfo 2015). #### 3.2.7 EXECUTIVE ORDER N-79-20 AND ADVANCED CLEAN CARS II On August 25, 2022 CARB approved the Advanced Clean Cars II rule, which codifies the goals set out in Executive Order N-79-20 and establishes a year-by-year roadmap such that by 2035, 100% of new cars and light trucks sold in California will be zero-emission vehicles. Under this regulation, automakers are required to accelerate deliveries of zero-emission light-duty vehicles, beginning with model year 2026. CARB estimates that between 2026 and 2040, the regulation would reduce GHG emissions by a cumulative 395 million metric tons, equivalent to reducing petroleum use by 915 million barrels. This page intentionally left blank ### 4 PROJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASURES #### 4.1 EVALUATION CRITERIA Appendix F of the *State CEQA Guidelines* (19), states that the means of achieving the goal of energy conservation includes the following: - Decreasing overall per capita energy consumption; - Decreasing reliance on fossil fuels such as coal, natural gas, and oil; and - Increasing reliance on renewable energy sources. In compliance with Appendix G of the *State CEQA Guidelines* (20), this report analyzes the Project's anticipated energy use during construction and operations to determine if the Project would: - Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation; or - Conflict with or obstruct a state or local plan for renewable energy or energy efficiency #### 4.2 METHODOLOGY Information from the CalEEMod Version 2022.1 outputs for the *Stoneridge Commerce Center Specific Plan Air Quality Impact Analysis* (AQIA) (21) was utilized in this analysis, detailing Project related construction equipment, transportation energy demands, and facility energy demands. #### 4.2.1 CALEEMOD In May 2022, the SCAQMD, in conjunction with the California Air Pollution Control Officers Association (CAPCOA) and other California air districts, released the latest version of the CalEEMod Version 2022.1. The purpose of this model is to calculate construction-source and operational-source criteria pollutants and GHG emissions from direct and indirect sources as well as energy usage (22). Accordingly, the latest version of CalEEMod has been used to determine the proposed Project's anticipated transportation and facility energy demands. Outputs from the annual model runs are provided in Appendices 4.1 through 4.2. #### 4.2.2 EMISSION FACTORS MODEL On May 2, 2022, the EPA approved the 2021 version of the EMissions FACtor model (EMFAC2021) web database for use in State Implementation Plan and transportation conformity analyses. EMFAC2021 is a mathematical model that was developed to calculate emission rates, fuel consumption, VMT from motor vehicles that operate on highways, freeways, and local roads in California and is commonly used by the CARB to project changes in future emissions from onroad mobile sources (23). This energy study utilizes the different fuel types for each vehicle class from the annual EMFAC2021 emission inventory in order to derive the average vehicle fuel economy which is then used to determine the estimated annual fuel consumption associated with vehicle usage during Project construction and operational activities. For purposes of analysis, the 2023 and 2024 analysis years were utilized to determine the average vehicle fuel economy used throughout the duration of the Project. Outputs from the EMFAC2021 model run is provided in Appendix 4.3. #### 4.3 CONSTRUCTION ENERGY DEMANDS The focus within this section is the energy implications of the construction process, specifically the power cost from on-site electricity consumption during construction of the proposed Project. #### 4.3.1 CONSTRUCTION POWER COST The total Project construction power costs is the summation of the products of the area (sf) by the construction duration and the typical power cost. #### **CONSTRUCTION DURATION** For purposes of analysis, construction of Project is expected to commence in July 2023 and would end in November 2031 (21). The construction schedule utilized in the analysis, shown in Table 4-1, represents a "worst-case" analysis scenario. The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines* (24). **Construction Activity** Start Date **End Date Days** 7/1/2023 3/9/2024 **Site Preparation** 180 12/20/2025 465 Grading/Blasting 3/10/2024 **Building Construction** 3/22/2026 11/13/2031 1,474 **Paving** 3/22/2026 11/13/2031 1.474 **Architectural Coating** 3/22/2026 11/13/2031 1,474 **TABLE 4-1: CONSTRUCTION DURATION** #### **PROJECT CONSTRUCTION POWER COST** The 2022 National Construction Estimator identifies a typical power cost per 1,000 sf of construction per month of \$2.41, which was used to calculate the Project's total construction power cost (25). As shown on Table 4-2, the total power cost of the on-site electricity usage during the construction of the Project is estimated to be approximately \$3,307,523.28 under the Without MCP scenario and 3,276,606.84 under the With MCP scenario. **TABLE 4-2: CONSTRUCTION POWER COST** | Scenario | Land Use | Power Cost
(per 1,000 SF
of building
per month of
construction) | Total
Building
Size
(1,000 SF) | Const. Duration (months) | Total Project
Construction
Power Cost | |----------------|--|---|---|--------------------------|---| | | High-Cube Cold Storage Warehouse | \$2.41 | 2,940.000 | 100 | \$708,540.00 | | | High-Cube Fulfillment Center Warehouse | \$2.41 | 2,940.000 | 100 | \$708,540.00 | | | High-Cube Warehouse | \$2.41 | 735.000 | 100 | \$177,135.00 | | | Manufacturing | \$2.41 | 735.000 | 100 | \$177,135.00 | | \ | Warehousing | \$2.41 | 427.759 | 100 | \$103,089.92 | | Without
MCP | Industrial Park | \$2.41 | 641.639 | 100 | \$154,635.00 | | IVICE | Commercial | \$2.41 | 121.968 | 100 | \$29,394.29 | | | Landscape | \$2.41 | 2,316.569 | 100 | \$558,293.13 | | | Parking | \$2.41 | 1,498.464 | 100 | \$361,129.82 | | | Other Asphalt Surfaces | \$2.41 | 1,367.764 | 100 | \$329,631.12 | | | TOTAL PROJEC | T CONSTRUCTIO | N COST - WI | ТНОИТ МСР | \$3,307,523.28 | | | High-Cube Cold Storage Warehouse | \$2.41 | 2,940.000 | 100 | \$708,540.00 | | | High-Cube Fulfillment Center Warehouse | \$2.41 | 2,940.000 | 100 | \$708,540.00 | | | High-Cube Warehouse | \$2.41 | 735.000 | 100 | \$177,135.00 | | | Manufacturing | \$2.41 | 735.000 | 100 | \$177,135.00 | | \A/:+b | Warehousing | \$2.41 | 374.616 | 100 | \$90,282.46 | | With
MCP | Industrial Park | \$2.41 | 561.924 | 100 | \$135,423.68 | | IVICE | Commercial | \$2.41 | 126.542 | 100 | \$30,496.62 | | | Landscape | \$2.41 | 2,316.569 | 100 | \$558,293.13 | | | Parking | \$2.41 | 1,498.464 | 100 | \$361,129.82 | | | Other Asphalt Surfaces | \$2.41 | 1,367.764 | 100 | \$329,631.12 | | | TOTAL PRO | OJECT CONSTRU | CTION COST | - WITH MCP | \$3,276,606.84 | #### 4.3.2 CONSTRUCTION ELECTRICITY USAGE The total Project construction electricity usage is the summation of the products of the power cost (estimated in Table 4-2) by the utility provider cost per kilowatt hour (kWh) of electricity. #### **PROJECT CONSTRUCTION ELECTRICITY USAGE** The SCE's general service rate schedule were used to determine the Project's electrical usage. As of June 1, 2022, SCE's general service rate is \$0.13 per kilowatt hours (kWh) of electricity for industrial services (26). As shown on Table 4-3, the total electricity usage from on-site Project construction related activities is estimated to be approximately 26,377,887 kWh under the Without MCP scenario and 26,131,325 kWh under the With MCP scenario. **TABLE 4-3: CONSTRUCTION ELECTRICITY USAGE** | Scenario | Land Use | Cost per kWh | Total Project
Construction Electricity
Usage (kWh) | |----------------|--|-------------------------------|--| | | High-Cube Cold Storage Warehouse | \$0.13 | 5,650,690 | | | High-Cube Fulfillment Center Warehouse | \$0.13 | 5,650,690 | | | High-Cube Warehouse | \$0.13 | 1,412,672 | | | Manufacturing | \$0.13 | 1,412,672 | | \A/!+ + | Warehousing | \$0.13 | 822,154 | | Without
MCP | Industrial Park | \$0.13 | 1,233,232 | | IVICP | Commercial | \$0.13 | 234,423 | | | Landscape | \$0.13 | 4,452,453 | | | Parking | \$0.13 | 2,880,053 | | | Other Asphalt Surfaces | \$0.13 | 2,628,847 | | | TOTAL PROJECT CONSTRUCTION ELECTRIC | TY USAGE (kWh) - WITHOUT MCP | 26,377,887 | | | High-Cube Cold Storage Warehouse | \$0.13 | 5,650,690 | | | High-Cube Fulfillment Center Warehouse | \$0.13 | 5,650,690 | | | High-Cube Warehouse | \$0.13 | 1,412,672 | | | Manufacturing | \$0.13 | 1,412,672 | | | Warehousing | \$0.13 | 720,013 | | With MCP | Industrial Park | \$0.13 | 1,080,020 | | | Commercial | \$0.13 | 243,214 | | | Landscape | \$0.13 | 4,452,453 | | | Parking | \$0.13 | 2,880,053 | | | Other Asphalt Surfaces | \$0.13 | 2,628,847 | | | TOTAL PROJECT CONSTRUCTION ELEC | TRICTY USAGE (kWh) - WITH MCP | 26,131,325 | #### **4.3.3** Construction Equipment Fuel Estimates Fuel consumed by construction equipment would be the primary energy resource expended over the course of Project construction. #### **CONSTRUCTION EQUIPMENT** Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 4-4 would operate up to a total of eight (8) hours per day, or more than two-thirds
of the period during which construction activities are allowed pursuant to the County Code. **TABLE 4-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS** | Construction Activity | Equipment | Quantity | Hours Per Day | |-----------------------|---------------------|----------|---------------| | Cita Dranaration | Rubber Tired Dozers | 6 | 8 | | Site Preparation | Crawler Tractors | 8 | 8 | | | Graders | 2 | 8 | | Construction Activity | Equipment | Quantity | Hours Per Day | |-----------------------|---------------------------|----------|---------------| | | Excavators | 4 | 8 | | Cua din a | Scrapers | 4 | 8 | | Grading | Rubber Tired Dozers | 2 | 8 | | | Crawler Tractors | 4 | 8 | | | Cranes | 2 | 8 | | | Forklifts | 6 | 8 | | Building Construction | Generator Sets | 2 | 8 | | | Tractors/Loaders/Backhoes | 6 | 8 | | | Welders | 2 | 8 | | | Pavers | 4 | 8 | | Paving | Paving Equipment | 4 | 8 | | | Rollers | 4 | 8 | | Architectural Coating | Air Compressors | 2 | 8 | #### PROJECT CONSTRUCTION EQUIPMENT FUEL CONSUMPTION Project construction activity timeline estimates, construction equipment schedules, equipment power ratings, load factors, and associated fuel consumption estimates are presented in Table 4-5. The aggregate fuel consumption rate for all equipment is estimated at 18.5 horsepower hour per gallon (hp-hr-gal.), obtained from CARB 2018 Emissions Factors Tables and cited fuel consumption rate factors presented in Table D-24 of the Moyer guidelines (27). For the purposes of this analysis, the calculations are based on all construction equipment being diesel-powered, which is consistent with industry standards. Diesel fuel would be supplied by existing commercial fuel providers serving the Project area and region². As presented in Table 4-5, Project construction activities would consume an estimated 962,504 gallons of diesel fuel. Project construction would represent a "single-event" diesel fuel demand and would not require ongoing or permanent commitment of diesel fuel resources for this purpose. ² Based on Appendix A of the CalEEMod User's Guide, Construction consists of several types of off-road equipment. Since the majority of the off-road construction equipment used for construction projects are diesel fueled, CalEEMod assumes all of the equipment operates on diesel fuel. TABLE 4-5: CONSTRUCTION EQUIPMENT FUEL CONSUMPTION ESTIMATES | Activity/Duration | Duration
(Days) | Equipment | HP Rating | Quantity | Usage Hours | Load Factor | HP-hrs/day | Total Fuel
Consumption
(gal. diesel
fuel) | |--|--------------------|---------------------------|-----------|----------|-------------|-------------|------------|--| | Cita Dranaration | 180 | Crawler Tractors | 87 | 8 | 8 | 0.43 | 2,394 | 23,295 | | Site Preparation | 180 | Rubber Tired Dozers | 367 | 6 | 8 | 0.4 | 7,046 | 68,560 | | | | Crawler Tractors | 87 | 4 | 8 | 0.43 | 1,197 | 30,090 | | | | Excavators | 36 | 4 | 8 | 0.38 | 438 | 11,003 | | Grading/Blasting | 465 | Graders | 148 | 2 | 8 | 0.41 | 971 | 24,403 | | | | Scrapers | 423 | 4 | 8 | 0.48 | 6,497 | 163,310 | | | | Rubber Tired Dozers | 367 | 2 | 8 | 0.4 | 2,349 | 59,037 | | | | Cranes | 367 | 2 | 8 | 0.29 | 1,703 | 135,678 | | | | Tractors/Loaders/Backhoes | 84 | 6 | 8 | 0.37 | 1,492 | 118,863 | | Building Construction | 1474 | Forklifts | 82 | 6 | 8 | 0.2 | 787 | 62,721 | | | | Generator Sets | 14 | 2 | 8 | 0.74 | 166 | 13,207 | | | | Welders | 46 | 2 | 8 | 0.45 | 331 | 26,389 | | | | Pavers | 81 | 4 | 8 | 0.42 | 1,089 | 86,738 | | Paving | 1474 | Paving Equipment | 89 | 4 | 8 | 0.36 | 1,025 | 81,690 | | | | Rollers | 36 | 4 | 8 | 0.38 | 438 | 34,879 | | Architectural Coating | 1474 | Air Compressors | 37 | 2 | 8 | 0.48 | 284 | 22,641 | | CONSTRUCTION FUEL DEMAND (GALLONS DIESEL FUEL) 962,504 | | | | | | | 962,504 | | #### 4.3.4 CONSTRUCTION TRIPS AND VMT Construction generates on-road vehicle emissions from vehicle usage for workers, vendors, and haul truck commuting to and from the site. The number of workers and vendor trips are presented below in Table 4-6. It should be noted that for vendor trips, specifically, CalEEMod only assigns vendor trips to the Building Construction phase. Vendor trips would likely occur during all phases of construction. As such, the CalEEMod defaults for vendor trips have been adjusted based on a ratio of the total vendor trips to the number of days of each subphase of activity. | Construction Activity | Worker Trips
Per Day | Vendor Trips
Per Day | Hauling Trips
Per Day | |-----------------------|-------------------------|-------------------------|--------------------------| | Site Preparation | 35 | 119 | 14 | | Grading/Blasting | 40 | 307 | 14 | | Building Construction | 3,575 | 974 | 0 | | Paving | 30 | 0 | 0 | | Architectural Coating | 715 | 0 | 0 | **TABLE 4-6: CONSTRUCTION TRIPS AND VMT** #### 4.3.5 CONSTRUCTION WORKER FUEL ESTIMATES With respect to estimated VMT for the Project, the construction worker trips (personal vehicles used by workers commuting to the Project from home) would generate an estimated 236,045,940 VMT during the 100 months of construction (21). Based on CalEEMod methodology, it is assumed that 50% of all construction worker trips are from light-duty-auto vehicles (LDA), 25% are from light-duty-trucks (LDT1³), and 25% are from light-duty-trucks (LDT2⁴). Data regarding Project related construction worker trips were based on CalEEMod defaults utilized within the AQIA. Vehicle fuel efficiencies for LDA, LDT1, and LDT2 were estimated using information generated within the 2021 version of the EMFAC developed by CARB. EMFAC2021 is a mathematical model that was developed to calculate emission rates, fuel consumption, and VMT from motor vehicles that operate on highways, freeways, and local roads in California and is commonly used by the CARB to project changes in future emissions from on-road mobile sources (23). EMFAC2021 was run for the LDA, LDT1, and LDT2 vehicle class within the California sub-area for the 2023 through 2031 calendar years. Data from EMFAC2021 is shown in Appendix 4.3. As shown in Table 4-7, the estimated fuel consumption resulting from Project construction worker trips is 7,661,264 gallons during full construction of the Project. It should be noted that construction worker trips would represent a "single-event" gasoline fuel demand and would not require ongoing or permanent commitment of fuel resources for this purpose. ³ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs. $^{^4}$ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs. **TABLE 4-7: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES** | Vehicle
Category | Construction Activity | Duration
(Days) | Worker
Trips /
Day | Trip
Length
(miles) | Vehicle
Miles
Traveled | Average Vehicle Fuel Economy (mpg) | Estimated
Fuel
Consumption
(gallons) | | | | | | | |---------------------|-----------------------|--------------------|--------------------------|---------------------------|------------------------------|------------------------------------|---|--|--|--|--|--|--| | | | | | 2023 | | , , , , , | | | | | | | | | | Site Preparation | 130 | 35 | 18.5 | 84,175 | 30.60 | 2,751 | | | | | | | | | | I. | | 2024 | | I. | | | | | | | | | | Site Preparation | 50 | 35 | 18.5 | 32,375 | 31.51 | 1,028 | | | | | | | | | Grading/Blasting | 212 | 40 | 18.5 | 156,880 | 31.51 | 4,979 | | | | | | | | | | | | 2025 | | | | | | | | | | | | Grading/Blasting | 253 | 40 | 18.5 | 187,220 | 32.49 | 5,762 | | | | | | | | | 2026 | | | | | | | | | | | | | | | Building Construction | 204 | 3,575 | 18.5 | 13,492,050 | 33.43 | 403,544 | | | | | | | | | Paving | 204 | 30 | 18.5 | 113,220 | 33.43 | 3,386 | | | | | | | | | Architectural Coating | 204 | 715 | 18.5 | 2,698,410 | 33.43 | 80,709 | | | | | | | | | 2027 | | | | | | | | | | | | | | | Building Construction | 260 | 3,575 | 18.5 | 17,195,750 | 34.29 | 501,536 | | | | | | | | | Paving | 260 | 30 | 18.5 | 144,300 | 34.29 | 4,209 | | | | | | | | | Architectural Coating | 260 | 715 | 18.5 | 3,439,150 | 34.29 | 100,307 | | | | | | | | | 2028 | | | | | | | | | | | | | | LDA | Building Construction | 260 | 3,575 | 18.5 | 17,195,750 | 35.14 | 489,303 | | | | | | | | | Paving | 260 | 30 | 18.5 | 144,300 | 35.14 | 4,106 | | | | | | | | | Architectural Coating | 260 | 715 | 18.5 | 3,439,150 | 35.14 | 97,861 | | | | | | | | | 2029 | | | | | | | | | | | | | | | Building Construction | 260 | 3,575 | 18.5 | 17,195,750 | 35.96 | 478,162 | | | | | | | | | Paving | 260 | 30 | 18.5 | 144,300 | 35.96 | 4,013 | | | | | | | | | Architectural Coating | 260 | 715 | 18.5 | 3,439,150 | 35.96 | 95,632 | | | | | | | | | | | | 2030 | | | | | | | | | | | | Building Construction | 260 | 3,575 | 18.5 | 17,195,750 | 36.74 | 468,020 | | | | | | | | | Paving | 260 | 30 | 18.5 | 144,300 | 36.74 | 3,927 | | | | | | | | | Architectural Coating | 260 | 715 | 18.5 | 3,439,150 | 36.74 | 93,604 | | | | | | | | | | | | 2031 | | | | | | | | | | | | Building Construction | 227 | 3,575 | 18.5 | 15,013,213 | 37.47 | 400,656 | | | | | | | | | Paving | 227 | 30 | 18.5 | 125,985 | 37.47 | 3,362 | | | | | | | | | Architectural Coating | 227 | 715 | 18.5 | 3,002,643 | 37.47 | 80,131 | | | | | | | | | 7 | TOTAL CONS | TRUCTION | WORKER (LI | DA) FUEL CONS | SUMPTION | 3,326,989 | | | | | | | | | | | | 2023 | | | | | | | | | | | LDT4 | Site Preparation | 130 | 18 | 18.5 | 42,088 | 24.15 | 1,743 | | | | | | | | LDT1 | | • | • | 2024 | | • | • | | | | | | | | | Site Preparation | 50 | 18 | 18.5 | 16,188 | 24.62 | 657 | | | | | | | | Vehicle
Category | Construction Activity | Duration
(Days) | Worker
Trips /
Day |
Trip
Length
(miles) | Vehicle
Miles
Traveled | Average
Vehicle
Fuel
Economy
(mpg) | Estimated
Fuel
Consumption
(gallons) | | | | | | | | |---------------------|------------------------------|--------------------|--------------------------|---------------------------|------------------------------|--|---|--------|--|--|--|--|--|--| | | Grading/Blasting | 212 | 20 | 18.5 | 78,440 | 24.62 | 3,186 | | | | | | | | | | | | | 2025 | | | | | | | | | | | | | Grading/Blasting | 253 | 20 | 18.5 | 93,610 | 25.14 | 3,724 | | | | | | | | | | | | | 2026 | | | | | | | | | | | | | Building Construction | 204 | 1,788 | 18.5 | 6,746,025 | 25.70 | 262,468 | | | | | | | | | | Paving | 204 | 15 | 18.5 | 56,610 | 25.70 | 2,203 | | | | | | | | | | Architectural Coating | 204 | 358 | 18.5 | 1,349,205 | 25.70 | 52,494 | | | | | | | | | | | | | 2027 | | | | | | | | | | | | | Building Construction | 260 | 1,788 | 18.5 | 8,597,875 | 26.22 | 327,935 | | | | | | | | | | Paving | 260 | 15 | 18.5 | 72,150 | 26.22 | 2,752 | | | | | | | | | | Architectural Coating | 260 | 358 | 18.5 | 1,719,575 | 26.22 | 65,587 | | | | | | | | | | 2028 | | | | | | | | | | | | | | | | Building Construction | 260 | 1,788 | 18.5 | 8,597,875 | 26.76 | 321,236 | | | | | | | | | | Paving | 260 | 15 | 18.5 | 72,150 | 26.76 | 2,696 | | | | | | | | | | Architectural Coating | 260 | 358 | 18.5 | 1,719,575 | 26.76 | 64,247 | | | | | | | | | | 2029 | | | | | | | | | | | | | | | | Building Construction | 260 | 1,788 | 18.5 | 8,597,875 | 27.31 | 314,813 | | | | | | | | | | Paving | 260 | 15 | 18.5 | 72,150 | 27.31 | 2,642 | | | | | | | | | | Architectural Coating | 260 | 260 | 358 | 18.5 | 1,719,575 | 27.31 | 62,963 | Building Construction | 260 | 1,788 | 18.5 | 8,597,875 | 27.86 | 308,663 | | | | | | | | | | Paving | 260 | 15 | 18.5 | 72,150 | 27.86 | 2,590 | | | | | | | | | | Architectural Coating | 260 | 358 | 18.5 | 1,719,575 | 27.86 | 61,733 | | | | | | | | | | | | | 2031 | | | | | | | | | | | | | Building Construction | 227 | 1,788 | 18.5 | 7,506,606 | 28.38 | 264,469 | | | | | | | | | | Paving | 227 | 15 | 18.5 | 62,993 | 28.38 | 2,219 | | | | | | | | | | Architectural Coating | 227 | 358 | 18.5 | 1,501,321 | 28.38 | 52,894 | | | | | | | | | | To | OTAL CONST | RUCTION W | ORKER (LD | T1) FUEL CON | SUMPTION | 2,183,912 | | | | | | | | | | | T | T | 2023 | 1 | 1 | | | | | | | | | | | Site Preparation | 130 | 18 | 18.5 | 42,088 | 23.88 | 1,762 | | | | | | | | | | | T | T | 2024 | 1 | 1 | | | | | | | | | | | Site Preparation | 50 | 18 | 18.5 | 16,188 | 24.57 | 659 | | | | | | | | | LDT2 | Grading/Blasting | 212 | 20 | 18.5 | 78,440 | 24.57 | 3,192 | | | | | | | | | | 2025 | | | | | | | | | | | | | | | | Grading/Blasting | 253 | 20 | 18.5 | 93,610 | 25.29 | 3,701 | | | | | | | | | | | T | T | 2026 | ı | 1 | | | | | | | | | | | Building Construction | 204 | 1,788 | 18.5 | 6,746,025 | 26.01 | 259,377 | | | | | | | | | Vehicle
Category | Construction Activity | Duration
(Days) | Worker
Trips /
Day | Trip
Length
(miles) | Vehicle
Miles
Traveled | Average
Vehicle
Fuel
Economy
(mpg) | Estimated
Fuel
Consumption
(gallons) | | | | | | |---------------------|---|--------------------|--------------------------|---------------------------|------------------------------|--|---|-------|-------|--|--|--| | | Paving | 204 | 15 | 18.5 | 56,610 | 26.01 | 2,177 | | | | | | | | Architectural Coating | 204 | 358 | 18.5 | 1,349,205 | 26.01 | 51,875 | | | | | | | | | | | 2027 | | | | | | | | | | | Building Construction | 260 | 1,788 | 18.5 | 8,597,875 | 26.63 | 322,895 | | | | | | | | Paving | 260 | 15 | 18.5 | 72,150 | 26.63 | 2,710 | | | | | | | | Architectural Coating | 260 | 358 | 18.5 | 1,719,575 | 26.63 | 64,579 | | | | | | | | | | | 2028 | | | | | | | | | | | Building Construction | 260 | 1,788 | 18.5 | 8,597,875 | 27.23 | 315,737 | | | | | | | | Paving | 260 | 15 | 18.5 | 72,150 | 27.23 | 2,650 | | | | | | | | Architectural Coating | 260 | 358 | 18.5 | 1,719,575 | 27.23 | 63,147 | | | | | | | | 2029 | | | | | | | | | | | | | | Building Construction | 260 | 1,788 | 18.5 | 8,597,875 | 27.79 | 309,374 | | | | | | | | Paving | 260 | 260 | 260 | 15 | 18.5 | 72,150 | 27.79 | 2,596 | | | | | | Architectural Coating | 260 | 358 | 18.5 | 1,719,575 | 27.79 | 61,875 | | | | | | | | | | | 2030 | | | | | | | | | | | Building Construction | 260 | 1,788 | 18.5 | 8,597,875 | 28.31 | 303,692 | | | | | | | | Paving | 260 | 15 | 18.5 | 72,150 | 28.31 | 2,548 | | | | | | | | Architectural Coating | 260 | 358 | 18.5 | 1,719,575 | 28.31 | 60,738 | | | | | | | | | | | 2031 | | | | | | | | | | | Building Construction | 227 | 1,788 | 18.5 | 7,506,606 | 28.79 | 260,740 | | | | | | | | Paving | 227 | 15 | 18.5 | 62,993 | 28.79 | 2,188 | | | | | | | | Architectural Coating 227 358 18.5 1,501,321 28.79 52 | | | | | | | | | | | | | | TOTAL CONSTRUCTION WORKER (LDT2) FUEL CONSUMPTION | | | | | | | | | | | | | | TOTAL CONS | TRUCTION W | VORKER (LD | A, LDT1, LD | T2) FUEL CON | SUMPTION | 7,661,264 | | | | | | ### 4.3.6 CONSTRUCTION VENDOR AND HAULING FUEL ESTIMATES With respect to estimated VMT, the construction vendor trips (vehicles that deliver materials to the site during construction) and material hauling trips would generate an estimated 32,757,952 VMT along area roadways for the Project over the duration of construction activity (21). It is assumed that 50% of all vendor trips are from medium-heavy duty trucks (MHD) and 50% of all vendor trips are from heavy-heavy duty trucks (HHD). Hauling trips are assumed to be performed only by HHD trucks. These assumptions are consistent with the CalEEMod defaults utilized within the within the AQIA (21). Vehicle fuel efficiencies for MHDs and HHDs were estimated using information generated within EMFAC2021. EMFAC2021 was run for the MHD and HHD vehicle classes within the California sub-area for the 2023 through 2031 calendar years. Data from EMFAC2021 is shown in Appendix 4.3. Based on Table 4-8, it is estimated that 4,252,407 gallons of fuel will be consumed related to construction vendor and hauling trips during full construction of the Project. It should be noted that Project construction vendor trips would represent a "single-event" diesel fuel demand and would not require on-going or permanent commitment of diesel fuel resources for this purpose. **TABLE 4-8: CONSTRUCTION VENDOR AND HAULING FUEL CONSUMPTION ESTIMATES** | Vehicle
Category | Construction Activity | Duration
(Days) | Trips /
Day | Trip
Length
(miles) | Vehicle
Miles
Traveled | Average Vehicle Fuel Economy (mpg) | Estimated
Fuel
Consumption
(gallons) | | | | | | | | |---------------------|---|--------------------|----------------|---------------------------|------------------------------|------------------------------------|---|--|--|--|--|--|--|--| | | | | 2 | 2023 | | | | | | | | | | | | | Site Preparation | 130 | 119 | 10.2 | 157,794 | 8.42 | 18,737 | | | | | | | | | | | | | 2024 | | | | | | | | | | | | | Site Preparation | 50 | 119 | 10.2 | 60,690 | 8.49 | 7,145 | | | | | | | | | | Grading/Blasting | 212 | 307 | 10.2 | 663,857 | 8.49 | 78,159 | | | | | | | | | | 2025 Grading/Blasting 252 207 10.2 792.244 8.60 92.112 | | | | | | | | | | | | | | | | Grading/Blasting | 253 | 307 | 10.2 | 792,244 | 8.60 | 92,112 | | | | | | | | | | | 1 | | 2026 | ı | T | | | | | | | | | | | Building Construction | 204 | 974 | 10.2 | 2,026,699 | 8.72 | 232,287 | | | | | | | | | Vendor | 2027 | | | | | | | | | | | | | | | MHDT | Building Construction | 260 | 974 | 10.2 | 2,583,048 | 8.87 | 291,084 | | | | | | | | | | 2028 | | | | | | | | | | | | | | | | Building Construction | 260 | 974 | 10.2 | 2,583,048 | 9.09 | 284,270 | | | | | | | | | | | | | 2029 | | | | | | | | | | | | | Building Construction | 260 | 974 | 10.2 | 2,583,048 | 9.37 | 275,780 | | | | | | | | | | | | | 2030 | 1 | T | | | | | | | | | | | Building Construction | 260 | 974 | 10.2 | 2,583,048 | 9.72 | 265,720 | | | | | | | | | | 2031 | | | | | | | | | | | | | | | | Building Construction | 227 | 974 | 10.2 | 2,255,200 | 10.15 | 222,178 | | | | | | | | | | TOTAL CONSTRUCTION VENDOR (MHDT) FUEL CONSUMPTION 1,767,472 | | | | | | | | | | | | | | | | | | | 2023 | | | | | | | | | | | | | Site Preparation | 130 | 119 | 10.2 | 157,794 | 6.04 | 26,114 | | | | | | | | | | | | | 2024 | | | | | | | | | | | | | Site Preparation | 50 | 119 | 10.2 | 60,690 | 6.12 | 9,915 | | | | | | | | | | Grading/Blasting | 212 | 307 | 10.2 | 663,857 | 6.12 | 108,457 | | | | | | | | | \ | | | 2 | 2025 | | | | | | | | | | | | Vendor
HHDT | Grading/Blasting | 253 | 307 | 10.2 | 792,244 | 6.22 | 127,419 | | | | | | | | | 1111111 | | | 2 | 2026 | | | | | | | | | | | | | Building Construction | 204 | 974 | 10.2 | 2,026,699 | 6.33 | 320,377 | | | | | | | | | | | | | 2027 | | | | | | | | | | | | | Building Construction | 260 | 974 | 10.2 | 2,583,048 | 6.45 | 400,420 | | | | | | | | | | | | 2 | 2028 | | | | | | | | | | | | | Building Construction | 260 | 974 | 10.2 | 2,583,048 | 6.60 | 391,473 | | | | | | | | | Vehicle
Category | Construction Activity | Duration
(Days) | ration Trips / Length | | | Vehicle Vehicle Miles Fuel Traveled Economy (mpg) | | | | | | | | | |---------------------|-----------------------|--------------------|-----------------------|-----------|-------------|---|-----------|--|--|--|--|--|--|--| | | | | 2 | 2029 | | | | | | | | | | | | | Building
Construction | 260 | 974 | 10.2 | 2,583,048 | 6.76 | 382,100 | Building Construction | 260 | 974 | 10.2 | 2,583,048 | 6.93 | 372,504 | | | | | | | | | | 2031 | | | | | | | | | | | | | | | | Building Construction | 227 | 974 | 10.2 | 2,255,200 | 7.12 | 316,756 | | | | | | | | | | TO | 2,455,532 | | | | | | | | | | | | | | | 2023 | | | | | | | | | | | | | | | | Site Preparation | 130 | 14 | 20 | 36,400 | 6.04 | 6,024 | | | | | | | | | | | | 2 | 2024 | | | | | | | | | | | | Hauling | Site Preparation | 50 | 14 | 20 | 14,000 | 6.12 | 2,287 | | | | | | | | | HHDT | Grading/Blasting | 212 | 14 | 20 | 59,360 | 6.12 | 9,698 | | | | | | | | | | | | 2 | 2025 | | | | | | | | | | | | | Grading/Blasting | 253 | 14 | 20 | 70,840 | 6.22 | 11,393 | | | | | | | | | | то | SUMPTION | 29,402 | | | | | | | | | | | | | | TOTAL CO | NSTRUCTIO | N VENDOR A | ND HAULIN | G FUEL CONS | SUMPTION | 4,252,407 | | | | | | | | ## 4.3.7 CONSTRUCTION ENERGY EFFICIENCY/CONSERVATION MEASURES Starting in 2014, CARB adopted the nation's first regulation aimed at cleaning up off-road construction equipment such as bulldozers, graders, and backhoes. These requirements ensure fleets gradually turnover the oldest and dirtiest equipment to newer, cleaner models and prevent fleets from adding older, dirtier equipment. As such, the equipment used for Project construction would conform to CARB regulations and California emissions standards. It should also be noted that there are no unusual Project characteristics or construction processes that would require the use of equipment that would be more energy intensive than is used for comparable activities; or equipment that would not conform to current emissions standards (and related fuel efficiencies). Equipment employed in construction of the Project would therefore not result in inefficient wasteful, or unnecessary consumption of fuel. Construction contractors would be required to comply with applicable CARB regulation regarding retrofitting, repowering, or replacement of diesel off-road construction equipment. Additionally, CARB has adopted the Airborne Toxic Control Measure to limit heavy-duty diesel motor vehicle idling in order to reduce public exposure to diesel particulate matter and other Toxic Air Contaminants. Compliance with anti-idling and emissions regulations would result in a more efficient use of construction-related energy and the minimization or elimination of wasteful or unnecessary consumption of energy. Idling restrictions and the use of newer engines and equipment would result in less fuel combustion and energy consumption. Additional construction-source energy efficiencies would occur due to required California regulations and best available control measures (BACM). For example, CCR Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than five minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment. Section 2449(d)(3) requires that grading plans shall reference the requirement that a sign shall be posted on-site stating that construction workers need to shut off engines at or before five minutes of idling." In this manner, construction equipment operators are required to be informed that engines are to be turned off at or prior to five minutes of idling. Enforcement of idling limitations is realized through periodic site inspections conducted by City building officials, and/or in response to citizen complaints. A full analysis related to the energy needed to form construction materials is not included in this analysis due to a lack of detailed Project-specific information on construction materials. At this time, an analysis of the energy needed to create Project-related construction materials would be extremely speculative and thus has not been prepared. In general, construction processes promote conservation and efficient use of energy by reducing raw materials demands, with related reduction in energy demands associated with raw materials extraction, transportation, processing, and refinement. Use of materials in bulk reduces energy demands associated with preparation and transport of construction materials as well as the transport and disposal of construction waste and solid waste in general, with corollary reduced demands on area landfill capacities and energy consumed by waste transport and landfill operations. # 4.4 OPERATIONAL ENERGY DEMANDS Energy consumption in support of or related to Project operations would include transportation fuel demands (fuel consumed by passenger car and truck vehicles accessing the Project site), fuel demands from operational equipment, and facilities energy demands (energy consumed by building operations and site maintenance activities). # 4.4.1 TRANSPORTATION FUEL DEMANDS Energy that would be consumed by Project-generated traffic is a function of total VMT and estimated vehicle fuel economies of vehicles accessing the Project site. The VMT per vehicle class can be determined by evaluated in the vehicle fleet mix and the total VMT. As with worker and vendors trips, operational vehicle fuel efficiencies were estimated using information generated within EMFAC2021 developed by CARB (23). EMFAC2021 was run for the Riverside County area for the 2024 calendar year. Data from EMFAC2021 is shown in Appendix 4.3. The estimated transportation energy demands are summarized on Table 4-9. As summarized on Table 4-9 the Project would result in 117,730,310 annual VMT under the Without MCP scenario and 116,535,002 annual VMT under the With MCP scenario. Annual fuel consumption is estimated to be 7,274,564 gallons per year under the Without MCP scenario and 7,179,004 gallons per year under the With MCP scenario. TABLE 4-9: TOTAL PROJECT-GENERATED TRAFFIC ANNUAL FUEL CONSUMPTION | Scenario | Vehicle
Type | Average Vehicle Fuel
Economy
(mpg) | Annual Vehicle
Miles Traveled | Estimated Annual Fuel
Consumption (gallons) | |----------|-----------------|--|----------------------------------|--| | | HHD | 7.31 | 28,286,379 | 3,868,904 | | | LDA | 38.16 | 38,065,325 | 997,583 | | | LDT1 | 28.90 | 2,578,780 | 89,244 | | | LDT2 | 29.24 | 17,367,083 | 594,022 | | | LHD1 | 20.32 | 8,946,831 | 440,256 | | | LHD2 | 18.66 | 2,556,416 | 136,978 | | Without | MCY | 42.81 | 1,659,044 | 38,753 | | MCP | MDV | 23.80 | 11,863,020 | 498,390 | | | МН | 6.00 | 79,225 | 13,215 | | | MHD | 10.63 | 6,287,990 | 591,524 | | | OBUS | 7.83 | 10,079 | 1,287 | | | SBUS | 6.83 | 23,436 | 3,433 | | | UBUS | 6.86 | 6,701 | 976 | | | TOTAL (ALL | VEHICLES) - WITHOUT MCP | 117,730,310 | 7,274,564 | | | HHD | 7.31 | 27,836,966 | 3,807,435 | | | LDA | 38.16 | 37,804,009 | 990,734 | | | LDT1 | 28.90 | 2,561,077 | 88,631 | | | LDT2 | 29.24 | 17,247,859 | 589,944 | | | LHD1 | 20.32 | 8,860,399 | 436,003 | | | LHD2 | 18.66 | 2,531,719 | 135,654 | | With | MCY | 42.81 | 1,647,655 | 38,487 | | MCP | MDV | 23.80 | 11,781,581 | 494,969 | | | MH | 6.00 | 81,596 | 13,610 | | | MHD | 10.63 | 6,140,720 | 577,670 | | | OBUS | 7.83 | 10,381 | 1,325 | | | SBUS | 6.83 | 24,137 | 3,535 | | | UBUS | 6.86 | 6,902 | 1,005 | | | TOTAL (| ALL VEHICLES) - WITH MCP | 116,535,002 | 7,179,004 | # 4.4.2 On-Site Cargo Handling Equipment Fuel Demands It is common for industrial buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. For this Project, on-site modeled operational equipment includes up to thirty 175 hp, natural gas-powered cargo handling equipment – port tractor operating 4 hours a day⁵ for 365 days of the year under both scenarios. Based on usage ⁵ Based on Table II-3, Port and Rail Cargo Handling Equipment Demographics by Type, from CARB's Technology Assessment: Mobile Cargo Handling Equipment document, a single piece of equipment could operate up to 2 hours per day (Total Average Annual Activity divided by Total Number Pieces of Equipment). As such, the analysis conservatively assumes that the tractor/loader/backhoe would operate up to 4 hours per day. factors from EMFAC 2021, it is estimated that on-site cargo handling equipment would consume 139,257 gallons of fuel per year. # 4.4.3 FACILITY ENERGY DEMANDS Project building operations activities would result in the consumption of natural gas and electricity, which would be supplied to the Project by SCE and SoCalGas. Annual natural gas and electricity demands of the Project are summarized in Table 4-10. As summarized on Table 4-10, under the Without MCP scenario, the Project would result in 206,117,594 kBTU/year of natural gas demand and 102,594,513 kWh/year of electricity demand. Under the With MCP scenario, the Project would result in 202,930,997 kBTU/yr of natural gas demand and 101,004,082 kWh/year of electricity demand. **TABLE 4-10: PROJECT ANNUAL OPERATIONAL ENERGY DEMAND SUMMARY** | Scenario | Land Use | Natural Gas
Demand | Electricity
Demand | |----------|--|-----------------------|-----------------------| | | | (kBTU/year) | (kWh/year) | | | High-Cube Cold Storage Warehouse | 77,795,496 | 64,296,476 | | | High-Cube Fulfillment Center Warehouse / High-Cube Warehouse / Warehouse | 78,330,620 | 18,882,339 | | Without | Manufacturing | 31,568,490 | 7,033,267 | | MCP | Industrial Park | 17,700,673 | 11,192,220 | | | Commercial Retail | 722,315 | 1,190,211 | | | TOTAL PROJECT ENERGY DEMAND (WITHOUT MCP) | 206,117,594 | 102,594,513 | | | High-Cube Cold Storage Warehouse | 77,795,496 | 64,296,476 | | | High-Cube Fulfillment Center Warehouse / High-Cube Warehouse / Warehouse | 77,316,005 | 18,637,756 | | With MCP | Manufacturing | 31,568,490 | 7,033,267 | | | Industrial Park | 15,501,603 | 9,801,737 | | | Commercial Retail | 749,403 | 1,234,846 | | |
TOTAL PROJECT ENERGY DEMAND (WITH MCP) | 202,930,997 | 101,004,082 | # 4.4.4 OPERATIONAL ENERGY EFFICIENCY/CONSERVATION MEASURES Energy efficiency/energy conservation attributes of the Project would be complemented by increasingly stringent state and federal regulatory actions addressing vehicle fuel economies and vehicle emissions standards; and enhanced building/utilities energy efficiencies mandated under California building codes (e.g., Title24, California Green Building Standards Code). #### **ENHANCED VEHICLE FUEL EFFICIENCIES** Project annual fuel consumption estimates presented previously in Table 4-9 represent likely potential maximums that would occur for the Project. Under subsequent future conditions, average fuel economies of vehicles accessing the Project site can be expected to improve as older, less fuel-efficient vehicles are removed from circulation, and in response to fuel economy and emissions standards imposed on newer vehicles entering the circulation system. Enhanced fuel economies realized pursuant to federal and state regulatory actions, and related transition of vehicles to alternative energy sources (e.g., electricity, natural gas, biofuels, hydrogen cells) would likely decrease future gasoline fuel demands per VMT. Location of the Project proximate to regional and local roadway systems tends to reduce VMT within the region, acting to reduce regional vehicle energy demands. ## 4.5 SUMMARY #### 4.5.1 CONSTRUCTION ENERGY DEMANDS The estimated power cost of on-site electricity usage during the construction of the Project is assumed to be approximately \$3,307,523.28 for the Without MCP scenario and \$3,276,606.84 for the With MCP scenario. Additionally, based on the assumed power cost, it is estimated that the total electricity usage during construction, after full Project buildout, is calculated to be approximately 26,377,887 kWh for the Without MCP scenario and 26,131,325 for the With MCP scenario. Construction equipment used by the Project would result in single event consumption of approximately 962,504 gallons of diesel fuel under both scenarios. Construction equipment use of fuel would not be atypical for the type of construction proposed because there are no aspects of the Project's proposed construction process that are unusual or energy-intensive, and Project construction equipment would conform to the applicable CARB emissions standards, acting to promote equipment fuel efficiencies. CCR Title 13, Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than 5 minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment. BACMs inform construction equipment operators of this requirement. Enforcement of idling limitations is realized through periodic site inspections conducted by City building officials, and/or in response to citizen complaints. Construction worker trips for full construction of the Project would result in the estimated fuel consumption of 7,661,264 gallons of fuel under both scenarios. Additionally, fuel consumption from construction vendor trips (MHDs and HHDs) and hauling (HHDs) will total approximately 4,252,407 gallons under both scenarios. Diesel fuel would be supplied by City and regional commercial vendors. Indirectly, construction energy efficiencies and energy conservation would be achieved using bulk purchases, transport and use of construction materials. The 2021 IEPR released by the CEC has shown that fuel efficiencies are getting better within on and off-road vehicle engines due to more stringent government requirements (16). As supported by the preceding discussions, Project construction energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary. ## 4.5.2 OPERATIONAL ENERGY DEMANDS TRANSPORTATION ENERGY DEMANDS Annual vehicular trips and related VMT generated by the operation of the Project would result in a fuel demand of 7,274,564 gallons of fuel per year for the Without MCP scenario and 7,179,004 gallons of fuel per year for the With MCP scenario. Fuel would be provided by current and future commercial vendors. Trip generation and VMT generated by the Project are consistent with other industrial uses of similar scale and configuration, as reflected respectively in the Institute of Transportation Engineers (ITE) Trip Generation Manual (11th Ed., 2021); and CalEEMod. As such, Project operations would not result in excessive and wasteful vehicle trips and VMT, nor excess and wasteful vehicle energy consumption compared to other industrial uses. It should be noted that the state strategy for the transportation sector for medium and heavy-duty trucks is focused on making trucks more efficient and expediting truck turnover rather than reducing VMT from trucks. This is in contrast to the passenger vehicle component of the transportation sector where both per-capita VMT reductions and an increase in vehicle efficiency are forecasted to be needed to achieve the overall state emissions reductions goals. Heavy duty trucks involved in goods movements are generally controlled on the technology side and through fleet turnover of older trucks and engines to newer and cleaner trucks and engines. The first battery-electric heavy-heavy duty trucks are being tested this year and SCAQMD is looking to integrate this new technology into large-scale truck operations. The following state strategies reduce GHG emissions from the medium and heavy-duty trucks: - CARB's Mobile Source Strategy focuses on reducing GHGs through the transition to zero and low emission vehicles and from medium-duty and heavy-duty trucks. - CARB's Sustainable Freight Action Plan establishes a goal to improve freight efficiency by 25% by 2030, deploy over 100,000 freight vehicles and equipment capable of zero emission operation and maximize both zero and near-zero emission freight vehicles and equipment powered by renewable energy by 2030. - CARB's Emissions Reduction Plan for Ports and Goods Movement (Goods Movement Plan) in California focuses on reducing heavy-duty truck-related emissions focus on establishment of emissions standards for trucks, fleet turnover, truck retrofits, and restriction on truck idling (CARB 2006). While the focus of Goods Movement Plan is to reduce criteria air pollutant and air toxic emissions, the strategies to reduce these pollutants would also generally have a beneficial effect in reducing GHG emissions. - CARB's On-Road Truck and Bus Regulation (2010) requires diesel trucks and buses that operate in California to be upgraded to reduce emissions. Newer heavier trucks and buses must meet particulate matter filter requirements beginning January 1, 2012. Lighter and older heavier trucks must be replaced starting January 1, 2015. By January 1, 2023, nearly all trucks and buses will need to have 2010 model year engines or equivalent (28). - CARB's Heavy-Duty (Tractor-Trailer) GHG Regulation requires SmartWay tractor trailers that include idle-reduction technologies, aerodynamic technologies, and low-rolling resistant tires that would reduce fuel consumption and associated GHG emissions. The proposed Project would implement project design features that would facilitate the accessibility, parking, and loading of trucks on-site. Enhanced fuel economies realized pursuant to federal and state regulatory actions, and related transition of vehicles to alternative energy sources (e.g., electricity, natural gas, biofuels, hydrogen cells) would likely decrease future gasoline fuel demands per VMT. Location of the Project proximate to regional and local roadway systems tends to reduce VMT within the region, acting to reduce regional vehicle energy demands. The Project would implement sidewalks, facilitating and encouraging pedestrian access. Facilitating pedestrian and bicycle access would reduce VMT and associated energy consumption. In compliance with the California Green Building Standards Code and City requirements, the Project would promote the use of bicycles as an alternative mean of transportation by providing short-term and/or long-term bicycle parking accommodations. As supported by the preceding discussions, Project transportation energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary. ### **FACILITY ENERGY DEMANDS** Project facility operational energy demands are estimated at: 206,117,594 kBTU/year of natural gas and 102,594,513 kWh/year of electricity under the Without MCP scenario and 202,930,997 kBTU/year of natural gas and 101,004,082 kWh/year of electricity under the With MCP scenario. Natural gas would be supplied to the Project by SoCalGas; electricity would be supplied by SCE. The Project proposes conventional industrial uses reflecting contemporary energy efficient/energy conserving designs and operational programs. The Project does not propose uses that are inherently energy intensive and the energy demands in total would be comparable to other industrial uses of similar scale and configuration. The proposed Project would comply with the County of Riverside's Good Neighbor Policy for Logistics and Warehouse/Distribution uses, which requires the use of electrically powered onsite cargo handling emissions, resulting in a reduction in on-site fuel consumption. Additionally, the proposed Project will implement the screening table measures identified in the 2019 County of Riverside CAP update in order to achieve a minimum of 100 points. Implementation of these measures would result in further building energy demand reductions. Lastly, the Project will comply with the applicable Title 24 standards. Compliance itself with applicable Title 24 standards will ensure that the Project energy demands would not be inefficient, wasteful, or otherwise unnecessary. This page intentionally left blank # 5 CONCLUSIONS ## 5.1 ENERGY IMPACT 1 Would the Project result in potentially significant
environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation? As supported by the preceding analyses, Project construction and operations <u>would not result in the inefficient</u>, <u>wasteful</u>, <u>or unnecessary consumption of energy</u>. The Project would therefore not cause or result in the need for additional energy producing or transmission facilities. The Project would not engage in wasteful or inefficient uses of energy and aims to achieve energy conservations goals within the State of California. # 5.2 ENERGY IMPACT 2 Would the Project conflict with or obstruct a state or local plan for renewable energy or energy efficiency? The Project's consistency with the applicable state and local plans is discussed below. #### **CONSISTENCY WITH ISTEA** Transportation and access to the Project site is provided by the local and regional roadway systems. The Project would not interfere with, nor otherwise obstruct intermodal transportation plans or projects that may be realized pursuant to the ISTEA because SCAG is not planning for intermodal facilities on or through the Project site. #### **CONSISTENCY WITH TEA-21** The Project site is located along major transportation corridors with proximate access to the Interstate freeway system. The site selected for the Project facilitates access, acts to reduce vehicle miles traveled, takes advantage of existing infrastructure systems, and promotes land use compatibilities through collocation of similar uses. The Project supports the strong planning processes emphasized under TEA-21. The Project is therefore consistent with, and would not otherwise interfere with, nor obstruct implementation of TEA-21. ### **CONSISTENCY WITH IEPR** Electricity would be provided to the Project by SCE. SCE's *Clean Power and Electrification Pathway* (CPEP) white paper builds on existing state programs and policies. As such, the Project is consistent with, and would not otherwise interfere with, nor obstruct implementation the goals presented in the 2021 IEPR. Additionally, the Project will comply with the applicable Title 24 standards which would ensure that the Project energy demands would not be inefficient, wasteful, or otherwise unnecessary. As such, development of the proposed Project would support the goals presented in the 2021 IEPR. #### CONSISTENCY WITH STATE OF CALIFORNIA ENERGY PLAN The Project site is located along major transportation corridors with proximate access to the Interstate freeway system. The site selected for the Project facilitates access and takes advantage of existing infrastructure systems. The Project therefore supports urban design and planning processes identified under the State of California Energy Plan, is consistent with, and would not otherwise interfere with or obstruct, implementation of the State of California Energy Plan. ## CONSISTENCY WITH CALIFORNIA CODE TITLE 24, PART 6, ENERGY EFFICIENCY STANDARDS The 2022 version of Title 24 was adopted by the CEC and will become effective on January 1, 2023. The proposed Project would be required to comply with the Title 24 standards in place at the time plan check submittals are made. Therefore, the Project is would not result in a significant impact on energy resources (17). The proposed Project would be subject to Title 24 standards. ## CONSISTENCY WITH CALIFORNIA CODE TITLE 24, PART 11, CALGREEN As previously stated, CCR, Title 24, Part 11: CALGreen is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on January 1, 2009, and is administered by the California Building Standards Commission. CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that were published on July 1, 2022 and will become effective on January 1, 2023. The Project would be required to comply with the applicable standards in place at the time plan check submittals are made. #### **CONSISTENCY WITH AB 1493** AB 1493 is not applicable to the Project as it is a statewide measure establishing vehicle emissions standards. No feature of the Project would interfere with implementation of the requirements under AB 1493. #### **CONSISTENCY WITH RPS** California's RPS is not applicable to the Project as it is a statewide measure that establishes a renewable energy mix. No feature of the Project would interfere with implementation of the requirements under RPS. ### **CONSISTENCY WITH SB 350** The proposed Project would use energy from SCE, which have committed to diversify their portfolio of energy sources by increasing energy from wind and solar sources. No feature of the Project would interfere with implementation of SB 350. Additionally, the Project would be designed and constructed to implement the energy efficiency measures for new industrial developments and would include several measures designed to reduce energy consumption. As shown above, the Project would not conflict with any of the state or local plans. As such, a less than significant impact is expected. This page intentionally left blank # 6 REFERENCES - 1. Association of Environmental Professionals. 2020 CEQA California Environmental Quality Act. 2020. - 2. **Urban Crossroads, Inc.** Stoneridge Commerce Center Specifc Plan Alternative Truck Route Traffic Analysis Scoping Agreement. 2022. - 3. **Administration, U.S. Energy Information.** California State Profile and Energy Estimates. [Online] https://www.eia.gov/state/data.php?sid=CA#ConsumptionExpenditures. - 4. California Energy Commission. Transportation Energy Demand Forecast 2018-2030. 2018. - 5. **U.S. Department of Energy.** Alternate Fuels Data Center. *U.S. Department of Energy.* [Online] https://afdc.energy.gov/states/ca. - 6. **U.S. Energy Information Administration.** California Energy Consumption by End-Use Sector. *California State Profile and Energy Estimates.* [Online] https://www.eia.gov/state/?sid=CA#tabs-2. - California Energy Commission. 2021 Total System Electric Generation. CA.gov. [Online] https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2021-total-system-electric-generation#:~:text=Total%20generation%20for%20California%20was,from%2090%2C208%20GWh%20in%202020)... - 8. **U.S. Energy Information Administration.** California State Profile and Energy Estimates. [Online] https://www.eia.gov/state/?sid=CA. - 9. California Energy Commission. 2013 Integrated Energy Policy Report. 2013. - 10. **California ISO.** Understanding the ISO. [Online] http://www.caiso.com/about/Pages/OurBusiness/UnderstandingtheISO/default.aspx. - 11. **Southern California Edison.** *Southern California Edison's Service Area.* [Online] https://download.newsroom.edison.com/create_memory_file/?f_id=5cc32d492cfac24d21aecf4c&c ontent_verified=True. - 12. **Southern Californai Edison.** 2021 Power Content Label. *Southern California Edison.* [Online] https://www.energy.ca.gov/filebrowser/download/4676. - 13. **California Public Utilities Commission.** Natural Gas and California. [Online] https://www.cpuc.ca.gov/industries-and-topics/natural-gas/natural-gas-and-california. - 14. **Department of Motor Vehicles.** State of California Department of Motor Vehicles Statistics For Publication January Through December 2021. 2021. - 15. **U.S. Energy Information Administration.** California Analysis. *Energy Information Administration.* [Online] https://www.eia.gov/beta/states/states/ca/analysis. - 16. **California Energy Commission Staff.** 2021 Integrated Energy Policy Report Update. [Online] 2021. https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report. - 17. **The California Energy Commission.** 2022 Building Energy Efficiency Standards. *California Energy Commission*. [Online] 2022. https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2022-building-energy-efficiency. - 18. **California Energy Commission.** Renewables Portfolio Standard (RPS). [Online] 2002. http://www.energy.ca.gov/portfolio/. - 19. **State of California.** *California Environmental Quality Act Guideline, California Public Resources Code, Title 14, Division 6, Chapter 3,*. - 20. Association of Environmental Professionals. 2019 CEQA California Environmental Quality Act. 2019. - 21. **Urban Crossroads, Inc.** Stoneridge Commerce Center Specific Plan Air Quality Impact Analysis. 2022. - 22. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] May 2022. www.caleemod.com. - 23. **California Department of Transportation.** EMFAC Software. [Online] http://www.dot.ca.gov/hq/env/air/pages/emfac.htm. - 24. State of California. 2019 CEQA California Environmental Quality Act. 2019. Improvement (CMAQ) Projects, Emission Factor Tables. 2018. - 25. Pray, Richard. 2022 National Construction Estimator. Carlsbad: Craftsman Book Company, 2022. - 26. **Southern California Edison.** Schedule GS-1 General Service. *Regulatory Information Rates Pricing.* [Online] https://edisonintl.sharepoint.com/teams/Public/TM2/Shared%20Documents/Forms/AllItems.aspx? ga=1&id=%2Fteams%2FPublic%2FTM2%2FShared%20Documents%2FPublic%2FRegulatory%2FTariff - %2DSCE%20Tariff%20Books%2FElectric%2FSchedules%2FGeneral%20Service%20%26%20Industr. 27. California Air Resources Board. Methods to Find the Cost-Effectiveness of Funding Air Quality Projects For Evaluating Motor Vehicle Registration Fee Projects And Congestion Mitigation and Air Quality - 28. —. Truck and Bus Regulation. [Online] https://ww2.arb.ca.gov/our-work/programs/truck-and-bus-regulation. This page intentionally left blank # 7 CERTIFICATIONS The contents of this energy analysis report represent an accurate depiction of the environmental impacts associated with the proposed Stoneridge Commerce Center Specific Plan. The information
contained in this energy analysis report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com. Haseeb Qureshi Associate Principal Urban Crossroads, Inc. hqureshi@urbanxroads.com ### **EDUCATION** Master of Science in Environmental Studies California State University, Fullerton • May 2010 Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June 2006 ## **PROFESSIONAL AFFILIATIONS** AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials ### **PROFESSIONAL CERTIFICATIONS** Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – California Air Resources Board • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006 This page intentionally left blank # **APPENDIX 4.1:** **CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS** # 13265 Stoneridge Construction Detailed Report # Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 3. Construction Emissions Details - 3.1. Site Preparation (2023) Unmitigated - 3.3. Site Preparation (2024) Unmitigated - 3.5. Grading (2024) Unmitigated - 3.7. Grading (2025) Unmitigated - 3.9. Building Construction (2026) Unmitigated - 3.11. Building Construction (2027) Unmitigated - 3.13. Building Construction (2028) Unmitigated - 3.15. Building Construction (2029) Unmitigated - 3.17. Building Construction (2030) Unmitigated - 3.19. Building Construction (2031) Unmitigated - 3.21. Paving (2026) Unmitigated - 3.23. Paving (2027) Unmitigated - 3.25. Paving (2028) Unmitigated - 3.27. Paving (2029) Unmitigated - 3.29. Paving (2030) Unmitigated - 3.31. Paving (2031) Unmitigated - 3.33. Architectural Coating (2026) Unmitigated - 3.35. Architectural Coating (2027) Unmitigated - 3.37. Architectural Coating (2028) Unmitigated - 3.39. Architectural Coating (2029) Unmitigated - 3.41. Architectural Coating (2030) Unmitigated - 3.43. Architectural Coating (2031) Unmitigated - 4. Operations Emissions Details - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---| | Project Name | 13265 Stoneridge Construction | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 0.20 | | Location | 33.823791796404166, -117.16992794449044 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5500 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq
ft) | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|-------|----------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------| | Refrigerated
Warehouse-No Rail | 2,940 | 1000sqft | 67.5 | 2,940,000 | 2,316,569 | _ | _ | _ | | Unrefrigerated
Warehouse-No Rail | 4,103 | 1000sqft | 94.2 | 4,102,759 | 0.00 | _ | _ | _ | | Manufacturing | 735 | 1000sqft | 16.9 | 735,000 | 0.00 | _ | _ | _ | |-----------------------------------|------|----------|------|---------|------|---|---|---| | Industrial Park | 642 | 1000sqft | 14.7 | 641,639 | 0.00 | _ | _ | _ | | Free-Standing Discount Superstore | 100 | 1000sqft | 2.30 | 100,000 | 0.00 | _ | _ | _ | | Strip Mall | 22.0 | 1000sqft | 0.50 | 21,968 | 0.00 | _ | _ | _ | | Other Asphalt
Surfaces | 34.4 | Acre | 34.4 | 0.00 | 0.00 | _ | _ | _ | | Other Non-Asphalt
Surfaces | 31.4 | Acre | 31.4 | 0.00 | 0.00 | _ | _ | _ | # 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary # 2.1. Construction Emissions Compared Against Thresholds | Un/Mit. | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|-----|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 22.6 | 47.3 | 58.1 | 375 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 97,537 | 97,537 | 3.53 | 6.65 | 282 | 99,889 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 21.6 | 46.2 | 61.4 | 300 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 92,763 | 92,763 | 1.86 | 6.74 | 7.32 | 94,827 | | Average
Daily
(Max) | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 14.8 | 32.4 | 42.8 | 209 | 0.22 | 0.43 | 46.4 | 46.8 | 0.43 | 11.1 | 11.6 | _ | 65,637 | 65,637 | 1.28 | 4.61 | 78.6 | 67,116 | | Annual (Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Unmit. | 2.70 | 5.91 | 7.82 | 38.1 | 0.04 | 0.08 | 8.47 | 8.55 | 0.08 | 2.03 | 2.11 | _ | 10,867 | 10,867 | 0.21 | 0.76 | 13.0 | 11,112 | # 2.2. Construction Emissions by Year, Unmitigated | | | | , | .,,, . | | | , | | | | | | | | | | | | |----------------------------|------|------|------|--------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Year | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily -
Summer
(Max) | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2023 | 1.48 | 1.35 | 11.0 | 64.7 | 0.13 | 0.28 | 13.0 | 13.3 | 0.28 | 5.83 | 6.11 | _ | 16,259 | 16,259 | 0.57 | 0.81 | 14.6 | 16,531 | | 2024 | 1.99 | 1.80 | 21.0 | 79.3 | 0.20 | 0.41 | 8.73 | 9.14 | 0.41 | 2.88 | 3.28 | _ | 24,472 | 24,472 | 0.79 | 1.71 | 31.1 | 25,032 | | 2025 | 1.98 | 1.70 | 20.5 | 78.9 | 0.20 | 0.41 | 8.73 | 9.14 | 0.41 | 2.88 | 3.28 | _ | 24,307 | 24,307 | 0.79 | 1.70 | 30.7 | 24,864 | | 2026 | 22.6 | 47.3 | 58.1 | 375 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 97,537 | 97,537 | 3.53 | 6.65 | 282 | 99,889 | | 2027 | 21.7 | 46.3 | 55.0 | 352 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 95,898 | 95,898 | 1.69 | 6.43 | 255 | 98,111 | | 2028 | 21.0 | 45.7 | 53.4 | 332 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 94,155 | 94,155 | 1.47 | 6.43 | 229 | 96,338 | | 2029 | 18.5 | 45.0 | 50.4 | 314 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 92,400 | 92,400 | 1.38 | 6.21 | 205 | 94,490 | | 2030 | 17.6 | 42.4 | 47.3 | 296 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 90,646 | 90,646 | 1.38 | 6.21 | 182 | 92,713 | | 2031 | 16.7 | 41.7 | 46.2 | 282 | 0.30 | 0.60 | 64.8 | 65.4 | 0.38 | 15.5 | 15.9 | _ | 88,926 | 88,926 | 1.28 | 4.23 | 160 | 90,379 | | Daily -
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2023 | 1.46 | 1.33 | 11.3 | 64.0 | 0.13 | 0.28 | 13.0 | 13.3 | 0.28 | 5.83 | 6.11 | _ | 16,220 | 16,220 | 0.57 | 0.81 | 0.38 | 16,478 | | 2024 | 1.96 | 1.77 | 21.6 | 78.6 | 0.20 | 0.41 | 13.0 | 13.3 | 0.41 | 5.83 | 6.11 | _ | 24,432 | 24,432 | 0.79 | 1.71 | 0.81 | 24,964 | | 2025 | 1.94 | 1.67 | 21.0 | 78.2 | 0.20 | 0.41 | 8.73 | 9.14 | 0.41 | 2.88 | 3.28 | _ | 24,268 | 24,268 | 0.79 | 1.70 | 0.80 | 24,796 | | 2026 | 21.6 | 46.2 | 61.4 | 300 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 92,763 | 92,763 | 1.86 | 6.74 | 7.32 | 94,827 | | 2027 | 20.7 | 45.3 | 58.3 | 282 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 91,225 | 91,225 | 1.77 | 6.43 | 6.62 | 93,191 | | 2028 | 18.3 | 44.7 | 56.7 | 267 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 89,578 | 89,578 | 1.57 | 6.43 | 5.96 | 91,539 | | 2029 | 17.6 | 42.3 | 53.5 | 252 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 87,916 | 87,916 |
1.47 | 6.21 | 5.33 | 89,809 | | 2030 | 16.9 | 41.6 | 50.7 | 241 | 0.30 | 0.60 | 64.8 | 65.4 | 0.60 | 15.5 | 16.1 | _ | 86,246 | 86,246 | 1.47 | 6.21 | 4.72 | 88,138 | |------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | 2031 | 15.9 | 40.9 | 47.5 | 228 | 0.30 | 0.60 | 64.8 | 65.4 | 0.38 | 15.5 | 15.9 | _ | 84,603 | 84,603 | 1.38 | 5.99 | 4.16 | 86,427 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2023 | 0.53 | 0.48 | 4.09 | 23.1 | 0.05 | 0.10 | 4.70 | 4.80 | 0.10 | 2.10 | 2.20 | _ | 5,842 | 5,842 | 0.20 | 0.29 | 2.28 | 5,937 | | 2024 | 1.34 | 1.21 | 14.1 | 54.3 | 0.13 | 0.27 | 6.83 | 7.11 | 0.27 | 2.46 | 2.73 | _ | 16,384 | 16,384 | 0.54 | 1.10 | 8.62 | 16,734 | | 2025 | 1.35 | 1.17 | 14.6 | 54.3 | 0.14 | 0.28 | 6.05 | 6.33 | 0.28 | 1.99 | 2.27 | _ | 16,814 | 16,814 | 0.55 | 1.18 | 9.20 | 17,188 | | 2026 | 12.0 | 25.7 | 35.3 | 173 | 0.17 | 0.33 | 36.1 | 36.5 | 0.33 | 8.67 | 9.00 | _ | 52,117 | 52,117 | 1.04 | 3.76 | 67.8 | 53,332 | | 2027 | 14.8 | 32.4 | 42.8 | 209 | 0.22 | 0.43 | 46.3 | 46.7 | 0.43 | 11.1 | 11.5 | _ | 65,637 | 65,637 | 1.28 | 4.59 | 78.6 | 67,116 | | 2028 | 13.1 | 32.0 | 40.7 | 199 | 0.22 | 0.43 | 46.4 | 46.8 | 0.43 | 11.1 | 11.6 | _ | 64,628 | 64,628 | 1.12 | 4.61 | 70.9 | 66,099 | | 2029 | 12.6 | 30.2 | 38.4 | 188 | 0.22 | 0.43 | 46.3 | 46.7 | 0.43 | 11.1 | 11.5 | _ | 63,254 | 63,254 | 1.05 | 4.44 | 63.2 | 64,665 | | 2030 | 12.0 | 29.6 | 36.1 | 179 | 0.22 | 0.43 | 46.3 | 46.7 | 0.43 | 11.1 | 11.5 | _ | 62,052 | 62,052 | 1.05 | 4.44 | 56.2 | 63,456 | | 2031 | 9.90 | 25.4 | 30.7 | 147 | 0.19 | 0.37 | 40.2 | 40.6 | 0.23 | 9.64 | 9.87 | _ | 52,866 | 52,866 | 0.85 | 3.72 | 42.9 | 54,038 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2023 | 0.10 | 0.09 | 0.75 | 4.21 | 0.01 | 0.02 | 0.86 | 0.88 | 0.02 | 0.38 | 0.40 | _ | 967 | 967 | 0.03 | 0.05 | 0.38 | 983 | | 2024 | 0.24 | 0.22 | 2.56 | 9.92 | 0.02 | 0.05 | 1.25 | 1.30 | 0.05 | 0.45 | 0.50 | _ | 2,713 | 2,713 | 0.09 | 0.18 | 1.43 | 2,771 | | 2025 | 0.25 | 0.21 | 2.66 | 9.90 | 0.03 | 0.05 | 1.10 | 1.16 | 0.05 | 0.36 | 0.42 | _ | 2,784 | 2,784 | 0.09 | 0.20 | 1.52 | 2,846 | | 2026 | 2.19 | 4.69 | 6.45 | 31.7 | 0.03 | 0.06 | 6.60 | 6.66 | 0.06 | 1.58 | 1.64 | _ | 8,629 | 8,629 | 0.17 | 0.62 | 11.2 | 8,830 | | 2027 | 2.70 | 5.91 | 7.82 | 38.1 | 0.04 | 0.08 | 8.45 | 8.52 | 0.08 | 2.03 | 2.10 | _ | 10,867 | 10,867 | 0.21 | 0.76 | 13.0 | 11,112 | | 2028 | 2.39 | 5.84 | 7.44 | 36.3 | 0.04 | 0.08 | 8.47 | 8.55 | 0.08 | 2.03 | 2.11 | _ | 10,700 | 10,700 | 0.19 | 0.76 | 11.7 | 10,943 | | 2029 | 2.29 | 5.52 | 7.00 | 34.3 | 0.04 | 0.08 | 8.45 | 8.52 | 0.08 | 2.03 | 2.10 | _ | 10,472 | 10,472 | 0.17 | 0.73 | 10.5 | 10,706 | | 2030 | 2.18 | 5.40 | 6.60 | 32.6 | 0.04 | 0.08 | 8.45 | 8.52 | 0.08 | 2.03 | 2.10 | _ | 10,273 | 10,273 | 0.17 | 0.73 | 9.30 | 10,506 | | 2031 | 1.81 | 4.63 | 5.60 | 26.9 | 0.03 | 0.07 | 7.34 | 7.40 | 0.04 | 1.76 | 1.80 | | 8,753 | 8,753 | 0.14 | 0.62 | 7.10 | 8,947 | # 3. Construction Emissions Details # 3.1. Site Preparation (2023) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|----------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 1.04 | 5.41 | 59.9 | 0.10 | 0.21 | _ | 0.21 | 0.21 | _ | 0.21 | _ | 11,060 | 11,060 | 0.45 | 0.09 | _ | 11,097 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | - | - | _ | 11.3 | 11.3 | _ | 5.37 | 5.37 | _ | _ | _ | _ | _ | - | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 1.04 | 5.41 | 59.9 | 0.10 | 0.21 | _ | 0.21 | 0.21 | _ | 0.21 | _ | 11,060 | 11,060 | 0.45 | 0.09 | _ | 11,097 | | Dust
From
Material
Movemen | _ | _ | _ | _ | _ | _ | 11.3 | 11.3 | _ | 5.37 | 5.37 | _ | _ | _ | - | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | - | _ | _ | _ | - | _ | _ | - | - | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.37 | 1.95 | 21.6 | 0.04 | 0.07 | _ | 0.07 | 0.07 | _ | 0.07 | - | 3,982 | 3,982 | 0.16 | 0.03 | _ | 3,996 | | Dust
From
Material
Movemen | <u></u> | _ | _ | | _ | _ | 4.08 | 4.08 | _ | 1.93 | 1.93 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | |-------------------------------------|---------|---------|------|----------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|----------|------|-------| | Off-Road
Equipmen | | 0.07 | 0.36 | 3.94 | 0.01 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 659 | 659 | 0.03 | 0.01 | _ | 662 | | Dust
From
Material
Movemen |
: | _ | _ | _ | _ | _ | 0.74 | 0.74 | _ | 0.35 | 0.35 | _ | _ | - | - | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.20 | 0.19 | 0.18 | 3.17 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 514 | 514 | 0.02 | 0.02 | 2.20 | 522 | | Vendor | 0.19 | 0.11 | 4.36 | 1.36 | 0.03 | 0.05 | 0.21 | 0.27 | 0.05 | 0.08 | 0.13 | _ | 3,738 | 3,738 | 0.08 | 0.56 | 10.4 | 3,916 | | Hauling | 0.04 | 0.02 | 1.09 | 0.26 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 | 0.02 | 0.04 | _ | 948 | 948 | 0.02 | 0.15 | 1.99 | 995 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.20 | 0.18 | 0.21 | 2.41 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 472 | 472 | 0.02 | 0.02 | 0.06 | 478 | | Vendor | 0.19 | 0.10 | 4.57 | 1.40 | 0.03 | 0.05 | 0.21 | 0.27 | 0.05 | 0.08 | 0.13 | _ | 3,740 | 3,740 | 0.08 | 0.56 | 0.27 | 3,908 | | Hauling | 0.04 | 0.01 | 1.14 | 0.26 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 | 0.02 | 0.04 | _ | 948 | 948 | 0.02 | 0.15 | 0.05 | 994 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.07 | 0.06 | 0.08 | 0.91 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 172 | 172 | 0.01 | 0.01 | 0.34 | 175 | | Vendor | 0.07 | 0.04 | 1.66 | 0.50 | 0.01 | 0.02 | 0.08 | 0.10 | 0.02 | 0.03 | 0.05 | _ | 1,346 | 1,346 | 0.03 | 0.20 | 1.63 | 1,408 | | Hauling | 0.01 | 0.01 | 0.41 | 0.09 | < 0.005 | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | _ | 341 | 341 | 0.01 | 0.05 | 0.31 | 358 | | Annual | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.17 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 28.5 | 28.5 | < 0.005 | < 0.005 | 0.06 | 28.9 | | Vendor | 0.01 | 0.01 | 0.30 | 0.09 | < 0.005 | < 0.005 | 0.01 | 0.02 | < 0.005 | 0.01 | 0.01 | _ | 223 | 223 | < 0.005 | 0.03 | 0.27 | 233 | | Hauling | < 0.005 | < 0.005 | 0.08 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | _ | 56.5 | 56.5 | < 0.005 | 0.01 | 0.05 | 59.3 | # 3.3. Site Preparation (2024) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|------------|------|------|------|---------|-------|-------|-------|------|--------|--------|------|--------|--------|------|---------|------|--------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 1.04 | 5.41 | 59.9 | 0.10 | 0.21 | _ | 0.21 | 0.21 | _ | 0.21 | _ | 11,058 | 11,058 | 0.45 | 0.09 | _ | 11,096 | | Dust
From
Material
Movemen | <u>-</u> - | _ | _ | _ | _ | _ | 11.3 | 11.3 | _ | 5.37 | 5.37 | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.14 | 0.73 | 8.09 | 0.01 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | _ | 1,493 | 1,493 | 0.06 | 0.01 | _ | 1,498 | | Dust
From
Material
Movemen | | _ | _ | _ | _ | _ | 1.53 | 1.53 | _ | 0.73 | 0.73 | _ | - | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.03 | 0.13 | 1.48 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 247 | 247 | 0.01 | < 0.005 | _ | 248 | | Dust
From
Material
Movemen | <u> —</u> | _ | _ | _ | _ | _ | 0.28 | 0.28 | _ | 0.13 | 0.13 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|-----------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------
---------|---------|------|-------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | - | _ | - | - | - | _ | - | _ | - | _ | - | _ | - | _ | | Worker | 0.19 | 0.17 | 0.20 | 2.21 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 463 | 463 | 0.02 | 0.02 | 0.05 | 469 | | Vendor | 0.16 | 0.10 | 4.38 | 1.33 | 0.03 | 0.05 | 0.21 | 0.27 | 0.05 | 0.08 | 0.13 | _ | 3,697 | 3,697 | 0.08 | 0.56 | 0.27 | 3,865 | | Hauling | 0.04 | 0.01 | 1.10 | 0.26 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 | 0.02 | 0.04 | _ | 935 | 935 | 0.02 | 0.15 | 0.05 | 981 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.03 | 0.02 | 0.03 | 0.31 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 63.3 | 63.3 | < 0.005 | < 0.005 | 0.12 | 64.2 | | Vendor | 0.02 | 0.01 | 0.59 | 0.18 | < 0.005 | 0.01 | 0.03 | 0.04 | 0.01 | 0.01 | 0.02 | _ | 499 | 499 | 0.01 | 0.07 | 0.60 | 522 | | Hauling | 0.01 | < 0.005 | 0.15 | 0.03 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 126 | 126 | < 0.005 | 0.02 | 0.11 | 133 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.06 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 10.5 | 10.5 | < 0.005 | < 0.005 | 0.02 | 10.6 | | Vendor | < 0.005 | < 0.005 | 0.11 | 0.03 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | _ | 82.6 | 82.6 | < 0.005 | 0.01 | 0.10 | 86.5 | | Hauling | < 0.005 | < 0.005 | 0.03 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 20.9 | 20.9 | < 0.005 | < 0.005 | 0.02 | 21.9 | # 3.5. Grading (2024) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------------------------|----------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Off-Road
Equipment | | 1.30 | 8.97 | 72.3 | 0.12 | 0.25 | _ | 0.25 | 0.25 | _ | 0.25 | _ | 13,430 | 13,430 | 0.54 | 0.11 | _ | 13,476 | | Dust
From
Material
Movement | _ | - | - | _ | - | _ | 5.34 | 5.34 | _ | 1.96 | 1.96 | _ | - | _ | - | _ | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 1.30 | 8.97 | 72.3 | 0.12 | 0.25 | _ | 0.25 | 0.25 | _ | 0.25 | _ | 13,430 | 13,430 | 0.54 | 0.11 | _ | 13,476 | | Dust
From
Material
Movement | _ | _ | - | _ | - | _ | 5.34 | 5.34 | _ | 1.96 | 1.96 | _ | - | _ | - | _ | _ | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.76 | 5.21 | 42.0 | 0.07 | 0.15 | _ | 0.15 | 0.15 | _ | 0.15 | - | 7,806 | 7,806 | 0.32 | 0.06 | _ | 7,832 | | Dust
From
Material
Movement | <u> </u> | _ | _ | _ | _ | _ | 3.10 | 3.10 | _ | 1.14 | 1.14 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.14 | 0.95 | 7.67 | 0.01 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | - | 1,292 | 1,292 | 0.05 | 0.01 | _ | 1,297 | | Dust
From
Material
Movemen | | _ | _ | _ | _ | _ | 0.57 | 0.57 | _ | 0.21 | 0.21 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | Worker | 0.22 | 0.21 | 0.19 | 3.34 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 576 | 576 | 0.02 | 0.02 | 2.28 | 585 | | Vendor | 0.43 | 0.28 | 10.8 | 3.36 | 0.07 | 0.14 | 0.55 | 0.69 | 0.14 | 0.21 | 0.35 | _ | 9,532 | 9,532 | 0.21 | 1.43 | 26.9 | 9,989 | | Hauling | 0.04 | 0.01 | 1.06 | 0.25 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 | 0.02 | 0.04 | _ | 935 | 935 | 0.02 | 0.15 | 1.98 | 982 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.21 | 0.19 | 0.23 | 2.52 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 529 | 529 | 0.03 | 0.02 | 0.06 | 536 | | Vendor | 0.41 | 0.27 | 11.3 | 3.44 | 0.07 | 0.14 | 0.55 | 0.69 | 0.14 | 0.21 | 0.35 | _ | 9,538 | 9,538 | 0.21 | 1.43 | 0.70 | 9,971 | | Hauling | 0.04 | 0.01 | 1.10 | 0.26 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 | 0.02 | 0.04 | _ | 935 | 935 | 0.02 | 0.15 | 0.05 | 981 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | _ | | Worker | 0.12 | 0.11 | 0.13 | 1.54 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 311 | 311 | 0.01 | 0.01 | 0.57 | 316 | | Vendor | 0.24 | 0.16 | 6.56 | 1.98 | 0.04 | 0.08 | 0.32 | 0.40 | 0.08 | 0.12 | 0.20 | _ | 5,541 | 5,541 | 0.12 | 0.83 | 6.71 | 5,799 | | Hauling | 0.02 | 0.01 | 0.64 | 0.15 | < 0.005 | 0.01 | 0.04 | 0.05 | 0.01 | 0.01 | 0.02 | _ | 543 | 543 | 0.01 | 0.09 | 0.49 | 570 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.02 | 0.02 | 0.02 | 0.28 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 51.6 | 51.6 | < 0.005 | < 0.005 | 0.09 | 52.3 | | Vendor | 0.04 | 0.03 | 1.20 | 0.36 | 0.01 | 0.01 | 0.06 | 0.07 | 0.01 | 0.02 | 0.04 | _ | 917 | 917 | 0.02 | 0.14 | 1.11 | 960 | | Hauling | < 0.005 | < 0.005 | 0.12 | 0.03 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | _ | 90.0 | 90.0 | < 0.005 | 0.01 | 0.08 | 94.4 | # 3.7. Grading (2025) - Unmitigated | | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------------------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 1.30 | 8.97 | 72.3 | 0.12 | 0.25 | _ | 0.25 | 0.25 | _ | 0.25 | _ | 13,431 | 13,431 | 0.54 | 0.11 | _ | 13,477 | | Dust
From
Material
Movement | _ | _ | _ | _ | _ | _ | 5.34 | 5.34 | _ | 1.96 | 1.96 | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 1.30 | 8.97 | 72.3 | 0.12 | 0.25 | _ | 0.25 | 0.25 | _ | 0.25 | _ | 13,431 | 13,431 | 0.54 | 0.11 | _ | 13,477 | | Dust
From
Material
Movement | _ | _ | _ | _ | - | - | 5.34 | 5.34 | _ | 1.96 | 1.96 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.90 | 6.21 | 50.1 | 0.09 | 0.17 | _ | 0.17 | 0.17 | _ | 0.17 | _ | 9,304 | 9,304 | 0.38 | 0.08 | _ | 9,336 | | Dust
From
Material
Movement | _ | _ | _ | _ | | _ | 3.70 | 3.70 | _ | 1.36 | 1.36 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmen | | 0.16 | 1.13 | 9.15 | 0.02 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | - | 1,540 | 1,540 | 0.06 | 0.01 | _ | 1,546 | | Dust
From
Material
Movemen |
: | _ | _ | _ | _ | _ | 0.67 | 0.67 | _ | 0.25 | 0.25 | _ | _ | _ | - | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.22 | 0.18 | 0.18 | 3.09 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 564 | 564 | 0.02 | 0.02 | 2.07 | 572 | | Vendor | 0.42 | 0.20 | 10.3 | 3.21 | 0.07 | 0.14 | 0.55 | 0.69 | 0.14 | 0.21 | 0.35 | _ | 9,392 | 9,392 | 0.21 | 1.43 | 26.7 | 9,850 | | Hauling | 0.04 | 0.01 | 1.02 | 0.25 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 |
0.02 | 0.04 | _ | 920 | 920 | 0.02 | 0.14 | 1.96 | 965 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.19 | 0.17 | 0.19 | 2.33 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 518 | 518 | 0.02 | 0.02 | 0.05 | 525 | | Vendor | 0.41 | 0.19 | 10.8 | 3.29 | 0.07 | 0.14 | 0.55 | 0.69 | 0.14 | 0.21 | 0.35 | _ | 9,399 | 9,399 | 0.21 | 1.43 | 0.69 | 9,830 | | Hauling | 0.04 | 0.01 | 1.07 | 0.25 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 | 0.02 | 0.04 | _ | 920 | 920 | 0.02 | 0.14 | 0.05 | 964 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Worker | 0.13 | 0.12 | 0.15 | 1.71 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 364 | 364 | 0.02 | 0.01 | 0.62 | 369 | | Vendor | 0.29 | 0.14 | 7.47 | 2.25 | 0.05 | 0.10 | 0.38 | 0.48 | 0.10 | 0.14 | 0.24 | _ | 6,509 | 6,509 | 0.14 | 0.99 | 8.00 | 6,815 | | Hauling | 0.03 | 0.01 | 0.75 | 0.17 | < 0.005 | 0.01 | 0.04 | 0.06 | 0.01 | 0.02 | 0.03 | _ | 637 | 637 | 0.01 | 0.10 | 0.58 | 668 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.02 | 0.02 | 0.03 | 0.31 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 60.2 | 60.2 | < 0.005 | < 0.005 | 0.10 | 61.0 | | Vendor | 0.05 | 0.03 | 1.36 | 0.41 | 0.01 | 0.02 | 0.07 | 0.09 | 0.02 | 0.03 | 0.04 | _ | 1,078 | 1,078 | 0.02 | 0.16 | 1.32 | 1,128 | | Hauling | < 0.005 | < 0.005 | 0.14 | 0.03 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 106 | 106 | < 0.005 | 0.02 | 0.10 | 111 | ## 3.9. Building Construction (2026) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|---------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,260 | 5,260 | 0.21 | 0.04 | _ | 5,278 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,260 | 5,260 | 0.21 | 0.04 | _ | 5,278 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.28 | 2.39 | 17.5 | 0.03 | 0.05 | _ | 0.05 | 0.05 | _ | 0.05 | _ | 2,934 | 2,934 | 0.12 | 0.02 | _ | 2,944 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.05 | 0.44 | 3.19 | 0.01 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 486 | 486 | 0.02 | < 0.005 | _ | 487 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Worker | 16.8 | 15.1 | 14.0 | 257 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 49,306 | 49,306 | 2.09 | 1.69 | 167 | 50,030 | | Vendor | 1.34 | 0.63 | 31.3 | 9.71 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 29,319 | 29,319 | 0.65 | 4.53 | 80.2 | 30,766 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 16.0 | 14.3 | 15.6 | 195 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 45,338 | 45,338 | 0.71 | 1.77 | 4.34 | 45,888 | | Vendor | 1.30 | 0.58 | 32.7 | 9.97 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 29,341 | 29,341 | 0.65 | 4.53 | 2.08 | 30,709 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 8.90 | 7.91 | 9.54 | 114 | 0.00 | 0.00 | 1.63 | 1.63 | 0.00 | 0.00 | 0.00 | _ | 25,607 | 25,607 | 0.40 | 0.99 | 40.2 | 25,952 | | Vendor | 0.73 | 0.33 | 18.3 | 5.49 | 0.12 | 0.24 | 0.98 | 1.22 | 0.24 | 0.37 | 0.61 | _ | 16,357 | 16,357 | 0.36 | 2.53 | 19.2 | 17,139 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 1.62 | 1.44 | 1.74 | 20.7 | 0.00 | 0.00 | 0.30 | 0.30 | 0.00 | 0.00 | 0.00 | _ | 4,240 | 4,240 | 0.07 | 0.16 | 6.66 | 4,297 | | Vendor | 0.13 | 0.06 | 3.34 | 1.00 | 0.02 | 0.04 | 0.18 | 0.22 | 0.04 | 0.07 | 0.11 | _ | 2,708 | 2,708 | 0.06 | 0.42 | 3.18 | 2,837 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.11. Building Construction (2027) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|----------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,259 | 5,259 | 0.21 | 0.04 | _ | 5,277 | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | - | 0.10 | - | 5,259 | 5,259 | 0.21 | 0.04 | - | 5,277 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.36 | 3.06 | 22.4 | 0.04 | 0.07 | _ | 0.07 | 0.07 | _ | 0.07 | - | 3,757 | 3,757 | 0.15 | 0.03 | _ | 3,770 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Off-Road
Equipmen | | 0.07 | 0.56 | 4.09 | 0.01 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | - | 622 | 622 | 0.03 | 0.01 | _ | 624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | - | _ | _ | _ | | Worker | 16.1 | 14.3 | 12.4 | 237 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 48,393 | 48,393 | 0.55 | 1.69 | 150 | 49,062 | | Vendor | 1.30 | 0.61 | 30.1 | 9.45 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 28,783 | 28,783 | 0.67 | 4.31 | 73.3 | 30,158 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | _ | _ | - | - | _ | | Worker | 15.3 | 13.6 | 14.0 | 180 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 44,507 | 44,507 | 0.63 | 1.69 | 3.90 | 45,032 | | | | | | | | | | | | | | | | | _ | | | | |------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Vendor | 1.28 | 0.56 | 31.5 | 9.73 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 28,805 | 28,805 | 0.65 | 4.31 | 1.90 | 30,108 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 11.0 | 9.68 | 11.1 | 135 | 0.00 | 0.00 | 2.08 | 2.08 | 0.00 | 0.00 | 0.00 | _ | 32,193 | 32,193 | 0.45 | 1.21 | 46.3 | 32,611 | | Vendor | 0.93 | 0.42 | 22.4 | 6.86 | 0.16 | 0.31 | 1.25 | 1.56 | 0.31 | 0.47 | 0.78 | _ | 20,566 | 20,566 | 0.48 | 3.08 | 22.6 | 21,518 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.00 | 1.77 | 2.02 | 24.6 | 0.00 | 0.00 | 0.38 | 0.38 | 0.00 | 0.00 | 0.00 | _ | 5,330 | 5,330 | 0.07 | 0.20 | 7.67 | 5,399 | | Vendor | 0.17 | 0.08 | 4.09 | 1.25 | 0.03 | 0.06 | 0.23 | 0.29 | 0.06 | 0.09 | 0.14 | _ |
3,405 | 3,405 | 0.08 | 0.51 | 3.74 | 3,563 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.13. Building Construction (2028) - Unmitigated | Location | TOG | ROG | NOx | co | SO2 | PM10E | PM10D | PM10T | | | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|------|------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,260 | 5,260 | 0.21 | 0.04 | _ | 5,278 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,260 | 5,260 | 0.21 | 0.04 | _ | 5,278 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Off-Road
Equipmen | | 0.36 | 3.07 | 22.5 | 0.04 | 0.07 | _ | 0.07 | 0.07 | _ | 0.07 | _ | 3,768 | 3,768 | 0.15 | 0.03 | _ | 3,781 | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 0.56 | 4.10 | 0.01 | 0.01 | _ | 0.01 | 0.01 | - | 0.01 | _ | 624 | 624 | 0.03 | 0.01 | _ | 626 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | | Worker | 15.6 | 13.9 | 12.3 | 221 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 47,489 | 47,489 | 0.55 | 1.69 | 135 | 48,143 | | Vendor | 1.30 | 0.61 | 28.6 | 9.23 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 28,131 | 28,131 | 0.46 | 4.31 | 66.7 | 29,494 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 13.4 | 13.1 | 14.0 | 167 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 43,683 | 43,683 | 0.63 | 1.69 | 3.50 | 44,207 | | Vendor | 1.26 | 0.56 | 30.0 | 9.47 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 28,154 | 28,154 | 0.46 | 4.31 | 1.73 | 29,452 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 9.54 | 9.31 | 9.99 | 126 | 0.00 | 0.00 | 2.09 | 2.09 | 0.00 | 0.00 | 0.00 | _ | 31,683 | 31,683 | 0.45 | 1.21 | 41.7 | 32,097 | | Vendor | 0.92 | 0.42 | 21.6 | 6.70 | 0.16 | 0.31 | 1.25 | 1.57 | 0.31 | 0.47 | 0.78 | _ | 20,156 | 20,156 | 0.33 | 3.09 | 20.6 | 21,105 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 1.74 | 1.70 | 1.82 | 23.0 | 0.00 | 0.00 | 0.38 | 0.38 | 0.00 | 0.00 | 0.00 | _ | 5,245 | 5,245 | 0.07 | 0.20 | 6.90 | 5,314 | | Vendor | 0.17 | 0.08 | 3.94 | 1.22 | 0.03 | 0.06 | 0.23 | 0.29 | 0.06 | 0.09 | 0.14 | _ | 3,337 | 3,337 | 0.05 | 0.51 | 3.41 | 3,494 | |---------|------|------|------|------|------|------|------|------|------|------|------|---|-------|-------|------|------|------|-------| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.15. Building Construction (2029) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,259 | 5,259 | 0.21 | 0.04 | _ | 5,277 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | - | _ | _ | _ | | Off-Road
Equipment | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,259 | 5,259 | 0.21 | 0.04 | _ | 5,277 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Off-Road
Equipment | | 0.36 | 3.06 | 22.4 | 0.04 | 0.07 | _ | 0.07 | 0.07 | _ | 0.07 | _ | 3,756 | 3,756 | 0.15 | 0.03 | _ | 3,769 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.07 | 0.56 | 4.09 | 0.01 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 622 | 622 | 0.03 | 0.01 | _ | 624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 13.5 | 13.2 | 10.7 | 207 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 46,646 | 46,646 | 0.47 | 1.69 | 120 | 47,283 | | Vendor | 1.30 | 0.61 | 27.6 | 8.99 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 27,397 | 27,397 | 0.46 | 4.09 | 59.5 | 28,688 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 12.8 | 11.1 | 12.3 | 155 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 42,916 | 42,916 | 0.55 | 1.69 | 3.13 | 43,438 | | Vendor | 1.26 | 0.56 | 28.8 | 9.22 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 27,420 | 27,420 | 0.46 | 4.09 | 1.55 | 28,652 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 9.12 | 7.91 | 8.81 | 117 | 0.00 | 0.00 | 2.08 | 2.08 | 0.00 | 0.00 | 0.00 | _ | 31,040 | 31,040 | 0.39 | 1.21 | 37.1 | 31,448 | | Vendor | 0.91 | 0.42 | 20.7 | 6.51 | 0.16 | 0.31 | 1.25 | 1.56 | 0.31 | 0.47 | 0.78 | _ | 19,576 | 19,576 | 0.33 | 2.92 | 18.4 | 20,474 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 1.66 | 1.44 | 1.61 | 21.4 | 0.00 | 0.00 | 0.38 | 0.38 | 0.00 | 0.00 | 0.00 | _ | 5,139 | 5,139 | 0.07 | 0.20 | 6.14 | 5,207 | | Vendor | 0.17 | 0.08 | 3.77 | 1.19 | 0.03 | 0.06 | 0.23 | 0.29 | 0.06 | 0.09 | 0.14 | _ | 3,241 | 3,241 | 0.05 | 0.48 | 3.04 | 3,390 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.17. Building Construction (2030) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,259 | 5,259 | 0.21 | 0.04 | _ | 5,277 | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | - | 0.10 | - | 5,259 | 5,259 | 0.21 | 0.04 | _ | 5,277 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.36 | 3.06 | 22.4 | 0.04 | 0.07 | _ | 0.07 | 0.07 | _ | 0.07 | - | 3,756 | 3,756 | 0.15 | 0.03 | _ | 3,769 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 0.56 | 4.09 | 0.01 | 0.01 | _ | 0.01 | 0.01 | - | 0.01 | - | 622 | 622 | 0.03 | 0.01 | _ | 624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | - | _ | _ | _ | | Worker | 12.8 | 11.2 | 9.18 | 192 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 45,860 | 45,860 | 0.47 | 1.69 | 107 | 46,484 | | Vendor | 1.32 | 0.61 | 26.4 | 8.79 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | _ | 26,592 | 26,592 | 0.46 | 4.09 | 52.6 | 27,876 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | - | _ | _ | - | _ | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | | Worker | 12.2 | 10.5 | 10.8 | 146 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 42,200 | 42,200 | 0.55 | 1.69 | 2.77 | 42,722 | | Vendor | 1.26 | 0.56 | 27.7 | 9.03 | 0.22 | 0.44 | 1.75 | 2.19 | 0.44 | 0.66 | 1.10 | - | 26,615 | 26,615 | 0.46 | 4.09 | 1.37 | 27,847 | |------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 8.61 | 7.40 | 7.71 | 110 | 0.00 | 0.00 | 2.08 | 2.08 | 0.00 | 0.00 | 0.00 | _ | 30,521 | 30,521 | 0.39 | 1.21 | 33.1 | 30,925 | | Vendor | 0.93 | 0.42 | 19.8 | 6.36 | 0.16 | 0.31 | 1.25 | 1.56 | 0.31 | 0.47 | 0.78 | _ | 19,001 | 19,001 | 0.33 | 2.92 | 16.2 | 19,897 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 1.57 | 1.35 | 1.41 | 20.1 | 0.00 | 0.00 | 0.38 | 0.38 | 0.00 | 0.00 | 0.00 | _ | 5,053 | 5,053 | 0.07 | 0.20 | 5.47 | 5,120 | | Vendor | 0.17 | 0.08 | 3.61 | 1.16 | 0.03 | 0.06 | 0.23 | 0.29 | 0.06 | 0.09 | 0.14 | _ | 3,146 | 3,146 | 0.05 | 0.48 | 2.69 | 3,294 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.19. Building Construction (2031) - Unmitigated | | TOG | ROG | NOx | СО | | | | PM10T | | | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|-------------|------|---------|---------|---------|----------|----------|----------|------|-------|-------|------|------|------|-------| | Location | 100 | RUG | NOX | | 30Z | PIVITUE | PIVITUD | PIVITUI | PIVIZ.3E | FIVIZ.5D | PIVIZ.51 | BCO2 | NBCU2 | COZI | СП4 | NZO | K | COZe | | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,259 | 5,259 | 0.21 | 0.04 | _ | 5,277 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.50 | 4.29 | 31.3 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,259 | 5,259 | 0.21 | 0.04 | _ | 5,277 | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|---------|------|--------| | Off-Road
Equipmen | | 0.31 | 2.66 | 19.4 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | - | 3,262 | 3,262 | 0.13 | 0.03 | _ | 3,274 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 0.49 | 3.55 | 0.01 | 0.01 | _ | 0.01 | 0.01 | - | 0.01 | - | 540 | 540 | 0.02 | < 0.005 | - | 542 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 12.1 | 10.5 | 9.10 | 181 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 45,143 | 45,143 | 0.39 | 0.24 | 94.9 | 45,318 | | Vendor | 1.10 | 0.61 | 25.3 | 8.55 | 0.22 | 0.44 | 1.75 | 2.19 | 0.22 | 0.66 | 0.88 | _ | 25,740 | 25,740 | 0.46 | 3.87 | 45.7 | 26,951 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | - | _ | | _ | - | _ | _ | _ | _ | _ | _ | | Worker | 11.6 | 9.89 | 9.18 | 136 | 0.00 | 0.00 | 2.92 | 2.92 | 0.00 | 0.00 | 0.00 | _ | 41,546 | 41,546 | 0.47 | 1.69 | 2.46 | 42,065 | | Vendor | 1.04 | 0.56 | 26.5 | 8.79 | 0.22 | 0.44 | 1.75 | 2.19 | 0.22 | 0.66 | 0.88 | _ | 25,763 | 25,763 | 0.46 | 3.87 | 1.18 | 26,930 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | | Worker | 7.19 | 6.14 | 6.65 | 89.1 | 0.00 | 0.00 | 1.81 | 1.81 | 0.00 | 0.00 | 0.00 | _ | 26,096 | 26,096 | 0.29 | 1.05 | 25.4 | 26,442 | | Vendor | 0.67 | 0.36 | 16.5 | 5.38 | 0.14 | 0.27 | 1.09 | 1.36 | 0.14 | 0.41 | 0.54 | _ | 15,974 | 15,974 | 0.28 | 2.40 | 12.2 | 16,709 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 1.31 | 1.12 | 1.21 | 16.3 | 0.00 | 0.00 | 0.33 | 0.33 | 0.00 | 0.00 | 0.00 | _ | 4,321 | 4,321 | 0.05 | 0.17 | 4.20 | 4,378 | | Vendor | 0.12 | 0.07 | 3.02 | 0.98 | 0.02 | 0.05 | 0.20 | 0.25 | 0.02 | 0.07 | 0.10 | _ | 2,645 | 2,645 | 0.05 | 0.40 | 2.02 | 2,766 | |---------|------|------|------|------|------|------|------|------|------|------|------|---|-------|-------|------|------|------|-------| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.21. Paving (2026) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,021 | 3,021 | 0.12 | 0.02 | _ | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,021 | 3,021 | 0.12 | 0.02 | _ | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.18 | 2.16 | 11.8 | 0.02 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | _ | 1,685 | 1,685 | 0.07 | 0.01 | _ | 1,691 | | Paving | _ | 0.03 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmer | | 0.03 | 0.39 | 2.16 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 279 | 279 | 0.01 | < 0.005 | _ | 280 | |---------------------------|------|------|------|------|---------|------|---------|---------|------|------|------|---|------|------|---------|---------|------|------| | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ |
_ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.14 | 0.13 | 0.12 | 2.15 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 414 | 414 | 0.02 | 0.01 | 1.40 | 420 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | - | | - | _ | _ | _ | _ | | Worker | 0.13 | 0.12 | 0.13 | 1.63 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 380 | 380 | 0.01 | 0.01 | 0.04 | 385 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.07 | 0.07 | 0.08 | 0.95 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 215 | 215 | < 0.005 | 0.01 | 0.34 | 218 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.17 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 35.6 | 35.6 | < 0.005 | < 0.005 | 0.06 | 36.1 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.23. Paving (2027) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|---------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,022 | 3,022 | 0.12 | 0.02 | _ | 3,033 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | _ | - | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,022 | 3,022 | 0.12 | 0.02 | _ | 3,033 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.23 | 2.76 | 15.1 | 0.02 | 0.04 | _ | 0.04 | 0.04 | _ | 0.04 | _ | 2,159 | 2,159 | 0.09 | 0.02 | _ | 2,166 | | Paving | _ | 0.04 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 0.50 | 2.76 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 357 | 357 | 0.01 | < 0.005 | _ | 359 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | | | _ | | _ | _ | | _ | _ | _ | | _ | _ | _ | | _ | _ | |---------------------------|------|------|------|------|------|------|---------|---------|------|------|------|---|------|------|---------|---------|------|------| | Worker | 0.14 | 0.12 | 0.10 | 1.99 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | - | 406 | 406 | < 0.005 | 0.01 | 1.26 | 412 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.13 | 0.11 | 0.12 | 1.51 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 373 | 373 | 0.01 | 0.01 | 0.03 | 378 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.09 | 0.08 | 0.09 | 1.13 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 270 | 270 | < 0.005 | 0.01 | 0.39 | 274 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.02 | 0.01 | 0.02 | 0.21 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 44.7 | 44.7 | < 0.005 | < 0.005 | 0.06 | 45.3 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.25. Paving (2028) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,022 | 3,022 | 0.12 | 0.02 | _ | 3,032 | |---------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|-------| | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,022 | 3,022 | 0.12 | 0.02 | _ | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.23 | 2.77 | 15.2 | 0.02 | 0.04 | _ | 0.04 | 0.04 | _ | 0.04 | _ | 2,165 | 2,165 | 0.09 | 0.02 | _ | 2,172 | | Paving | _ | 0.04 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 0.51 | 2.77 | < 0.005 | 0.01 | - | 0.01 | 0.01 | _ | 0.01 | - | 358 | 358 | 0.01 | < 0.005 | - | 360 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.13 | 0.12 | 0.10 | 1.86 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 398 | 398 | < 0.005 | 0.01 | 1.13 | 404 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|------|------|------|------|------|------|---------|---------|------|------|------|---|------|------|---------|---------|------|------| | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Worker | 0.11 | 0.11 | 0.12 | 1.40 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 367 | 367 | 0.01 | 0.01 | 0.03 | 371 | | Vendor | 0.00
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.08 | 0.08 | 0.08 | 1.06 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 266 | 266 | < 0.005 | 0.01 | 0.35 | 269 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.02 | 0.19 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 44.0 | 44.0 | < 0.005 | < 0.005 | 0.06 | 44.6 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.27. Paving (2029) - Unmitigated | Location | TOG | ROG | | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,021 | 3,021 | 0.12 | 0.02 | _ | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | | _ | _ | _ | _ | | _ | | _ | | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,021 | 3,021 | 0.12 | 0.02 | - | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.23 | 2.76 | 15.1 | 0.02 | 0.04 | _ | 0.04 | 0.04 | _ | 0.04 | - | 2,158 | 2,158 | 0.09 | 0.02 | _ | 2,165 | | Paving | _ | 0.04 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 0.50 | 2.76 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | - | 357 | 357 | 0.01 | < 0.005 | - | 359 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.11 | 0.11 | 0.09 | 1.74 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 391 | 391 | < 0.005 | 0.01 | 1.01 | 397 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.11 | 0.09 | 0.10 | 1.30 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 360 | 360 | < 0.005 | 0.01 | 0.03 | 364 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |------------------|------|------|------|----------|------|------|---------|---------|------|------|------|---|------|------|---------|---------|------|------| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.08 | 0.07 | 0.07 | 0.99 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 260 | 260 | < 0.005 | 0.01 | 0.31 | 264 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.18 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 43.1 | 43.1 | < 0.005 | < 0.005 | 0.05 | 43.7 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.29. Paving (2030) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,021 | 3,021 | 0.12 | 0.02 | _ | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,021 | 3,021 | 0.12 | 0.02 | _ | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|------|------|----------|------|---------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|-------| | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.23 | 2.76 | 15.1 | 0.02 | 0.04 | _ | 0.04 | 0.04 | - | 0.04 | _ | 2,158 | 2,158 | 0.09 | 0.02 | - | 2,165 | | Paving | _ | 0.04 | <u> </u> | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 0.50 | 2.76 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | - | 357 | 357 | 0.01 | < 0.005 | - | 359 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Worker | 0.11 | 0.09 | 0.08 | 1.61 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 385 | 385 | < 0.005 | 0.01 | 0.90 | 390 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.10 | 0.09 | 0.09 | 1.23 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 354 | 354 | < 0.005 | 0.01 | 0.02 | 358 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.07 | 0.06 | 0.06 | 0.92 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 256 | 256 | < 0.005 | 0.01 | 0.28 | 259 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 36 / 64 | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------|------|------|------|------
------|------|---------|---------|------|------|------|---|------|------|---------|---------|----------|------| | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.17 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 42.4 | 42.4 | < 0.005 | < 0.005 | 0.05 | 43.0 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.31. Paving (2031) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,021 | 3,021 | 0.12 | 0.02 | _ | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.32 | 3.87 | 21.2 | 0.03 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | _ | 3,021 | 3,021 | 0.12 | 0.02 | _ | 3,032 | | Paving | _ | 0.06 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - | | Off-Road
Equipment | | 0.20 | 2.40 | 13.2 | 0.02 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | _ | 1,874 | 1,874 | 0.08 | 0.02 | _ | 1,881 | | Paving | _ | 0.04 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|------|------|------|------|---------|------|---------|---------|------|------|------|---|------|------|---------|---------|------|------| | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmer | | 0.04 | 0.44 | 2.40 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 310 | 310 | 0.01 | < 0.005 | _ | 311 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | | Worker | 0.10 | 0.09 | 0.08 | 1.52 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 379 | 379 | < 0.005 | < 0.005 | 0.80 | 380 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Worker | 0.10 | 0.08 | 0.08 | 1.14 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 349 | 349 | < 0.005 | 0.01 | 0.02 | 353 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.06 | 0.05 | 0.06 | 0.75 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 219 | 219 | < 0.005 | 0.01 | 0.21 | 222 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.14 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 36.3 | 36.3 | < 0.005 | < 0.005 | 0.04 | 36.7 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.33. Architectural Coating (2026) - Unmitigated | Location | TOG | ROG | NOx | со | r for ann | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|------|------|------|-----------|---------|-------|---------|---------|--------|---------|------|-------|------|------|---------|------|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | - | - | - | _ | _ | - | - | - | - | _ | _ | _ | _ | _ | _ | - | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.03 | 0.96 | 1.43 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 199 | 199 | 0.01 | < 0.005 | _ | 199 | | Architect
ural
Coatings | _ | 15.3 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------------------------|------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|--------| | Off-Road
Equipmen | | 0.01 | 0.18 | 0.26 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 32.9 | 32.9 | < 0.005 | < 0.005 | _ | 33.0 | | Architect
ural
Coatings | _ | 2.79 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 3.37 | 3.03 | 2.81 | 51.3 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 9,861 | 9,861 | 0.42 | 0.34 | 33.4 | 10,006 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | Worker | 3.21 | 2.85 | 3.13 | 38.9 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 9,068 | 9,068 | 0.14 | 0.35 | 0.87 | 9,178 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 1.78 | 1.58 | 1.91 | 22.7 | 0.00 | 0.00 | 0.33 | 0.33 | 0.00 | 0.00 | 0.00 | _ | 5,121 | 5,121 | 0.08 | 0.20 | 8.05 | 5,190 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.32 | 0.29 | 0.35 | 4.15 | 0.00 | 0.00 | 0.06 | 0.06 | 0.00 | 0.00 | 0.00 | _ | 848 | 848 | 0.01 | 0.03 | 1.33 | 859 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.35. Architectural Coating (2027) - Unmitigated | Location | TOG | ROG | NOx | co | yr for ann | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 |
NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|------|------|------|------------|---------|-------|---------|---------|--------|---------|------|-------|------|------|---------|------|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 1.23 | 1.83 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 254 | 254 | 0.01 | < 0.005 | _ | 255 | | Architect ural Coatings | _ | 19.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------------------------|------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmen | | 0.01 | 0.22 | 0.33 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 42.1 | 42.1 | < 0.005 | < 0.005 | _ | 42.2 | | Architect
ural
Coatings | _ | 3.57 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 3.22 | 2.87 | 2.48 | 47.5 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 9,679 | 9,679 | 0.11 | 0.34 | 30.1 | 9,812 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 3.07 | 2.71 | 2.81 | 35.9 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 8,901 | 8,901 | 0.13 | 0.34 | 0.78 | 9,006 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.19 | 1.94 | 2.21 | 26.9 | 0.00 | 0.00 | 0.42 | 0.42 | 0.00 | 0.00 | 0.00 | _ | 6,439 | 6,439 | 0.09 | 0.24 | 9.26 | 6,522 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.40 | 0.35 | 0.40 | 4.91 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | _ | 1,066 | 1,066 | 0.01 | 0.04 | 1.53 | 1,080 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.37. Architectural Coating (2028) - Unmitigated | Location | TOG | ROG | NOx | co | yr for ann | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|------|------|------|------------|---------|-------|---------|---------|--------|---------|------|-------|------|------|---------|------|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | - | - | - | _ | _ | - | - | - | - | _ | - | _ | _ | _ | _ | _ | - | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 1.23 | 1.84 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 255 | 255 | 0.01 | < 0.005 | _ | 256 | | Architect
ural
Coatings | _ | 19.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------------------------|------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmen | | 0.01 | 0.23 | 0.34 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 42.2 | 42.2 | < 0.005 | < 0.005 | _ | 42.4 | | Architect
ural
Coatings | _ | 3.58 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 3.11 | 2.77 | 2.47 | 44.3 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 9,498 | 9,498 | 0.11 | 0.34 | 26.9 | 9,629 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.68 | 2.62 | 2.79 | 33.5 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 8,737 | 8,737 | 0.13 | 0.34 | 0.70 | 8,841 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 1.91 | 1.86 | 2.00 | 25.3 | 0.00 | 0.00 | 0.42 | 0.42 | 0.00 | 0.00 | 0.00 | _ | 6,337 | 6,337 | 0.09 | 0.24 | 8.33 | 6,419 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.35 | 0.34 | 0.36 | 4.61 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | _ | 1,049 | 1,049 | 0.01 | 0.04 | 1.38 | 1,063 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.39. Architectural Coating (2029) - Unmitigated | Location | TOG | ROG | NOx | CO | yr for ann | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|------|------|------|------------|---------|-------|---------|---------|--------|---------|------|-------|------|------|---------|------|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ |
_ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 1.23 | 1.83 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 254 | 254 | 0.01 | < 0.005 | _ | 255 | | Architect
ural
Coatings | _ | 19.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | - | _ | _ | _ | _ | |-------------------------------|------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmer | | 0.01 | 0.22 | 0.33 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | - | 42.1 | 42.1 | < 0.005 | < 0.005 | _ | 42.2 | | Architect
ural
Coatings | _ | 3.57 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.70 | 2.65 | 2.14 | 41.4 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 9,329 | 9,329 | 0.09 | 0.34 | 24.1 | 9,457 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.55 | 2.21 | 2.47 | 31.1 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 8,583 | 8,583 | 0.11 | 0.34 | 0.63 | 8,688 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Worker | 1.82 | 1.58 | 1.76 | 23.5 | 0.00 | 0.00 | 0.42 | 0.42 | 0.00 | 0.00 | 0.00 | _ | 6,208 | 6,208 | 0.08 | 0.24 | 7.42 | 6,290 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.33 | 0.29 | 0.32 | 4.29 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | _ | 1,028 | 1,028 | 0.01 | 0.04 | 1.23 | 1,041 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.41. Architectural Coating (2030) - Unmitigated | Location | TOG | ROG | NOx | CO | yr for ann | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|------|------|------|------------|---------|-------|---------|---------|--------|---------|------|-------|------|------|---------|------|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 1.23 | 1.83 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 254 | 254 | 0.01 | < 0.005 | _ | 255 | | Architect
ural
Coatings | _ | 19.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------------------------|------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmer | | 0.01 | 0.22 | 0.33 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | - | 42.1 | 42.1 | < 0.005 | < 0.005 | _ | 42.2 | | Architect
ural
Coatings | _ | 3.57 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.55 | 2.23 | 1.84 | 38.4 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 9,172 | 9,172 | 0.09 | 0.34 | 21.4 | 9,297 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.44 | 2.10 | 2.16 | 29.3 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 8,440 | 8,440 | 0.11 | 0.34 | 0.55 | 8,544 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Worker | 1.72 | 1.48 | 1.54 | 22.0 | 0.00 | 0.00 | 0.42 | 0.42 | 0.00 | 0.00 | 0.00 | _ | 6,104 | 6,104 | 0.08 | 0.24 | 6.61 | 6,185 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.31 | 0.27 | 0.28 | 4.01 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | _ | 1,011 | 1,011 | 0.01 | 0.04 | 1.09 | 1,024 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.43. Architectural Coating (2031) - Unmitigated | Location | TOG | ROG | NOx | co | r for ann | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|------|------|------|-----------|---------|-------|---------|---------|--------|---------|------|-------|------|------|---------|------|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect ural Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.72 | 2.57 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 356 | 356 | 0.01 | < 0.005 | _ | 357 | | Architect
ural
Coatings | _ | 27.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.03 | 1.07 | 1.59 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 221 | 221 | 0.01 | < 0.005 | _ | 222 | | Architect
ural
Coatings | _ | 17.0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | - | _ | _ | | |-------------------------------|------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmer | | 0.01 | 0.20 | 0.29 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | - | 36.6 | 36.6 | < 0.005 | < 0.005 | _ | 36.7 | | Architect
ural
Coatings | _ | 3.10 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.43 | 2.10 | 1.82 | 36.2 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 9,029 | 9,029 | 0.08 | 0.05 | 19.0 | 9,064 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 2.32 | 1.98 | 1.84 | 27.2 | 0.00 | 0.00 | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | _ | 8,309 | 8,309 | 0.09 | 0.34 | 0.49 | 8,413 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 1.44 | 1.23 | 1.33 | 17.8 | 0.00 | 0.00 | 0.36 | 0.36 | 0.00 | 0.00 | 0.00 | _ | 5,219 | 5,219 | 0.06 | 0.21 | 5.07 | 5,288 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.26 | 0.22 | 0.24 | 3.25 | 0.00 | 0.00 | 0.07 | 0.07 | 0.00 | 0.00 | 0.00 | _ | 864 | 864 | 0.01 | 0.03 | 0.84 | 876 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 4. Operations Emissions Details 4.10. Soil Carbon Accumulation By Vegetation Type 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | | | | | | PM10E | | | 1 | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|---|---|---|---|---|-------|---|---|---|--------|---|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | | | | | any, torry | | | | | , | | | | | | | | 1_ | | |---------------------------|-----|-----|-----|------------|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|----|------| | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest
ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | - | - | _ | _ | _ | - | _ | _ | _ | _ | - | _ | _ | - | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest
ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data # 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |-----------------------|-----------------------|------------|------------|---------------|---------------------|-------------------| | Site Preparation | Site Preparation | 7/1/2023 | 3/9/2024 | 5.00 | 180 | _ | | Grading | Grading | 3/10/2024 | 12/20/2025 | 5.00 | 465 | _ | | Building Construction | Building Construction | 3/22/2026 | 11/13/2031 | 5.00 | 1,474 | _ | | Paving | Paving | 3/22/2026 | 11/13/2031 | 5.00 | 1,474 | _ | | Architectural Coating | Architectural Coating | 3/22/2026 | 11/13/2031 | 5.00 | 1,474 | _ | # 5.2. Off-Road Equipment # 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |------------------|---------------------|-----------|--------------|----------------|---------------|------------|-------------| | Site Preparation | Rubber Tired Dozers | Diesel | Tier 4 Final | 6.00 | 8.00 | 367 | 0.40 | | Grading | Excavators | Diesel | Tier 4 Final | 4.00 | 8.00 | 36.0 | 0.38 | | Grading | Graders | Diesel | Tier 4 Final | 2.00 | 8.00 | 148 | 0.41 | |-----------------------|-------------------------------|--------|--------------|------|------|------|------| | Grading | Rubber Tired Dozers | Diesel | Tier 4 Final | 2.00 | 8.00 | 367 | 0.40 | | Grading | Scrapers | Diesel | Tier 4 Final | 4.00 | 8.00 | 423 | 0.48 | | Building Construction | Cranes | Diesel | Tier 4 Final | 2.00 | 8.00 | 367 | 0.29 | | Building Construction | Forklifts | Diesel | Tier 4 Final | 6.00 | 8.00 | 82.0 | 0.20 | | Building Construction | Generator Sets | Diesel | Tier 4 Final | 2.00 | 8.00 | 14.0 | 0.74 | | Building Construction | Tractors/Loaders/Backh
oes | Diesel | Tier 4 Final | 6.00 | 8.00 | 84.0 | 0.37 | | Building Construction | Welders | Diesel | Tier 4 Final | 2.00 | 8.00 | 46.0 | 0.45 | | Paving | Pavers | Diesel | Tier 4 Final | 4.00 | 8.00 | 81.0 | 0.42 | | Paving | Paving Equipment | Diesel | Tier 4 Final | 4.00 | 8.00 | 89.0 | 0.36 | | Paving | Rollers | Diesel | Tier
4 Final | 4.00 | 8.00 | 36.0 | 0.38 | | Architectural Coating | Air Compressors | Diesel | Tier 4 Final | 2.00 | 8.00 | 37.0 | 0.48 | | Site Preparation | Crawler Tractors | Diesel | Tier 4 Final | 8.00 | 8.00 | 87.0 | 0.43 | | Grading | Crawler Tractors | Diesel | Tier 4 Final | 4.00 | 8.00 | 87.0 | 0.43 | # 5.3. Construction Vehicles # 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |------------------|--------------|-----------------------|----------------|---------------| | Site Preparation | _ | _ | _ | _ | | Site Preparation | Worker | 35.0 | 18.5 | LDA,LDT1,LDT2 | | Site Preparation | Vendor | 119 | 10.2 | HHDT,MHDT | | Site Preparation | Hauling | 13.3 | 20.0 | HHDT | | Site Preparation | Onsite truck | _ | _ | HHDT | | Grading | _ | _ | _ | _ | | Grading | Worker | 40.0 | 18.5 | LDA,LDT1,LDT2 | | Grading | Vendor | 307 | 10.2 | HHDT,MHDT | | Grading | Hauling | 13.3 | 20.0 | HHDT | |-----------------------|--------------|-------|------|---------------| | Grading | Onsite truck | _ | _ | HHDT | | Building Construction | _ | _ | _ | _ | | Building Construction | Worker | 3,575 | 18.5 | LDA,LDT1,LDT2 | | Building Construction | Vendor | 974 | 10.2 | HHDT,MHDT | | Building Construction | Hauling | 0.00 | 20.0 | HHDT | | Building Construction | Onsite truck | _ | _ | HHDT | | Paving | _ | _ | _ | _ | | Paving | Worker | 30.0 | 18.5 | LDA,LDT1,LDT2 | | Paving | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Paving | Hauling | 0.00 | 20.0 | HHDT | | Paving | Onsite truck | _ | _ | HHDT | | Architectural Coating | _ | _ | _ | _ | | Architectural Coating | Worker | 715 | 18.5 | LDA,LDT1,LDT2 | | Architectural Coating | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Architectural Coating | Hauling | 0.00 | 20.0 | HHDT | | Architectural Coating | Onsite truck | _ | _ | HHDT | | | | | | | #### 5.4. Vehicles #### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. # 5.5. Architectural Coatings | Phase Name | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area
Coated (sq ft) | Non-Residential Exterior Area
Coated (sq ft) | Parking Area Coated (sq ft) | |-----------------------|--|--|---|---|-----------------------------| | Architectural Coating | 0.00 | 0.00 | 12,812,049 | 4,270,683 | 171,975 | # 5.6. Dust Mitigation #### 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (sq. ft.) | Acres Paved (acres) | |------------------|---------------------------------|---------------------------------|----------------------|-------------------------------|---------------------| | Site Preparation | 19,221 | 0.00 | 1,260 | 0.00 | _ | | Grading | 49,656 | 0.00 | 3,720 | 0.00 | _ | | Paving | 0.00 | 0.00 | 0.00 | 0.00 | 65.8 | #### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | # 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |-----------------------------------|--------------------|-----------| | Refrigerated Warehouse-No Rail | 0.00 | 0% | | Unrefrigerated Warehouse-No Rail | 0.00 | 0% | | Manufacturing | 0.00 | 0% | | Industrial Park | 0.00 | 0% | | Free-Standing Discount Superstore | 0.00 | 0% | | Strip Mall | 0.00 | 0% | | Other Asphalt Surfaces | 34.4 | 100% | | Other Non-Asphalt Surfaces | 31.4 | 0% | # 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | | , | | | | |------|---------------|------|-------|-------| | | | | | | | | 1380 | | 0.14 | NO | | Year | kWh per Year | CO2 | IC:H4 | IN20 | | Icai | KWII pei Teai | 1002 | O 1 | 11420 | | | · · | | | | | 2023 | 0.00 | 532 | 0.03 | < 0.005 | |------|------|-----|------|---------| | 2024 | 0.00 | 532 | 0.03 | < 0.005 | | 2025 | 0.00 | 532 | 0.03 | < 0.005 | | 2026 | 0.00 | 532 | 0.03 | < 0.005 | | 2027 | 0.00 | 532 | 0.03 | < 0.005 | | 2028 | 0.00 | 532 | 0.03 | < 0.005 | | 2029 | 0.00 | 532 | 0.03 | < 0.005 | | 2030 | 0.00 | 532 | 0.03 | < 0.005 | | 2031 | 0.00 | 532 | 0.03 | < 0.005 | # 5.18. Vegetation 5.18.1. Land Use Change 5.18.1.1. Unmitigated | Vegetation | Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | |------------|---------------|----------------------|---------------|-------------| | 3 | | -9 | | | # 5.18.1. Biomass Cover Type #### 5.18.1.1. Unmitigated | | The same of sa | | |--------------------|--|--| | Biomass Cover Type | IInitial Acres | | | | | | #### 5.18.2. Sequestration #### 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|-----------|------------------------------|------------------------------| | ince type | Inditibel | Lieuticity Gaved (KWII/year) | Natural Cas Caved (blu/year) | # 6. Climate Risk Detailed Report #### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 28.5 | annual days of extreme heat | | Extreme Precipitation | 1.90 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 21.3 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES),
Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 3 | 0 | 0 | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 0 | 0 | N/A | | Wildfire | 1 | 0 | 0 | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Air Quality Degradation | 0 | 0 | 0 | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 3 | 1 | 1 | 3 | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 1 | 1 | 2 | | Wildfire | 1 | 1 | 1 | 2 | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 1 | 1 | 1 | 2 | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures # 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. Indicator Result for Project Census Tract | Exposure Indicators | _ | |---------------------------------|------| | AQ-Ozone | 97.6 | | AQ-PM | 53.3 | | AQ-DPM | 47.8 | | Drinking Water | 10.2 | | Lead Risk Housing | 22.0 | | Pesticides | 58.8 | | Toxic Releases | 37.7 | | Traffic | 81.9 | | Effect Indicators | _ | | CleanUp Sites | 69.4 | | Groundwater | 0.00 | | Haz Waste Facilities/Generators | 53.5 | | Impaired Water Bodies | 0.00 | | Solid Waste | 40.1 | | Sensitive Population | _ | | Asthma | 65.6 | | Cardio-vascular | 90.6 | | Low Birth Weights | 62.9 | | Socioeconomic Factor Indicators | _ | | Education | 74.7 | | Housing | 57.9 | | Linguistic | 53.4 | | Poverty | 64.5 | | Unemployment | 15.8 | # 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |--|---------------------------------| | Economic | _ | | Above Poverty | 36.04516874 | | Employed | 38.00846914 | | Median HI | 53.00911074 | | Education | _ | | Bachelor's or higher | 28.6154241 | | High school enrollment | 100 | | Preschool enrollment | 5.440780187 | | Transportation | _ | | Auto Access | 94.58488387 | | Active commuting | 6.723983062 | | Social | _ | | 2-parent households | 87.71974849 | | Voting | 9.636853587 | | Neighborhood | _ | | Alcohol availability | 84.04978827 | | Park access | 11.88245862 | | Retail density | 29.21852945 | | Supermarket access | 12.06210702 | | Tree canopy | 0.590273322 | | Housing | _ | | Homeownership | 79.23777749 | | Housing habitability | 40.67753112 | | Low-inc homeowner severe housing cost burden | 12.19042731 | | Low-inc renter severe housing cost burden | 27.61452586 | | Uncrowded housing | 47.8121391 | | _ | |-------------| | 26.49813936 | | 79.8 | | 42.9 | | 64.8 | | 87.6 | | 27.9 | | 81.5 | | 59.8 | | 52.6 | | 37.8 | | 88.7 | | 83.0 | | 7.5 | | 28.5 | | 64.9 | | 17.5 | | 92.5 | | 37.9 | | 70.4 | | _ | | 30.9 | | 25.4 | | 29.5 | | _ | | 0.0 | | 0.0 | | | | Children | 35.2 | |----------------------------------|------| | Elderly | 90.4 | | English Speaking | 42.3 | | Foreign-born | 59.5 | | Outdoor Workers | 11.9 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 72.4 | | Traffic Density | 65.3 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 70.6 | | Other Decision Support | _ | | 2016 Voting | 23.4 | # 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 69.0 | | Healthy Places Index Score for Project Location (b) | 30.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. Health & Equity Evaluation Scorecard not completed. # 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data | Screen | Justification | |--------------------------------------|---| | Construction: Construction Phases | Construction schedule based on data provided by the Project team. | | Construction: Off-Road Equipment | Construction equipment based on data from the Project team | | Construction: Trips and VMT | Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction. | | Construction: Architectural Coatings | Per SCAQMD Rule 1113 | This page intentionally left blank #### **APPENDIX 4.2:** **CALEEMOD PROJECT OPERATIONS EMISSIONS MODEL OUTPUTS** # 13265 Stoneridge With MCP Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.2. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.2. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.2. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health
& Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---| | Project Name | 13265 Stoneridge With MCP | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 0.20 | | Location | 33.823133630598434, -117.16971733141742 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5500 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq
ft) | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|-------|----------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------| | Refrigerated
Warehouse-No Rail | 2,940 | 1000sqft | 67.5 | 2,940,000 | 2,316,569 | _ | _ | _ | | Unrefrigerated
Warehouse-No Rail | 4,050 | 1000sqft | 93.0 | 4,049,616 | 0.00 | _ | _ | _ | | Manufacturing | 735 | 1000sqft | 16.9 | 735,000 | 0.00 | _ | _ | _ | |-----------------------------------|-------|-------------------|------|---------|------|---|---|---| | Industrial Park | 562 | 1000sqft | 12.9 | 561,924 | 0.00 | _ | _ | _ | | User Defined
Industrial | 8,287 | User Defined Unit | 0.00 | 0.00 | 0.00 | _ | _ | _ | | Free-Standing Discount Superstore | 100 | 1000sqft | 2.30 | 100,000 | 0.00 | _ | _ | _ | | Strip Mall | 26.5 | 1000sqft | 0.61 | 26,542 | 0.00 | _ | _ | _ | | Other Asphalt
Surfaces | 34.4 | Acre | 34.4 | 0.00 | 0.00 | _ | _ | _ | | Other Non-Asphalt
Surfaces | 31.4 | Acre | 31.4 | 0.00 | 0.00 | _ | _ | _ | # 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary # 2.4. Operations Emissions Compared Against Thresholds | | | (1.5) GG | , | J, J | | , | (| . | J, | · J | , | | | | | | | | |---------------------------|------|----------|-----|-------|------|-------|-------|----------|--------|------------|--------|-------|---------|---------|-----|------|-------|---------| | Un/Mit. | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 148 | 331 | 380 | 1,091 | 4.75 | 10.7 | 120 | 131 | 10.6 | 24.3 | 34.9 | 5,332 | 604,184 | 609,516 | 560 | 53.4 | 3,996 | 643,430 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 80.2 | 268 | 393 | 626 | 4.62 | 10.2 | 120 | 131 | 9.95 | 24.3 | 34.3 | 5,332 | 591,818 | 597,149 | 560 | 53.5 | 3,141 | 630,245 | | Average
Daily
(Max) | | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 115 | 301 | 365 | 821 | 4.20 | 9.97 | 107 | 117 | 9.82 | 21.6 | 31.5 | 5,332 | 546,352 | 551,683 | 559 | 48.7 | 3,458 | 583,633 | |-----------------|------|------|------|-----|------|------|------|------|------|------|------|-------|---------|---------|------|------|-------|---------| | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 21.0 | 54.9 | 66.5 | 150 | 0.77 | 1.82 | 19.5 | 21.3 | 1.79 | 3.95 | 5.74 | 883 | 90,455 | 91,337 | 92.6 | 8.06 | 572 | 96,627 | # 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|----------|------|-------|------|-------|-------|-------|--------|--------|--------|-------|---------|---------|------|------|-------|---------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 77.1 | 66.0 | 322 | 680 | 4.40 | 6.09 | 120 | 126 | 5.81 | 24.3 | 30.1 | _ | 463,619 | 463,619 | 10.3 | 50.4 | 877 | 479,761 | | Area | 65.2 | 262 | 3.08 | 366 | 0.02 | 0.49 | _ | 0.49 | 0.65 | _ | 0.65 | _ | 1,505 | 1,505 | 0.06 | 0.14 | _ | 1,549 | | Energy | 6.00 | 3.00 | 54.5 | 45.8 | 0.33 | 4.14 | _ | 4.14 | 4.14 | _ | 4.14 | _ | 137,203 | 137,203 | 14.9 | 1.23 | _ | 137,941 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 677 | 1,858 | 2,535 | 69.7 | 1.68 | _ | 4,777 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,654 | 0.00 | 4,654 | 465 | 0.00 | _ | 16,284 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,119 | 3,119 | | Total | 148 | 331 | 380 | 1,091 | 4.75 | 10.7 | 120 | 131 | 10.6 | 24.3 | 34.9 | 5,332 | 604,184 | 609,516 | 560 | 53.4 | 3,996 | 643,430 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 74.2 | 63.2 | 338 | 581 | 4.30 | 6.09 | 120 | 126 | 5.81 | 24.3 | 30.1 | _ | 452,757 | 452,757 | 10.5 | 50.6 | 22.8 | 468,124 | | Area | _ | 202 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Energy | 6.00 | 3.00 | 54.5 | 45.8 | 0.33 | 4.14 | _ | 4.14 | 4.14 | _ | 4.14 | _ | 137,203 | 137,203 | 14.9 | 1.23 | _ | 137,941 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 677 | 1,858 | 2,535 | 69.7 | 1.68 | _ | 4,777 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,654 | 0.00 | 4,654 | 465 | 0.00 | _ | 16,284 | | Refrig. | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,119 | 3,119 | | Total | 80.2 | 268 | 393 | 626 | 4.62 | 10.2 | 120 | 131 | 9.95 | 24.3 | 34.3 | 5,332 | 591,818 | 597,149 | 560 | 53.5 | 3,141 | 630,245 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |------------------|------|------|------|------|---------|------|------|------|------|------|------|-------|---------|---------|------|------|-------|---------| | Mobile | 64.7 | 54.8 | 308 | 524 | 3.85 | 5.49 | 107 | 112 | 5.24 | 21.6 | 26.9 | _ | 406,260 | 406,260 | 9.35 | 45.7 | 339 | 420,451 | | Area | 44.6 | 243 | 2.11 | 251 | 0.01 | 0.34 | _ | 0.34 | 0.45 | _ | 0.45 | _ | 1,031 | 1,031 | 0.04 | 0.10 | _ | 1,061 | | Energy | 6.00 | 3.00 | 54.5 | 45.8 | 0.33 | 4.14 | _ | 4.14 | 4.14 | _ | 4.14 | _ | 137,203 | 137,203 | 14.9 | 1.23 | _ | 137,941 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 677 | 1,858 | 2,535 | 69.7 | 1.68 | _ | 4,777 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,654 | 0.00 | 4,654 | 465 | 0.00 | _ | 16,284 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,119 | 3,119 | | Total | 115 | 301 | 365 | 821 | 4.20 | 9.97 | 107 | 117 | 9.82 | 21.6 | 31.5 | 5,332 | 546,352 | 551,683 | 559 | 48.7 | 3,458 | 583,633 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 11.8 | 10.0 | 56.2 | 95.7 | 0.70 | 1.00 | 19.5 | 20.5 | 0.96 | 3.95 | 4.90 | _ | 67,261 | 67,261 | 1.55 | 7.57 | 56.1 | 69,610 | | Area | 8.14 | 44.4 | 0.38 | 45.7 | < 0.005 | 0.06 | _ | 0.06 | 0.08 | _ | 0.08 | _ | 171 | 171 | 0.01 | 0.02 | _ | 176 | | Energy | 1.09 | 0.55 | 9.95 | 8.36 | 0.06 | 0.76 | _ | 0.76 | 0.76 | _ | 0.76 | _ | 22,715 | 22,715 | 2.46 | 0.20 | _ | 22,838 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 112 | 308 | 420 | 11.5 | 0.28 | _ | 791 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 771 | 0.00 | 771 | 77.0 | 0.00 | _ | 2,696 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 516 | 516 | | Total | 21.0 | 54.9 | 66.5 | 150 | 0.77 | 1.82 | 19.5 | 21.3 | 1.79 | 3.95 | 5.74 | 883 | 90,455 | 91,337 | 92.6 | 8.06 | 572 | 96,627 | # 4. Operations Emissions Details # 4.1. Mobile Emissions by Land Use #### 4.1.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
Warehous
Rail | | 11.1 | 5.06 | 115 | 0.28 | 0.09 | 11.6 | 11.7 | 0.09 | 1.97 | 2.06 | _ | 28,346 | 28,346 | 0.87 | 0.63 | 46.5 | 28,602 | |--|-------------|------|------|------|------|------|------|------|------|------|------|----------|---------|---------|------|------|------|---------| | Unrefrige
rated
Warehou
se-No
Rail | 19.2 | 17.8 | 8.13 | 184 | 0.45 | 0.15 | 18.6 | 18.8 | 0.14 | 3.17 | 3.31 | _ | 45,567 | 45,567 | 1.40 | 1.01 | 74.7 | 45,978 | | Manufact
uring | 9.70 | 8.99 | 4.11 | 93.0 | 0.23 | 0.08 | 9.40 | 9.48 | 0.07 | 1.60 | 1.67 | _ | 23,008 | 23,008 | 0.71 | 0.51 | 37.7 | 23,216 | | Industrial
Park | 4.79 | 4.44 | 2.03 | 45.9 | 0.11 | 0.04 | 4.64 | 4.68 | 0.03 | 0.79 | 0.82 | _ | 11,359 | 11,359 | 0.35 | 0.25 | 18.6 | 11,461 | | User
Defined
Industrial | 13.1 | 7.07 | 288 | 87.6 | 2.89 | 5.46 | 59.1 | 64.5 | 5.22 | 13.8 | 19.0 | - | 309,886 | 309,886 | 5.45 | 46.1 | 615 | 324,367 | | Free-Sta
nding
Discount
Superstore | | 14.0 | 12.4 | 130 | 0.37 | 0.22 | 14.3 | 14.5 | 0.21 | 2.52 | 2.73 | | 38,159 | 38,159 | 1.30 | 1.58 | 70.9 | 38,732 | | Strip Mall | 2.93 | 2.68 | 2.37 | 24.8 | 0.07 | 0.04 | 2.73 | 2.77 | 0.04 | 0.48 | 0.52 | <u> </u> | 7,295 | 7,295 | 0.25 | 0.30 | 13.6 | 7,404 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Aspha
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 77.1 | 66.0 | 322 | 680 |
4.40 | 6.09 | 120 | 126 | 5.81 | 24.3 | 30.1 | _ | 463,619 | 463,619 | 10.3 | 50.4 | 877 | 479,761 | | Daily,
Winter
(Max) | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 11.5 | 10.6 | 5.58 | 95.0 | 0.26 | 0.09 | 11.6 | 11.7 | 0.09 | 1.97 | 2.06 | _ | 26,202 | 26,202 | 0.91 | 0.67 | 1.21 | 26,426 | | Unrefrige rated | 18.5 | 17.1 | 8.97 | 153 | 0.42 | 0.15 | 18.6 | 18.8 | 0.14 | 3.17 | 3.31 | _ | 42,120 | 42,120 | 1.46 | 1.08 | 1.94 | 42,481 | |--|-------------|------|------|------|------|------|------|------|------|------|------|---|---------|---------|------|------|------|---------| | Manufact
uring | 9.34 | 8.62 | 4.53 | 77.1 | 0.21 | 0.08 | 9.40 | 9.48 | 0.07 | 1.60 | 1.67 | _ | 21,268 | 21,268 | 0.74 | 0.55 | 0.98 | 21,450 | | Industrial
Park | 4.61 | 4.26 | 2.24 | 38.1 | 0.10 | 0.04 | 4.64 | 4.68 | 0.03 | 0.79 | 0.82 | - | 10,500 | 10,500 | 0.36 | 0.27 | 0.48 | 10,589 | | User
Defined
Industrial | 12.8 | 6.79 | 301 | 88.2 | 2.89 | 5.46 | 59.1 | 64.5 | 5.23 | 13.8 | 19.0 | _ | 309,994 | 309,994 | 5.44 | 46.1 | 16.0 | 323,884 | | Free-Sta
nding
Discount
Superstor | | 13.3 | 13.3 | 109 | 0.35 | 0.22 | 14.3 | 14.5 | 0.21 | 2.52 | 2.73 | _ | 35,825 | 35,825 | 1.34 | 1.62 | 1.84 | 36,345 | | Strip Mall | 2.80 | 2.54 | 2.54 | 20.8 | 0.07 | 0.04 | 2.73 | 2.77 | 0.04 | 0.48 | 0.52 | _ | 6,849 | 6,849 | 0.26 | 0.31 | 0.35 | 6,948 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 74.2 | 63.2 | 338 | 581 | 4.30 | 6.09 | 120 | 126 | 5.81 | 24.3 | 30.1 | _ | 452,757 | 452,757 | 10.5 | 50.6 | 22.8 | 468,124 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 1.82 | 1.67 | 0.91 | 15.7 | 0.04 | 0.02 | 1.85 | 1.86 | 0.01 | 0.31 | 0.33 | _ | 3,833 | 3,833 | 0.13 | 0.10 | 2.90 | 3,869 | | Unrefrige
rated
Warehou
se-No
Rail | 3.13 | 2.89 | 1.58 | 27.1 | 0.07 | 0.03 | 3.19 | 3.21 | 0.02 | 0.54 | 0.57 | _ | 6,616 | 6,616 | 0.23 | 0.17 | 5.01 | 6,678 | | Manufact
uring | 1.33 | 1.23 | 0.67 | 11.5 | 0.03 | 0.01 | 1.35 | 1.36 | 0.01 | 0.23 | 0.24 | - | 2,811 | 2,811 | 0.10 | 0.07 | 2.13 | 2,837 | | Industrial
Park | 0.73 | 0.67 | 0.37 | 6.31 | 0.02 | 0.01 | 0.74 | 0.75 | 0.01 | 0.13 | 0.13 | _ | 1,538 | 1,538 | 0.05 | 0.04 | 1.16 | 1,553 | | User
Defined
Industrial | 2.15 | 1.14 | 50.2 | 14.5 | 0.48 | 0.90 | 9.76 | 10.7 | 0.86 | 2.28 | 3.14 | _ | 46,472 | 46,472 | 0.82 | 6.91 | 39.8 | 48,592 | |---|-------------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Free-Sta
nding
Discount
Superstore | 2.20
e | 2.00 | 2.05 | 17.1 | 0.05 | 0.03 | 2.17 | 2.20 | 0.03 | 0.38 | 0.42 | _ | 4,986 | 4,986 | 0.19 | 0.23 | 4.22 | 5,062 | | Strip Mall | 0.44 | 0.40 | 0.41 | 3.45 | 0.01 | 0.01 | 0.44 | 0.44 | 0.01 | 0.08 | 0.08 | _ | 1,005 | 1,005 | 0.04 | 0.05 | 0.85 | 1,020 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Aspha
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 11.8 | 10.0 | 56.2 | 95.7 | 0.70 | 1.00 | 19.5 | 20.5 | 0.96 | 3.95 | 4.90 | _ | 67,261 | 67,261 | 1.55 | 7.57 | 56.1 | 69,610 | # 4.2. Energy #### 4.2.1. Electricity Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|---|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 45,939 | 45,939 | 5.81 | 0.70 | _ | 46,294 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 13,316 | 13,316 | 1.69 | 0.20 | _ | 13,419 | | Manufact | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 5,025 | 5,025 | 0.64 | 0.08 | _ | 5,064 | |--|----------|---|---|---|---|---|---|---|---|---|---|---|--------|--------|------|---------|---|--------| | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 7,003 | 7,003 | 0.89 | 0.11 | _ | 7,057 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | — | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | 697 | 697 | 0.09 | 0.01 | _ | 703 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 185 | 185 | 0.02 | < 0.005 | _ | 186 | | Other
Asphalt
Surfaces | | _ | _ | _ | | _ | _ | | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 72,166 | 72,166 | 9.13 | 1.11 | _ | 72,724 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | - | - | _ | - | _ | - | _ | _ | _ | _ | _ | 45,939 | 45,939 | 5.81 | 0.70 | _ | 46,294 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 13,316 | 13,316 | 1.69 | 0.20 | _ | 13,419 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 5,025 | 5,025 | 0.64 | 0.08 | _ | 5,064 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 7,003 | 7,003 | 0.89 | 0.11 | _ | 7,057 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|----------|---|---|---|---|---|---|---|---|---|---|---|--------|--------|------|---------|---|--------| | Free-Sta
nding
Discount
Superstor | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 697 | 697 | 0.09 | 0.01 | _ | 703 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 185 | 185 | 0.02 | < 0.005 | _ | 186 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 72,166 | 72,166 | 9.13 | 1.11 | _ | 72,724 | | Annual | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 7,606 | 7,606 | 0.96 | 0.12 | _ | 7,665 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | - | _ | - | - | _ | _ | _ | 2,205 | 2,205 | 0.28 | 0.03 | _ | 2,222 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 832 | 832 | 0.11 | 0.01 | _ | 838 | | Industrial
Park | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | 1,159 | 1,159 | 0.15 | 0.02 | - | 1,168 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | <u>—</u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 115 | 115 | 0.01 | < 0.005 | _ | 116 | |--|----------|---|---|---|---|---|---|---|---|---|---|---|--------|--------|---------|---------|---|--------| | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 30.6 | 30.6 | < 0.005 | < 0.005 | _ | 30.9 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 11,948 | 11,948 | 1.51 | 0.18 | _ | 12,040 | # 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|---|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 2.30 | 1.15 | 20.9 | 17.6 | 0.13 | 1.59 | _ | 1.59 | 1.59 | _ | 1.59 | _ | 24,932 | 24,932 | 2.21 | 0.05 | _ | 25,001 | | Unrefrige
rated
Warehou
se-No
Rail | 2.28 | 1.14 | 20.8 | 17.4 | 0.12 | 1.58 | _ | 1.58 | 1.58 | _ | 1.58 | _ | 24,779 | 24,779 | 2.19 | 0.05 | _ | 24,847 | | Manufact uring | 0.93 | 0.47 | 8.48 | 7.12 | 0.05 | 0.64 | _ | 0.64 | 0.64 | _ | 0.64 | _ | 10,117 | 10,117 | 0.90 | 0.02 | _ | 10,145 | | Industrial
Park | 0.46 | 0.23 | 4.16 | 3.50 | 0.02 | 0.32 | _ | 0.32 | 0.32 | _ | 0.32 | _ | 4,968 | 4,968 | 0.44 | 0.01 | _ | 4,982 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|-------------|---------|------|------|---------|---------|---|---------|---------|---
---------|---|--------|--------|---------|---------|---|--------| | Free-Sta
nding
Discount
Superstor | | 0.01 | 0.16 | 0.13 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 190 | 190 | 0.02 | < 0.005 | _ | 190 | | Strip Mall | < 0.005 | < 0.005 | 0.04 | 0.04 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 50.4 | 50.4 | < 0.005 | < 0.005 | _ | 50.5 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 6.00 | 3.00 | 54.5 | 45.8 | 0.33 | 4.14 | _ | 4.14 | 4.14 | _ | 4.14 | _ | 65,036 | 65,036 | 5.76 | 0.12 | _ | 65,217 | | Daily,
Winter
(Max) | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 2.30 | 1.15 | 20.9 | 17.6 | 0.13 | 1.59 | _ | 1.59 | 1.59 | - | 1.59 | _ | 24,932 | 24,932 | 2.21 | 0.05 | _ | 25,001 | | Unrefrige
rated
Warehou
se-No
Rail | 2.28 | 1.14 | 20.8 | 17.4 | 0.12 | 1.58 | _ | 1.58 | 1.58 | _ | 1.58 | _ | 24,779 | 24,779 | 2.19 | 0.05 | _ | 24,847 | | Manufact
uring | 0.93 | 0.47 | 8.48 | 7.12 | 0.05 | 0.64 | _ | 0.64 | 0.64 | _ | 0.64 | _ | 10,117 | 10,117 | 0.90 | 0.02 | _ | 10,145 | | Industrial
Park | 0.46 | 0.23 | 4.16 | 3.50 | 0.02 | 0.32 | _ | 0.32 | 0.32 | _ | 0.32 | _ | 4,968 | 4,968 | 0.44 | 0.01 | _ | 4,982 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta | 0.02 | 0.01 | 0.16 | 0.13 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 190 | 190 | 0.02 | < 0.005 | _ | 190 | |--|-------------|---------|------|------|---------|---------|---|---------|---------|---|---------|---|--------|--------|---------|---------|---|--------| | Strip Mall | < 0.005 | < 0.005 | 0.04 | 0.04 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 50.4 | 50.4 | < 0.005 | < 0.005 | _ | 50.5 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 6.00 | 3.00 | 54.5 | 45.8 | 0.33 | 4.14 | _ | 4.14 | 4.14 | _ | 4.14 | _ | 65,036 | 65,036 | 5.76 | 0.12 | _ | 65,217 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 0.42 | 0.21 | 3.81 | 3.20 | 0.02 | 0.29 | _ | 0.29 | 0.29 | _ | 0.29 | _ | 4,128 | 4,128 | 0.37 | 0.01 | _ | 4,139 | | Unrefrige
rated
Warehou
se-No
Rail | 0.42 | 0.21 | 3.79 | 3.18 | 0.02 | 0.29 | _ | 0.29 | 0.29 | _ | 0.29 | _ | 4,102 | 4,102 | 0.36 | 0.01 | _ | 4,114 | | Manufact
uring | 0.17 | 0.09 | 1.55 | 1.30 | 0.01 | 0.12 | _ | 0.12 | 0.12 | - | 0.12 | - | 1,675 | 1,675 | 0.15 | < 0.005 | _ | 1,680 | | Industrial
Park | 0.08 | 0.04 | 0.76 | 0.64 | < 0.005 | 0.06 | _ | 0.06 | 0.06 | _ | 0.06 | - | 823 | 823 | 0.07 | < 0.005 | _ | 825 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | < 0.005 | < 0.005 | 0.03 | 0.02 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 31.4 | 31.4 | < 0.005 | < 0.005 | _ | 31.5 | | Strip Mall | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 8.34 | 8.34 | < 0.005 | < 0.005 | _ | 8.36 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |-------------------------------|-------------|------|------|------|------|------|---|------|------|---|------|---|--------|--------|------|------|---|--------| | Total | 1.09 | 0.55 | 9.95 | 8.36 | 0.06 | 0.76 | _ | 0.76 | 0.76 | _ | 0.76 | _ | 10,768 | 10,768 | 0.95 | 0.02 | _ | 10,797 | # 4.3. Area Emissions by Source #### 4.3.2. Unmitigated | Source | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------------------------------|------|------|------|-----|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | | 180 | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 21.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | | 60.1 | 3.08 | 366 | 0.02 | 0.49 | _ | 0.49 | 0.65 | _ | 0.65 | _ | 1,505 | 1,505 | 0.06 | 0.14 | _ | 1,549 | | Total | 65.2 | 262 | 3.08 | 366 | 0.02 | 0.49 | _ | 0.49 | 0.65 | _ | 0.65 | _ | 1,505 | 1,505 | 0.06 | 0.14 | _ | 1,549 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | | 180 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | | Architect
ural
Coatings | | 21.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | 202 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | |--------------------------------|------|------|------|------|---------|------|---|------|------|---|------|---|-----|-----|------|------|---|-----| | Consum
er
Products | _ | 32.9 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | | 3.94 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 8.14 | 7.52 | 0.38 | 45.7 | < 0.005 | 0.06 | _ | 0.06 | 0.08 | _ | 0.08 | _ | 171 | 171 | 0.01 | 0.02 | _ | 176 | | Total | 8.14 | 44.4 | 0.38 | 45.7 | < 0.005 | 0.06 | _ | 0.06 | 0.08 | _ | 0.08 | _ | 171 | 171 | 0.01 | 0.02 | _ | 176 | # 4.4. Water Emissions by Land Use # 4.4.2. Unmitigated | Land
Use | | ROG | | | SO2 | | | | PM2.5E | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|---|-----|---|---|-----|---|---|---|--------|--------|---|------|-------|-------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 236 | 737 | 973 | 24.3 | 0.59 | _ | 1,754 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 325 | 824 | 1,149 | 33.4 | 0.80 | _ | 2,223 | | Manufact uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 58.9 | 150 | 208 | 6.06 | 0.15 | _ | 403 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 45.0 | 114 | 159 | 4.63 | 0.11 | _ | 308 | |--|----------|---|---|---|---|---|---|---|---|---|---|------|-------|-------|------|------|---|-------| | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor |
e | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 10.2 | 25.9 | 36.1 | 1.05 | 0.03 | _ | 69.9 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2.71 | 6.88 | 9.59 | 0.28 | 0.01 | _ | 18.6 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | - | _ | _ | _ | - | _ | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 677 | 1,858 | 2,535 | 69.7 | 1.68 | _ | 4,777 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 236 | 737 | 973 | 24.3 | 0.59 | - | 1,754 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 325 | 824 | 1,149 | 33.4 | 0.80 | _ | 2,223 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 58.9 | 150 | 208 | 6.06 | 0.15 | _ | 403 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 45.0 | 114 | 159 | 4.63 | 0.11 | _ | 308 | | | | | | | | | | | 1 | | | | | | | | | | |--|----------|---|---|---|---|---|---|---|---|---|---|------|-------|-------|------|------|---|-------| | User
Defined
Industrial | | _ | _ | _ | _ | | | _ | | | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Free-Sta
nding
Discount
Superstor | | _ | _ | - | - | _ | _ | _ | _ | _ | - | 10.2 | 25.9 | 36.1 | 1.05 | 0.03 | _ | 69.9 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2.71 | 6.88 | 9.59 | 0.28 | 0.01 | _ | 18.6 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 677 | 1,858 | 2,535 | 69.7 | 1.68 | _ | 4,777 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 39.0 | 122 | 161 | 4.02 | 0.10 | _ | 290 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ |
_ | _ | _ | 53.7 | 136 | 190 | 5.53 | 0.13 | _ | 368 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 9.75 | 24.8 | 34.5 | 1.00 | 0.02 | _ | 66.8 | | Industrial
Park | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 7.46 | 18.9 | 26.4 | 0.77 | 0.02 | _ | 51.1 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1.69 | 4.29 | 5.98 | 0.17 | < 0.005 | _ | 11.6 | |--|----------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|---------|---|------| | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.45 | 1.14 | 1.59 | 0.05 | < 0.005 | _ | 3.07 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 112 | 308 | 420 | 11.5 | 0.28 | _ | 791 | ### 4.5. Waste Emissions by Land Use ### 4.5.2. Unmitigated | Land
Use | TOG | ROG | | со | SO2 | PM10E | | | | 1 | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|---|----|-----|-------|---|---|---|---|---|-------|-------|-------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | 1,489 | 0.00 | 1,489 | 149 | 0.00 | _ | 5,211 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,052 | 0.00 | 2,052 | 205 | 0.00 | _ | 7,178 | | Manufact
uring | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 491 | 0.00 | 491 | 49.1 | 0.00 | _ | 1,719 | | | | | | | | | | | | | | | | _ | | | | | |--|----------|---|---|---|---|---|---|---|---|---|---|-------|------|-------|------|------|---|--------| | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 376 | 0.00 | 376 | 37.5 | 0.00 | _ | 1,314 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | 232 | 0.00 | 232 | 23.2 | 0.00 | _ | 811 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 15.0 | 0.00 | 15.0 | 1.50 | 0.00 | _ | 52.5 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | - | _ | _ | _ | - | _ | - | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,654 | 0.00 | 4,654 | 465 | 0.00 | _ | 16,284 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | - | - | - | _ | _ | _ | _ | _ | 1,489 | 0.00 | 1,489 | 149 | 0.00 | _ | 5,211 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,052 | 0.00 | 2,052 | 205 | 0.00 | _ | 7,178 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 491 | 0.00 | 491 | 49.1 | 0.00 | _ | 1,719 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 376 | 0.00 | 376 | 37.5 | 0.00 | _ | 1,314 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|----------|---|---|---|---|---|--------------|---|---|---|---|----------|------|-------|------|------|---|--------| | Free-Sta
nding
Discount
Superstor | | _ | _ | - | - | _ | _ | _ | _ | _ | _ | 232 | 0.00 | 232 | 23.2 | 0.00 | _ | 811 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 15.0 | 0.00 | 15.0 | 1.50 | 0.00 | _ | 52.5 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | - | _ | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,654 | 0.00 | 4,654 | 465 | 0.00 | _ | 16,284 | | Annual | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | 247 | 0.00 | 247 | 24.6 | 0.00 | _ | 863 | | Unrefrige
rated
Warehou
se-No
Rail | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | 340 | 0.00 | 340 | 33.9 | 0.00 | - | 1,188 | | Manufact
uring | _ | - | _ | _ | - | _ | - | _ | _ | _ | _ | 81.3 | 0.00 | 81.3 | 8.13 | 0.00 | _ | 285 | | Industrial
Park | _ | - | - | - | - | - | - | _ | _ | _ | - | 62.2 | 0.00 | 62.2 | 6.21 | 0.00 | - | 218 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor |
e | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 38.4 | 0.00 | 38.4 | 3.84 | 0.00 | _ | 134 | |--|----------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|-------| | Strip Mall | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 2.49 | 0.00 | 2.49 | 0.25 | 0.00 | _ | 8.70 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 771 | 0.00 | 771 | 77.0 | 0.00 | _ | 2,696 | ### 4.6. Refrigerant Emissions by Land Use ### 4.6.1. Unmitigated | Land
Use | TOG | | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---|-----|---|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|------|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Manufact uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 68.7 | 68.7 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 52.5 | 52.5 | | Free-Sta
nding
Discount
Superstore | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.52 | 0.52 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.14 | 0.14 | | Refrigera
ted
Warehou
se-No | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,997 | 2,997 | |--|---|---|---|----------|---|---|---|---|----------|---|----------|---|---|----------|---|---|-------|-------| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,119 | 3,119 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 68.7 | 68.7 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 52.5 | 52.5 | | Free-Sta
nding
Discount
Superstore | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.52 | 0.52 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.14 | 0.14 | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,997 | 2,997 | | Total | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | 3,119 | 3,119 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | <u> </u> | _ | _ | <u> </u> | _ | _ | _ | _ | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 11.4 | 11.4 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 8.70 | 8.70 | | Free-Sta
nding
Discount
Superstore | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.09 | 0.09 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.02 | 0.02 | | Refrigera | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 496 | 496 | |-----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|-----| | ted | Warehou | Rail | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 516 | 516 | ### 4.7. Offroad Emissions By Equipment Type #### 4.7.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|---|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.8. Stationary Emissions By Equipment Type #### 4.8.1. Unmitigated | | | · · | , | <i>J</i> , | | | | | | | | | |
 | | | | |---------|-----|-----|-----|------------|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Equipme | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | | nt | Туре | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|----------|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.9. User Defined Emissions By Equipment Type #### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10. Soil Carbon Accumulation By Vegetation Type #### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|---|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated | Land
Use | TOG | ROG | | со | SO2 | PM10E | | | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|---|---|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | CO | SO2 | | | b/day for PM10T | | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|---|---|-----------------|---|---|---|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest
ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest
ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|---|---| | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ### 5.9. Operational Mobile Sources ### 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |--------------------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|------------| | Refrigerated
Warehouse-No Rail | 3,837 | 2,181 | 2,087 | 1,222,874 | 43,623 | 24,803 | 23,734 | 13,904,079 | | Unrefrigerated
Warehouse-No Rail | 6,168 | 4,860 | 4,783 | 2,110,741 | 70,125 | 55,253 | 54,378 | 23,999,123 | | Manufacturing | 3,114 | 977 | 649 | 896,690 | 35,408 | 11,106 | 7,379 | 10,195,366 | | Industrial Park | 1,537 | 1,159 | 566 | 490,751 | 17,481 | 13,174 | 6,434 | 5,579,840 | | User Defined
Industrial | 4,367 | 3,025 | 2,826 | 1,443,592 | 133,237 | 92,280 | 86,212 | 44,043,998 | | Free-Standing
Discount Superstore | 3,586 | 4,530 | 3,948 | 1,376,994 | 40,773 | 51,507 | 44,889 | 15,656,419 | | Strip Mall | 866 | 669 | 325 | 277,588 | 9,847 | 7,602 | 3,694 | 3,156,177 | | Other Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Non-Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated #### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 12,619,623 | 4,206,541 | 171,975 | #### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ### 5.11. Operational Energy Consumption #### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |-------------------------------------|----------------------|-----|--------|--------|-----------------------| | Refrigerated Warehouse-No Rail | 64,296,476 | 261 | 0.0330 | 0.0040 | 77,795,496 | | Unrefrigerated Warehouse-No
Rail | 18,637,756 | 261 | 0.0330 | 0.0040 | 77,316,005 | | Manufacturing | 7,033,267 | 261 | 0.0330 | 0.0040 | 31,568,490 | | Industrial Park | 9,801,737 | 261 | 0.0330 | 0.0040 | 15,501,603 | | User Defined Industrial | 0.00 | 261 | 0.0330 | 0.0040 | 0.00 | | Free-Standing Discount Superstore | 975,839 | 261 | 0.0330 | 0.0040 | 592,217 | | Strip Mall | 259,007 | 261 | 0.0330 | 0.0040 | 157,186 | |----------------------------|---------|-----|--------|--------|---------| | Other Asphalt Surfaces | 0.00 | 261 | 0.0330 | 0.0040 | 0.00 | | Other Non-Asphalt Surfaces | 0.00 | 261 | 0.0330 | 0.0040 | 0.00 | ### 5.12. Operational Water and Wastewater Consumption #### 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |-----------------------------------|-------------------------|--------------------------| | Refrigerated Warehouse-No Rail | 122,985,990 | 36,730,848 | | Unrefrigerated Warehouse-No Rail | 169,403,413 | 0.00 | | Manufacturing | 30,746,498 | 0.00 | | Industrial Park | 23,506,388 | 0.00 | | User Defined Industrial | 0.00 | 0.00
| | Free-Standing Discount Superstore | 5,329,267 | 0.00 | | Strip Mall | 1,414,494 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | ### 5.13. Operational Waste Generation #### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |----------------------------------|------------------|-------------------------| | Refrigerated Warehouse-No Rail | 2,764 | 0.00 | | Unrefrigerated Warehouse-No Rail | 3,807 | 0.00 | | Manufacturing | 911 | 0.00 | | Industrial Park | 697 | 0.00 | | User Defined Industrial | 0.00 | 0.00 | | Free-Standing Discount Superstore | 430 | 0.00 | |-----------------------------------|------|------| | Strip Mall | 27.9 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | ### 5.14. Operational Refrigeration and Air Conditioning Equipment ### 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |--------------------------------------|---|--------------|-------|---------------|----------------------|-------------------|----------------| | Manufacturing | Other commercial A/C and heat pumps | User Defined | 750 | 0.30 | 4.00 | 4.00 | 18.0 | | Industrial Park | Other commercial A/C and heat pumps | User Defined | 750 | 0.30 | 4.00 | 4.00 | 18.0 | | Free-Standing Discount
Superstore | Other commercial A/C and heat pumps | User Defined | 750 | < 0.005 | 4.00 | 4.00 | 18.0 | | Free-Standing Discount
Superstore | Stand-alone retail refrigerators and freezers | R-134a | 1,430 | 0.04 | 1.00 | 0.00 | 1.00 | | Free-Standing Discount Superstore | Walk-in refrigerators and freezers | R-404A | 3,922 | < 0.005 | 7.50 | 7.50 | 20.0 | | Strip Mall | Other commercial A/C and heat pumps | User Defined | 750 | < 0.005 | 4.00 | 4.00 | 18.0 | | Strip Mall | Stand-alone retail refrigerators and freezers | R-134a | 1,430 | 0.04 | 1.00 | 0.00 | 1.00 | | Strip Mall | Walk-in refrigerators and freezers | R-404A | 3,922 | < 0.005 | 7.50 | 7.50 | 20.0 | | Refrigerated
Warehouse-No Rail | Cold storage | User Defined | 150 | 7.50 | 7.50 | 7.50 | 25.0 | ### 5.15. Operational Off-Road Equipment #### 5.15.1. Unmitigated Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor #### 5.16. Stationary Sources #### 5.16.1. Emergency Generators and Fire Pumps | Equipment Type | Fuel Type | Number per Day | Hours per Dev | Hours por Voor | Horoopowor | Load Factor | |----------------|-----------|----------------|---------------|----------------|------------|-------------| | Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Luau raciui | #### 5.16.2. Process Boilers | Equipment Type | Fuel Type | Number | Boiler Pating (MMRtu/hr) | Daily Heat Input (MMRtu/day) | Appual Heat Input (MMRtu/yr) | |----------------|-----------|--------|--------------------------|------------------------------|------------------------------| | Equipment Type | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annuai Heat Input (MMBtu/yr) | #### 5.17. User Defined | Equipment Type | Fuel Type | |----------------|-----------| | _ | _ | #### 5.18. Vegetation 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated | Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | |---------------------------|----------------------|---------------|----------------| | regetation Earla God Type | regulation con type | Title 7 to 65 | T mai 7 to 100 | ### 5.18.1. Biomass Cover Type #### 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres #### 5.18.2. Sequestration #### 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|--------|------------------------------|---------------------------------------| | 21 | | | · · · · · · · · · · · · · · · · · · · | ### 6. Climate Risk Detailed Report #### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 28.5 | annual days of extreme heat | | Extreme Precipitation | 1.90 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 21.3 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 3 | 0 | 0 | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Sea Level Rise | 1 | 0 | 0 | N/A | | Wildfire | 1 | 0 | 0 | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 0 | 0 | 0 | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 3 | 1 | 1 | 3 | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 1 | 1 | 2 | | Wildfire | 1 | 1 | 1 | 2 | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 1 | 1 | 1 | 2 | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures # 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores | The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollut | | |---|---------------------------------| | Indicator | Result for Project Census Tract | | Exposure Indicators | _ | | AQ-Ozone | 97.6 | | AQ-PM | 53.3 | | AQ-DPM | 47.8 | | Drinking Water | 10.2 | | Lead Risk Housing | 22.0 | |
Pesticides | 58.8 | | Toxic Releases | 37.7 | | Traffic | 81.9 | | Effect Indicators | _ | | CleanUp Sites | 69.4 | | Groundwater | 0.00 | | Haz Waste Facilities/Generators | 53.5 | | Impaired Water Bodies | 0.00 | | Solid Waste | 40.1 | | Sensitive Population | _ | | Asthma | 65.6 | | Cardio-vascular | 90.6 | | Low Birth Weights | 62.9 | | Socioeconomic Factor Indicators | _ | | Education | 74.7 | | Housing | 57.9 | | Linguistic | 53.4 | |--------------|------| | Poverty | 64.5 | | Unemployment | 15.8 | ### 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 36.04516874 | | Employed | 38.00846914 | | Median HI | 53.00911074 | | Education | _ | | Bachelor's or higher | 28.6154241 | | High school enrollment | 100 | | Preschool enrollment | 5.440780187 | | Transportation | _ | | Auto Access | 94.58488387 | | Active commuting | 6.723983062 | | Social | _ | | 2-parent households | 87.71974849 | | Voting | 9.636853587 | | Neighborhood | _ | | Alcohol availability | 84.04978827 | | Park access | 11.88245862 | | Retail density | 29.21852945 | | Supermarket access | 12.06210702 | | Tree canopy | 0.590273322 | | Housing | _ | |--|-------------| | Homeownership | 79.23777749 | | Housing habitability | 40.67753112 | | Low-inc homeowner severe housing cost burden | 12.19042731 | | Low-inc renter severe housing cost burden | 27.61452586 | | Uncrowded housing | 47.8121391 | | Health Outcomes | _ | | Insured adults | 26.49813936 | | Arthritis | 79.8 | | Asthma ER Admissions | 42.9 | | High Blood Pressure | 64.8 | | Cancer (excluding skin) | 87.6 | | Asthma | 27.9 | | Coronary Heart Disease | 81.5 | | Chronic Obstructive Pulmonary Disease | 59.8 | | Diagnosed Diabetes | 52.6 | | Life Expectancy at Birth | 37.8 | | Cognitively Disabled | 88.7 | | Physically Disabled | 83.0 | | Heart Attack ER Admissions | 7.5 | | Mental Health Not Good | 28.5 | | Chronic Kidney Disease | 64.9 | | Obesity | 17.5 | | Pedestrian Injuries | 92.5 | | Physical Health Not Good | 37.9 | | Stroke | 70.4 | | Health Risk Behaviors | _ | | Binge Drinking | 30.9 | |---------------------------------------|------| | Current Smoker | 25.4 | | No Leisure Time for Physical Activity | 29.5 | | Climate Change Exposures | _ | | Wildfire Risk | 0.0 | | SLR Inundation Area | 0.0 | | Children | 35.2 | | Elderly | 90.4 | | English Speaking | 42.3 | | Foreign-born | 59.5 | | Outdoor Workers | 11.9 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 72.4 | | Traffic Density | 65.3 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 70.6 | | Other Decision Support | _ | | 2016 Voting | 23.4 | ### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 69.0 | | Healthy Places Index Score for Project Location (b) | 30.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. ### 8. User Changes to Default Data | Screen | Justification | |-----------------------------------|---| | Operations: Vehicle Data | Trip rates based on Project traffic study. | | Operations: Fleet Mix | Fleet mix adjusted to separate industrial passenger cars and trucks | | Operations: Water and Waste Water | Water usage estimates based on Project WSA | | | As of 1 January 2022, new commercial refrigeration equipment may not use refrigerants with a GWP of 150 or greater. Beginning 1 January 2025, all new air conditioning equipment may not use refrigerants with a GWP of 750 or greater. | # 13265 Stoneridge Without MCP Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.2. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.2. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.2. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information ### 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---| | Project Name | 13265 Stoneridge Without MCP | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 0.20 | | Location | 33.823133630598434, -117.16971733141742 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5500 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | ### 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq
ft) | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|-------|----------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------| | Refrigerated
Warehouse-No Rail | 2,940 | 1000sqft | 67.5 | 2,940,000 | 2,316,569 | _ | _ | _ | | Unrefrigerated
Warehouse-No Rail | 4,103 | 1000sqft | 94.2 | 4,102,759 | 0.00 | _ | _ | _ | | Manufacturing | 735 | 1000sqft | 16.9 | 735,000 | 0.00 | _ | _ | _ | |-----------------------------------|-------|-------------------|------|---------|------|---|---|---| | Industrial Park | 642 | 1000sqft | 14.7 | 641,639 | 0.00 | _ | _ | _ | | User Defined
Industrial | 8,419 | User Defined Unit | 0.00 | 0.00 | 0.00 | _ | _ | _ | | Free-Standing Discount Superstore | 100 | 1000sqft | 2.30 | 100,000 | 0.00 | _ | _ | _ | | Strip Mall | 22.0 | 1000sqft | 0.50 | 21,968 | 0.00 | _ | _ | _ | | Other Asphalt
Surfaces | 34.4 | Acre | 34.4 | 0.00 | 0.00 | _ | _ | _ | | Other Non-Asphalt
Surfaces | 31.4 | Acre | 31.4 | 0.00 | 0.00 | _ | _ | _ | ### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected ## 2. Emissions Summary ### 2.4. Operations Emissions Compared Against Thresholds | | | (10) (10) | Ì | ,, ,, ,, ,, | | | | | J. J. | | | | | | | | | | |---------------------------|------|-----------|-----|-------------|------|-------|-------|-------|--------|--------|--------|-------|---------|---------|-----|------|-------|---------| | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _
 _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 150 | 336 | 386 | 1,103 | 4.82 | 10.9 | 122 | 133 | 10.8 | 24.6 | 35.4 | 5,419 | 612,730 | 618,149 | 569 | 54.3 | 4,015 | 652,571 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 80.9 | 272 | 399 | 632 | 4.69 | 10.4 | 122 | 132 | 10.1 | 24.6 | 34.7 | 5,419 | 600,266 | 605,685 | 569 | 54.4 | 3,149 | 639,275 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 117 | 305 | 370 | 830 | 4.25 | 10.1 | 108 | 118 | 9.97 | 21.9 | 31.9 | 5,419 | 553,914 | 559,333 | 568 | 49.5 | 3,469 | 591,746 | |-----------------|------|------|------|-----|------|------|------|------|------|------|------|-------|---------|---------|------|------|-------|---------| | Annual
(Max) | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Unmit. | 21.3 | 55.7 | 67.5 | 151 | 0.78 | 1.85 | 19.7 | 21.6 | 1.82 | 4.00 | 5.82 | 897 | 91,707 | 92,604 | 94.1 | 8.19 | 574 | 97,970 | ### 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|-------|------|-------|-------|-------|--------|--------|--------|-------|---------|---------|------|------|-------|---------| | Daily,
Summer
(Max) | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 77.7 | 66.5 | 327 | 685 | 4.46 | 6.19 | 122 | 128 | 5.90 | 24.6 | 30.5 | _ | 469,958 | 469,958 | 10.4 | 51.2 | 889 | 486,359 | | Area | 66.2 | 266 | 3.13 | 371 | 0.02 | 0.50 | _ | 0.50 | 0.66 | _ | 0.66 | _ | 1,528 | 1,528 | 0.06 | 0.14 | _ | 1,572 | | Energy | 6.09 | 3.04 | 55.4 | 46.5 | 0.33 | 4.21 | _ | 4.21 | 4.21 | _ | 4.21 | _ | 139,360 | 139,360 | 15.1 | 1.25 | _ | 140,110 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 687 | 1,884 | 2,571 | 70.7 | 1.70 | _ | 4,847 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,732 | 0.00 | 4,732 | 473 | 0.00 | _ | 16,556 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,126 | 3,126 | | Total | 150 | 336 | 386 | 1,103 | 4.82 | 10.9 | 122 | 133 | 10.8 | 24.6 | 35.4 | 5,419 | 612,730 | 618,149 | 569 | 54.3 | 4,015 | 652,571 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 74.8 | 63.6 | 344 | 586 | 4.36 | 6.19 | 122 | 128 | 5.90 | 24.6 | 30.5 | _ | 459,021 | 459,021 | 10.6 | 51.4 | 23.1 | 474,636 | | Area | _ | 205 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Energy | 6.09 | 3.04 | 55.4 | 46.5 | 0.33 | 4.21 | _ | 4.21 | 4.21 | _ | 4.21 | _ | 139,360 | 139,360 | 15.1 | 1.25 | _ | 140,110 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 687 | 1,884 | 2,571 | 70.7 | 1.70 | _ | 4,847 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,732 | 0.00 | 4,732 | 473 | 0.00 | _ | 16,556 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,126 | 3,126 | | Total | 80.9 | 272 | 399 | 632 | 4.69 | 10.4 | 122 | 132 | 10.1 | 24.6 | 34.7 | 5,419 | 600,266 | 605,685 | 569 | 54.4 | 3,149 | 639,275 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | |------------------|------|------|------|------|---------|------|------|------|------|------|------|-------|---------|---------|------|------|-------|---------| | Mobile | 65.2 | 55.2 | 313 | 529 | 3.90 | 5.57 | 108 | 114 | 5.31 | 21.9 | 27.2 | _ | 411,623 | 411,623 | 9.45 | 46.4 | 343 | 426,030 | | Area | 45.3 | 247 | 2.14 | 254 | 0.02 | 0.34 | _ | 0.34 | 0.45 | _ | 0.45 | _ | 1,046 | 1,046 | 0.04 | 0.10 | _ | 1,077 | | Energy | 6.09 | 3.04 | 55.4 | 46.5 | 0.33 | 4.21 | _ | 4.21 | 4.21 | _ | 4.21 | _ | 139,360 | 139,360 | 15.1 | 1.25 | _ | 140,110 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 687 | 1,884 | 2,571 | 70.7 | 1.70 | _ | 4,847 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,732 | 0.00 | 4,732 | 473 | 0.00 | _ | 16,556 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,126 | 3,126 | | Total | 117 | 305 | 370 | 830 | 4.25 | 10.1 | 108 | 118 | 9.97 | 21.9 | 31.9 | 5,419 | 553,914 | 559,333 | 568 | 49.5 | 3,469 | 591,746 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 11.9 | 10.1 | 57.0 | 96.5 | 0.71 | 1.02 | 19.7 | 20.7 | 0.97 | 4.00 | 4.97 | _ | 68,149 | 68,149 | 1.56 | 7.68 | 56.9 | 70,534 | | Area | 8.27 | 45.0 | 0.39 | 46.4 | < 0.005 | 0.06 | _ | 0.06 | 0.08 | _ | 0.08 | _ | 173 | 173 | 0.01 | 0.02 | _ | 178 | | Energy | 1.11 | 0.56 | 10.1 | 8.49 | 0.06 | 0.77 | | 0.77 | 0.77 | _ | 0.77 | _ | 23,073 | 23,073 | 2.50 | 0.21 | _ | 23,197 | | Water | _ | _ | _ | _ | _ | _ | | _ | | _ | _ | 114 | 312 | 426 | 11.7 | 0.28 | _ | 802 | | Waste | _ | _ | _ | _ | _ | _ | | _ | | _ | _ | 783 | 0.00 | 783 | 78.3 | 0.00 | _ | 2,741 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 518 | 518 | | Total | 21.3 | 55.7 | 67.5 | 151 | 0.78 | 1.85 | 19.7 | 21.6 | 1.82 | 4.00 | 5.82 | 897 | 91,707 | 92,604 | 94.1 | 8.19 | 574 | 97,970 | # 4. Operations Emissions Details ### 4.1. Mobile Emissions by Land Use #### 4.1.1. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
Warehous
Rail | | 11.1 | 5.06 | 115 | 0.28 | 0.09 | 11.6 | 11.7 | 0.09 | 1.97 | 2.06 | - | 28,346 | 28,346 | 0.87 | 0.63 | 46.5 | 28,602 | |--|-------------|------|------|------|------|------|------|------|------|------|------|---|---------|---------|------|------|------|---------| | Unrefrige
rated
Warehou
se-No
Rail | 19.4 | 18.0 | 8.21 | 186 | 0.45 | 0.15 | 18.8 | 18.9 | 0.14 | 3.20 | 3.34 | _ | 45,983 | 45,983 | 1.41 | 1.02 | 75.4 | 46,398 | | Manufact
uring | 9.70 | 8.99 | 4.11 | 93.0 | 0.23 | 0.08 | 9.40 | 9.48 | 0.07 | 1.60 | 1.67 | _ | 23,008 | 23,008 | 0.71 | 0.51 | 37.7 | 23,216 | | Industrial
Park | 5.47 | 5.07 | 2.32 | 52.4 | 0.13 | 0.04 | 5.30 | 5.35 | 0.04 | 0.90 | 0.94 | _ | 12,980 | 12,980 | 0.40 | 0.29 | 21.3 | 13,097 | | User
Defined
Industrial | 13.4 | 7.19 | 293 | 89.1 | 2.94 | 5.56 | 60.1 | 65.7 | 5.32 | 14.0 | 19.3 | - | 315,451 | 315,451 | 5.55 | 46.9 | 626 | 330,193 | | Free-Sta
nding
Discount
Superstore | | 14.0 | 12.4 | 130 | 0.37 | 0.22 | 14.3 | 14.5 | 0.21 | 2.52 | 2.73 | - | 38,159 | 38,159 | 1.30 | 1.58 | 70.9 | 38,732 | | Strip Mall | 2.42 | 2.21 | 1.96 | 20.5 | 0.06 | 0.04 | 2.25 | 2.29 | 0.03 | 0.40 | 0.43 | _ | 6,031 | 6,031 | 0.21 | 0.25 | 11.2 | 6,122 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Aspha
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 77.7 | 66.5 | 327 | 685 | 4.46 | 6.19 | 122 | 128 | 5.90 | 24.6 | 30.5 | _ | 469,958 | 469,958 | 10.4 | 51.2 | 889 | 486,359 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | - | _ | _ | - | _ | _ | - | - | _ | _ | _ | - | _ | | Refrigera
ted
Warehou
se-No
Rail | 11.5 | 10.6 | 5.58 | 95.0 | 0.26 | 0.09 | 11.6 | 11.7 | 0.09 | 1.97 | 2.06 | _ | 26,202 | 26,202 | 0.91 | 0.67 | 1.21 | 26,426 | | Unrefrige rated | 18.7 | 17.2 | 9.05 | 154 | 0.42 | 0.15 | 18.8 | 18.9 | 0.14 | 3.20 | 3.34 | _ | 42,505 | 42,505 | 1.47 | 1.09 | 1.96 | 42,869 | |--|-------------|------|------|------|------|------|------|------|------|------|------|---|---------|---------|------|------|------|---------| | Manufact
uring | 9.34 | 8.62 | 4.53 | 77.1 | 0.21 | 0.08 | 9.40 | 9.48 | 0.07 | 1.60 | 1.67 | _ | 21,268 | 21,268 | 0.74 | 0.55 | 0.98 | 21,450 | | Industrial
Park | 5.27 | 4.86 | 2.56 | 43.5 | 0.12 | 0.04 | 5.30 | 5.35 | 0.04 | 0.90 | 0.94 | - | 11,998 | 11,998 | 0.42 | 0.31 | 0.55 | 12,100 | | User
Defined
Industrial | 13.1 | 6.91 | 307 | 89.8 | 2.94 | 5.56 | 60.1 | 65.7 | 5.32 | 14.0 | 19.3 | _ | 315,562 | 315,562 | 5.53 | 46.9 | 16.3 | 329,701 | | Free-Sta
nding
Discount
Superstore | 14.6
e | 13.3 | 13.3 | 109 | 0.35 | 0.22 | 14.3 | 14.5 | 0.21 | 2.52 | 2.73 | _ | 35,825 | 35,825 | 1.34 | 1.62 | 1.84 | 36,345 | | Strip Mall | 2.31 | 2.10 | 2.10 | 17.2 | 0.06 | 0.04 | 2.25 | 2.29 | 0.03 | 0.40 | 0.43 | _ | 5,662 | 5,662 | 0.21 | 0.26 | 0.29 | 5,745 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Aspha
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 74.8 | 63.6 | 344 | 586 | 4.36 | 6.19 | 122 | 128 | 5.90 | 24.6 | 30.5 | _ | 459,021 | 459,021 | 10.6 | 51.4 | 23.1 | 474,636 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 1.82 | 1.67 | 0.91 | 15.7 | 0.04 | 0.02 | 1.85 | 1.86 | 0.01 | 0.31 | 0.33 | _ | 3,834 | 3,834 | 0.13 | 0.10 | 2.90 | 3,869 | | Unrefrige
rated
Warehou
se-No
Rail | 3.16 | 2.91 | 1.59 | 27.3 | 0.07 | 0.03 | 3.21 | 3.24 | 0.02 | 0.55 | 0.57 | _ | 6,671 | 6,671 | 0.23 | 0.17 | 5.05 | 6,733 | | Manufact
uring | 1.33 | 1.23 | 0.67 | 11.5 | 0.03 | 0.01 | 1.35 | 1.36 | 0.01 | 0.23 | 0.24 | - | 2,811 | 2,811 | 0.10 | 0.07 | 2.13 | 2,837 | | Industrial
Park | 0.83 | 0.77 | 0.42 | 7.20 | 0.02 | 0.01
| 0.85 | 0.85 | 0.01 | 0.14 | 0.15 | - | 1,758 | 1,758 | 0.06 | 0.05 | 1.33 | 1,774 | | User
Defined
Industrial | 2.18 | 1.16 | 51.0 | 14.7 | 0.49 | 0.92 | 9.93 | 10.8 | 0.88 | 2.31 | 3.19 | _ | 47,260 | 47,260 | 0.83 | 7.03 | 40.5 | 49,415 | |--|-------------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | Free-Sta
nding
Discount
Superstor | | 2.00 | 2.05 | 17.1 | 0.05 | 0.03 | 2.17 | 2.20 | 0.03 | 0.38 | 0.42 | _ | 4,986 | 4,986 | 0.19 | 0.23 | 4.22 | 5,062 | | Strip Mall | 0.37 | 0.33 | 0.34 | 2.85 | 0.01 | 0.01 | 0.36 | 0.37 | 0.01 | 0.06 | 0.07 | _ | 831 | 831 | 0.03 | 0.04 | 0.70 | 844 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 11.9 | 10.1 | 57.0 | 96.5 | 0.71 | 1.02 | 19.7 | 20.7 | 0.97 | 4.00 | 4.97 | _ | 68,149 | 68,149 | 1.56 | 7.68 | 56.9 | 70,534 | ### 4.2. Energy #### 4.2.1. Electricity Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|---|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 45,939 | 45,939 | 5.81 | 0.70 | _ | 46,294 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 13,491 | 13,491 | 1.71 | 0.21 | _ | 13,596 | | Manufact | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | 5,025 | 5,025 | 0.64 | 0.08 | _ | 5,064 | |--|-----------|---|---|---|---|---|---|---|---|---|---|---|--------|--------|------|---------|---|--------| | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 7,997 | 7,997 | 1.01 | 0.12 | _ | 8,059 | | User
Defined
Industrial | - | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | <u> —</u> | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 697 | 697 | 0.09 | 0.01 | _ | 703 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 153 | 153 | 0.02 | < 0.005 | _ | 154 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 73,303 | 73,303 | 9.28 | 1.12 | _ | 73,869 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 45,939 | 45,939 | 5.81 | 0.70 | _ | 46,294 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 13,491 | 13,491 | 1.71 | 0.21 | _ | 13,596 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 5,025 | 5,025 | 0.64 | 0.08 | _ | 5,064 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 7,997 | 7,997 | 1.01 | 0.12 | _ | 8,059 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|----------|---|---|---|---|---|---|---|---|---|---|---|--------|--------|------|---------|---|--------| | Free-Sta
nding
Discount
Superstor | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 697 | 697 | 0.09 | 0.01 | _ | 703 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 153 | 153 | 0.02 | < 0.005 | _ | 154 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 73,303 | 73,303 | 9.28 | 1.12 | _ | 73,869 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 7,606 | 7,606 | 0.96 | 0.12 | _ | 7,665 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,234 | 2,234 | 0.28 | 0.03 | _ | 2,251 | | Manufact
uring | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 832 | 832 | 0.11 | 0.01 | _ | 838 | | Industrial
Park | _ | - | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | 1,324 | 1,324 | 0.17 | 0.02 | - | 1,334 | | User
Defined
Industrial | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstore |
e | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 115 | 115 | 0.01 | < 0.005 | _ | 116 | |---|----------|---|---|---|---|---|---|---|---|---|---|---|--------|--------|---------|---------|---|--------| | Strip Mall | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | 25.4 | 25.4 | < 0.005 | < 0.005 | _ | 25.6 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Aspha
Surfaces | —
alt | _ | _ | _ | _ | | _ | _ | | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 12,136 | 12,136 | 1.54 | 0.19 | _ | 12,230 | ### 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|---|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 2.30 | 1.15 | 20.9 | 17.6 | 0.13 | 1.59 | _ | 1.59 | 1.59 | _ | 1.59 | _ | 24,932 | 24,932 | 2.21 | 0.05 | _ | 25,001 | | Unrefrige
rated
Warehou
se-No
Rail | 2.31 | 1.16 | 21.0 | 17.7 | 0.13 | 1.60 | _ | 1.60 | 1.60 | _ | 1.60 | _ | 25,104 | 25,104 | 2.22 | 0.05 | _ | 25,173 | | Manufact uring | 0.93 | 0.47 | 8.48 | 7.12 | 0.05 | 0.64 | _ | 0.64 | 0.64 | _ | 0.64 | _ | 10,117 | 10,117 | 0.90 | 0.02 | _ | 10,145 | | Industrial
Park | 0.52 | 0.26 | 4.75 | 3.99 | 0.03 | 0.36 | _ | 0.36 | 0.36 | _ | 0.36 | _ | 5,673 | 5,673 | 0.50 | 0.01 | _ | 5,689 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|-------------|---------|------|------|---------|---------|---|---------|---------|---|---------|---|--------|--------|---------|---------|---|--------| | Free-Sta
nding
Discount
Superstor | | 0.01 | 0.16 | 0.13 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 190 | 190 | 0.02 | < 0.005 | _ | 190 | | Strip Mall | < 0.005 | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 41.7 | 41.7 | < 0.005 | < 0.005 | _ | 41.8 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 6.09 | 3.04 | 55.4 | 46.5 | 0.33 | 4.21 | _ | 4.21 | 4.21 | _ | 4.21 | _ | 66,058 | 66,058 | 5.85 | 0.12 | _ | 66,241 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 2.30 | 1.15 | 20.9 | 17.6 | 0.13 | 1.59 | _ | 1.59 | 1.59 | _ | 1.59 | _ | 24,932 | 24,932 | 2.21 | 0.05 | _ | 25,001 | | Unrefrige
rated
Warehou
se-No
Rail | 2.31 | 1.16 | 21.0 | 17.7 | 0.13 | 1.60 | _ | 1.60 | 1.60 | _ | 1.60 | _ | 25,104 | 25,104 | 2.22 | 0.05 | _ | 25,173 | | Manufact
uring | 0.93 | 0.47 | 8.48 | 7.12 | 0.05 | 0.64 | _ | 0.64 | 0.64 | _ | 0.64 | _ | 10,117 | 10,117 | 0.90 | 0.02 | _ | 10,145 | | Industrial
Park | 0.52 | 0.26 | 4.75 | 3.99 | 0.03 | 0.36 | _ | 0.36 | 0.36 | _ | 0.36 | _ | 5,673 | 5,673 | 0.50 | 0.01 | _ | 5,689 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta | 0.02 | 0.01 | 0.16 | 0.13 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 190 | 190 | 0.02 | < 0.005 | _ | 190 | |--|--------------|---------|------|----------|---------|---------|---|---------|---------|---|---------|---|--------|--------|----------|---------|---|--------| | Strip Mall | < 0.005 | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 41.7 | 41.7 | < 0.005 | < 0.005 | _ | 41.8 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 6.09 | 3.04 | 55.4 | 46.5 | 0.33 | 4.21 | _ | 4.21 | 4.21 | _ | 4.21 | _ | 66,058 | 66,058 | 5.85 | 0.12 | _ | 66,241 | | Annual |
_ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | 0.42 | 0.21 | 3.81 | 3.20 | 0.02 | 0.29 | _ | 0.29 | 0.29 | _ | 0.29 | _ | 4,128 | 4,128 | 0.37 | 0.01 | _ | 4,139 | | Unrefrige
rated
Warehou
se-No
Rail | 0.42 | 0.21 | 3.84 | 3.23 | 0.02 | 0.29 | _ | 0.29 | 0.29 | _ | 0.29 | _ | 4,156 | 4,156 | 0.37 | 0.01 | _ | 4,168 | | Manufact
uring | 0.17 | 0.09 | 1.55 | 1.30 | 0.01 | 0.12 | _ | 0.12 | 0.12 | _ | 0.12 | - | 1,675 | 1,675 | 0.15 | < 0.005 | _ | 1,680 | | Industrial
Park | 0.10 | 0.05 | 0.87 | 0.73 | 0.01 | 0.07 | _ | 0.07 | 0.07 | _ | 0.07 | - | 939 | 939 | 0.08 | < 0.005 | _ | 942 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | < 0.005
e | < 0.005 | 0.03 | 0.02 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 31.4 | 31.4 | < 0.005 | < 0.005 | _ | 31.5 | | Strip Mall | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 6.90 | 6.90 | < 0.005 | < 0.005 | _ | 6.92 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |-------------------------------|-------------|------|------|------|------|------|---|------|------|---|------|---|--------|--------|------|------|---|--------| | Total | 1.11 | 0.56 | 10.1 | 8.49 | 0.06 | 0.77 | _ | 0.77 | 0.77 | _ | 0.77 | _ | 10,937 | 10,937 | 0.97 | 0.02 | _ | 10,967 | ## 4.3. Area Emissions by Source ### 4.3.2. Unmitigated | Source | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------------------------------|------|------|------|-----|------|-------|-------|-------|------|---|------|------|-------|-------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | _ | | Consum
er
Products | _ | 183 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 21.9 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 66.2 | 61.1 | 3.13 | 371 | 0.02 | 0.50 | _ | 0.50 | 0.66 | _ | 0.66 | _ | 1,528 | 1,528 | 0.06 | 0.14 | _ | 1,572 | | Total | 66.2 | 266 | 3.13 | 371 | 0.02 | 0.50 | _ | 0.50 | 0.66 | _ | 0.66 | _ | 1,528 | 1,528 | 0.06 | 0.14 | _ | 1,572 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 183 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 21.9 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | 205 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------------------|------|------|------|------|---------|------|---|------|------|---|------|---|-----|-----|------|------|---|-----| | Consum
er
Products | _ | 33.4 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 4.00 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 8.27 | 7.63 | 0.39 | 46.4 | < 0.005 | 0.06 | _ | 0.06 | 0.08 | _ | 0.08 | _ | 173 | 173 | 0.01 | 0.02 | _ | 178 | | Total | 8.27 | 45.0 | 0.39 | 46.4 | < 0.005 | 0.06 | _ | 0.06 | 0.08 | _ | 0.08 | _ | 173 | 173 | 0.01 | 0.02 | _ | 178 | ## 4.4. Water Emissions by Land Use ### 4.4.2. Unmitigated | Land
Use | TOG | ROG | | СО | | PM10E | | | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--|-----|-----|---|----|---|-------|---|---|--------|--------|--------|------|-------|-------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | | _ | | | | _ | _ | _ | _ | _ | _ | 236 | 737 | 973 | 24.3 | 0.59 | _ | 1,754 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 329 | 835 | 1,164 | 33.8 | 0.81 | _ | 2,252 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 58.9 | 150 | 208 | 6.06 | 0.15 | _ | 403 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 51.4 | 131 | 182 | 5.29 | 0.13 | _ | 352 | |--|----------|---|---|---|---|---|---|---|---|---|---|------|-------|-------|------|------|---|-------| | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | | _ | _ | - | - | _ | _ | _ | _ | _ | _ | 10.2 | 25.9 | 36.1 | 1.05 | 0.03 | _ | 69.9 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2.24 | 5.69 | 7.94 | 0.23 | 0.01 | _ | 15.4 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 687 | 1,884 | 2,571 | 70.7 | 1.70 | _ | 4,847 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 236 | 737 | 973 | 24.3 | 0.59 | _ | 1,754 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 329 | 835 | 1,164 | 33.8 | 0.81 | _ | 2,252 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 58.9 | 150 | 208 | 6.06 | 0.15 | _ | 403 | | Industrial
Park | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 51.4 | 131 | 182 | 5.29 | 0.13 | _ | 352 | | User
Defined
Industrial | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | |--|----------|---|---|---|---|---|---|---|---|---|---|------|-------|-------|------|------|---|-------| | Free-Sta
nding
Discount
Superstor | | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 10.2 | 25.9 | 36.1 | 1.05 | 0.03 | _ | 69.9 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2.24 | 5.69 | 7.94 | 0.23 | 0.01 | _ | 15.4 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 687 | 1,884 | 2,571 | 70.7 | 1.70 | _ | 4,847 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 39.0 | 122 | 161 | 4.02 | 0.10 | _ | 290 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | - | _ | - | _ | _ | _ | _ | - | _ | 54.4 | 138 | 193 | 5.60 | 0.13 | _ | 373 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 9.75 | 24.8 | 34.5 | 1.00 | 0.02 | _ | 66.8 | | Industrial
Park | | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 8.52 | 21.6 | 30.1 | 0.88 | 0.02 | _ | 58.3 | | User
Defined
Industrial | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | —
Э | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1.69 | 4.29 | 5.98 | 0.17 | < 0.005 | _ | 11.6 | |--|----------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|---------|---|------| | Strip Mall | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 0.37 | 0.94 | 1.31 | 0.04 | < 0.005 | _ | 2.54 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 114 | 312 | 426 | 11.7 | 0.28 | _ | 802 | ## 4.5. Waste Emissions by Land Use ### 4.5.2. Unmitigated | Land
Use | TOG | ROG | | со | SO2 | PM10E | | | | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|---|----|-----|-------|---|---|---|---|---|-------|-------|-------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | | _ | | _ | _ | _ | _ | _ | _ | 1,489 | 0.00 | 1,489 | 149 | 0.00 | _ | 5,211 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,078 | 0.00 | 2,078 | 208 | 0.00 | _ | 7,272 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 491 | 0.00 | 491 | 49.1 | 0.00 | _ | 1,719 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 429 | 0.00 | 429 | 42.9 | 0.00 | _ | 1,500 | |--|----------|---|---|---|---|---|---|---|---|---|---|-------|------|-------|------|------|---|--------| | User
Defined
Industrial | _ | _ | - | - | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstore | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 232 | 0.00 | 232 | 23.2 | 0.00 | _ | 811 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 12.4 | 0.00 | 12.4 | 1.24 | 0.00 | _ | 43.5 | |
Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Aspha
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,732 | 0.00 | 4,732 | 473 | 0.00 | _ | 16,556 | | Daily,
Winter
(Max) | _ | _ | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Refrigera
ted
Warehou
se-No
Rail | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,489 | 0.00 | 1,489 | 149 | 0.00 | - | 5,211 | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,078 | 0.00 | 2,078 | 208 | 0.00 | _ | 7,272 | | Manufact uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 491 | 0.00 | 491 | 49.1 | 0.00 | _ | 1,719 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 429 | 0.00 | 429 | 42.9 | 0.00 | _ | 1,500 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|----------|---|---|---|---|---|---|---|---|---|---|-------|------|-------|------|------|---|--------| | Free-Sta
nding
Discount
Superstor | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 232 | 0.00 | 232 | 23.2 | 0.00 | _ | 811 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 12.4 | 0.00 | 12.4 | 1.24 | 0.00 | _ | 43.5 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4,732 | 0.00 | 4,732 | 473 | 0.00 | _ | 16,556 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 247 | 0.00 | 247 | 24.6 | 0.00 | _ | 863 | | Unrefrige
rated
Warehou
se-No
Rail | _ | - | - | _ | - | _ | _ | - | _ | _ | _ | 344 | 0.00 | 344 | 34.4 | 0.00 | _ | 1,204 | | Manufact uring | _ | - | _ | _ | _ | _ | - | _ | _ | _ | - | 81.3 | 0.00 | 81.3 | 8.13 | 0.00 | _ | 285 | | Industrial
Park | _ | - | - | _ | _ | _ | _ | - | _ | _ | _ | 71.0 | 0.00 | 71.0 | 7.10 | 0.00 | _ | 248 | | User
Defined
Industrial | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Free-Sta
nding
Discount
Superstor | —
Э | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 38.4 | 0.00 | 38.4 | 3.84 | 0.00 | _ | 134 | |--|----------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|-------| | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2.06 | 0.00 | 2.06 | 0.21 | 0.00 | _ | 7.20 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Non-Asph
Surfaces | —
alt | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 783 | 0.00 | 783 | 78.3 | 0.00 | _ | 2,741 | ## 4.6. Refrigerant Emissions by Land Use ### 4.6.1. Unmitigated | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------|------|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|-------|-------| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,997 | 2,997 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 68.7 | 68.7 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 60.0 | 60.0 | |
ə | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.52 | 0.52 | | |
 | | | | | | | | | | | | | | | | | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.11 | 0.11 | |--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|-------| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,126 | 3,126 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2,997 | 2,997 | | Manufact
uring | _ | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | 68.7 | 68.7 | | Industrial
Park | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | 60.0 | 60.0 | | Free-Sta
nding
Discount
Superstor | | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | 0.52 | 0.52 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.11 | 0.11 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3,126 | 3,126 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Refrigera
ted
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 496 | 496 | | Manufact
uring | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 11.4 | 11.4 | | Industrial
Park | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 9.93 | 9.93 | | Free-Sta
nding
Discount
Superstor | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.09 | 0.09 | | Strip Mall | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.02 | 0.02 | | | Total | | _ | _ | _ | | | _ | _ | | | _ | _ | _ | | _ | _ | 518 | 518 | |--|-------|--|---|---|---|--|--|---|---|--|--|---|---|---|--|---|---|-----|-----| |--|-------|--|---|---|---|--|--|---|---|--|--|---|---|---|--|---|---|-----|-----| ## 4.7. Offroad Emissions By Equipment Type #### 4.7.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | | NOx | | | | | | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|---|-----|---|---|---|---|---|---|--------|---|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.8. Stationary Emissions By Equipment Type #### 4.8.1. Unmitigated | Equipme
nt
Type | TOG | ROG | | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.9. User Defined Emissions By Equipment Type #### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | | ROG | | | | PM10E | | | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|---|-----|---|---|---|-------|---|---|---|--------|---|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10. Soil Carbon Accumulation By Vegetation Type #### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Ve | egetatio | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----|----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | n | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|----------|---|---|---|----------|---|----------|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | <u> </u> | _ | <u> </u> | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | | со | | PM10E | | | PM2.5E | | | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|---|-------|----------|---|----------|---|----------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | <u> </u> | _ | <u> </u> | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O R CO |--|---------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | | Species | TOG | ROG | NOx | CO | SO2 | PM10F | PM10D | PM10T | PM2.5F | PM2 5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily, Summer (Max) — |
 | |---|------| | Subtotal —< |
 | | Sequest ered — <t< td=""><td>- -</td></t<> | - - | | ered Subtotal — <td< td=""><td>
</td></td<> |
 | | Remove — — — — — — — — — — — — — — — — — — — | - - | | | - - | | d a land | | | Subtotal — — — — — — — — — — — — — — — — — — — | - - | | | - - | | Daily, — — — — — — — — — — — — — — — — — — — | - - | | Avoided — — — — — — — — — — — — — — — — — — | _ _ | | Subtotal — — — — — — — — — — — — — — — — — — — | - - | | Sequest — — — — — — — — — — — — — — — — — — — | - - | | Subtotal — — — — — — — — — — — — — — — — — — — | | | Remove — — — — — — — — — — — — — — — — — — — | - - | | Subtotal — — — — — — — — — — — — — — — — — — — | - - | | | _ _ | | Annual — — — — — — — — — — — — — — — — — — — | | | Avoided — — — — — — — — — — — — — — — — — — | - - | | Subtotal — — — — — — — — — — — — — — — — — — — | | | Sequest — — — — — — — — — — — — — — — — — — — | - - | | Subtotal — — — — — — — — — — — — — — — — — — — | | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ## 5.9. Operational Mobile Sources ## 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |-------------------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|------------| | Refrigerated
Warehouse-No Rail | 3,837 | 2,181 | 2,090 | 1,223,027 | 43,623 | 24,803 | 23,767 | 13,905,822 | | Unrefrigerated
Warehouse-No Rail | 6,224 | 4,886 | 4,808 | 2,128,171 | 70,766 | 55,558 | 54,672 | 24,197,309 | | Manufacturing | 3,114 | 977 | 649 | 896,690 | 35,408 | 11,106 | 7,379 | 10,195,366 | | Industrial Park | 1,757 | 1,324 | 646 | 560,737 | 19,975 | 15,050 | 7,347 | 6,375,585 | | User Defined Industrial | 4,445 | 3,073 | 2,854 | 1,468,054 | 135,630 | 93,760 | 87,081 | 44,790,338 | | Free-Standing Discount Superstore | 3,586 | 4,530 | 3,948 | 1,376,994 | 40,773 | 51,507 | 44,889 | 15,656,419 | | Strip Mall | 716 | 553 | 269 | 229,505 | 8,141 | 6,285 | 3,055 | 2,609,471 | | Other Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Non-Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 5.10. Operational Area Sources #### 5.10.1. Hearths ### 5.10.1.1. Unmitigated #### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|------------|--|-----------------------------| | 0 | 0.00 | 12,812,049 | 4,270,683 | 171,975 | #### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ## 5.11. Operational Energy Consumption ### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |--------------------------------------|----------------------|-----|--------|--------|-----------------------| | Refrigerated Warehouse-No Rail | 64,296,476 | 261 | 0.0330 | 0.0040 | 77,795,496 | | Unrefrigerated Warehouse-No
Rail | 18,882,339 | 261 | 0.0330 | 0.0040 | 78,330,620 | | Manufacturing | 7,033,267 | 261 | 0.0330 | 0.0040 | 31,568,490 | | Industrial Park | 11,192,220 | 261 | 0.0330 | 0.0040 | 17,700,673 | | User Defined Industrial | 0.00 | 261 | 0.0330 | 0.0040 | 0.00 | | Free-Standing Discount
Superstore | 975,839 | 261 | 0.0330 | 0.0040 | 592,217 | | Strip Mall | 214,372 | 261 | 0.0330 | 0.0040 | 130,098 | | Other Asphalt Surfaces | 0.00 | 261 | 0.0330 | 0.0040 | 0.00 | | Other Non-Asphalt Surfaces | 0.00 | 261 | 0.0330 | 0.0040 | 0.00 | ## 5.12. Operational Water and Wastewater Consumption ### 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |-----------------------------------|-------------------------|--------------------------| | Refrigerated Warehouse-No Rail | 122,985,990 | 36,730,848 | | Unrefrigerated Warehouse-No Rail | 171,626,489 | 0.00 | | Manufacturing | 30,746,498 | 0.00 | | Industrial Park | 26,841,023 | 0.00 | | User Defined Industrial | 0.00 | 0.00 | | Free-Standing Discount Superstore | 5,329,267 | 0.00 | | Strip Mall | 1,170,733 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | ## 5.13. Operational Waste Generation ### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |-----------------------------------|------------------|-------------------------| | Refrigerated Warehouse-No Rail | 2,764 | 0.00 | | Unrefrigerated Warehouse-No Rail | 3,857 | 0.00 | | Manufacturing | 911 | 0.00 | | Industrial Park | 796 | 0.00 | | User Defined Industrial | 0.00 | 0.00 | | Free-Standing Discount Superstore | 430 | 0.00 | | Strip Mall | 23.1 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | ## 5.14. Operational
Refrigeration and Air Conditioning Equipment ### 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |--------------------------------------|---|--------------|-------|---------------|----------------------|-------------------|----------------| | Refrigerated
Warehouse-No Rail | Cold storage | User Defined | 150 | 7.50 | 7.50 | 7.50 | 25.0 | | Manufacturing | Other commercial A/C and heat pumps | User Defined | 750 | 0.30 | 4.00 | 4.00 | 18.0 | | Industrial Park | Other commercial A/C and heat pumps | User Defined | 750 | 0.30 | 4.00 | 4.00 | 18.0 | | Free-Standing Discount Superstore | Other commercial A/C and heat pumps | User Defined | 750 | < 0.005 | 4.00 | 4.00 | 18.0 | | Free-Standing Discount
Superstore | Stand-alone retail refrigerators and freezers | R-134a | 1,430 | 0.04 | 1.00 | 0.00 | 1.00 | | Free-Standing Discount Superstore | Walk-in refrigerators and freezers | R-404A | 3,922 | < 0.005 | 7.50 | 7.50 | 20.0 | | Strip Mall | Other commercial A/C and heat pumps | User Defined | 750 | < 0.005 | 4.00 | 4.00 | 18.0 | | Strip Mall | Stand-alone retail refrigerators and freezers | R-134a | 1,430 | 0.04 | 1.00 | 0.00 | 1.00 | | Strip Mall | Walk-in refrigerators and freezers | R-404A | 3,922 | < 0.005 | 7.50 | 7.50 | 20.0 | ## 5.15. Operational Off-Road Equipment ### 5.15.1. Unmitigated | Facilities and Fire | Fuel Time | Engine Ties | North are non Day | Hausa Day Day | Haranawar | Load Footon | |---------------------|-----------|-------------|-------------------|---------------|------------|-------------| | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | ## 5.16. Stationary Sources #### 5.16.1. Emergency Generators and Fire Pumps Equipment Type Fuel Type Number per Day Hours per Day Hours per Year Horsepower Load Factor #### 5.16.2. Process Boilers | Equipment Type Fuel Type Number Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) | |--|------------------------------|------------------------------| |--|------------------------------|------------------------------| #### 5.17. User Defined | Equipment Type | Fuel Type | |----------------|-----------| | _ | _ | #### 5.18. Vegetation 5.18.1. Land Use Change 5.18.1.1. Unmitigated Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres #### 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres #### 5.18.2. Sequestration 5.18.2.1. Unmitigated Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year) ## 6. Climate Risk Detailed Report #### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 28.5 | annual days of extreme heat | | Extreme Precipitation | 1.90 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 21.3 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 3 | 0 | 0 | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 0 | 0 | N/A | | Wildfire | 1 | 0 | 0 | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Air Quality Degradation | 0 | 0 | 0 | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 3 | 1 | 1 | 3 | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 1 | 1 | 2 | | Wildfire | 1 | 1 | 1 | 2 | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 1 | 1 | 1 | 2 | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ## 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. Indicator Result for Project Census Tract | Exposure Indicators | | |---------------------------------|------| | AQ-Ozone | 97.6 | | AQ-PM | 53.3 | | AQ-DPM | 47.8 | | Drinking Water | 10.2 | | Lead Risk Housing | 22.0 | | Pesticides | 58.8 | | Toxic Releases | 37.7 | | Traffic | 81.9 | | Effect Indicators | _ | | CleanUp Sites | 69.4 | | Groundwater | 0.00 | | Haz Waste Facilities/Generators | 53.5 | | Impaired Water Bodies | 0.00 | | Solid Waste | 40.1 | | Sensitive Population | | | Asthma | 65.6 | | Cardio-vascular | 90.6 | | Low Birth Weights | 62.9 | | Socioeconomic Factor Indicators | _ | | Education | 74.7 | | Housing | 57.9 | | Linguistic | 53.4 | | Poverty | 64.5 | | Unemployment | 15.8 | ## 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator Indicator | Result for Project Census Tract | |--|---------------------------------| | Economic | _ | | Above Poverty | 36.04516874 | | Employed | 38.00846914 | | Median HI | 53.00911074 | | Education | _ | | Bachelor's or higher | 28.6154241 | | High school enrollment | 100 | | Preschool enrollment | 5.440780187 | | Transportation | _ | | Auto Access | 94.58488387 | | Active commuting | 6.723983062 | | Social | _ | | 2-parent households | 87.71974849 | | Voting | 9.636853587 | | Neighborhood | _ | | Alcohol
availability | 84.04978827 | | Park access | 11.88245862 | | Retail density | 29.21852945 | | Supermarket access | 12.06210702 | | Tree canopy | 0.590273322 | | Housing | _ | | Homeownership | 79.23777749 | | Housing habitability | 40.67753112 | | Low-inc homeowner severe housing cost burden | 12.19042731 | | Low-inc renter severe housing cost burden | 27.61452586 | | Uncrowded housing | 47.8121391 | | _ | |-------------| | 26.49813936 | | 79.8 | | 42.9 | | 64.8 | | 87.6 | | 27.9 | | 81.5 | | 59.8 | | 52.6 | | 37.8 | | 88.7 | | 83.0 | | 7.5 | | 28.5 | | 64.9 | | 17.5 | | 92.5 | | 37.9 | | 70.4 | | _ | | 30.9 | | 25.4 | | 29.5 | | _ | | 0.0 | | 0.0 | | | | Children | 35.2 | |----------------------------------|------| | Elderly | 90.4 | | English Speaking | 42.3 | | Foreign-born | 59.5 | | Outdoor Workers | 11.9 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 72.4 | | Traffic Density | 65.3 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 70.6 | | Other Decision Support | _ | | 2016 Voting | 23.4 | ### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 69.0 | | Healthy Places Index Score for Project Location (b) | 30.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. Health & Equity Evaluation Scorecard not completed. ## 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data | Screen | Justification | |-----------------------------------|---| | Operations: Vehicle Data | Trip rates based on Project traffic study. | | Operations: Fleet Mix | Fleet mix adjusted to separate industrial passenger cars and trucks | | Operations: Water and Waste Water | Water usage estimates based on Project WSA | | | As of 1 January 2022, new commercial refrigeration equipment may not use refrigerants with a GWP of 150 or greater. Beginning 1 January 2025, all new air conditioning equipment may not use refrigerants with a GWP of 750 or greater. | This page intentionally left blank APPENDIX 4.3: EMFAC2021 Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2023 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calent Vehicle Ca | at Model Year | Speed | Fuel | Population | Total VMT | Fuel_Consumption | Fuel_Consumption | Total Fuel | VMT | Total VMT | Miles per Gallon | Vehicle Class | |----------------|-------------------|---------------|-----------|--------------|-------------|-------------|------------------|------------------|-------------|-------------|-------------|------------------|---------------| | Riverside (SC) | 2023 HHDT | Aggregate | Aggregate | Gasoline | 9.455104489 | 402.0155083 | 0.108573531 | 108.5735307 | 317785.1606 | 402.0155083 | 1920248.354 | 6.04 | HHDT | | Riverside (SC) | 2023 HHDT | Aggregate | Aggregate | Diesel | 14188.53655 | 1870417.715 | 309.6254593 | 309625.4593 | | 1870417.715 | | | | | Riverside (SC) | 2023 HHDT | Aggregate | Aggregate | Electricity | 10.75839329 | 733.8118529 | 0 | 0 | | 733.8118529 | | | | | Riverside (SC) | 2023 HHDT | Aggregate | Aggregate | Natural Gas | 693.7983116 | 48694.81207 | 8.051127696 | 8051.127696 | | 48694.81207 | | | | | Riverside (SC) | 2023 LDA | Aggregate | Aggregate | Gasoline | 469124.6474 | 20366451.54 | 699.7310812 | 699731.0812 | 711067.1515 | 20366451.54 | 21760170.77 | 30.60 | LDA | | Riverside (SC) | 2023 LDA | Aggregate | Aggregate | Diesel | 1558.762895 | 58561.51523 | 1.375784729 | 1375.784729 | | 58561.51523 | | | | | Riverside (SC) | 2023 LDA | Aggregate | Aggregate | Electricity | 16185.78734 | 744565.1808 | 0 | 0 | | 744565.1808 | | | | | Riverside (SC) | 2023 LDA | Aggregate | Aggregate | Plug-in Hybr | 11651.42905 | 590592.5329 | 9.960285645 | 9960.285645 | | 590592.5329 | | | | | Riverside (SC) | 2023 LDT1 | Aggregate | Aggregate | Gasoline | 41569.09002 | 1542689.764 | 63.99950114 | 63999.50114 | 64044.29373 | 1542689.764 | 1546785.932 | 24.15 | LDT1 | | Riverside (SC) | 2023 LDT1 | Aggregate | Aggregate | Diesel | 20.22700504 | 383.6181372 | 0.015644241 | 15.64424123 | | 383.6181372 | | | | | Riverside (SC) | 2023 LDT1 | Aggregate | Aggregate | Electricity | 42.93918941 | 1813.231309 | 0 | 0 | | 1813.231309 | | | | | Riverside (SC) | 2023 LDT1 | Aggregate | Aggregate | Plug-in Hybr | 33.25263876 | 1899.318283 | 0.029148352 | 29.14835174 | | 1899.318283 | | | | | Riverside (SC) | 2023 LDT2 | Aggregate | Aggregate | Gasoline | 191587.7811 | 8435118.12 | 356.5641957 | 356564.1957 | 358545.5463 | 8435118.12 | 8562709.114 | 23.88 | LDT2 | | Riverside (SC) | 2023 LDT2 | Aggregate | Aggregate | Diesel | 577.8339592 | 27328.90025 | 0.849494989 | 849.4949888 | | 27328.90025 | | | | | Riverside (SC) | 2023 LDT2 | Aggregate | Aggregate | Electricity | 816.9774193 | 29520.94571 | 0 | 0 | | 29520.94571 | | | | | Riverside (SC) | 2023 LDT2 | Aggregate | Aggregate | Plug-in Hybr | 1285.022226 | 70741.14871 | 1.131855657 | 1131.855657 | | 70741.14871 | | | | | Riverside (SC) | 2023 LHDT1 | Aggregate | Aggregate | Gasoline | 18052.34987 | 656605.5887 | 49.73832228 | 49738.32228 | 77417.67097 | 656605.5887 | 1224140.947 | 15.81 | LHDT1 | | Riverside (SC) | 2023 LHDT1 | Aggregate | Aggregate | Diesel | 15395.69696 | 567535.3588 | 27.67934868 | 27679.34868 | | 567535.3588 | | | | | Riverside (SC) | 2023 LHDT2 | Aggregate | Aggregate | Gasoline | 2523.570585 | 90490.65997 | 7.611904144 | 7611.904144 | 22679.23434 | 90490.65997 | 346711.8059 | 15.29 | LHDT2 | | Riverside (SC) | 2023 LHDT2 | Aggregate | Aggregate | Diesel | 6852.470307 | 256221.1459 | 15.0673302 | 15067.3302 | | 256221.1459 | | | | | Riverside (SC) | 2023 MCY | Aggregate | Aggregate | Gasoline | 24170.7213 | 141523.0693 | 3.403298812 | 3403.298812 | 3403.298812 | 141523.0693 | 141523.0693 | 41.58 | MCY | | Riverside (SC) | 2023 MDV | Aggregate | Aggregate | Gasoline | 159138.1322 | 6456725.347 | 338.8355886 | 338835.5886 | 344047.395 | 6456725.347 | 6637695.092 | 19.29 | MDV | | Riverside (SC) | 2023 MDV | Aggregate | Aggregate | Diesel | 2483.005938 | 104140.6313 | 4.4577137 | 4457.7137 | | 104140.6313 | | | | | Riverside (SC) | 2023 MDV | Aggregate | Aggregate | Electricity | 897.1539487 | 32338.42861 | 0 | 0 | | 32338.42861 | | | | | Riverside (SC) | 2023 MDV | Aggregate | Aggregate | Plug-in Hybr | 887.9224631 | 44490.68605 | 0.754092705 | 754.0927053 | | 44490.68605 | | | | | Riverside (SC) | 2023 MH | Aggregate | Aggregate | Gasoline | 5083.841078 | 44617.33224 | 9.135457245 | 9135.457245 | 10873.77525 | 44617.33224 | 62635.35904 | 5.76 | MH | | Riverside (SC) | 2023 MH | Aggregate | Aggregate | Diesel | 2073.70666 | 18018.02681 | 1.738318002 | 1738.318002 | | 18018.02681 | | | | | Riverside (SC) | 2023 MHDT | Aggregate | Aggregate | Gasoline | 1260.142241 | 50001.99826 | 9.730848023 | 9730.848023 | 72860.34533 | 50001.99826 | 613586.1262 | 8.42 | MHDT | | Riverside (SC) | 2023 MHDT | Aggregate | Aggregate | Diesel | 12683.243 | 556347.8969 | 62.32189585 | 62321.89585 | | 556347.8969 | | | | | Riverside (SC) | 2023 MHDT | Aggregate | Aggregate | Electricity | 4.9202908 | 108.4971152 | 0 | 0 | | 108.4971152 | | | | | Riverside (SC) | 2023 MHDT | Aggregate | Aggregate | Natural Gas | 147.6204682 | 7127.733974 | 0.807601459 | 807.6014589 | | 7127.733974 | | | | | Riverside (SC) | 2023 OBUS | Aggregate | Aggregate | Gasoline | 386.6813181 | 13386.35665 | 2.645844907 | 2645.844907 | 4805.404855 | 13386.35665 | 30497.76136 | 6.35 | OBUS | | Riverside (SC) | 2023 OBUS | Aggregate | Aggregate | Diesel | 215.667787 | 15076.44179 | 1.951877039 | 1951.877039 | | 15076.44179 | | | | | Riverside (SC) | 2023 OBUS | Aggregate | Aggregate | Natural Gas | 33.12387867 | 2034.962916 | 0.207682909 | 207.6829092 | | 2034.962916 | | | | | Riverside (SC) | 2023 SBUS | Aggregate | Aggregate | Gasoline | 421.1646074 | 16563.24745 | 1.897862822 | 1897.862822 | 5896.748986 | 16563.24745 | 37701.28126 | 6.39 | SBUS | | Riverside (SC) | 2023 SBUS | Aggregate | Aggregate | Diesel | 499.0687276 | 10519.58678 | 1.437331357 | 1437.331357 | | 10519.58678 | | | | | Riverside (SC) | 2023 SBUS | Aggregate | Aggregate | Electricity | 0.562315788 | 6.53322339 | 0 | 0 | | 6.53322339 | | | | | Riverside (SC) | 2023 SBUS | Aggregate | Aggregate | Natural Gas | 428.0776414 | 10611.9138 | 2.561554808 | 2561.554808 | | 10611.9138 | | | | | Riverside (SC) | 2023 UBUS | Aggregate | Aggregate | Gasoline | | 18476.36382 | 3.28009086 | 3280.09086 | 11107.60554 | 18476.36382 | 49531.64193 | 4.46 | UBUS | | Riverside (SC) | 2023 UBUS | Aggregate | Aggregate | Diesel | | 30.10971099 | 0.002674589 | 2.674588852 | | 30.10971099 | | | | | Riverside (SC) | 2023 UBUS | Aggregate | Aggregate | Electricity | | 2.969621933 | 0 | 0 | | 2.969621933 | | | | | Riverside (SC) | 2023 UBUS | Aggregate | Aggregate | Natural Gas | | 31022.19878 | 7.824840087 | 7824.840087 | | 31022.19878 | | | | | , | | 55 5 | 33 0 | | | | | | | | | | | Region Type: Sub-Area Region: Riverside
(SC) Calendar Year: 2024 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calen(Vehicle Ca | Model Year | Speed | Fuel | Population | Total VMT | Fuel Consu | el_Consumpt | Total Fuel | VMT | Total VMT | liles per Gallo | Vehicle Class | |----------------|------------------|--------------|--------------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|-----------------|---------------| | Riverside (SC) | 2024 HHDT | Aggregate | Aggregate | Gasoline | 7.589475903 | 347.9694468 | 0.092181 | 92.180823 | 321404.96 | 347.96945 | 1967302.751 | 6.12 | HHDT | | Riverside (SC) | 2024 HHDT | Aggregate | Aggregate | Diesel | 14792.02338 | 1911347.779 | 313.044 | 313043.98 | | 1911347.8 | | | | | Riverside (SC) | 2024 HHDT | Aggregate | Aggregate | Electricity | 47.99547895 | 5148.201829 | 0 | 0 | | 5148.2018 | | | | | Riverside (SC) | 2024 HHDT | Aggregate | Aggregate | Natural Gas | 740.0705237 | 50458.80082 | 8.268807 | 8268.807 | | 50458.801 | | | | | Riverside (SC) | 2024 LDA | Aggregate | Aggregate | Gasoline | 469145.3818 | 20418129.53 | 688.4837 | 688483.66 | 700469.61 | 20418130 | 22069128.65 | 31.51 | LDA | | Riverside (SC) | 2024 LDA | Aggregate | Aggregate | Diesel | 1473.049219 | 54327.45303 | 1.267189 | 1267.1888 | | 54327.453 | | | | | Riverside (SC) | 2024 LDA | Aggregate | Aggregate | Electricity | 19934.69439 | 945704.6798 | 0 | 0 | | 945704.68 | | | | | Riverside (SC) | 2024 LDA | Aggregate | Aggregate | Plug-in Hybr | 12893.65575 | 650966.9876 | 10.71876 | 10718.763 | | 650966.99 | | | | | Riverside (SC) | 2024 LDT1 | Aggregate | Aggregate | Gasoline | 40643.24621 | 1523061.246 | 62.04625 | 62046.247 | 62104.325 | 1523061.2 | 1529163.988 | 24.62 | LDT1 | | Riverside (SC) | 2024 LDT1 | Aggregate | Aggregate | Diesel | 18.16927182 | 339.6979643 | 0.013831 | 13.831102 | | 339.69796 | | | | | Riverside (SC) | 2024 LDT1 | Aggregate | Aggregate | Electricity | 60.98632141 | 2789.967089 | 0 | 0 | | 2789.9671 | | | | | Riverside (SC) | 2024 LDT1 | Aggregate | Aggregate | Plug-in Hybr | 52.35545177 | 2973.077776 | 0.044247 | 44.247357 | | 2973.0778 | | | | | Riverside (SC) | 2024 LDT2 | Aggregate | Aggregate | Gasoline | 196761.1569 | 8732860.794 | 359.6747 | 359674.68 | 361927.38 | 8732860.8 | 8893408.735 | 24.57 | LDT2 | | Riverside (SC) | 2024 LDT2 | Aggregate | Aggregate | Diesel | 611.2140627 | 29007.74721 | 0.880423 | 880.42307 | | 29007.747 | | | | | Riverside (SC) | 2024 LDT2 | Aggregate | Aggregate | Electricity | 1212.721837 | 43455.52608 | 0 | 0 | | 43455.526 | | | | | Riverside (SC) | 2024 LDT2 | Aggregate | Aggregate | Plug-in Hybr | 1617.209463 | 88084.6679 | 1.372274 | 1372.2738 | | 88084.668 | | | | | Riverside (SC) | 2024 LHDT1 | Aggregate | Aggregate | Gasoline | 17828.73734 | 656766.0119 | 48.36248 | 48362.476 | 75554.206 | 656766.01 | 1221087.42 | 16.16 | LHDT1 | | Riverside (SC) | 2024 LHDT1 | Aggregate | Aggregate | Diesel | 15247.60565 | 560367.9206 | 27.19173 | 27191.731 | | 560367.92 | | | | | Riverside (SC) | 2024 LHDT1 | Aggregate | Aggregate | Electricity | 53.50587181 | 3953.487241 | 0 | 0 | | 3953.4872 | | | | | Riverside (SC) | 2024 LHDT2 | Aggregate | Aggregate | Gasoline | 2494.679179 | 89754.81853 | 7.387432 | 7387.4317 | 22224.411 | 89754.819 | 344827.7113 | 15.52 | LHDT2 | | Riverside (SC) | 2024 LHDT2 | Aggregate | Aggregate | Diesel | 6844.928194 | 254103.3578 | 14.83698 | 14836.979 | | 254103.36 | | | | | Riverside (SC) | 2024 LHDT2 | Aggregate | Aggregate | Electricity | 13.8489928 | 969.5349487 | 0 | 0 | | 969.53495 | | | | | Riverside (SC) | 2024 MCY | Aggregate | Aggregate | Gasoline | 24077.0623 | 140258.0803 | 3.359218 | 3359.2179 | 3359.2179 | 140258.08 | 140258.0803 | 41.75 | MCY | | Riverside (SC) | 2024 MDV | Aggregate | Aggregate | Gasoline | 158529.7591 | 6468418.76 | 332.0737 | 332073.69 | 337278.19 | 6468418.8 | 6673535.232 | 19.79 | MDV | | Riverside (SC) | 2024 MDV | Aggregate | Aggregate | Diesel | 2456.219583 | 102039.6434 | 4.306633 | 4306.633 | | 102039.64 | | | | | Riverside (SC) | 2024 MDV | Aggregate | Aggregate | Electricity | 1347.135818 | 48185.7285 | 0 | 0 | | 48185.729 | | | | | Riverside (SC) | 2024 MDV | Aggregate | Aggregate | Plug-in Hybr | 1094.492843 | 54891.09982 | 0.897864 | 897.86413 | | 54891.1 | | | | | Riverside (SC) | 2024 MH | Aggregate | Aggregate | Gasoline | 4781.777946 | 41623.53594 | 8.518926 | 8518.9264 | 10212.975 | 41623.536 | 59176.14669 | 5.79 | MH | | Riverside (SC) | 2024 MH | Aggregate | Aggregate | Diesel | 2046.063726 | 17552.61075 | 1.694048 | 1694.0483 | | 17552.611 | | | | | Riverside (SC) | 2024 MHDT | Aggregate | Aggregate | Gasoline | 1238.0029 | 49965.95549 | 9.588667 | 9588.6666 | 73502.732 | 49965.955 | 624307.4842 | 8.49 | MHDT | | Riverside (SC) | 2024 MHDT | Aggregate | Aggregate | Diesel | 12954.3675 | 564761.4751 | 63.06415 | 63064.145 | | 564761.48 | | | | | Riverside (SC) | 2024 MHDT | Aggregate | Aggregate | Electricity | 40.46425607 | 2074.722372 | 0 | 0 | | 2074.7224 | | | | | Riverside (SC) | 2024 MHDT | Aggregate | Aggregate | Natural Gas | 158.0466253 | 7505.331205 | 0.84992 | 849.92038 | | 7505.3312 | | | | | Riverside (SC) | 2024 OBUS | Aggregate | Aggregate | Gasoline | 374.6153087 | 12781.812 | 2.496601 | 2496.6014 | 4662.38 | 12781.812 | 30088.9967 | 6.45 | OBUS | | Riverside (SC) | 2024 OBUS | Aggregate | Aggregate | Diesel | 219.2789175 | 15140.91273 | 1.951182 | 1951.1816 | | 15140.913 | | | | | Riverside (SC) | 2024 OBUS | Aggregate | Aggregate | Electricity | 0.821516166 | 55.60331633 | 0 | 0 | | 55.603316 | | | | | Riverside (SC) | 2024 OBUS | Aggregate | Aggregate | Natural Gas | 34.6553722 | 2110.668656 | 0.214597 | 214.59728 | | 2110.6687 | | | | | Riverside (SC) | 2024 SBUS | Aggregate | Aggregate | Gasoline | 423.5817437 | 16753.46749 | 1.914822 | 1914.8218 | 5918.222 | 16753.467 | 37909.3201 | 6.41 | SBUS | | Riverside (SC) | 2024 SBUS | Aggregate | Aggregate | Diesel | 491.8063992 | 10225.99182 | 1.394926 | 1394.9256 | | 10225.992 | | | | | Riverside (SC) | 2024 SBUS | Aggregate | Aggregate | Electricity | 2.445505521 | 61.99924762 | 0 | 0 | | 61.999248 | | | | | Riverside (SC) | 2024 SBUS | Aggregate | Aggregate | Natural Gas | 443.1589434 | 10867.86154 | 2.608475 | 2608.4745 | | 10867.862 | | | | | Riverside (SC) | 2024 UBUS | Aggregate | Aggregate | Gasoline | 146.2127201 | 18511.1132 | 3.282633 | 3282.6331 | 11054.35 | 18511.113 | 49631.8201 | 4.49 | UBUS | | Riverside (SC) | 2024 UBUS | Aggregate | Aggregate | Diesel | 0.3117338 | 30.10971099 | 0.002675 | 2.675115 | | 30.109711 | | | | | Riverside (SC) | 2024 UBUS | Aggregate | Aggregate | Electricity | | 18.36371585 | 0 | 0 | | 18.363716 | | | | | Riverside (SC) | 2024 UBUS | Aggregate | Aggregate | Natural Gas | 252.109466 | 31072.23347 | 7.769046 | 7769.0456 | | 31072.233 | | | | | • • | | - | - | | | | | | | | | | | Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2025 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calen(Vehicle C | a Model Year | Speed | Fuel | Population | Total VMT | Fuel Consu | el Consumpt | Total Fuel | VMT | Total VMT | liles per Gallo | Vehicle Class | |----------------|-----------------|--------------|-----------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|-----------------|---------------| | Riverside (SC) | 2025 HHDT | Aggregate | Aggregate | Gasoline | 6.232252524 | 303.889871 | 0.078876 | 78.875502 | 324061.93 | 303.88987 | 2014903.459 | 6.22 | HHDT | | Riverside (SC) | 2025 HHDT | Aggregate | Aggregate | Diesel | 15281.49903 | 1950611.476 | 315.5183 | 315518.25 | | 1950611.5 | | | | | Riverside (SC) | 2025 HHDT | Aggregate | Aggregate | Electricity | | 11894.93596 | 0 | 0 | | 11894.936 | | | | | Riverside (SC) | 2025 HHDT | Aggregate | Aggregate | Natural Gas | | 52093.15724 | 8.464804 | 8464.8041 | | 52093.157 | | | | | Riverside (SC) | 2025 LDA | Aggregate | Aggregate | Gasoline | | 20373765.83 | 673.3165 | 673316.54 | 685799.58 | 20373766 | 22281991.59 | 32.49 | LDA | | Riverside (SC) | 2025 LDA | Aggregate | Aggregate | Diesel | 1383.809245 | 49996.02059 | 1.157205 | 1157.2049 | | 49996.021 | | | | | Riverside (SC) | 2025 LDA | Aggregate | Aggregate | Electricity | | 1153396.904 | 0 | 0 | | 1153396.9 | | | | | Riverside (SC) | 2025 LDA | Aggregate | Aggregate | • | 14087.23202 | 704832.8394 | 11.32583 | 11325.832 | | 704832.84 | | | | | Riverside (SC) | 2025 LDT1 | Aggregate | Aggregate | Gasoline | | 1499609.575 | | | 59994.793 | 1499609.6 | 1508277.871 | 25.14 | LDT1 | | Riverside (SC) | 2025 LDT1 | Aggregate | Aggregate | Diesel | 16.26032827 | 298.1728862 | 0.012132 | 12.131898 | | 298.17289 | | | | | Riverside (SC) | 2025 LDT1 | Aggregate | Aggregate | Electricity | 84.57619148 | 4089.475353 | 0 | 0 | | 4089.4754 | | | | | Riverside (SC) | 2025 LDT1 | Aggregate | Aggregate | Plug-in Hybr | 76.19034646 | 4280.647946 | 0.061879 | 61.879155 | | 4280.6479 | | | | | Riverside (SC) | 2025 LDT2 | Aggregate | Aggregate | Gasoline | 201900.7772 | 8973973.952 | 360.0166 | 360016.56 | 362521.44 | 8973974 | 9168424.554 | 25.29 | LDT2 | | Riverside (SC) | 2025 LDT2 | Aggregate | Aggregate | Diesel | 648.0824816 | 30519.42791 | 0.906087 | 906.08704 | | 30519.428 | | | | | Riverside (SC) | 2025 LDT2 | Aggregate | Aggregate | Electricity | 1658.408696 | 58637.73041 | 0 | 0 | | 58637.73 | | | | | Riverside (SC) | 2025 LDT2 | Aggregate | Aggregate | Plug-in Hybr | 1963.286623 | 105293.4446 | 1.598791 | 1598.7914 | | 105293.44 | | | | | Riverside (SC) | 2025 LHDT1 | Aggregate | Aggregate | Gasoline | 17598.36242 | 652458.21 | 46.82733 | 46827.329 | 73403.799 | 652458.21 | 1212550.7 | 16.52 | LHDT1 | | Riverside (SC) | 2025 LHDT1 | Aggregate | Aggregate | Diesel | 15075.59282 | 549831.8274 | 26.57647 | 26576.47 | | 549831.83 | | | | | Riverside (SC) | 2025 LHDT1 | Aggregate | Aggregate |
Electricity | 149.6982853 | 10260.66293 | 0 | 0 | | 10260.663 | | | | | Riverside (SC) | 2025 LHDT2 | Aggregate | Aggregate | Gasoline | 2462.303572 | 88408.90183 | 7.133201 | 7133.2007 | 21661.355 | 88408.902 | 341190.0394 | 15.75 | LHDT2 | | Riverside (SC) | 2025 LHDT2 | Aggregate | Aggregate | Diesel | 6820.445818 | 250292.8301 | 14.52815 | 14528.154 | | 250292.83 | | | | | Riverside (SC) | 2025 LHDT2 | Aggregate | Aggregate | Electricity | 38.18158868 | 2488.307475 | 0 | 0 | | 2488.3075 | | | | | Riverside (SC) | 2025 MCY | Aggregate | Aggregate | Gasoline | 24005.46384 | 138549.7935 | 3.30755 | 3307.5496 | 3307.5496 | 138549.79 | 138549.7935 | 41.89 | MCY | | Riverside (SC) | 2025 MDV | Aggregate | Aggregate | Gasoline | 157992.5704 | 6448292.677 | 323.4938 | 323493.82 | 328676.51 | 6448292.7 | 6678432.543 | 20.32 | MDV | | Riverside (SC) | 2025 MDV | Aggregate | Aggregate | Diesel | 2427.253752 | 99526.12558 | 4.137752 | 4137.7524 | | 99526.126 | | | | | Riverside (SC) | 2025 MDV | Aggregate | Aggregate | Electricity | 1830.142844 | 64565.5975 | 0 | 0 | | 64565.598 | | | | | Riverside (SC) | 2025 MDV | Aggregate | Aggregate | Plug-in Hybr | 1324.504282 | 66048.14278 | 1.04494 | 1044.9396 | | 66048.143 | | | | | Riverside (SC) | 2025 MH | Aggregate | Aggregate | Gasoline | 4508.467531 | 38795.29207 | 7.939176 | 7939.1755 | 9582.2687 | 38795.292 | 55815.16631 | 5.82 | MH | | Riverside (SC) | 2025 MH | Aggregate | Aggregate | Diesel | 2015.081247 | 17019.87424 | 1.643093 | 1643.0931 | | 17019.874 | | | | | Riverside (SC) | 2025 MHDT | Aggregate | Aggregate | Gasoline | 1219.56756 | 49718.98291 | 9.418017 | 9418.017 | 73843.63 | 49718.983 | 635118.1523 | 8.60 | MHDT | | Riverside (SC) | 2025 MHDT | Aggregate | Aggregate | Diesel | 13275.74248 | 571359.1019 | 63.53271 | 63532.713 | | 571359.1 | | | | | Riverside (SC) | 2025 MHDT | Aggregate | Aggregate | Electricity | 118.7135177 | 6143.919124 | 0 | 0 | | 6143.9191 | | | | | Riverside (SC) | 2025 MHDT | Aggregate | Aggregate | Natural Gas | 169.7860028 | 7896.148358 | 0.8929 | 892.89982 | | 7896.1484 | | | | | Riverside (SC) | 2025 OBUS | Aggregate | Aggregate | Gasoline | 362.5102847 | 12151.28279 | 2.347951 | 2347.9507 | 4510.759 | 12151.283 | 29688.0455 | 6.58 | OBUS | | Riverside (SC) | 2025 OBUS | Aggregate | Aggregate | Diesel | 224.9321911 | 15183.67961 | 1.94077 | 1940.7697 | | 15183.68 | | | | | Riverside (SC) | 2025 OBUS | Aggregate | Aggregate | Electricity | 2.021694394 | 134.2617193 | 0 | 0 | | 134.26172 | | | | | Riverside (SC) | 2025 OBUS | Aggregate | Aggregate | Natural Gas | 36.9521167 | 2218.821339 | 0.222038 | 222.03847 | | 2218.8213 | | | | | Riverside (SC) | 2025 SBUS | Aggregate | Aggregate | Gasoline | 426.2067312 | 16859.59503 | 1.923043 | 1923.0435 | 5926.536 | 16859.595 | 38036.5897 | 6.42 | SBUS | | Riverside (SC) | 2025 SBUS | Aggregate | Aggregate | Diesel | 483.8964136 | 9931.139032 | 1.352394 | 1352.3944 | | 9931.139 | | | | | Riverside (SC) | 2025 SBUS | Aggregate | Aggregate | Electricity | | 143.1587763 | 0 | 0 | | 143.15878 | | | | | Riverside (SC) | 2025 SBUS | Aggregate | Aggregate | Natural Gas | 457.8096259 | 11102.69686 | 2.651098 | 2651.0983 | | 11102.697 | | | | | Riverside (SC) | 2025 UBUS | Aggregate | Aggregate | Gasoline | | 18545.85863 | | | 10964.45 | 18545.859 | 49731.9983 | 4.54 | UBUS | | Riverside (SC) | 2025 UBUS | Aggregate | Aggregate | Diesel | | 30.10971099 | 0.002675 | 2.675115 | | 30.109711 | | | | | Riverside (SC) | 2025 UBUS | Aggregate | Aggregate | Electricity | | 33.75780976 | 0 | 0 | | 33.75781 | | | | | Riverside (SC) | 2025 UBUS | Aggregate | Aggregate | Natural Gas | 252.5418031 | 31122.27213 | 7.673228 | 7673.2282 | | 31122.272 | | | | Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2026 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calent Vehicle Ca | Model Year | Speed | Fuel | Population | Total VMT | Fuel Consu | el_Consumpt | Total Fuel | VMT | Total VMT | liles per Gallo | Vehicle Class | |----------------|-------------------|------------|-----------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|-----------------|---------------| | Riverside (SC) | 2026 HHDT | Aggregate | Aggregate | Gasoline | 5.301713201 | 269.8155783 | 0.06847 | 68.469804 | 326183.33 | 269.81558 | 2063431.007 | 6.33 | HHDT | | Riverside (SC) | 2026 HHDT | Aggregate | Aggregate | Diesel | 15687.78827 | 1988453.103 | 317.4312 | 317431.18 | | 1988453.1 | | | | | Riverside (SC) | 2026 HHDT | Aggregate | Aggregate | Electricity | 181.0556624 | 20854.79688 | 0 | 0 | | 20854.797 | | | | | Riverside (SC) | 2026 HHDT | Aggregate | Aggregate | Natural Gas | 822.9858358 | 53853.29132 | 8.683681 | 8683.6814 | | 53853.291 | | | | | Riverside (SC) | 2026 LDA | Aggregate | Aggregate | Gasoline | 470220.2179 | 20338993.18 | 657.902 | 657901.98 | 670683.72 | 20338993 | 22423581.77 | 33.43 | LDA | | Riverside (SC) | 2026 LDA | Aggregate | Aggregate | Diesel | 1278.903087 | 45656.81459 | 1.044466 | 1044.4663 | | 45656.815 | | | | | Riverside (SC) | 2026 LDA | Aggregate | Aggregate | Electricity | 27110.24505 | 1294343.513 | 0 | 0 | | 1294343.5 | | | | | Riverside (SC) | 2026 LDA | Aggregate | Aggregate | Plug-in Hybr | 15111.22646 | 744588.2646 | 11.73728 | 11737.28 | | 744588.26 | | | | | Riverside (SC) | | Aggregate | Aggregate | Gasoline | 39097.73904 | 1475770.596 | 57.77065 | 57770.654 | 57860.52 | 1475770.6 | 1487146.031 | 25.70 | LDT1 | | Riverside (SC) | 2026 LDT1 | Aggregate | Aggregate | Diesel | 13.62192751 | 246.3725383 | 0.00996 | 9.9601737 | | 246.37254 | | | | | Riverside (SC) | 2026 LDT1 | Aggregate | Aggregate | Electricity | 113.2552136 | 5510.233656 | 0 | 0 | | 5510.2337 | | | | | Riverside (SC) | | Aggregate | Aggregate | Plug-in Hybr | 101.686721 | 5618.828531 | 0.079906 | 79.905828 | | 5618.8285 | | | | | Riverside (SC) | | Aggregate | Aggregate | Gasoline | 207104.2919 | 9189016.153 | 359.2464 | 359246.4 | 361967.93 | 9189016.2 | 9414279.735 | 26.01 | LDT2 | | Riverside (SC) | | Aggregate | Aggregate | Diesel | 682.5626595 | 31821.71127 | 0.923869 | 923.86894 | | 31821.711 | | | | | Riverside (SC) | | Aggregate | Aggregate | Electricity | 2094.273367 | 72949.08151 | 0 | 0 | | 72949.082 | | | | | Riverside (SC) | | Aggregate | Aggregate | Plug-in Hybr | 2291.195555 | 120492.7893 | 1.79766 | 1797.6597 | | 120492.79 | | | | | Riverside (SC) | | Aggregate | Aggregate | Gasoline | | 648258.6134 | 45.4323 | 45432.303 | 71378.104 | 648258.61 | 1205852.586 | 16.89 | LHDT1 | | Riverside (SC) | | Aggregate | Aggregate | Diesel | 14868.32038 | 538771.2685 | 25.9458 | 25945.801 | | 538771.27 | | | | | Riverside (SC) | | Aggregate | Aggregate | Electricity | | 18822.70429 | 0 | 0 | | 18822.704 | | | | | Riverside (SC) | | Aggregate | Aggregate | Gasoline | 2430.034218 | 87077.56554 | 6.89465 | 6894.65 | 21104.053 | 87077.566 | 337819.1023 | 16.01 | LHDT2 | | Riverside (SC) | | Aggregate | Aggregate | Diesel | 6777.719033 | 246178.6334 | 14.2094 | 14209.403 | | 246178.63 | | | | | Riverside (SC) | | Aggregate | Aggregate | Electricity | 73.06243174 | 4562.903373 | 0 | 0 | | 4562.9034 | | | | | Riverside (SC) | | Aggregate | Aggregate | Gasoline | 23937.33086 | 137142.5787 | 3.259851 | 3259.851 | 3259.851 | 137142.58 | 137142.5787 | 42.07 | MCY | | Riverside (SC) | | Aggregate | Aggregate | Gasoline | 157654.7501 | 6425602.492 | 314.7102 | 314710.24 | 319841.94 | 6425602.5 | 6678197.896 | 20.88 | MDV | | Riverside (SC) | 2026 MDV | Aggregate | Aggregate | Diesel | 2395.180805 | 96875.32958 | 3.958815 | 3958.8154 | | 96875.33 | | | | | Riverside (SC) | 2026 MDV | Aggregate | Aggregate | Electricity | 2298.450518 | 79855.22944 | 0 | 0 | | 79855.229 | | | | | Riverside (SC) | 2026 MDV | Aggregate | Aggregate | Plug-in Hybr | 1539.714974 | 75864.84529 | 1.172889 | 1172.8887 | | 75864.845 | | | | | Riverside (SC) | 2026 MH | Aggregate | Aggregate | Gasoline | 4250.734566 | 36312.00617 | 7.42587 | 7425.87 | 9021.5335 | 36312.006 | 52833.22222 | 5.86 | MH | | Riverside (SC) | 2026 MH | Aggregate | Aggregate | Diesel | 1981.725027 | 16521.21606 | 1.595663 | 1595.6635 | | 16521.216 | | | | | Riverside (SC) | 2026 MHDT | Aggregate | Aggregate | Gasoline | 1204.155669 | 49534.83957 | 9.263997 | 9263.9974 | 74067.749 | 49534.84 | 646239.7348 | 8.72 | MHDT | | Riverside (SC) | 2026 MHDT | Aggregate | Aggregate | Diesel | 13571.64646 | 577213.7586 | 63.87136 | 63871.357 | | 577213.76 | | | | | Riverside (SC) | 2026 MHDT | Aggregate | Aggregate | Electricity | 219.063018 | 11241.81607 | 0 | 0 | | 11241.816 | | | | | Riverside (SC) | 2026 MHDT | Aggregate | Aggregate | Natural Gas | 180.8134913 | 8249.320573 | 0.932395 | 932.39497 | | 8249.3206 | | | | | Riverside (SC) | 2026 OBUS | Aggregate | Aggregate | Gasoline | 350.9276772 | 11597.74291 | 2.216471 | 2216.4715 | 4375.819 | 11597.743 | 29375.1858 | 6.71 | OBUS | | Riverside (SC) | 2026 OBUS | Aggregate | Aggregate | Diesel | 230.0918445 | 15233.6578 | 1.930307 | 1930.3072 | | 15233.658 | | | | | Riverside (SC) | 2026 OBUS | Aggregate | Aggregate | Electricity | 3.398598414 | 222.0634986 | 0 | 0 | | 222.0635 | | | | | Riverside (SC) | 2026 OBUS | Aggregate | Aggregate | Natural Gas | 39.09901647 | 2321.721637 | 0.22904 | 229.04033 | | 2321.7216 | | | | | Riverside (SC) | 2026 SBUS | Aggregate | Aggregate | Gasoline | 428.6165302 | 16957.83533 | 1.930418 | 1930.418 | 5931.11 | 16957.835 | 38160.1699 | 6.43 | SBUS | | Riverside (SC) | 2026 SBUS | Aggregate | Aggregate | Diesel | 474.8674611 | 9627.108018 | 1.308587 | 1308.587 | | 9627.108 | | | | | Riverside (SC) | 2026 SBUS | Aggregate | Aggregate | Electricity | 8.960082283 | 245.5300912 | 0 | 0 | | 245.53009 | | | | | Riverside (SC) | 2026 SBUS | Aggregate | Aggregate | Natural Gas | 472.4302591 | 11329.69641 | 2.692105 | 2692.1051 | | 11329.696 | | | | | Riverside (SC) | 2026 UBUS | Aggregate | Aggregate | Gasoline | 146.7792196 |
18580.60009 | 3.253157 | 3253.1569 | 10939.26 | 18580.6 | 49832.1764 | 4.56 | UBUS | | Riverside (SC) | 2026 UBUS | Aggregate | Aggregate | Diesel | 0.3117338 | 30.10971099 | 0.002675 | 2.675115 | | 30.109711 | | | | | Riverside (SC) | 2026 UBUS | Aggregate | Aggregate | Electricity | 0.298524289 | 49.15190367 | 0 | 0 | | 49.151904 | | | | | Riverside (SC) | 2026 UBUS | Aggregate | Aggregate | Natural Gas | 252.9741581 | 31172.31474 | 7.683424 | 7683.424 | | 31172.315 | | | | | | | | | | | | | | | | | | | Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2027 Season: Annual Vehicle Classification: EMFAC2007 Categories | Re | egion | Calen(Vehicle Ca | r Model Year | Speed | Fuel | Population | Total VMT | Fuel Consu | el Consumpt | Total Fuel | VMT | Total VMT | liles per Gallo | Vehicle Class | |----|--------------|------------------|--------------|-----------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|-----------------|---------------| | | verside (SC) | 2027 HHDT | Aggregate | Aggregate | Gasoline | 4.417589037 | 240.8696114 | | | | | 2112996.232 | - | HHDT | | | verside (SC) | 2027 HHDT | Aggregate | Aggregate | Diesel | | 2023648.424 | | 318641.99 | | 2023648.4 | | | | | | verside (SC) | 2027 HHDT | Aggregate | Aggregate | Electricity | 291.1277388 | | 0 | 0 | | 33695.266 | | | | | | verside (SC) | 2027 HHDT | Aggregate | Aggregate | • | | 55411.6726 | _ | 8851.3902 | | 55411.673 | | | | | | verside (SC) | 2027 LDA | Aggregate | Aggregate | Gasoline | | 20354484.89 | | 646318.23 | 659332.17 | | 22605957.54 | 34.29 | LDA | | | verside (SC) | 2027 LDA | Aggregate | Aggregate | Diesel | | 41562.34596 | | | | 41562.346 | | | | | | verside (SC) | 2027 LDA | Aggregate | Aggregate | Electricity | | 1428770.722 | 0 | 0 | | 1428770.7 | | | | | | verside (SC) | 2027 LDA | Aggregate | Aggregate | • | 16056.71591 | 781139.586 | 12.07216 | 12072.164 | | 781139.59 | | | | | | verside (SC) | 2027 LDT1 | Aggregate | Aggregate | Gasoline | | 1456606.871 | 56.00412 | 56004.115 | 56110.218 | 1456606.9 | 1471112.371 | 26.22 | LDT1 | | | verside (SC) | 2027 LDT1 | Aggregate | Aggregate | Diesel | 8.182997029 | 149.5948697 | 0.005862 | 5.8619317 | | 149.59487 | | | | | | verside (SC) | 2027 LDT1 | Aggregate | Aggregate | Electricity | 147.7776311 | 7209.101259 | 0 | 0 | | 7209.1013 | | | | | | verside (SC) | 2027 LDT1 | Aggregate | Aggregate | Plug-in Hybr | | 7146.803489 | 0.10024 | 100.2402 | | 7146.8035 | | | | | | verside (SC) | 2027 LDT2 | Aggregate | Aggregate | Gasoline | | 9414153.484 | 360.2721 | 360272.05 | 363211.88 | 9414153.5 | 9671400.198 | 26.63 | LDT2 | | | verside (SC) | 2027 LDT2 | Aggregate | Aggregate | Diesel | 713.6192887 | 33073.61643 | 0.942826 | 942.82609 | | 33073.616 | | | | | | verside (SC) | 2027 LDT2 | Aggregate | Aggregate | Electricity | 2564.171691 | 88062.50525 | 0 | 0 | | 88062.505 | | | | | Ri | verside (SC) | 2027 LDT2 | Aggregate | Aggregate | Plug-in Hybr | 2628.969244 | 136110.5925 | 1.997002 | 1997.0015 | | 136110.59 | | | | | Ri | verside (SC) | 2027 LHDT1 | Aggregate | Aggregate | Gasoline | 17212.0897 | 642894.8546 | 44.12358 | 44123.576 | 69419.148 | 642894.85 | 1201022.641 | 17.30 | LHDT1 | | Ri | verside (SC) | 2027 LHDT1 | Aggregate | Aggregate | Diesel | 14633.12771 | 526713.4197 | 25.29557 | 25295.572 | | 526713.42 | | | | | Ri | verside (SC) | 2027 LHDT1 | Aggregate | Aggregate | Electricity | 492.5286755 | 31414.36647 | 0 | 0 | | 31414.366 | | | | | Ri | verside (SC) | 2027 LHDT2 | Aggregate | Aggregate | Gasoline | 2393.256129 | 85530.68603 | 6.65795 | 6657.9498 | 20539.982 | 85530.686 | 334771.945 | 16.30 | LHDT2 | | Ri | verside (SC) | 2027 LHDT2 | Aggregate | Aggregate | Diesel | 6722.419556 | 241624.1987 | 13.88203 | 13882.033 | | 241624.2 | | | | | Ri | verside (SC) | 2027 LHDT2 | Aggregate | Aggregate | Electricity | 125.2869519 | 7617.060264 | 0 | 0 | | 7617.0603 | | | | | Ri | verside (SC) | 2027 MCY | Aggregate | Aggregate | Gasoline | 23872.84416 | 135933.3741 | 3.223712 | 3223.7115 | 3223.7115 | 135933.37 | 135933.3741 | 42.17 | MCY | | Ri | verside (SC) | 2027 MDV | Aggregate | Aggregate | Gasoline | 157494.1298 | 6421344.406 | 307.975 | 307974.96 | 313073.52 | 6421344.4 | 6696600.902 | 21.39 | MDV | | Ri | verside (SC) | 2027 MDV | Aggregate | Aggregate | Diesel | 2354.829343 | 94400.81381 | 3.800171 | 3800.1711 | | 94400.814 | | | | | Ri | verside (SC) | 2027 MDV | Aggregate | Aggregate | Electricity | 2779.433972 | 95116.63714 | 0 | 0 | | 95116.637 | | | | | Ri | verside (SC) | 2027 MDV | Aggregate | Aggregate | Plug-in Hybr | 1757.393907 | 85739.04462 | 1.298394 | 1298.3935 | | 85739.045 | | | | | Ri | verside (SC) | 2027 MH | Aggregate | Aggregate | Gasoline | 4014.402617 | 34124.53465 | 6.984241 | 6984.2413 | 8533.9231 | 34124.535 | 50163.52077 | 5.88 | MH | | Ri | verside (SC) | 2027 MH | Aggregate | Aggregate | Diesel | 1945.315043 | 16038.98612 | 1.549682 | 1549.6818 | | 16038.986 | | | | | Ri | verside (SC) | 2027 MHDT | Aggregate | Aggregate | Gasoline | 1187.040113 | 49189.22554 | 9.102215 | 9102.2154 | 74108.253 | 49189.226 | 657629.6251 | 8.87 | MHDT | | Ri | verside (SC) | 2027 MHDT | Aggregate | Aggregate | Diesel | 13823.92114 | 580928.627 | 64.04015 | 64040.152 | | 580928.63 | | | | | Ri | verside (SC) | 2027 MHDT | Aggregate | Aggregate | Electricity | 371.8319942 | 18951.18768 | 0 | 0 | | 18951.188 | | | | | Ri | verside (SC) | 2027 MHDT | Aggregate | Aggregate | Natural Gas | 191.1860259 | 8560.584881 | 0.965885 | 965.88528 | | 8560.5849 | | | | | Ri | verside (SC) | 2027 OBUS | Aggregate | Aggregate | Gasoline | 338.9861834 | 11067.86494 | 2.084604 | 2084.6039 | 4234.383 | 11067.865 | 29125.0618 | 6.88 | OBUS | | Ri | verside (SC) | 2027 OBUS | Aggregate | Aggregate | Diesel | 234.5197906 | 15307.11304 | 1.914675 | 1914.6755 | | 15307.113 | | | | | Ri | verside (SC) | 2027 OBUS | Aggregate | Aggregate | Electricity | 5.428935287 | 350.8664874 | 0 | 0 | | 350.86649 | | | | | Ri | verside (SC) | 2027 OBUS | Aggregate | Aggregate | Natural Gas | 40.94802157 | 2399.217305 | 0.235103 | 235.10343 | | 2399.2173 | | | | | Ri | verside (SC) | 2027 SBUS | Aggregate | Aggregate | Gasoline | 430.4295714 | 17027.29145 | 1.934695 | 1934.695 | 5925.808 | 17027.291 | 38269.3287 | 6.46 | SBUS | | Ri | verside (SC) | 2027 SBUS | Aggregate | Aggregate | Diesel | 464.1146803 | 9303.444431 | 1.262005 | 1262.0047 | | 9303.4444 | | | | | Ri | verside (SC) | 2027 SBUS | Aggregate | Aggregate | Electricity | 14.63497518 | 401.3400131 | 0 | 0 | | 401.34001 | | | | | Ri | verside (SC) | 2027 SBUS | Aggregate | Aggregate | Natural Gas | 486.6196132 | 11537.25282 | 2.729109 | 2729.1088 | | 11537.253 | | | | | Ri | verside (SC) | 2027 UBUS | Aggregate | Aggregate | Gasoline | 147.0093126 | 18606.89257 | 3.25336 | 3253.36 | 10959.61 | 18606.893 | 49932.3546 | 4.56 | UBUS | | Ri | verside (SC) | 2027 UBUS | Aggregate | Aggregate | Diesel | 0.3117338 | 30.10971099 | 0.002675 | 2.6748227 | | 30.109711 | | | | | Ri | verside (SC) | 2027 UBUS | Aggregate | Aggregate | Electricity | | 89.99316283 | 0 | 0 | | 89.993163 | | | | | Ri | verside (SC) | 2027 UBUS | Aggregate | Aggregate | Natural Gas | 253.257931 | 31205.35917 | 7.703574 | 7703.5737 | | 31205.359 | Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2028 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calent Vehicle Ca ⁻ Model Y | ear Speed | Fuel | Population | Total VMT | Fuel Consu | el_Consumpt | Total Fuel | VMT | Total VMT | liles per Gall | (Vehicle Class | |----------------|--|--------------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|----------------|----------------| | Riverside (SC) | 2028 HHDT Aggrega | te Aggregate | Gasoline | 3.988581574 | 220.2375349 | 0.053427 | 53.426587 | 327968.6 | 220.23753 | 2164028.305 | 6.60 | HHDT | | Riverside (SC) | 2028 HHDT Aggrega | te Aggregate | Diesel | 16286.45202 | 2055799.739 | 318.9297 | 318929.68 | | 2055799.7 | | | | | Riverside (SC) | 2028 HHDT Aggrega | te Aggregate | Electricity | 443.1127679 | 51388.26161 | 0 | 0 | | 51388.262 | | | | | Riverside (SC) | 2028 HHDT Aggrega | te Aggregate | Natural Gas | 889.8391393 | 56620.06678 | 8.985493 | 8985.4934 | | 56620.067 | | | | | Riverside (SC) | 2028 LDA Aggrega | te Aggregate | Gasoline | 472360.9133 | 20372156.29 | 634.9783 | 634978.32 | 648196.19 | 20372156 | 22779784.76 | 35.14 | LDA | | Riverside (SC) | 2028 LDA Aggrega | te Aggregate | Diesel | 1078.826078 | 37726.31375 | 0.84493 | 844.92959 | | 37726.314 | | | | | Riverside (SC) | 2028 LDA Aggrega | te Aggregate | Electricity | 33534.15965 | 1556851.62 | 0 | 0 | | 1556851.6 | | | | | Riverside (SC) | 2028 LDA Aggrega | te Aggregate | Plug-in Hybr | 16928.42831 | 813050.5364 | 12.37294 | 12372.944 | | 813050.54 | | | | | Riverside (SC) | 2028 LDT1 Aggrega | te Aggregate | Gasoline | 37855.87026 | 1440444.902 | 54.36872 | 54368.719 | 54496.075 | 1440444.9 | 1458584.787 | 26.76 | LDT1 | | Riverside (SC) | 2028 LDT1 Aggrega | te Aggregate | Diesel | 6.076587483 | 111.1215276 | 0.004271 | 4.2705515 | | 111.12153 | | | | | Riverside (SC) | 2028 LDT1 Aggrega | te Aggregate | Electricity | 188.4728547 | 9182.136055 | 0 | 0 | | 9182.1361 | | | | | Riverside (SC) | 2028 LDT1 Aggrega | te Aggregate | Plug-in Hybr | 164.1063254 | 8846.627488 | 0.123086 | 123.08568 | | 8846.6275 | | | | | Riverside (SC) | 2028 LDT2 Aggrega | te Aggregate | Gasoline | 217588.1473 | 9627227.084 | 361.0417 | 361041.69 | 364204.61 | 9627227.1 | 9917690.621 | 27.23 | LDT2 | | Riverside (SC) | 2028 LDT2 Aggrega | te Aggregate | Diesel | 743.8336965 | 34234.83166 | 0.959155 | 959.15532 | | 34234.832 | | | | | Riverside (SC) | 2028 LDT2 Aggrega | te Aggregate | Electricity | 3077.663905 | 104270.8577 | 0 | 0 | | 104270.86 | | | | | Riverside (SC) |
2028 LDT2 Aggrega | te Aggregate | Plug-in Hybr | 2979.785378 | 151957.8474 | 2.203767 | 2203.7674 | | 151957.85 | | | | | Riverside (SC) | 2028 LHDT1 Aggrega | te Aggregate | Gasoline | 17013.08285 | 635719.8804 | 42.78386 | 42783.86 | 67372.469 | 635719.88 | 1197558.473 | 17.78 | LHDT1 | | Riverside (SC) | 2028 LHDT1 Aggrega | te Aggregate | Diesel | 14375.59914 | 513629.3418 | 24.58861 | 24588.609 | | 513629.34 | | | | | Riverside (SC) | 2028 LHDT1 Aggrega | te Aggregate | Electricity | 775.5486666 | 48209.25082 | 0 | 0 | | 48209.251 | | | | | Riverside (SC) | 2028 LHDT2 Aggrega | te Aggregate | Gasoline | 2353.812331 | 83781.03596 | 6.417908 | 6417.9081 | 19945.389 | 83781.036 | 332098.5234 | 16.65 | LHDT2 | | Riverside (SC) | 2028 LHDT2 Aggrega | te Aggregate | Diesel | 6657.214497 | 236631.625 | 13.52748 | 13527.48 | | 236631.62 | | | | | Riverside (SC) | 2028 LHDT2 Aggrega | te Aggregate | Electricity | 197.0476771 | 11685.86241 | 0 | 0 | | 11685.862 | | | | | Riverside (SC) | 2028 MCY Aggrega | te Aggregate | Gasoline | 23825.11116 | 134879.6959 | 3.188685 | 3188.6845 | 3188.6845 | 134879.7 | 134879.6959 | 42.30 | MCY | | Riverside (SC) | 2028 MDV Aggrega | te Aggregate | Gasoline | 157471.3828 | 6419753.084 | 301.5065 | 301506.47 | 306577.63 | 6419753.1 | 6718020.856 | 21.91 | MDV | | Riverside (SC) | 2028 MDV Aggrega | te Aggregate | Diesel | 2313.319617 | 92055.03155 | 3.644723 | 3644.7225 | | 92055.032 | | | | | Riverside (SC) | 2028 MDV Aggrega | te Aggregate | Electricity | 3280.614214 | 110611.1646 | 0 | 0 | | 110611.16 | | | | | Riverside (SC) | 2028 MDV Aggrega | te Aggregate | Plug-in Hybr | 1979.988786 | 95601.57573 | 1.426441 | 1426.4409 | | 95601.576 | | | | | Riverside (SC) | 2028 MH Aggrega | te Aggregate | Gasoline | 3792.760048 | 32136.12659 | 6.576553 | 6576.5528 | 8080.8779 | 32136.127 | 47700.74841 | 5.90 | MH | | Riverside (SC) | 2028 MH Aggrega | te Aggregate | Diesel | 1905.838717 | 15564.62182 | 1.504325 | 1504.3251 | | 15564.622 | | | | | Riverside (SC) | 2028 MHDT Aggrega | te Aggregate | Gasoline | 1167.514336 | 48564.31923 | 8.892466 | 8892.466 | 73657.114 | 48564.319 | 669292.9757 | 9.09 | MHDT | | Riverside (SC) | 2028 MHDT Aggrega | te Aggregate | Diesel | 14002.28475 | 581224.0545 | 63.77308 | 63773.079 | | 581224.05 | | | | | Riverside (SC) | 2028 MHDT Aggrega | te Aggregate | Electricity | 604.2282857 | 30714.98313 | 0 | 0 | | 30714.983 | | | | | Riverside (SC) | 2028 MHDT Aggrega | te Aggregate | Natural Gas | 199.9675247 | 8789.618879 | 0.991569 | 991.56945 | | 8789.6189 | | | | | Riverside (SC) | 2028 OBUS Aggrega | te Aggregate | Gasoline | 327.7078639 | 10548.10232 | 1.966652 | 1966.652 | 4110.663 | 10548.102 | 28947.3701 | 7.04 | OBUS | | Riverside (SC) | 2028 OBUS Aggrega | te Aggregate | Diesel | 238.556013 | 15389.24479 | 1.905282 | 1905.282 | | 15389.245 | | | | | Riverside (SC) | 2028 OBUS Aggrega | te Aggregate | Electricity | | 545.8268781 | | 0 | | 545.82688 | | | | | Riverside (SC) | 2028 OBUS Aggrega | te Aggregate | Natural Gas | 42.59688326 | | | | | 2464.1962 | | | | | Riverside (SC) | 2028 SBUS Aggrega | te Aggregate | Gasoline | 431.0753654 | 17042.56634 | 1.933026 | 1933.0257 | 5903.131 | 17042.566 | 38344.6352 | 6.50 | SBUS | | Riverside (SC) | 2028 SBUS Aggrega | te Aggregate | Diesel | 451.0585439 | 8951.328084 | 1.211407 | 1211.4066 | | 8951.3281 | | | | | Riverside (SC) | 2028 SBUS Aggrega | te Aggregate | Electricity | 23.22081025 | 641.5412948 | 0 | 0 | | 641.54129 | | | | | Riverside (SC) | 2028 SBUS Aggrega | te Aggregate | Natural Gas | 499.8225406 | 11709.19947 | 2.758699 | 2758.6985 | | 11709.199 | | | | | Riverside (SC) | 2028 UBUS Aggrega | te Aggregate | Gasoline | 132.0967345 | 16779.39189 | 2.792319 | 2792.3188 | 15869.53 | 16779.392 | 81237.892 | 5.12 | UBUS | | Riverside (SC) | 2028 UBUS Aggrega | te Aggregate | Electricity | 56.86515729 | | | 0 | | 8885.9453 | | | | | Riverside (SC) | 2028 UBUS Aggrega | te Aggregate | | 213.0114547 | | | | | 24367.196 | | | | | Riverside (SC) | 2027 UBUS Aggrega | te Aggregate | Natural Gas | 253.257931 | 31205.35917 | 7.703574 | 7703.5737 | | 31205.359 | | | | | | | | | | | | | | | | | | Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2029 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calen(Vehicle C | a [.] Model Year | Speed | Fuel | Population | Total VMT | Fuel Consu | el_Consumpt | Total Fuel | VMT | Total VMT | liles per Gall | /ehicle Class | |----------------|-----------------|---------------------------|-----------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|----------------|---------------| | Riverside (SC) | 2029 HHDT | Aggregate | Aggregate | Gasoline | 3.521277863 | 202.1541818 | 0.047864 | 47.864085 | 327855.03 | 202.15418 | 2216346.975 | 6.76 | HHDT | | Riverside (SC) | 2029 HHDT | Aggregate | Aggregate | Diesel | 16479.13359 | 2084622.808 | 318.7191 | 318719.07 | | 2084622.8 | | | | | Riverside (SC) | 2029 HHDT | Aggregate | Aggregate | Electricity | 637.9174448 | 73895.81481 | 0 | 0 | | 73895.815 | | | | | Riverside (SC) | 2029 HHDT | Aggregate | Aggregate | Natural Gas | 915.0240056 | 57626.19745 | 9.088102 | 9088.1016 | | 57626.197 | | | | | Riverside (SC) | 2029 LDA | Aggregate | Aggregate | Gasoline | 473378.0047 | 20392511.5 | 624.7125 | 624712.53 | 638084.2 | 20392511 | 22946897.19 | 35.96 | LDA | | Riverside (SC) | 2029 LDA | Aggregate | Aggregate | Diesel | 984.2848703 | 34105.5256 | 0.754933 | 754.93268 | | 34105.526 | | | | | Riverside (SC) | 2029 LDA | Aggregate | Aggregate | Electricity | 36672.49583 | 1679783.773 | 0 | 0 | | 1679783.8 | | | | | Riverside (SC) | 2029 LDA | Aggregate | Aggregate | Plug-in Hybr | 17717.23467 | 840496.3916 | 12.61674 | 12616.737 | | 840496.39 | | | | | Riverside (SC) | 2029 LDT1 | Aggregate | Aggregate | Gasoline | 37329.77745 | 1426016.935 | 52.87715 | 52877.148 | 53027.953 | 1426016.9 | 1448247.044 | 27.31 | LDT1 | | Riverside (SC) | 2029 LDT1 | Aggregate | Aggregate | Diesel | 3.427515898 | 64.77720353 | 0.002472 | 2.4719898 | | 64.777204 | | | | | Riverside (SC) | 2029 LDT1 | Aggregate | Aggregate | Electricity | 235.7701723 | 11443.05065 | 0 | 0 | | 11443.051 | | | | | Riverside (SC) | 2029 LDT1 | Aggregate | Aggregate | Plug-in Hybr | 201.238108 | 10722.28093 | 0.148333 | 148.33348 | | 10722.281 | | | | | Riverside (SC) | 2029 LDT2 | Aggregate | Aggregate | Gasoline | 222709.7741 | 9827243.731 | 361.9096 | 361909.61 | 365296.49 | 9827243.7 | 10152026.43 | 27.79 | LDT2 | | Riverside (SC) | 2029 LDT2 | Aggregate | Aggregate | Diesel | 772.0405947 | 35298.39045 | 0.973667 | 973.66671 | | 35298.39 | | | | | Riverside (SC) | 2029 LDT2 | Aggregate | Aggregate | Electricity | 3632.690453 | 121501.2546 | 0 | 0 | | 121501.25 | | | | | Riverside (SC) | 2029 LDT2 | Aggregate | Aggregate | Plug-in Hybr | 3341.592403 | 167983.0531 | 2.413208 | 2413.2082 | | 167983.05 | | | | | Riverside (SC) | 2029 LHDT1 | Aggregate | Aggregate | Gasoline | 16795.68965 | 626817.5943 | 41.44446 | 41444.463 | 65307.905 | 626817.59 | 1195682.643 | 18.31 | LHDT1 | | Riverside (SC) | 2029 LHDT1 | Aggregate | Aggregate | Diesel | 14100.4336 | 499931.2802 | 23.86344 | 23863.441 | | 499931.28 | | | | | Riverside (SC) | 2029 LHDT1 | Aggregate | Aggregate | Electricity | 1136.869424 | 68933.76814 | 0 | 0 | | 68933.768 | | | | | Riverside (SC) | 2029 LHDT2 | Aggregate | Aggregate | Gasoline | 2311.360939 | 81890.43268 | 6.18035 | 6180.3498 | 19337.709 | 81890.433 | 329846.7853 | 17.06 | LHDT2 | | Riverside (SC) | 2029 LHDT2 | Aggregate | Aggregate | Diesel | 6579.945196 | 231251.2981 | 13.15736 | 13157.36 | | 231251.3 | | | | | Riverside (SC) | 2029 LHDT2 | Aggregate | Aggregate | Electricity | 288.5072961 | 16705.05449 | 0 | 0 | | 16705.054 | | | | | Riverside (SC) | 2029 MCY | Aggregate | Aggregate | Gasoline | 23785.59397 | 133992.5339 | 3.158221 | 3158.2205 | 3158.2205 | 133992.53 | 133992.5339 | 42.43 | MCY | | Riverside (SC) | 2029 MDV | Aggregate | Aggregate | Gasoline | 157566.4176 | 6422134.222 | 295.7356 | 295735.64 | 300787.1 | 6422134.2 | 6743594.1 | 22.42 | MDV | | Riverside (SC) | 2029 MDV | Aggregate | Aggregate | Diesel | 2270.052008 | 89793.21905 | 3.49719 | 3497.1902 | | 89793.219 | | | | | Riverside (SC) | 2029 MDV | Aggregate | Aggregate | Electricity | 3798.420259 | 126244.9533 | 0 | 0 | | 126244.95 | | | | | Riverside (SC) | 2029 MDV | Aggregate | Aggregate | Plug-in Hybr | 2206.461916 | 105421.7052 | 1.554268 | 1554.2681 | | 105421.71 | | | | | Riverside (SC) | 2029 MH | Aggregate | Aggregate | Gasoline | 3580.024094 | 30304.87469 | 6.200886 | 6200.8863 | 7662.8515 | 30304.875 | 45426.06573 | 5.93 | MH | | Riverside (SC) | 2029 MH | Aggregate | Aggregate | Diesel | 1866.96934 | 15121.19104 | 1.461965 | 1461.9652 | | 15121.191 | | | | | Riverside (SC) | 2029 MHDT | Aggregate | Aggregate | Gasoline | 1146.504322 | 47682.88265 | 8.64784 | 8647.8398 | 72734.497 | 47682.883 | 681256.8228 | 9.37 | MHDT | | Riverside (SC) | 2029 MHDT | Aggregate | Aggregate | Diesel | 14090.24645 | 577637.3476 | 63.076 | 63075.995 | | 577637.35 | | | | | Riverside (SC) | 2029 MHDT | Aggregate | Aggregate | Electricity | 926.590875 | 46978.62065 | 0 | 0 | | 46978.621 | | | | | Riverside (SC) | 2029 MHDT | Aggregate | Aggregate | Natural Gas | 207.3526487 | 8957.971936 | 1.010662 | 1010.6624 | | 8957.9719 | | | | | Riverside (SC) | 2029 OBUS | Aggregate | Aggregate | Gasoline | 317.2534562 | 10029.82553 | 1.852693 | 1852.6929 | 3991.549 | 10029.826 | 28835.0568 | 7.22 | OBUS | | Riverside (SC) | 2029 OBUS | Aggregate | Aggregate | Diesel | 241.8508995 | 15476.67687 | 1.896857 | 1896.8571 | | 15476.677 | | | | | Riverside (SC) | 2029 OBUS | Aggregate | Aggregate | Electricity | 12.69375286 | 806.996631 | 0 | 0 | | 806.99663 | | | | | Riverside (SC) | 2029 OBUS | Aggregate | Aggregate | Natural Gas | 44.00215554 | 2521.557795 | 0.241999 | 241.99896 | | 2521.5578 | | | |
 Riverside (SC) | 2029 SBUS | Aggregate | Aggregate | Gasoline | 430.58641 | 17011.24293 | 1.926243 | 1926.2426 | 5861.029 | 17011.243 | 38393.5653 | 6.55 | SBUS | | Riverside (SC) | 2029 SBUS | Aggregate | Aggregate | Diesel | 434.8515342 | 8570.48699 | 1.156597 | 1156.5968 | | 8570.487 | | | | | Riverside (SC) | 2029 SBUS | Aggregate | Aggregate | Electricity | | 977.8677573 | | 0 | | 977.86776 | | | | | Riverside (SC) | 2029 SBUS | Aggregate | Aggregate | Natural Gas | | 11833.96763 | | 2778.1897 | | 11833.968 | | | | | Riverside (SC) | 2029 UBUS | Aggregate | Aggregate | Gasoline | | 16803.80623 | | 2778.1915 | 14840.09 | 16803.806 | 81338.0701 | 5.48 | UBUS | | Riverside (SC) | 2029 UBUS | Aggregate | Aggregate | Electricity | | 13354.27709 | | 0 | | 13354.277 | | | | | Riverside (SC) | 2029 UBUS | Aggregate | Aggregate | | | 19974.62765 | | | | 19974.628 | | | | | Riverside (SC) | 2027 UBUS | Aggregate | Aggregate | Natural Gas | 253.257931 | 31205.35917 | 7.703574 | 7703.5737 | | 31205.359 | | | | Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2030 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calen(Vehicle C | a Model Year | Speed | Fuel | Population | Total VMT | Fuel Consu | el_Consumpt | Total Fuel | VMT | Total VMT | liles per Gallo | Vehicle Class | |----------------|-----------------|--------------|-----------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|-----------------|---------------| | Riverside (SC) | 2030 HHDT | Aggregate | Aggregate | Gasoline | 2.967586625 | 184.9821766 | 0.042617 | 42.61741 | 327356.11 | 184.98218 | 2269980.868 | 6.93 | HHDT | | Riverside (SC) | 2030 HHDT | Aggregate | Aggregate | Diesel | 16609.15097 | 2110490.455 | 318.1454 | 318145.4 | | 2110490.5 | | | | | Riverside (SC) | 2030 HHDT | Aggregate | Aggregate | Electricity | 870.8442943 | 100841.5654 | 0 | 0 | | 100841.57 | | | | | Riverside (SC) | 2030 HHDT | Aggregate | Aggregate | Natural Gas | 935.475286 | 58463.86618 | 9.168088 | 9168.0876 | | 58463.866 | | | | | Riverside (SC) | 2030 LDA | Aggregate | Aggregate | Gasoline | 474280.5182 | 20414204.08 | 615.4867 | 615486.71 | 628971.2 | 20414204 | 23109339.07 | 36.74 | LDA | | Riverside (SC) | 2030 LDA | Aggregate | Aggregate | Diesel | 890.6615466 | 30736.13468 | 0.671376 | 671.37599 | | 30736.135 | | | | | Riverside (SC) | 2030 LDA | Aggregate | Aggregate | Electricity | 39805.71254 | 1800386.56 | 0 | 0 | | 1800386.6 | | | | | Riverside (SC) | 2030 LDA | Aggregate | Aggregate | Plug-in Hybr | 18428.80939 | 864012.3006 | 12.81312 | 12813.119 | | 864012.3 | | | | | Riverside (SC) | 2030 LDT1 | Aggregate | Aggregate | Gasoline | 36835.1094 | 1413210.421 | 51.52041 | 51520.413 | 51697.12 | 1413210.4 | 1440036.009 | 27.86 | LDT1 | | Riverside (SC) | 2030 LDT1 | Aggregate | Aggregate | Diesel | 0.611897759 | 16.8918368 | 0.000614 | 0.6140793 | | 16.891837 | | | | | Riverside (SC) | 2030 LDT1 | Aggregate | Aggregate | Electricity | 290.4750144 | 14027.544 | 0 | 0 | | 14027.544 | | | | | Riverside (SC) | 2030 LDT1 | Aggregate | Aggregate | Plug-in Hybr | 242.566466 | 12781.15236 | 0.176093 | 176.09285 | | 12781.152 | | | | | Riverside (SC) | 2030 LDT2 | Aggregate | Aggregate | Gasoline | 227626.5815 | 10012658.43 | 362.7807 | 362780.67 | 366392.78 | 10012658 | 10372991.69 | 28.31 | LDT2 | | Riverside (SC) | 2030 LDT2 | Aggregate | Aggregate | Diesel | 798.9568229 | 36277.39289 | 0.986889 | 986.88907 | | 36277.393 | | | | | Riverside (SC) | 2030 LDT2 | Aggregate | Aggregate | Electricity | 4232.749267 | 139883.643 | 0 | 0 | | 139883.64 | | | | | Riverside (SC) | 2030 LDT2 | Aggregate | Aggregate | Plug-in Hybr | 3713.158646 | 184172.2252 | 2.625215 | 2625.2147 | | 184172.23 | | | | | Riverside (SC) | 2030 LHDT1 | Aggregate | Aggregate | Gasoline | 16556.1228 | 616387.0613 | 40.10923 | 40109.232 | 63229.22 | 616387.06 | 1195437.037 | 18.91 | LHDT1 | | Riverside (SC) | 2030 LHDT1 | Aggregate | Aggregate | Diesel | 13807.4056 | 485670.076 | 23.11999 | 23119.988 | | 485670.08 | | | | | Riverside (SC) | 2030 LHDT1 | Aggregate | Aggregate | Electricity | 1577.187134 | 93379.90013 | 0 | 0 | | 93379.9 | | | | | Riverside (SC) | 2030 LHDT2 | Aggregate | Aggregate | Gasoline | 2266.819498 | 79871.54962 | 5.946314 | 5946.3142 | 18716.874 | 79871.55 | 327963.7374 | 17.52 | LHDT2 | | Riverside (SC) | 2030 LHDT2 | Aggregate | Aggregate | Diesel | 6488.812836 | 225468.8622 | 12.77056 | 12770.56 | | 225468.86 | | | | | Riverside (SC) | 2030 LHDT2 | Aggregate | Aggregate | Electricity | 399.7581132 | 22623.32567 | 0 | 0 | | 22623.326 | | | | | Riverside (SC) | 2030 MCY | Aggregate | Aggregate | Gasoline | 23721.90098 | 133239.4177 | 3.130648 | 3130.6485 | 3130.6485 | 133239.42 | 133239.4177 | 42.56 | MCY | | Riverside (SC) | 2030 MDV | Aggregate | Aggregate | Gasoline | 157782.5167 | 6428601.892 | 290.6636 | 290663.56 | 295701.06 | 6428601.9 | 6773551.149 | 22.91 | MDV | | Riverside (SC) | 2030 MDV | Aggregate | Aggregate | Diesel | 2224.019723 | 87601.07267 | 3.355974 | 3355.9743 | | 87601.073 | | | | | Riverside (SC) | 2030 MDV | Aggregate | Aggregate | Electricity | 4336.062239 | 142162.4125 | 0 | 0 | | 142162.41 | | | | | Riverside (SC) | 2030 MDV | Aggregate | Aggregate | Plug-in Hybr | 2435.718824 | 115185.7716 | 1.681523 | 1681.5227 | | 115185.77 | | | | | Riverside (SC) | 2030 MH | Aggregate | Aggregate | Gasoline | 3385.980841 | 28690.98 | 5.86992 | 5869.9201 | 7292.5917 | 28690.98 | 43400.79558 | 5.95 | MH | | Riverside (SC) | 2030 MH | Aggregate | Aggregate | Diesel | 1828.618507 | 14709.81558 | 1.422672 | 1422.6716 | | 14709.816 | | | | | Riverside (SC) | 2030 MHDT | Aggregate | Aggregate | Gasoline | 1121.808481 | 46503.91073 | 8.360687 | 8360.6865 | 71337.706 | 46503.911 | 693470.0948 | 9.72 | MHDT | | Riverside (SC) | 2030 MHDT | Aggregate | Aggregate | Diesel | 14086.50638 | 570229.549 | 61.95428 | 61954.281 | | 570229.55 | | | | | Riverside (SC) | 2030 MHDT | Aggregate | Aggregate | Electricity | 1337.301971 | 67676.74715 | 0 | 0 | | 67676.747 | | | | | Riverside (SC) | 2030 MHDT | Aggregate | Aggregate | Natural Gas | 213.50876 | 9059.887916 | 1.022738 | 1022.7381 | | 9059.8879 | | | | | Riverside (SC) | 2030 OBUS | Aggregate | Aggregate | Gasoline | 306.52092 | 9495.025729 | 1.738877 | 1738.8773 | 3875.44 | 9495.0257 | 28765.6812 | 7.42 | OBUS | | Riverside (SC) | 2030 OBUS | Aggregate | Aggregate | Diesel | 243.9224056 | 15566.83183 | 1.891571 | 1891.5712 | | 15566.832 | | | | | Riverside (SC) | 2030 OBUS | Aggregate | Aggregate | Electricity | 17.93419592 | 1129.736842 | 0 | 0 | | 1129.7368 | | | | | Riverside (SC) | 2030 OBUS | Aggregate | Aggregate | Natural Gas | 45.17375328 | 2574.086746 | 0.244991 | 244.9914 | | 2574.0867 | | | | | Riverside (SC) | 2030 SBUS | Aggregate | Aggregate | Gasoline | 428.8569519 | 16930.28687 | 1.913943 | 1913.9435 | 5797.622 | 16930.287 | 38413.1774 | 6.63 | SBUS | | Riverside (SC) | 2030 SBUS | Aggregate | Aggregate | Diesel | | 8151.538011 | | 1096.2665 | | 8151.538 | | | | | Riverside (SC) | 2030 SBUS | Aggregate | Aggregate | Electricity | | 1419.299274 | | 0 | | 1419.2993 | | | | | Riverside (SC) | 2030 SBUS | Aggregate | Aggregate | Natural Gas | | 11912.05324 | | | | 11912.053 | | | | | Riverside (SC) | 2030 UBUS | Aggregate | Aggregate | Gasoline | | 11695.08832 | | | 13458.34 | 11695.088 | 81438.2483 | 6.05 | UBUS | | Riverside (SC) | 2030 UBUS | Aggregate | Aggregate | Electricity | | 19150.64654 | | 0 | | 19150.647 | | | | | Riverside (SC) | 2030 UBUS | Aggregate | Aggregate | | | 19387.15427 | | | | 19387.154 | | | | | Riverside (SC) | 2027 UBUS | Aggregate | Aggregate | Natural Gas | 253.257931 | 31205.35917 | 7.703574 | 7703.5737 | | 31205.359 | | | | Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2031 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calen(Vehicle C | a [.] Model Year | Speed | Fuel | Population | Total VMT | Fuel Consu | el_Consumpt | Total Fuel | VMT | Total VMT | liles per Gall | /ehicle Class | |----------------|-----------------|---------------------------|-----------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|----------------|---------------| | Riverside (SC) | 2031 HHDT | Aggregate | Aggregate | Gasoline | 2.48916581 | 171.4070601 | 0.038459 | 38.459081 | 328036.53 | 171.40706 | 2335516.193 | 7.12 | HHDT | | Riverside (SC) | 2031 HHDT | Aggregate | Aggregate | Diesel | 16724.71055 | 2144031.604 | 318.7409 | 318740.87 | | 2144031.6 | | | | | Riverside (SC) | 2031 HHDT | Aggregate | Aggregate | Electricity | 1138.07272 | 131954.434 | 0 | 0 | | 131954.43 | | | | | Riverside (SC) | 2031 HHDT | Aggregate | Aggregate | Natural Gas | 952.7857829 | 59358.74842 | 9.257206 | 9257.2059 | | 59358.748 | | | | | Riverside (SC) | 2031 LDA | Aggregate | Aggregate | Gasoline | 475225.9238 | 20443705.18 | 607.4275 | 607427.53 | 621004.06 | 20443705 | 23269989.55 | 37.47 | LDA | | Riverside (SC) | 2031 LDA | Aggregate | Aggregate | Diesel | 816.7351562 | 27781.82698 | 0.599549 | 599.54859 | | 27781.827 | | | | | Riverside (SC) | 2031 LDA | Aggregate | Aggregate | Electricity | 42840.66622 | 1913779.703 | 0 | 0 | | 1913779.7 | | | | | Riverside (SC) | 2031 LDA | Aggregate | Aggregate | Plug-in Hybr | 19077.8689 | 884722.8436 | 12.97697 | 12976.972 | | 884722.84 | | | | | Riverside (SC) | 2031 LDT1 | Aggregate | Aggregate | Gasoline | 36393.31311 | 1402767.16 | 50.3223 | 50322.303 | 50525.66 | 1402767.2 | 1434102.781 | 28.38 | LDT1 | | Riverside (SC) | 2031 LDT1 | Aggregate | Aggregate | Diesel | 0.211979968 | 10.44543878 | 0.00036 | 0.3600605 | | 10.445439 | | | | | Riverside (SC) | 2031 LDT1 | Aggregate | Aggregate | Electricity | 345.6921885 | 16551.22913 | 0 | 0 | | 16551.229 | | | | | Riverside (SC) | 2031 LDT1 | Aggregate | Aggregate | Plug-in Hybr | 283.9521919 | 14773.94616 | 0.202996 | 202.99632 | |
14773.946 | | | | | Riverside (SC) | 2031 LDT2 | Aggregate | Aggregate | Gasoline | 232317.5882 | 10185996.37 | 363.6802 | 363680.17 | 367505.15 | 10185996 | 10580320.81 | 28.79 | LDT2 | | Riverside (SC) | 2031 LDT2 | Aggregate | Aggregate | Diesel | 823.8668585 | 37181.27206 | 0.998757 | 998.75704 | | 37181.272 | | | | | Riverside (SC) | 2031 LDT2 | Aggregate | Aggregate | Electricity | 4830.426119 | 157615.9472 | 0 | 0 | | 157615.95 | | | | | Riverside (SC) | 2031 LDT2 | Aggregate | Aggregate | Plug-in Hybr | 4076.458962 | 199527.2261 | 2.826229 | 2826.2288 | | 199527.23 | | | | | Riverside (SC) | 2031 LHDT1 | Aggregate | Aggregate | Gasoline | 16297.17001 | 604347.8207 | 38.77215 | 38772.146 | 61129.85 | 604347.82 | 1196540.607 | 19.57 | LHDT1 | | Riverside (SC) | 2031 LHDT1 | Aggregate | Aggregate | Diesel | 13497.7625 | 470845.729 | 22.3577 | 22357.704 | | 470845.73 | | | | | Riverside (SC) | 2031 LHDT1 | Aggregate | Aggregate | Electricity | 2096.426015 | 121347.0574 | 0 | 0 | | 121347.06 | | | | | Riverside (SC) | 2031 LHDT2 | Aggregate | Aggregate | Gasoline | 2216.421711 | 77657.98602 | 5.707543 | 5707.543 | 18080.368 | 77657.986 | 326431.3172 | 18.05 | LHDT2 | | Riverside (SC) | 2031 LHDT2 | Aggregate | Aggregate | Diesel | 6386.054749 | 219380.1548 | 12.37282 | 12372.825 | | 219380.15 | | | | | Riverside (SC) | 2031 LHDT2 | Aggregate | Aggregate | Electricity | 530.7529788 | 29393.17646 | 0 | 0 | | 29393.176 | | | | | Riverside (SC) | 2031 MCY | Aggregate | Aggregate | Gasoline | 23667.92903 | 132645.4201 | 3.10742 | 3107.4198 | 3107.4198 | 132645.42 | 132645.4201 | 42.69 | MCY | | Riverside (SC) | 2031 MDV | Aggregate | Aggregate | Gasoline | 158156.5114 | 6440344.973 | 286.3271 | 286327.08 | 291358.8 | 6440345 | 6807881.388 | 23.37 | MDV | | Riverside (SC) | 2031 MDV | Aggregate | Aggregate | Diesel | 2181.847033 | 85628.44784 | 3.228044 | 3228.0437 | | 85628.448 | | | | | Riverside (SC) | 2031 MDV | Aggregate | Aggregate | Electricity | 4866.821763 | 157376.8912 | 0 | 0 | | 157376.89 | | | | | Riverside (SC) | 2031 MDV | Aggregate | Aggregate | Plug-in Hybr | 2661.275124 | 124531.0766 | 1.803673 | 1803.6732 | | 124531.08 | | | | | Riverside (SC) | 2031 MH | Aggregate | Aggregate | Gasoline | 3206.786797 | 27245.05723 | 5.573895 | 5573.8951 | 6960.0069 | 27245.057 | 41571.55725 | 5.97 | MH | | Riverside (SC) | 2031 MH | Aggregate | Aggregate | Diesel | 1790.336803 | 14326.50003 | 1.386112 | 1386.1118 | | 14326.5 | | | | | Riverside (SC) | 2031 MHDT | Aggregate | Aggregate | Gasoline | 1097.190431 | 45214.48258 | 8.0636 | 8063.5999 | 69858.641 | 45214.483 | 709093.1749 | 10.15 | MHDT | | Riverside (SC) | 2031 MHDT | Aggregate | Aggregate | Diesel | 14043.6837 | 562372.9142 | 60.76354 | 60763.537 | | 562372.91 | | | | | Riverside (SC) | 2031 MHDT | Aggregate | Aggregate | Electricity | 1834.160656 | 92373.26504 | 0 | 0 | | 92373.265 | | | | | Riverside (SC) | 2031 MHDT | Aggregate | Aggregate | Natural Gas | | 9132.513143 | | | | 9132.5131 | | | | | Riverside (SC) | 2031 OBUS | Aggregate | Aggregate | Gasoline | 296.5676815 | 8991.104447 | 1.633606 | 1633.606 | 3770.578 | 8991.1044 | 28750.0534 | 7.62 | OBUS | | Riverside (SC) | 2031 OBUS | Aggregate | Aggregate | Diesel | 244.9915574 | 15657.77578 | 1.889044 | 1889.0442 | | 15657.776 | | | | | Riverside (SC) | 2031 OBUS | Aggregate | Aggregate | Electricity | 23.71649554 | 1476.770925 | 0 | 0 | | 1476.7709 | | | | | Riverside (SC) | 2031 OBUS | Aggregate | Aggregate | Natural Gas | 46.31015393 | 2624.40221 | 0.247927 | 247.92743 | | 2624.4022 | | | | | Riverside (SC) | 2031 SBUS | Aggregate | Aggregate | Gasoline | 425.5710684 | 16787.21531 | 1.894448 | 1894.448 | 5712.86 | 16787.215 | 38381.1813 | 6.72 | SBUS | | Riverside (SC) | 2031 SBUS | Aggregate | Aggregate | Diesel | | 7701.256301 | | 1031.3001 | | 7701.2563 | | | | | Riverside (SC) | 2031 SBUS | Aggregate | Aggregate | Electricity | | 1943.496232 | | 0 | | 1943.4962 | | | | | Riverside (SC) | 2031 SBUS | Aggregate | Aggregate | Natural Gas | | 11949.21345 | | | | 11949.213 | | | | | Riverside (SC) | 2031 UBUS | Aggregate | Aggregate | Gasoline | | 11682.77024 | | | 11930.24 | | 81538.4265 | 6.83 | UBUS | | Riverside (SC) | 2031 UBUS | Aggregate | Aggregate | Electricity | | 24503.94604 | | 0 | | 24503.946 | | | | | Riverside (SC) | 2031 UBUS | Aggregate | Aggregate | | | 14146.35103 | | | | 14146.351 | | | | | Riverside (SC) | 2027 UBUS | Aggregate | Aggregate | Natural Gas | 253.257931 | 31205.35917 | 7.703574 | 7703.5737 | | 31205.359 | | | | Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2032 Season: Annual Vehicle Classification: EMFAC2007 Categories | Region | Calenc Vehicle Ca | at Model Year | Speed | Fuel | Population | Total VMT | Fuel Consu | el_Consumpt | Total Fuel | VMT | Total VMT | liles per Gallo | (Vehicle Class | |----------------|-------------------|---------------|-----------|--------------|-------------|-------------|------------|-------------|------------|-----------|-------------|-----------------|----------------| | Riverside (SC) | 2032 HHDT | Aggregate | Aggregate | Gasoline | 2.311031431 | 162.5646505 | 0.035691 | 35.691339 | 328701.18 | 162.56465 | 2403204.217 | 7.31 | HHDT | | Riverside (SC) | 2032 HHDT | Aggregate | Aggregate | Diesel | 16807.88876 | 2176774.253 | 319.3189 | 319318.95 | | 2176774.3 | | | | | Riverside (SC) | 2032 HHDT | Aggregate | Aggregate | Electricity | 1427.1214 | 166026.9172 | 0 | 0 | | 166026.92 | | | | | Riverside (SC) | 2032 HHDT | Aggregate | Aggregate | Natural Gas | 967.5650369 | 60240.48314 | 9.346543 | 9346.5428 | | 60240.483 | | | | | Riverside (SC) | 2032 LDA | Aggregate | Aggregate | Gasoline | 476310.8107 | 20483251.08 | 600.3777 | 600377.69 | 614032.08 | 20483251 | 23429968.05 | 38.16 | LDA | | Riverside (SC) | 2032 LDA | Aggregate | Aggregate | Diesel | 737.2690005 | 25027.26596 | 0.531748 | 531.74829 | | 25027.266 | | | | | Riverside (SC) | 2032 LDA | Aggregate | Aggregate | Electricity | 45743.69725 | 2018684.853 | 0 | 0 | | 2018684.9 | | | | | Riverside (SC) | 2032 LDA | Aggregate | Aggregate | Plug-in Hybr | 19670.04624 | 903004.8551 | 13.12264 | 13122.638 | | 903004.86 | | | | | Riverside (SC) | 2032 LDT1 | Aggregate | Aggregate | Gasoline | 36024.7298 | 1394524.955 | 49.26386 | 49263.858 | 49492.907 | 1394525 | 1430147.127 | 28.90 | LDT1 | | Riverside (SC) | 2032 LDT1 | Aggregate | Aggregate | Diesel | 0.227951242 | 11.06600638 | 0.00038 | 0.3795795 | | 11.066006 | | | | | Riverside (SC) | 2032 LDT1 | Aggregate | Aggregate | Electricity | 400.1175378 | 18949.63717 | 0 | 0 | | 18949.637 | | | | | Riverside (SC) | 2032 LDT1 | Aggregate | Aggregate | Plug-in Hybr | 324.6409992 | 16661.46799 | 0.22867 | 228.66997 | | 16661.468 | | | | | Riverside (SC) | 2032 LDT2 | Aggregate | Aggregate | Gasoline | 236806.5944 | 10348278.38 | 364.504 | 364503.96 | 368528.46 | 10348278 | 10774457.15 | 29.24 | LDT2 | | Riverside (SC) | 2032 LDT2 | Aggregate | Aggregate | Diesel | 846.8601087 | 37998.84042 | 1.008519 | 1008.5191 | | 37998.84 | | | | | Riverside (SC) | 2032 LDT2 | Aggregate | Aggregate | Electricity | 5414.118203 | 174309.6769 | 0 | 0 | | 174309.68 | | | | | Riverside (SC) | 2032 LDT2 | Aggregate | Aggregate | Plug-in Hybr | 4427.487734 | 213870.255 | 3.015984 | 3015.9845 | | 213870.26 | | | | | Riverside (SC) | 2032 LHDT1 | Aggregate | Aggregate | Gasoline | 16032.27798 | 590864.4132 | 37.4362 | 37436.202 | 59009.522 | 590864.41 | 1199183.772 | 20.32 | LHDT1 | | Riverside (SC) | 2032 LHDT1 | Aggregate | Aggregate | Diesel | 13185.39156 | 455655.194 | 21.57332 | 21573.32 | | 455655.19 | | | | | Riverside (SC) | 2032 LHDT1 | Aggregate | Aggregate | Electricity | 2694.83744 | 152664.1644 | 0 | 0 | | 152664.16 | | | | | Riverside (SC) | 2032 LHDT2 | Aggregate | Aggregate | Gasoline | 2161.811166 | 75267.05305 | 5.464273 | 5464.273 | 17425.481 | 75267.053 | 325211.7014 | 18.66 | LHDT2 | | Riverside (SC) | 2032 LHDT2 | Aggregate | Aggregate | Diesel | 6275.204869 | 212972.76 | 11.96121 | 11961.208 | | 212972.76 | | | | | Riverside (SC) | 2032 LHDT2 | Aggregate | Aggregate | Electricity | 681.4792065 | 36971.88838 | 0 | 0 | | 36971.888 | | | | | Riverside (SC) | 2032 MCY | Aggregate | Aggregate | Gasoline | 23642.72777 | 132191.5643 | 3.08782 | 3087.8198 | 3087.8198 | 132191.56 | 132191.5643 | 42.81 | MCY | | Riverside (SC) | 2032 MDV | Aggregate | Aggregate | Gasoline | 158655.8191 | 6456075.739 | 282.5353 | 282535.3 | 287560.78 | 6456075.7 | 6844713.113 | 23.80 | MDV | | Riverside (SC) | 2032 MDV | Aggregate | Aggregate | Diesel | 2141.089808 | 83758.26717 | 3.106782 | 3106.7815 | | 83758.267 | | | | | Riverside (SC) | 2032 MDV | Aggregate | Aggregate | Electricity | 5382.731591 | 171630.6822 | 0 | 0 | | 171630.68 | | | | | Riverside (SC) | 2032 MDV | Aggregate | Aggregate | Plug-in Hybr | 2878.046609 | 133248.4243 | 1.918708 | 1918.7081 | | 133248.42 | | | | | Riverside (SC) | 2032 MH | Aggregate | Aggregate | Gasoline | 3037.676571 | 25929.36897 | 5.303148 | 5303.1484 | 6655.6156 | 25929.369 | 39902.19193 | 6.00 | MH | | Riverside (SC) | 2032 MH | Aggregate | Aggregate | Diesel | 1752.730653 | 13972.82296 | 1.352467 | 1352.4672 | | 13972.823 | | | | | Riverside (SC) | 2032 MHDT | Aggregate | Aggregate | Gasoline | 1071.482225 | 43838.41774 | 7.757428 | 7757.4282 | 68210.156 | 43838.418 | 725084.2026 | 10.63 | MHDT | | Riverside (SC) | 2032 MHDT | Aggregate | Aggregate | Diesel | 13937.98265 | 553329.8408 | 59.4186 | 59418.605 | | 553329.84 | | | | | Riverside (SC) | 2032 MHDT | Aggregate | Aggregate | Electricity | 2369.074686 | 118763.5084 | 0 | 0 | | 118763.51 | | | | | Riverside (SC) | 2032 MHDT | Aggregate | Aggregate | Natural Gas | 222.1330138 | 9152.435653 | 1.034124 | 1034.1238 | | 9152.4357 | | | | | Riverside (SC) | 2032 OBUS | Aggregate | Aggregate | Gasoline | 286.3920084 | 8499.57219 | 1.532646 | 1532.6464 | 3671.412 | 8499.5722 | 28758.9739 | 7.83 | OBUS | | Riverside (SC) | 2032 OBUS | Aggregate |
Aggregate | Diesel | 245.8003985 | 15752.48789 | 1.888338 | 1888.3378 | | 15752.488 | | | | | Riverside (SC) | 2032 OBUS | Aggregate | Aggregate | Electricity | 29.89355949 | 1837.584793 | 0 | 0 | | 1837.5848 | | | | | Riverside (SC) | 2032 OBUS | Aggregate | Aggregate | Natural Gas | 47.36148162 | 2669.329002 | 0.250428 | 250.42778 | | 2669.329 | | | | | Riverside (SC) | 2032 SBUS | Aggregate | Aggregate | Gasoline | 419.5905803 | 16535.74084 | 1.86208 | 1862.0797 | 5602.57 | 16535.741 | 38250.814 | 6.83 | SBUS | | Riverside (SC) | 2032 SBUS | Aggregate | Aggregate | Diesel | 369.3714992 | 7225.117647 | 0.962532 | 962.53167 | | 7225.1176 | | | | | Riverside (SC) | 2032 SBUS | Aggregate | Aggregate | Electricity | 90.31632089 | 2540.75414 | 0 | 0 | | 2540.7541 | | | | | Riverside (SC) | 2032 SBUS | Aggregate | Aggregate | | | 11949.20137 | | | | 11949.201 | | | | | Riverside (SC) | 2032 UBUS | Aggregate | Aggregate | Gasoline | | 11686.34287 | 1.487332 | 1487.3322 | 11892.78 | | 81638.6046 | 6.86 | UBUS | | Riverside (SC) | 2032 UBUS | Aggregate | Aggregate | Electricity | | 24875.33301 | 0 | 0 | | 24875.333 | | | | | Riverside (SC) | 2032 UBUS | Aggregate | Aggregate | | | 13871.56959 | | | | 13871.57 | | | | | Riverside (SC) | 2027 UBUS | Aggregate | Aggregate | Natural Gas | 253.257931 | 31205.35917 | 7.703574 | 7703.5737 | | 31205.359 | | | | This page intentionally left blank