Appendix D

Energy Calculations

1000 Seward

Draft EIR Appendix D Energy Analysis Spreadsheets

- Appendix D: Energy Analysis
 - Energy Consumption Summary
 - Construction Energy Usage
 - o Construction Electricity Consumption
 - o Off-Road Equipment
 - On-Road Fuel Usage Rates
 - o On-Road Vehicles
 - Construction Water Usage
 - Operational Energy Usage
 - o Existing
 - o Buildout without Project Design Features
 - Buildout with Project Design Features
 - o Peak Electricity Demand Calculations
 - o Total County Fuel Consumption

1000 Seward Project

Summary of Energy Use During Construction

Electricty	
Water Consumption	4,201 kWh
Temporary Power (lighting, tools)	40,824 kWh
Total:	45,025 kWh
Gasoline	
On Road	46,868 Gallons
Off Road	0 Gallons
Total:	46,868 Gallons
Diesel	
On Road	140,938 Gallons
Off Road	40,945 Gallons
Total:	181,883 Gallons
Total Mobile	228,751

Summary of Energy Use During Operations

Electricity		Baseline (Buildout)	Buildout Without Project Features/MXD	Buildout With Project Features/MXD		Percent Reduction due to Project Features	Project Without Project Features - Baseline (Buildout)	Project (Buildout - Baseline (Buildout)
Electricity (building)		215,907	2,910,148	2,700,081	kWh/year	-7%	2,694,241	2,484,174
Electricity (water)		34,691	459,511	367,609	kWh/year	-20%	424,821	332,919
EV Chargers			3,011	3,011	kWh/year		3,011	3,011
	Electricity Total	250,598	3,372,671	3,070,702	kWh/year	-9%	3,122,073	2,820,104
Natural Gas								
Natural Gas (building)		642,485	4,047,565	4,016,987				3,374,502
	Natural Gas Total	642,485	4,016,987	4,016,987	cu ft/year	0%	3,374,502	3,374,502
Mobile								
Gasoline		22,588	253,450	151,044	Gallons/year	-40%	230,862	128,457
Diesel		3,657	41,030	24,452	Gallons/year	-40%	37,373	20,795
	Mobile Total	26,245	294,480	175,496	Gallons/year	-40%	268,235	149,252

Construction Electricity Usage

Construction Electricity Usage

Caterpillar 40-C4.4 Generator^a

Peak Power Rating - Prime (kW)	36
Typical Load	70%
Average Output (kW)	25.2
Hours per Day	2
Average Daily Output (kWh)	50.4
Building Construction Phase Duration (days)	810
Total Construction (kWh)	40,824
Total Construction (MWh)	40.8

^ahttps://www.albancat.com/content/uploads/2014/06/40-C4.4-Spec-Sheet.pdf

Calculation of Diesel Usage During Cosnstruciton (Offroad Equipment):

Phase Name	Off Road Equipment Type	Units I	lours HP	Load Factor	Avg. Daily Factor	Number of Days	Diesel Fuel Usage	
Demolition	Concrete/Industrial Saws	0	8 81	0.73	0.6	16	0	-
Demolition	Excavators	1	8 158	0.38	0.6	16	231	
Demolition	Rubber Tired Dozers	0	8 247	0.4	0.6	16	0	
Demolition	Rubber Tired Loaders	2	8 203	0.36	0.6	16	561	
Demolition	Tractors/Loaders/Backhoes	1	8 97	0.37	0.6	16	138	
Grading	Bore/Drill Rigs	1	8 221	0.5	0.6	127	3,368	
Grading	Cranes	1	8 231	0.29	0.6	127	2,042	
Grading	Excavators	1	8 158	0.38	0.6	127	1,830	
Grading	Graders	1	8 187	0.41	0.6	127	2,337	
Grading	Plate Compactors	1	8 8	0.43	0.6	127	105	
Grading	Rubber Tired Dozers	0	8 247	0.4	0.6	127	0	
Grading	Rubber Tired Loaders	1	8 203	0.36	0.6	127	2,227	
Mat Foundation	Cranes	1	12 231	0.29	0.6	2	48	
Mat Foundation	Pumps	4	12 84	0.74	0.6	2	179	
Mat Foundation	Rubber Tired Dozers	0	8 247	0.4	0.6	2	0	
Mat Foundation	Tractors/Loaders/Backhoes	0	8 97	0.37	0.6	2	0	
Mat Foundation	Welders	2	8 46	0.45	0.6	2	20	
Building Construction	Aerial Lifts	2	8 63	0.31	0.6	363	3,403	
Building Construction	Air Compressors	2	8 78	0.48	0.6	363	6,524	
Building Construction	Cranes	0	7 231	0.29	0.6	363	0	
Building Construction	Generator Sets	0	8 84	0.74	0.6	363	0	
Building Construction	Plate Compactors	1	8 8	0.43	0.6	363	300	
Building Construction	Pumps	1	8 84	0.74	0.6	363	5,415	
Building Construction	Welders	2	8 46	0.45	0.6	363	3,607	
Paving	Cement and Mortar Mixers	1	8 9	0.56	0.6	108	131	
Paving	Pavers	0	8 130	0.42	0.6	108	0	
Paving	Paving Equipment	1	8 132	0.36	0.6	108	1,232	
Paving	Rollers	1	8 80	0.38	0.6	108	788	
Paving	Skid Steer Loaders	1	8 65	0.37	0.6	108	623	
Architectural Coating	Air Compressors	0	6 78	0.48	0.6	108	0	
					Total Diesel Usag	e for Construction (Offr	40,945.3	gallons of diesel fuel

gallons of diesel		

0.05

Notes: Equipment assumptions are provide in the CalEEMod output files and fuel usage estimate of 0.05 gallons of diesel fuel per horsepower-hour is from the SCAQMD CEQA Air Quality Handbook, Table A9-3E.

Page 1 of 1 9:02 AM 1/8/2021

EMFAC Emissions Inventory Region Type: Air Basin Region: South Coast

Calendar Year: 2022

Season: Annual

Vehicle Classification: EMFAC2011 Categories

Region	Veh_Class	Fuel	Speed	Population	VMT	Trips	Fuel_Gas	Fuel_DSL	Miles per Gallon
			(miles/hr)	(vehicles)	(miles/day)	(trips/day)	(1000 gallons/day)	(1000 gallons/day)	
South Coast	LDA	GAS	Aggregate	4,040,505	154,312,636	19,063,483	5,097	0	30.3
South Coast	LDT1	GAS	Aggregate	466,456	17,402,686	2,155,710	667	0	26.1
South Coast	LDT2	GAS	Aggregate	1,395,328	52,851,239	6,550,846	2,173	3 0	24.3
Construction Worker Trip (Composite LDA/LDT1/LDT2):									27.7
South Coast	HHDT	DSL	Aggregate	58,359	7,034,024	585,291	(1068.8	6.6

Notes: Consistent with CalEEMod, a construction worker trip is assumed to be a composite of 50% LDA, 25% for LDT1, and 25% for LDT2. Used EMFAC 2011 Categories for construction as EMFAC2011 has specific categories for vehicle class T7.

Calculation of Gasoline and Diesel Usage During Construction (Onroad Vehicles):

Phase Name	Daily Woker Trips	Daily Vendor Trips	Days	Total Worker Trips	Total Vendor Trips	Total Haul Trips		Trip Leng	th (miles)		Tota	Length (mi	les)	Avg. Daily Factor	Gallons	of Fuel
							Wo	rker	Vendor	Haul	Worker	Vendor	Haul	(worker and vendor)	Gasoline	Diesel
Demolition	25	25	16	400	400	0		14.7	68	20	5880	27200	0	0.6	127.2	2,479.8
Grading	75	115	127	9525	14605	0		14.7	68	20	140017.5	993140	0	0.6	3,027.9	90,542.7
Mat Foundation	100	180	2	200	360	0		14.7	13.8	20	2940	4968	0	0.6	63.6	452.9
Building Construction	350	95	363	127050	34485	0		14.7	13.8	20	1867635	475893	0	0.6	40,388.0	43,386.3
Paving	75	15	108	8100	1620	0		14.7	13.8	20	119070	22356	0	0.6	2,574.9	2,038.2
Architectural Coating	20	15	108	2160	1620	0		14.7	13.8	20	31752	22356	0	0.6	686.6	2,038.2
														Total:	46,868.2	140,938.0

Worker Miles per gallon= 27.75 gasoline Vedor/Haul miles per gallon= 6.58 diesel

Notes: Consistent with CalEEMod worker vehicles are assumed to be gasoline and 50% LDA, 25%LDT1, and 25% LDT2. Vendor and haul trips are assumed to be 100% diesel Heavy Duty Trucks (T7).

Water Usage for Control of Fugitive Dust during Construction:

Phase	Days	Average Daily Acreage Distrub	ed Gall	ons Per Year	Electricity (kWhr)
Demolition	16	1.0		48,320	470
Grading	127	1.0		383,540	3,731
Mat Foundation	2	0.0		0	0
Building Construction	363	0.0		0	0
Paving	108	0.0		0	0
Architectural Coating	108	0.0		0	0
			Total:	431,860	4,201

Water application rate= 3020 gal/acre/day kWhr equivalent= 0.01 kWhr

Notes: 1) Gallons per year of water usage for dust control is calculated based on a minimum control efficiency of 66% (three times daily) with an application rate of 3,020 gal/acre/day (Air & Waste Management Association Air Pollution Engineering Manual (1992 Edition)) and average of 26 construction days per month.

2) CalEEMod Default: Each gallon of delivered potable water in Southern California is associated with 0.009727 kWhr of electricity).

1000 Seward (Existing Conditions)

Los Angeles-South Coast County, Annual

Trip Summary Information

Total	Aver	age Daily Trip I	Annual VMT	
	Weekday	Saturday		
Tot	al 223.00	227.00	183.00	582,855

Gasoline and Diesel Usage

Buildout Year

Total (Gallo	ns): 22,588	3,657
% Fleet I	<i>Ліх</i> 94.0%	6.0%
Miles/Gal	lon 24.3	9.6
	Gasoline	Diesel

Existing (Baseline) Year

Gasoline	Diesel
27.8	11.3
93.0%	7.0%
19,477	3,607

Energy by Land Use - Natural Gas

Total		kBTU/yr	cu ft/year
	Total	674,609	642,485

Energy by Land Use - Electricity

Land Uses		kWH/yr
	Total	215,907

Water Detail

				Electricity
		Indoor Use	Outdoor	Use
Land Uses		(Mgal)	Use (Mgal)	(kWh/yr)
	Total	2.27	0.97	34,691

Notes: Indoor water results in 0.0111 kWhr of electricity usage per gallon from delivery, treatment, and distribution of water within Southern California (CalEEMod). Outdoor water results in 0.009727 kWhr of electricity usage per gallon from delivery and distribution of water within Southern California (CalEEMod).

1000 Seward Project - Buildout Operations Without Project Features/MXD Los Angeles-South Coast County, Annual

Total	Av	erage Daily Trip F	Rate	Annual VMT
	Weekday	Weekday Saturday		
	2,639	1,964	1,499	6,539,931

Gasoline and Diesel Usage

	Gasoline	Diesel
Miles/Gallon	24.3	9.6
% Fleet Mix	94.0%	6.0%
Total (Gallons):	253,450	41,030

Energy by Land Use - Natural Gas

	kBTU/yr	cu ft/year
Total	4,217,836	4,016,987

Energy by Land Use - Electricity

Land Uses		kWH/yr
	Total	2,910,148

Water Detail (Unmitigated)

		Indoor Use	Outdoor Use	Electricity Use
Land Uses		(Mgal)	(Mgal)	(kWh/yr)
	Total	28.07	15.17	459,511

Notes: Indoor water results in 0.0111 kWhr of electricity usage per gallon from delivery, treatment, and distribution of water within Southern California (CalEEMod). Outdoor water results in 0.009727 kWhr of electricity usage per gallon from delivery and distribution of water within Southern California (CalEEMod).

1000 Seward Project - Buildout Operations with Project Fetures and MXD (No MMs) Los Angeles-South Coast County, Annual

Trip Summary Information

Land Uses		Average Daily Trip Rate			Mitigated
		Weekday	Saturday	Sunday	
	Total	1,542	1,148	876	3,897,494

Mitigated Gasoline and Diesel Usage

Total (Gallons):	151,044	24,452
% Fleet Mix	94.0%	6.0%
Miles/Gallon	24.3	9.6
	Gasoline	Diesel

Note: Fleet mix is 92.3% gasoline @ 30.6 miles/gallon and 7.7% diesel @ 12.1 miles/gallon.

Energy by Land Use - Natural Gas (Mitigated)

		kBTU/yr	cu ft/year
Land Uses		4,217,836	4,016,987
	Total	4,217,836	4,016,987

Energy by Land Use - Electricity (Mitigated)

Land Uses		kWH/yr
	Total	2,700,081

Note: Reduction in electricity usage reflects implementation of CalGreen and GHG-PDF-1 (Exceed baseline requirements for lighting by 25%). Reduction in natural gas usage reflects implementation of GHG-PDF-2 (Reduction in natural gas fireplaces).

Water Detail (Unmitigated)

		Indoor Use	Outdoor Use	Electricity Use
Land Uses		(Mgal)	(Mgal)	(kWh/yr)
	Total	22.46	12.14	367,609

Notes: Indoor water results in 0.0111 kWhr of electricity usage per gallon from delivery, treatment, and distribution of water within Southern California (CalEEMod). Outdoor water results in 0.009727 kWhr of electricity usage per gallon from delivery and distribution of water within Southern California (CalEEMod). The City of Los Angeles Green Building Code (Chapter IX, Article 9, of the LAMC) requires newly constructed non-residential and high-rise residential buildings to reduce indoor water use by at least 20 percent by: (1) using water saving fixtures or flow restrictions; and/or (2) demonstrating a 20 percent reduction in baseline water

Peak Electricity Demand Calculations

Electrical Load Factor Equation

$$f_{Load} = rac{ ext{Average load}}{ ext{Maximum load in given time period}}$$
Load Factor (%) 1 52%

Project Electricity Demand (Operational)

Project Electricity Demand (Operational)						
Baseline						
(Existing)	Project					
216	2,700					
35	368					
251	3,071					
592	7,397					
95	1,007					
687	8,413					
25	308					
4	42					
29	351					
51	635					
	5,854					
	0.011%					
	Baseline (Existing) 216 35 251 592 95 687 25 4 29					

¹2017 Report: System Efficiency of California's Electric Grid. California Public Utilities Co 2017. Page 11, Figure 6. Visual estimate.

² Peak Load is conservatively calculated without any reductions from removal of existing uses.

EMFAC Emission inventories for County

EMFAC2014 (v1.0.7) Emissions Inventory

Region Type: County Region: Los Angeles

Calendar Year: 2022 (Construction Start Year)

Season: Annual

Vehicle Classification: EMFAC2011 Categories						Fuel_Gasoline	Fuel_DS	L
Region	CalYr	VehClass	MdlYr	Speed	Fuel	(1000 gallons/day	(1000 ga	llons/day)
Los Angeles	2022	HHDT	Aggregated	Aggregate	ec DSL	0.	00	1068.80
Los Angeles	2022	HHDT	Aggregated	Aggregate	ec GAS	1.	43	0.00
Los Angeles	2022	LDA	Aggregated	Aggregate	ec DSL	0.	00	29.72
Los Angeles	2022	LDA	Aggregated	Aggregate	ec GAS	5096.	55	0.00
Los Angeles	2022	LDT1	Aggregated	Aggregate	c DSL	0.	00	0.31
Los Angeles	2022	LDT1	Aggregated	Aggregate	ec GAS	666.	55	0.00
Los Angeles	2022	LDT2	Aggregated	Aggregate	ec DSL	0.	00	11.04
Los Angeles	2022	LDT2	Aggregated	Aggregate	ec GAS	2173.	39	0.00
Los Angeles	2022	LHDT1	Aggregated	Aggregate	ec DSL	0.	00	130.18
Los Angeles	2022	LHDT1	Aggregated	Aggregate	ec GAS	374.	46	0.00
Los Angeles	2022	LHDT2	Aggregated	Aggregate	ec DSL	0.	00	56.19
Los Angeles	2022	LHDT2	Aggregated	Aggregate	ec GAS	69.	95	0.00
Los Angeles	2022	MCY	Aggregated	Aggregate	ec GAS	36.	08	0.00
Los Angeles	2022	MDV	Aggregated	Aggregate	ec DSL	0.	00	29.43
Los Angeles	2022	MDV	Aggregated	Aggregate	ec GAS	1672.	53	0.00
Los Angeles	2022	MH	Aggregated	Aggregate	ec DSL	0.	00	6.09
Los Angeles	2022	MH	Aggregated	Aggregate	ec GAS	38.	64	0.00
Los Angeles	2022	MHDT	Aggregated	Aggregate	c DSL	0.	00	404.31
Los Angeles	2022	MHDT	Aggregated	Aggregate	ec GAS	160.	71	0.00
Los Angeles	2022	OBUS	Aggregated	Aggregate	c DSL	0.	00	28.63
Los Angeles	2022	OBUS	Aggregated	Aggregate	ec GAS	33.	56	0.00
Los Angeles	2022	SBUS	Aggregated	Aggregate	ec DSL	0.	00	16.06
Los Angeles	2022	SBUS	Aggregated	Aggregate	ec GAS	6.	19	0.00
Los Angeles	2022	UBUS	Aggregated	Aggregate	ec DSL	0.	00	0.81
Los Angeles	2022	UBUS	Aggregated	Aggregate	ec GAS	7.	94	0.00
						3,773,361,06	4	650,271,759
			Fuel Usa	ge for Proje	ect Construction	140,9	38	40,945
			Percentage	of County 1	for Construction	0.0037	7%	0.006%

EMFAC Emission inventories for County

EMFAC2014 (v1.0.7) Emissions Inventory

Region Type: County Region: Los Angeles

Calendar Year: 2025 (Operational Start Year)

Season: Annual

Vehicle Classification: EMFAC2011 Categories						Fuel_Gasoline		Fuel_DSL
Region	CalYr	VehClass	MdlYr	Speed	Fuel	(1000 gallons/c	day)	(1000 gallons/day)
Los Angeles	2025	HHDT	Aggregate	c Aggrega	tec DSL		0.00	1030.97
Los Angeles	2025	HHDT	Aggregate	c Aggrega	tec GAS		1.45	0.00
Los Angeles	2025	LDA	Aggregate	c Aggrega	tec DSL		0.00	30.79
Los Angeles	2025	LDA	Aggregate	c Aggrega	tec GAS	465	4.49	0.00
Los Angeles	2025	LDT1	Aggregate	c Aggrega	tec DSL		0.00	0.24
Los Angeles	2025	LDT1	Aggregate	c Aggrega	tec GAS	65	0.83	0.00
Los Angeles	2025	LDT2	Aggregate	c Aggrega	tec DSL		0.00	12.08
Los Angeles	2025	LDT2	Aggregate	c Aggrega	tec GAS	200	1.79	0.00
Los Angeles	2025	LHDT1	Aggregate	c Aggrega	tec DSL		0.00	142.00
Los Angeles	2025	LHDT1	Aggregate	c Aggrega	tec GAS	35	1.35	0.00
Los Angeles	2025	LHDT2	Aggregate	c Aggrega	tec DSL		0.00	61.53
Los Angeles	2025	LHDT2	Aggregate	c Aggrega	tec GAS	6	7.40	0.00
Los Angeles	2025	MCY	Aggregate	c Aggrega	tec GAS	3	8.25	0.00
Los Angeles	2025	MDV	Aggregate	c Aggrega	tec DSL		0.00	32.04
Los Angeles	2025	MDV	Aggregate	c Aggrega	tec GAS	151	7.42	0.00
Los Angeles	2025	MH	Aggregate	c Aggrega	tec DSL		0.00	6.46
Los Angeles	2025	MH	Aggregate	c Aggrega	tec GAS	3	6.85	0.00
Los Angeles	2025	MHDT	Aggregate	c Aggrega	tec DSL		0.00	401.74
Los Angeles	2025	MHDT	Aggregate	c Aggrega	tec GAS	15	6.13	0.00
Los Angeles	2025	OBUS	Aggregate	c Aggrega	tec DSL		0.00	28.85
Los Angeles	2025	OBUS	Aggregate	c Aggrega	tec GAS	3	0.17	0.00
Los Angeles	2025	SBUS	Aggregate	c Aggrega	tec DSL		0.00	15.80
Los Angeles	2025	SBUS	Aggregate	c Aggrega	tec GAS		7.06	0.00
Los Angeles	2025	UBUS	Aggregate	c Aggrega	tec DSL		0.00	0.59
Los Angeles	2025	UBUS	Aggregate	c Aggrega	tec GAS		7.09	0.00
						3,474,906,	889	643,523,976
			Net Fuel I	Isage for	Project Operation		3,457	
				•	nty for Operation)37%	•
				•	, , , , , , , , ,			