Burris Basin GWRS Turnout Project

Draft Preliminary Design Report

Prepared for: Orange County Water District 18700 Ward Street Fountain Valley, CA 92780 Contact Fernando Almario, P.E.

Prepared by: Stantec Consulting Services Inc. 38 Technology Drive, Suite 100 Irvine, CA 92618 Contact: Kevin Brandt, P.E.

Table of Contents

EXEC	CUTIVE SUMMARY	I
1.0	INTRODUCTION	1.1
1.1	BACKGROUND	1.1
1.2	PROPOSED IMPROVEMENTS	1.2
2.0	EXISTING CONDITIONS	2.3
2.1	PROJECT SITE	2.3
2.2	PROPERTY OWNERSHIP	2.4
2.3	SITE TOPOGRAPHY	2.4
2.4	UTILITIES	
2.5	CONSTRAINTS	2.5
3.0	BASIS OF DESIGN	3.6
3.1	DESIGN CRITERIA	3.6
	3.1.1 Basin Grading	
	3.1.2 Site Grading	
	3.1.3 Mechanical Design Criteria	
	3.1.4 Structural Design Criteria	
	3.1.5 Electrical, Instrumentation and SCADA Design Criteria	
3.2	HYDRAULIC MODELING	
3.3	GEOTECHNICAL INVESTIGATION	3.11
4.0	ALTERNATIVES	
4.1	ALTERNATIVES OVERVIEW	
4.2	ALTERNATIVES ANALYSIS	4.13
5.0	PROJECT ADMINISTRATION	5.14
5.1	PERMITS	5.14
5.2	TECHNICAL SPECIFICATIONS	5.14
6.0	REFERENCES	6.17
LIST (OF TABLES	
Table	e 2.1 Existing Utilities	2.5
Table	e 3.1 GWRS Operational Scenarios	3.10
	e 3.2 Model Results	
	e 4.1 Alternatives	
	e 4.2 Alternatives Analysis	
	9 5.1 Permits	
Iable	e 5.2 Technical Specifications	5.14

LIST OF FIGURES

Figur	re 1 Location Map	1.1
	re 2 Existing Site Map	
LIST C	OF APPENDICES	
APPE	ENDIX A	A.1
	GWRS HYDRAULIC MODELING RESULTS	
APPE	ENDIX B	B.2
	PRELIMARY OPINION OF PROBABLE COSTS	
APPE	ENDIX C	C.3
	PIPE WALL THICKNESS DESIGN	
APPE	ENDIX D	D.4
	SCHEMATIC DESIGNS	
APPE	ENDIX E	E.5
	CATALOGUE CUT SHEETS	

Executive Summary

Orange County Water District (OCWD) currently owns and operates approximately 1,200 acres of recharge spreading facilities in and adjacent to the Santa Ana River, Carbon Creek, and Santiago Creek. A significant part of the operations entails the pumping of purified water from the Ground Water Replenishment System (GWRS) water treatment plant in Fountain Valley northward to a series of four recharge basins (Miller, Kraemer, Miraloma and La Palma Basins) located in Anaheim via the GWRS pipeline. The GWRS plant is currently undergoing a "Final Expansion" which, when completed in 2023, will allow OCWD to produce up to 130 MGD of purified water. Of the 130 MGD produced, approximately 100 MGD will be delivered to the northern recharge basins with the balance of purified water used for the Mid Basin Injection (MBI) Turnout and Talbert seawater intrusion barrier.

With increased GWRS production, and the desire for additional operational flexibility, OCWD has determined a turnout from the GWRS pipeline to Burris Basin is warranted. The new turnout will allow OCWD to divert flows to Burris Basin ranging from 7 MGD up to a maximum of 100 MGD. During maximum flow diversions of 100 MGD, OCWD will be able to take three of the northerly recharge basins offline for maintenance during this operational scenario (Miller, Kraemer and Miraloma Basins).

The following items will be discussed in more detail in this PDR:

- 1. Introduction Project background and proposed improvements / objectives.
- 2. Existing Conditions Summarizes the existing conditions at the project site and surrounding area. Project constraints are discussed including center levee requirements, basin improvements, basin operations and existing utilities.
- Basis of Design Establishes the design criteria to be used for the final design of the various proposed improvements. Also includes hydraulic modeling results for the GWRS system.
- 4. Alternatives Summarizes advantages / disadvantages of the alternative designs developed for the proposed project.
- 5. Project Administration Summarizes the permits required for construction of the proposed improvements and a listing of the recommended technical specifications required for the bid construction documents.
- 6. References

Also included in the attached Appendix are schematic designs, supporting calculations, catalogue cut sheets with quotes for the various materials / instrumentation / devices, hydraulic modeling data, and preliminary opinion of probable costs.

INTRODUCTION
July 1, 2019

1.0 INTRODUCTION

1.1 BACKGROUND

The proposed Burris Basin turnout is located at the southern end of Burris Basin, north of Ball Road and west of the Santa Ana River. Burris Basin provides some recharge but is primarily a reservoir for storing water that is pumped to the Santiago Basins. Burris basin is separated from the Santa Ana River by the existing Santa Ana River Levee, commonly referred to as the "center levee". The existing GWRS pipeline is located within the center levee and all proposed work within or influenced by the center levee is under Army Corps of Engineers (ACOE) jurisdiction and subject to their review. The GWRS line is located within property owned by Orange County Flood Control District (OCFCD) and all proposed work within OCFCD property will also need to be reviewed / approved by OCFCD.

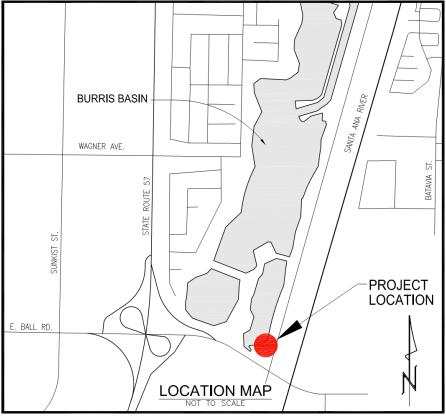


Figure 1 Location Map

INTRODUCTION
July 1, 2019

1.2 PROPOSED IMPROVEMENTS

Proposed improvements include grading, pipes, valves, meters and structures. The improvements, and associated objectives are summarized below:

Grading

- Provide a graded pad area that will allow for OCWD operations and maintenance access to the proposed facilities;
- Balance site from an earthwork standpoint (materials will be generated from the Burris Basin floor and per the Geotech's recommended offset from the center levee);
- Graded slopes at ratio per geotechnical recommendations;
- Graded ramp that will allow ingress and egress to the basin floor; and
- Improvements that do not impact the center levee and in conformance with Corps requirements.

Pipeline

- Provide a pipe configuration that will allow for the diversion of GWRS water into Burris
 Basin given the variable flow scenarios ranging from about 7 MGD to 100 MGD;
- Consider use of parallel piping to reduce valve and meter sizes and increase operational /maintenance flexibility; and
- Use of steel pipe with cement coating and epoxy lined to resist corrosion;

Appurtenances

- Provide a manual isolation valve between the GWRS pipeline and turnout assembly;
- Motor operated valves for "throttling" flow rates to the basin;
- Meters to track quantity of water delivered; and
- Water level sensor in air gap structure for back-up flow measurement.

Structures

- Air-gap structure designed to prevent siphoning of basin water into GWRS pipeline; and
- Dissipation structure designed to prevent basin shore erosion.

Electrical and Instrumentation

- Provide power needed to operate and monitor proposed devices / instrumentation;
- Provide remote monitoring and control of various facility devices including motor operated valves, flow meters, and water level sensors; and
- Ensure new devices are integrated into the District's existing SCADA system.

EXISTING CONDITIONS July 1, 2019

2.0 EXISTING CONDITIONS

2.1 PROJECT SITE

The project site is located near the southeasterly corner of Burris Basin and is bounded by Ball Road to the south and the Santa Ana River to the east. The site is separated from the Santa Ana River by a levee (center levee). Additional information as follows:

- the existing GWRS pipeline is located within the center levee;
- a fiber optic run for GWRS signal / control is located adjacent to the mainline pipe;
- the GWRS pipeline is a 66" diameter CMC&CL pipe which reduces to a 60" diameter followed by a 60" tee located at the proposed turnout location;
- there is an existing 60" mainline BFV just downstream of the tee which when closed allows for mainline draining via a 12" pipe to Burris Basin;
- above ground equipment includes meter pedestal / power distribution panel and RTU
- earthen access ramp from the center levee to bottom of Burris Basin;
- 16" crude oil line (not anticipated to be a conflict); and
- abandoned 36" CMP SD line that runs perpendicular to the GWRS line (to be removed if there's a conflict with the proposed improvements).

Burris Basin is operated at a normal water surface elevation of 165.0 and has an overflow spillway located at the southwesterly corner of the basin at elevation 174.0.

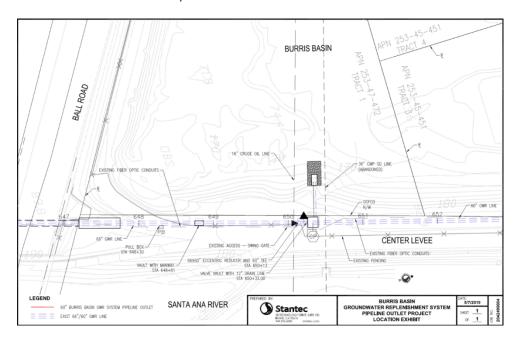


Figure 2 Existing Site Map

EXISTING CONDITIONS
July 1, 2019

2.2 PROPERTY OWNERSHIP

Burris Basin is owned and operated by OCWD. Burris Basin is adjacent to the Santa Ana River which is owned and operated by Orange County Flood Control District (OCFCD). Within the center levee, OCWD has an easement over the GWRS pipeline granted by OCFCD.

2.3 SITE TOPOGRAPHY

The existing site and surrounding terrain have been mapped by generating an aerial topo compiled at a 2-foot contour interval. OCWD has provided the topo and it has been used previously to construct the Burris and Lincoln Basins Reconfiguration Project (circa 2010) and more recently the Burris Basin Pump Station Project.

The project vertical and horizontal control are based on the following:

BASIS OF BEARINGS

THE BEARINGS SHOWN HEREON ARE BASED ON THE GRID BEARING "N 01°05'12" E" BETWEEN O.C.S. HORIZONTAL CONTROL STATION GPS NO. 3282 AND GPS NO. 5247R1 PER RECORDS ON FILE IN THE OFFICE OF THE ORANGE COUNTY SURVEYOR.

DATUM STATEMENT

COORDINATES ARE BASED ON THE CALIFORNIA COORDINATE SYSTEM (CCS83) ZONE VI, NAD 83 (2007.00 EPOCH ADJUSTMENT), AS PER RECORDS ON FILE IN THE OFFICE OF THE ORANGE COUNTY SURVEYOR.

BENCHMARK

THE ELEVATIONS SHOWN ARE BASED ON O.C.S. BENCHMARK 1L-57-82, USING NAVD88 ELEVATION OF 190.113', PER RECORDS ON FILE IN THE OFFICE OF THE ORANGE COUNTY SURVEYOR.

FIELD SURVEYS

Supplemental topography will be generated by Stantec field survey crews to verify the existing topography and obtain precise information at specific key features and join points. Surveyors will also be on-site when potholing occurs to capture horizontal and vertical location of potholed items.

Stantec's mapping specialist will research existing record maps / monumentation prior to field crews visiting the site. The survey crew will locate the monuments and confirm the basis of bearing calculated is accurate. The mapping base will be oriented / adjusted to match the field verified data.

EXISTING CONDITIONS July 1, 2019

2.4 UTILITIES

Existing utilities located within the project site have been identified on the schematic design. A DigAlert search was conducted resulting in a list of potential purveyors with utilities in the local vicinity of the project. The purveyors were contacted, and record information requested. The only utility known at this time to be in close proximity of the proposed improvements is included in the table below:

Table 2.1 Existing Utilities

Agency/Utility Contact		Email	Phone Number
16" Crude Oil Line	Cole Wright	cole.wright@dominionenergy.com	(307) 352-7115
12" GWRS Drain Line	Fernando Almario	falmario@ocwd.com	(714) 378-8220

2.5 CONSTRAINTS

Known project constraints that may affect the project design features include the following:

- Center levee
- Burris Basin operations
- OCFCD operations
- Existing GWRS pipeline and associated appurtenances

BASIS OF DESIGN July 1, 2019

3.0 BASIS OF DESIGN

3.1 DESIGN CRITERIA

The following subsections detail the design criteria to be used for the proposed improvements design.

3.1.1 Basin Grading

- 2:1 slopes minimum;
- positive drainage;
- 0.3% minimum slope for basin floor; and
- adherence to geotechnical recommendations.

3.1.2 Site Grading

- Adequate pad area for operations and maintenance;
- earthen ramps to basin floor at 15 feet wide;
- minimum inside turning radius of 30 feet;
- maximum slope of 10% for ramps; and
- fill material excavated from basin floor.

3.1.3 Mechanical Design Criteria

Pipeline design criteria:

- Material: steel with cement mortar coating and epoxy lining;
- corrosion protection commensurate with Geotech findings;
- Minimum cover: 48";
- Minimum slope: 0.0% for pressure lines;
- Steel wall thickness based on AWWA M11 5th edition (see Appendix for preliminary pipe wall thickness calculations):
 - o internal pressure,
 - o deflection, and
 - o buckling
- Pipe diameter based on:
 - o maximum design flow rate of about 155 cfs;
 - o maximum velocity of 8 fps
 - o Hazen Williams Equation and roughness coefficient C = 130

BASIS OF DESIGN July 1, 2019

Valve design criteria:

Butterfly Valves

- worm gear operators;
- electric motor and manual actuators; and
- Pratt or Dezurik BFVs and AUMA actuators or approved equal.

A single 60" isolation BFV is proposed at the existing GWRS pipeline 60" tee. This valve will be manually operated and buried.

Ball Valves

- Metal seated; and
- Pratt or Dezurik dependent upon available sizes.

Ball valves are proposed for all schematic design alternatives (see Section 4) for control of flow rates through the turnout structure. In alternatives 1 & 2, both ball valves will be controlled in tandem to achieve desired flow rate.

Meter design criteria:

- magnetic type with forward and reverse flow measurement capability;
- no bends, valves etc. within five pipe diameters upstream and three pipe diameters downstream (or per selected manufacturer's recommendations); and
- Khrone Tidaflux 4000 Series or approved equal.

Two mag meters are proposed for the 36" & 48" pipes in schematic design alternatives 1 & 2 (see Section 4), or a single mag meter for the 60" pipe in alternative 3.

Level sensor design criteria:

 Pressure transducer type (Druck) and / or ultrasonic type (Siemens AG) dependent upon installation location.

Water level sensors are proposed within the air gap structure (ultrasonic) and Burris Basin near the proposed dissipator structure (transducer).

3.1.4 Structural Design Criteria

Structures will include an air-gap and dissipator and will be designed to meet the following current edition criteria:

- California Building Code; and
- ACI 318-11 Building Code Requirements for Structural Concrete

BASIS OF DESIGN July 1, 2019

Material properties will meet the following:

- Concrete strength, f'c = 4,000 psi;
- Concrete cement type per project's Geotech Report corrosivity test results (Type II or V cement);
- Reinforcing steel, ASTM 615, Gr. 60, fy = 60,000 psi;
- Seismic Design Criteria obtained from USGS and the project's Geotechnical Report; and
- Soil design parameters obtained from the project's Geotechnical Report.

3.1.5 Electrical, Instrumentation and SCADA Design Criteria

Electrical design criteria:

- Comply with edition of the NEC recognized by the Authority Having Jurisdiction.
- Utilize the existing 100A, 277Y/480V electric service. The serving electric utility company is the City of Anaheim. The electric utility meter number is 58S422NKS.
- Expand the power distribution system that emanates from the existing electric service.
 The existing system consists of a 100A, 277Y/480 panelboard and a 10kVA, 480V:120/240V single phase transformer with 40A, 120/240V panelboard in the form of an integrated unit. A second similar integrated unit will be added if enough spare 120V circuits do not exist.

Instrumentation design criteria:

Control Panel

- Comply with edition of the NEC recognized by the Authority Having Jurisdiction.
- Expand the existing system Control Panel CPC-003 (GWRS Pipeline Valve Vault #3 Panel) to provide for additional level, flow and valve monitoring and control.
- The existing Phoenix Contact Inline Bus Coupler FL IL 24 BK-PAC 2862314 has since reached obsolescence and will need to be replaced. Existing modular I/O modules shall be reviewed for reuse.

Flow Control Ball Valves

 Provide I/O and connections for monitoring and control of two electric actuators associated with the flow control ball valves - valve control, position, limits and alerts etc.

Flow Meters

• Khrone Tidaflux 4000 Series or approved equal magnetic type with forward and reverse flow measurement capability; (Two FM's Design Alt. 1 & 2 or one FM for Design Alt. 3).

Level Measurement

• One Pressure transducer type (Druck) and / or ultrasonic type (Siemens AG) dependent upon final installation location.

BASIS OF DESIGN July 1, 2019

SCADA design criteria:

- Communications between the project site and the District's Central SCADA system located at the District's Field Headquarters is existing and makes use of fiber optic;
- Local PLCs will be Phoenix Contact InLine Series, Ethernet capable with standard PLC I/O and communication to level sensors, flow meters and motor operated valves;
- Data acquisition through the SCADA system to include air-gap structure water level, basin water level, flow rates, valve motor on/off and valve positioning;
- Remote control of valve motor on/off and valve positioning; and
- Automatic valve motor on/off in relationship to water level in the basin.

3.2 HYDRAULIC MODELING

Hydraulic modeling was conducted to determine water distribution effects due to the proposed Burris Basin turnout. Utilizing Innovyze InfoWater, the GWRS pipeline network model was updated to run the following scenarios:

- Scenario 1 The proposed Burris Basin turnout is closed and not being utilized.
- Scenarios 2A & 2B Considered "typical" operational ranges for the various basins, except for Kraemer Basin, which is closed under Scenarios 2A & 2B.
- Scenario 3 Assumes MET imports to Kraemer and Miller Basins and therefore no GWRS water to these basins.
- Scenario 4 This scenario delivers 100 mgd to Burris Basin and allows for Miraloma,
 Kraemer, and Miller to be placed offline for maintenance. La Palma Basin is allowed to
 flow at 13 mgd. This scenario would also apply if the groundwater producers stop
 pumping from the basin and are purchasing "in-lieu" water from MET (groundwater
 elevations in the basin would rise, thus Talbert Barrier injection would be ramped down).

BASIS OF DESIGN July 1, 2019

The table below summarizes actual water delivery flow rates analyzed.

Table 3.1 GWRS Operational Scenarios

		GWRS FLOW SCENARIOS (MGD)				
	1	2A	2B	3	4	
MBI Turnout	8	8	8	8	8	
Burris	0	7	10	25	100	
La Palma	65	65	65	65	13	
Miraloma	13	13	13	13	0	
Kraemer	25	0	0	0	0	
Miller	0	20	15	0	0	
Total GWRS Pumped Flow*	111	113	111	111	121	
Talbert Seawater Barrier	19	17	19	19	9	
TOTAL	130	130	130	130	130	

^{*}Note: Total GWRS Pumped Flow assumes an additional water source from the proposed Huntington Beach Desalination Plant. A total of 100 MGD will be the maximum GWRS Water Purification Plant output after final expansion.

Variable Speed Pump Control was added to the pumps in the model to simulate the existing variable frequency drive (VFD) system and to adjust the downstream pressure setting. In this analysis, the downstream pressure was set to 130 psi. The roughness coefficient was set at 130 for the transmission mains in the hydraulic model. In addition, the following weir heights were entered into the model.

La Palma: 231 Miraloma: 231 Miller: 234 Kraemer: 229

Appendix A.1 includes a hydraulic model exhibit and a representative pump curve. Since the total GWRS pumped flows do not vary much from one scenario to another, pump curves for a single scenario is included in Appendix A.1 and is intended to be representative of all provided scenarios.

In each of the five scenarios described in Table 3.1, the resulting pressures at Burris Basin, at the proposed elevations of 184 feet and 194 feet, were verified and summarized in Table 3.2 below. The analysis also verified that there would be sufficient pressure (i.e. positive pressure) for water to flow over the weir at each of the four existing basins. Model results in Table 3.2 below indicate the existing GWRS system will function as desired under the various flow scenarios. These results assume head needed to pump to the upper basins is available; however, the District understands a booster pump would be necessary to achieve the desired flow rates. Currently the booster pump is envisioned to reside at Burris Basin and would tie into the proposed GWRS Turnout infrastructure.

BASIS OF DESIGN July 1, 2019

Table 3.2 Model Results

		Pressu	re (psi)		Burris Basin
Scenario	Meets GWRS Flow Scenarios*	at 194 msel	at 194 msel at 184 msel		Turnout 60" CMC&EL Pipeline Velocity (ft/s)
1	Yes	19	24	-	-
2A	Yes	18	22	0.02 ft/1000ft	0.55
2B	Yes	19	24	0.04 ft/1000ft	0.79
3	Yes	19	24	0.20 ft/1000ft	1.97
4	Yes	9	14	2.57 ft/1000ft	7.88

^{*}Note: "Yes" in this category indicates that the GWRS system has adequate pressure to deliver water per the flow scenarios defined in Table 3.1 above.

3.3 GEOTECHNICAL INVESTIGATION

Stantec subconsultant, Ninyo & Moore (N&M), will conduct a geotechnical investigation. A "Drilling Program Plan" will be prepared for Corps of Engineers review prior to conducting the field work. The geotechnical recommendations will be incorporated into design criteria.

ALTERNATIVES July 1, 2019

4.0 ALTERNATIVES

4.1 ALTERNATIVES OVERVIEW

Stantec has developed two alternatives for OCWD consideration, a summary of which is presented below

Table 4.1 Alternatives

Alternative Number	Description
1	 Graded pad on Burris side of center levee large enough to allow access around turnout structure and air-gap structure. Earthen ramp allowing access to basin floor. 60" CMC&EL line and 60" butterfly valve connects to existing flange. 60" line runs northward and flanges into underground 60"x36" tee. 48" CMC&El steel pipe on tee run. 36" CMC&EL steel pipe on tee branch. 36" and 48" line bend vertically out of ground. 48" & 36" lines outlet into Air Gap structure with 15' wide weir 10'± above graded pad. Level sensor within Air Gap. Air Gap structure outlets to dissipation structure.
2	 Graded pad on Burris side of center levee large enough to allow access around turnout structure and air-gap structure. Earthen ramp allowing access to basin floor. 60" CMC&EL line and 60" butterfly valve connects to existing flange. 60" line runs northward and is entirely underground. Metering and valving on 60" line within vaults. 60" lines outlet into Air Gap structure with 15' wide weir 10'± above graded pad. Level sensor within Air Gap. Air Gap structure outlets to dissipation structure.

Additionally, an "option" is presented for OCWD's consideration. This option may apply to one or more above alternative:

• For both alternatives, an option to provide a blind flanged tee for future pump station connection is available to OCWD.

ALTERNATIVES July 1, 2019

4.2 ALTERNATIVES ANALYSIS

OCWD operational needs and cost will be considered in this decision. A matrix of considerations is presented below in Table 4.2.

Table 4.2 Alternatives Analysis

	Alternative 1 36" & 48" parallel lines	Alternative 2 Single 60" line
Design Objectives Met	3	3
Site Constraints Met	3	3
Cost	TBD	TBD
OCWD Operational Flexibility	3	2
Total Score	9	8

Note: "1" – Least Ideal, "2" – Sufficient and "3" – Most Ideal

Alternative 1 ranks the highest and is the recommended alternative for final design. This is primarily due to the greater operational flexibility it provides OCWD. Pipes in parallel act as bypasses if maintenance on either line is needed. Also, above ground assembly prevents the need for OCWD to work in a confined space. Preliminary Opinions of Probable Costs for each alternative have been prepared and are summarized below (see Appendix for line item costs):

- Alternative 1 \$xxx
- Alternative 2 \$xxx

PROJECT ADMINISTRATION July 1, 2019

5.0 PROJECT ADMINISTRATION

5.1 PERMITS

A summary of anticipated permits required for the project are included Table 5.1 below.

Table 5.1 Permits

Permit Type	Description	
OCFCD Property Encroachment Permit	An encroachment permit is necessary for the proposed improvements considering the existing tee falls within OC property.	
Army Corps 408 Permit	A 408 Permit will be required considering the proposed improvements fall with the center levee and therefor subject to Corps review.	
401 / 404 Permit	TBD	
1600 Permit	TBD	

5.2 TECHNICAL SPECIFICATIONS

The following is a preliminary list of anticipated technical specifications to be developed for the project construction documents:

Table 5.2 Technical Specifications

Section	Description					
Division 1 – C	Division 1 – General Project Provisions					
01000	General Safety Requirements					
01045	Existing Facilities					
01150	Measurement and Payment					
01300	Submittals					
01310	Project Control Schedule					
01430	Maintenance Manual Requirements					
Division 2 – C	Construction/Installation Provisions					
02100	Site Preparation					
02140	Dewatering and Drainage					
02201 Earthwork						
02220 Structure Backfill						
02221	02221 Demolition and Salvage					
02223	Trenching, Backfilling, and Compacting					

PROJECT ADMINISTRATION July 1, 2019

	<u> </u>				
Section	Description				
02271	Rip-Rap				
02433	Reinforced Concrete Pipe				
02444	Fencing				
02718	Installation of Water Pipeline				
	Concrete Provisions				
03150	Formwork for Cast-in-place Concrete				
03200	Reinforcing				
03260	Concrete Joints and Waterstops				
03300	Cast-in-Place Concrete				
03345	Concrete Finishing, Curing and Waterproofing				
03462	Precast Concrete Vaults and Meter Boxes				
Division 5 - N	1etals				
05120	Structural Steel				
05125	Miscellaneous Metals				
Division 9 – F	inishes (Coatings)				
	. ,				
09900	Painting and Protective Coatings				
09960	Protective Coating for Concrete Structures				
Division 11 –					
11005	General Mechanical and Equipment Provisions				
11293	Motor Operators				
11300	Meters				
11400	Level Sensors				
11500 Equipment House					
	Division 15 – Mechanical				
15042	Hydrostatic Testing of Pressure Pipelines				
15043	Leakage and Infiltration Testing of Non-Pressure Pipelines				
15051	Installation of Pressure Pipelines				
15076	Epoxy Lined and Cement Coated Steel Pipe				
15089	Air Valves				
15100	Butterfly Valves				
15101	Motor Operators				
15151	Water Facilities Identification				
15180	Flow Meters				
Division 16 –					
16010	General Electrical Requirements				
16111	Metal Conduit and Fittings				
16112	Plastic Conduit and Fittings				
16121	Low Voltage Wire and Cable				
16130					
16190					
16195	Identification				
16450	Grounding				
16461	Dry-Type Transformers				
16470	Panelboards				
	1				

PROJECT ADMINISTRATION July 1, 2019

Section Description					
16475 Molded Case Circuit Breakers					
Division 17 –	Division 17 – Programmable System Provisions				
17000 General Instrumentation Control Requirements					
17110 Identification Tags					
17200 Miscellaneous Instrumentation Equipment					
17300 PLCs and Programmable Operator Interfaces					
17330	SCADA System Hardware and Software				

REFERENCES July 1, 2019

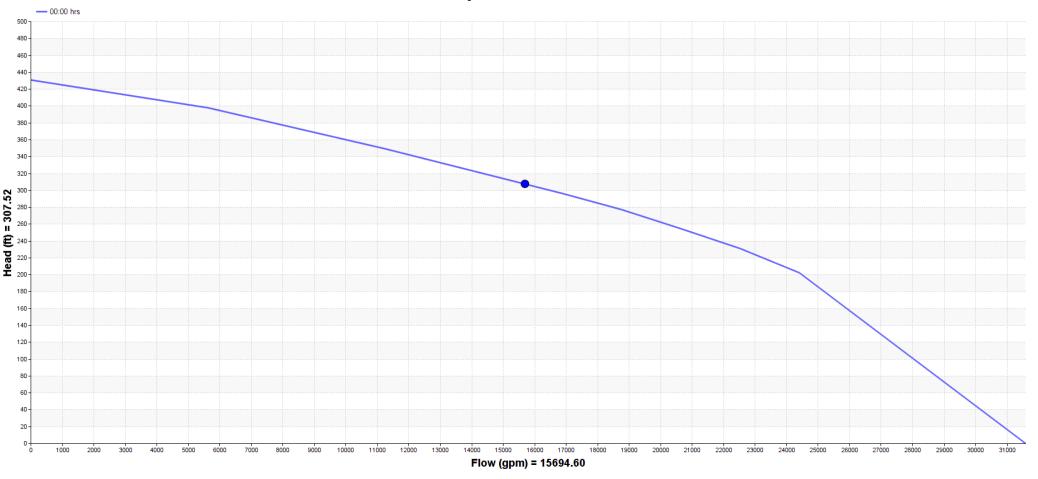
6.0 REFERENCES

1. Record Drawings for "Groundwater Replenishment Pipeline Unit III, Contract No. GWRS-2003-03", dated April 2003, prepared by Tetra Tech Inc.

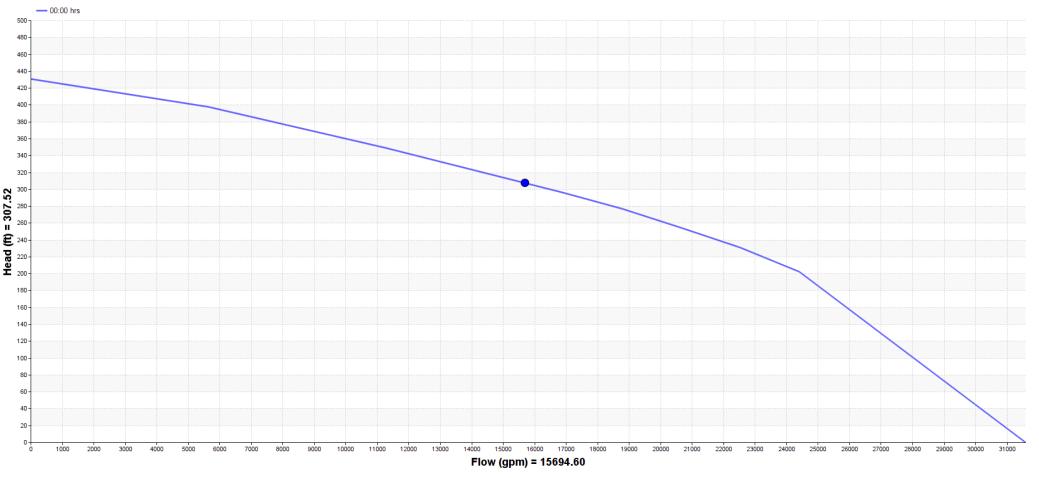
Appendix A July 1, 2019

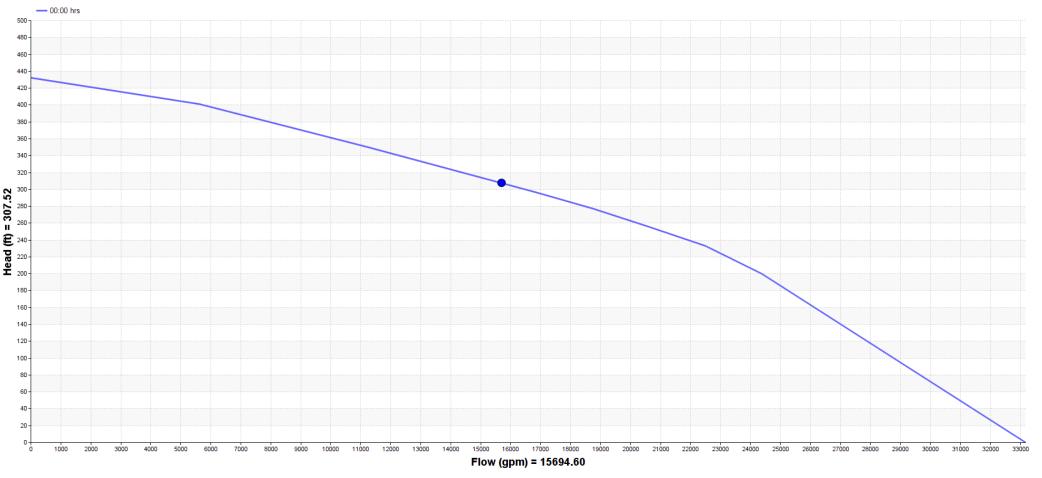
Appendix A

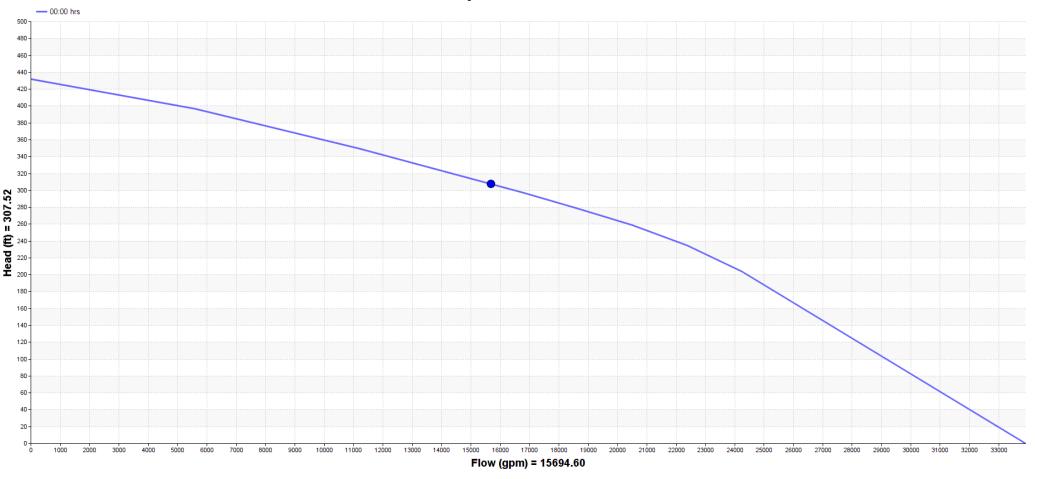
A.1 GWRS HYDRAULIC MODELING RESULTS

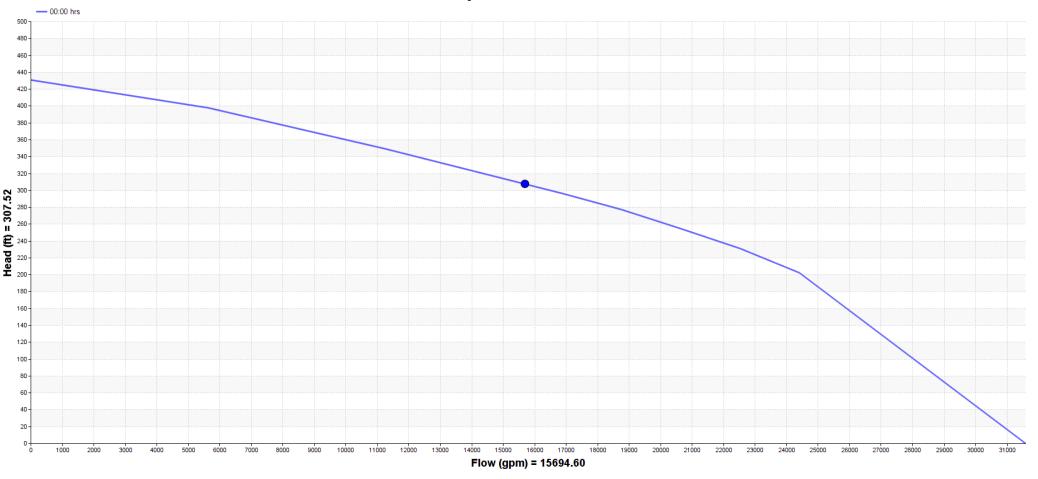

GWR Model Layout Exhibit

Typical Flow Scenario – GWR Pump Curves




Pump 5003 at 00:00 hrs


Pump 5009 at 00:00 hrs


Pump 5013 at 00:00 hrs

Pump 5015 at 00:00 hrs

Pump 5017 at 00:00 hrs

Appendix B July 1, 2019

Appendix B

B.1 PRELIMARY OPINION OF PROBABLE COSTS

Alternative 1 OPC

Alternative 2 OPC

Alternative 3 OPC

Appendix C July 1, 2019

Appendix C

C.1 PIPE WALL THICKNESS DESIGN

BUILDING A BETTER WORLD Client: (Client Name here)

Project: (Project Name Here) **Description:** (Description of what is being calculated, specific building, system, discipline, etc...)

Job No: xxxxxx By: (Author) Chkd By: xxx

Steel Pipe Wall Design - Trench Condition

Part	<u> </u>					7		Steel Cylinder Structural Calculations per AWWA M11 - Fourth Edition (2004)
Content			Pod Numbers =	Legend Input required				
## March 1997 1998		Input Section	Red Numbers -			Sheet Notes:	Pipe Reference Data	
## And The Principles 1964		Nominal Diameter of Pipe (DN, in.) =	48.000					Backfill Materials:
Application Company				Allowable Stress, Working (s _w ,psi), Y _s /SF _w =				
Part	ssure							relative compaction
## 19 Part of Control 19 P		1		Allowable Stress, Test/Shutoff (s _t , psi), Y _s /SF _t =	22,000			Standard AASHTO relative compaction
Description control (security (sec						■	_ ` - '	
## A PROPERTY OF THE CONTROL AND A P	P 8			Mortar Lining Thickness (t. in.) =	0.000			
Company Comp	1 a					50,000 psi - Flexible Lined and Coated pipe	<u> </u>	
March Process 1985 198	Ter M	÷ , ,		1		2A. MWH ID requirement is based on ID for 14" dia and larger.		with less than 25% 5-10 (1.5-3.1) 600 (4,140) 1,000 (6,895) 1,400 (9,655) 2,000 (13,790)
## 1990 1990	l - W		1.5	, , , ,			90 0.096	
## Company of the Com	ı v ⊲	Natural Ground Pipe Wall Thickness due to Pressure:	•					
A content of the property of						1	180 0.083	
Column C	를 를			11 7 11 1			**************************************	
Part Transport transport (1998) Part Part Transport (1998) Part Tran	E E					For OD 2 54 , use t2 (OD+20)/400 (MTT Eq 4-6).		Coarse-grained soils 2-5 (0.6-1.5) 700 (4,830) 1,000 (6,895) 1,600 (11,030) 2,500 (17,235)
Part Control Part	<u> </u>	Pipe Wall Thickness due to Handling/Co				5. Use the maximum of the wall thicknesses calculated by		
Part	Ē		-					
## An and Thomas Facility (1995) Company of the c	-					fitting.		
The content of the						C Minimum allowable and a social control of field and	•	
Street S		Pine Wall Thickness Results						Table 5-6 Values for the modulus of soil reaction E'_n for the native soil at pipe zone elevation
Miles Mile		The Wall Thickness results.				accounted carriagem to 0.00 pc.	(II) (III)	
## Service was now transport and the control of the	la.			Design OD/t =	98	1	6 0.1345	
Control Cont				Output Section		Notes for Designer:	<u> </u>	
Selection 10								
Part of the Control 1, 10 1 1 1 1 1 1 1 1 1		3 (3.7)		1		7 Limit Mortar Coating to 1" may in Ay Calculations		
Description of the part 1.00 1.		2.	_	1		7. Limit Wortan Coating to 1 max in Δx Calculations		
Preservation in graft temps of the profit te				1		8 Selection of F' value from Table 6-1 shall be limited to 85%	 	,
Part of the Control								
Column C				Coating moment of inertia (I _c , in ⁴ /linear in), t _c ³ /12 =				30-50 dense 4.0-6.0 hard 10,000
Loc. of Chicago and the cost of the cost				Mean radius (r, in), D/2 =	24.25	suitable E' value for pipeline design.	60 0.2500	>50 very dense >6.0 very hard 20,000
Longif Flooded carbon equal, and in the case of the control of the control of the case of the control of the case of the cas				u				
Wide of cased and five and a series of all points of a five properties of the prop				> Distributed load impact factor, I =	1.00			
Manual Control (1) Control		• • • • • • • • • • • • • • • • • • • •		Surphores load (My, pot) V U(a LH)/b LH)] =	1.010			Table 5-5 Values for the soil support combining factor S_c
Page 1						9. The deflection Lag factor is 1.0 for a pressurized pipe, however.	0.0000	M /M .
Figure Part						if the pipe will sit empty for periods of time the value would be	 	
Control Cont						greater than 1.0.		
Part						10. Saturated sail weight is accounted for using houseness		
Notice and modulating (C., pa) (See table 5 of part							 	0.05 0.10 0.15 0.20 0.27 0.38 0.58 0.80 1.00
Modular of the located factor (see Fig. 1) (and the first of the fir						(w/		0.1 0.15 0.20 0.27 0.35 0.46 0.65 0.84 1.00
Section Section Color Section Section Color Section Section Color Section Se	i ti		0.00	, , ,			Mortar Lining Thickness	
Description of process	l la	, , , , ,	0.00				MWH	
Defection Reserved Profession of Estimate Load and Definition of Live Load Francis Control (N _p , planear n.), Non-sealurated set) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	M ä ∈		1.50					
Enth Mod for Franch condition (W., Ibilinear In.), Non-salurated soil 1-005(1), 6, 1-12, 1			0					
Part Section for the condition (Mr., binness in), Non-selaturated soil: Non-Selatur	. 6- čti	Determination of Ext	ternal Load and Defle			-		
Determination of Live Load for HS-20 wheal Or Cooper E-80 Rational Cadding Single HS-20 trust live load on pipe from Island 6-5 Pt, poil 1 Single HS-20 trust live load on pipe from Island 6-5 Pt, poil 1 Single HS-20 trust live load on pipe from Island 6-5 Pt, poil 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live live load on pipe from Island 1 Single HS-20 trust live load search 1 Single HS-20 trust live live load island 1 Single HS-20 trust live live load 1 Single HS-20 trust live live live load 1 Single HS-20 trust live live live live live live live live	Eq.	Earth load for trench condition (W _c , lb/linear	in.). Non-saturated soil:		233.75	Non-saturated soil		2 1.70 1.50 1.40 1.30 1.20 1.10 1.05 1.00
Single H5:20 back the load on pape from baller 9-1 Pt., p.		, =	,			Non-saturated son		
Single H-S-20 tuck invoted on pop (Mp, billhear in), P,Bo/12 = 0.00								
## Alternate Hardward Market Variety Impact factor for highway (k, %) 33" (1-12kH) (10-4 mod assuring truck travel transverse to pips centraline (km) (km), km) (1-14kH) (km) (km) (km) (km) (km) (km) (km) (km								Note: In-between values of S_c may be determined by straight-line interpolation from adjacent values.
Impact factor for highway (f, %) 33"(+0.128H)/HD0 = Note: Neglective for highway (f, %) 33"(+0.128H)/HD0 = Note: Neglec			Single		0.00			Table 6.3: AMMA M44 Tunical Transh Section
Total live load assuming truck travel transverse to pipe centerine (W, bib.). [P(1+ /AB)+1 ,1,1,Mir(B,B.)] = 0 0.0				- · · · · · · · · · · · · · · · · · · ·	0%			
Total leve load assuming truck trave transverae to pipe contentine (W., ba). [P(1+)(AB)-ILL) B.Min(AB, B.) = 0. Total leve load assuming truck travel parallel to pipe centraline (W., ba). [P(1+)(AB)-ILL) B.Min(AB, B.) = 0. 0.0 b.								
HS-20 ALT, Maximum AASHTO HS-20 Passing truck live load on pipe (Wt, Ibrilinear in.), Max(Wt, Wb.) [Lt]-17,5(0/758)]/1 2 = 0.00 Railroad loading part AMMAM1, Railroad loading on pipe from table 6-3 (Wt, Ibrilinear in.) = 0.00 Suchtage loading on pipe (Wt, Ibrilinear in.) = 0.00 Total External Load Total external Load on pipe (Wt, Ibrilinear in.) = 0.00 Deflection Results (Eqn 6-5, AWMAM1) Vertical Horizontal deflection of the pipe (Xx in.), D, RW/7 (EH-0.0S1E*) = 1.28 Percent deflection, AVD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection of the pipe (X, in.), DRV/7 (Fell-0.0S1E*) = 1.00 Robert Internal vacuum pressure A 1. Allowable deflections used herein are set at 75% of allowable burdence with MWH A 0 0.55 Total Negative Pressure, ive load or only true of the pipe (X, in.), DRV/7 (Fell-0.0S1E*) = 1.00 Robert I				pipe centerline (W _T , lbs), [P(1+I _f)/(AB)+LL].A.Min(B,B _c) =	0		24 0.375 114 0.5	
HS-20 ALT, Maximum AASHTO HS-20 Passing truck live load on pipe (Wt, Ibrilinear in.), Max(Wt, Wb.) [Lt]-17,5(0/758)]/1 2 = 0.00 Railroad loading part AMMAM1, Railroad loading on pipe from table 6-3 (Wt, Ibrilinear in.) = 0.00 Suchtage loading on pipe (Wt, Ibrilinear in.) = 0.00 Total External Load Total external Load on pipe (Wt, Ibrilinear in.) = 0.00 Deflection Results (Eqn 6-5, AWMAM1) Vertical Horizontal deflection of the pipe (Xx in.), D, RW/7 (EH-0.0S1E*) = 1.28 Percent deflection, AVD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection of the pipe (X, in.), DRV/7 (Fell-0.0S1E*) = 1.00 Robert Internal vacuum pressure A 1. Allowable deflections used herein are set at 75% of allowable burdence with MWH A 0 0.55 Total Negative Pressure, ive load or only true of the pipe (X, in.), DRV/7 (Fell-0.0S1E*) = 1.00 Robert I					-			1 1800 2 3800 $ \mathcal{L} $ $ \mathcal{L}$
Rairoad loading on pipe from table 6-3 (M, Iblinear in.) = Surcharge loading on pipe (Wy, Bilhear in.) = Surcharge		HS-20 ALT,Maximum AASHTO HS-20 Passing	g truck live load on pipe		0.00			2 800 5 2400
Surcharge loading on pipe (Wy, bilinear in.) =			,		0.00			
Surcharge loading on pipe (Wy, lb/linear in.) = 357.67 Total External Load Total external load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 1.29 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (See note 14) = 9.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P, (Se			ŀ		0.00			5 250 12 800
Total external Load Total external load on pipe (W. Ibfilinear in.) = 591.42 Deflection Results (Eqn 6.5, AWWA M11) Verticall/Horizontal deflection of the pipe (aX, in.), D, [RWI ^P /(El+0.081Er ²)] = Percent deflection, ax/D = Percent deflection, ax/D = This is not a standard type of pipe Include internal vacuum pressure (P _w , psi) = Buckling factor of safety based on AWWA M11 (3rd Ed/4th Ed) Allowable buckling pressure (a, psi), (1/FS) [32 x, p8] Er(El/B _c) ^{11/S} = Total Negative Pressure, ive acuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{cley/B_c} + V _w (Sec Ne not 14) = 19.28 Total Negative Pressure,					357.67			6 200 15 600 H
Deflection Results (Eqn 6-5, AWWA M11) Vertical/Horizontal deflection of the pipe (aX, in), D _L [KW ³ / (EH-0.061Et ²)] = Percent deflection, ax/D = Percent deflection, ax/D = Percent deflection is Within Allowable Limits Include internal vacuum pressure Include internal vacuum pressure (P _v , psi) = Buckling factor of safety based on AWWA M-11 (3rd Ed/4th Ed) Allowable buckling pressure (Q _a , psi), (1/FS) [32 R _a B*E(EIBe ²]) ^{1/S} = 71.61 Total Negative Pressure, live load condition (psi), 0.0361h _w + R _w W _{clopy} /B _c + P _v (See note 14) = 19.28 Buckling Result : Deflection is Within Allowable Limits 1.29 2.65% Deflection Result : Deflection is Within Allowable Limits 42 0.5 44 0.5 44 0.5 44 0.5 44 0.5 44 0.5 48 0.5 50		Total External Load					38 0.5	7 176 20 300
Vertical/Horizontal deflection of the pipe (ΔX, in), D _k [KW ² /g (EH-0.06 1Er ²)) = 1.29 Percent deflection, Δx/D = Percent deflection is Within Allowable Limits		Doffee	tion Posulte (Ean 6 E		591.42			• •
Percent deflection, $\Delta ND = 2.65\%$ This is not a standard type of pipe Note		Defiect			1.29	3.33.33.		
Input Section Input Section 12. Where internal vacuum occurs with cover depth less than 4 ft 1.00						Deflection Result : Deflection is Within Allowable Limits		86/
Include internal vacuum pressure (Pw, psi) = Buckling factor of safety based on AWWA M-11 (3rd Ed/4th Ed) Allowable buckling pressure (qw, psi), (1/FS) [32 RwB'E'(El/Bc_3)](5 = Total Negative Pressure, vacuum condition (psi), 0.0361hw + RwWcdry/Bc + Pv_(See note 14) = Total Negative Pressure, vacuum condition (psi), 0.0361hw + RwWcdry/Bc + Pv_(See note 14) = Total Negative Pressure, vacuum condition (psi), 0.0361hw + RwWcdry/Bc + Pv_(See note 14) = 19.28 Number of Section (Signal Actor of safety based on AWWA M-11 (3rd Ed/4th Ed) Signal Carlo (Signal Result : Pipe stiffness acceptable) Number occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling fontone but not elses than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) allowable buckling pressure. (AWWA M11 sid Ed/4th Ed) Signal Carlo (Signal Result : Pipe stiffness acceptable) Number occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling fontone) but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Signal Carlo (Signal Result : Pipe stiffness acceptable) Number occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Signal Carlo (Signal Result : Pipe stiffness acceptable) Number occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Signal Carlo (Signal Result : Pipe stiffness acceptable) Signal Carlo (Signal				This is not a standard type of pipe				
Include internal vacuum pressure		Input Costion		Output Section		12. Where internal vacuum occurs with sover death less than 4.5		
Internal vacuum pressure (P _w , psi) = 14.70 H/B _c = 1.29 Buckling factor of safety based on AWWA M-11 (3rd Ed/4th Ed) 1.29 Buckling factor of safety, FS (See note 13) = 2.0 Allowable buckling pressure (q _a , psi), (1/FS) [32 R _w B'E'(El/B _c ³)] ^{0.5} = 71.61 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(day/} /B _c + P _w (See note 14) = 1.29 A.58 Trench Condition. Allowable buckling pressure (AWWA M11 buckling footnote) 56 0.5	ဖ တ်		Voc		1.00		<u> </u>	/*\\\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Buckling factor of safety, FS (See note 13) = 2.0 for all depths in buckling calculation. AWWA M11 3rd Ed Allowable buckling pressure (q _a , psi), (1/FS) [32 R _w B'E'(El/B _c ³)] ^{0.5} = 71.61 recommended FS=3.0 for H/B _c <2.0 and FS=2.5 for H/B _c ≥2. Total Negative Pressure, ive load condition (psi), 0.0361h _w + R _w W _{c(dry} /B _c + W _v /B _c (See note 14) = 4.58 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(dry} /B _c + P _v (See note 14) = 19.28 Buckling calculation. AWWA M11 3rd Ed recommended FS=3.0 for H/B _c <2.0 and FS=2.5 f	3 ult	•					 	Figure 4.3. Trench Condition.
Buckling factor of safety, FS (See note 13) = 2.0 for all depths in buckling calculation. AWWA M11 3rd Ed Allowable buckling pressure (q _a , psi), (1/FS) [32 R _w B'E'(El/B _c ³)] ^{0.5} = 71.61 recommended FS=3.0 for H/B _c <2.0 and FS=2.5 for H/B _c ≥2. Total Negative Pressure, ive load condition (psi), 0.0361h _w + R _w W _{c(dry} /B _c + W _v /B _c (See note 14) = 4.58 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(dry} /B _c + P _v (See note 14) = 19.28 Buckling calculation. AWWA M11 3rd Ed recommended FS=3.0 for H/B _c <2.0 and FS=2.5 f	Re. € 6-8			H/B.=		13 Design factor FS=2 0 is recommended by AWWA M11 4th Ed		
Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(dry)} /B _c + P _v (See note 14) = 19.28 Buckling Result : Pipe stiffness acceptable	ing 6-7, WA			Buckling factor of safety, FS (See note 13) =				
Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(dry)} /B _c + P _v (See note 14) = 19.28 Buckling Result : Pipe stiffness acceptable	ns.					recommended FS=3.0 for H/B _c <2.0 and FS=2.5 for H/B _c ≥2.		
	Eq. B.							
		Total Negative	e Pressure, vacuum cor	dition (psi), $0.0361h_w + R_w W_{c(dry)}/B_c + P_v$ (See note 14) =	19.28	Buckling Result : Pipe stiffness acceptable		

BUILDING A BETTER WORLD

Client: (Client Name here)

Project: (Project Name Here)

Description: (Description of what is being calculated, specific building, system, discipline, etc...)

Job No: xxxxxx By: (Author) Chkd By: XXX

Steel Pipe Wall Design - Trench Condi

Steel Pipe Wall Design - Trench Condition

|--|

Barlow Formula - Hoop Stress

$$t = \frac{pd}{2s}$$

Where:

t= minimum pipe wall thickness for the specified internal design pressure,

nn. (mm) p = internal design pressure, psi (kPa) d = outside diameter of pipe steel cylinder (not including coatings), in. (mm) s = allowable design stress, psi (kPa)

Buckling Equations

Allowable Buckling Pressure

$$q_a = \Big(\frac{1}{FS}\Big)\Big(32R_wB'E'\frac{EI}{D^3}\Big)^{1/2}$$

$$\gamma_w h_w + R_w \frac{W_c}{D} + \frac{W_L}{D} \le \gamma_w h_w + R_w \frac{W_c}{D} + P_v \le q_a$$

 $\begin{array}{l} h_w = \text{height of water above conduit in in. (mm)} \\ \gamma_w = \text{specific weight of water} = 0.0361 \text{ lb/cu in. } (0.0098 \text{ kPa/mm}^3) \\ P_v = \text{internal vacuum pressure in psi (kPa)} = \text{atmospheric pressure less} \\ \text{absolute pressure inside pipe, in psi (kPa)} \\ W_c = \text{vertical soil load on pipe per unit length, in lb/in. } (\text{kPa/mm}) \end{array}$

EARTH LOADING

$$W_c = C_c w B_c^2$$

 C_c = coefficient for embankment conditions, a function of soil properties.

For flexible pipe, the settlement ratio (Spangler 1947) is assumed to be zero, in which case

 H_c = height of fill above top of pipe in ft (m)

Then:

$$W_c = \frac{H_c}{B_c} w B_c^2 = w H_c B_c$$

PIPE DEFLECTION

 $Deflx = \frac{D_1 K W r^3}{EI + 0.0614E'r3}$

Deflx = Vertical deflection of pipe in inches, (not to exceed 0.015 times the nominal diameter for mortar-lined and coated pipe, 0.025 times the nominal diameter for

mortar-lined and dielectric coated pipe and 0.05 times the nominal diameter for dielectric lined and coated pipe.)

DL = Deflection lag factor.

K = Bedding constant
W = Vertical load on pipe, lb/in.
r = Mean radius of pipe shell, inches

EI = Pipe stiffness, lb in.

E.I.—I repesturiness, io in.

E.I.—Inpesturiness, io in.

E.I.—Modulus of soil reaction, lb/in2 A specific, rational method must be used to develop this number for soils at the site. The method must be reviewed.

Burris	Basin		30	."	Lin																				
TOOO TITELY TECHNON		27																							
ID	= 36									14															
00	= 36	.5"																							
D.	= 38	5"																							
D=	ID +	t - t	: :	36	25	5"																			
Ţ	25	-	-																						
1, -	: 1"					-																			
1	· O.																								
V.	50:	18.	125	I				T		T															
Ć.	SOL) =	18	75	•																				
LŮ	55							T	T																
L	± 0.							1					T												
1100	100"	1/012					1			T	T														
Ď.	- 15	71	-/-							T				\top											
V.	1.0							+		7	\exists	+			+										
T.	+x /10					-#	+	+		1			T												
	20	IVe											+												
E2	- JU x	10		\pm			+			\top															
날	ET		C (τ	. T	1		>	20	10	10	.25	3 1		1 10	16/	13	\ _	_	2-	70	20	C		
*	500	5	Lel	-11	+	را	+		٥) × [(5 (13		Ť	IXI) (. 12) (a)		J	1 4	J	10		
Ć.	55					-	+			2	+	+	+		+										
(0)	22												+		-		-								
1/5=	74			-	+	-	-	+	+					+			+								
LC.	- 17			+	-	-		+		-		+	+										_		
X 26	C O 11	16/			-	-	-	+			-		+				-								
0~=	= 2 62.4 14.7	161	¥2		-	-		+	-			-	+	+			-								
Pv =	17.1	Liv	۵					+				-	+	-											
					-	-	+		+				-	-									-	\dashv	
					-	-																			
					+	-	-		-		+	-			-										
					-		-	+	-		-				-	+					4				
						-		-	-				+			-									
						+	* 1	. 1		г,	1	· (-		1		-	-							
				-		+		Nº:	او :	Ė.	+0	aKe	v t	NON	1 t	ab	le E	١.) . F	155	um	C V	^05	<i>†</i>	
										'on	Ser	rat	ive.	3)	(9)	$dU_{\rm c}$	100	(DIA)	000	HO.	1 17	Lanl		1	1

Earth Load & Live Load	
$W_{c} = WH_{c}\left(\frac{D_{c}}{12}\right)$	(Eq. 5.3)
$= (120)(5.5)\left(\frac{38.5}{12}\right) \longrightarrow 2117.5 \%_{f+}$ 176.46 \%/in	or
Live Load - Cat 657	
P= 135,000 (axle load)	
P = 67,500 (single tire)	
tire dimension = 40.8" x 24.12"	
Surface Area = (40.8 x 24.12)/144 -> Surface Pressure = (67,500/6.834) ->	9877.09 6/42
$A_{r} = .5 (40.8/12) \longrightarrow 1.7$ $B_{r} = .5 (24.12/12) \longrightarrow 1.0$	
m = A+/He -> 1.7/5.5 -> .31 n = B+/He -> 1/5.5 -> .18	
Use table 5-2 for Newmark Vertical inf =.026	luence Coefficients
$W_{L} = (4)(.026)(9877.09) \longrightarrow 1027.9$	21 16/ft =
$W_{y}: W_{L}\left(\frac{D_{c}}{12}\right) \rightarrow 1027.21\left(\frac{36.25}{12}\right) -$	→ 3,295.63 16/4 274.64 16/10
W=Wc+WL→176.46+274.64-	> 451.096 16/in

Deflection $\Delta x = \left(\frac{D. KWr^3}{EI + .61E.r^3}\right)$	(Eq. 5.4)
(E1+.61Er3/ [(1.5)(.1)(451.10)(18.125) ³] (372396)+(.061(500)(18.125) ³)]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\%$ Deflection = $\frac{\Delta \times}{00} \rightarrow \frac{.73}{36.5} \rightarrow 2.0\%$	

Buckline	
	(1.2C _n)(EI).33(φ_s E'K _v).67 R _H (FS _B) r _o
99 =	(FS _B) r _o
	(1.2(.55))(372396) ^{.33} ((.9)(500)(.74)) ⁶⁷ R ₄
	(2)(18.25)
	$\Rightarrow \frac{2228.50 \text{R}_{\text{H}}}{36.5} \rightarrow 61.05 \text{R}_{\text{H}} \rightarrow \left[60.26 \frac{\text{lb}}{\text{lin}^{1}} \right]$
0	11.4 11.4
N _H	$= \frac{11.4}{11+\left(\frac{2}{H_c}\right)} \longrightarrow \frac{11.4}{\left(\frac{2}{5.5\times12}\right)} \longrightarrow .987$
	= \frac{\delta_w}{1728} Hw + Rw \frac{\delta_c}{12.00} + P_v
90	= 1728 Hw + Kw 12 Do + Tv
	(62.4) (0) + Rw (176.46 × 12) + (14.7)
	→ 4.83 Ry + 14.7 -> [19.53 lb/in]
R _w	$= 133 \left(\frac{H_{\omega}}{H_{e}}\right) \longrightarrow 133 \left(\frac{O}{5.5}\right) \longrightarrow 1$
\$c	5.26 ≥ 19.53 ✓

Table 6-4 Influence coefficients for rectangular areas

m = A/H				n = L	3/H or m =	A/H			
or $n = B/H$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.005	0.009	0.013	0.017	0.020	0.022	0.024	0.026	0.027
0.2	0.009	0.018	0.026	0.033	0.039	0.043	0.047	0.050	0.053
0.3	0.013	0.026	0.037	0.047	0.056	0.063	0.069	0.073	0.077
0.4	0.017	0.033	0.047	0.060	0.071	0.080	0.087	0.093	0.098
0.5	0.020	0.039	0.056	0.071	0.084	0.095	0.103	0.110	0.116
0.6	0.022	0.043	0.063	0.080	0.095	0.107	0.117	0.125	0.131
0.7	0.024	0.047	0.069	0.087	0.103	0.117	0.128	0.137	0.144
0.8	0.026	0.050	0.073	0.093	0.110	0.125	0.137	0.146	0.154
0.9	0.027	0.053	0.077	0.098	0.116	0.131	0.144	0.154	0.162
1.0	0.028	0.055	0.079	0.101	0.120	0.136	0.149	0.160	0.168
1.2	0.029	0.057	0.083	0.106	0.126	0.143	0.157	0.168	0.178
1.5	0.030	0.059	0.086	0.110	0.131	0.149	0.164	0.176	0.186
2.0	0.031	0.061	0.089	0.113	0.135	0.153	0.169	0.181	0.192
2.5	0.031	0.062	0.090	0.115	0.137	0.155	0.170	0.183	0.194
3.0	0.032	0.062	0.090	0.115	0.137	0.156	0.171	0.184	0.195
5.0	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
10.0	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
∞	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
-	H								
	1.0	1.2	1.5	2.0	2.5	3.0	5.0	10.0	∞
0.1	0.028	0.029	0.030	0.031	0.031	0.032	0.032	0.032	0.032
0.2	0.055	0.057	0.059	0.061	0.062	0.062	0.062	0.062	0.062
0.3	0.079	0.083	0.086	0.089	0.090	0.090	0.090	0.090	0.090
0.4	0.101	0.106	0.110	0.113	0.115	0.115	0.115	0.115	0.115
0.5	0.120	0.126	0.131	0.135	0.137	0.137	0.137	0.137	0.137
0.6	0.136	0.143	0.149	0.153	0.155	0.156	0.156	0.156	0.156
0.7	0.149	0.157	0.164	0.169	0.170	0.171	0.172	0.172	0.172
0.8	0.160	0.168	0.176	0.181	0.183	0.184	0.185	0.185	0.185
0.9	0.168	0.178	0.186	0.192	0.194	0.195	0.196	0.196	0.196
1.0	0.175	0.185	0.193	0.200	0.202	0.203	0.204	0.205	0.205
1.2	0.185	0.196	0.205	0.212	0.215	0.216	0.217	0.218	0.218
1.5	0.193	0.205	0.215	0.223	0.226	0.228	0.229	0.230	0.230
2.0	0.200	0.212	0.223	0.232	0.236	0.238	0.239	0.240	0.240
2.5	0.202	0.215	0.226	0.236	0.240	0.242	0.244	0.244	0.244
3.0	0.203	0.216	0.228	0.238	0.242	0.244	0.246	0.247	0.247
5.0	0.204	0.217	0.229	0.239	0.244	0.246	0.249	0.249	0.249
10.0	0.205	0.218	0.230	0.240	0.244	0.247	0.249	0.250	0.250
∞	0.205	0.218	0.230	0.240	0.244	0.247	0.249	0.250	0.250

Source: Newmark, N.M., Simplified Computation of Vertical Pressures in Elastic Foundations. Circ. 24. Engrg. Exp. Stn., Univ. of Illinois (1935).

Table 6-1 Values* of modulus of soil reaction, E' (psi) based on depth of cover, type of soil, and relative compaction

			Sta	andard A	ASHTO	relative c	ompacti	on [‡]		
	Depth	of Cover	8	5%	ę	90%	9	95%	1	00%
Type of Soil [†]	ft	(m)	psi	(kPa)	psi	(kPa)	psi	(kPa)	psi	(kPa)
Fine-grained soils with less than 25% sand content (CL, ML, CL-ML)	2–5 5–10 10–15 15–20	(0.06–1.5) (1.5–3.1) (3.1–4.6) (4.6–6.1)	500 600 700 800	(3,450) (4,140) (4,830) (5,520)	700 1,000 1,200 1,300	(4,830) (6,895) (8,275) (8,965)	1,000 1,400 1,600 1,800	(6,895) (9,655) (11,030) (12,410)	1,500 2,000 2,300 2,600	(10,340) (13,790) (15,860) (17,930)
Coarse-grained soils with fines (SM, SC)	2–5 5–10 10–15 15–20	(0.06-1.5) (1.5-3.1) (3.1-4.6) (4.6-6.1)	600 900 1,000 1,100	(4,140) (6,205) (6,895) (7,585)	1,000 1,400 1,500 1,600	(6,895) (9,655) (10,340) (11,030)	1,200 1,800 2,100 2,400	(8,275) (12,410) (14,480) (16,545)	1,900 2,700 3,200 3,700	(13,100) (18,615) (22,065) (25,510)
Coarse-grained soils with little or no fines (SP, SM, GP, GW)	2-5 $5-10$ $10-15$ $15-20$	(0.06-1.5) (1.5-3.1) (3.1-4.6) (4.6-6.1)	700 1,000 1,050 1,100	(4,830) (6,895) (7,240) (7,585)	1,000 1,500 1,600 1,700	(6,895) (10,340) (11,030) (11,720)	1,600 2,200 2,400 2,500	(11,030) (15,170) (16,545) (17,235)	2,500 3,300 3,600 3,800	(17,235) (22,750) (24,820) (26,200)

^{*} Hartley, James D. and Duncan, James M., "E' and its Variation with Depth." Journal of Transportation, Division of ASCE, Sept. 1987.

Table 6-2 Unified soil classification

Symbol	Description
GW	Well-graded gravels, gravel-sand mixtures, little or no fines
GP	Poorly graded gravels, gravel-sand mixtures, little or no fines
GM	Silty gravels, poorly graded gravel-sand-silt mixtures
GC	Clayey gravels, poorly graded gravel-sand-clay mixtures
sw	Well-graded sands, gravelly sands, little or no fines
\mathbf{SP}	Poorly graded sands, gravelly sands, little or no fines
\mathbf{SM}	Silty sands, poorly graded sand-silt mixtures
SC	Clayey sands, poorly graded sand-clay mixtures
ML	Inorganic silts and very fine sand, silty or clayey fine sands
CL	Inorganic clays of low to medium plasticity
$\mathbf{M}\mathbf{H}$	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
\mathbf{CH}	Inorganic clays of high plasticity, fat clays
OL	Organic silts and organic silt-clays of low plasticity
ОН	Organic clays of medium to high plasticity
Pt	Peat and other highly organic soils

Source: Classification of Soils for Engineering Purposes. ASTM Standard D2487-69, ASTM, Philadelphia, Pa. (1969).

 $^{^\}dagger$ Soil type symbols are from the Unified Classification System.

[‡] Soil compaction. When specifying the amount of compaction required, it is very important to consider the degree of soil compaction that is economically obtainable in the field for a particular installation. The density and supporting strength of the native soil should be taken into account. The densification of the backfill envelope must include the haunches under the pipe to control both the horizontal and vertical pipe deflections. Specifying an unobtainable soil compaction value can result in inadequate support and injurious deflection. Therefore, a conservative assumption of the supporting capability of a soil is recommended, and good field inspection should be provided to verify that design assumptions are met.

BUILDING A BETTER WORLD Client: (Client Name here)

Project: (Project Name Here) **Description:** (Description of what is being calculated, specific building, system, discipline, etc...)

Job No: xxxxxx By: (Author) Chkd By: xxx

Steel Pipe Wall Design - Trench Condition

Part	<u> </u>					7		Steel Cylinder Structural Calculations per AWWA M11 - Fourth Edition (2004)
Content			Pod Numbers =	Legend Input required				
## March 1997 1998		Input Section	Red Numbers -			Sheet Notes:	Pipe Reference Data	
## And The Principles 1964		Nominal Diameter of Pipe (DN, in.) =	48.000					Backfill Materials:
Application Company				Allowable Stress, Working (s _w ,psi), Y _s /SF _w =				
Part								relative compaction
## 19 Part of Control 19 P	2	1		Allowable Stress, Test/Shutoff (s _t , psi), Y _s /SF _t =	22,000			Standard AASHTO relative compaction
Description control (security (sec	nss					■	_ ` - '	
## A PROPERTY OF THE CONTROL AND A P	P 8	,		Mortar Lining Thickness (t. in.) =	0.000			
Company Comp	1 a					50,000 psi - Flexible Lined and Coated pipe	<u> </u>	
March Process 1985 198	Ter M	÷ , ,		1		2A. MWH ID requirement is based on ID for 14" dia and larger.		with less than 25% 5-10 (1.5-3.1) 600 (4,140) 1,000 (6,895) 1,400 (9,655) 2,000 (13,790)
## 1990 1990	l - W		1.5	, , , ,			90 0.096	
## Company of the Com	ı v ⊲	Natural Ground Pipe Wall Thickness due to Pressure:	•					
A content of the property of						1	180 0.083	
Column C	를 를			11 7 11 1			**************************************	
Part Transport transport (1998) Part Part Transport (1998) Part Tran	E E					For OD 2 54 , use t2 (OD+20)/400 (MTT Eq 4-6).		Coarse-grained soils 2-5 (0.6-1.5) 700 (4,830) 1,000 (6,895) 1,600 (11,030) 2,500 (17,235)
Part Control Part	<u> </u>	Pipe Wall Thickness due to Handling/Co				5. Use the maximum of the wall thicknesses calculated by		
Part	Ē		-					
## An and Thomas Facility (1995) Company of the c	-					fitting.		
The content of the						C Minimum allowable and a social control of field and	•	
Street S		Pine Wall Thickness Results						Table 5-6 Values for the modulus of soil reaction E'_n for the native soil at pipe zone elevation
Miles Mile		The Wall Thickness results.				accounted carriagem to 0.00 pc.	(II) (III)	
## Service was now transport and the control of the	la.			Design OD/t =	98	1	6 0.1345	
Control Cont				Output Section		Notes for Designer:	<u> </u>	
Selection 10								
Part of the Control 1, 10 1 1 1 1 1 1 1 1 1		3 (3.7)		1		7 Limit Mortar Coating to 1" may in Ay Calculations		
Description of the part 1.00 1.		2.	_	1		7. Limit Wortan Coating to 1 max in Δx Calculations		
Preservation in graft temps of the profit te				1		8 Selection of F' value from Table 6-1 shall be limited to 85%	 	,
Part of the Control								
Column C				Coating moment of inertia (I _c , in ⁴ /linear in), t _c ³ /12 =				30-50 dense 4.0-6.0 hard 10,000
Loc. of Chicago and the cost of the cost				Mean radius (r, in), D/2 =	24.25	suitable E' value for pipeline design.	60 0.2500	>50 very dense >6.0 very hard 20,000
Longif Flooded carbon equal, and in the case of the control of the control of the case of the control of the case of the cas				u				
Wide of cased and five and a series of all points of a five properties of the prop				> Distributed load impact factor, I =	1.00			
Manual Control (1) Control		• • • • • • • • • • • • • • • • • • • •		Surphores load (My, pot) V U(a LH)/b LH)] =	1.010			Table 5-5 Values for the soil support combining factor S_c
Page 1						9. The deflection Lag factor is 1.0 for a pressurized pipe, however.	0.0000	M /M .
Figure Part						if the pipe will sit empty for periods of time the value would be	 	
Control Cont						greater than 1.0.		
Part						10. Saturated sail weight is accounted for using houseness		
Notice and modulating (C., pa) (See table 5 of part							 	0.05 0.10 0.15 0.20 0.27 0.38 0.58 0.80 1.00
Modular of the located factor (see Fig. 1) (and the first of the fir						(w/		0.1 0.15 0.20 0.27 0.35 0.46 0.65 0.84 1.00
Section Section Color Section Section Color Section Section Color Section Se	i ti		0.00	, , ,			Mortar Lining Thickness	
Description of process	l la	, , , , ,	0.00				MWH	
Defection Reserved Profession of Estimate Load and Definition of Live Load Francis Control (N _p , planear n.), Non-sealurated set) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	M ä ∈		1.50					
Enth Mod for Franch condition (W., Ibilinear In.), Non-salurated soil 1-005(1), 6, 1-12, 1			0					
Part Section for the condition (Mr., binness in), Non-selaturated soil: Non-Selatur	. 6- čti	Determination of Ext	ternal Load and Defle			-		
Determination of Live Load for HS-20 wheal Or Cooper E-80 Rational Cadding Single HS-20 trust live load on pipe from Island 6-5 Pt, poil 1 Single HS-20 trust live load on pipe from Island 6-5 Pt, poil 1 Single HS-20 trust live load on pipe from Island 6-5 Pt, poil 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live load on pipe from Island 1 Single HS-20 trust live live load on pipe from Island 1 Single HS-20 trust live load search 1 Single HS-20 trust live live load island 1 Single HS-20 trust live live load 1 Single HS-20 trust live live live load 1 Single HS-20 trust live live live live live live live live	Eq.	Earth load for trench condition (W _c , lb/linear	in.). Non-saturated soil:		233.75	Non-saturated soil		2 1.70 1.50 1.40 1.30 1.20 1.10 1.05 1.00
Single H5:20 back the load on pape from baller 9-1 Pt., p.		, =	,			Non-saturated son		
Single H-S-20 tuck invoted on pop (Mp, billhear in), P,Bo/12 = 0.00								
## Alternate Hardward Market Variety Impact factor for highway (k, %) 33" (1-12kH) (10-4 mod assuring truck travel transverse to pips centraline (km) (km), km) (1-14kH) (km) (km) (km) (km) (km) (km) (km) (km								Note: In-between values of S_c may be determined by straight-line interpolation from adjacent values.
Impact factor for highway (f, %) 33"(+0.128H)/HD0 = Note: Neglective for highway (f, %) 33"(+0.128H)/HD0 = Note: Neglec			Single		0.00			Table 6.3: AMMA M44 Tunical Transh Section
Total live load assuming truck travel transverse to pipe centerine (W, bib.). [P(1+ /AB)+1 ,1,1,Mir(B,B.)] = 0 0.0				- · · · · · · · · · · · · · · · · · · ·	0%			
Total leve load assuming truck trave transverae to pipe contentine (W., ba). [P(1+)(AB)-ILL) B.Min(AB, B.) = 0. Total leve load assuming truck travel parallel to pipe centraline (W., ba). [P(1+)(AB)-ILL) B.Min(AB, B.) = 0. 0.0 b.								
HS-20 ALT, Maximum AASHTO HS-20 Passing truck live load on pipe (Wt, Ibrilinear in.), Max(Wt, Wb.) [Lt]-17,5(0)758_[]// 12 = 0.00 Railroad loading part AMMAM1, Railroad loading on pipe from table 6-3 (Wt, Ibrilinear in.) = 0.00 Suchtage loading on pipe (Wt, Ibrilinear in.) = 0.00 Total External Load Total external Load on pipe (Wt, Ibrilinear in.) = 0.00 Deflection Results (Eqn 6-5, AWMAM1) Vertical Horizontal deflection of the pipe (Xx in.), D, RW/7 (EH-0.0S1E*) = 1.28 Percent deflection, AVD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection of the pipe (X, in.), DRV/7 (Fell-0.0S1E*) = 1.00 Robert Internal vacuum pressure A 1. Allowable deflections used herein are set at 75% of allowable burdence with MWH and the deflections six of the pipe (X, in.), DRV/7 (Fell-0.0S1E*) = 1.00 Robert Internal vacuum pressure A 1. Al				pipe centerline (W _T , lbs), $[P(1+I_f)/(AB)+LL].A.Min(B,B_c) =$	0		24 0.375 114 0.5	
HS-20 ALT, Maximum AASHTO HS-20 Passing truck live load on pipe (Wt, Ibrilinear in.), Max(Wt, Wb.) [Lt]-17,5(0)758_[]// 12 = 0.00 Railroad loading part AMMAM1, Railroad loading on pipe from table 6-3 (Wt, Ibrilinear in.) = 0.00 Suchtage loading on pipe (Wt, Ibrilinear in.) = 0.00 Total External Load Total external Load on pipe (Wt, Ibrilinear in.) = 0.00 Deflection Results (Eqn 6-5, AWMAM1) Vertical Horizontal deflection of the pipe (Xx in.), D, RW/7 (EH-0.0S1E*) = 1.28 Percent deflection, AVD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection, LWD = 2.65% This is not a sindherd type of pipe Percent deflection of the pipe (X, in.), DRV/7 (Fell-0.0S1E*) = 1.00 Robert Internal vacuum pressure A 1. Allowable deflections used herein are set at 75% of allowable burdence with MWH and the deflections six of the pipe (X, in.), DRV/7 (Fell-0.0S1E*) = 1.00 Robert Internal vacuum pressure A 1. Al					-			1 1800 2 3800 $ \mathcal{L} $ $ \mathcal{L}$
Rairoad loading on pipe from table 6-3 (M, Iblinear in.) = Surcharge loading on pipe (Wy, Bilhear in.) = Surcharge		HS-20 ALT,Maximum AASHTO HS-20 Passing	g truck live load on pipe		0.00			2 800 5 2400
Surcharge loading on pipe (Wy, bilinear in.) =			,		0.00			
Surcharge loading on pipe (Wy, lb/linear in.) = 357.67 Total External Load Total external load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total External load on pipe (Wy, lb/linear in.) = 591.42 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.29 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.036 fth., *R,W _{clay/R} , *P _v , (See note 14) = 1.28 Total Regative Pressure, vacuum condition (psi), 0.0			ŀ		0.00			5 250 12 800
Total external Load Total external load on pipe (W. Ibfilinear in.) = 591.42 Deflection Results (Eqn 6.5, AWWA M11) Verticall/Horizontal deflection of the pipe (aX, in.), D., [RWi ² /(El+0.081E ²)] = Percent deflection, ax/D = Percent deflection, ax/D = This is not a standard type of pipe Include internal vacuum pressure (P _w , psi) = Buckling factor of safety based on AWWA M11 (3rd Ed/4th Ed) Allowable buckling pressure (a, psi), (1/FS) [32 R,pB*E(ElBe,)] ¹⁰ = 1.29 Buckling factor of safety based on AWWA M11 (3rd Ed/4th Ed) Allowable buckling pressure (a, psi), (1/FS) [32 R,pB*E(ElBe,)] ¹⁰ = 7.154 Negative Pressure, ive addition (psi), 0.0361h _{**} + R _{wictory} B _c + V _{wictory} B _c					357.67			6 200 15 600 H
Deflection Results (Eqn 6-5, AWWA M11) Vertical/Horizontal deflection of the pipe (aX, in), D _L [KW ³ / (EH-0.061Et ²)] = Percent deflection, ax/D = Percent deflection, ax/D = Percent deflection is Within Allowable Limits Include internal vacuum pressure Include internal vacuum pressure (P _v , psi) = Buckling factor of safety based on AWWA M-11 (3rd Ed/4th Ed) Allowable buckling pressure (Q _a , psi), (1/FS) [32 R _a B*E(EIBe ²]) ^{1/S} = 71.61 Total Negative Pressure, live load condition (psi), 0.0361h _w + R _w W _{clopy} /B _c + P _v (See note 14) = 19.28 Buckling Result : Deflection is Within Allowable Limits 1.29 2.65% Deflection Result : Deflection is Within Allowable Limits 42 0.5 44 0.5 44 0.5 44 0.5 44 0.5 44 0.5 48 0.5 50			Total External Loa	d , , , , , , , , , , , , , , , , , , ,			38 0.5	7 176 20 300
Vertical/Horizontal deflection of the pipe (ΔX, in), D _k [KW ² /g (EH-0.06 1Er ²)) = 1.29 Percent deflection, Δx/D = Percent deflection is Within Allowable Limits 1.29		Doffee	tion Posulte (Ean 6 E		591.42			• •
Percent deflection, $\Delta ND = 2.65\%$ This is not a standard type of pipe Note		Defiect			1.29	3.33.33.		
Input Section Input Section 12. Where internal vacuum occurs with cover depth less than 4 ft 1.00						Deflection Result : Deflection is Within Allowable Limits		86/
Include internal vacuum pressure (Pw, psi) = Buckling factor of safety based on AWWA M-11 (3rd Ed/4th Ed) Allowable buckling pressure (qw, psi), (1/FS) [32 RwB'E'(El/Bc_3)](5 = Total Negative Pressure, vacuum condition (psi), 0.0361hw + RwWc _{cdry} /Bc + Pv _c (See note 14) = Total Negative Pressure, vacuum condition (psi), 0.0361hw + RwWc _{cdry} /Bc + Pv _c (See note 14) = 19.28 Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling from the vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be exercised in defining allowable buckling pressure. (AWWA M11 buckling fontone) Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care should be vacreated in defining allowable buckling pressure. (AWWA M11 and Ed/4th Ed/50.5 Note internal vacuum occurs with cover depth less than 4 ft but not less than 2 ft care				This is not a standard type of pipe				
Include internal vacuum pressure		Input Costion		Output Section		12. Where internal vacuum occurs with sover death less than 4.5		
Internal vacuum pressure (P _w , psi) = 14.70 H/B _c = 1.29 Buckling factor of safety based on AWWA M-11 (3rd Ed/4th Ed) 1.29 Buckling factor of safety, FS (See note 13) = 2.0 Allowable buckling pressure (q _a , psi), (1/FS) [32 R _w B'E'(El/B _c ³)] ^{0.5} = 71.61 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(day/} /B _c + P _w (See note 14) = 1.29 A.58 Trench Condition. Allowable buckling pressure (AWWA M11 buckling footnote) 56 0.5	ဖ တ်		Voc		1.00		<u> </u>	/*\\\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Buckling factor of safety, FS (See note 13) = 2.0 for all depths in buckling calculation. AWWA M11 3rd Ed Allowable buckling pressure (q _a , psi), (1/FS) [32 R _w B'E'(El/B _c ³)] ^{0.5} = 71.61 recommended FS=3.0 for H/B _c <2.0 and FS=2.5 for H/B _c ≥2. Total Negative Pressure, ive load condition (psi), 0.0361h _w + R _w W _{c(dry} /B _c + W _v /B _c (See note 14) = 4.58 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(dry} /B _c + P _v (See note 14) = 19.28 Buckling calculation. AWWA M11 3rd Ed recommended FS=3.0 for H/B _c <2.0 and FS=2.5 f	3 ult	•					 	Figure 4.3. Trench Condition.
Buckling factor of safety, FS (See note 13) = 2.0 for all depths in buckling calculation. AWWA M11 3rd Ed Allowable buckling pressure (q _a , psi), (1/FS) [32 R _w B'E'(El/B _c ³)] ^{0.5} = 71.61 recommended FS=3.0 for H/B _c <2.0 and FS=2.5 for H/B _c ≥2. Total Negative Pressure, ive load condition (psi), 0.0361h _w + R _w W _{c(dry} /B _c + W _v /B _c (See note 14) = 4.58 Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(dry} /B _c + P _v (See note 14) = 19.28 Buckling calculation. AWWA M11 3rd Ed recommended FS=3.0 for H/B _c <2.0 and FS=2.5 f	Re. € 6-8			H/B.=		13 Design factor FS=2 0 is recommended by AWWA M11 4th Ed		
Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(dry)} /B _c + P _v (See note 14) = 19.28 Buckling Result : Pipe stiffness acceptable	ing 6-7, WA			Buckling factor of safety, FS (See note 13) =				
Total Negative Pressure, vacuum condition (psi), 0.0361h _w + R _w W _{c(dry)} /B _c + P _v (See note 14) = 19.28 Buckling Result : Pipe stiffness acceptable	ns.					recommended FS=3.0 for H/B _c <2.0 and FS=2.5 for H/B _c ≥2.		
	Eq. B.							
		Total Negative	e Pressure, vacuum cor	dition (psi), $0.0361h_w + R_w W_{c(dry)}/B_c + P_v$ (See note 14) =	19.28	Buckling Result : Pipe stiffness acceptable		

BUILDING A BETTER WORLD

Client: (Client Name here)

Project: (Project Name Here)

Description: (Description of what is being calculated, specific building, system, discipline, etc...)

Job No: xxxxxx By: (Author) Chkd By: XXX

Steel Pipe Wall Design - Trench Condi

Steel Pipe Wall Design - Trench Condition

|--|

Barlow Formula - Hoop Stress

$$t = \frac{pd}{2s}$$

Where:

t= minimum pipe wall thickness for the specified internal design pressure,

nn. (mm) p = internal design pressure, psi (kPa) d = outside diameter of pipe steel cylinder (not including coatings), in. (mm) s = allowable design stress, psi (kPa)

Buckling Equations

Allowable Buckling Pressure

$$q_a = \Big(\frac{1}{FS}\Big)\Big(32R_wB'E'\frac{EI}{D^3}\Big)^{1/2}$$

$$\gamma_w h_w + R_w \frac{W_c}{D} + \frac{W_L}{D} \le \gamma_w h_w + R_w \frac{W_c}{D} + P_v \le q_a$$

 $\begin{array}{l} h_w = \text{height of water above conduit in in. (mm)} \\ \gamma_w = \text{specific weight of water} = 0.0361 \text{ lb/cu in. } (0.0098 \text{ kPa/mm}^3) \\ P_v = \text{internal vacuum pressure in psi (kPa)} = \text{atmospheric pressure less} \\ \text{absolute pressure inside pipe, in psi (kPa)} \\ W_c = \text{vertical soil load on pipe per unit length, in lb/in. } (\text{kPa/mm}) \end{array}$

EARTH LOADING

$$W_c = C_c w B_c^2$$

 C_c = coefficient for embankment conditions, a function of soil properties.

For flexible pipe, the settlement ratio (Spangler 1947) is assumed to be zero, in which case

 H_c = height of fill above top of pipe in ft (m)

Then:

$$W_c = \frac{H_c}{B_c} w B_c^2 = w H_c B_c$$

PIPE DEFLECTION

 $Deflx = \frac{D_1 K W r^3}{EI + 0.0614E'r3}$

Deflx = Vertical deflection of pipe in inches, (not to exceed 0.015 times the nominal diameter for mortar-lined and coated pipe, 0.025 times the nominal diameter for

mortar-lined and dielectric coated pipe and 0.05 times the nominal diameter for dielectric lined and coated pipe.)

DL = Deflection lag factor.

K = Bedding constant
W = Vertical load on pipe, lb/in.
r = Mean radius of pipe shell, inches

EI = Pipe stiffness, lb in.

E.I.—I ripe sturmers, in in.

ET = Modulus of soil reaction, lb/in2 A specific, rational method must be used to develop this number for soils at the site. The method must be reviewed.

Page 2 of 2

							50	26	90°	% (Com	pact	ion	. A	oply	aF	:15.	of	2	(/2)	
				7	No	te	: E	ta	ken	troi	m t	able	5	-3	Ae	sur	res	me	tec	Con (1/2)	seru	atio
				-						,												
	10																					
										*												
P) =	4.7	/12			1-																	
χ	= 2 : 62.415 14.7	/f13																				
FS	1)													+							+	+
Υs ·	. 70																+					
ω .	.υ ა																			6		
L .	55			-									+		3.	-	-				+	+
* L, -	Ests +	te ()	L+ Lc			20	×10	1	2	* 4	×ΙU	1	2_	V	1	7 6	77	200	2		+	+
Eç.	4 × 10°	/in ²	-	-		2 4	100	اً_ ا	2)	/1	in	./ _\	ь — 4		+	_ ^	NE	01	2		-	+
Es:	20 × 10	/in²		-	-		\dashv			-											-	-
ν Ε	+./12	. Ib/		-																	-	
K =	.]				-					-											-	
D' =	1.5														4							
	10/	£4€		-																		
H	= O.																					
Ŭ.	5.5` •0`																				13	
I a	שטכ.	: 24	5"																			
r=.	= 48" = 49" = 51" ID+1 .5" 1" O"	4.25																			-31	
1 =	Q.,																					
13	<u>, , </u>				\top																	
1.	5"	h 15	10.0	-																	-	
0.	10-1		Uq E															1			+	+
00	= 49									-			-				-	-			-	+
TO	= 48				-								-									
T0	4			-	-								-									-
		1.0	Line	-	_	-			_	+				-		_	+	+-	-		_	+

					10	_																				_
	M	ء ع	w	Hc	9	<u>-</u>)													(E	.q.	5	.3)				-
												-		-					_	•	-	-	+-		+	+
		- 1	100	M	E, E	N	51	١.	_,	- 1	ar	5	0	16/st									+	-		+
)4	- /	1 🔼) IC	٠ .د	3) (_12	1			73	3	75	Ip	/: <u>.</u> `	31										t
	Li	re	Loc	4	_	- 1	C_{a}	+ 0	5	7																
																							-			_
					,OC																	_	-			+
		<u>P</u>	- 0	7 F	. 0.4				1		-	1														+
		_2	٠ ٧	>1,7	500) l	O	-	_	511	3	e +	الاف)												+
		1:				212	. 1	ns	χ	20	12	•														
		S	uta	ce	Are	Q =	(4	0.9	8 x	24	12)/	14	-	> (G.	831	4 6	+2		`/f+					
		S	arte	ice	Pr	255	ure	= (67	50	α	6.	83	4)	>	٠9	,87	17.	٥9	16	`/ f+	2				
						-							-													1
		A	1 -	۲.	(40	2)_		>																	+
		ט	τ_	. ک	(2	14.	12/	12) -		1.	U														+
		10.0		A	۲/	u.	_	>	1.	7/5	5 5	_	->	3	1											
		n		G	7	H	_	->	1.0	5/	5.5	_	~	3	દ											
						Ę	3-2	t	10	N.	W 4	ng,	ck	Ver	tice	i li	170	uen	ce	_C	seff;	cier	145			-
		=	0.	T @																						-
		1.	1 2	. (1	77(_	0.0	10	90	7 -7	~	1		_	10	n =	7.2		16/	rit						
	27																									
	a1.	V	J,	- V	J,) _c) _	->	10	27	2		12 12)	>	43	65	9.6	4"	,\t	0.				
	2		1				12						1		_		3	63	5.8	301	b/ir	or				
																								11.	\Rightarrow	
(+		V	J :	N	اره	N	اد		>	73	3.	15	.3/	in '		26	5.8	0	Viv	-	>\	747	.5	2 ,0	/in	

Det.	lection												
	Δ* :	(D.)	4 Wr3	-3						(Eq	5.4)		
							3	-1		1 7			
	1	100	5)(.l)	(597	.55)(°	24.25	011.0=5	. -					
		-											
		-(-)	2782	05.6	727		4 1 1 4	Q .					
			1080	778.	727 /		1.1	0 in					
				Λ.		1.190							
	%	Def1	ection	- 00	<u>×</u> ->	49	->	2.41	%				
												90	
			_										
					-								
												27	
												*	

Designed by: Checked by:

B	uckling (1.2Cn)(EI).33(4,E'Kv).67 R, (FSB) Vo
	1.2Cn)(EL) (PsEKu) Ku
	(FS ₈) v ₀
	(1.2(.55))(645833).33 ((.9)(500)(.74)).67 R, (2)(24.5)
	(2)(24.5)
	2672.52 RH > 50 50 90 1b/
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	11.4 11.4 11.4
	$R_{H} = \frac{11.4}{11+\left(\frac{2}{H_{c}}\right)} \longrightarrow \frac{11.4}{11+\left(\frac{2}{5.5\times12}\right)} \longrightarrow \frac{11.4}{11.73} \longrightarrow 971$
	9a = 3w Hw + Rw Wc + Pv
	9° 1728 ° 120° '
	(624) () (233.75 × 12)
	$\geq \frac{(62.4)}{1728}(0) + R_{w} \frac{(233.75 \times 12)}{(12 \times (49))} + (14.7) - \cdots$
-	4.770Rw + 14.7 -> [19.47 16/in2]
	$R_{w} = 133 \left(\frac{H_{w}}{H_{c}}\right) \longrightarrow 133 \left(\frac{0}{5.5}\right) \longrightarrow 1$
	52.96 ≥ 19.47 V
	34.16 = 11.77

Table 6-4 Influence coefficients for rectangular areas

m = A/H				n = I	B/H or m =	A/H			
or $n = B/H$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$\frac{n = B/H}{0.1}$	0.005	0.009	0.013	0.017	0.020	0.022	0.024	0.026	0.027
0.1	0.009	0.003	0.016	0.017	0.039	0.043	0.027	0.050	0.053
0.2	0.013	0.016	0.023	0.047	0.056	0.043	0.069	0.073	0.077
0.4	0.017	0.033	0.047	0.060	0.071	0.080	0.087	0.093	0.098
0.5	0.020	0.039	0.056	0.071	0.084	0.095	0.103	0.110	0.116
0.6	0.020	0.043	0.063	0.080	0.095	0.107	0.117	0.125	0.131
0.7	0.024	0.047	0.069	0.087	0.103	0.117	0.128	0.137	0.144
0.8	0.024	0.050	0.073	0.093	0.110	0.125	0.137	0.146	0.154
0.9	0.027	0.053	0.077	0.098	0.116	0.131	0.144	0.154	0.162
1.0	0.021	0.055	0.079	0.101	0.120	0.136	0.149	0.160	0.168
1.2	0.029	0.057	0.083	0.106	0.126	0.143	0.157	0.168	0.178
1.5	0.030	0.059	0.086	0.110	0.131	0.149	0.164	0.176	0.186
2.0	0.031	0.061	0.089	0.113	0.135	0.153	0.169	0.181	0.192
2.5	0.031	0.062	0.090	0.115	0.137	0.155	0.170	0.183	0.194
3.0	0.032	0.062	0.090	0.115	0.137	0.156	0.171	0.184	0.195
5.0	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
10.0	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
∞	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
*	0.002	0.002	0.000	0.110	0.20	0.200		0.200	
	1.0	1.2	1.5	2.0	2.5	3.0	5.0	10.0	∞
0.1	0.028	0.029	0.030	0.031	0.031	0.032	0.032	0.032	0.032
0.2	0.055	0.057	0.059	0.061	0.062	0.062	0.062	0.062	0.062
0.3	0.079	0.083	0.086	0.089	0.090	0.090	0.090	0.090	0.090
0.4	0.101	0.106	0.110	0.113	0.115	0.115	0.115	0.115	0.115
0.5	0.120	0.126	0.131	0.135	0.137	0.137	0.137	0.137	0.137
0.6	0.136	0.143	0.149	0.153	0.155	0.156	0.156	0.156	0.156
0.7	0.149	0.157	0.164	0.169	0.170	0.171	0.172	0.172	0.172
0.8	0.160	0.168	0.176	0.181	0.183	0.184	0.185	0.185	0.185
0.9	0.168	0.178	0.186	0.192	0.194	0.195	0.196	0.196	0.196
1.0	0.175	0.185	0.193	0.200	0.202	0.203	0.204	0.205	0.205
1.2	0.185	0.196	0.205	0.212	0.215	0.216	0.217	0.218	0.218
1.5	0.193	0.205	0.215	0.223	0.226	0.228	0.229	0.230	0.230
2.0	0.200	0.212	0.223	0.232	0.236	0.238	0.239	0.240	0.240
2.5	0.202	0.215	0.226	0.236	0.240	0.242	0.244	0.244	0.244
3.0	0.203	0.216	0.228	0.238	0.242	0.244	0.246	0.247	0.247
5.0	0.204	0.217	0.229	0.239	0.244	0.246	0.249	0.249	0.249
10.0	0.205	0.218	0.230	0.240	0.244	0.247	0.249	0.250	0.250
∞	0.205	0.218	0.230	0.240	0.244	0.247	0.249	0.250	0.250

Source: Newmark, N.M., Simplified Computation of Vertical Pressures in Elastic Foundations. Circ. 24. Engrg. Exp. Stn., Univ. of Illinois (1935).

Table 6-1 Values* of modulus of soil reaction, E' (psi) based on depth of cover, type of soil, and relative compaction

			Sta	andard A	ASHTO	relative c	ompacti	$\mathrm{on}^{\mathtt{I}}$		
	Depth	of Cover	8	5%	9	00%		95%	1	00%
Type of $Soil^{\dagger}$	ft	(m)	psi	(kPa)	psi	(kPa)	psi	(kPa)	psi	(kPa)
Fine-grained soils	2-5	(0.06-1.5)	500	(3,450)	700	(4,830)	1,000	(6,895)	1,500	(10,340)
with less than 25%	5-10	(1.5-3.1)	600	(4,140)	1,000	(6,895)	1,400	(9,655)	2,000	(13,790)
sand content (CL,	10 - 15	(3.1-4.6)	700	(4,830)	1,200	(8,275)	1,600	(11,030)	2,300	(15,860)
ML, CL-ML)	15-20	(4.6-6.1)	800	(5,520)	1,300	(8,965)	1,800	(12,410)	2,600	(17,930)
Coarse-grained soils	2-5	(0.06-1.5)	600	(4,140)	1,000	(6,895)	1,200	(8,275)	1,900	(13,100)
with fines (SM, SC)	5-10	(1.5-3.1)	900	(6,205)	1,400	(9,655)	1,800	(12,410)	2,700	(18,615)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10-15	(3.1-4.6)	1,000	(6,895)	1,500	(10,340)	2,100	(14,480)	3,200	(22,065)
	15-20	(4.6-6.1)	1,100	(7,585)	1,600	(11,030)	2,400	(16,545)	3,700	(25,510)
Coarse-grained soils	2–5	(0.06-1.5)	700	(4,830)	1,000	(6,895)	1,600	(11,030)	2,500	(17,235)
with little or no fines	5-10	(1.5-3.1)	1,000	(6,895)	1,500	(10,340)	2,200	(15,170)	3,300	(22,750)
(SP, SM, GP, GW)	10-15	(3.1-4.6)	1,050	(7,240)	1,600	(11,030)	2,400	(16,545)	3,600	(24,820)
(——, ·——, ——, ——,	15-20	(4.6-6.1)	1,100	(7,585)	1,700	(11,720)	2,500	(17,235)	3,800	(26,200)

^{*} Hartley, James D. and Duncan, James M., "E' and its Variation with Depth." Journal of Transportation, Division of ASCE, Sept. 1987.

Table 6-2 Unified soil classification

Symbol	Description
GW	Well-graded gravels, gravel-sand mixtures, little or no fines
GP	Poorly graded gravels, gravel-sand mixtures, little or no fines
GM	Silty gravels, poorly graded gravel-sand-silt mixtures
GC	Clayey gravels, poorly graded gravel-sand-clay mixtures
sw	Well-graded sands, gravelly sands, little or no fines
SP	Poorly graded sands, gravelly sands, little or no fines
\mathbf{SM}	Silty sands, poorly graded sand-silt mixtures
SC	Clayey sands, poorly graded sand-clay mixtures
ML	Inorganic silts and very fine sand, silty or clayey fine sands
CL	Inorganic clays of low to medium plasticity
\mathbf{MH}	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
CH	Inorganic clays of high plasticity, fat clays
OL	Organic silts and organic silt-clays of low plasticity
OH	Organic clays of medium to high plasticity
Pt	Peat and other highly organic soils

Source: Classification of Soils for Engineering Purposes. ASTM Standard D2487-69, ASTM, Philadelphia, Pa. (1969).

[†] Soil type symbols are from the Unified Classification System.

[‡] Soil compaction. When specifying the amount of compaction required, it is very important to consider the degree of soil compaction that is economically obtainable in the field for a particular installation. The density and supporting strength of the native soil should be taken into account. The densification of the backfill envelope must include the haunches under the pipe to control both the horizontal and vertical pipe deflections. Specifying an unobtainable soil compaction value can result in inadequate support and injurious deflection. Therefore, a conservative assumption of the supporting capability of a soil is recommended, and good field inspection should be provided to verify that design assumptions are met.

Client: (Client Name here)

Project: (Project Name Here)

Description: (Description of what is being calculated, specific building, system, discipline, etc...)

Job No: xxxxxx By: (Author) Chkd By: xxx

Steel Pipe Wall Design - Trench Condition
Steel Cylinder Structural Calculations per AWWA M11 - Fourth Edition (2004) Steel Pipe Wall Design - Trench Condition

			Legend		٦		Steel Cylinder Structural Calculations per AWWA M11 - Fourth Edition (2004)
		Red Numbers =	Input required		=		
	Input Section	00.000	Output Section		Sheet Notes:	Pipe Reference Data	Peakfill Matariala
	Nominal Diameter of Pipe (DN, in.) = Select type of Lining =	60.000 Epoxy	Allowable Stress, Working (s _w ,psi), Y _s /SF _w =	16,500		Bedding Constant K	Backfill Materials: Table 6.1 Values of modulus of soil reaction F (not) based on death of cover type of soil and
	Internal Working Pressure (p _w , psi) =	24.00	Allowable Stress, Working (s _w ,psi), T _s /SF _w =	22,000	1. MWH surge allowance is limited to 1.33 p _w - Use actual surge	Bedding Bedding	Table 6-1 Values* of modulus of soil reaction, \mathcal{E} (psi) based on depth of cover, type of soil, and relative compaction
	Test Pressure- (p _i , psi) =	150.00	Allowable Stress, Test/Shutoff (s _t , psi), Y _s /SF _t =	22,000	value if higher. (See Hydraulic Lead/Surge report for surge values)	Angle Constant	
an a	Transient Pressure (p _s , psi) [Limit to 1.33p _w] (See note 1) =	31.92			2. Yield Stress -Y _s limited to:	(degree)	Standard AASHTO relative compaction [‡]
e Si	Pump Shutoff Pressure (po, psi) =	300.00			33,000 psi - Mortar Lined and Coated pipe	0 0.11	Depth of Cover 85% 90% 95% 100%
<u>=</u> ~	Specified Minimum Yield Point of Steel (Y _s , psi) (See note 2) =	33,000	Mortar Lining Thickness (t _L , in.) =	0.000	42,000 psi - Mortar Lined - Flexible Coated pipe 50,000 psi - Flexible Lined and Coated pipe	30 0.108	Type of $Soil^{\dagger}$ ft (m) psi (hPa) psi (hPa) psi (hPa) psi (hPa) psi (hPa)
ž F	Safety Factor, Working (SF _w) =	2.0	Internal Diameter (ID, in.) =	60.00	CO,000 per 1 locable Emiss and Coales pipe	45 0.105	Fine-grained soils 2-5 (0.6-1.5) 500 (3,450) 700 (4,830) 1,000 (6,895) 1,500 (10,340)
<u> </u>	Safety Factor, Transient Pressure (SFs)=	1.5	ID requirement based on (see note 2A) =	MWH	2A. MWH ID requirement is based on ID for 14" dia and larger.	60 0.102	with less than 25% 5-10 (1.5-3.1) 600 (4,140) 1,000 (6,895) 1,400 (9,655) 2,000 (13,790) sand content (CL, 10-15 (3.1-4.6) 700 (4,830) 1,200 (8,275) 1,600 (11,030) 2,300 (15,860)
s for I	Safety Factor, Test Pressure/Pump Shutoff (SF _t) =	1.5				90 0.096	ML, CL-ML) 15-20 (4.6-6.1) 800 (5,520) 1,300 (8,965) 1,800 (12,410) 2,600 (17,930)
ess 1, A	Natural Ground Pipe Wall Thickness due to Pressure:	Min Steel Thi	ickness from Working Pressure Calc (t _w , in), p _w OD/(2s _w) =	0.0445	 Use OD/t = 240 for handling, unless justified otherwise, for mortar lined pipe. 	120 0.090 180 0.083	Coarse-grained soils 2-5 (0.6-1.5) 600 (4,140) 1,000 (6,895) 1,200 (8,275) 1,900 (13,100) with fines (SM, SC) 5-10 (1.5-3.1) 900 (6,205) 1,400 (9,655) 1,800 (12,410) 2,700 (18,615)
Thicknes (Eqn 4-1,			eel Thickness from Test Pressure Calc (t _i , in), p _i OD/(2s _t) =	0.2088	4. Use OD/t ≤ 288 for OD up to 54" (M11 Eq 4-5).	0.000	with fines (SM, SC) 5-10 (1.5-3.1) 900 (6,205) 1,400 (9,655) 1,800 (12,410) 2,700 (18,615) 10-15 (3.1-4.6) 1,000 (6,895) 1,500 (10,340) 2,100 (14,480) 3,200 (22,065)
草區			nickness from Transient Pressure Calc (t_s, in) , $p_sOD/(2s_s) =$	0.0444	For OD ≥ 54", use t≥ (OD+20)/400 (M11 Eq 4-6).	MWH	15-20 (4.6-6.1) 1,100 (7,585) 1,600 (11,030) 2,400 (16,545) 3,700 (25,510)
Ē		Min Steel	Thickness from Shutoff Pressure Calc (t _o ,in), p _o OD/(2s _t) =	0.4176		Min. Wall Thickness Requirements	Coarse-grained soils $2-5$ (0.6-1.5) 700 (4,830) 1,000 (6,895) 1,600 (11,030) 2,500 (17,235) with little or no fines $5-10$ (1.5-3.1) 1,000 (6,895) 1,500 (10,340) 2,200 (15,170) 3,300 (22,750)
l 를	Pipe Wall Thickness due to Handling/Co	-	User Defined OD/t =	98	5. Use the maximum of the wall thicknesses calculated by	Fittings and Specials - Thickness	(SP, SM, GP, GW) 10-15 (3.1-4.6) 1,050 (7,240) 1,600 (11,030) 2,400 (16,545) 3,600 (24,820)
Ē			ess for Handling (OD/t ≤ 240, mortar lining) (see note 3) =	0.2552	pressure, handling or the minimum thickness shown for the pipe or fitting.		15-20 (4.6-6.1) 1,100 (7,585) 1,700 (11,720) 2,500 (17,235) 3,800 (26,200)
			ess for Handling (OD/t ≤ 288, flexible lining) (see note 4) = 'hickness for Constructibility (from 'Min. Pipe Can' table) =	0.2031 0.2500	nung.	25" to 48" Dia 1/4" = 0.2500 Over 48" Dia 5/16" = 0.3125	Native Soils:
			Steel Thickness for User Specified Handling (OD/t ≤ 98) =	0.6250	6. Minimum allowable pressure to avoid vapor pressure of fluid and	•	
1	Pipe Wall Thickness Results:		Min Pipe Wall Thickness Required (t _{min} , in) (see note 5) =	0.6250	associated cavitation is -5.00 psi	ND, (in) Min. t, (in)	Table 5-6 Values for the modulus of soil reaction E'_n for the native soil at pipe zone elevation
	AIIIIKANAINK.	Standard	Pipe Wall Thickness per AWWA M11 Table A-1 (t _{std} , in) =	0.6250			Native in Situ Soils*
	land Cooking		Design OD/t =	98	Natos for Designary	6 0.1345 12 0.1345	Granular Cohesive $E'_n(pst)$
	Input Section Wall thickness to use in design (t _s , in) =	0.6250	Output Section Mean Dia (D, in), OD - t _s - t _l =	60.63	Notes for Designer:	12 0.1345 18 0.1345	Blows/ $\hat{\mathbf{n}}^{\dagger}$ Description $q_u(Tons/sf)$ Description
	Mortar Coating Thickness (t _c , in) (See note 7) =	1.00	Cylinder Outside Dia (OD, in), ID + 2t _L + 2t _s =	61.25		24 0.1345	>0-1 very, very loose >0-0.125 very, very soft 50
	Soil backfill type	Sand & gravel	Pipe Outside Dia (B _c , ft), OD + 2t _c =	5.271	7. Limit Mortar Coating to 1" max in ∆x Calculations	30 0.1345	1-2 very loose 0.125-0.25 very soft 200
	Depth of soil cover (H, ft) =	5.50	Wall stiffness (EI, in ⁴ /in), 30E10 ⁶ .I _s +4E10 ⁶ (I _L +I _c) =	943,685		36 0.1500	2-4 0.25-0.50 soft 700 4-8 loose 0.50-1.0 medium 1,500
	Distance beyond pipe OD to trench wall (m, ft) =	1.00	Steel moment of inertia (I _s , in ⁴ /linear in), t _s ³ /12 =	0.0203	8. Selection of E' value from Table 6-1 shall be limited to 85%	42 0.1750	8–15 slightly compact 1.0–2.0 stiff 3,000
	Trench width at top of the pipe (B _d , ft) = B _c + 2m	7.27	Lining moment of inertia (I _L , in //linear in), t _L //12 =	0.0000	relative compaction effort, unless otherwise approved by	48 0.2000	15-30 compact 2.0-4.0 very stiff 5,000
	Transition width (B _{dt} , ft) (Go to "transition" tab to calculate B _{dt})	8.57	Coating moment of inertia (I _c , in ⁴ /linear in), t _c ³ /12 =	0.0833	Geotechnical Engineer. Coordinate with Geotechnical Report for suitable E' value for pipeline design.	54 0.2250	80-50 dense 4.0-6.0 hard 10,000 >50 very dense >6.0 very hard 20,000
	Included additional load to apply to pipe	distributed load	Mean radius (r, in), D/2 = B _d /B _c =	30.31 1.38		60 0.2500 66 0.2750	>80 very dense >8.0 very nard 20,000
	Load, (Y, lbs)	67,500.0	Distributed load impact factor, I =	1.00		72 0.3000	Composite E' Coefficients:
	Length of loaded surface area, a (ft)	3.40				78 0.3250	Table 5-5 Values for the soil support combining factor S_c
	Width of loaded surface area, b (ft)	2.01	Surcharge load (Wy, psf), Y.I/[(a+H)(b+H)] =	1,010		84 0.3500	Table 5-5 Values for the soil support combining factor 52
	Unit weight of soil (w, pcf) =	120.00	Lane loading (LL, psf) =	0	9. The deflection Lag factor is 1.0 for a pressurized pipe, however,	90 0.3750	M_{sn}/M_{sb} $B_d/D = 1.25$ $B_d/D = 1.5$ $B_d/D = 1.75$ $B_d/D = 2$ $B_d/D = 2.5$ $B_d/D = 3$ $B_d/D = 4$ $B_d/D = 5$
	Height of water surface above top of pipe (h _w , ft) =	0.00	Wheel load spread width (A, ft), 5.67+fH =	0.00	if the pipe will sit empty for periods of time the value would be greater than 1.0.	96 0.4000	0.005 0.02 0.05 0.08 0.12 0.23 0.43 0.72 1.00
	Include saturated soil weight in deflection calc (Y/N) (see note 10) = Live load (HS-20 Single/HS-20 ALT./E80/NA)=	No NA	Wheel load spread length (B, ft), 0.83+fH = Alternate live load backfill factor (f) =	0.00 0.00	greater than 1.0.	102 0.4250 108 0.4500	0.01 0.03 0.07 0.11 0.15 0.27 0.47 0.74 1.00
	Modulus of soil reaction, E'	Per AWWA M11	Govn dimension parallel to long axis of pipe (L, ft) =	0.00	10. Saturated soil weight is accounted for using bouyancy	114 0.4750	0.02 0.05 0.10 0.15 0.20 0.32 0.52 0.77 1.00
	Modulus of the soil reaction (E', psi) (See table 6-1 and note 8) =	500.00	E' _n /E' _b =	NA	reduction factor (R _w).	120 0.5000	0.05 0.10 0.15 0.20 0.27 0.38 0.58 0.80 1.00
€ €	Native soil modulus (E' _n , psi) (See table 5-6) =	0.00	Modulus of soil reaction (E', psi) =	500.00			0.1 0.15 0.20 0.27 0.35 0.46 0.65 0.84 1.00
M1,	Modulus of the backfill soil (E' _b , psi) (See table 6-1 and note 8) =	0.00	Bedding constant (K) =	0.110		Mortar Lining Thickness	0.2 0.25 0.30 0.38 0.47 0.58 0.75 0.88 1.00 0.4 0.45 0.50 0.56 0.64 0.75 0.85 0.93 1.00
NA VA	Soil support combining factor (Sc) (See table 5-5) =	0.00	4			MWH	0.6 0.65 0.70 0.75 0.81 0.87 0.94 0.98 1.00
Calcul	Deflection lag factor (D _L , 1.0-1.5) (See note 9) = Select bedding angle (Θ, degree) =	1.50				Lining Lining Diameter Thickness Diameter Thickness	0.8 0.84 0.87 0.00 0.08 0.08 0.08 1.00 1.00
tion 6-5,		eternal Load and Deflec	ction for Trench Condition			(in) (in) (in) (in)	1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.
n. 6	Determination of Ex	tternar Load and Denet	Earth load		•	4 0.25 60 0.5	1.5 1.40 1.30 1.20 1.12 1.06 1.03 1.00 1.00
	Earth load for trench condition (W _c , lb/linear	in.), Non-saturated soil:	HwB _c /12 -or- Saturated soil: 0.0361h _w B _c + R _w HwB _c /12 =	289.90	Non-saturated soil	6 0.25 66 0.5	2 1.70 1.50 1.40 1.30 1.20 1.10 1.05 1.00
	Determination of Live Lo	ad for HS-20 wheel Or	Cooper E-80 Railroad Loading			8 0.25 72 0.5	3 2.20 1.80 1.65 1.50 1.35 1.20 1.10 1.00 ≥ 5 3.00 2.20 1.90 1.70 1.50 1.30 1.15 1.00
		Singl	Highway loading per AWWA M11	0.00		10 0.25 78 0.5 12 0.313 84 0.5	
		-	e HS-20 truck live load on pipe from table 6-3 (P _L , psf) = HS-20 truck live load on pipe (W _L ,lb/linear in.), P _L Bc/12 =	0.00		12 0.313 84 0.5 14 0.313 90 0.5	Note: In-between values of S_c may be determined by straight-line interpolation from adjacent values.
		Single	Alternate Highway loading per AASHTO	0.00		16 0.313 96 0.5	Table 6-3; AWWA M11 Typical Trench Section
			Impact factor for highway (I _f , %), 33*(1-0.125H))/100 =	0%		18 0.313 102 0.5	Highway HS-20 Load Railroad E-80 Load Natural Ground
			Total wheel load applied at the surface (P,lbs) =	0		20 0.313 108 0.5	Soil Cover Load Soil Cover Load
			pipe centerline (W _T , lbs), [P(1+I _f)/(AB)+LL].A.Min(B,B _c) =	0		24 0.375 114 0.5	ft psf ft psf
			pipe centerline (W _P , lbs), [P(1+I _f)/(AB)+LL].B.Min(A,B _c) =	0		26 0.375 120 0.5	1 1800 2 3800 1 $\frac{1}{800}$
	HS-20 ALT, MAXIMUM AASHTO HS-20 Passin	g truck live load on pipe	$(W_L, lb/linear in.), \{Max(W_T, W_P) / [L+1.75(0.75B_c)]\} / 12 = \frac{Railroad loading per AWWA M11}{Railroad loading per AWWA M11}$	0.00		28 0.375 126 0.5 30 0.375 132 0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		F	Railroad loading on pipe from table 6-3 (W _L , lb/linear in.) =	0.00		30 0.375 132 0.5 32 0.375 138 0.5	4 400 10 1100
		,	Surcharge loading	2.30		34 0.375 144 0.5	5 250 12 800
			Surcharge loading on pipe (Wy, lb/linear in.) =	443.58		36 0.375	6 200 15 600 H
		Total External Loa		700 40	11. Allowable deflections used herein are set at 75% of allowable deflections shown in AWWA M11, consistent with MWH	38 0.5	7 176 20 300
1	Deflec	ction Results (Eqn 6-5,	Total external load on pipe (W, lb/linear in.) = AWWA M11)	733.48	standards.	40 0.5 42 0.5	8 100 30 100 Note: Neglect live load when less than 100 psf; use
			I deflection of the pipe (ΔX , in), D_L [KWr ³ / (EI+0.061E'r ³)] =	1.88		44 0.5	dead load only.
			Percent deflection, $\Delta x/D =$	3.10%	Deflection Result: Deflection is Within Allowable Limits	46 0.5	85
			This is not a standard type of pipe		4	48 0.5	
	Input Section		Output Section		12. Where internal vacuum occurs with cover depth less than 4 ft	50 0.5 52 0.5	San
δ 6,	Include internal vacuum pressure	Yes	Water bouyancy factor (R _w), 1-(0.33(h _w /H)) =	1.00	but not less than 2 ft care should be exercised in defining	54 0.5	The state of the s
8, 6	Internal vacuum pressure (P _v , psi) =	14.70	Elastic support coefficient, (B'), 1 / (1+4e ^{-0.065H}) =	0.26	allowable buckling pressure. (AWWA M11 buckling footnote)	56 0.5	Figure 4.3. Trench Condition.
, 6 . ≅ .	Buckling factor of safety based on AWWA M-11 (3rd Ed/4th Ed)	4th Ed (2004)	H/B _c =	1.04	13. Design factor FS=2.0 is recommended by AWWA M11 4th Ed	58 0.5	
F-9			Buckling factor of safety, FS (See note 13) =	2.0	for all depths in buckling calculation. AWWA M11 3rd Ed		
Buckling Results (Eqns. 6-7, 6-8, 6-9, AWWA M11)			b buckling pressure (q _a , psi), (1/FS) [32 R _w B'E'(El/B _c ³)] ^{0.5} =	62.67	recommended FS=3.0 for H/B _c <2.0 and FS=2.5 for H/B _c ≥2.		
а ў	The state of the s		ion (psi), $0.0361h_w + R_w W_{c(dry)}/B_c + W_L/B_c$ (See note 14) =	4.58	14. Total negative pressure does not include surcharge load.		
	i otal Negativo	e messure, vacuum con	ndition (psi), $0.0361h_w + R_wW_{c(dry)}/B_c + P_v$ (See note 14) =	19.28	Buckling Result : Pipe stiffness acceptable		

BUILDING A BETTER WORLD

Client: (Client Name here)

Project: (Project Name Here)

Description: (Description of what is being calculated, specific building, system, discipline, etc...)

Job No: xxxxxx By: (Author) Chkd By: XXX

Steel Pipe Wall Design - Trench Condi

Steel Pipe Wall Design - Trench Condition

|--|

Barlow Formula - Hoop Stress

$$t = \frac{pd}{2s}$$

Where:

t= minimum pipe wall thickness for the specified internal design pressure,

nn. (mm) p = internal design pressure, psi (kPa) d = outside diameter of pipe steel cylinder (not including coatings), in. (mm) s = allowable design stress, psi (kPa)

Buckling Equations

Allowable Buckling Pressure

$$q_a = \Big(\frac{1}{FS}\Big)\Big(32R_wB'E'\frac{EI}{D^3}\Big)^{1/2}$$

$$\gamma_w h_w + R_w \frac{W_c}{D} + \frac{W_L}{D} \le \gamma_w h_w + R_w \frac{W_c}{D} + P_v \le q_a$$

 $\begin{array}{l} h_w = \text{height of water above conduit in in. (mm)} \\ \gamma_w = \text{specific weight of water} = 0.0361 \text{ lb/cu in. } (0.0098 \text{ kPa/mm}^3) \\ P_v = \text{internal vacuum pressure in psi (kPa)} = \text{atmospheric pressure less} \\ \text{absolute pressure inside pipe, in psi (kPa)} \\ W_c = \text{vertical soil load on pipe per unit length, in lb/in. } (\text{kPa/mm}) \end{array}$

EARTH LOADING

$$W_c = C_c w B_c^2$$

Where:

 C_c = coefficient for embankment conditions, a function of soil properties.

For flexible pipe, the settlement ratio (Spangler 1947) is assumed to be zero, in which case

 H_c = height of fill above top of pipe in ft (m)

Then:

$$W_c = \frac{H_c}{B_c} w B_c^2 = w H_c B_c$$

PIPE DEFLECTION

 $Deflx = \frac{D_1 K W r^3}{EI + 0.0614E'r3}$

Deflx = Vertical deflection of pipe in inches, (not to exceed 0.015 times the nominal diameter for mortar-lined and coated pipe, 0.025 times the nominal diameter for

mortar-lined and dielectric coated pipe and 0.05 times the nominal diameter for dielectric lined and coated pipe.)

DL = Deflection lag factor.

K = Bedding constant
W = Vertical load on pipe, lb/in.
r = Mean radius of pipe shell, inches

EI = Pipe stiffness, lb in.

E.I.—I ripe sturmers, in in.

ET = Modulus of soil reaction, lb/in2 A specific, rational method must be used to develop this number for soils at the site. The method must be reviewed.

Page 2 of 2

Burris	Basin	- CO.,	line												\blacksquare
TO	= 60° = 61.25 = 6250 = 120° = 155 = 1.5 = 1.5														+
70	G17E														+
1	- C25C														-
12	11.														
w	= 120 1b	/\$12													
He:	5.5														
De	- 63.25	3													
D,	= 1.5														
IK_	= .			- 4											_
- r	: .5U -	→ 30	.3125								7.00				
U:	IO+	+++-	→ 60.º	225				-		3					+
1	20 106	، ارما د						-							-
13	70×10	, 16/. 2													+
ĒŤ.	F.T.	L (T	. 7.	-> 3	0-10	61.62	50)	+ 4	1 = 10	• (_'		0)	1 ->	943	5
Ţ:	+3/12	Le (1, 1	2 '			1,	2				
*E	= 500								14						
C.	= .55														
φς	٠.٩														_
K	= .74														4
FS	B = 2		2 - 0 0 -												-
ro	10 C. :		50.625	+											+
0w	12 67.4	_\t+ 2											-		-
0	u = 0 = 14.7 18	2/. 2								++			++		+
	- 1 1. 7	112													
									4						
													25		_
				×			Not. Assu Com	e E	tak	en fr	om t	able	2-3	2	
							Aoou	me r	nost	Cons	ervati	ive S	6	90	16
		la l					Com	pacti	on. A	pply '	12	F.S.			

Def								7	È	Liv	je '	Lo	a q		×					-8							
	N	ار =	w	Hc	$\binom{7}{l}$	<u>د</u>))											(Eq	5	.3)					
		=	(11	20)	(5	0.5	1/9	3	.2.E	<u></u>	_	->	3	4-	79	75	1b	(Cr		or							
							1		· <u>L</u>					2	89	90) Ib	lie								3	_
	L	ive	L	۰ď	-	-	C	a ∤	G	5 7																	
		P	= \?	35 ,	00	00	lb			(م	xle	. 10	be	>													
		<u>P</u> 2	- 2	6-	1,5	000) I/	2		(و	ine	Je	tive	7	2												
		łi	re	din	nen t	sio r	\ <u>:</u>	40).B`	×	24	.12		,							0.	2					
		S	uv	faci	en: A P	120 185	sure	(4 : =	0. (6	ზ × 7,!	Ος	(O)	(.8	34	:) 	 ->	9	8.8° 87	34 1.0	17 PC	16	ft*				
) (*																	•					
					s (:																		9				
					AT He								7														
			-	ì	B, He	Ì		>	. 1	ъ																	
				Ľ	He								\			- V-0	1 2	12			_	2.	ρ	1			-
				720			، - د	4	101	1/	Jeu	1 W	dΛ.K		164	r, C0	1	In T	uer	ic t		1 3 t	1121	EN T	3		
		V	ار	= (4)(٥. ي	26	λĊ	98	71	.0	1)		->	10	27	.21	110	/f +	2_ •	. سورو						
							ο.	_						- 41		८. ३.२					100			. 11	0.		
			N,	=	W	_ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>-</u>)		→	10	D5.	7.2	1	= ا	12)		→ !	54 45	14 14	.25	<i>''</i>	0/f+	٥	<u></u>
			W	= V	ار	+ \	77		→ '	18	9 0	۹ +	4	51	19	V —	>[74	11.	09	16	in	1			1	

De	flec																									
	Δ	× =		D, ET	K	W	r ³									1				(E.	, '	٠.٥	(۱		
		01	(1	.5)(.1)	(7	41	00	1)(30	.3	125	3)		1										
		-	(9	143	69	54	٠.	Oé	J (50	0)	(3	0.3	129	3)	1										
			3	00	16	189	૧. ા	19																		
		->	1	79	13	18	7.	37	2	_		>	١.	12	L i											
	%	D	efl	ec	tic	n	ي ج	Z×		~	_1	ר.	2_		_	2	8	۱°/,								
							(90			E	1.7	5													
																	_								27	
	i,																									
																						£				
										,		- 1														
																										4

Duc	kling		0.0	\	T 1.2	31	4 F		.67 c											_
	ga "	(1.	LC	^)(t	.1) (FS	8) r	φ _s t.	Kv)		, M					(E.	V	5.7)		
	2	(1.2	.(.:	((20	(94	<u> 36</u>	84)	.33((. 9)(.500	λ(:	74))	.67	R _H						
						2 (30.	625												
		30	28.º	831	Ry S	•	→ 4	19.4	15 R	ч	-	> 4	7.2	א ר'	b/in	2				
20	R =	11	.4 +(2.	·/u.	1	->	11	4 2 (30	3125	<u>,)</u>	>	11.	4 .92	1	> .'	95	6		
							1 1			×12										
	d" =							•												
		<u> </u>	,2.4 ,729	-0	+ R	~ı -	12	.(61	×12	2)	(10	4.7)	-		••••					
•••		4.7	કેઉ	R 22	+ 14	۲.7		<u> </u>	4.	133	(1)	+ 14	7 -	->	. 10	1.43	53	1b/	in ²	
	Rw=	١	33	(H _w H _e	-) -		>	- 2	3 (<u>0</u> 5.5)	->									_
	47.2	7 ≥	19.	433	~															_
																				_
																			-	_
																				_

Table 6-4 Influence coefficients for rectangular areas

m = A/H				n = B	H or $m =$	A/H			
or $n = B/H$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.005	0.009	0.013	0.017	0.020	0.022	0.024	0.026	0.027
0.2	0.009	0.018	0.026	0.033	0.039	0.043	0.047	0.050	0.053
0.3	0.013	0.026	0.037	0.047	0.056	0.063	0.069	0.073	0.077
0.4	0.017	0:033	0.047	0.060	0.071	0.080	0.087	0.093	0.098
0.5	0.020	0.039	0.056	0.071	0.084	0.095	0.103	0.110	0.116
0.6	0.022	0.043	0.063	0.080	0.095	0.107	0.117	0.125	0.131
0.7	0.024	0.047	0.069	0.087	0.103	0.117	0.128	0.137	0.144
0.8	0.026	0.050	0.073	0.093	0.110	0.125	0.137	0.146	0.154
0.9	0.027	0.053	0.077	0.098	0.116	0.131	0.144	0.154	0.162
1.0	0.028	0.055	0.079	0.101	0.120	0.136	0.149	0.160	0.168
1.2	0.029	0.057	0.083	0.106	0.126	0.143	0.157	0.168	0.178
1.5	0.030	0.059	0.086	0.110	0.131	0.149	0.164	0.176	0.186
2.0	0.031	0.061	0.089	0.113	0.135	0.153	0.169	0.181	0.192
2.5	0.031	0.062	0.090	0.115	0.137	0.155	0.170	0.183	0.194
3.0	0.032	0.062	0.090	0.115	0.137	0.156	0.171	0.184	0.195
5.0	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
10.0	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
00	0.032	0.062	0.090	0.115	0.137	0.156	0.172	0.185	0.196
						2			
	1.0	1.2	1.5	2.0	2.5	3.0	5.0	10.0	00
0.1	0.028	0.029	0.030	0.031	0.031	0.032	0.032	0.032	0.032
0.2	0.055	0.057	0.059	0.061	0.062	0.062	0.062	0.062	0.062
0.3	0.079	0.083	0.086	0.089	0.090	0.090	0.090	0.090	0.090
0.4	0.101	0.106	0.110	0.113	0.115	0.115	0.115	0.115	0.115
0.5	0.120	0.126	0.131	0.135	0.137	0.137	0.137	0.137	0.137
0.6	0.136	0.143	0.149	0.153	0.155	0.156	0.156	0.156	0.156
0.7	0.149	0.157	0.164	0.169	0.170	0.171	0.172	0.172	0.172
0.8	0.160	0.168	0.176	0.181	0.183	0.184	0.185	0.185	0.185
0.9	0.168	0.178	0.186	0.192	0.194	0.195	0.196	0.196	0.196
1.0	0.175	0.185	0.193	0.200	0.202	0.203	0.204	0.205	0.205
1.2	0.185	0.196	0.205	0.212	0.215	0.216	0.217	0.218	0.218
1.5	0.193	0.205	0.215	0.223	0.226	0.228	0.229	0.230	0.230
2.0	0.200	0.212	0.223	0.232	0.236	0.238	0.239	0.240	0.240
2.5	0.202	0.215	0.226	0.236	0.240	0.242	0.244	0.244	0.244
3.0	0.203	0.216	0.228	0.238	0.242	0.244	0.246	0.247	0.247
5.0	0.204	0.217	0.229	0.239	0.244	0.246	0.249	0.249	0.249
10.0	0.205	0.218	0.230	0.240	0.244	0.247	0.249	0.250	0.250
	0.205	0.218	0.230	0.240	0.244	0.247	0.249	0.250	0.250

Source: Newmark, N.M., Simplified Computation of Vertical Pressures in Elastic Foundations. Circ. 24. Engrg. Exp. Stn., Univ. of Illinois (1935).

Table 6-1 Values* of modulus of soil reaction, E' (psi) based on depth of cover, type of soil, and relative compaction

			Sta	andard A	ASHTO	relative c	ompacti	on [‡]		
	Depth	of Cover	8	5%		90%	9	95%	1	00%
Type of Soil [†]	ft	(m)	psi	(kPa)	psi	(kPa)	psi	(kPa)	psi	(kPa)
Fine-grained soils with less than 25% sand content (CL, ML, CL-ML)	2-5 5-10 10-15 15-20	(0.06–1.5) (1.5–3.1) (3.1–4.6) (4.6–6.1)	500 600 700 800	(4,140) (4,830)	700 1,000 1,200 1,300	(4,830) (6,895) (8,275) (8,965)	1,000 1,400 1,600 1,800	(6,895) (9,655) (11,030) (12,410)	1,500 2,000 2,300 2,600	(10,340) (13,790) (15,860) (17,930)
Coarse-grained soils with fines (SM, SC)	2-5 $5-10$ $10-15$ $15-20$	(0.06–1.5) (1.5–3.1) (3.1–4.6) (4.6–6.1)	600 900 1,000 1,100	(4,140) (6,205) (6,895) (7,585)	1,000 1,400 1,500 1,600	(6,895) (9,655) (10,340) (11,030)	1,200 1,800 2,100 2,400	(8,275) (12,410) (14,480) (16,545)	1,900 2,700 3,200 3,700	(13,100) (18,615) (22,065) (25,510)
Coarse-grained soils with little or no fines (SP, SM, GP, GW)	$\begin{array}{c} 2-5 \\ 5-10 \\ 10-15 \\ 15-20 \end{array}$	(0.06–1.5) (1.5–3.1) (3.1–4.6) (4.6–6.1)	700 1,000 1,050 1,100	(4,830) (6,895) (7,240) (7,585)	1,000 1,500 1,600 1,700	(6,895) (10,340) (11,030) (11,720)	1,600 2,200 2,400 2,500	(11,030) (15,170) (16,545) (17,235)	2,500 3,300 3,600 3,800	(17,235) (22,750) (24,820) (26,200)

^{*} Hartley, James D. and Duncan, James M., "E' and its Variation with Depth." Journal of Transportation, Division of ASCE, Sept. 1987.

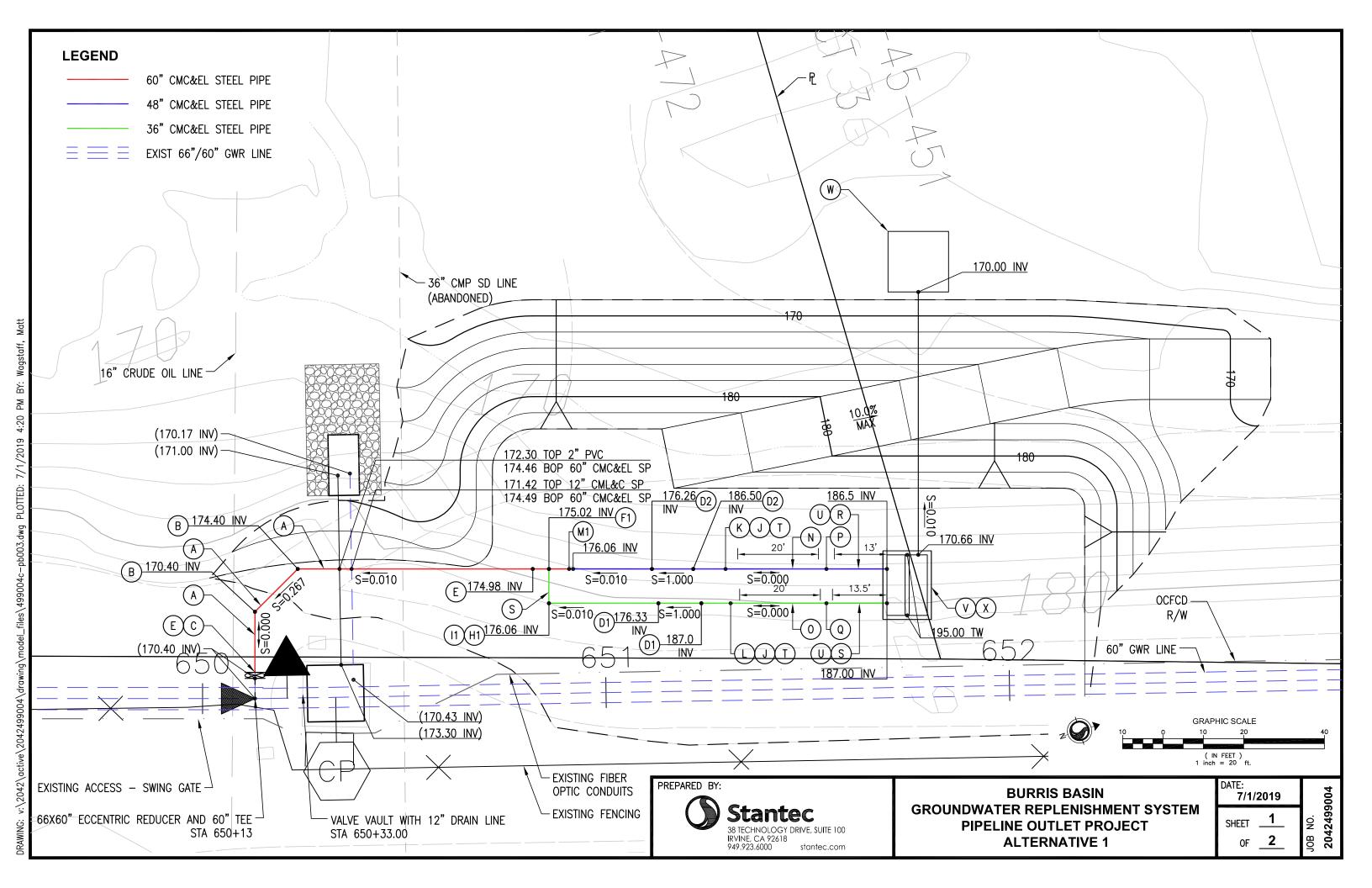
Table 6-2 Unified soil classification

Symbol	Description
GW	Well-graded gravels, gravel-sand mixtures, little or no fines
\mathbf{GP}	Poorly graded gravels, gravel-sand mixtures, little or no fines
$\mathbf{G}\mathbf{M}$	Silty gravels, poorly graded gravel-sand-silt mixtures
GC	Clayey gravels, poorly graded gravel-sand-clay mixtures
SW	Well-graded sands, gravelly sands, little or no fines
SP	Poorly graded sands, gravelly sands, little or no fines
SM	Silty sands, poorly graded sand-silt mixtures
SC	Clayey sands, poorly graded sand-clay mixtures
ML	Inorganic silts and very fine sand, silty or clayey fine sands
\mathbf{CL}	Inorganic clays of low to medium plasticity
MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
CH	Inorganic clays of high plasticity, fat clays
OL	Organic silts and organic silt-clays of low plasticity
OH	Organic clays of medium to high plasticity
Pt	Peat and other highly organic soils

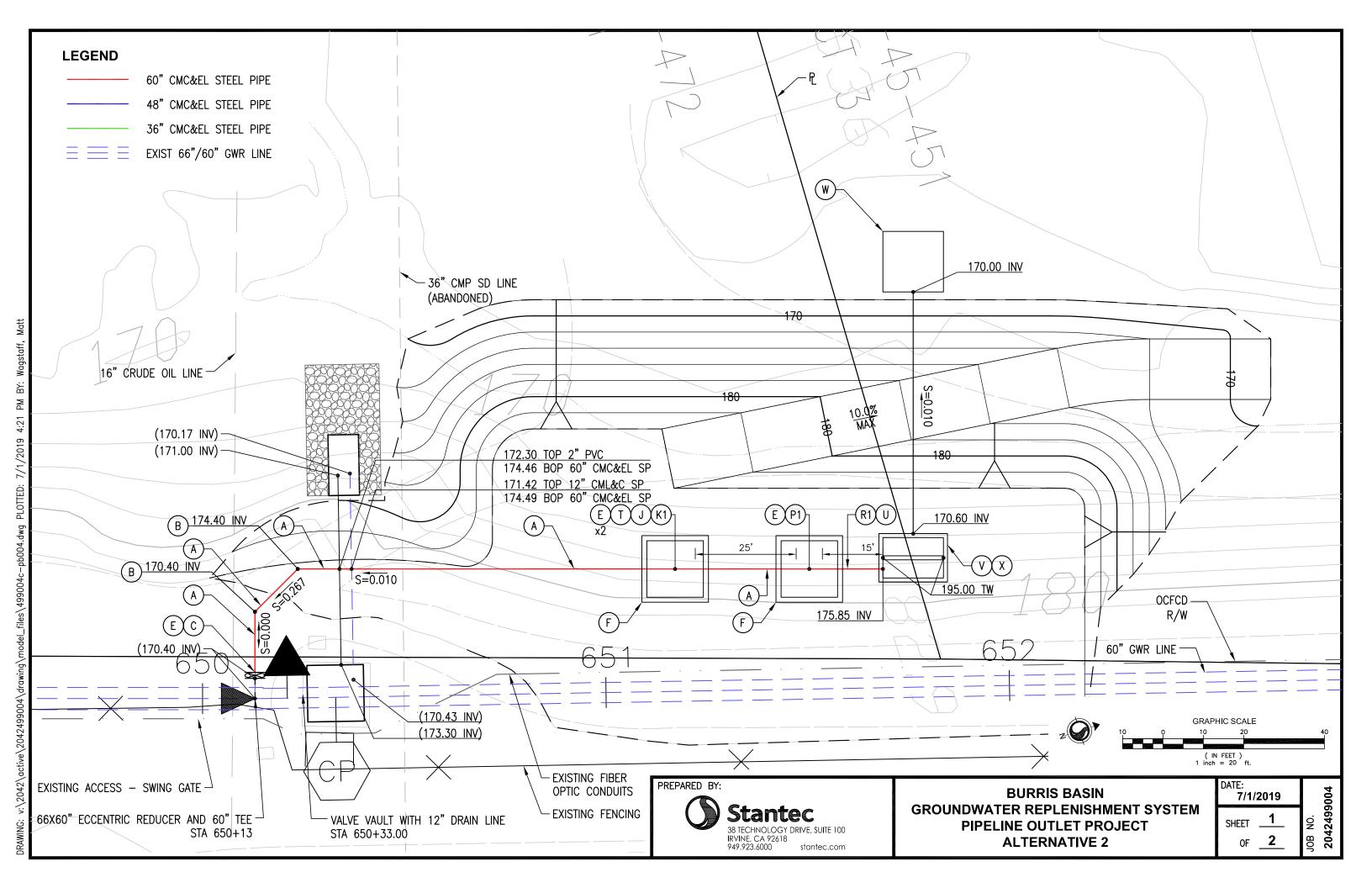
Source: Classification of Soils for Engineering Purposes. ASTM Standard D2487-69, ASTM, Philadelphia, Pa. (1969).

[†] Soil type symbols are from the Unified Classification System.

[‡] Soil compaction. When specifying the amount of compaction required, it is very important to consider the degree of soil compaction that is economically obtainable in the field for a particular installation. The density and supporting strength of the native soil should be taken into account. The densification of the backfill envelope must include the haunches under the pipe to control both the horizontal and vertical pipe deflections. Specifying an unobtainable soil compaction value can result in inadequate support and injurious deflection. Therefore, a conservative assumption of the supporting capability of a soil is recommended, and good field inspection should be provided to verify that design assumptions are met.


BURRIS BASIN GWRS TURNOUT PROJECT

Appendix D July 1, 2019


Appendix D

D.1 SCHEMATIC DESIGNS

(A)— FURNISH AND INSTALL 60" CMC&EL STEEL PIPE (WELDxWELD)
B FURNISH AND INSTALL 60" CMC&EL 4-PIECE 47.42" BEND, ROTATED VERTICALLY 18.35" (CLASS 150) (WELDxWELD)
C — FURNISH AND INSTALL 60" BUTTERFLY VALVE (FEXFE)
(D1)— FURNISH AND INSTALL 36" CMC&EL 4-PIECE 45" VERT. BEND (CLASS 150) (WELDxWELD)
(D2)— FURNISH AND INSTALL 48" CMC&EL 4-PIECE 45° VERT. BEND (CLASS 150) (WELDxWELD)
E FURNISH AND INSTALL 60" SLIP ON FLANGE (WELD)
F1)— FURNISH AND INSTALL 60"x36" CMC&EL STEEL TEE
H1)— FURNISH AND INSTALL 36" CMC&EL 4-PIECE 45" VERT. BEND (CLASS 150) (WELDxWELD)
11)— FURNISH AND INSTALL 36" SLIP ON FLANGE (WELD)
J - FURNISH AND INSTALL PRESSURE GAUGE AND PRESSURE TRANSMITTER PER DETAIL X, SHEET X-X
K - FURNISH AND INSTALL 48" FLANGED BALL VALVE (CLASS 150) WITH MOTOR OPERATED ACTUATOR AND HANDWHEEL
L FURNISH AND INSTALL 36" FLANGED BALL VALVE (CLASS 150) WITH MOTOR OPERATED ACTUATOR AND HANDWHEEL
M1— FURNISH AND INSTALL 60"x48" ECCENTRIC REDUCER (FOT)
N — FURNISH AND INSTALL 48" CMC&EL SPOOL. LENGTH AS REQUIRED (CLASS 150) (FEXFE)
0 — FURNISH AND INSTALL 36" CMC&EL SPOOL. LENGTH AS REQUIRED (CLASS 150) (FEXFE)
P— FURNISH AND INSTALL 48" MAGNETIC FLOW METER (CLASS 150), MAX FLOW RATE = 70,000 GPM, WITH STAINLESS STEEL GROUNDING RINGS PER SPECIFICATION
Q - FURNISH AND INSTALL 36" MAGNETIC FLOW METER (CLASS 150), MAX FLOW RATE = 70,000 GPM, WITH STAINLESS STEEL GROUNDING RINGS PER SPECIFICATION
R — FURNISH AND INSTALL 48" CMC&EL SPOOL. LENGTH AS REQUIRED (CLASS 150) (FEXPE)
S — FURNISH AND INSTALL 36" CMC&EL SPOOL. LENGTH AS REQUIRED (CLASS 150) (FEXPE)
T — FURNISH AND INSTALL 8" COMBINATION AIR AND VACUUM RELEASE VALVE ASSEMBLY PER DETAIL X ON SHEET X (FExFE)
U - FURNISH AND INSTALL PRESSURE GAUGE SIMILAR TO DETAIL X ON SHEET X WITHOUT PRESSURE TRANSMITTER. CAP AT TEE
(V)— CONSTRUCT AIR-GAP STRUCTURE PER STRUCTURAL SHEETS
(W)— CONSTRUCT DISSIPATER STRUCTURE PER DETAIL X ON SHEET X
X — FURNISH AND INSTALL ULTRASONIC LEVEL SENSOR PER DETAIL X ON SHEET X

	\									
(A)—	FURNISH	AND	INSTALL	60 "	CMC&EL	STEEL	PIPE	(WELDxWELD))

- (B)— FURNISH AND INSTALL 60" CMC&EL 4-PIECE 47.42" BEND, ROTATED VERTICALLY 18.35" (CLASS 150) (WELDxWELD)
- (C)— FURNISH AND INSTALL 60" BUTTERFLY VALVE (FEXFE)
- (E)— FURNISH AND INSTALL 60" SLIP ON FLANGE (WELD)
- (F)— CONSTRUCT 14'x14' UNDERGROUND VAULT FOR 60" GWRS APPURTENANCE
- (J)— FURNISH AND INSTALL PRESSURE GAUGE AND PRESSURE TRANSMITTER PER DETAIL X, SHEET X-X
- (K1)— FURNISH AND INSTALL 60" FLANGED BALL VALVE (CLASS 150) WITH MOTOR OPERATED ACTUATOR AND HANDWHEEL
- (P1)— FURNISH AND INSTALL 60" MAGNETIC FLOW METER (CLASS 150), MAX FLOW RATE = 70,000 GPM, WITH STAINLESS STEEL GROUNDING RINGS PER SPECIFICATION
- (R1)— FURNISH AND INSTALL 60" CMC&EL SPOOL. LENGTH AS REQUIRED (CLASS 150) (FEXPE)
- (T)— FURNISH AND INSTALL 8" COMBINATION AIR AND VACUUM RELEASE VALVE ASSEMBLY PER DETAIL X ON SHEET X (FEXFE)
- (U)— FURNISH AND INSTALL PRESSURE GAUGE SIMILAR TO DETAIL X ON SHEET X WITHOUT PRESSURE TRANSMITTER. CAP AT TEE
- (V)— CONSTRUCT AIR-GAP STRUCTURE PER STRUCTURAL SHEETS
- (W)— CONSTRUCT DISSIPATER STRUCTURE PER DETAIL X ON SHEET X
- (X)— FURNISH AND INSTALL ULTRASONIC LEVEL SENSOR PER DETAIL X ON SHEET X

BURRIS BASIN GWRS TURNOUT PROJECT

Appendix E July 1, 2019

Appendix E

E.1 CATALOGUE CUT SHEETS

