BELTRAMO RANCH RESIDENTIAL PROJECT CITY OF MOORPARK, CALIFORNIA

TRAFFIC AND CIRCULATION STUDY

May 19, 2021 ATE #19087

Warmington Residential 3090 Pullman Street Costa Mesa, California 92625

ASSOCIATED TRANSPORTATION ENGINEERS

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110-1686 * (805) 687-4418 * FAX (805) 682-8509

ASSOCIATED TRANSPORTATION ENGINEERS

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 • (805)687-4418 • FAX (805)682-8509 • <u>main@atesb.co</u>m

Since 1978

Richard L. Pool, P.E. Scott A. Schell

May 19, 2021

19087R01

Mr. Joe Oftelie, Vice President of Community Development Warmington Residential 3090 Pullman Street Costa Mesa, California 92625

TRAFFIC AND CIRCULATION STUDY FOR THE BELTRAMO RANCH RESIDENTIAL PROJECT, CITY OF MOORPARK

Associated Transportation Engineers (ATE) has prepared the following traffic and circulation study for the Beltramo Ranch Residential Project, proposed in the City of Moorpark. It is understood that the study will be submitted to the City for environmental review.

We appreciate the opportunity to assist you with the project.

Associated Transportation Engineers

Scott A. Schell

Principal Transportation Planner

CONTENTS

INTRODUCTION	1
PROJECT DESCRIPTION	1
EXISTING CONDITIONS	1
CITY OF MOORPARK TRANSPORTATION POLICIES	7
PROJECT-SPECIFIC ANALYSIS	7 8
CUMULATIVE ANALYSIS	1
SITE ACCESS AND CIRCULATION1	4
VEHICLE MILES TRAVELED ANALYSIS	5
REFERENCES AND PERSONS CONTACTED	7
TECHNICAL APPENDIX	8

TABLES

Table 1	Existing Levels of Service	5
Table 2	Project Trip Generation	7
Table 3	Project Trip Distribution	8
Table 4	Existing + Project Levels of Service - AM Peak Hour	8
Table 5	Existing + Project Levels of Service - PM Peak Hour	11
Table 6	Cumulative + Project Levels of Service - AM Peak Hour	11
Table 7	Cumulative + Project Levels of Service - PM Peak Hour	14
Table 8	Los Angeles Avenue/Beltramo Ranch Road – Cumulative + Project L	OS 15
Table 9	Beltramo Ranch Residential Project – VMT Impact Summary	16
	FIGURES	
Figure 1	Project Site Location	2
Figure 2	Project Site Plan	3
Figure 3	Existing Street Network	4
Figure 4	Existing Traffic Volumes	6
Figure 5	Project Trip Distribution and Assignment	9
Figure 6	Existing + Project Traffic Volumes	10
Figure 7	Cumulative Traffic Volumes	12
Figure 8	Cumulative + Project Traffic Volumes	13

INTRODUCTION

The following report contains an analysis of the traffic and circulation issues associated with the Beltramo Ranch Residential Project (the "Project") proposed in the City of Moorpark. The report evaluates existing and future traffic operations within the Project study area to determine the Project's consistency with the City's transportation policies. The roadways and intersections analyzed in the study were determined based on input provided by City of Moorpark staff. An evaluation of the Project's potential CEQA impacts is also provided based on the State's new CEQA requirements adopted under Senate Bill 743.

PROIECT DESCRIPTION

The Project site is located on the south side of Los Angeles Avenue (State Route 118) between Tierra Rejada Road and Maureen Avenue, as illustrated on Figure 1. The Project is located on a 7.2-acre site that is occupied by the Four Square Church and two single family residential homes. The Project is proposing to redevelop the site and construct 47 single family housing units. Figure 2 illustrated the Project site plan. Site access would be provided via Beltramo Ranch Road, which would be realigned. The access connection would allow left-turns and right-turns inbound but restrict outbound movements to right-turns. The realigned Beltramo Ranch Road access connection to Los Angeles Avenue would be designed to Caltrans standards.

EXISTING CONDITIONS

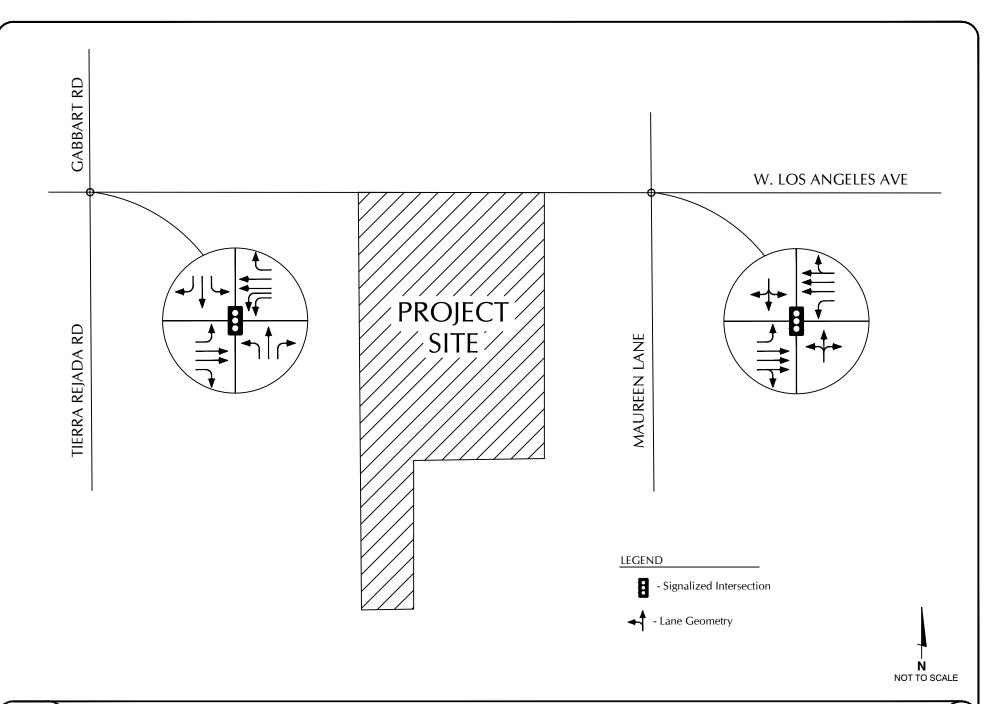
Street Network

The Project site is served by a network of highways, arterial, collector, and local streets. Figure 3 illustrates the study-area street network, including the traffic controls and lane geometries at the key study-area intersections identified for analysis. The following text provides a brief discussion of the existing street network.

Los Angeles Avenue (State Route 118), located adjacent to the Project site, is a 2- to 6-lane arterial highway that extends from the State Route 126 (Santa Paula Freeway) in the City of Ventura to State Route 210 (Foothill Freeway) east of the City of San Fernando. Access to the Project site would be provided via the Beltramo Ranch Road connection to Los Angeles Avenue.

<u>Tierra Rejada Road</u>, located west of the Project site, is a 4-lane arterial roadway that extends south from Los Angeles Avenue and then easterly to the City of Simi Valley. Tierra Rejada Road is signalized at Los Angeles Avenue.

<u>Maureen Lane</u>, located east of the Project site, is a 2-lane roadway that extends north and south from Los Angeles. Maureen Lane serves industrial uses north of Los Angeles Avenue and residential uses south of Los Angeles Avenue. Maureen Lane is signalized at Los Angeles Avenue.



NOT TO SCALE

FIGURE

Intersection Operations

Because traffic flow on urban arterials is most constrained at intersections, detailed traffic flow analyses focus on the operating conditions of critical intersections during peak travel periods. "Levels of Service" (LOS) A through F are used to rate intersection operations, with LOS A indicating very good operation and LOS F indicating poor operation (more complete definitions are contained in the Technical Appendix for reference). The City of Moorpark considers LOS C as the performance standard for intersections (maintain LOS C or better).

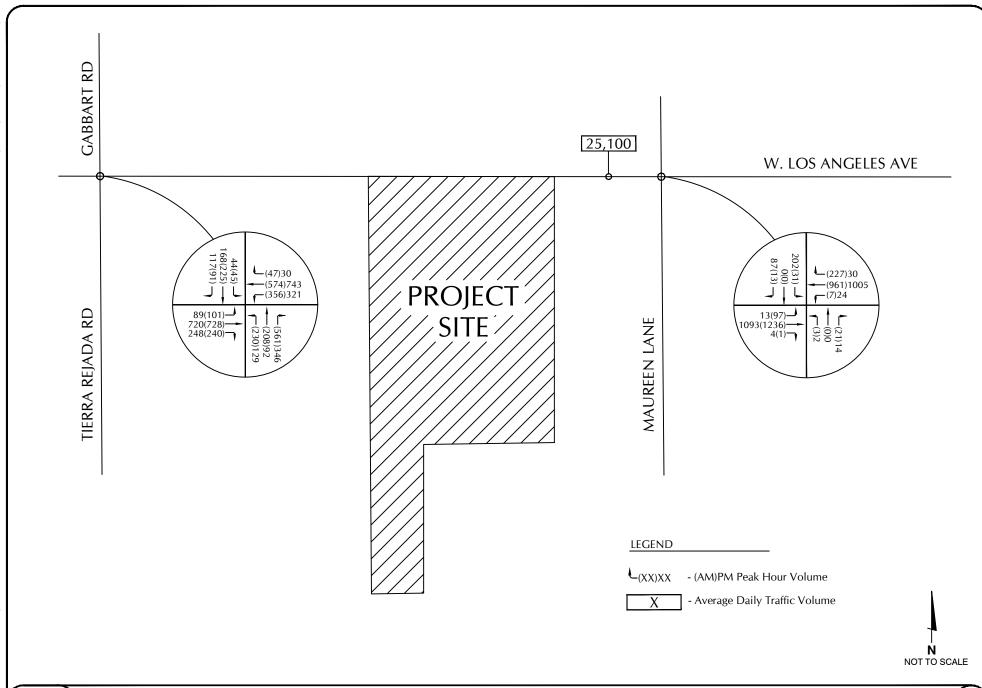

Existing peak hour traffic volumes for the Los Angeles Avenue/Tierra Rejada intersection were obtained from traffic counts collected in 2019 by the City (see Technical Appendix for count data). Current counts are not available for the Los Angeles Avenue/Maureen Lane intersection. Given that new counts cannot collected in the near term due to the economic slowdown related to the Covid 19 pandemic, traffic count data was obtained from the StreetLight InSight Origin and Destination Analysis program. The StreetLight program provides roadway and intersection volumes for a specified period of time (week, month, year, etc.), day of the week, and hour of the day. Traffic flows are captured using location-based data (LBS) from smartphone apps and navigation-GPS data created by connected cars and trucks as well as turn-by-turn navigation tools. The traffic volumes used in this study are based on traffic flows for average weekdays (Tuesday-Thursday) during the 2019 February-May and September-October months.

Figure 4 presents the existing AM and PM peak hour traffic volumes for the study-area intersections. Levels of service were calculated for the signalized intersections using the "Intersection Capacity Utilization" (ICU) methodology, which is the level of service method adopted by the City for signalized intersections. Existing levels of service are listed in Table 1.

Table 1
Existing Levels of Service

		AM Pea	k Hour	PM Pea	k Hour
Intersection	Control	ICU	LOS	ICU	LOS
Los Angeles Avenue/Tierra Rejada Road	Signal	0.741	LOS C	0.623	LOS B
Los Angeles Avenue/Maureen Lane	Signal	0.456	LOS A	0.536	LOS A

The data presented in Table 1 show that the study-area intersections currently operate in the LOS A-C during the AM and PM peak hours, which meet the City's LOS C operating standard.

CITY OF MOORPARK TRANSPORTATION POLICIES

Pursuant to Policy 2.1 of the City's Circulation Element, Level of Service (LOS) C shall be the system performance objective. For facilities already operating at less than LOS C, the system performance objective shall be to maintain or improve the current level of service. The City of Moorpark, "Guidelines for Preparing Traffic and Circulation Studies" states that if a level of service degradation of one level of service or greater is attributable to a project it will be considered significant enough to require mitigation measures. The City's criteria also states that a level of service degradation of less than one level of service may also be considered significant, depending on circumstances.

PROJECT-SPECIFIC ANALYSIS

Project Trip Generation

Trip generation estimates were calculated for the existing and proposed land uses based on rates presented in the Institute of Transportation Engineers (ITE) Trip Generation manual.¹ The ITE rates for Single Family Detached Housing (Land Use #210) and Church (land Use #560) were applied in the trip generation calculations. Table 2 shows the trip generation estimates for the Project (a detailed calculation worksheet is contained in the Technical Appendix for reference).

Table 2 Project Trip Generation

				AM	Peak	PM	Peak
		Average D	aily Trips	Hour	Trips	Hou	r Trips
Land Use	Size	Rate	Trips	Rate	Trips	Rate	Trips
Proposed							
Single Family Residential	47 Units	9.44	444	0.74	35	0.99	47
Existing							
Church	6,820 SF	6.95	47	0.33	2	0.49	3
Single Family Residential	2 Units	9.44	<u>19</u>	0.74	2	0.99	1
Total			66		4		$\overline{4}$
Net Trip Generation			378		31		43

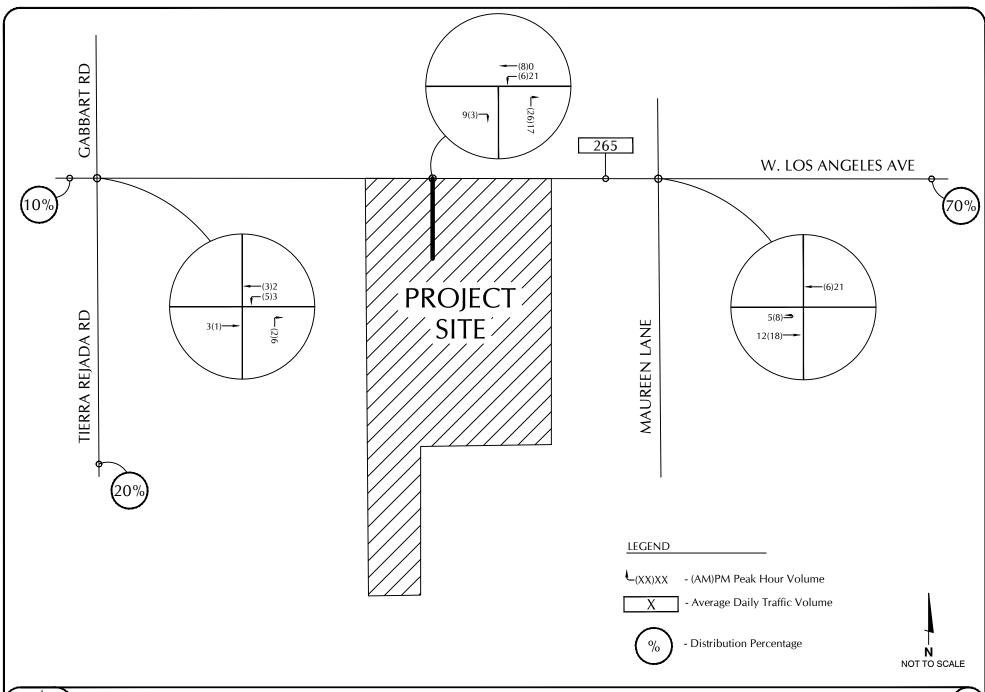
As shown in Table 2, the Project is forecast to generate 378 average daily trips (ADT), with 31 trips occurring during the AM peak hour and 43 trips occurring during the PM peak hour.

Trip Generation Manual, Institute of Transportation Engineers, 10th Edition, 2017.

Project Trip Distribution

Trip distribution percentages were developed for the Project based on data derived from existing traffic patterns in the study area and consideration of the land uses in the surrounding area. Table 3 presents the trip distribution percentages developed for the Project. Figure 5 illustrates the trip distribution pattern and the assignment of Project traffic at the study-area intersections.

Table 3
Project Trip Distribution


Origin/Destination	Direction	Distribution %
Los Angeles Avenue	East	70%
Los Angeles Avenue	West	10%
Tierra Rejada Road	South	20%
Total		100%

Existing + Project Intersection Operations

Levels of service were calculated for the study-area intersections assuming the Existing + Project traffic volumes shown on Figure 6. Tables 4 and 5 compare the Existing and Existing + Project levels of service and identify locations that are forecast to exceed the City's LOS C standard.

Table 4
Existing + Project Levels of Service - AM Peak Hour

	ICU / LOS		Proje	ct Added
Intersection	Existing	Existing + Project	Trips	Exceed LOS C Standard?
Los Angeles Avenue/Tierra Rejada Road	0.741/LOS C	0.742/LOS C	11	NO
Los Angeles Avenue/Maureen Lane	0.456/LOS A	0.462/LOS A	32	NO

PROJECT TRIP DISTRIBUTION AND ASSIGNMENT

JH - ATE#19087

ASSOCIATED

T ransportation E ngineers

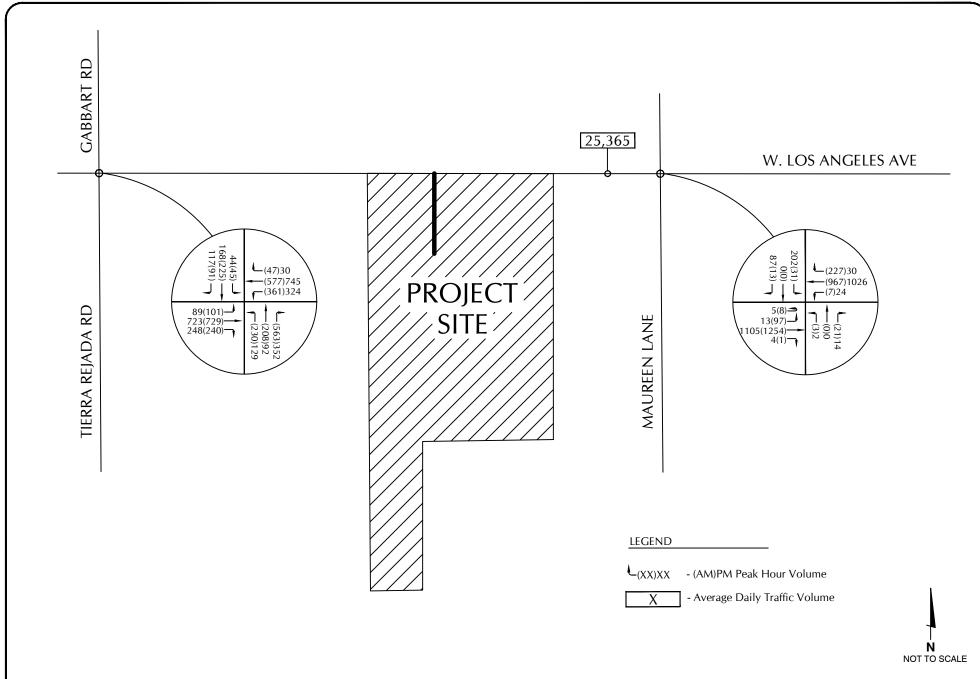


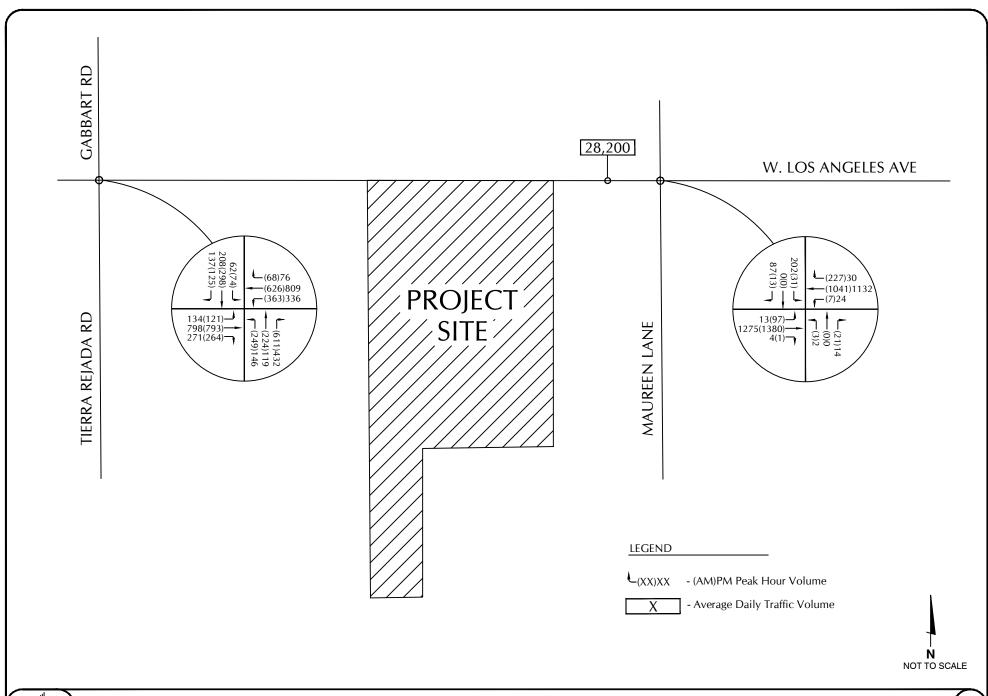
Table 5
Existing + Project Levels of Service - PM Peak Hour

	ICU or De	Project Added		
Intersection	Existing	Existing + Project	Trips	Exceed LOS C Standard?
Los Angeles Avenue/Tierra Rejada Road	0.623/LOS B	0.625/LOS B	14	NO
Los Angeles Avenue/Maureen Lane	0.536/LOS A	0.538/LOS A	38	NO

As shown in Tables 4 and 5, the study-area intersections are forecast to continue to operate at LOS C or better under Existing + Project conditions, which meets the City's LOS C standard. Thus, the Project would be consistent with the City's adopted level of service standards.

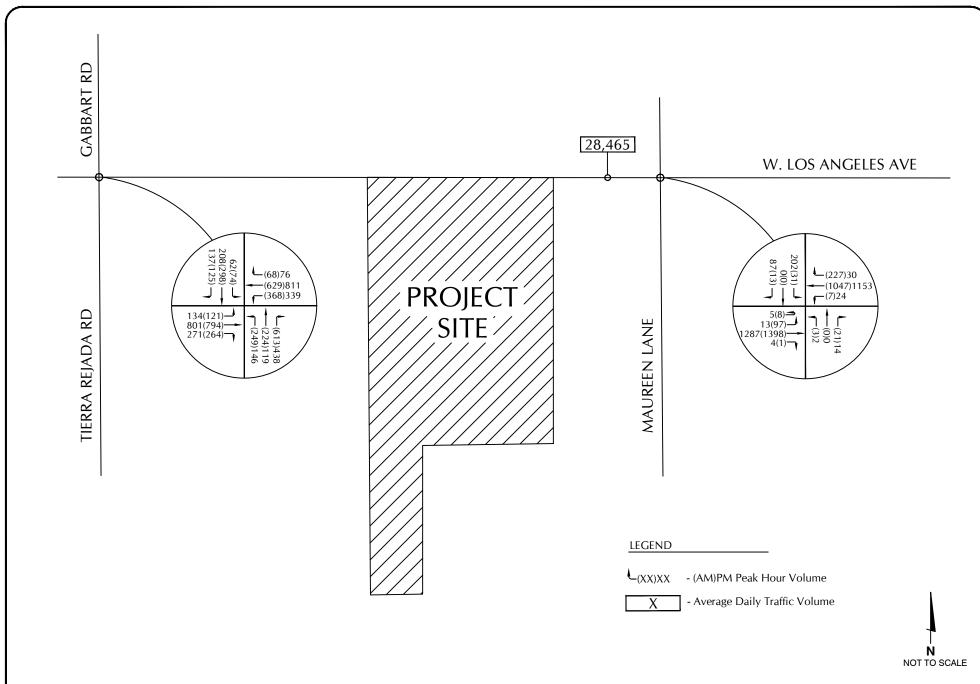
CUMULATIVE ANALYSIS

Traffic Forecasts


Cumulative conditions were forecast assuming traffic generated by the approved and pending development projects located in the study-area (see Technical Appendix for cumulative project list). Trip generation estimates were developed for the cumulative projects and that traffic was then assigned to the study-area street network. Cumulative traffic forecasts are shown in Figure 7 and Cumulative + Project forecasts are shown in Figure 8.

Cumulative Intersection Operations

Tables 6 and 7 compare the Cumulative and Cumulative + Project levels of service for the study-area intersections and identify locations that are forecast to exceed the City's LOS C standard.


Table 6
Cumulative + Project Levels of Service – AM Peak Hour

	ICU / LOS		Proje	ct Added
Intersection	Cumulative	Cumulative + Project	Trips	Exceed LOS C Standard?
Los Angeles Avenue/Tierra Rejada Road	0.821/LOS D	0.823/LOS C	11	YES
Los Angeles Avenue/Maureen Lane	0.465/LOS A	0.471/LOS A	32	NO

FIGURE

JH - ATE#19087

Table 7

Cumulative + Project Levels of Service - PM Peak Hour

	ICU / LOS		Proje	ct Added
Intersection	Cumulative	Cumulative + Project	Trips	Exceed LOS C Standard?
Los Angeles Avenue/Tierra Rejada Road	0.688/LOS C	0.690/LOS C	11	NO
Los Angeles Avenue/Maureen Lane	0.572/LOS A	0.575/LOS A	32	NO

As shown in Table 7, the Los Angeles Avenue/Tierra Rejada Road intersection is forecast to operate at LOS D during the AM peak hour under Cumulative and Cumulative + Project conditions, which exceeds the City's LOS C standard. The Project would add 11 trips to the intersection during the AM peak period and increase the ICU by 0.002. This increase is considered a less-than-significant impact pursuant to Policy 2.1 of the City of Moorpark Circulation Element, which states: "LOS C shall be the system performance objective. For facilities already operating at less than LOS C, if a level of service degradation of one level of service or greater is attributable to a project it will be considered significant enough to require mitigation measures." The ICU change attributed to the Project is 0.002 (less than ½ of 1%) – which would result in an insignificant change in traffic operations at the intersection.

SITE ACCESS AND CIRCULATION

Access to the Project site would be provided by Beltramo Ranch Road (see Figure 2 – Project Site Plan). The existing intersection allows for full access to and from Beltramo Ranch Road. The City has indicated that the intersection should be modified to restrict outbound traffic from Beltramo Ranch Road to right-turns only (left turns from Beltramo Ranch Road onto Los Angeles Road would be prohibited). Outbound traffic that is destined to the west would turn right from Beltramo Ranch Road, proceed to Maureen Avenue, and then make a U-turn to travel westbound on Los Angeles Avenue.

Table 8 lists the vehicle delays for traffic turning to/from Beltramo Ranch Road assuming the proposed modifications under Cumulative + Project conditions. Delays and levels of service were calculated using the methodology outlined in the Highway Capacity Manual (HCM).² As shown, vehicle delays equate to LOS C or better for traffic turning to/from Beltramo Ranch Road during the AM and PM peak commuter periods.

² <u>Highway Capacity Manual</u>, Transportation Research Board, 2016.

Table 8
Los Angeles Avenue/Beltramo Ranch Road – Cumulative + Project LOS

	Delay / LOS(a)	
Intersection	AM Peak Hour	PM Peak Hour
Los Angeles Avenue/Beltramo Ranch Road		
Inbound Left Turns	24.2 Sec./LOS C	21.3 Sec./LOS C
Inbound Right Turns	0.0 Sec./LOS A	0.0 Sec./LOS A
Outbound Right Turns	19.4 Sec./LOS C	16.9 Sec./LOS C

⁽a) LOS based on average delay per vehicle in seconds, pursuant to HCM methodology.

VEHICLE MILES TRAVELED ANALYSIS

Recent legislation, Senate Bill 743, is moving away from the Level of Service (LOS) metric to a Vehicle Miles Traveled (VMT) metric to evaluate whether a project results in a significant traffic impact under CEQA. Per the State's Natural Resource Agency Updated Guidelines for the Implementation of the CEQA adopted in 2018, VMT has been designated as the most appropriate measure of transportation impacts. "Vehicle miles traveled" refers to the amount and distance of automobile travel attributable to a project. Other relevant considerations may include the effects of the project on transit and non-motorized travel. For land use projects, vehicle miles traveled exceeding an applicable threshold of significance may indicate a significant impact.

Local agencies have discretion to develop and adopt their own thresholds or rely on thresholds recommended by other agencies. Since the City of Moorpark has not yet adopted VMT impact criteria, the VMT analyses prepared for the Project was developed using information presented in the recently updated VCTC traffic model for Ventura County and the following VMT thresholds published by the State.

<u>CEQA Guidelines</u>. The California Governor's Office of Planning and Research (OPR) published a technical advisory that includes recommendations regarding assessment of VMT, thresholds of significance, and mitigation measures.³ The recommended VMT impact threshold for residential projects is as follows:

"Recommended threshold for residential projects: A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or as city VMT per capita. Proposed development referencing a threshold based on city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the number of units specified in the SCS (Sustainable Community Strategy) for that city, and should be consistent with the SCS.

Technical Advisory on Evaluating Transportation Impacts in CEQA, Governor's Office of Planning and Research, December 2018.

The VCTC traffic model provides VMT per capita data for the City of Moorpark as well as the various Traffic Analysis Zones (TAZs) within the City that are contiguous to the Project site. The threshold used to evaluate Project impacts follows the criteria mandated by the State, which states that a residential project may indicate a significant impact if the project's VMT per capita exceeds 15% below the existing VMT per capita.

Table 8 shows the existing VMT per capita for the City of Moorpark, the VMT threshold (15% below existing VMT per capita), and the Project's VMT per capita based on the VCTC traffic model data (VMT model data contained in the Technical Appendix).

Table 9
Beltramo Ranch Residential Project – VMT Impact Summary

City of Moorpark VMT(a)	VMT Impact Threshold(b)	Project VMT Estimate(c)	Impact?
20.31 per capita	17.26 per capita	16.93 per capita	NO

- (a) City of Moorpark VMT per capita based on VCTC traffic model.
- (b) VMT Threshold is a 15% reduction from City VMT (20.31 x 0.85 = 17.26).
- (c) Project VMT per capita estimate based on VCTC model traffic analysis zones.

As shown, the existing City of Moorpark VMT is 20.31 per capita. Thus, the VMT threshold is 17.26 (15% below existing VMT per capita = 20.31 x 0.85 = 17.26) The VCTC model show that the residential units located in the Project area TAZs generate 16.93 VMT per capita, which falls below the 17.26 VMT per capita impact threshold. Thus, the Beltramo Ranch Residential Project would generate a less-than-significant CEQA impact.

•••

REFERENCES AND PERSONS CONTACTED

Associated Transportation Engineers

Scott A. Schell, Principal Transportation Planner Dan Dawson, Supervising Transportation Planner

References

Highway Capacity Manual, Transportation Research Board, 2016.

Highway Design Manual, California Department of Transportation, July 2020.

Trip Generation, Institute of Transportation Engineers, 10th Edition, 2017.

Persons Contacted

Andrew Kemp, Ventura County Transportation Commission Nancy Johns, Wildflower Development Services

TECHNICAL APPENDIX

CONTENTS:

LEVEL OF SERVICE DEFINITIONS

INTERSECTION TURNING MOVEMENTS COUNTS

CUMULATIVE PROJECT LIST

VCTC MODEL VMT DATA

INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS

Reference 1 - Los Angeles Avenue/Tierra Rejada Road

Reference 2 - Los Angeles Avenue/Maureen Lane

Reference 3 - Los Angeles Avenue/Beltramo Ranch Road

LEVEL OF SERVICE DEFINITIONS

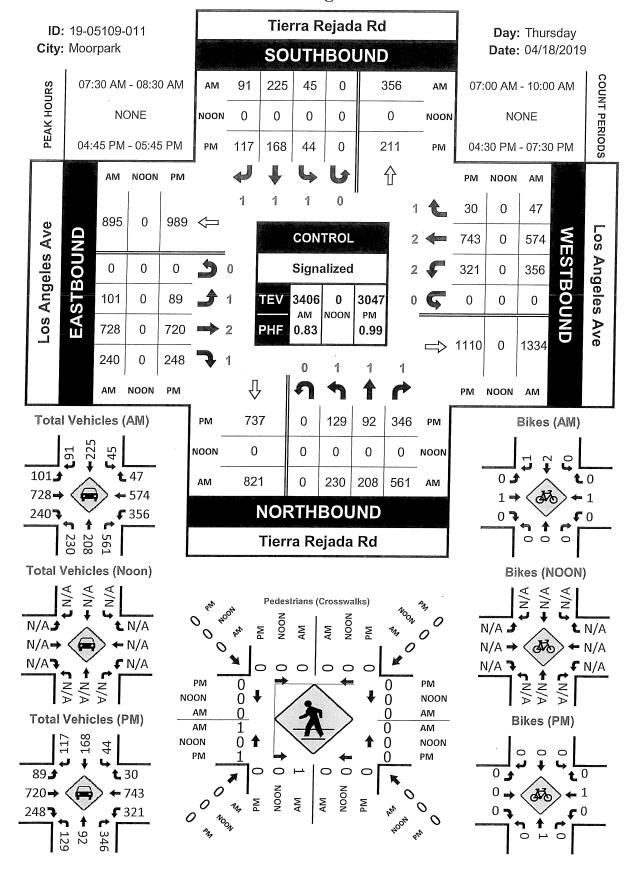
Signalized Intersection Level of Service Definitions

LOS	Delay ^a	V/C Ratio	Definition
A	< 10.0	< 0.60	Progression is extremely favorable. Most vehicles arrive during the green phase. Many vehicles do not stop at all.
В	10.1 - 20.0	0.61 - 0.70	Good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
С	20.1 - 35.0	0.71 - 0.80	Only fair progression, longer cycle lengths, or both, result in higher cycle lengths. Cycle lengths may fail to serve queued vehicles, and overflow occurs. Number of vehicles stopped is significant, though many still pass through intersection without stopping.
D	35.1 - 55.0	0.81 - 0.90	Congestion becomes more noticeable. Unfavorable progression, long cycle lengths and high v/c ratios result in longer delays. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	55.1 - 80.0	0.91 - 1.00	High delay values indicate poor progression, long cycle lengths and high v/c ratios. Individual cycle failures are frequent
F	> 80.0	> 1.00	Considered unacceptable for most drivers, this level occurs when arrival flow rates exceed the capacity of lane groups, resulting in many individual cycle failures. Poor progression and long cycle lengths may also contribute to high delay levels.

^a Average control delay per vehicle in seconds.

Unsignalized Intersection Level of Service Definitions

The HCM¹ uses *control delay* to determine the level of service at unsignalized intersections. Control delay is the difference between the travel time actually experienced at the control device and the travel time that would occur in the absence of the traffic control device. Control delay includes deceleration from free flow speed, queue move-up time, stopped delay and acceleration back to free flow speed.


LOS	Control Delay Seconds per Vehicle
А	< 10.0
В	10.1 - 15.0
С	15.1 - 25.0
D	25.1 - 35.0
Е	35.1 - 50.0
F	> 50.0

¹ Highway Capacity Manual, National Research Board, 2000

INTERSECTION TURNING MOVEMENT COUNTS

Tierra Rejada Rd & Los Angeles Ave

Peak Hour Turning Movement Count

CUMULATIVE PROJECT LIST

Cumulative Development Projects Trip Generation (As of April 2, 2021)

Project	Land Use	Size	ADT	A.M. Peak Hour	P.M. Peak Hour	Note
Triliad Development	Movie Studio	37 Acres	100	10	10	Approved
Pacific Communities	Single Family Residential	283 Units	2,694	212	283	Approved
Essex Moorpark, LLC	Multi-Family Residential	200 Units	1,318	92	57	Approved
Spring Road, LLC	Condominiums	95 Units	552	42	49	Approved
City Ventures	Single Family Residential	110 Units	1,047	82	110	Approved
Oakmont Senior Senior Residential Living		77 units/beds	219	16	22	Approved/Under Construction
Birdsall Group, LLC	Residential		200	16	12	Approved
Aldersgate Senior Housing			1,468	90	125	Approved
High Street Depot/Daly Group	Downtown Mixed- Use	13,656 sf retail and 79 apartments	1,754	66	90	Approved
Grand Moorpark/Kozar	Condominiums	66 Units	383	29	34	Approved
John C. Chiu, FLP-N	Condominiums	60 Units	349	26	31	Proposed
Beltramo Ranch	Single Family Res	47 units	378	31	43	Proposed
AHA Scattered Sites	Multi-family	56 units	410	26	31	Proposed
Hitch Ranch	Single and Multi- Family	755 units	6.394	495	6111	Proposed
Moorpark 67/Rasmussen	Single Family Residential	139 Units	1,312	103	138	Proposed
**Amazon Distribution Center	Industrial	Reuse of 189,364 sf industrial	994	-17	12	Proposed
*National Ready Mix	Batch Plant	10 acres	600	20	20	Unknown
***CEMEX	Quarry	N/A	980	276	148	Unknown
***Wayne J. Sand & Gravel	**Wayne J. Sand & Quarry N/A		504	92	34	Unknown
***Grimes Rock	Quarry	N/A	480	35	14	Unknown
Total Trips						

^{*}No proposal to change or expand operations. Existing use creates significant truck traffic through Moorpark.

^{**}Trip calculations include baseline of existing industrial use (site is developed). ADT is a gross figure and A.M./P.M. are net figures based on previous use.

^{***}Operations under County jurisdiction but bring significant truck traffic through Moorpark. Please contact Ventura County to determine whether any active permits for expansion are being reviewed or processed.

VCTC MODEL VMT DATA

BELTRAMO RANCH VMT FORECASTS - SOURCE: VCTC MODEL DATA

VCTC TAZ	HOUSEHOLDS	RESIDENTS	VMT PER CAPITA	TOTAL VMT
60123100	221	702	11.99	8416.98
60127200	1000	2239	11.81	26442.59
60123200	665	2165	25.33	54839.45
60127100	745	3856	16.09	62043.04
TOTALS	2631	8962	16.93	151742.06
MOORPARK HOME B	SASE VMT =	20.31		
HOME BASE VMT TH	RESHOLDS (15% LESS) =	17.26		
PROJECT VMT =		16.93		
IMPACT?		NO		

PROJECT VMT ->	HOUSEHOLDS(a)	RESIDENTS PER UNIT	TOTAL RESIDENTS	VMT PER CAPITA	TOTAL VMT
	45	3.41	153	16.93	2590.55

⁽a) Analysis assumed 47 new units - 2 existing units to be removed.

INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS

Reference 1 - Los Angeles Avenue/Tierra Rejada Road

Reference 2 - Los Angeles Avenue/Maureen Lane

Reference 3 - Los Angeles Avenue/Beltramo Ranch Road

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: APRIL 18, 2019

TIME PERIOD: AM PEAK HOUR N/S STREET:

TIERRA REJADA ROAD E/W STREET: LOS ANGELES AVENUE

CONTROL TYPE **SIGNAL**

SIGNAL				
	dak dasahbasa suprem bas	THE WAY THE PARTY OF THE PARTY.		
	TRAFFIC	VOLUME	SUMMARY	

	north bound				SOUTH BOUND			EAST BOUND			ST BOUNI)	
VOLUMES	L	T	R	L	T	R	L	Т	R	L	Т	R	
(A) EXISTING:	230	208	561	45	225	91	101	728	240	356	574	47	
(B) PROJECT-ADDED:	0	0	2	0	. 0	0	0	1	0	5	3	0	
(C) CUMULATIVE:	249	224	611	74	298	125	121	793	264	363	626	68	

GEOMETRICS

NORTH BOUND LANE GEOMETRICS LTR

SOUTH BOUND L T R

EAST BOUND L TT R

WEST BOUND LL TT R

REF: 01 AM

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

LEVEL OF SERVICE CALCULATION	S
------------------------------	---

	LEVEL OF SERVICE CALCULATIONS												
MOVE-	# OF			SCE	NARIO \	OLUMES	_		SCENARIO	V/C RATIOS			
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4			
NBL	1	1500	230	230	249	249	0.15 *	0.15 *	0.17 *	0.17 *			
NBT	1	1600	208	208	224	224	0.130	0.130	0.140	0.140			
NBR	1	1500	303	304	330	331	0.202	0.203	0.220	0.221			
SBL SBT	1	1500 1600	45 225	45 225	74 298	74 298	0.030 0.141 *	0.030 0.141 *	0.049 0.186 *	0.049 0.186 *			
SBR	1	1500	91	91	125	125	0.06	0.06	0.08	0.08			
EBL EBT	1	1500	101	101	121	121	0.07	0.07	0.08	0.08			
EBR	2 1	3200 1500	728 240	729 240	793 264	794 264	0.228 *	0.228 * 0.16	0.248 * 0.18	0.248 * 0.18			
WBL	2	3000	356	361	363	368	0.12 *	0.12 *	0.12 *	0.12 *			
WBT	2	3200	574	577	626	629	0.12	0.12	0.12	0.12			
WBR	1	1500	47	47	68	68	0.031	0.031	0.045	0.045			
						LOST TIME:	0.10	0.10	0.10	0.10		(I)	
TOTAL INTERSECTION CAPACITY UTILIZATION: SCENARIO LEVEL OF SERVICE:								0.742 C	0.821 D	0.823 D			

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: APRIL 18, 2019 TIME PERIOD: PM PEAK HOUR

N/S STREET: TIERRA REJADA ROAD E/W STREET: LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

				T	RAFFIC	VOLU	ME SU	MMAR	Y			
	NOF	RTH BO	UND	SOL	ЈТН ВО	UND	EAST BOUND			WE)	
VOLUMES	L	T	R	L	Т	R	L	Т	R	L	Т	R
(A) EXISTING:	129	92	346	44	168	117	89	720	248	321	743	30
(B) PROJECT-ADDED:	0	0	6	0	0	0	0	3	0	3	2	0
(C) CUMULATIVE:	146	119	432	62	208	137	134	798	271	336	809	76

REF: 01 PM

GEOMETRICS

NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND LANE GEOMETRICS LTRL T RLTTR LL TT R

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

	LEVEL OF SERVICE CALCULATIONS												
MOVE-	# OF		_	SCE	nario v	OLUMES			SCENARIO	V/C RATIOS			
ments	LANES	CAPACITY	1 2 3 4				1	2	3	4			
NBL	1	1500	129	129	146	146	0.09 *	0.09 *	0.10 *	0.10 *			
NBT	1 1	1600	92	92	119	119	0.058	0.058	0.074	0.074			
NBR	1	1500	187	190	233	237	0.125	0.127	0.155	0.158			
		×											
SBL	1	1500	44	44	62	62	0.029	0.029	0.041	0.041			
SBT	1	1600	168	168	208	208	0.105 *	0.105 *	0.130 *	0.130 *			
SBR	1	1500	117	117	137	137	0.08	0.08	0.09	0.09			
EBL	1	1500	89	89	134	134	0.06	0.06	0.09	0.09			
EBT	2	3200	720	723	798	801	0.225 *	0.226 *	0.249 *	0.250 *			
EBR	1	1500	248	248	271	271	0.17	0.17	0.18	0.18			
WBL	2	3000	321	324	336	339	0.11 *	0.11 *	0.11 *	0.11 *			
WBT	2	3200	743	745	809	811	0.232	0.233	0.253	0.253			
WBR	1	1500	30	30	76	76	0.020	0.020	0.051	0.051			
	L.,,												
						LOST TIME:	0.10	0.10	0.10	0.10			
		TOT	ITY UTILIZATION:	0.623	0.625	0.688	0.690						
			OF SERVICE:	В	В	В	В						
NOTES:	igo, i sergete di lime tan di		Geografia de la comunicación de la				nga niya — ki i dagaha ujing puntu .			concepts to those (NACC)		190 St (04) 750 St (04)	

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

APRIL 18, 2019

TIME PERIOD:

AM PEAK HOUR

N/S STREET:

MAUREEN LANE

E/W STREET:

LOS ANGELES AVENUE

CONTROL TYPE:

SIGNAL

TRAFFIC VOLUME SUMMARY														
	NORTH BOUND SOUTH BOUND EAST BO									EAST BOUND WEST BOUND				
VOLUMES	L	T	R	L	T	R	L	Т	R	L	Т	R		
(A) EXISTING:	3	0	21	31	0	13	97	1236	1	7	961	227		
(B) PROJECT-ADDED:	0	0	0	0	0	0	8	18	0	0	6	0		
(C) CUMULATIVE:	3	0	21	31	0	13	97	1380	1	7	1024	227		

GEOMETRICS

NORTH BOUND

SOUTH BOUND EAST BOUND

WEST BOUND

REF: 02 AM

LANE GEOMETRICS

LTR

LTR

L TT TR

L TT TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

	LEVEL OF SERVICE CALCULATIONS													
MOVE-	# OF			<u>SC</u>	ENARIO	VOLUMES			SCENARIO	V/C RATIOS				
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4				
NBL	0	0	3	3	3	3	_	_	-	-				
NBT	1	1600	0	0	0	0	0.015 *	0.015 *	0.015 *	0.015 *				
NBR	0	0	21	21	21	21	-	-	-	-				
SBL	0	0	31	31	31	31	_	_	_	_				
SBT	1	1600	0	0	0	0	0.028 *	0.028 *	0.028 *	0.028 *				
SBR	0	0	13	13	13	13	-	-	-	-				
EBL	1	1500	97	105	97	105	0.07 *	0.07 *	0.07 *	0.07 *				
EBT	3	4800	1236	1254	1380	1398	0.258	0.261	0.288	0.291				
EBR	0	0	1	1	1	1	-	-	-	-				
WBL	1	1500	7	7	7	7	0.01	0.01	0.01	0.01				
WBT	3	4800	961	967	1024	1030	0.248 *	0.249 *	0.261 *	0.262 *				
WBR	0	0	227	227	227	227	-	-	-	-				
						LOST TIME:	0.10	0.10	0.10	0.10				
		TO				CITY UTILIZATION:	0.456	0.462	0.469	0.475				
				SCENAF	RIO LEVE	L OF SERVICE:	A	A	A	A				
NOTES:														

NOTES:

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

APRIL 18, 2019

TIME PERIOD:

PM PEAK HOUR

N/S STREET:

MAUREEN LANE

E/W STREET:

LOS ANGELES AVENUE

CONTROL TYPE:

SIGNAL

TRAFFIC VOLUME SUMMARY														
	NORTH BOUND			south bound			EAST BOUND			W	est bound)		
VO	LUMES	L	T	R	L	T	R	L	T	R	L	Т	R	
(A)	existing:	2	0	14	202	0	87	13	1093	4	24	1005	30	
(B)	PROJECT-ADDED:	0	0	0	0	0	0	5	12	0	0	21	0	
(C)	CUMULATIVE:	0	0	14	202	0	87	13	1275	4	24	1132	30	

GEOMETRICS

NORTH BOUND

SOUTH BOUND LTR

EAST BOUND

WEST BOUND

REF: 02 PM

LANE GEOMETRICS

LTR

L TT TR

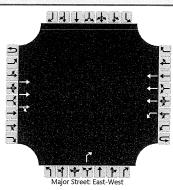
L TT TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

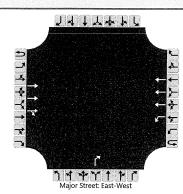
SCENARIO 3 = CUMULATIVE(C)


SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

LEVEL OF SERVICE CALCULATIONS												
MOVE-	# OF		ENARIO	VOLUMES	SCENARIO V/C RATIOS							
ments	LANES	CAPACITY	1	2	3	4	1	2	3	4		
NBL	0	0	2	2	0	0	_	-	-	_		
NBT	1	1600	0	0	0	0	0.010 *	0.010 *	0.009 *	0.009 *		
NBR	0	0	14	14	14	14	-	-	-	-		
SBL	0	0	202	202	202	202	_	_	_			
SBT	1	1600	0	0	0	0	0.181 *	0.181 *	0.181 *	0.181 *		
SBR	0	0	87	87	87	87	-	-	-	-		
EBL	1	1500	13	18	13	18	0.01	0.01	0.01	0.01		
EBT	3	4800	1093	1105	1275	1287	0.229 *	0.231 *	0.266 *	0.269 *		
EBR	0	0	4	4	4	4	-	-	-	-		
WBL	1	1500	24	24	24	24	0.02 *	0.02 *	0.02 *	0.02 *		
WBT	3	4800	1005	1026	1132	1153	0.216	0.220	0.242	0.246		
WBR	0	0	30	30	30	30	-	-	-	-		
						LOST TIME:	0.10	0.10	0.10	0.10		
TOTAL INTERSECTION CAPACITY UTILIZATION: SCENARIO LEVEL OF SERVICE:								0.538 A	0.572 A	0.5 <i>7</i> 5 A		
SCENARIO LEVEL OF SERVICE: A A A A NOTES:												

05/13/21

HCS7 Two-Way Stop-Control Report							
General Information		Site Information					
Analyst	DLD	Intersection	LA AVE/BELTRAMO RANCH RD				
Agency/Co.	ATE	Jurisdiction	City of Moorpark				
Date Performed	5/13/21	East/West Street	LA AVENUE				
Analysis Year		North/South Street	BELTRAMO RANCH ROAD				
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.92				
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25				
Project Description	CUMULATIVE + PROJECT						


Lanes

Approach		East	bound			West	bound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	. 0	0	3	0	0	1	3	0		0	0	1		0	0	0
Configuration			Т	TR		L	Т	the terms of the t				R				
Volume (veh/h)			1478	3	0	6	1065					26				
Percent Heavy Vehicles (%)		MEN WHITE SERVICES GENERAL			3	3						3				
Proportion Time Blocked																
Percent Grade (%)						American recovered				()				-	
Right Turn Channelized									No							
Median Type Storage Left C			Only	Only 2							Accessed to the later of					
Critical and Follow-up H	eadway	/S														
Base Critical Headway (sec)						5.3						7.1				
Critical Headway (sec)						5.36						7.16				
Base Follow-Up Headway (sec)						3.1						3.9				
Follow-Up Headway (sec)						3.13						3.93				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						7						28				
Capacity, c (veh/h)						194						278		33 3 5 5		
v/c Ratio						0.03					Angele medianing residents	0.10				*************
95% Queue Length, Q ₉₅ (veh)						0.1						0.3				
Control Delay (s/veh)						24.2						19.4				34 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Level of Service (LOS)						С						С				
Approach Delay (s/veh)			Accommodate la		0.1				19.4					en er er er er e		
Approach LOS								C								

HCS7 Two-Way Stop-Control Report							
General Information		Site Information					
Analyst	DLD	Intersection	LA AVE/BELTRAMO RANCH RD				
Agency/Co.	ATE	Jurisdiction	City of Moorpark				
Date Performed	5/13/21	East/West Street	LA AVENUE				
Analysis Year		North/South Street	BELTRAMO RANCH ROAD				
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92				
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25				
Project Description	CUMULATIVE + PROJECT						

Lanes

Approach		East	bound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		0	0	1		0	0	0
Configuration			Т	TR	Ossatavidasis kusin oldonatus	L	Т	O See Standard Andreas Marie				R				
Volume (veh/h)			1292	9	0	21	1226					17				
Percent Heavy Vehicles (%)		NAMES OF THE PROPERTY OF THE PROPERTY OF			3	3						3				
Proportion Time Blocked																
Percent Grade (%)			riliana torra anaramani			december of the second	dimension or management to			()					and the second
Right Turn Channelized										No						
Median Type Storage Left C			Only			and the second second second				2) -					
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)						5.3					Action is a new contraction of	7.1				
Critical Headway (sec)						5.36						7.16				
Base Follow-Up Headway (sec)						3.1						3.9				
Follow-Up Headway (sec)						3.13						3.93				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						23						18				
Capacity, c (veh/h)		AND THE PERSON NAMED IN COLUMN TWO				243						322				Manager Colonial account
v/c Ratio					An order to the same of the sa	0.09						0.06		THE RESERVE TO SERVE THE PARTY OF THE PARTY		
95% Queue Length, Q ₉₅ (veh)						0.3						0,2				
Control Delay (s/veh)						21.3						16.9				-
Level of Service (LOS)						С						С				
Approach Delay (s/veh)	Approach Delay (s/veh)			0.4			16.9			1			-			
Approach LOS							C									

TECHNICAL APPENDIX

CONTENTS:

LEVEL OF SERVICE DEFINITIONS

INTERSECTION TURNING MOVEMENTS COUNTS

CUMULATIVE PROJECT LIST

VCTC MODEL VMT DATA

INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS

Reference 1 - Los Angeles Avenue/Tierra Rejada Road

Reference 2 - Los Angeles Avenue/Maureen Lane

Reference 3 - Los Angeles Avenue/Moorpark Avenue

Reference 4 - Los Angeles Avenue/Miller Parkway

Reference 5 - State Route 23 Southbound Ramps/Los Angeles Avenue

Reference 6 - State Route 23 Northbound Ramps/Los Angeles Avenue

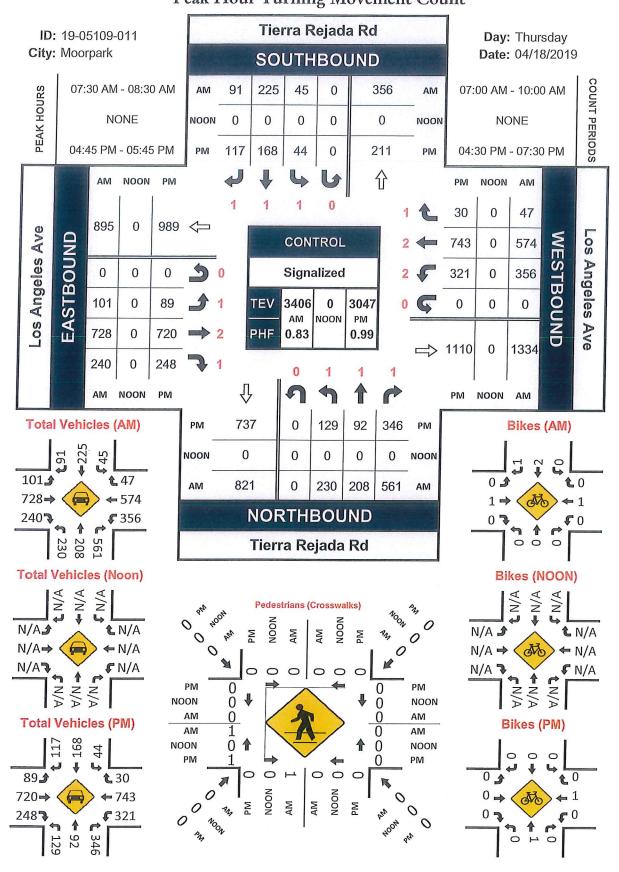
LEVEL OF SERVICE DEFINITIONS

Signalized Intersection Level of Service Definitions

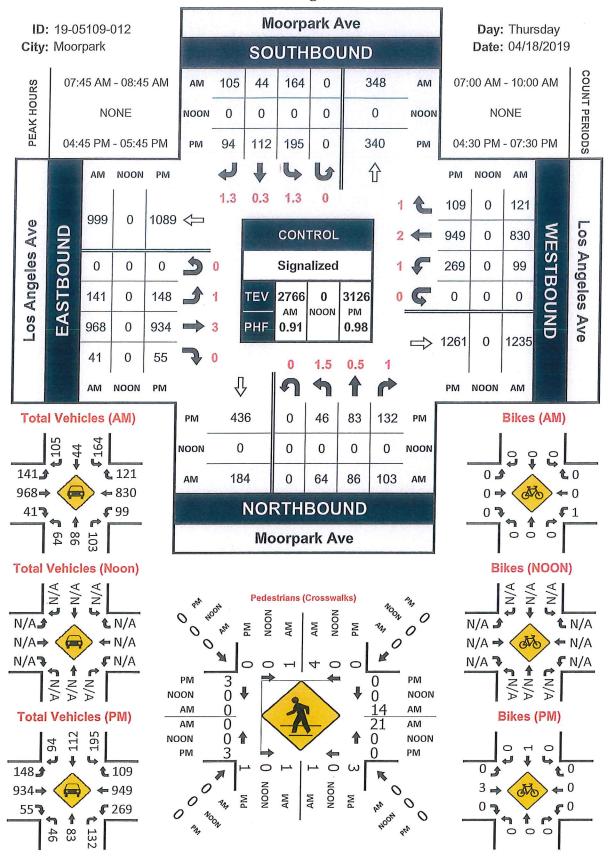
LOS	Delay ^a	V/C Ratio	Definition
A	< 10.0	< 0.60	Progression is extremely favorable. Most vehicles arrive during the green phase. Many vehicles do not stop at all.
В	10.1 - 20.0	0.61 - 0.70	Good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
С	20.1 - 35.0	0.71 - 0.80	Only fair progression, longer cycle lengths, or both, result in higher cycle lengths. Cycle lengths may fail to serve queued vehicles, and overflow occurs. Number of vehicles stopped is significant, though many still pass through intersection without stopping.
D	35.1 - 55.0	0.81 - 0.90	Congestion becomes more noticeable. Unfavorable progression, long cycle lengths and high v/c ratios result in longer delays. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
Е	55.1 - 80.0	0.91 - 1.00	High delay values indicate poor progression, long cycle lengths and high v/c ratios. Individual cycle failures are frequent
F	> 80.0	> 1.00	Considered unacceptable for most drivers, this level occurs when arrival flow rates exceed the capacity of lane groups, resulting in many individual cycle failures. Poor progression and long cycle lengths may also contribute to high delay levels.

^a Average control delay per vehicle in seconds.

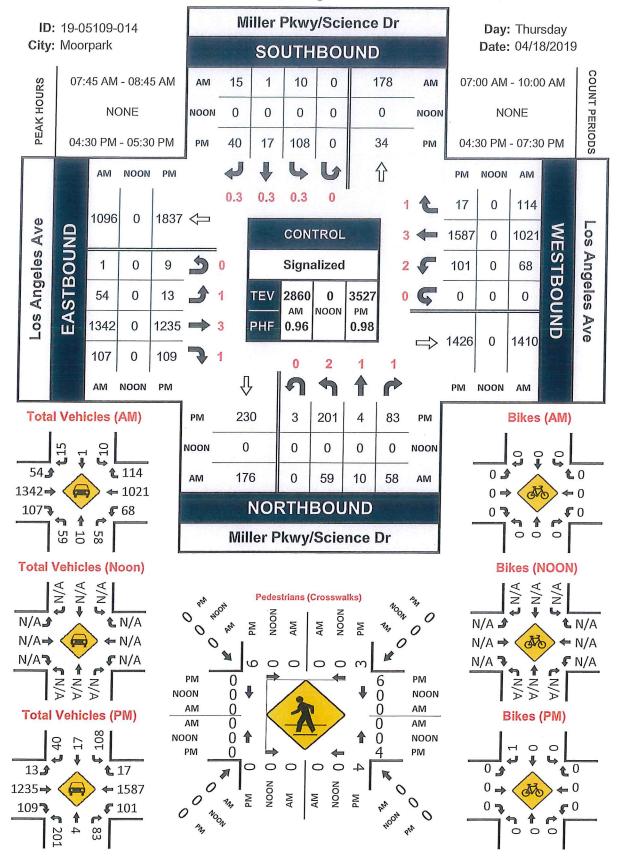
Unsignalized Intersection Level of Service Definitions

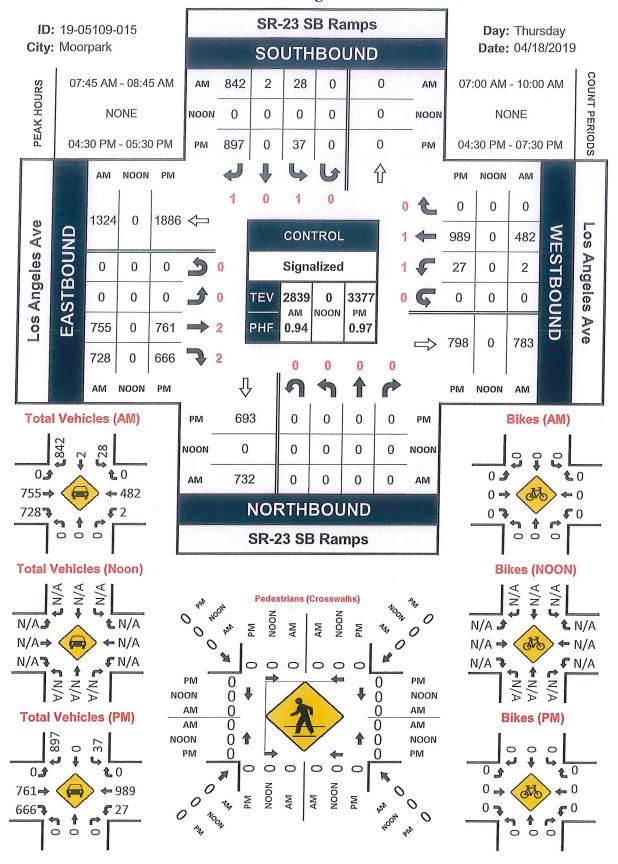

The HCM¹ uses *control delay* to determine the level of service at unsignalized intersections. Control delay is the difference between the travel time actually experienced at the control device and the travel time that would occur in the absence of the traffic control device. Control delay includes deceleration from free flow speed, queue move-up time, stopped delay and acceleration back to free flow speed.

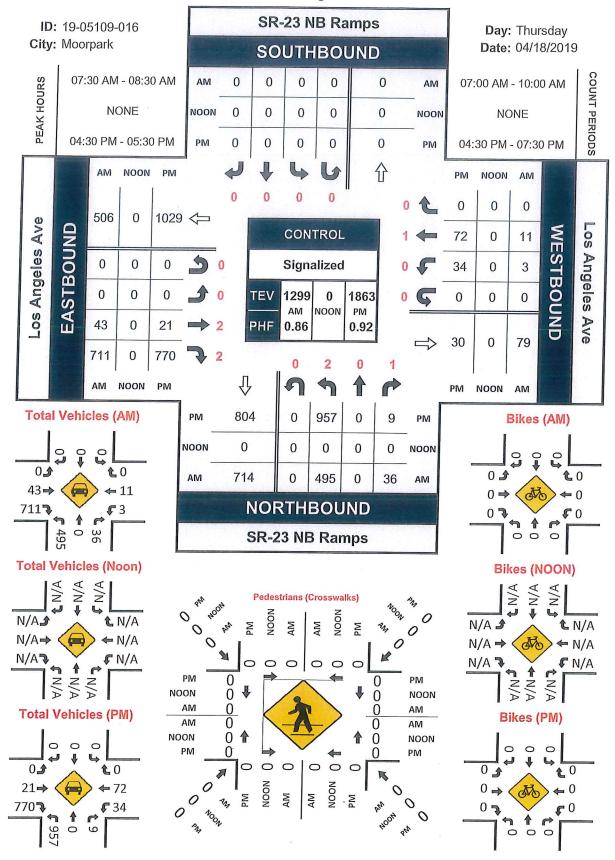
LOS	Control Delay Seconds per Vehicle
А	< 10.0
В	10.1 - 15.0
С	15.1 - 25.0
D	25.1 - 35.0
Е	35.1 - 50.0
F	> 50.0


¹ Highway Capacity Manual, National Research Board, 2000

INTERSECTION TURNING MOVEMENT COUNTS


Tierra Rejada Rd & Los Angeles Ave Peak Hour Turning Movement Count


Moorpark Ave & Los Angeles Ave


Miller Pkwy/Science Dr & Los Angeles Ave

SR-23 SB Ramps & Los Angeles Ave

SR-23 NB Ramps & Los Angeles Ave

CUMULATIVE PROJECT LIST

City of Moorpark, Community Development Department 799 Moorpark Avenue, Moorpark, CA 93021, 805-517-6230 LAND USE AND DEVELOPMENT PROJECTS QUARTERLY STATUS REPORT FOR DECEMBER 2021 This Report is Available on the City's Webpage - www.moorparkca.gov

ACRES (APPX.)		277	2.43	68.26	7.42	2.15
PROJECT DESCRIPTION		SPECIFIC PLAN INCLUDING 755 SINGLE AND MULTI-FAMILY RESIDENCES, OPEN SPACE, MANUFACTURED SLOPES, DETENTION BASINS, PRIVATE RECREATION, PUBLIC PARK	60 CONDOMINIUM RESIDENCES	134 SINGLE FAMILY HOMES AND 5 ESTATE LOTS	NEW RESIDENTIAL COMMUNITY CONSISTING OF 47 SINGLE-FAMILY DETACHED HOMES AND PROGRAMMED OPEN SPACE AREAS	79 APARTMENTS AND 13,656 SQUARE FEET COMMERCIAL MIXED USE
APPLICATION STATUS		IN REVIEW PROCESS	IN REVIEW PROCESS	IN REVIEW PROCESS	IN REVIEW PROCESS	APPROVED 107720
CEQA STATUS		ENVIRONMENTAL IMPACT REPORT (IN PROCESS)	(IN PROCESS)	INITIAL STUDY (IN PROCESS)	INITIAL STUDY (IN PROCESS)	MITIGATED NEGATIVE DECLARATION
PERMIT(S)		SP No. 1 / 2019-01 TTM 2019-01 RPD 2019-01 CZ 2019-01 GPA 2020-01 DA 2019-01	RPD 2005-02 GPA 2005-02 ZC 2005-02 TTM 5739 DA 2005-04 SPA No. 4 to DTSP 95-1	RPD 2016-02 GPA 2016-02 ZC 2016-02 TTM 5847 DA 2016-02	GPA 2021-01 DA 2021-01 CAC 2021-01 VTTM 2021-01 RPD 2021-01	RPD 2018-01 DA 2018-01 DDA 2018-01
SITE ADDRESS OR LOCATION		NORTH OF UNION PACIFIC RAILROAD TRACKS AND WEST OF TERMINUS OF CASEY ROAD	NORTHEAST CORNER OF EVERETT STREET AND WALNUT CANYON ROAD	5979 GABBERT ROAD	SOUTH OF LOS ANGELES AVENUE, EAST OF TIERRA REJADA ROAD, AND WEST OF MAUREEN LANE	226 HIGH STREET
APPLICATION COMPLETE OR INCOMPLETE		COMPLETE	COMPLETE	INCOMPLETE	COMPLETE	COMPLETE
SUBMITTAL DATE		01/17/2019	12/05/2005	10/31/2016	06/04/2021	09/6/2018
CASE PLANNER		DOUG SPONDELLO dspondello@moorparkca.gov (805) 517-6251	SHANNA FARLEY <u>sfarley@mooparkca.gov</u> (805) 517-6236	DOUG SPONDELLO dspondello@moorparkca.gov (805) 517-6251	SHANNA FARLEY <u>sfarley@moonparkca.gov</u> (818) 642-6458	KUGFION CARLENE SAXTON CSAXDO@moorparkca.gov (805) 517-6236
COMMON PROJECT NAME	W:	HITCH RANCH SPECIFIC PLAN SPECIFIC PLAN AREA 1	EVERETT STREET TERRAGES	NORTH RANCH	BELTRAMO RANCH	HIGH STREET STATION
APPLICANT / DEVELOPER	RESIDENTIAL PROJECTS – IN REVIEW	HITCH RANCH PARTNERS C/O DPS: DENNIS HARDGRAVE 651 VIA ALONDRA #714 CAMARILLO, CA 93012 805-484-8303 dennis@devplan.net COMSTOCK HOMES HARRIET RAPISTA 2301 ROSECRANS AVE #1150 EL SEGUNDO, CA 90245 310-546-5781 X235 Hrapista@Comstock-homes.com	JOHN C. CHU, FIP-N C/O JOHN NEWTON 159 MOONSONG COURT MOORPARK, CA 93021 805-529-3494 newtoncnstt@msn.com	WEST POINTE HOMES MOORPARK 67, LLC JAMES RASMUSSEN 28500 WEST AGOURA ROAD #652 CALABASAS, CA 91302 805-370-0165 james@rasmussendevelopment.com	JOE OFTELIE WARMINGTON RESIDENTIAL 3090 PULLMAN STREET COSTA MESA, CA 92626 (714)557-5511 pirlelie@warmingtongroup.com	ACOUNTIES OF A STATE OF STATE OF STATION CARLEY STA

City of Moorpark, Community Development Department 799 Moorpark Avenue, Moorpark, CA 93021, 805-517-6230 LAND USE AND DEVELOPMENT PROJECTS OUARTERLY STATUS REPORT FOR DECEMBED 2021

PERMIT	SITE ADDRESS OR	SUBMITTAL APPLICATION	SUBMITTAL
arkca.gov	ins reports Available oil tile oily s Webbage - www.morparkca.gov	or is available oil life	dayle
			Ē
BER 2021	GOARTERLY STATUS REPORT FOR DECEMBER 2021	RLY SIAIUS R	COARIE
)		1 1 1 1 1 1	
CTS	LAND OVER AND DEVELOPMEN PROJECTS	ID OVE AND DE	S

ACRES (APPX.)	20		42	72	=======================================		37.09	œ
PROJECT DESCRIPTION	390-UNIT SENIOR RETIREMENT COMMUNITY	ALLOW AFFORDABLE UNITS TO BE ONSITE AND FOR RENT AND SPITT ONE BUILDING INTO THREF RIII DINGS	21 SINGLE FAMILY RESIDENCES	110 SINGLE FAMILY RESIDENCES	200 APARTMENT RESIDENCES	200 APARTMENT RESIDENCES ALL AFFORDABLE	284 SINGLE FAMILY RESIDENCES	95 UNIT TOWNHOUSE CONDOMINIUM
APPLICATION STATUS	APPROVED 03/6/2019	UNDER REVIEW	APPROVED 03/17/2006	APPROVED 03/18/2015	APPROVED 03/01/2017	APPROVED 09/15/2021	APPROVED 09/20/2017	APPROVED 12/06/2017
CEQA STATUS	MITIGATED NEGATIVE DECLARATION	UNDER REVIEW	MITIGATED NEGATIVE DECLARATION	MITIGATED NEGATIVE DECLARATION	MITIGATED NEGATIVE DECLARATION	PREVIOUSLY ADOPTED MITIGATED NEGATIVE DECI ARATION	MITIGATED NEGATIVE DECLARATION	MITIGATED NEGATIVE DECLARATION
PERMIT(S)	RPD 2013-01 GPA 2013-02 ZC 2013-02 DA 2013-01	FIRST AMENDMENT TO DA	RPD 2004-05 GPA 2004-03 ZC 2004-02 VTTM 5347 DA 2006-01	RPD 2014-01 GPA 1998-01 ZC 1998-01 VTTM 5130 DA 1998-03	RPD 2012-02 GPA 2004-05 ZC 2004-04 DA	FIRST AMENDMENT TO DA	RPD 2016-01 GPA 2016-01 ZC 2016-01 VTTM 5882 DA 2016-01	RPD 2015-02 GPA 2015-02 ZC 2015-03
SITE ADDRESS OR LOCATION	NORTH OF CASEY ROAD AND WEST OF WALNUT CANYON ROAD		MARINE VIEW DRIVE, EAST OF WALNUT CANYON ROAD AT CHAMPIONSHIP DRIVE	EAST OF WALNUT CANYON ROAD, NORTH OF WICKS ROAD	SOUTH OF CASEY ROAD AND WEST OF WALNUT CANYON ROAD		SOUTH OF LOS ANGELES AVENUE AND EAST OF MAUREEN LANE	4875 SPRING ROAD AND 384 LOS ANGELES AVENUE
APPLICATION COMPLETE OR INCOMPLETE	NIA	UNDER REVIEW	N/A	N/A	N/A	N/A	N/A	N/A
SUBMITTAL DATE	09/3/2013	12/21/2021	08/13/2004	05/06/1998	09/24/2004	06/07/2021	04/15/2016	11/17/2015
CASE PLANNER	FREDDY CARRILLO fearrillo@moorparkca.gov (805) 517-6224		SHANNA FARLEY <u>sfarley@moorparkca.gov</u> (805) 517-6236	FREDDY CARRILLO framili@morparkca.gov (805) 517-6224	FREDDY CARRILLO fearrillo@moorparkca.gov (805) 517-6224		SHANNA FARLEY Sfalley@moo <u>rdarkca.gov</u> (805) 517-6236	FREDDY CARRILLO fcarrillo@moorparkca.gov (805) 517-6224
COMMON PROJECT NAME	COMMUNITY	PATRICAL INCAL	CANTON CRESI	VISTAS AT MOORPARK	ESSEX MOORPARK APARTMENTS	,	PACIFIC ARROYO • VERBENA (Detached Townhouses) • FUCHSIA (Single-Family Detached)	DUNCAN/ASHLEY 4875 SPRING ROAD
APPLICANT / DEVELOPER	ALDERSGATE INVESTMENT, LLC ERNEST MANSI MATT MANSI 300 ESPLANADE DRIVE #430 OXNARD, CA 93036 805-988-4114	ernie@aldersgatehome.com	SCOTT BIRDSALL 2300 ALESSANDRO DRIVE VENTURA, CA 93001 805-643-3200 scott@birdsall.io	CITY VENTURES MICHELLE THRAKULCHAVEE 3121 MICHELSON DRIVE #150 RVINE, CA 92612 949-258-7536 michellet@cityventures.com	ESSEX MOORPARK, L.P. BOB LINDER 17461 DERIAN AVE #110 IRVINE, CA, 92614	blinder@essex.com	PACIFIC COMMUNITIES NELSON CHUNG 1000 DOVE STREET #100 NEWPORT BEACH, CA 92660 949-660-8988	SPRING ROAD, LLC MIKE ASHLEY/DON DUNCAN 5300 WHITMAN ROAD,

City of Moorpark, Community Development Department 799 Moorpark Avenue, Moorpark, CA 93021, 805-517-6230 LAND USE AND DEVELOPMENT PROJECTS QUARTERLY STATUS REPORT FOR DECEMBER 2021 This Report is Available on the City's Webpage - www.moorparkca.gov

ACRES (APPX.)		4		2.78	5.5	6.08	2.59
PROJECT DESCRIPTION		69 TOWNHOUSE CONDOMINIUMS	63 TOWNHOUSE CONDOMINIUMS	77 UNIT SENIOR LIVING FACILITY	SYNAGOGUE AND JEWISH CENTER	DA AMENDMENT TO CONSIDER EXPANDED USES ALLOWED ON SITE	28,955 SQUARE-FOOT OFFICE COMPLEX WITH 7 SHELL BUILDINGS.
APPLICATION STATUS		APPROVED 02/19/2020	APPROVED 09/01/2021	UNDER	IN REVIEW PROCESS	INITIAL STUDY/NEGATIVE DECLARATION (IN PROCESS)	IN REVIEW PROCESS
CEQA STATUS		NEGATIVE DECLARATION	PREVIOUSLY ADOPTED NEGATIVE DECLARATION	MITIGATED NEGATIVE DECLARATION	EXEMPT FROM GEQA	NEGATIVE DECLARATION (PENDING)	PREVIOUSLY ADOPTED EIR
PERMIT(S)	VTTM 5972 DA 2015-01	RPD 2014-02 GPA 2014-01 ZC 2014-01 TT 5869 DA 2014-03	MOD 1 TO RPD 2014-02 FIRST AMENDMENT TO DA 2014-03	CPD 2018-01	CUP 2020-03	AMENDMENT 1 TO DA 2004-02	CPD 2021-01 VTTM 2021-02
SITE ADDRESS OR LOCATION		635 LOS ANGELES AVENUE		13960 PEACH HILL ROAD	6061 GABBERT ROAD	14349 WHITE SAGE ROAD	858 PATRIOT DRIVE
APPLICATION COMPLETE OR INCOMPLETE		N/A	N/A	N/A	INCOMPLETE	COMPLETE	INCOMEPLETE
SUBMITTAL DATE		10/10/2014	11/13/2020	04/20/2018	06/24/2020	5/4/2020	09/22/2021
CASE PLANNER		FREDDY CARRILLO fcarrillo@moorparkca.gov (805) 517-6224		DOUG SPONDELLO dspondello@moorparkca.gov (805) 517-6251	FREDDY CARRILLO ficarillo@moorparkca.gov (805) 517-6224	SHANNA FARLEY sfarley@moorparkoa.gov (805) 517-6236	SHANNA FARLEY Sfarley@moorparkca.gov (805) 517-6236
COMMON PROJECT NAME		GREEN ISLAND VILLAS	PONSTBILETION	OKMONT SENIOR LIVING	K PKOJECI S – IN RAVIEW SYNAGOGUE AND JEWISH CENTER	WAREHOUSE DISCOUNT CENTER DEVELOPMENT AGREEMENT AMENDMENT	PATRIOT OFFICE COMPLEX AND TRACT MAP
APPLICANT / DEVELOPER	HIDDEN HILLS, CA 91302 818-888-6469 mike@aci5300.com	MENASHE KOZAR 12725 VENTURA BLVD. SUITE D STUDIO CITY, CA 91604 818-927-4130 manny@summerlandpartners.com	RESIDENTIAL PROJECTS. LINDED CONSTDUCTION	OAKMONT SENIOR LIVING ATTN: JAMES LAWSON, AICP 9240 OLD REDWOOD HIGHWAY, SUITE 200 WINDSOR, CA 85492 james Jawson@oakmontsl.com	PATRIOT INVESTORS, LP SHIMON SYNAGOGUE AND HEIDINGSFELD SYNAGOGUE AND HEIDINGSFELD SYNAGOGUE AND HEIDINGSFELD SYNAGOGUE AND HEIDINGSFELD SYNAGOGUE AND SYNAG	TOM SCHLENDER TOWNSON SCHLENDER THOUSAND OAKS, CA 91360 (805) 221-7300 TOMS@WDCAPPLICANCES.COM	PATRIOT INVESTORS, LP MARTIN TEITELBAUM 29601 AGOURA ROAD AGOURA HILLS, CA 91301 (805) 383-2221 Martin@mtconstruct.com

City of Moorpark, Community Development Department 799 Moorpark Avenue, Moorpark, CA 93021, 805-517-6230 LAND USE AND DEVELOPMENT PROJECTS QUARTERLY STATUS REPORT FOR DECEMBER 2021 This Report is Available on the City's Webpage - www.moorparkca.gov

ACRES (APPX.)		38	37	2.2	3.5		0.57	38	
PROJECT DESCRIPTION		17 LOT INDUSTRIAL SUBDIVISION	MOTION PICTURE STUDIO COMPLEX	35,330 SQUARE-FOOT INDUSTRIAL BUILDING	48,211 SQ. FT. INDUSTRIAL BUILDING	UNDERGROUNDING OF UTILITY POLES AND SKYLIGHTS	DEVELOP A 6,186 SQ. FT. AUTO REPAIR SHOP	ZONE CHANGE FROM RE TO M-	MODIFICATION TO ALLOW RESIDENTIAL USES AS PART OF THE DEED RESTRICTION.
APPLICATION STATUS		FINAL MAP APPROVED	APPROVED 10/05/2011	APPROVED 12/6/2017	APPROVED 07/15/2020	APPROVED 06/16/2021	APPROVED 07/07/2021	APPROVED 06/01/2016 and 07/20/2016	PENDING
CEQA STATUS		MITIGATED NEGATIVE DECLARATION	MITIGATED NEGATIVE DECLARATION	EXEMPT FROM CEQA	EXEMPT FROM CEQA		EXEMPT FROM CEQA		EXEMPT FROM CEQA
PERMIT(S)		TT 5906 (PRIOR TR 5147)	IPD 2009-01 GPA 2009-01 ZC 2009-01 DA 2009-02	TPM 2016-01 IPD 2017-01	IPD 2019-01 CUP 2020-02	MOD 1 TO IPD 2019-01 AND CUP 2020-02	CPD 2020-01 CUP 2020-04	GPA 2015-01 CH 2015-02	Modification to Deed Restriction
SITE ADDRESS OR LOCATION		NORTH OF UNION PACIFIC RAILROAD TRACKS, WEST OF GABBERT ROAD	LOS ANGELES AVENUE, WEST OF SCE SUBSTATION	400 SCIENCE DRIVE	5751 CONDOR DRIVE		13816 PRINCETON AVENUE	Hilltop Parcel (APN 513- 0-010-285 and 513-0- 010-295)	
APPLICATION COMPLETE OR INCOMPLETE		N/A	N/A	N/A	N/A	V/A	COMPLETE	N/A	
SUBMITTAL DATE	NO	08/17/2012	03/23/2009	04/12/2017	11/19/2019	10/30/2020	08/05/2020	12/23/2021	
CASE PLANNER	IOT YET UNDER CONSTRUCTION	o gi	SHANNA FARLEY sfarley@moorparkca.gov (805) 517-6236	FREDDY CARRILLO framilio@moorparkca.gov (805) 517-6224	FREDDY CARRILLO fearrillo@moorparkca.gov (805) 517-6224		FREDDY CARRILLO fearfilo@moorparkca.gov (805) 517-6224	CARLENE SAXTON csaxton@moorparkca.gov (805) 517-6281	
COMMON PROJECT NAME	R PROJECTS - APPROVED, M	TENTATIVE TRACT NO. 5906 (A RESUBDIVISION OF TRACT 5147)	MOORPARK WEST STUDIOS	NEARON	5751 CONDOR DRIVE		13816 PRINCETON AVENUE	Hilltop (Sunbelt/Kavlico)	
APPLICANT / DEVELOPER	COMMERCIAL / INDUSTRIAL / OTHER PROJECTS – APPROVED, NOT YET UNDER CO	A-B PROPERTIES C/O JOHN NEWTON 159 MOONSONG COURT MOORPARK, CA 93021 805-529-3494 newtoncrist(@msn.com	TRILIAD DEVELOPMENT VALERIE DRAGGER 270 CONEJO RIDGE AVENUE #200 THOUSAND OAKS, CA 91361 (805) 379-3800 mail@triliad.com	NEARON, NICK RINI 101 YGNACIO VALLEY ROAD, SUITE 450 WALNUT CREEK, CA 94596 (925) 743-3300 NRini@nearon.com	PAUL MINOO 4M INVESTMENT CORPORTATION 6222 WILSHIRE BLVD, SUITE 270	LOS ANGELES, CA 90048 (213) 624.4040 x100 <u>paul@4minvestment.com</u>	ABDUL SALEHI TH711 DARTHIMOUTH CIRCLE TUSTIN, CA 92780 (949) 701-3346 abdul salehi@twc.com	SUNBELT ENTERPRISES 5715 Mesmer Avenue Los Angeles, CA 90230	Frank Marasco (805) 338-4140 Frankmarasco45@gmail.com

City of Moorpark, Community Development Department 799 Moorpark Avenue, Moorpark, CA 93021, 805-517-6230 LAND USE AND DEVELOPMENT PROJECTS QUARTERLY STATUS REPORT FOR DECEMBER 2021

S REPORT FOR DECEMBER 2021	e City's Webpage - www.moorparkca.gov
UARTERLY STATUS R	This Report is Available on the

APPLICANT / DEVELOPER	COMMON PROJECT NAME	CASE PLANNER	SUBMITTAL DATE	APPLICATION COMPLETE OR INCOMPLETE	SITE ADDRESS OR LOCATION	PERMIT(S)	CEQA STATUS	APPLICATION STATUS	PROJECT DESCRIPTION	ACRES (APPX.)
COMMERCIAL / INDUSTRIAL / OTHE	MERCIAL / INDUSTRIAL / OTHER PROJECTS - LINDER CONSTRUCTION	TELICTION								
DOUG HINRICHS	DCX6_AMAZON	DELI ID METHADAIN	000000000000000000000000000000000000000							
18831 BARDEEN AVENUE, ST 100	NO SCINC LAND	phelimann@moomarkea gov	01/28/2020	COMPLETE	COMPLETE 6000 CONDOR DRIVE CUP 2020-01	CUP 2020-01	MITIGATED	UNDER	CONVERSION OF AN EXISTING	11.78
IRVINE, CA 92612		(ROS) 517-6230					NEGATIVE	CONSTRUCTION	INDUSTRIAL BUILDING INTO A	
(949) 862-2135		0020-110 (000)					DECLARATION		189,364 SQ.FT. DISTRIBUTION	
Doug.hinrichs@hparchs.com						a a			AND TRANSPORTATION	
									FACILITY	

VCTC MODEL VMT DATA

BELTRAMO RANCH VMT FORECASTS - SOURCE: VCTC MODEL DATA

VCTC TAZ 60123100 60127200 60123200 60127100 TOTALS	HOUSEHOLDS 221 1000 665 745 2631	702 2239 2165 3856 8962	VMT PER CAPITA 11.99 11.81 25.33 16.09 16.93	TOTAL VMT 8416.98 26442.59 54839.45 62043.04 151742.06	
MOORPARK HOME B	ASE VMT = RESHOLDS (15% LESS) =	20.31 17.26			
PROJECT VMT = IMPACT?		16.93 NO			

PROJECT VMT -> HOUSEHOLDS(a) RESIDENTS PER UNIT TOTAL RESIDENTS VMT PER CAPITA TOTAL VMT
45 3.41 153 16.93 2590.55

⁽a) Analysis assumed 47 new units - 2 existing units to be removed.

INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS

Reference 1 - Los Angeles Avenue/Tierra Rejada Road

Reference 2 - Los Angeles Avenue/Maureen Lane

Reference 3 - Los Angeles Avenue/Moorpark Avenue

Reference 4 - Los Angeles Avenue/Miller Parkway

Reference 5 - State Route 23 Southbound Ramps/Los Angeles Avenue

Reference 6 - State Route 23 Northbound Ramps/Los Angeles Avenue

INTERSECTION CAPACITY UTILIZATION WORKSHEET

TIME PERIOD: AM PEAK HOUR

COUNT DATE: APRIL 18, 2019

N/S STREET:

TIERRA REJADA ROAD

E/W STREET:

LOS ANGELES AVENUE

CONTROL TYPE **SIGNAL**

				Т	RAFFIC	VOLU	ME SU	MMAR	Y			
	NOR	RTH BO	UND	SOL	JTH BO	UND	EAS	T BOUI	٧D	WE	ST BOUNI)
VOLUMES	L	Т	R	L	T	R	L	T	R	L	T	R
(A) EXISTING:	230	208	561	45	225	91	101	728	240	356	574	47
(B) PROJECT-ADDED:	0	0	2	0	0	0	0	1	0	5	2	0
(C) CUMULATIVE:	230	215	565	70	250	100	110	820	290	400	645	60

GEOMETRICS

LANE CEONETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 01 AM

LANE GEOMETRICS

LTR

LTR

LTTR

LL TT R

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A+B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	NS				
MOVE-	# OF			SCE	NARIO \	OLUMES	90		SCENARIO '	V/C RATIOS	
MENTS	LANES	CAPACITY	1	2	3	4	- 1	2	3	4	
NBL	1	1500	230	230	230	230	0.15 *	0.15 *	0.15 *	0.15 *	
NBT	1	1600	208	208	215	215	0.130	0.130	0.134	0.134	
NBR	1	1500	303	304	305	306	0.202	0.203	0.203	0.204	
SBL	1	1500	45	45	70	70	0.030	0.030	0.047	0.047	
SBT	1	1600	225	225	250	250	0.141 *	0.141 *	0.156 *	0.156 *	
SBR	1	1500	91	91	100	100	0.06	0.06	0.07	0.07	
EBL	1	1500	101	101	110	110	0.07	0.07	0.07	0.07	
EBT	2	3200	728	729	820	821	0.228 *	0.228 *	0.256 *	0.257 *	
EBR	1	1500	240	240	290	290	0.16	0.16	0.19	0.19	
WBL	2	3000	356	361	400	405	0.12 *	0.12 *	0.13 *	0.14 *	
WBT	2	3200	574	576	645	647	0.179	0.180	0.202	0.202	
WBR	1	1500	47	47	60	60	0.031	0.031	0.040	0.040	
						LOST TIME:	0.10	0.10	0.10	0.10	
		тот	AL INTER	SECTION	N CAPAC	ITY UTILIZATION:	0.741	0.742	0.798	0.801	
				SCENARI	O LEVEL	OF SERVICE:	С	С	С	С	
NOTES:	***										

NOTES:

a Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

TIME PERIOD: PM PEAK HOUR

COUNT DATE: APRIL 18, 2019

N/S STREET:

TIERRA REJADA ROAD

E/W STREET:

LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

				-						Total Care Con-				
					T	RAFFIC	VOLU	ME SU	MMAR	Y				
		NOR	TH BO	UND	SOL	JTH BO	UND	EAS	T BOUI	ND	WI	ST BOUNE)	
VOLUMES		L	T	R	L	T	R	L	T	R	L	T	R	
(A) EXISTING:		129	92	346	44	168	117	89	720	248	321	743	30	
(B) PROJECT-AD	DED:	0	0	6	0	0	0	0	2	0	3	2	0	
(C) CUMULATIV	E:	130	-110	350	65	190	130	105	850	295	350	1000	65	

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

LANE GEOMETRICS

L T R

LTR

LTTR

LL TT R

REF: 01 PM

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A+B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE	CALCULATIO	NS					
MOVE-	# OF		_	SCE	NARIO '	VOLUME	<u>:S</u>			SCENARIO '	V/C RATIOS		
MENTS	LANES	CAPACITY	1	2	3	4		1	2	. 3	4		
NBL	1	1500	129	129	130	130		0.09 *	0.09 *	0.09 *	0.09 *	, a	
NBT	1	1600	92	92	-110	-110		0.058	0.058	0.000	0.000		
NBR	1	1500	187	190	189	192		0.125	0.127	0.126	0.128		
SBL	1	1500	44	44	65	65		0.029	0.029	0.043	0.043		
SBT	1	1600	168	168	190	190		0.105 *	0.105 *	0.119 *	0.119 *		
SBR	1	1500	117	117	130	130		0.08	0.08	0.09	0.09		
EBL	1	1500	89	89	105	105		0.06	0.06	0.07	0.07		
EBT	2	3200	720	722	850	852		0.225 *	0.226 *	0.266 *	0.266 *		
EBR	1	1500	248	248	295	295		0.17	0.17	0.20	0.20		
WBL	2	3000	321	324	350	353		0.11 *	0.11 *	0.12 *	0.12 *		
WBT	2	3200	743	745	1000	1002		0.232	0.233	0.313	0.313		
WBR	1	1500	30	30	65	65		0.020	0.020	0.043	0.043		
						LOST	T TIME:	0.10	0.10	0.10	0.10		
		тот	AL INTER	SECTION	N CAPAC	CITY UTII	LIZATION:	0.623	0.625	0.689	0.690		
				SCENAR	IO LEVE	L OF SER	VICE:	В	В	В	В		
NOTES.	ere est		100	STATE OF STREET			and the second second second			-			

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

APRIL 18, 2019

TIME PERIOD:

AM PEAK HOUR

N/S STREET:

MAUREEN LANE

E/W STREET:

LOS ANGELES AVENUE

CONTROL TYPE:

SIGNAL

					T	RAFFIC	VOLU	ME SU	MMARY						
		NOR	TH BO	UND	SOL	JTH BO	UND	EAS	T BOUN	1D	WI	EST BOUNI)		
VO	LUMES	L	T	R	L	T	R	L	T	R	L	T	R	. *	b
(A)	EXISTING:	3	0	21	31	0	13	97	1236	1	7	961	227		
(B)	PROJECT-ADDED:	0	0	0	0	0	0	7	17	0	0	6	0		
(C)	CUMULATIVE:	5	0	25	35	0	15	100	1350	5	10	1085	230		

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 02 AM

LANE GEOMETRICS

LTR

LTR

L TT TR

L TT TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A+B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	NS					
MOVE-	# OF			SC	ENARIO	VOLUMES			SCENARIO '	V/C RATIOS		
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4		
NBL	0	0	3	3	5	5	-	-	-	-		
NBT	1	1600	0	0	0	0	0.015 *	0.015 *	0.019 *	0.019 *		
NBR	0	0	21	21	25	25	-	-	-	-		
SBL	0	0	31	31	35	35	14	-	-	-		
SBT	1	1600	0	0	0	0	0.028 *	0.028 *	0.031 *	0.031 *		
SBR	0	0	13	13	15	15	15	-	-	-	(40)	
EBL	1	1500	97	104	100	107	0.07 *	0.07 *	0.07 *	0.07 *		
EBT	3	4800	1236	1253	1350	1367	0.258	0.261	0.282	0.286		
EBR	0	0	1	1	5	5	-	-1	-	-		
WBL	1	1500	7	7	10	10	0.01	0.01	0.01	0.01		
WBT	3	4800	961	967	1085	1091	0.248 *	0.249 *	0.274 *	0.275 *		
WBR	0	0	227	227	230	230	-	-		-		
	•					Name and the second		000 No. 100	121 m 120			
						LOST TIME:	0.10	0.10	0.10	0.10		
												- 1
		TOT				CITY UTILIZATION:	0.456	0.461	0.491	0.496		
				SCENAR	IO LEVE	L OF SERVICE:	A	Α	Α	A		
NOTES:												

Printed: 02/07/22

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

APRIL 18, 2019

TIME PERIOD:

PM PEAK HOUR

N/S STREET:

MAUREEN LANE LOS ANGELES AVENUE

E/W STREET: CONTROL TYPE:

SIGNAL

				т.	AFFIC	WOLLI	LIE CLI	1 / 1 / A D 1/					
							Charles and the	MMARY					
	NOF	RTH BO	UND	SOU	TH BO	UND	EAS	T BOUN	1D	WE	ST BOUND)	
VOLUMES	L	T	R	L	T	R	L	T	R	L	T	R	
(A) EVICTING				202		0.7	40	4000		24	4005	20	
(A) EXISTING:	2	U	14	202	0	87	13	1093	4	24	1005	30	
(B) PROJECT-ADDED:	0	0	0	0	0	0	5	11	0	0	20	0	
(C) CUMULATIVE:	5	0	15	205	0	90	15	1245	5	25	1320	35	

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 02 PM

LANE GEOMETRICS

LTR

LTR

L TT TR

L TT TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	NS				
MOVE-	# OF		,	SCI	ENARIO	VOLUMES			SCENARIO '	V/C RATIOS	
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4	
NBL	0	0	2	2	5	5	_	-	-	-	
NBT	1	1600	0	0	0	0	0.010 *	0.010 *	0.013 *	0.013 *	
NBR	0	0	14	14	15	15	ie.	-	-	8	
SBL	0	0	202	202	205	205	-	-	-	-	
SBT	1	1600	0	0	0	0	0.181 *	0.181 *	0.184 *	0.184 *	
SBR	0	0	87	87	90	90	-	-		-	
EBL	1	1500	13	18	15	20	0.01	0.01	0.01	0.01	
EBT	3	4800	1093	1104	1245	1256	0.229 *	0.231 *	0.260 *	0.263 *	
EBR	0	0	4	4	5	5		41	-	-	
WBL	1	1500	24	24	25	25	0.02 *	0.02 *	0.02 *	0.02 *	
WBT	3	4800	1005	1025	1320	1340	0.216	0.220	0.282	0.286	
WBR	0	0	30	30	35	35	-	-	:-	-	
						LOST THE	0.10	0.10	0.10	0.10	
						LOST TIME:	0.10	0.10	0.10	0.10	
		TOT	TAL INTE			CITY UTILIZATION:	0.536	0.538	0.574	0.577	
				SCENAR	RIO LEVE	L OF SERVICE:	A	Α	A	Α	
NOTES:	THE RESERVE										

NOTES:

Printed: 02/07/22

INTERSECTION CAPACITY UTILIZATION WORKSHEET

TIME PERIOD: AM PEAK HOUR

COUNT DATE: APRIL 18, 2019

N/S STREET: E/W STREET:

MOORPARK AVENUE LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

										-			THE RESERVE OF THE PERSON NAMED IN	
					T	RAFFIC	VOLU	ME SU	MMARY	1				
		NOR	TH BO	UND	SOL	JTH BC	UND	EAS	T BOUN	۷D	WE	ST BOUNI	D	
VOLU	MES	L	T	R	L	T	R	L	T	R	L	T	R	
(A) E	XISTING:	64	86	103	164	44	105	141	968	41	99	830	121	
(B) PI	ROJECT-ADDED:	0	0	0	0	0	0	1	15	0	0	6	0	
(C) C	CUMULATIVE:	65	90	105	220	45	130	180	1135	45	100	1130	150	

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 03 AM

LANE GEOMETRICS

L LT R

L LTR R

L TT TR

LTTR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	NS				
MOVE-	# OF			SCE	NARIO '	VOLUMES			SCENARIO '	V/C RATIOS	
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4	
NBL	0	0	64	64	65	65	20	=	-	-	
NBT	2	3200	86	86	90	90	0.047	0.047	0.048	0.048	
NBR	1	1500	56	56	57	57	0.037	0.037	0.038	0.038	
SBL	0	0	164	164	220	220		-	-	-	
SBT	3	4800	44	44	45	45	0.065 *	0.065 *	0.082 *	0.082 *	
SBR	0	0	105	105	130	130	-	-	-	-	
EBL	1	1500	141	142	180	181	0.09	0.10	0.12	0.12	
EBT	3	4800	968	983	1135	1150	0.210 *	0.213 *	0.246 *	0.249 *	
EBR	0	0	41	41	45	45	~	-	-	-	
WBL	1	1500	99	99	100	100	0.07 *	0.07 *	0.07 *	0.07 *	
WBT	2	3200	830	836	1130	1136	0.259	0.261	0.353	0.355	
WBR	1	1500	121	121	150	150	0.081	0.081	0.100	0.100	
						LOST TIME:	0.10	0.10	0.10	0.10	
		тот	AL INTERS	SECTION	N CAPAC	CITY UTILIZATION:	0.441	0.444	0.495	0.498	
				SCENAR	IO LEVE	L OF SERVICE:	A	Α	Α	Α	
MOTEO						2 I marginal distribution of the ball of					

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: APRIL 18, 2019 TIME PERIOD: PM PEAK HOUR

N/S STREET: MOORPARK AVENUE E/W STREET: LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

					Т	RAFFIC	VOLU	ME SU	MMARY	1				
		NOR	RTH BO	UND	SOL	JTH BO	UND	EAS	T BOUN	4D	WE	ST BOUNI)	
VO	LUMES	L	T	R	L	T	R	L	T	R	L	T	R	
(A)	EXISTING:	46	83	132	195	112	94	148	934	55	269	949	109	
(B)	PROJECT-ADDED:	0	0	0	0	0	1	1	9	0	0	18	0	
(C)	CUMULATIVE:	50	85	135	290	115	130	160	1250	55	270	1200	200	

GEOMETRICS

LANE GEOMETRICS

NORTH BOUND L LT R

SOUTH BOUND LLTRR

EAST BOUND L TT TR

WEST BOUND LTTR

REF: 03 PM

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE(C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	NS					
MOVE-	# OF			SCE	NARIO	VOLUMES			SCENARIO '	V/C RATIOS		
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4		
NBL	0	0	46	46	50	50	-	-	_	-		
NBT	2	3200	83	83	85	85	0.040	0.040	0.042	0.042		
NBR	1	1500	71	71	73	73	0.047	0.047	0.049	0.049		
SBL	0	0	195	195	290	290	-	-	£.	-		
SBT	3	4800	112	112	115	115	0.084 *	0.084 *	0.111 *	0.112 *		
SBR	0	0	94	95	130	131	-	-	-	-		
EBL	1	1500	148	149	160	161	0.10	0.10	0.11	0.11		
EBT	3	4800	934	943	1250	1259	0.206 *	0.208 *	0.272 *	0.274 *		
EBR	0	0	55	55	55	55	-	-	-	-		
WBL	1	1500	269	269	270	270	0.18 *	0.18 *	0.18 *	0.18 *		
WBT	2	3200	949	967	1200	1218	0.297	0.302	0.375	0.381		
WBR	1	1500	109	109	200	200	0.073	0.073	0.133	0.133		1
						LOST TIME:	0.10	0.10	0.10	0.10		
		TOT	AL INTER	SECTION	N CAPAC	CITY UTILIZATION:	0.569	0.571	0.663	0.666		
				SCENAR	IO LEVE	L OF SERVICE:	A	A	В	В		
MOTEC.			No venture state of		NAME OF TAXABLE PARTY.		W. J. J. W. J. W. J. W.				And the second limited the second	and the first of

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

TIME PERIOD: AM PEAK HOUR

COUNT DATE: APRIL 18, 2019

N/S STREET: E/W STREET:

MILLER PARKWAY LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

				T	RAFFIC	VOLU	ME SU	MMARY	′				
	NOF	RTH BO	UND	SOL	ТН ВО	UND	EAS	T BOUN	1D	W	est bouni)	
VOLUMES	L	T	R	L	T	R	L	T	R	L	T	R	
(A) EXISTING:	59	10	58	10	1	15	55	1342	107	68	1021	114	
(B) PROJECT-ADDED:	0	0	0	0	0	0	0	13	0	0	6	0	
(C) CUMULATIVE:	60	10	60	10	5	15	55	1345	110	70	1305	115	

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 04 AM

LANE GEOMETRICS

LL T R

LTR

L TTT R

LL TTT R

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A+B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATION	ONS				
MOVE-	# OF			SCI	NARIO	VOLUMES	v		SCENARIO '	V/C RATIOS	
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4	
NBL	2	3000	59	59	60	60	0.02 *	0.02 *	0.02 *	0.02 *	
NBT	1	1600	10	10	10	10	0.006	0.006	0.006	0.006	
NBR	1	1500	31	31	32	32	0.021	0.021	0.021	0.021	
	200		2 607	1000	N 100	2008					
SBL	0	0	10	10	10	10	-	-	100	-	
SBT	1	1600	1	1	5	5	0.016 *	0.016 *	0.019 *	0.019 *	
SBR	0	0	15	15	15	15	-	-	(=	-	
EDI		1500					0.04	0.04	0.04	0.04	
EBL	1	1500	55	55	55	55	0.04	0.04	0.04	0.04	
EBT	3	4800	1342	1355	1345	1358	0.280 *	0.282 *	0.280 *	0.283 *	
EBR	1	1500	107	107	110	110	0.07	0.07	0.07	0.07	
WBL	2	3000	68	68	70	70	0.02 *	0.02 *	0.02 *	0.02 *	
WBT	3	4800	1021	1027	1305	1311	0.213	0.214	0.272	0.273	
WBR	1	1500	114	114	115	115	0.076	0.076	0.077	0.077	
						LOST TIME	0.10	0.10	0.10	0.10	
						LOST TIME:	0.10	0.10	0.10	0.10	
		,	AL INITEE	CECTIO	NI CADA	CITY LITHER ATION.	0.420	0.444	0.443	0.445	
		101				CITY UTILIZATION: L OF SERVICE:	0.439 A	0.441 A	0.442 A	0.445 A	
				JCLINAI	IIO LLVL	L OI JERVICE.	_ ^	^	^	^	
NOTES.											

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

TIME PERIOD: PM PEAK HOUR

COUNT DATE: APRIL 18, 2019

N/S STREET: MILLER PARKWAY

E/W STREET: LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

·				TI	RAFFIC	VOLU	ME SU	MMARY	′				
	NC	RTH BC	DUND	SOU	тн во	UND	EAS	T BOUN	4D	WE	ST BOUNE)	
VOLUMES	L	T	R	L	T	R	L	T	R	L	T	R	
(A) EXISTING:	204	4	83	108	17	40	22	1235	109	101	1587	17	
(B) PROJECT-ADD	ED: 0	0	0	0	0	0	0	8	0	0	15	0	
(C) CUMULATIVE:	210	5	90	110	20	40	25	1540	110	110	1720	20	

GEOMETRICS

LANE GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 04 PM

LL T R

LTR

L TTT R

LL TTT R

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	NS				
MOVE-	# OF			SCE	NARIO	VOLUMES			SCENARIO '	V/C RATIOS	
MENTS -	LANES	CAPACITY	1	2	3	4	1	2	3	4	
NBL	2	3000	204	204	210	210	0.07 *	0.07 *	0.07 *	0.07 *	
NBT	1	1600	4	4	5	5	0.003	0.003	0.003	0.003	
NBR	1	1500	45	45	49	49	0.030	0.030	0.033	0.033	
SBL	0	0	108	108	110	110	-	=1	-	-	
SBT	1	1600	17	17	20	20	0.103 *	0.103 *	0.106 *	0.106 *	
SBR	0	0	40	40	40	40	-	÷	-	= '	
EBL	1	1500	22	22	25	25	0.02	0.02	0.02	0.02	
EBT	3	4800	1235	1243	1540	1548	0.257 *	0.259 *	0.321 *	0.323 *	
EBR	1	1500	109	109	110	110	0.07	0.07	0.07	0.07	
							400				
WBL	2	3000	101	101	110	110	0.03 *	0.03 *	0.04 *	0.04 *	- 1
WBT	3	4800	1587	1602	1720	1735	0.331	0.334	0.358	0.361	
WBR	1	1500	17	17	20	20	0.011	0.011	0.013	0.013	
						Soda Mariochalia sona		14 1379			
						LOST TIME:	0.10	0.10	0.10	0.10	
		тот	AL INTER	SECTIO	N CAPA	CITY UTILIZATION:	0.562	0.564	0.634	0.636	- 1
				SCENAR	IO LEVE	L OF SERVICE:	A	A	В	В	
NOTES.	Acres de Late								AND THE PERSON NAMED IN		

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: *APRIL 18, 2019*TIME PERIOD: *AM PEAK HOUR*

N/S STREET: ST

STATE ROUTE 23/118 SOUTHBOUND RAMPS

E/W STREET: LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

				T	RAFFIC	VOLU	ME SU	MMAR	Y				
	NORTH BOUNE OLUMES I T R							T BOU	ND	WI	EST BOUNE)	
VOLUMES	L	T	R	L	T	R	L	T	R	L	T	R	
(A) EXISTING:	0	0	0	28	2	842	0	755	728	2	482	0	
(B) PROJECT-ADDED:	0	0	0	0	0	2	0	5	6	0	2	0	
(C) CUMULATIVE:	0	0	0	30	5	980	0	915	890	5	610	0	

GEOMETRICS

NORTH BOUND

SOUTH BOUND EAST BOUND

WEST BOUND

REF: 05 AM

LANE GEOMETRICS

LT R

TT R

LT

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	ONS					
MOVE-	# OF			SCE	NARIO \	/OLUMES			SCENARIO	V/C RATIOS		
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4	*	
NBL		0	0	0	0	0	_	-	-	_		
NBT		0	0	0	0	0	-	-	-	-		
NBR		0	0	0	0	0	-	-	-	-		
SBL	0	0	28	28	30	30	-	-	-	~		
SBT	1	1600	2	2	5	5	0.019 *	0.019 *	0.022 *	0.022 *		
SBR	1	1500	842	844	980	982	0.56	0.56	0.65	0.66		
EBL	0	0	0	0	0	0	3	-	-	=		1
EBT	2	3200	755	760	915	920	0.236	0.238	0.286	0.288		
EBR	1	1500	728	734	890	896	0.49	0.49	0.59	0.60		
WBL	1	1500	2	2	5	5	0.00	0.00	0.00	0.00		
WBT	1	1600	482	484	610	612	0.301 *	0.303 *	0.381 *	0.383 *		
WBR	0	0	0	0	0	0	-	-	-	-		
	•					LOST TIME:	0.10	0.10	0.10	0.10		
						LOST TIME.	0.70	5.10	5.10	0.10		
		TOT	AL INTER	SECTION	CAPAC	ITY UTILIZATION:	0.420	0.422	0.503	0.505		
						OF SERVICE:	A	A	A	A		
NOTES.												

NOTES:

a Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: APRIL 18, 2019 TIME PERIOD: PM PEAK HOUR

N/S STREET:

STATE ROUTE 23/118 SOUTHBOUND RAMPS

E/W STREET: LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

			TI	RAFFIC	VOLU	ME SU	MMAR	Y				
NOR	RTH BO	UND	SOU	JTH BC	DUND	EAS	T BOU	ND	W	est bound)	
L	T	R	L	T	R	L	T	R	L	T	R	
0	0	0	37	0	897	0	761	666	27	989	0	
0	0	0	0	0	6	0	3	4	0	7	0	
0	0	0	40	0	900	0	935	680	30	1150	0	
	0 0	L T 0 0 0 0 0	0 0 0	NORTH BOUND SOL L T R L 0 0 0 37 0 0 0 0	NORTH BOUND SOUTH BC L T R L T 0 0 0 37 0 0 0 0 0 0	NORTH BOUND SOUTH BOUND L T R L T R 0 0 0 0 37 0 897 0 0 0 0 6	NORTH BOUND SOUTH BOUND EAS L T R L T R L 0 0 0 37 0 897 0 0 0 0 0 0 6 0	NORTH BOUND SOUTH BOUND EAST BOUL L T R L T R L T 0 0 0 37 0 897 0 761 0 0 0 0 0 6 0 3	L T R L T R L T R 0 0 0 37 0 897 0 761 666 0 0 0 0 6 0 3 4	NORTH BOUND SOUTH BOUND EAST BOUND W L T R L T R L 0 0 0 37 0 897 0 761 666 27 0 0 0 0 6 0 3 4 0	NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND L T R L T R L T 0 0 0 37 0 897 0 761 666 27 989 0 0 0 0 6 0 3 4 0 7	NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND L T R L T R 0 0 0 37 0 897 0 761 666 27 989 0 0 0 0 0 6 0 3 4 0 7 0

GEOMETRICS

NORTH BOUND

SOUTH BOUND EAST BOUND

TT R

WEST BOUND

LT

REF: 05 PM

LANE GEOMETRICS

LT R

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	NS				
MOVE-	# OF	SI .		SCI	NARIO	VOLUMES			SCENARIO	V/C RATIOS	
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4	
NBL		0	0	0	0	0	_	_	-	_	
NBT		0	0	0	0	0	-	-		_	
NBR		0	0	0	0	0	-	-	-	-	
SBL	0	0	37	37	40	40		-	-	-	
SBT	1	1600	0	0	0	0	0.023 *	0.023 *	0.025 *	0.025 *	
SBR	1	1500	897	903	900	906	0.60	0.60	0.60	0.60	
EBL	0	0	0	0	0	0	-	-	-	-	
EBT	2	3200	761	764	935	938	0.238	0.239	0.292	0.293	1
EBR	1	1500	666	670	680	684	0.44	0.45	0.45	0.46	
WBL	1	1500	27	27	30	30	0.02	0.02	0.02	0.02	
WBT	1	1600	989	996	1150	1157	0.618 *	0.623 *	0.719 *	0.723 *	
WBR	0	0	0	0	0	0	-	-	-	-	
2	•										
						LOST TIME:	0.10	0.10	0.10	0.10	
		ТОТ				CITY UTILIZATION:	0.741	0.746	0.844	0.848	
				SCENAR	IO LEVEI	L OF SERVICE:	С	С	D	D	
NOTES:						THE WAY DE COMMENTS		THE RESERVE OF THE PARTY OF THE			

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: APRIL 18, 2019 TIME PERIOD: AM PEAK HOUR

N/S STREET:

STATE ROUTE23/118 NORTHBOUND RAMPS

E/W STREET:

LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

_															r
						T	RAFFIC	VOLU	ME SU	MMAR	Υ				
			NOR	TH BC	DUND	SOL	JTH BO	UND	EAS	T BOU	ND	WI	est bouni	D	
	VOLUMES		L	Т	R	L	T	R	L	T	R	L	T	R	
	(A) EXISTIN	NG:	495	0	36	0	0	0	0	43	711	3	11	0	
	(B) PROJEC	CT-ADDED:	2	0	0	0	0	0	0	0	5	0	0	0	
	(C) CUMU	LATIVE:	600	0	40	0	0	0	0	45	900	5	15	0	
II .															

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 06 AM

LANE GEOMETRICS

LL R

TT

LT

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A+B)

SCENARIO 3 = CUMULATIVE (C)

SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVE	L OF SE	RVICE CALCULATIO	NS				
MOVE-	# OF			SCE	NARIO V	OLUMES			SCENARIO '	V/C RATIOS	
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4	
NBL	2	3000	495	497	600	602	0.17 *	0.17 *	0.20 *	0.20 *	
NBT	0	0	0	0	0	0	-	-	-	-	
NBR	1	1500	19	19	22	22	0.013	0.013	0.015	0.015	
SBL		0	0	0	0	0		-	-	-	
SBT		0	0	0	0	0	2	-	-	-	
SBR		0	0	0	0	0	-	-	-	-	
EBL	0	0	0	0	0	0	-	-	-	-	
EBT	2	3200	43	43	45	45	0.236 *	0.237 *	0.295 *	0.297 *	
EBR	0	0	711	716	900	905	-	-	==	~	
WBL	0	0	3	3	5	5		-	-	Ξ.	
WBT	1	1600	11	11	15	15	0.009	0.009	0.013	0.013	
WBR	0	0	0	0	0	0	-	-	-	-	
						LOST TIME:	0.10	0.10	0.10	0.10	
		TOT	AL INTER	SECTION	CAPAC	ITY UTILIZATION:	0.501	0.503	0.595	0.598	
			:	SCENAR	IO LEVEL	OF SERVICE:	A	Α	A	A	
MOTEC	the state of										

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: APRIL 18, 2019 TIME PERIOD: PM PEAK HOUR

N/S STREET:

STATE ROUTE 23/118 NORTHBOUND RAMPS

E/W STREET:

LOS ANGELES AVENUE

CONTROL TYPE SIGNAL

	TRAFFIC VOLUME SUMMARY													
		NOR	NORTH BOUND			SOUTH BOUND EAST BOL				ND	WE)		
VOLUMES		L	T	R	L	T	R	L	T	R	L	T	R	
(A)	EXISTING:	957	0	9	0	0	0	0	21	770	34	72	0	
(B)	PROJECT-ADDED:	7	0	0	0	0	0	0	0	3	0	0	0	
(C)	CUMULATIVE:	1100	0	10	0	0	0	0	25	950	35	80	0	

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 06 PM

LANE GEOMETRICS

LL R

TT R

LT

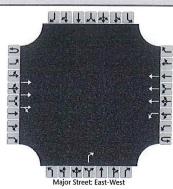
TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES (A + B)

SCENARIO 3 = CUMULATIVE (C)

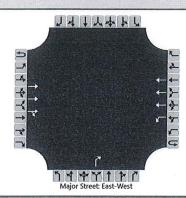
SCENARIO 4 = CUMULATIVE + PROJECT VOLUMES (B+C)


	LEVEL OF SERVICE CALCULATIONS													
MOVE-	# OF			SCE	NARIO V	VOLUMES	SCENARIO V/C RATIOS							
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4				
NBL	2	3000	957	964	1100	1107	0.32 *	0.32 *	0.37 *	0.37 *				
NBT	0	0	0	0	0	0	-	-	-	-				
NBR	1	1500	5	5	5	5	0.003	0.003	0.003	0.003				
SBL		0	0	0	0	0		-	-	-				
SBT		0	0	0	0	0	-	-	-	-				
SBR		0	0	0	0	0	(-	-	-	(-				
		_												
EBL	0	0	0	0	0	0	1-			-				
EBT	2	3200	21	21	25	25	0.007	0.007	0.008	0.008				
EBR	1	1500	770	773	950	953	0.51	0.52	0.63	0.64				
WBL	0	0	34	34	35	35	-	+		Ξ				
WBT	1	1600	72	72	80	80	0.066 *	0.066 *	0.072 *	0.072 *				
WBR	0	0	0	0	0	0	-		-	-				
						LOST TIME:	0.10	0.10	0.10	0.10				
		TOT	AL INTER	SECTION	N CAPAC	CITY UTILIZATION:	0.485	0.487	0.539	0.541		- 1		
			;	SCENAR	IO LEVEL	OF SERVICE:	A	Α	Α	Α				
MOTEC														

NOTES:

Right turn volume adjusted to account for overlap phase with westbound left-turn

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	DLD	Intersection	LA AVE/BELTRAMO RANCH RD								
Agency/Co.	ATE	Jurisdiction	City of Moorpark								
Date Performed	5/13/21	East/West Street	LA AVENUE								
Analysis Year		North/South Street	BELTRAMO RANCH ROAD								
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.92								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	CUMULATIVE + PROJECT	•									


Lanes

Approach	Eastbound			Westbound					North	bound		Southbound				
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	3	0	0	1	3	0		0	0	1		0	0	0
Configuration			Т	TR		L	Т					R				
Volume (veh/h)			1455	3	0	6	1112					24				
Percent Heavy Vehicles (%)					3	3						3				
Proportion Time Blocked																
Percent Grade (%)								-)					
Right Turn Channelized								N	lo							
Median Type Storage				Left	Only							- 2	2			
Critical and Follow-up H	eadway	/S														
Base Critical Headway (sec)						5.3						7.1				
Critical Headway (sec)						5.36						7.16				
Base Follow-Up Headway (sec)						3.1					-	3.9				
Follow-Up Headway (sec)						3.13						3.93				
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)						7			DE OND LABOR			26				INISH MI
Capacity, c (veh/h)						200						283				
v/c Ratio						0.03						0.09				
95% Queue Length, Q ₉₅ (veh)						0.1						0.3				
Control Delay (s/veh)						23.6						19.0				
Level of Service (LOS)						С						С				
Approach Delay (s/veh)	T '		-		0.1					19	.0			A STATE OF THE STA		-
Approach LOS										C						

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	DLD	Intersection	LA AVE/BELTRAMO RANCH RD								
Agency/Co.	ATE	Jurisdiction	City of Moorpark								
Date Performed	5/13/21	East/West Street	LA AVENUE								
Analysis Year		North/South Street	BELTRAMO RANCH ROAD								
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	CUMULATIVE + PROJECT										

Lanes

Approach	Eastbound					West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	3	0	0	1	3	0		0	0	1		0	0	0	
Configuration			Т	TR		L	Т					R					
Volume (veh/h)			1265	9	0	20	1420					16					
Percent Heavy Vehicles (%)					3	3						3					
Proportion Time Blocked																	
Percent Grade (%)		heart construction and the second				Оминичниция	Automotive Control			()						
Right Turn Channelized							N	lo									
Median Type Storage Left				Only	Only						2	2					
Critical and Follow-up H	eadway	ys															
Base Critical Headway (sec)						5.3						7.1					
Critical Headway (sec)						5.36						7.16					
Base Follow-Up Headway (sec)						3.1						3.9					
Follow-Up Headway (sec)						3.13						3.93					
Delay, Queue Length, an	d Level	of S	ervice														
Flow Rate, v (veh/h)						22		41.12.11				17					
Capacity, c (veh/h)						252						329			9-11		
v/c Ratio						0.09		-				0.05					
95% Queue Length, Q ₉₅ (veh)						0.3						0.2					
Control Delay (s/veh)						20.7						16.5					
Level of Service (LOS)						С						С					
Approach Delay (s/veh)					0.	3			16	.5							
Approach LOS										C							

BELTRAMO RANCH RESIDENTIAL PROJECT CITY OF MOORPARK, CALIFORNIA

REVISED TRAFFIC AND CIRCULATION STUDY

February 11, 2022

ATE #19087

Warmington Residential 3090 Pullman Street Costa Mesa, California 92625

ASSOCIATED TRANSPORTATION ENGINEERS

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110-1686 * (805) 687-4418 * FAX (805) 682-8509

ASSOCIATED TRANSPORTATION ENGINEERS 100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 • (805)687-4418 • main@atesb.com

Since 1978

Richard L. Pool, P.E. Scott A. Schell

February 11, 2022

19087R02

Mr. Joe Oftelie, Vice President of Community Development Warmington Residential 3090 Pullman Street Costa Mesa, California 92625

REVISED TRAFFIC AND CIRCULATION STUDY FOR THE BELTRAMO RANCH RESIDENTIAL PROJECT, CITY OF MOORPARK

Associated Transportation Engineers (ATE) has prepared the following revised traffic and circulation study for the Beltramo Ranch Residential Project, proposed in the City of Moorpark. The revised traffic and circulation study address comments provide by the City of Moorpark and Caltrans staff. It is understood that the study will be submitted to the City for environmental review.

We appreciate the opportunity to assist you with the Project.

Associated Transportation Engineers

Sut A SQ

Scott A. Schell

Principal Transportation Planner

CONTENTS

INTRODUCTION	. 1
PROJECT DESCRIPTION	. 1
EXISTING CONDITIONS	. 1
CITY OF MOORPARK TRANSPORTATION POLICIES	7
PROJECT-SPECIFIC ANALYSISProject Trip GenerationProject Trip DistributionExisting + Project Intersection Operations	7 8
CUMULATIVE ANALYSIS	11
SITE ACCESS AND CIRCULATION 1	5
VEHICLE MILES TRAVELED ANALYSIS	:0
REFERENCES AND PERSONS CONTACTED	2
TECHNICAL APPENIDIY	2

TABLES

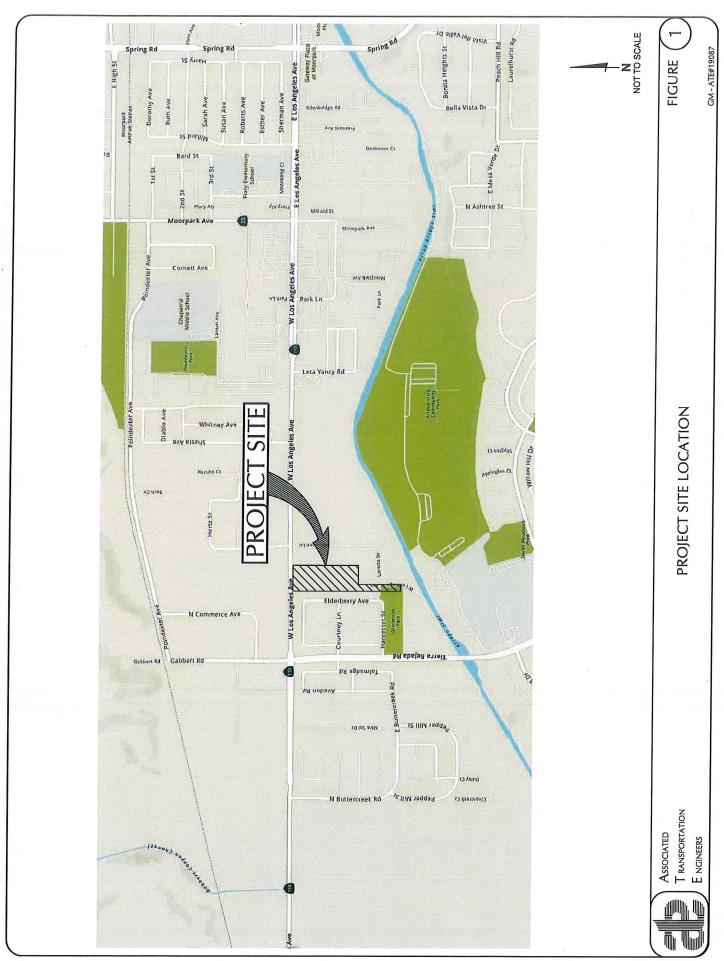
Table 1	Existing Levels of Service 5
Table 2	Project Trip Generation
Table 3	Project Trip Distribution 8
Table 4	Existing + Project Levels of Service - AM Peak Hour
Table 5	Existing + Project Levels of Service - PM Peak Hour 11
Table 6	Cumulative + Project Levels of Service - AM Peak Hour 14
Table 7	Cumulative + Project Levels of Service - PM Peak Hour 14
Table 8	Los Angeles Avenue/Beltramo Ranch Road – Cumulative + Project LOS 15
Table 9	Storage Requirement Los Angeles Avenue/Maureen Lane Intersection 16
Table 10	Storage Requirement Los Angeles Avenue/Project Driveway Intersection 16
Table 11	Storage Requirement Los Angeles Avenue/Tierra Rejada Road
Interse	ection 17
Table 12	Beltramo Ranch Residential Project – VMT Impact Summary
	FIGURES
Figure 1	Project Site Location
Figure 2	Project Site Plan
Figure 3	Existing Street Network
Figure 4	Existing Traffic Volumes
Figure 5	Project Trip Distribution and Assignment
Figure 6	Existing + Project Traffic Volumes
Figure 7	Cumulative Traffic Volumes
Figure 8	Cumulative + Project Traffic Volumes
Figure 9	Looking East Towards Maureen Lane
Figure 10	Looking West Towards Tierra Rejada 19

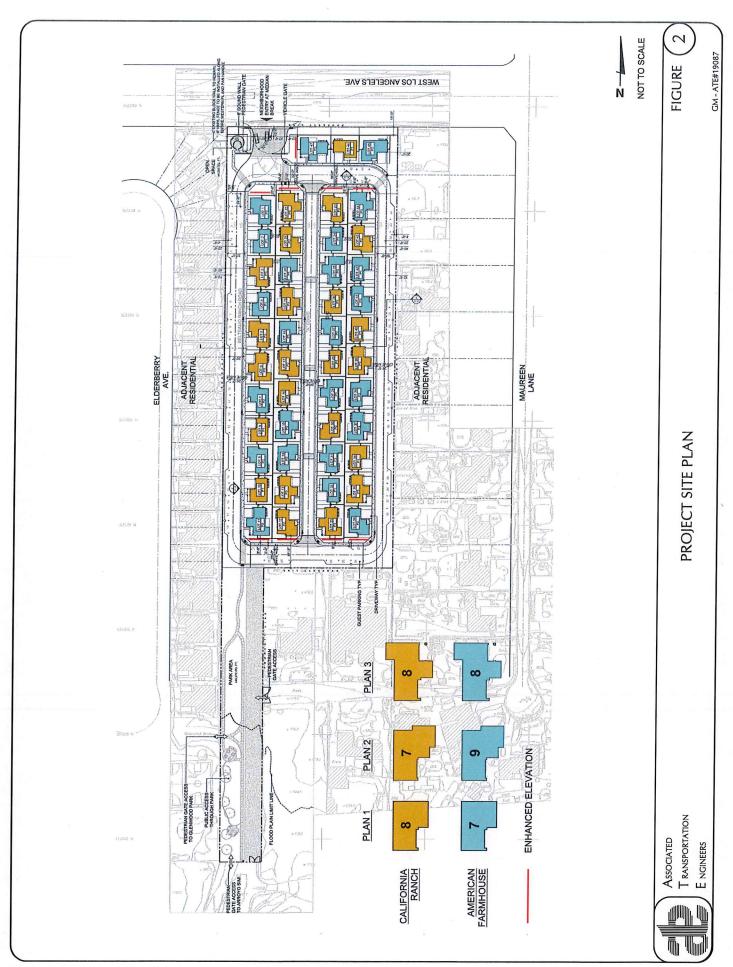
INTRODUCTION

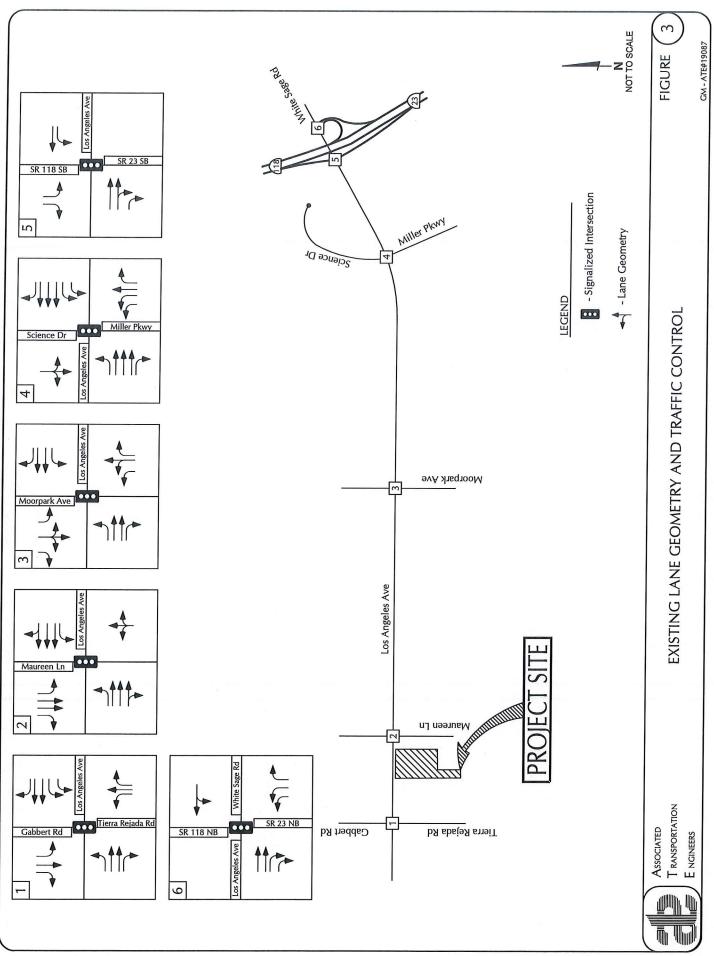
The following report contains an analysis of the traffic and circulation issues associated with the Beltramo Ranch Residential Project (the "Project") proposed in the City of Moorpark. The report evaluates existing and future traffic operations within the Project study area to determine the Project's consistency with the City's transportation policies. The roadways and intersections analyzed in the study were determined based on input provided by City of Moorpark and Caltrans staff. An evaluation of the Project's potential CEQA impacts is also provided based on the State's new CEQA requirements adopted under Senate Bill 743.

PROJECT DESCRIPTION

The Project site is located on the south side of Los Angeles Avenue (State Route 118) between Tierra Rejada Road and Maureen Avenue, as illustrated on Figure 1. The Project is located on a 7.2-acre site that is occupied by the Four Square Church and two single family residential homes. The Project is proposing to redevelop the site and construct 47 single family housing units. Figure 2 illustrates the Project site plan. Site access would be provided via Beltramo Ranch Road, which would be realigned. The access connection would allow left-turns and right-turns inbound but restrict outbound movements to right-turns. The realigned Beltramo Ranch Road access connection to Los Angeles Avenue would be designed to Caltrans standards.


EXISTING CONDITIONS


Street Network


The Project site is served by a network of highways, arterial, collector, and local streets. Figure 3 illustrates the study-area street network, including the traffic controls and lane geometries at the key study-area intersections identified for analysis. The following text provides a brief discussion of the existing street network.

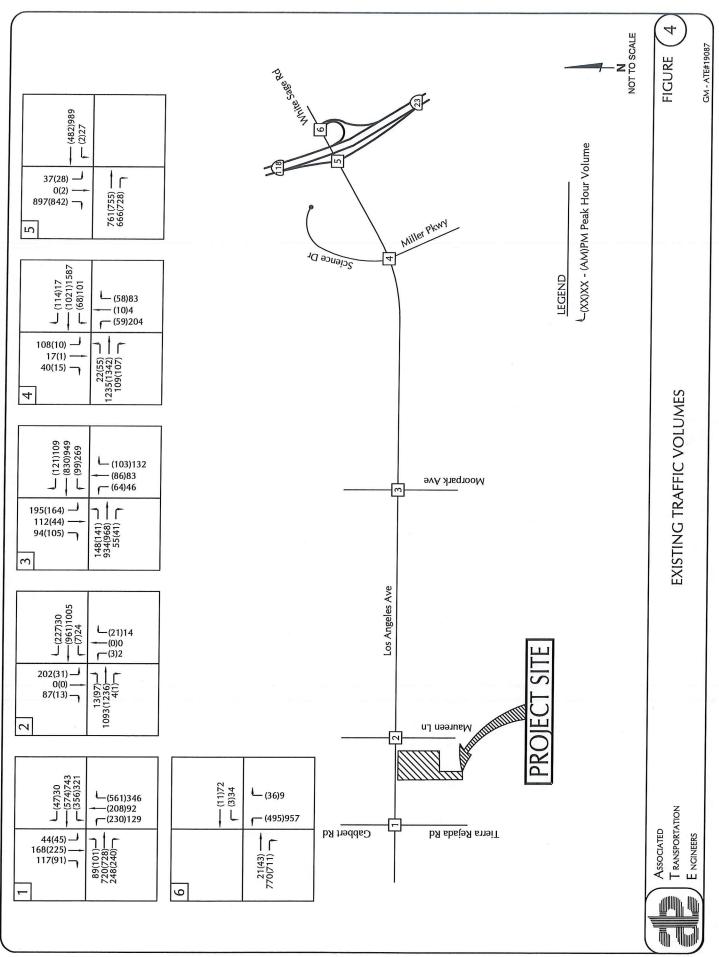
<u>State Route 118 (Los Angeles Avenue)</u>, located adjacent to the Project site, is a 2- to 6-lane arterial highway that extends from the State Route 126 (Santa Paula Freeway) in the City of Ventura to State Route 210 (Foothill Freeway) east of the City of San Fernando. Access to the Project site would be provided via the Beltramo Ranch Road connection to Los Angeles Avenue.

State Route 23 (Moorpark Avenue), located east of the Project site, is a 2- to 6-lane arterial highway that extends north from the State Route 1 (Pacific Coast Highway) in Malibu to State Route 126 in the City of Fillmore. In the City of Moorpark, State Route 23 merges with State Route 118 as Los Angeles Avenue, then becomes Moorpark Avenue. At Moorpark Avenue, State Route 23 becomes a 2 to 3-lane roadway with a center left-turn lane in the study-area. State Route 23 serves as the primary north-south route between the Cities of Moorpark and Fillmore. Moorpark Avenue is signalized at Los Angeles Avenue.

<u>Tierra Rejada Road</u>, located west of the Project site, is a 4-lane divided arterial roadway that extends south from Los Angeles Avenue and then easterly to the City of Simi Valley. Tierra Rejada Road is signalized at Los Angeles Avenue.

<u>Miller Parkway</u>, located east of the Project site, is a 2-lane divided roadway that extends south from Los Angeles Avenue to Tierra Rejada Road. Miller Parkway serves commercial and residential uses south of Los Angeles Avenue. Miller Parkway is signalized at Los Angeles Avenue.

<u>Maureen Lane</u>, located east of the Project site, is a 2-lane roadway that extends north and south from Los Angeles Avenue. Maureen Lane serves industrial uses north of Los Angeles Avenue and residential uses south of Los Angeles Avenue. Maureen Lane is signalized at Los Angeles Avenue.


Intersection Operations

Because traffic flow on urban arterials is most constrained at intersections, detailed traffic flow analyses focus on the operating conditions of critical intersections during peak travel periods. "Levels of Service" (LOS) A through F are used to rate intersection operations, with LOS A indicating very good operation and LOS F indicating poor operation (more complete definitions are contained in the Technical Appendix for reference). The City of Moorpark considers LOS C as the performance standard for intersections (maintain LOS C or better).

Existing peak hour traffic volumes for the Los Angeles Avenue/Tierra Rejada intersection were obtained from traffic counts collected in 2019 by the City (see Technical Appendix for count data). Figure 4 illustrates the existing AM and PM peak hour traffic volumes for the study-area intersections. Levels of service were calculated for the signalized intersections using the "Intersection Capacity Utilization" (ICU) methodology, which is the level of service method adopted by the City for signalized intersections. Existing levels of service are listed in Table 1.

Table 1
Existing Levels of Service

		AM Peak Hour		PM Peak Hour	
Intersection	Control	ICU	LOS	ICU	LOS
Los Angeles Avenue/Tierra Rejada Road	Signal	0.741	LOS C	0.623	LOS B
Los Angeles Avenue/Maureen Lane	Signal	0.456	LOS A	0.536	LOS A
Los Angeles Avenue/Moorpark Avenue	Signal	0.441	LOS A	0.569	LOS A
Los Angeles Avenue/Miller Lane	Signal	0.439	LOS A	0.562	LOS A
State Route 23 SB Ramps/Los Angeles Avenue	Signal	0.420	LOS A	0.741	LOS C
State Route 23NB Ramps/Los Angeles Avenue	Signal	0.501	LOS A	0.485	LOS A

The data presented in Table 1 show that the study-area intersections currently operate in the LOS A-C during the AM and PM peak hours, which meet the City's LOS C operating standard.

CITY OF MOORPARK TRANSPORTATION POLICIES

Pursuant to Policy 2.1 of the City's Circulation Element, Level of Service (LOS) C shall be the system performance objective. For facilities already operating at less than LOS C, the system performance objective shall be to maintain or improve the current level of service. The City of Moorpark, "Guidelines for Preparing Traffic and Circulation Studies" states that if a level of service degradation of one level of service or greater is attributable to a project it will be considered significant enough to require mitigation measures. The City's criteria also states that a level of service degradation of less than one level of service may also be considered significant, depending on circumstances.

PROJECT-SPECIFIC ANALYSIS

Project Trip Generation

Trip generation estimates were calculated for the existing and proposed land uses based on rates presented in the Institute of Transportation Engineers (ITE) <u>Trip Generation</u> manual.¹ The ITE rates for Single Family Detached Housing (Land Use #210) and Church (Land Use #560) were applied in the trip generation calculations. Table 2 shows the trip generation estimates for the Project (a detailed calculation worksheet is contained in the Technical Appendix for reference).

Table 2 Project Trip Generation

		Average D	aily Trips	AM Peal	Hour	PM P	eak Hour
Land Use	Size	Rate	Trips	Rate	Trips	Rate	Trips
Proposed							
Single Family Residential	47 Units	9.43	444	0.70	33	0.94	44
Existing							
Church	6,820 SF	7.60	52	0.32	2	0.49	3
Single Family Residential	2 Units	9.43	19	0.70	1	0.94	2
Total			19 71		3		5
Net Trip Generation			372		30		39

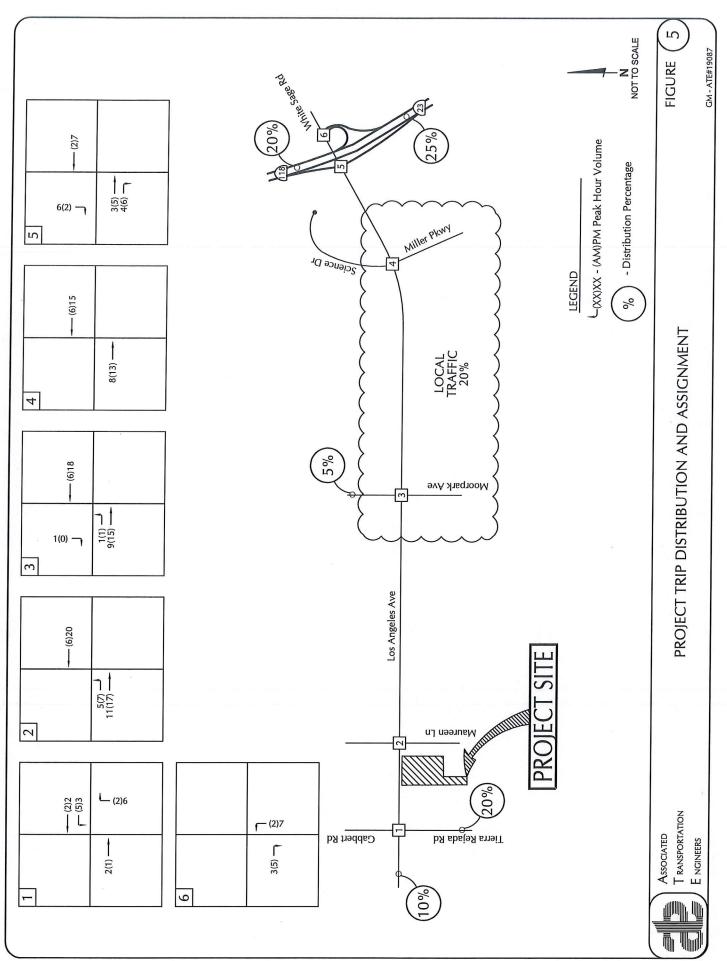
As shown in Table 2, the Project is forecast to generate 444 average daily trips (ADT), with 33 trips occurring during the AM peak hour and 44 trips occurring during the PM peak hour. The existing church and residential uses generated 71 average daily trips (ADT), with 3 trips occurring during the AM peak hour and 5 trips occurring during the PM peak

¹ Trip Generation Manual, Institute of Transportation Engineers, 11th Edition, 2021.

Project Trip Distribution

Trip distribution percentages were developed for the Project based on data derived from existing traffic patterns in the study area and consideration of the land uses in the surrounding area. Table 3 presents the trip distribution percentages developed for the Project. Figure 5 illustrates the trip distribution pattern and the assignment of Project traffic at the study-area intersections.

Table 3
Project Trip Distribution


Route	Origin/Destination	Distribution %
State Route 23/118	North	20%
State Route 23/118	South	25%
Moorpark Road	North	5%
Los Angeles Avenue	West	10%
Tierra Rejada Road	South	20%
Local Commercial Area		20%
	Total	100%

Existing + Project Intersection Operations

Levels of service were calculated for the study-area intersections assuming the Existing + Project traffic volumes shown on Figure 6. Tables 4 and 5 compare the Existing and Existing + Project levels of service and identify locations that are forecast to exceed the City's LOS C standard.

Table 4
Existing + Project Levels of Service - AM Peak Hour

	ICU / LOS		Project Added		
Intersection	Existing	Existing + Project	Trips	Exceed LOS C Standard?	
Los Angeles Avenue/Tierra Rejada Road	0.741/LOS C	0.742/LOS C	10	NO	
Los Angeles Avenue/Maureen Lane	0.456/LOS A	0.461/LOS A	30	NO	
Los Angeles Avenue/Moorpark Avenue	0.441/LOS A	0.444/LOS A	22	NO	
Los Angeles Avenue/Miller Parkway	0.439/LOS A	0.441/LOS A	19	NO	
State Route 23 SB Ramps/Los Angeles Avenue	0.562/LOS A	0.564/LOS A	15	NO	
State Route 23 NB Ramps/Los Angeles Avenue	0.741/LOS C	0.746/LOS C	7	NO	

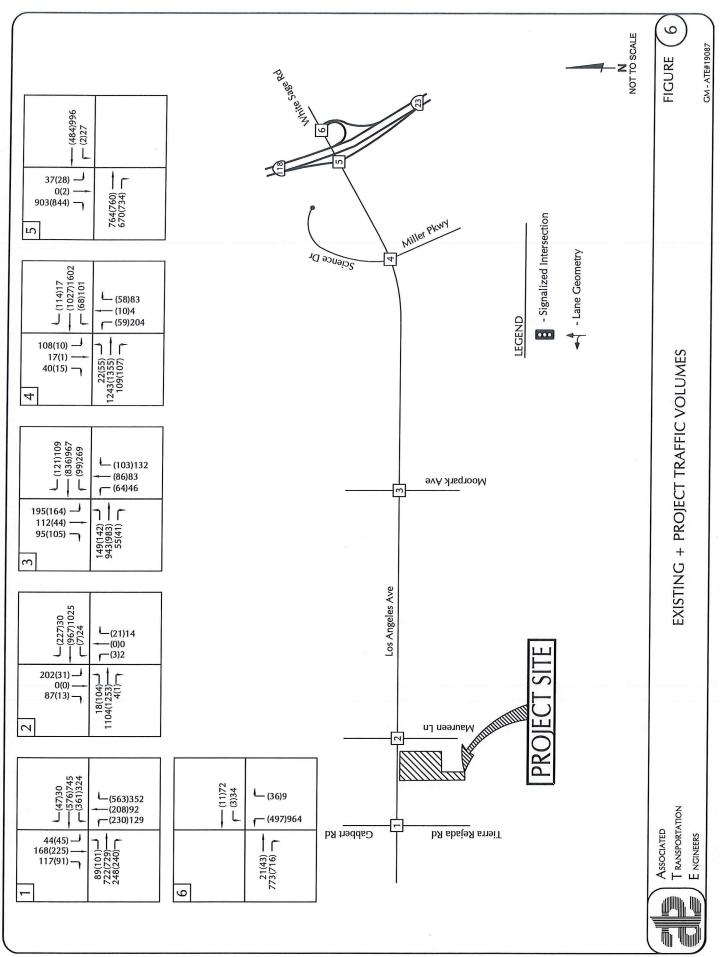
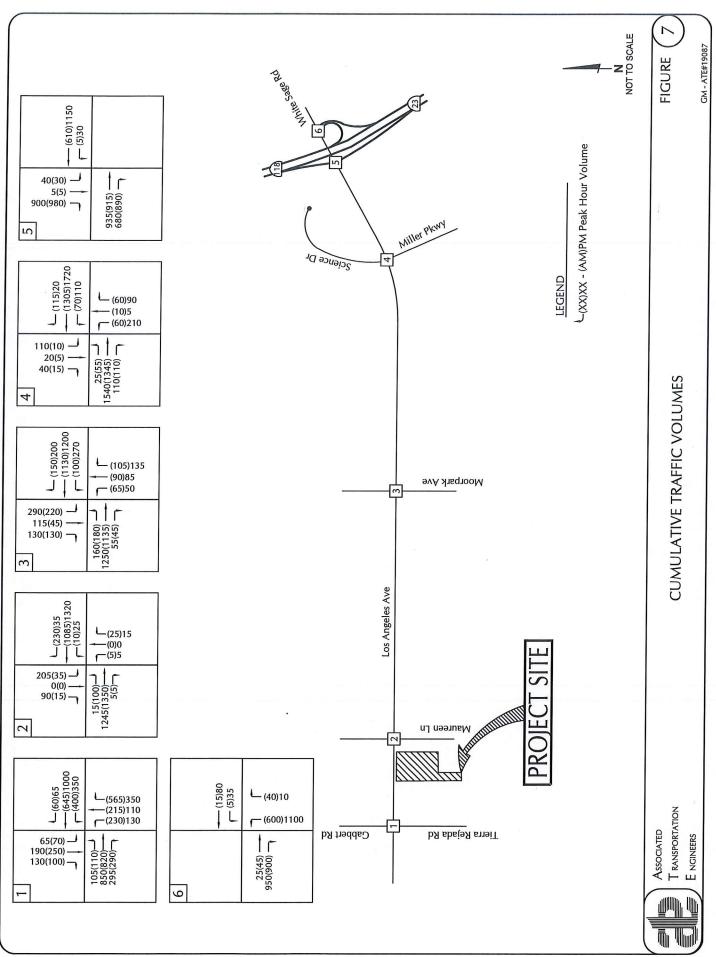
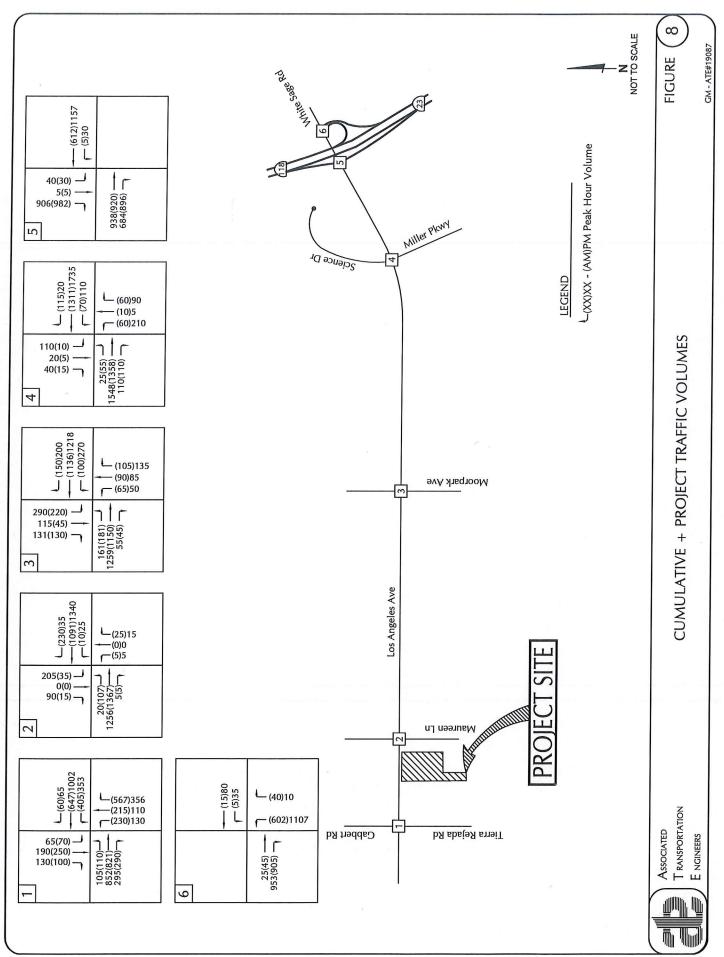


Table 5
Existing + Project Levels of Service - PM Peak Hour


	ICU or Delay / LOS		Proje	ect Added
Intersection	Existing	Existing + Project	Trips	Exceed LOS C Standard?
Los Angeles Avenue/Tierra Rejada Road	0.623/LOS B	0.625/LOS B	13	NO
Los Angeles Avenue/Maureen Lane	0.536/LOS A	0.538/LOS A	36	NO
Los Angeles Avenue/Moorpark avenue	0.569/LOS A	0.571/LOS A	29	NO
Los Angeles Avenue/Miller Parkway	0.562/LOS A	0.564/LOS A	23	NO
State Route 23 SB Ramps/Los Angeles Avenue	0.741/LOS C	0.746/LOS C	20	NO
State Route 23 NB Ramps/Los Angeles Avenue	0.485/LOS A	0.487/LOS A	10	NO


As shown in Tables 4 and 5, the study-area intersections are forecast to continue to operate at LOS C or better under Existing + Project conditions, which meets the City's LOS C standard. Thus, the Project would be consistent with the City's adopted level of service standards.

CUMULATIVE ANALYSIS

Traffic Forecasts

Cumulative conditions were forecast assuming traffic generated by the approved and pending development projects located in the study-area (see Technical Appendix for cumulative project list). Trip generation estimates were developed for the cumulative projects and that traffic was then assigned to the study-area street network. Cumulative traffic forecasts are shown in Figure 7 and Cumulative + Project forecasts are shown in Figure 8.

Cumulative Intersection Operations

Tables 6 and 7 compare the Cumulative and Cumulative + Project levels of service for the study-area intersections and identify locations that are forecast to exceed the City's LOS C standard.

Table 6
Cumulative + Project Levels of Service - AM Peak Hour

	ICU / LOS		Project Added	
Intersection	Cumulative	Cum.+ Project	Trips	Exceed LOS C Standard?
Los Angeles Avenue/Tierra Rejada Road	0.798/LOS C	0.801/LOS C	13	NO
Los Angeles Avenue/Maureen Lane	0.491/LOS A	0.496/LOS A	30	NO
Los Angeles Avenue/Moorpark Avenue	0.495/LOS A	0.498/LOS A	22	NO
Los Angeles Avenue/Miller Parkway	0.442/LOS A	0.445/LOS A	19	NO
State Route 23 SB Ramps/Los Angeles Avenue	0.503/LOS A	0.505/LOS A	15	NO
State Route 23 NB Ramps/Los Angeles Avenue	0.595/LOS A	0.598/LOS A	7	NO

Table 7

Cumulative + Project Levels of Service - PM Peak Hour

	ICU / LOS		Project Added	
Intersection	Cumulative	Cum.+ Project	Trips	Exceed LOS C Standard?
Los Angeles Avenue/Tierra Rejada Road	0.689/LOS C	0.690/LOS C	13	NO
Los Angeles Avenue/Maureen Lane	0.574/LOS A	0.577/LOS A	36	NO
Los Angeles Avenue/Moorpark Avenue	0.663/LOS B	0.666/LOS B	29	NO
Los Angeles Avenue/Miller Parkway	0.634/LOS B	0.636/LOS B	23	NO
State Route 23 SB Ramps/Los Angeles Avenue	0.844/LOS D	0.848/LOS D	20	YES
State Route 23 NB Ramps/Los Angeles Avenue	0.539/LOS A	0.541/LOS A	10	NO

As shown in Table 7, the State Route 23 southbound ramps/Los Angeles Avenue intersection is forecast to operate at LOS D during the PM peak hour under Cumulative and Cumulative + Project conditions, which exceeds the City's LOS C standard. The Project would add 11 trips to the intersection during the PM peak period and increase the ICU by 0.004. This increase is considered a less-than-significant impact pursuant to Policy 2.1 of the City of Moorpark Circulation Element, which states: "LOS C shall be the system performance objective. For facilities already operating at less than LOS C, if a level of service degradation of one level of

service or greater is attributable to a project it will be considered significant enough to require mitigation measures." The ICU change attributed to the Project is 0.002 (less than ½ of 1%) – which would result in an insignificant change in traffic operations at the intersection.

SITE ACCESS AND CIRCULATION

Access to the Project site would be provided by Beltramo Ranch Road (see Figure 2 – Project Site Plan). The existing intersection allows for full access to and from Beltramo Ranch Road. The City has indicated that the intersection should be modified to restrict outbound traffic from Beltramo Ranch Road to right-turns only (left turns from Beltramo Ranch Road onto Los Angeles Road would be prohibited). Outbound traffic that is destined to the west would turn right from Beltramo Ranch Road, proceed to Maureen Avenue, and then make a U-turn to travel westbound on Los Angeles Avenue.

Table 8 lists the vehicle delays for traffic turning to/from Beltramo Ranch Road assuming the proposed modifications under Cumulative + Project conditions. Delays and levels of service were calculated using the methodology outlined in the Highway Capacity Manual (HCM).² As shown, vehicle delays equate to LOS C or better for traffic turning to/from Beltramo Ranch Road during the AM and PM peak commuter periods.

Table 8
Los Angeles Avenue/Beltramo Ranch Road – Cumulative + Project LOS

	Delay	/ LOS(a)
Intersection	AM Peak Hour	PM Peak Hour
Los Angeles Avenue/Beltramo Ranch Road		
Inbound Left Turns (Westbound)	23.6 Sec./LOS C	20.7 Sec./LOS C
Inbound Right Turns (Eastbound)	0.0 Sec./LOS A	0.0 Sec./LOS A
Outbound Right Turns	19.0 Sec./LOS C	16.5 Sec./LOS C

⁽a) LOS based on average delay per vehicle in seconds, pursuant to HCM methodology.

Queue Analysis

Caltrans staff expressed concerns regarding the spacing between the Project driveway and the adjacent intersections. A queue analysis was conducted to determine if there is adequate spacing between the adjacent intersections for left and right turn movements at the Los Angeles Avenue/Tierra Rejada intersection, the Los Angeles Avenue/Project Driveway intersection, and the Los Angeles Avenue/Maureen Lane intersection.

ATE utilized the "Synchro" software to evaluate the queues at the three study-area intersections Table 9 shows the 95th percentile queue lengths for the eastbound left-turn and

² Highway Capacity Manual, Transportation Research Board, 2016.

eastbound right-turn movements at the Los Angeles Avenue/Maureen Lane intersection during the AM and PM peak hour periods. The 95th percentile queue length is the queue that is exceeded 5% of the time during the peak hour.

Table 9
Storage Requirement at the Los Angeles Avenue/Maureen Lane Intersection

	Existing Storage	95% Queue Length		
Movement	Existing Storage	AM Peak Hour	PM Peak Hour	
Eastbound Left-Turn	145 feet	142 feet	49 feet	
Eastbound Right-Turn	420 feet	98 feet	124 feet	

The queuing analysis found that there is sufficient distance eastbound between the Los Angeles Avenue/Maureen Lane and the Project driveway intersection to store eastbound vehicles during red phases. The existing storage provided for left-turns and right-turns was determined to be sufficient.

Table 10 shows the 95th percentile queue lengths for the westbound left-turn and eastbound right-turn movements at the Los Angeles Avenue/Project Driveway intersection during the AM and PM peak periods.

Table 10
Storage Requirement at the Los Angeles Avenue/Project Driveway Intersection

Mayamant	Full-time Channel	95% Queue Length			
Movement	Existing Storage	AM Peak Hour	PM Peak Hour		
Westbound Left-Turn	100 feet	37 feet	24 feet		
Eastbound Right-Turn	200 feet	0 feet	0 feet		

The queuing analysis found that there is sufficient distance westbound between the Los Angeles Avenue/Project driveway and Los Angeles Avenue/Maureen Lane intersection to store vehicles waiting for a gap in the eastbound traffic flow. The existing storage provided for left-turns and right-turns was determined to also be sufficient.

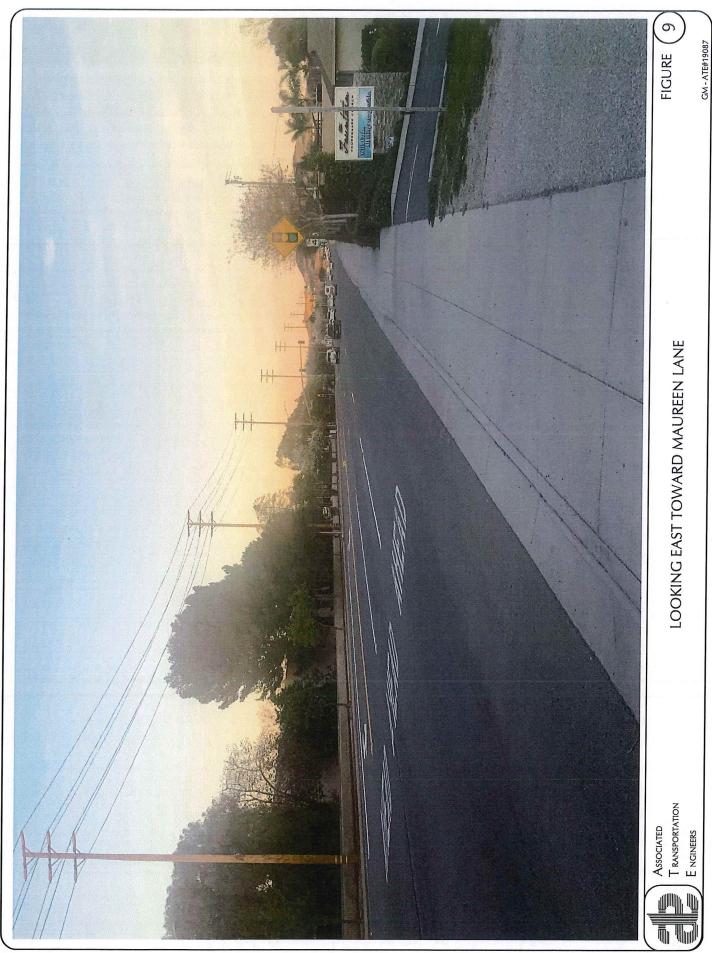
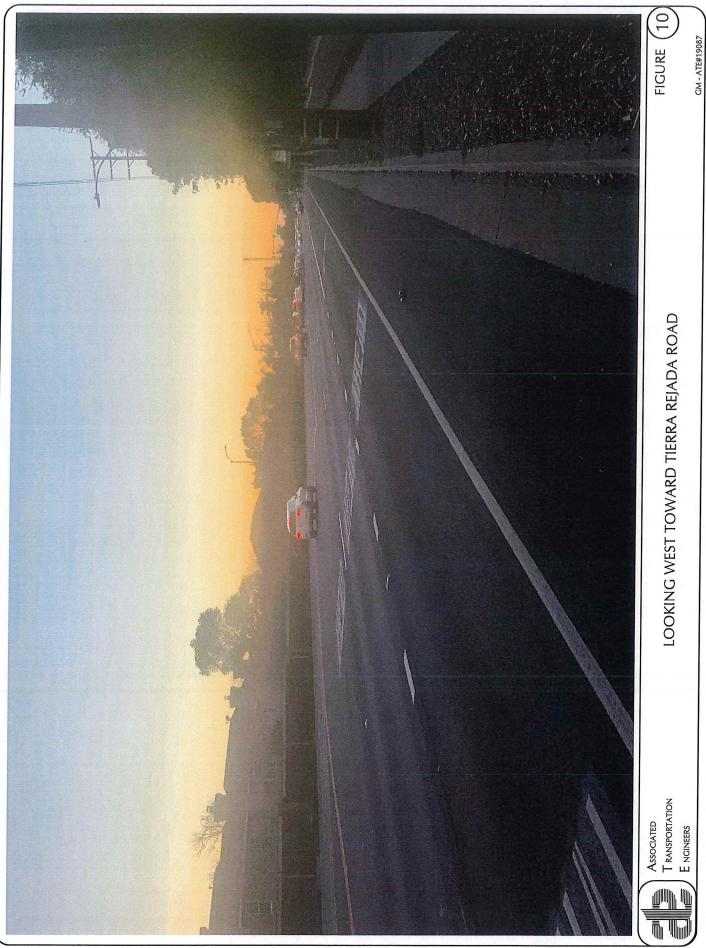

Table 11 shows the 95th percentile queue lengths for the westbound left-turn and westbound right-turn movements at the Los Angeles Avenue/Tierra Rejada Road intersection during the AM and PM peak hour periods.

Table 11
Storage Requirement at the Los Angeles Avenue/Tierra Rejada Road Intersection


Movement	F: 4: C4	95% Queue Length	
Movement	Existing Storage	AM Peak Hour	PM Peak Hour
Westbound Left-Turn	410 feet	176 feet	230 feet
Westbound Right-Turn	900 feet	56 feet	37 feet

The queuing analysis found that there is sufficient distance westbound between the Los Angeles Avenue/Tierra Rejada Road and the Los Angeles Avenue/Project driveway intersection to store vehicles during red phases. The existing storage provided for left-turns and right-turns was determined to be sufficient.

ATE conducted a field review to verify the Synchro queue analysis results. As shown in the pictures on Figures 9 and 10, conflicts between the Project driveway and the adjacent intersections are not expected. During the PM peak hour when residents are returning home, the eastbound left-turns to Maureen Lane are low and would not be impacted by the westbound left-turn movement into the Project driveway. Maureen Lane north of Los Angeles Avenue provides access to light industrial uses and the Moorpark School District offices. During the PM peak hour period, employees are departing the area and not arriving. During the PM peak hour, the westbound queue at the Tierra Rejada intersection would not impact the operation of the Project driveway. The pictures on Figures 9 and 10 show that the queues at the adjacent signalized intersections would not conflict with the Projects driveway intersection. The photos confirm the Synchro queue analysis which concluded that there would be adequate storage to accommodate the turning movements without conflicting with the turning movements at the adjacent intersections. There is physical space between the Project driveway and Maureen Lane to extend the existing eastbound or westbound left-turn storage lane.

Beltramo Ranch Residential Project Traffic and Circulation Study Associated Transportation Engineers February 11, 2022

Beltramo Ranch Residential Project Traffic and Circulation Study Associated Transportation Engineers February 11, 2022

VEHICLE MILES TRAVELED ANALYSIS

Recent legislation, Senate Bill 743, is moving away from the Level of Service (LOS) metric to a Vehicle Miles Traveled (VMT) metric to evaluate whether a project results in a significant traffic impact under CEQA. Per the State's Natural Resource Agency Updated Guidelines for the Implementation of the CEQA adopted in 2018, VMT has been designated as the most appropriate measure of transportation impacts. "Vehicle miles traveled" refers to the amount and distance of automobile travel attributable to a project. Other relevant considerations may include the effects of the project on transit and non-motorized travel. For land use projects, vehicle miles traveled exceeding an applicable threshold of significance may indicate a significant impact.

Local agencies have discretion to develop and adopt their own thresholds or rely on thresholds recommended by other agencies. Since the City of Moorpark has not yet adopted VMT impact criteria, the VMT analyses prepared for the Project was developed using information presented in the recently updated VCTC traffic model for Ventura County and the following VMT thresholds published by the State.

<u>CEQA Guidelines</u>. The California Governor's Office of Planning and Research (OPR) published a technical advisory that includes recommendations regarding assessment of VMT, thresholds of significance, and mitigation measures.³ The recommended VMT impact threshold for residential projects is as follows:

"Recommended threshold for residential projects: A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or as city VMT per capita. Proposed development referencing a threshold based on city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the number of units specified in the SCS (Sustainable Community Strategy) for that city and should be consistent with the SCS.

The VCTC traffic model provides VMT per capita data for the City of Moorpark as well as the various Traffic Analysis Zones (TAZs) within the City that are contiguous to the Project site. The threshold used to evaluate Project impacts follows the criteria mandated by the State, which states that a residential project may indicate a significant impact if the project's VMT per capita exceeds 15% below the existing VMT per capita.

Table 8 shows the existing VMT per capita for the City of Moorpark, the VMT threshold (15% below existing VMT per capita), and the Project's VMT per capita based on the VCTC traffic model data (VMT model data contained in the Technical Appendix).

Technical Advisory on Evaluating Transportation Impacts in CEQA, Governor's Office of Planning and Research, December 2018.

Table 12 Beltramo Ranch Residential Project – VMT Impact Summary

City of Moorpark VMT(a)	VMT Impact Threshold(b)	Project VMT Estimate(c)	Impact?
20.31 per capita	17.26 per capita	16.93 per capita	NO

- (a) City of Moorpark VMT per capita based on VCTC traffic model.
- (b) VMT Threshold is a 15% reduction from City VMT (20.31 x 0.85 = 17.26).
- (c) Project VMT per capita estimate based on VCTC model traffic analysis zones.

As shown, the existing City of Moorpark VMT is 20.31 per capita. Thus, the VMT threshold is 17.26 (15% below existing VMT per capita = 20.31 x 0.85 = 17.26) The VCTC model show that the residential units located in the Project area TAZs generate 16.93 VMT per capita, which falls below the 17.26 VMT per capita impact threshold. Thus, the Beltramo Ranch Residential Project would generate a less-than-significant CEQA impact.

000

REFERENCES AND PERSONS CONTACTED

Associated Transportation Engineers

Scott A. Schell, Principal Transportation Planner Dan Dawson, Supervising Transportation Planner Darryl F. Nelson, Senior Transportation Planner Glenn Manaois, Traffic Engineer I

References

Highway Capacity Manual, Transportation Research Board, 2016.

Highway Design Manual, California Department of Transportation, July 2020.

<u>Trip Generation</u>, Institute of Transportation Engineers, 11th Edition, 2020.

Persons Contacted

Andrew Kemp, Ventura County Transportation Commission Nancy Johns, Wildflower Development Services