Majestic Freeway Business Center (Buildings 13, 14, 17 & 18) (PPT220008, PPT220015, PPT220009, PPT220003) GREENHOUSE GAS ANALYSIS COUNTY OF RIVERSIDE PREPARED BY: Haseeb Qureshi hqureshi@urbanxroads.com Alyssa Barnett abarnett@urbanxroads.com FEBRUARY 24, 2023 # **TABLE OF CONTENTS** | TA | ABLE O | F CONTENTS | | |-----|-----------------|--|-----| | | | OICES II | | | LIS | ST OF I | EXHIBITS | II | | LIS | ST OF | TABLES | II | | LIS | ST OF | ABBREVIATED TERMS | III | | EX | ECUTI | IVE SUMMARY | 9 | | | ES.1 | Summary of Findings | 9 | | | ES.2 | Project Requirements | | | | ES.3 | County of Riverside Climate Action Plan | | | 1 | IN ⁻ | TRODUCTION | 12 | | | 1.1 | Site Location | 12 | | | 1.2 | Project Description | 12 | | 2 | PR | OJECT GHG IMPACT | 15 | | | 2.1 | Introduction | 15 | | | 2.2 | Standards of Significance | 15 | | | 2.3 | Models Employed To Analyze GHGs | 16 | | | 2.4 | Life-Cycle Analysis Not Required | 16 | | | 2.5 | Construction Emissions | 17 | | | 2.6 | Operational Emissions | | | | 2.7 | GHG Emissions Findings and Recommendations | 24 | | 3 | RE | FERENCES | 35 | | 4 | CF | RTIFICATIONS | 38 | ## **APPENDICES** APPENDIX 3.1: CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS APPENDIX 3.2: CALEEMOD PROJECT OPERATIONAL EMISSIONS MODEL OUTPUTS ## **LIST OF EXHIBITS** | EXHIBIT 1-A: LOCATION MAP | 13 | |--|----| | LIST OF TABLES | | | TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS | 9 | | TABLE 2-1: CONSTRUCTION DURATION | 17 | | TABLE 2-2: CONSTRUCTION EQUIPMENT ASSUMPTIONS | 18 | | TABLE 2-3: AMORTIZED ANNUAL CONSTRUCTION EMISSIONS | 21 | | TABLE 2-4: PASSENGER CAR FLEET MIX | 22 | | TABLE 2-5: TRUCK FLEET MIX | 23 | | TABLE 2-6: PROJECT GHG EMISSIONS | 24 | | TABLE 2-7: 2017 SCOPING PLAN CONSISTENCY SUMMARY | 26 | ## **LIST OF ABBREVIATED TERMS** % Percent °C Degrees Celsius °F Degrees Fahrenheit (1) Reference 2017 Scoping Plan Final 2017 Scoping Plan Update AB Assembly Bill AB 32 Global Warming Solutions Act of 2006 AB 1493 Pavley Fuel Efficiency Standards Annex I Industrialized Nations APA Administrative Procedure Act AQIA Majestic Freeway Business Center (Buildings 13, 14, 17 & 18) Air Quality Impact Analysis BAU Business as Usual C_2F_6 Hexafluoroethane C₂H₆ Ethane $C_2H_2F_4$ Tetrafluroethane $C_2H_4F_2$ Ethylidene Fluoride CAA Federal Clean Air Act CalEEMod California Emissions Estimator Model CalEPA California Environmental Protection Agency CAL FIRE California Department of Forestry and Fire Protection CALGAPS California LBNL GHG Analysis of Policies Spreadsheet CALGreen California Green Building Standards Code CalSTA California State Transportation Agency Caltrans California Department of Transportation CAPCOA California Air Pollution Control Officers Association CARB California Air Resource Board CBSC California Building Standards Commission CEC California Energy Commission CCR California Code of Regulations CEQA California Environmental Quality Act CEQA Guidelines 2019 CEQA Statute and Guidelines CDFA California Department of Food and Agriculture CFC Tetrafluoromethane CFC Chlorofluorocarbons CFC-113 Trichlorotrifluoroethane CH₄ Methane CNRA California Natural Resources Agency CNRA 2009 2009 California Climate Adaptation Strategy CO₂ Carbon Dioxide CO₂e Carbon Dioxide Equivalent Convention United Nation's Framework Convention on Climate Change COP Conference of the Parties County County of Riverside CPUC California Public Utilities Commission CTC California Transportation Commission DOF Department of Finance DWR Department of Water Resources EMFAC Emission Factor Model EPA Environmental Protection Agency EV Electric Vehicle FED Functional Equivalent Document GCC Global Climate Change Gg Gigagram GHGA Greenhouse Gas Analysis GO-Biz Governor's Office of Business and Economic Development gpd Gallons Per Day gpm Gallons Per Minute GWP Global Warming Potential H₂O Water HFC Hydrofluorocarbons HDT Heavy-Duty Trucks HFC-23 Fluoroform HFC-134a 1,1,1,2-tetrafluoroethane HFC-152a 1.1-difluoroethane HHDT Heavy-Heavy-Duty Trucks hp Horsepower IBANK California Infrastructure and Economic Development Bank IPCC Intergovernmental Panel on Climate Change IRP Integrated Resource Planning ISO Independent System Operator ITE Institute of Transportation Engineers kWh Kilowatt Hours lbs Pounds LBNL Lawrence Berkeley National Laboratory LCA Life-Cycle Analysis LCD Liquid Crystal Display LCFS Low Carbon Fuel Standard or Executive Order S-01-07 LDA Light-Duty Auto LDT1/LDT2 Light-Duty Trucks LEV III Low-Emission Vehicle LHDT1/LHDT2 Light-Heavy-Duty Trucks LULUCF Land-Use, Land-Use Change and Forestry MCY Motorcycles MD Medium Duty MDT Medium-Duty Trucks MDV Medium-Duty Vehicles MHDT Medium-Heavy-Duty Tucks MMR Mandatory Reporting Rule MMTCO₂e Million Metric Ton of Carbon Dioxide Equivalent mpg Miles Per Gallon MPOs Metropolitan Planning Organizations MMTCO₂e/yr Million Metric Ton of Carbon Dioxide Equivalent Per Year MT/yr Metric Tons Per Year MTCO₂e Metric Ton of Carbon Dioxide Equivalent MTCO₂e/yr Metric Ton of Carbon Dioxide Equivalent Per Year MW Megawatts MWh Megawatts Per Hour MWELO California Department of Water Resources' Model Water Efficient N₂O Nitrous Oxide NDC Nationally Determined Contributions NF₃ Nitrogen Trifluoride NHTSA National Highway Traffic Safety Administration NIOSH National Institute for Occupational Safety and Health NO_X Nitrogen Oxides Non-Annex I Developing Nations OAL Office of Administrative Law OPR Office of Planning and Research PFC Perfluorocarbons ppb Parts Per Billion ppm Parts Per Million ppt Parts Per Trillion Project Majestic Freeway Business Center (Buildings 13, 14, 17 & 18) RTP Regional Transportation Plan SAFE Safer Affordable Fuel-Efficient Vehicles Rule SB Senate Bill SB 32 California Global Warming Solutions Act of 2006 SB 375 Regional GHG Emissions Reduction Targets/Sustainable **Communities Strategies** SB 1078 Renewable Portfolio Standards SB 1368 Statewide Retail Provider Emissions Performance Standards SCAB South Coast Air Basin SCAG Southern California Association of Governments SCAQMD South Coast Air Quality Management District SCE Southern California Edison Scoping Plan California Air Resources Board Climate Change Scoping Plan SCS Sustainable Communities Strategy sf Square Feet SF₆ Sulfur Hexaflouride SGC Strategic Growth Council SHGC Solar Heat Gain Coefficient SLPS Short-Lived Climate Pollutant Strategy SP Service Population SWCRB State Water Resources Control Board TDM Transportation Demand Measures Title 20 Appliance Energy Efficiency Standards Title 24 California Building Code U.N. United Nations U.S. United States UNFCCC United Nations' Framework Convention on Climate Change URBEMIS Urban Emissions UTR Utility Tractors VFP Vehicle Fueling Positions VMT Vehicle Miles Traveled WCI Western Climate Initiative WRI World Resources Institute ZE/NZE Zero and Near-Zero Emissions ZEV Zero-Emissions Vehicles This page intentionally left blank #### **EXECUTIVE SUMMARY** #### **ES.1** SUMMARY OF FINDINGS The results of this Majestic Freeway Business Center (Buildings 13, 14, 17 & 18) Greenhouse Gas Analysis (GHGA) is summarized below based on the significance criteria in Section 4 of this report consistent with Appendix G of the California Environmental Quality Act (CEQA) Guidelines (CEQA Guidelines) (1). Table ES-1 shows the findings of significance for potential greenhouse gas (GHG) impacts under CEQA. TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS | Analysis | Report | Significan | ce Findings | |--|---------|-------------------------|--------------------------------| | Analysis | Section | Unmitigated | Mitigated | | GHG Impact #1: Would the Project generate GHG emissions either directly or indirectly, that may have a significant impact on the environment? | 2.7 | Potentially Significant | Significant and
Unavoidable | | GHG Impact #2: Would the Project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs? | 2.7 | Less Than Significant | n/a | #### **ES.2** PROJECT REQUIREMENTS The Project would be required to comply with regulations imposed by the State of California and the South Coast Air Quality Management District (SCAQMD) aimed at the reduction of air pollutant emissions. Those that are directly and indirectly applicable to the Project and that would assist in the reduction of GHG emissions include: - Global Warming Solutions Act of 2006 (Assembly Bill [AB] 32) (2). - Regional GHG Emissions Reduction Targets/Sustainable Communities Strategies (Senate Bill [SB] 375) (3). - Pavley Fuel Efficiency Standards (AB 1493). Establishes fuel efficiency ratings for new vehicles (4). - California Building Code (Title 24 California Code of Regulations [CCR]). Establishes energy efficiency requirements for new construction (5). - Appliance Energy Efficiency Standards (Title 20 CCR). Establishes energy efficiency requirements for appliances (6). - Low Carbon Fuel Standard (LCFS). Requires carbon content of fuel sold in California to be 10 percent (%) less by 2020 (7). - Statewide Retail Provider Emissions Performance Standards (SB 1368). Requires energy generators to achieve performance standards for GHG emissions (8). - Renewable Portfolio Standards (RPS) Required electric corporations to increase the amount of energy obtained from eligible renewable energy resources to 20% by 2010 and 33% by 2020. SB 350 mandated a 50% RPS by 2030. SB 100 increased the RPS requirements to 60% by 2030 with new interim targets of 44% by 2024 and 52% by 2027 (9). - California Global Warming Solutions Act of 2006 (SB 32). Requires the state to reduce statewide GHG emissions to 40% below 1990 levels by 2030, a reduction target that was first introduced in Executive
Order B-30-15 (10). - SCAQMD Rule 2305. The SCAQMD adopted Rule 2305, the Warehouse Indirect Source Rule, on May 7, 2021. Owners and operators associated with warehouses 100,000 square feet (sf) or larger are required to directly reduce nitrogen oxides (NO_x) and particulate matter emissions, or to otherwise facilitate emission and exposure reductions of these pollutants in nearby communities. Promulgated regulations that would affect the Project's emissions are accounted for in the Project's GHG calculations provided in this report. In particular, AB 1493, LCFS, and RPS, and therefore are accounted for in the Project's emission calculations. #### **ES.3** COUNTY OF RIVERSIDE CLIMATE ACTION PLAN #### MM GHG-1 Prior to issuance of each building permit, the Project Applicant shall provide documentation to the County of Riverside Building Department demonstrating implementation of CAP measure R2-CE1, which includes on-site renewable energy production. This measure is required for any tentative tract map, plot plan, or conditional use permit that proposes development or one or more new buildings totaling more than 100,000 gross square feet (sf) of commercial, office, industrial, or manufacturing development to offset its energy demand. For industrial developments, measure R2-CE1 requires a 20% offset in energy demand. As a conservative measure, emissions associated with energy usage do not reflect implementation of R2-CE1. This page intentionally left blank ### 1 INTRODUCTION This report presents the results of the GHGA prepared by Urban Crossroads, Inc., for the proposed Majestic Freeway Business Center (Buildings 13, 14, 17 & 18) (Project). The purpose of this GHGA is to evaluate Project-related construction and operational emissions and determine the level of GHG impacts as a result of constructing and operating the Project. #### 1.1 SITE LOCATION The proposed Project is located on Harvill Avenue north of Cajalco Expressway and south of Harley Knox Boulevard in the County of Riverside, as shown on Exhibit 1-A. #### 1.2 PROJECT DESCRIPTION The Project includes four separate and independent but adjacent buildings within the Majestic Freeway Business Center (MFBC). The purpose of this assessment is to describe the potential combined air quality impacts for all four buildings since they are adjacent to one another and are expected to be entitled and constructed on similar timeframes. The Project development includes the following: - MFBC Building 13 (PPT220008): one 322,997 square foot warehouse building - MFBC Building 14A/14B (PPT220015): two warehouse buildings totaling 354,583 square feet - MFBC Building 17 (PPT220009): one 268,955 square foot warehouse building - MFBC Building 18 (PPT220003): one 333,648 square foot warehouse building **EXHIBIT 1-A: LOCATION MAP** This page intentionally left blank ## 2 PROJECT GHG IMPACT #### 2.1 Introduction The Project has been evaluated to determine if it would result in a significant GHG impact. The significance of these potential impacts is described in the following sections. #### 2.2 STANDARDS OF SIGNIFICANCE The criteria used to determine the significance of potential Project-related GHG impacts are taken from the Initial Study Checklist in Appendix G of the State *CEQA Guidelines* (14 CCR of Regulations §§15000, et seq.). Based on these significance criteria, a project would result in a significant impact related to GHG if it would (11): - GHG-1: Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment? - GHG-2: Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs? The evaluation of an impact under CEQA requires measuring data from a project against both existing conditions and a "threshold of significance." For establishing significance thresholds, the Office of Planning and Research's amendments to the CEQA Guidelines Section 15064.7(c) state "[w]hen adopting thresholds of significance, a lead agency may consider thresholds of significance previously adopted or recommended by other public agencies, or recommended by experts, provided the decision of the lead agency to adopt such thresholds is supported by substantial evidence." CEQA Guidelines Section 15064.4(a) further states, ". . . A lead agency shall have discretion to determine, in the context of a particular project, whether to: (1) Use a model or methodology to quantify greenhouse gas emissions resulting from a project, and which model or methodology to use . . .; or (2) Rely on a qualitative analysis or performance-based standards." CEQA Guidelines Section 15064.4 provides that a lead agency should consider the following factors, among others, in assessing the significance of impacts from greenhouse gas emissions: - Consideration #1: The extent to which the project may increase or reduce greenhouse gas emissions as compared to the existing environmental setting. - **Consideration #2:** Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project. - Consideration #3: The extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of greenhouse gas emissions. Such regulations or requirements must be adopted by the relevant public agency through a public review process and must reduce or mitigate the project's incremental contribution of greenhouse gas emissions. In determining the significance of impacts, the lead agency may consider a project's consistency with the State's long-term climate goals or strategies, provided that substantial evidence supports the agency's analysis of how those goals or strategies address the project's incremental contribution to climate change and its conclusion that the project's incremental contribution is not cumulatively considerable. #### 2.2.1 THRESHOLDS OF SIGNIFICANCE The CAP Update identifies a two-step approach in evaluating GHG emissions. First, a screening threshold of 3,000 MTCO₂e/yr is used to determine if additional analysis is required. Projects that exceed the 3,000 MTCO₂e/yr will be required to quantify and disclose the anticipated GHG emissions then either 1) demonstrates GHG emissions at project buildout year levels of efficiency and includes project design features and/or MMs to reduce GHG emissions or 2) garner 100 points through the Screening Tables. Projects that garner at least 100 points (equivalent to an approximate 49% reduction in GHG emissions) are determined to be consistent with the reduction quantities anticipated in the County's GHG Technical Report, and consequently would be consistent with the CAP Update. #### 2.3 Models Employed To Analyze GHGs #### 2.3.1 CALIFORNIA EMISSIONS ESTIMATOR MODEL (CALEEMOD) In May 2022 the California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including SCAQMD, released the latest version of CalEEMod Version 2022.1. The purpose of this model is to calculate construction-source and operational-source criteria pollutants and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation measures (12). Accordingly, the latest version of CalEEMod has been used for this Project to determine GHG emissions. Output from the model runs for construction and operational activity are provided in Appendices 3.1 through 3.2. CalEEMod includes GHG emissions from the following source categories: construction, area, energy, mobile, waste, water. #### 2.4 LIFE-CYCLE ANALYSIS NOT REQUIRED A full life-cycle analysis (LCA) for construction and operational activity is not included in this analysis due to the lack of consensus guidance on LCA methodology at this time (13). Life-cycle analysis (i.e., assessing economy-wide GHG emissions from the processes in manufacturing and transporting all raw materials used in the Project development, infrastructure, and on-going operations) depends on emission factors or econometric factors that are not well established for all processes. At this time, a LCA would be extremely speculative and thus has not been prepared. Additionally, the SCAQMD recommends analyzing direct and indirect project GHG emissions generated within California and not life-cycle emissions because the life-cycle effects from a project could occur outside of California, might not be very well understood, or documented, and would be challenging to mitigate (14). Additionally, the science to calculate life cycle emissions is not yet established or well defined; therefore, SCAQMD has not recommended, and is not requiring, life-cycle emissions analysis. #### 2.5 **CONSTRUCTION EMISSIONS** Project construction activities would generate CO₂ and CH₄ emissions The Majestic Freeway Business Center (Buildings 13, 14, 17 & 18) (PPT220008) Air Quality Impact Analysis (AQIA) report contains detailed information regarding Project construction activities (15). As discussed in the AQIA, Construction related emissions are expected from the following construction activities: - Site Preparation - Grading - **Building Construction** - **Paving** - **Architectural Coating** #### 2.5.1 **CONSTRUCTION DURATION** For purposes of analysis, construction of Project is expected to commence in May 2024 and would last through December 2025. The construction schedule utilized in the analysis, shown in Table 2-1, represents a "worst-case" analysis scenario should construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent¹. The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per CEQA Guidelines (16). **TABLE 2-1: CONSTRUCTION
DURATION** | Building | Construction Activity | Start Date | End Date | Days | |----------|-----------------------|------------|------------|------| | | Site Preparation | 05/01/2024 | 06/11/2024 | 30 | | | Grading | 06/12/2024 | 07/23/2024 | 30 | | 13 | Building Construction | 07/24/2024 | 05/13/2025 | 210 | | | Paving | 04/16/2025 | 05/13/2025 | 20 | | | Architectural Coating | 03/19/2025 | 05/13/2025 | 40 | | | Site Preparation | 05/01/2024 | 06/11/2024 | 30 | | | Grading | 06/12/2024 | 07/23/2024 | 30 | | 14 | Building Construction | 07/24/2024 | 05/13/2025 | 210 | | | Paving | 04/16/2025 | 05/13/2025 | 20 | | | Architectural Coating | 03/19/2025 | 05/13/2025 | 40 | | 17 | Site Preparation | 12/03/2024 | 01/13/2025 | 30 | | 17 | Grading | 01/14/2025 | 02/24/2025 | 30 | ¹ As shown in the CalEEMod User's Guide Version 2022.1, Section 4.3 "Off-Road Equipment" as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements. 13697-04 GHG Report | Building | Construction Activity | Start Date | End Date | Days | |----------|-----------------------|------------|------------|------| | | Building Construction | 02/25/2025 | 12/15/2025 | 210 | | | Paving | 11/18/2025 | 12/15/2025 | 20 | | | Architectural Coating | 10/21/2025 | 12/15/2025 | 40 | | | Site Preparation | 12/03/2024 | 01/13/2025 | 30 | | | Grading | 01/14/2025 | 02/24/2025 | 30 | | 18 | Building Construction | 02/25/2025 | 12/15/2025 | 210 | | | Paving | 11/18/2025 | 12/15/2025 | 20 | | | Architectural Coating | 10/21/2025 | 12/15/2025 | 40 | #### 2.5.2 CONSTRUCTION EQUIPMENT Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 2-2 would operate up to a total of eight (8) hours per day, or more than two-thirds of the period during which construction activities are allowed pursuant to the County Code. In accordance with the County of Riverside Good Neighbor Policy for Logistics and Warehouse/Distribution uses, it was assumed that equipment rated 50 or less horsepower would meet at least CARB Tier 3 emissions standards, and equipment rated more than 50 horsepower would meet at least CARB Tier 4 Interim emissions standards. **TABLE 2-2: CONSTRUCTION EQUIPMENT ASSUMPTIONS** | Building | Construction Activity | Equipment ¹ | Amount | Hours Per | |----------|--|------------------------|--------|-----------| | | Sito Duomovation | Rubber Tired Dozers | 3 | 8 | | | Site Preparation | Crawler Tractors | 4 | 8 | | | Rubber Tired Dozers Site Preparation | 2 | 8 | | | | | Graders | 1 | 8 | | | Graders | Rubber Tired Dozers | 1 | 8 | | | | Scrapers | 2 | 8 | | | | Crawler Tractors | 2 | 8 | | 13 | | Cranes | 2 | 8 | | | | Forklifts | 4 | 8 | | | Building Construction | Generator Sets | 2 | 8 | | | | Welders | 2 | 8 | | | | Crawler Tractors | 4 | 8 | | | | Pavers | 2 | 8 | | | Paving | Paving Equipment | 2 | 8 | | | Excavators Graders Graders Rubber Tired Dozers Scrapers Crawler Tractors 13 Cranes Forklifts Building Construction Generator Sets Welders Crawler Tractors Pavers Paving Paving Equipment | Rollers | 2 | 8 | | Building | Construction Activity | Equipment ¹ | Amount | Hours Per | |----------|-----------------------|------------------------|--------|-----------| | | Architectural Coating | Air Compressors | 1 | 8 | | | Cita Duan anatian | Rubber Tired Dozers | 3 | 8 | | | Site Preparation — | Crawler Tractors | 4 | 8 | | | | Excavators | 2 | 8 | | | | Graders | 1 | 8 | | | Grading | Rubber Tired Dozers | 1 | 8 | | | | Scrapers | 2 | 8 | | | | Crawler Tractors | 2 | 8 | | | | Cranes | 2 | 8 | | 14 | | Forklifts | 4 | 8 | | | Building Construction | Generator Sets | 2 | 8 | | | | Welders | 2 | 8 | | | | Crawler Tractors | 4 | 8 | | | | Pavers | 2 | 8 | | | Paving | Paving Equipment | 2 | 8 | | | | Rollers | 2 | 8 | | | Architectural Coating | Air Compressors | 1 | 8 | | | Sil B | Rubber Tired Dozers | 3 | 8 | | | Site Preparation — | Crawler Tractors | 4 | 8 | | | | Excavators | 2 | 8 | | | | Graders | 1 | 8 | | | Grading | Rubber Tired Dozers | 1 | 8 | | | | Scrapers | 2 | 8 | | | | Crawler Tractors | 2 | 8 | | 47 | | Cranes | 2 | 8 | | 17 | | Forklifts | 4 | 8 | | | Building Construction | Generator Sets | 2 | 8 | | | | Welders | 2 | 8 | | | | Crawler Tractors | 4 | 8 | | | | Pavers | 2 | 8 | | | Paving | Paving Equipment | 2 | 8 | | | | Rollers | 2 | 8 | | | Architectural Coating | Air Compressors | 1 | 8 | | Building | Construction Activity | Equipment ¹ | Amount | Hours Per | |----------|-----------------------|------------------------|--------|-----------| | | Sit - Duran - matie m | Rubber Tired Dozers | 3 | 8 | | | Site Preparation | Crawler Tractors | 4 | 8 | | | | Excavators | 2 | 8 | | | | Graders | 1 | 8 | | | Grading | Rubber Tired Dozers | 1 | 8 | | | | Scrapers | 2 | 8 | | | | Crawler Tractors | 2 | 8 | | 40 | | Cranes | 2 | 8 | | 18 | | Forklifts | 4 | 8 | | | Building Construction | Generator Sets | 2 | 8 | | | | Welders | 2 | 8 | | | | Crawler Tractors | 4 | 8 | | | | Pavers | 2 | 8 | | | Paving | Paving Equipment | 2 | 8 | | | | Rollers | 2 | 8 | | | Architectural Coating | Air Compressors | 1 | 8 | ## 2.5.3 CONSTRUCTION EMISSIONS SUMMARY For construction phase Project emissions, GHGs are quantified and amortized over the life of the Project. To amortize the emissions over the life of the Project, the SCAQMD recommends calculating the total GHG emissions for the construction activities, dividing it by a 30-year Project life then adding that number to the annual operational phase GHG emissions (17). As such, construction emissions were amortized over a 30-year period and added to the annual operational phase GHG emissions. The amortized construction emissions are presented in Table 2-3. **TABLE 2-3: AMORTIZED ANNUAL CONSTRUCTION EMISSIONS** | Year | Emissions (MT/yr) | | | | | | |----------------------------------|-------------------|-----------------|------------------|--------------|-------------------------|--| | Teal | CO ₂ | CH ₄ | N ₂ O | Refrigerants | Total CO₂e ² | | | 2024 | 1,815.4 | 0.03 | 0.11 | 1.06 | 1,855.63 | | | 2025 | 3,072.26 | 0.09 | 0.18 | 1.86 | 3,129.37 | | | Total GHG Emissions | 4,887.66 | 0.12 | 0.29 | 2.92 | 4,985.00 | | | Amortized Construction Emissions | 162.92 | 4.00E-03 | 0.01 | 0.10 | 166.17 | | Source: CalEEMod annual construction-source emissions are presented in Appendix 2.1. #### 2.6 **OPERATIONAL EMISSIONS** Operational activities associated with the Project would result in emissions of CO₂, CH₄, and N₂O from the following primary sources: - Area Source Emissions - Energy Source Emissions - Mobile Source Emissions - On-Site Cargo Handling Equipment Emissions - Water Supply, Treatment, and Distribution - Solid Waste #### 2.6.1 AREA SOURCE EMISSIONS #### LANDSCAPE MAINTENANCE EQUIPMENT Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shedders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of the Project. It should be noted that as October 9, 2021, Governor Gavin Newsom signed AB 1346. The bill aims to ban the sale of new gasoline-powered equipment under 25 gross horsepower (known as small off-road engines [SOREs]) by 2024. For purposes of analysis, the emissions associated with landscape maintenance equipment were calculated based on assumptions provided in CalEEMod. #### 2.6.2 ENERGY SOURCE EMISSIONS #### **COMBUSTION EMISSIONS ASSOCIATED WITH NATURAL GAS AND ELECTRICITY** GHGs are emitted from buildings as a result of activities for which electricity and natural gas are typically used as energy sources. Combustion of any type of fuel emits CO2 and other GHGs directly into the atmosphere; these emissions are considered direct emissions associated with a $^{^2}$ CalEEMod reports the most common GHGs emitted which include CO₂, CH₄, and N₂O. These GHGs are then converted into the CO₂e by multiplying the individual GHG by the GWP. 13697-04 GHG Report ^A CalEEMod reports the most common GHGs emitted which include CO_2 , CH_4 , and N_2O . These GHGs are then converted into the CO_2e by multiplying the individual GHG by the GWP. building; the building energy use emissions do not include street lighting³. GHGs are also emitted during the generation of electricity from fossil fuels; these emissions are considered to be indirect emissions. Electricity usage associated with the Project were calculated by CalEEMod using default parameters. #### **2.6.3** MOBILE SOURCE EMISSIONS The Project related operational air quality emissions derive primarily from vehicle trips generated by the Project, including employee trips to and from the site and truck trips associated with the proposed uses. Trip characteristics available from the Majestic Freeway Business Center (Building 13) (PPT220008) Traffic Analysis (18), Majestic Freeway Business Center (Building 14) (PPT220015) Traffic Analysis (19), Majestic Freeway Business Center (Building 17) (PPT220009) Traffic Analysis (20), and the Majestic Freeway Business Center (Building 18) (PPT220003) Traffic Analysis (21) were utilized in the analysis. #### **APPROACH FOR ANALYSIS OF THE PROJECT** In order to determine emissions from passenger car vehicles, CalEEMod defaults for trip length and trip purpose were utilized. Default vehicle trip lengths for primary trips will be populated using data from the local metropolitan planning organizations/Regional Transportation Planning Agencies (MPO/RTPA). Trip type percentages and trip lengths provided by MPO/RTPAs truncate data at their demonstrative borders. For the
proposed industrial uses, it is important to note that although the Project traffic studies do not breakdown passenger cars by type, this analysis assumes that passenger cars include Light-Duty-Auto vehicles (LDA), Light-Duty-Trucks (LDT1⁴ & LDT2⁵), Medium-Duty-Vehicles (MDV), and Motorcycles (MCY) vehicle types. In order to account for emissions generated by passenger cars, the fleet mix in Table 2-4 was utilized. **TABLE 2-4: PASSENGER CAR FLEET MIX** | D.:ildina | Lord Ho | % Vehicle Type | | | | | |-----------|--|----------------|-------|--------|--------|-------| | Building | Land Use | LDA | LDT1 | LDT2 | MDV | MCY | | 13 | High-Cube Short-Term Storage/Transload | 53.97% | 4.25% | 21.88% | 17.36% | 2.55% | | 14 | Warehouse | 53.97% | 4.25% | 21.88% | 17.36% | 2.55% | | 17 | High-Cube Short-Term Storage/Transload | 53.97% | 4.25% | 21.88% | 17.36% | 2.55% | | 18 | Warehouse | 53.97% | 4.25% | 21.88% | 17.36% | 2.55% | Note: The Project-specific passenger car fleet mix used in this analysis is based on a proportional split utilizing the default CalEEMod percentages assigned to LDA, LDT1, LDT2, and MDV vehicle types. ³ The CalEEMod emissions inventory model does not include indirect emission related to street lighting. Indirect emissions related to street lighting are expected to be negligible and cannot be accurately quantified at this time as there is insufficient information as to the number and type of street lighting that would occur. ⁴ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs. $^{^{5}}$ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs. To determine emissions from trucks for the proposed industrial uses, the analysis incorporated SCAQMD recommended truck trip length 15.3 miles for 2-axle (LHDT1, LHDT2) trucks, 14.2 miles 3-axle (MHDT) trucks and 40 miles for 4+-axle (HHDT) trucks and weighting the average trip lengths using traffic trip percentages taken from the Project traffic studies for each building. The trip length function has been calculated to 30.09, 30.48, 30.66, and 30.35 miles for Buildings 13, 14, 17, and 18, respectively. Additionally, an assumption of 100% primary trips was used throughout. These trip length assumptions are higher than the CalEEMod defaults for trucks. In order to be consistent with the Project traffic studies, trucks are broken down by truck type. The truck fleet mix is estimated by rationing the trip rates for each truck type based on information provided in the traffic analysis for each building. Heavy trucks are broken down by truck type (or axle type) and are categorized as either Light-Heavy-Duty Trucks (LHDT1⁶ & LHDT2 ⁷)/2-axle, Medium-Heavy-Duty Trucks (MHDT)/3-axle, and Heavy-Heavy-Duty Trucks (HHDT)/4+-axle. To account for emissions generated by trucks, the following fleet mix was utilized in this analysis: **TABLE 2-5: TRUCK FLEET MIX** | Duilding | Land Use | % Vehicle Type | | | | | |----------|--|----------------|-------|--------|--------|--| | Building | unig Land Ose | | LHDT2 | MHDT | HHDT | | | 13 | High-Cube Short-Term Storage/Transload | 12.98% | 3.69% | 22.22% | 61.11% | | | 14 | Warehouse | 13.10% | 3.72% | 20.56% | 62.62% | | | 17 | High-Cube Short-Term Storage/Transload | 12.98% | 3.69% | 20.00% | 63.33% | | | 18 | Warehouse | 12.63% | 3.59% | 21.62% | 62.16% | | Note: Project-specific truck fleet mix is based on the number of trips generated by each truck type (LHDT1, LHDT2, MHDT, and HHDT) relative to the total number of truck trips. #### 2.6.4 On-Site Cargo Handling Equipment Emissions It is common for industrial buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. In accordance with the County of Riverside Good Neighbor Policy for Logistics and Warehouse/Distribution uses it is assumed that all on-site cargo handling equipment would be electrically powered. #### 2.6.5 WATER SUPPLY, TREATMENT AND DISTRIBUTION Indirect GHG emissions result from the production of electricity used to convey, treat, and distribute water and wastewater. The amount of electricity required to convey, treat, and distribute water depends on the volume of water as well as the sources of the water. Unless otherwise noted, CalEEMod default parameters were used. #### 2.6.6 SOLID WASTE Industrial land uses would result in the generation and disposal of solid waste. A percentage of this waste would be diverted from landfills by a variety of means, such as reducing the amount 13697-04 GHG Report $^{^{6}}$ Vehicles under the LHDT1 category have a GVWR of 8,501 to 10,000 lbs. $^{^{7}}$ Vehicles under the LHDT2 category have a GVWR of 10,001 to 14,000 lbs. of waste generated, recycling, and/or composting. The remainder of the waste not diverted would be disposed of at a landfill. GHG emissions from landfills are associated with the anaerobic breakdown of material. GHG emissions associated with the disposal of solid waste associated with the proposed Project were calculated by CalEEMod using default parameters. #### 2.6.7 EMISSIONS SUMMARY The estimated Project-related GHG emissions are summarized on Table 2-6. Detailed operation model outputs for the Project are presented in Appendix 2.2. As shown in Table 2-6, construction and operation of the Project would generate 8,306.48 MTCO₂e/yr. **TABLE 2-6: PROJECT GHG EMISSIONS** | Emission Source | Emissions (MT/yr) | | | | | |----------------------------|-------------------|-----------------|------------------|--------------|------------| | Emission source | CO ₂ | CH ₄ | N ₂ O | Refrigerants | Total CO₂e | | Building 13 | 1,739.46 | 5.21 | 0.17 | 56.47 | 1,979.85 | | Building 14 | 2,573.98 | 5.73 | 0.31 | 62.73 | 2,874.88 | | Building 17 | 1,472.52 | 4.33 | 0.15 | 47.05 | 1,673.74 | | Building 18 | 1,537.23 | 5.37 | 0.16 | 57.96 | 1,778.01 | | Total CO₂e (All Buildings) | | | 8,306.48 | • | • | Source: CalEEMod output, See Appendix 2.2 for detailed model outputs. #### 2.7 GHG Emissions Findings and Recommendations # GHG -1: Would the Project generate GHG emissions either directly or indirectly, that may have a significant impact on the environment? The Project would have the potential to generate approximately 8,306.48 MTCO₂e/yr. As such, the Project would exceed the County's numeric threshold of 3,000 MTCO₂e/yr. #### **LEVEL OF SIGNIFICANCE BEFORE MITIGATION** Potentially Significant. #### **MITIGATION MEASURES** #### MM GHG-1 Prior to issuance of each building permit, the Project Applicant shall provide documentation to the County of Riverside Building Department demonstrating implementation of CAP measure R2-CE1, which includes on-site renewable energy production. This measure is required for any tentative tract map, plot plan, or conditional use permit that proposes development or one or more new buildings totaling more than 100,000 gross square feet (sf) of commercial, office, industrial, or manufacturing development to offset its energy demand. For industrial developments, measure R2-CE1 requires a 20% offset in energy demand. As a conservative measure, emissions associated with energy usage do not reflect implementation of R2-CE1. #### LEVEL OF SIGNIFICANCE AFTER MITIGATION #### Significant and Unavoidable A screening threshold of 3,000 MTCO₂e/yr is used to determine if additional analysis is required. Projects that exceed 3,000 MTCO₂e/yr will be required to quantify and disclose the anticipated GHG emissions then either 1) demonstrate GHG emissions at project buildout year levels of efficiency and include project design features and/or mitigation measures to reduce GHG emissions or 2) garner 100 points through the CAP Update Screening Tables. Projects that garner at least 100 points (equivalent to an approximate 49% reduction in GHG emissions) are determined to be consistent with the reduction quantities anticipated in the County's GHG Technical Report, and consequently would be consistent with the CAP Update. As such, projects that achieve a total of 100 points or more normally are considered to have a less-than-significant individual and cumulative impact on GHG emissions. However, and in an effort to provide a conservative evaluation of the Project's potential GHG impacts, for purposes of analysis herein, Project impacts due to GHG emissions would be cumulatively considerable if the Project's emissions exceed the 3,000 MTCO2e/yr screening threshold identified in the CAP Update. The Project would have the potential to generate approximately 8,306.48 MTCO₂e/yr. As such, the Project would exceed the County's numeric threshold of 3,000 MTCO₂e/yr. On this basis, the Project could generate direct or indirect GHG emissions that would result in a significant impact on the environment. *This is a significant and unavoidable impact.* # GHG-2: Would the Project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs? As previously stated, pursuant to Section 15604.4 of the CEQA Guidelines, a lead agency may rely on qualitative analysis or performance-based standards to determine the significance of impacts from GHG emissions (22). As such, the Project's consistency with AB 32, SB 32, and the County's CAP are discussed below. It should be noted that the Project's consistency with the SB 32 (2017 Scoping Plan) also satisfies consistency with AB 32 since the 2017 Scoping Plan is based on the overall targets established by AB 32. Consistency with the 2008 Scoping Plan is not necessary, since the target year for the 2008 Scoping Plan was 2020, and the Project's buildout year is 2024. As such the 2008 Scoping Plan does not apply and consistency with the 2017 Scoping Plan is relevant. Project consistency with the 2017 Scoping Plan, 2022 Scoping Plan, and County's CAP is
evaluated in the following discussion. It should be noted that the 2017 Scoping Plan was in effect at the time the environmental analysis for the Project commenced, however, since the 2022 Scoping Plan has since been adopted, an assessment of consistency with both plans is included herein. #### **2017 SCOPING PLAN CONSISTENCY** The 2017 Scoping Plan Update reflects the 2030 target of a 40% reduction below 1990 levels, set by Executive Order B-30-15 and codified by SB 32. Table 2-7 summarizes the Project's consistency with the 2017 Scoping Plan. As summarized, the Project will not conflict with any of the provisions of the Scoping Plan and in fact supports seven of the action categories. TABLE 2-7: 2017 SCOPING PLAN CONSISTENCY SUMMARY⁸ | Action | Responsible Parties | Consistency | | |--|---|---|--| | Implement SB 350 by 2030 | | | | | Increase the Renewables Portfolio
Standard to 50% of retail sales by 2030 and
ensure grid reliability. | | Consistent. The Project would use energy from Southern California Edison (SCE). SCE has committed to diversify its portfolio of energy sources by increasing energy from wind and solar sources. The Project would not interfere with or obstruct SCE energy source diversification efforts. | | | Establish annual targets for statewide energy efficiency savings and demand reduction that will achieve a cumulative doubling of statewide energy efficiency savings in electricity and natural gas end uses by 2030. | CPUC,
CEC,
CARB | Consistent. The proposed Project would be designed and constructed to implement the energy efficiency measures, where applicable by including several measures designed to reduce energy consumption. The proposed Project would include energy efficient lighting and fixtures that meet the applicable Title 24 Standards throughout the Project Site and would be a modern development with energy efficient boilers, heaters, and air conditioning systems. | | | Reduce GHG emissions in the electricity sector through the implementation of the above measures and other actions as modeled in Integrated Resource Planning (IRP) to meet GHG emissions reductions planning targets in the IRP process. Loadserving entities and publicly- owned utilities meet GHG emissions reductions planning targets through a combination of measures as described in IRPs. | | Consistent. The proposed Project would be designed and constructed to implement the energy efficiency measures, where applicable by including several measures designed to reduce energy consumption. The proposed Project would include energy efficient lighting and fixtures that meet the applicable Title 24 Standards throughout the Project Site and would be a modern development with energy efficient boilers, heaters, and air conditioning systems. | | | Implement Mobile Source Strategy (Cleaner Technology and Fuels) | | | | | At least 1.5 million zero emission and plug-
in hybrid light-duty EVs by 2025. | CARB, California State Transportation Agency (CalSTA), Strategic Growth Council (SGC), California Department of | Consistent. This is a CARB Mobile Source Strategy. The Project would not obstruct or interfere with CARB zero emission and plug-in hybrid light-duty EV 2025 targets. As this is a CARB enforced standard, vehicles that access the Project are required to comply with the standards and will therefore comply with the strategy. | | ⁸ Measures can be found at the following link: https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf 13697-04 GHG Report | Action | Responsible Parties | Consistency | |---|---|--| | At least 4.2 million zero emission and plugin hybrid light-duty EVs by 2030. | Transportation
(Caltrans),
CEC,
OPR,
Local Agencies | Consistent. This is a CARB Mobile Source Strategy. The Project would not obstruct or interfere with CARB zero emission and plug-in hybrid light-duty EV 2030 targets. As this is a CARB enforced standard, vehicles that access the Project are required to comply with the standards and will therefore comply with the strategy. | | Further increase GHG stringency on all light-duty vehicles beyond existing Advanced Clean cars regulations. | | Consistent. This is a CARB Mobile Source Strategy. The Project would not obstruct or interfere with CARB efforts to further increase GHG stringency on all light-duty vehicles beyond existing Advanced Clean cars regulations. As this is a CARB enforced standard, vehicles that access the Project are required to comply with the standards and will therefore comply with the strategy. | | Medium- and Heavy-Duty GHG Phase 2. | | Consistent. This is a CARB Mobile Source Strategy. The Project would not obstruct or interfere with CARB efforts to implement Medium- and Heavy-Duty GHG Phase 2. As this is a CARB enforced standard, vehicles that access the Project are required to comply with the standards and will therefore comply with the strategy. | | Innovative Clean Transit: Transition to a suite of to-be-determined innovative clean transit options. Assumed 20% of new urban buses purchased beginning in 2018 will be zero emission buses with the penetration of zero-emission technology ramped up to 100% of new sales in 2030. Also, new natural gas buses, starting in 2018, and diesel buses, starting in 2020, meet the optional heavy-duty low-NO _x standard. | | Consistent. The Project would not obstruct or interfere with agency efforts to transition to a suite of to-bedetermined innovative clean transit options. | | Last Mile Delivery: New regulation that would result in the use of low NO _X or cleaner engines and the deployment of increasing numbers of zero-emission trucks primarily for class 3-7 last mile delivery trucks in California. This measure assumes ZEVs comprise 2.5% of new Class 3–7 truck sales in local fleets starting in 2020, increasing to 10% in 2025 and remaining flat through 2030. | | Consistent. The Project would not obstruct or interfere with agency efforts to use low NO _X or cleaner engines or the deployment of increasing numbers of zero-emission trucks primarily for class 3-7 last mile delivery trucks in California. | | Action | Responsible Parties | Consistency | |--|---|---| | Further reduce VMT through continued implementation of SB 375 and regional Sustainable Communities Strategies; forthcoming statewide implementation of SB 743; and potential additional VMT reduction strategies not specified in the Mobile Source Strategy but included in the document "Potential VMT Reduction Strategies for Discussion." | | Consistent. This Project would not obstruct or interfere with implementation of SB 375 and would therefore not conflict with this measure. | | Increase stringency of SB 375 Sustainable Communities Strategy (2035 targets). | CARB | Consistent. The Project would not obstruct or interfere with agency efforts to increase stringency of SB 375 Sustainable Communities Strategy. | | Harmonize project performance with emissions reductions and increase competitiveness of transit and active transportation modes (e.g. via guideline documents, funding programs, project selection, etc.). | CalSTA, SGC, OPR, CARB, Governor's Office of Business and Economic Development (GO-Biz), California Infrastructure and Economic Development Bank (IBank), Department of Finance (DOF), California Transportation Commission (CTC), Caltrans | Consistent. The Project would not obstruct or interfere
with agency efforts to harmonize transportation facility project performance with emissions reductions and increase competitiveness of transit and active transportation modes. | | Develop pricing policies to support low-GHG transportation (e.g. low-emission vehicle zones for heavy duty, road user, parking pricing, transit discounts). | CalSTA,
Caltrans,
CTC,
OPR,
SGC,
CARB | Consistent. The Project would not obstruct or interfere with agency efforts to develop pricing policies to support low-GHG transportation. | | Implement California Sustainable Freight Ac | tion Plan | | | Improve freight system efficiency. | CalSTA,
CalEPA,
CNRA, | Consistent. This measure would apply to all trucks accessing the Project site, this may include existing trucks or new trucks that are part of the statewide goods | | Action | Responsible Parties | Consistency | | | |---|---|--|--|--| | | CARB,
Caltrans,
CEC,
GO-Biz | movement sector. The Project would not obstruct or interfere with agency efforts to Improve freight system efficiency. | | | | Deploy over 100,000 freight vehicles and equipment capable of zero emission operation and maximize both zero and near-zero emission freight vehicles and equipment powered by renewable energy by 2030. | | Consistent. The Project would not obstruct or interfere with agency efforts to deploy over 100,000 freight vehicles and equipment capable of zero emission operation and maximize both zero and near-zero emission freight vehicles and equipment powered by renewable energy by 2030. | | | | Adopt a Low Carbon Fuel Standard with a Carbon Intensity reduction of 18%. | CARB | Consistent. When adopted, this measure would apply to all fuel purchased and used by the Project in the state. The Project would not obstruct or interfere with agency efforts to adopt a Low Carbon Fuel Standard with a Carbon Intensity reduction of 18%. | | | | Implement the Short-Lived Climate Pollutan | nt Strategy (SLPS) by 203 | 30 | | | | 40% reduction in methane and hydrofluorocarbon emissions below 2013 levels. | CARB,
CalRecycle,
CDFA,
California State | Consistent. The Project would be required to comply with any applicable measures that may be adopted for the purposes of reducing SLPS emissions. The Project would not obstruct or interfere with | | | | 50% reduction in black carbon emissions below 2013 levels. | Water Resource Control Board (SWRCB), Local Air Districts | agency efforts to reduce SLPS emissions since it would be required to comply with any applicable regulatory measures. | | | | Develop regulations and programs to support organic waste landfill reduction goals in the SLCP and SB 1383. | CARB, CalRecycle, CDFA, SWRCB, Local Air Districts | Consistent. The Project would implement waste reduction and recycling measures consistent with State and County requirements. The Project would not obstruct or interfere with agency efforts to support organic waste landfill reduction goals in the SLCP and SB 1383. | | | | Implement the post-2020 Cap-and-Trade Program with declining annual caps. | CARB | Consistent. The Project would be required to comply with any applicable Cap-and-Trade Program provisions. The Project would not obstruct or interfere with agency efforts to implement the post-2020 Cap-and-Trade Program. | | | | By 2018, develop Integrated Natural and Wo | By 2018, develop Integrated Natural and Working Lands Implementation Plan to secure California's land base as a net carbon sink | | | | | | CNRA,
Departments
Within | Consistent. The Project would not obstruct or interfere with agency efforts to protect land from conversion through | | | | Action | Responsible Parties | Consistency | |--|---|---| | Protect land from conversion through conservation easements and other incentives. Increase the long-term resilience of carbon storage in the land base and enhance sequestration capacity | CDFA,
CalEPA,
CARB | conservation easements and other incentives. The Project site is not targeted for conservation in any local or State conservation plan. Consistent. The Project site consists of a disturbed property that is used for the storage of construction equipment, trucks, trailers, and shipping containers, includes only nominal areas containing vegetation, and does not comprise an area that would effectively provide for carbon sequestration. The Project would not obstruct or interfere with agency efforts to increase the long-term resilience of carbon storage in the land base and enhance sequestration capacity. | | Utilize wood and agricultural products to increase the amount of carbon stored in the natural and built environments | | Consistent. The Project is proposed as a tilt-up industrial warehouse use with building materials primarily comprised of concrete. However, where appropriate, the Project design does not preclude the incorporation of wood or wood products. The Project would not obstruct or interfere with agency efforts to encourage use of wood and agricultural products to increase the amount of carbon stored in the natural and built environments. | | Establish scenario projections to serve as the foundation for the Implementation Plan | | Consistent. The Project would not obstruct or interfere with agency efforts to establish scenario projections to serve as the foundation for the Implementation Plan. | | Establish a carbon accounting framework for natural and working lands as described in SB 859 | CARB | Consistent. The Project would not obstruct or interfere with agency efforts to establish a carbon accounting framework for natural and working lands as described in SB 859. | | Implement Forest Carbon Plan | CNRA, California Department of Forestry and Fire Protection (CAL FIRE), CalEPA and Departments Within | Consistent . The Project would not obstruct or interfere with agency efforts to implement the Forest Carbon Plan. | | Action | Responsible Parties | Consistency | |--|------------------------------------|--| | Identify and expand funding and financing mechanisms to support GHG reductions across all sectors. | State Agencies &
Local Agencies | Consistent. The Project would not obstruct or interfere agency efforts to identify and expand funding and financing mechanisms to support GHG reductions across all sectors. | As shown above, the Project would not conflict with any of the 2017 Scoping Plan elements as any regulations adopted would apply directly or indirectly to the Project. Further, recent studies show that the State's existing and proposed regulatory framework will allow the State to reduce its GHG emissions level to 40% below 1990 levels by 2030 (23). #### **2022 CARB SCOPING PLAN CONSISTENCY** The Project would not impede the State's progress towards carbon neutrality by 2045 under the 2022 Scoping Plan. The Project would be required to comply with applicable current and future regulatory requirements promulgated through the 2022 Scoping Plan. Some of the current transportation sector policies the Project will comply with (through vehicle manufacturer compliance) include: Advanced Clean Cars II, Advanced Clean Trucks, Advanced Clean Fleets, Zero Emission Forklifts, the Off-Road Zero-Emission Targeted Manufacturer rule, Clean Off-Road Fleet Recognition Program, In-use Off-Road Diesel-Fueled Fleets Regulation, Off-Road Zero-Emission Targeted Manufacturer rule, Clean Off-Road Fleet Recognition Program, Amendments to the In-use Off-Road Diesel-Fueled Fleets Regulation, carbon pricing through the Cap-and-Trade Program, and the Low Carbon Fuel Standard. As noted below, the Project would be consistent with the Riverside County CAP. As such, the Project would not be inconsistent with the 2022 Scoping Plan. #### **COUNTY OF RIVERSIDE CAP CONSISTENCY** The Project final plans and designs would conform to provisions of the CAP through implementation of the Screening Table Measures listed at Table 2-8. The proposed Project would exceed the County's numeric threshold of 3,000 MTCO₂e/yr. As such, the Project shall implement Screening Table Measures providing for a minimum 100 points per the County Screening Tables. With implementation of these measures, the Project would be consistent with the CAP's
requirement to achieve at least 100 points and thus the Project is considered to have a less than significant individual and cumulatively considerable impact on GHG emissions. The County shall verify incorporation of the identified Screening Table Measures within the Project building plans and site designs prior to the issuance of building permit(s) and/or site plans (as applicable). The County shall verify implementation of the identified Screening Table Measures prior to the issuance of Certificate(s) of Occupancy. An example of how the Project will achieve a minimum of 100 Screening Table Points is provided at Table 2-8. Measures that achieve equivalent points or emissions reductions may be substituted. **TABLE 2-8: CAP CONSISTENCY** | Feature | Description | Points | |--|---|--------| | EE10.A.1
Insulation | Enhanced Insulation
(rigid wall insulation R-13, roof/attic R-38) | 11 | | EE10.A.2
Windows | Greatly Enhanced Window Insulation (0.28 or less U-factor, 0.22 or less SHGC) | 7 | | EE10-A.3
Cool Roofs | Modest Cool Roof
(CRRC Rated 0.15 aged solar reflectance, 0.75 thermal emittance) | 7 | | EE10.A.4
Air Infiltration | Blower Door HERS Verified Envelope Leakage of equivalent | 6 | | EE10.B.1
Heating/Cooling
Distribution System | Modest Duct Insulation (R-6) | 5 | | EE10.B.2
Space Heating/Cooling
Equipment | Improved Efficiency HVAC (EER 14/78% AFUE or 8 HSPF) | 4 | | EE10B.4
Water Heaters | High Efficiency Water Heater (0.72 Energy Factor) | 10 | | EE10.B.5
Daylighting | All rooms daylighted | 1 | | EE10.B.6
Artificial Lighting | High Efficiency Lights (50% of in-unit fixtures are high efficiency) | 7 | | W2.E.2
Toilets | Water Efficient Toilets/Urinals (1.5 gpm) | | | | Waterless Urinals (note that commercial buildings having both waterless urinals and high efficiency toilets will have a combined point value of 6 points) | 6 | | W2.E.3
Faucets | Water Efficient faucets (1.28 gpm) | 2 | | T4.B.1
EV Recharging | Install EV charging stations in garages/parking areas | 160 | | | TOTAL POINTS EARNED BY COMMERCIAL/INDUSTRIAL PROJECT | 226 | Projects that garner at least 100 points through application of the Screening Table Measures are determined to be consistent with the reduction quantities anticipated in the County's GHG Technical Report, and consequently would be consistent with the CAP. The Project will implement Screening Table Measures that would provide a minimum of 100 Screening Table Points and would therefore be considered consistent with the CAP. The County's CAP currently evaluates and quantifies reductions out to Year 2030. The CAP states that "Through 2050, Riverside County would continue implementation of the Screening Tables. During this time, the reduction measures implemented through the Screening Tables would continue to reduce GHG missions from new development. Additionally, it is assumed that the State measures would keep being updated and reinforced to further reduce emissions. With these assumptions, Riverside County's emissions would decrease to a level below the reduction target by 2050 (24)." Thus, compliance with the CAP would serve to meet and support the reduction targets established SB 32 and CARB 2017 Scoping Plan. This page intentionally left blank #### 3 REFERENCES - 1. State of California. 2020 CEQA California Environmental Quality Act. 2020. - 2. **Air Resources Board.** Assembly Bill 32: Global Warming Solutions Act. [Online] 2006. https://ww2.arb.ca.gov/resources/fact-sheets/ab-32-global-warming-solutions-act-2006. - 3. —. Sustainable Communities. [Online] 2008. https://ww2.arb.ca.gov/our-work/programs/sustainable-communities-climate-protection-program/about. - 4. —. Clean Car Standards Pavley, Assembly Bill 1493. [Online] September 24, 2009. http://www.arb.ca.gov/cc/ccms/ccms.htm. - 5. **Building Standards Commission.** California Building Standards Code (Title 24, California Code of Regulations). [Online] http://www.bsc.ca.gov/codes.aspx. - 6. **California Energy Commission.** California Code of Regulations, TITLE 20, Division 2. [Online] September 3, 2013. https://www.energy.ca.gov/sites/default/files/2021-07/Title%2020%20Updated%20July%2023%2C%20201.pdf. - 7. **Air Resources Board.** Title 17 California Code of Regulation. [Online] 2010. https://ww2.arb.ca.gov/sites/default/files/2020-09/basics-notes.pdf. - 8. **California Energy Commission.** SB 1368 Emission Performance Standards. [Online] September 29, 2006. http://www.energy.ca.gov/emission_standards/. - 9. —. Renewables Portfolio Standard (RPS). [Online] 2002. http://www.energy.ca.gov/portfolio/. - 10. **California Legislative Information.** Senate Bill No. 32. [Online] September 8, 2016. https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB32. - 11. **Environmental Protection Agency.** National Ambient Air Quality Standards (NAAQS). [Online] 1990. https://www.epa.gov/environmental-topics/air-topics. - 12. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] www.caleemod.com. - 13. California Natural Resources Agency. Final Statement of Reasons for Regulatory Action, Amendments to the State CEQA Guidelines Addressing Analysis and Mitigation of Greenhouse Gas Emissions Pursuant to SB97. [Online] December 2009. https://resources.ca.gov/CNRALegacyFiles/ceqa/docs/Final_Statement_of_Reasons.pdf. - 14. **South Coast Air Quality Managment District.** Minutes for the GHG CEQA Significance. [Online] 2008. http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/year-2008-2009/ghg-meeting-2/ghg-meeting-2-minutes.pdf. - 15. **Urban Crossroads, Inc.** *Majestic Freeway Business Center (Buildings 13, 14, 17 & 18) Air Quality Impact Analysis.* 2023. - 16. **State of California.** 2019 CEQA California Environmental Quality Act. 2019. - 17. **South Coast Air Quality Management District.** *Greenhouse Gas CEQA Significance Threshold Stakeholder Working Group #13.* [Powerpoint] Diamond Bar: s.n., 2009. - 18. **Urban Crossroads, Inc.** *Majestic Freeway Business Center (Building 13) (PPT220008) Traffic Analysis.* 2022. - 19. Majestic Freeway Business Center (Building 14) (PPT220015) Traffic Analysis. 2022. - 20. Majestic Freeway Business Center (Building 17) (PPT22009) Traffic Analysis. 2022. - 21. Majestic Freeway Business Center (Building 18) (PPT220003) Traffic Analysis. 2022. - 22. Association of Environmental Professionals. 2018 CEQA California Environmental Quality Act. 2018. - 23. **Lawrence Berkeley National Laboratory.** California's Policies Can Significantly Cut Greenhouse Gas Emissions through 2030. *Lawrence Berkeley National Laboratory*. [Online] 2015. http://newscenter.lbl.gov/2015/01/22/californias-policies-can-significantly-cut-greenhouse-gasemissions-2030/. - 24. **County of Riverside.** County of Riverside Climate Action Plan: GHG Emissions Reduction Programs and Regulations. 2019. This page intentionally left blank #### 4 **CERTIFICATIONS** The contents of this GHG study report represent an accurate depiction of the GHG impacts associated with the proposed Majestic Freeway Business Center (Buildings 13, 14, 17 & 18) Project. The information contained in this GHG report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com. Haseeb Qureshi Principal URBAN CROSSROADS, INC. hqureshi@urbanxroads.com #### **EDUCATION** Master of Science in Environmental Studies California State University, Fullerton • May 2010 Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June, 2006 #### **PROFESSIONAL AFFILIATIONS** AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials #### **PROFESSIONAL CERTIFICATIONS** Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – California Air Resources Board • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006 This page intentionally left blank #### **APPENDIX 3.1:** **CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS** # MFBC Building 13 (Construction) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 3. Construction Emissions Details - 3.1. Site Preparation (2024) Unmitigated - 3.3. Grading (2024) Unmitigated - 3.5. Building Construction (2024) Unmitigated - 3.7. Building Construction (2025) Unmitigated - 3.9. Paving (2025) Unmitigated - 3.11. Architectural Coating (2025) Unmitigated - 4. Operations Emissions Details - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and
Emissions Factors - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---------------------------------------| | Project Name | MFBC Building 13 (Construction) | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 9.00 | | Location | 33.8463645366747, -117.25831888936246 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5479 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|------|----------|-------------|-----------------------|---------|-----------------------------------|------------|-------------| | Unrefrigerated
Warehouse-No Rail | 323 | 1000sqft | 11.2 | 322,997 | 162,890 | 0.00 | _ | _ | | Parking Lot | 311 | Space | 1.88 | 0.00 | 0.00 | 0.00 | _ | _ | | Other Asphalt | 199 | 1000sqft | 4.57 | 0.00 | 0.00 | 0.00 | _ | _ | |---------------|-----|----------|------|------|------|------|---|---| | Surfaces | | | | | | | | | ### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary ### 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 2.24 | 51.5 | 54.2 | 52.9 | 0.26 | 0.83 | 10.8 | 11.6 | 0.82 | 3.24 | 4.06 | _ | 37,235 | 37,235 | 0.84 | 4.93 | 65.2 | 38,792 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Unmit. | 1.58 | 50.2 | 20.1 | 38.0 | 0.06 | 0.39 | 2.48 | 2.87 | 0.37 | 0.60 | 0.96 | _ | 8,153 | 8,153 | 0.32 | 0.31 | 0.31 | 8,254 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.71 | 5.76 | 11.8 | 17.8 | 0.04 | 0.17 | 2.04 | 2.21 | 0.17 | 0.65 | 0.82 | _ | 5,976 | 5,976 | 0.18 | 0.51 | 3.90 | 6,135 | | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.13 | 1.05 | 2.15 | 3.24 | 0.01 | 0.03 | 0.37 | 0.40 | 0.03 | 0.12 | 0.15 | _ | 989 | 989 | 0.03 | 0.08 | 0.65 | 1,016 | ### 2.2. Construction Emissions by Year, Unmitigated | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| Daily -
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |----------------------------|------|------|------|------|---------|------|------|------|----------|------|------|---|--------|--------|------|------|------|--------| | 2024 | 2.24 | 1.46 | 54.2 | 46.1 | 0.26 | 0.83 | 10.8 | 11.6 | 0.82 | 3.24 | 4.06 | _ | 37,235 | 37,235 | 0.84 | 4.93 | 65.2 | 38,792 | | 2025 | 2.07 | 51.5 | 27.2 | 52.9 | 0.07 | 0.54 | 2.68 | 3.22 | 0.51 | 0.64 | 1.16 | _ | 10,060 | 10,060 | 0.39 | 0.33 | 12.8 | 10,181 | | Daily -
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 1.47 | 1.38 | 18.7 | 35.8 | 0.05 | 0.30 | 2.13 | 2.43 | 0.28 | 0.51 | 0.80 | - | 7,681 | 7,681 | 0.30 | 0.30 | 0.29 | 7,777 | | 2025 | 1.58 | 50.2 | 20.1 | 38.0 | 0.06 | 0.39 | 2.48 | 2.87 | 0.37 | 0.60 | 0.96 | _ | 8,153 | 8,153 | 0.32 | 0.31 | 0.31 | 8,254 | | Average
Daily | _ | - | _ | _ | _ | - | _ | _ | <u> </u> | _ | _ | _ | _ | _ | - | _ | _ | _ | | 2024 | 0.71 | 0.62 | 11.8 | 17.8 | 0.04 | 0.17 | 2.04 | 2.21 | 0.17 | 0.65 | 0.82 | _ | 5,976 | 5,976 | 0.18 | 0.51 | 3.90 | 6,135 | | 2025 | 0.40 | 5.76 | 5.40 | 10.2 | 0.02 | 0.10 | 0.60 | 0.70 | 0.09 | 0.14 | 0.24 | _ | 2,142 | 2,142 | 0.08 | 0.08 | 1.28 | 2,169 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.13 | 0.11 | 2.15 | 3.24 | 0.01 | 0.03 | 0.37 | 0.40 | 0.03 | 0.12 | 0.15 | _ | 989 | 989 | 0.03 | 0.08 | 0.65 | 1,016 | | 2025 | 0.07 | 1.05 | 0.99 | 1.87 | < 0.005 | 0.02 | 0.11 | 0.13 | 0.02 | 0.03 | 0.04 | _ | 355 | 355 | 0.01 | 0.01 | 0.21 | 359 | # 3. Construction Emissions Details ### 3.1. Site Preparation (2024) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.68 | 15.7 | 30.0 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,529 | 5,529 | 0.22 | 0.04 | _ | 5,548 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 5.66 | 5.66 | _ | 2.69 | 2.69 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|----------|------|------|------|---------|---------|------|---------|---------|---------|---------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.29 | 2.46 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 454 | 454 | 0.02 | < 0.005 | _ | 456 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 0.47 | 0.47 | _ | 0.22 | 0.22 | _ | _ | - | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.24 | 0.45 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 75.2 | 75.2 | < 0.005 | < 0.005 | _ | 75.5 | | Dust
From
Material
Movemen | | _ | _ | _ | _ | _ | 0.08 | 0.08 | _ | 0.04 | 0.04 | _ | _ | - | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.10 | 0.09 | 0.09 | 1.50 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 259 | 259 | 0.01 | 0.01 | 1.03 | 263 | | Vendor | 0.01 | 0.01 | 0.21 | 0.07 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 186 | 186 | < 0.005 | 0.03 | 0.52 | 195 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | _ | | | | | | | 8 / 31 | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------| | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.10 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 19.8 | 19.8 | < 0.005 | < 0.005 | 0.04 | 20.1 | | Vendor | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 15.3 | 15.3 | < 0.005 | < 0.005 | 0.02 | 16.0 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 3.28 | 3.28 | < 0.005 | < 0.005 | 0.01 | 3.33 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.54 | 2.54 | < 0.005 | < 0.005 | < 0.005 | 2.65 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.3. Grading (2024) - Unmitigated | Location | | ROG | NOx | СО | | | | PM10T | PM2.5E | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|------------|------
------|------|------|------|------|-------|--------|------|------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.88 | 20.0 | 36.2 | 0.06 | 0.26 | _ | 0.26 | 0.25 | _ | 0.25 | _ | 6,715 | 6,715 | 0.27 | 0.05 | _ | 6,738 | | Dust
From
Material
Movemen | - - | _ | _ | _ | _ | _ | 2.72 | 2.72 | _ | 0.99 | 0.99 | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Average
Daily | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|----------|---------|------|----------|---------|---------|---------|---------|---------|---------|---------|---|--------|--------|---------|---------|------|--------| | Off-Road
Equipmen | | 0.07 | 1.64 | 2.97 | 0.01 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 552 | 552 | 0.02 | < 0.005 | _ | 554 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 0.22 | 0.22 | _ | 0.08 | 0.08 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.30 | 0.54 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 91.4 | 91.4 | < 0.005 | < 0.005 | _ | 91.7 | | Dust
From
Material
Movemen | <u></u> | _ | _ | _ | _ | _ | 0.04 | 0.04 | _ | 0.01 | 0.01 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | - | | Worker | 0.11 | 0.10 | 0.10 | 1.67 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 288 | 288 | 0.01 | 0.01 | 1.14 | 292 | | Vendor | 0.01 | 0.01 | 0.21 | 0.07 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 186 | 186 | < 0.005 | 0.03 | 0.52 | 195 | | Hauling | 1.24 | 0.47 | 34.0 | 8.18 | 0.20 | 0.57 | 2.08 | 2.65 | 0.57 | 0.76 | 1.32 | _ | 30,046 | 30,046 | 0.55 | 4.84 | 63.6 | 31,567 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.11 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 22.0 | 22.0 | < 0.005 | < 0.005 | 0.04 | 22.3 | | Vendor | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 15.3 | 15.3 | < 0.005 | < 0.005 | 0.02 | 16.0 | | Hauling | 0.10 | 0.04 | 2.93 | 0.68 | 0.02 | 0.05 | 0.17 | 0.22 | 0.05 | 0.06 | 0.11 | _ | 2,470 | 2,470 | 0.05 | 0.40 | 2.25 | 2,592 | |---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---|-------|-------|---------|---------|---------|----------| | Annual | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 3.65 | 3.65 | < 0.005 | < 0.005 | 0.01 | 3.70 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.54 | 2.54 | < 0.005 | < 0.005 | < 0.005 | 2.65 | | Hauling | 0.02 | 0.01 | 0.53 | 0.12 | < 0.005 | 0.01 | 0.03 | 0.04 | 0.01 | 0.01 | 0.02 | _ | 409 | 409 | 0.01 | 0.07 | 0.37 | 429 | # 3.5. Building Construction (2024) - Unmitigated | | | , | , | <i>J</i> , | | , | , | | J , | . , | | | | | | | | | |---------------------------|------|------|------|------------|------|-------|-------|-------|------------|--------|--------|------|-------|-------|------|------|------|-------| | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.22 | 5.16 | 8.44 | 0.01 | 0.09 | _ | 0.09 | 0.08 | _ | 0.08 | _ | 1,452 | 1,452 | 0.06 | 0.01 | _ | 1,457 | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 0.94 | 1.54 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 240 | 240 | 0.01 | < 0.005 | _ | 241 | |---------------------------|---------|---------|------|------|---------|---------|---------|------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.76 | 0.70 | 0.66 | 11.4 | 0.00 | 0.00 | 0.11 | 0.11 | 0.00 | 0.00 | 0.00 | _ | 1,957 | 1,957 | 0.08 | 0.07 | 7.77 | 1,987 | | Vendor | 0.06 | 0.04 | 1.44 | 0.45 | 0.01 | 0.02 | 0.07 | 0.09 | 0.02 | 0.03 | 0.05 | _ | 1,273 | 1,273 | 0.03 | 0.19 | 3.59 | 1,334 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.73 | 0.66 | 0.77 | 8.58 | 0.00 | 0.00 | 0.11 | 0.11 | 0.00 | 0.00 | 0.00 | _ | 1,799 | 1,799 | 0.09 | 0.07 | 0.20 | 1,821 | | Vendor | 0.05 | 0.04 | 1.51 | 0.46 | 0.01 | 0.02 | 0.07 | 0.09 | 0.02 | 0.03 | 0.05 | _ | 1,274 | 1,274 | 0.03 | 0.19 | 0.09 | 1,332 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.23 | 0.21 | 0.24 | 2.85 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 574 | 574 | 0.03 | 0.02 | 1.06 | 582 | | Vendor | 0.02 | 0.01 | 0.48 | 0.14 | < 0.005 | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | _ | 401 | 401 | 0.01 | 0.06 | 0.49 | 420 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.04 | 0.04 | 0.04 | 0.52 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 95.0 | 95.0 | < 0.005 | < 0.005 | 0.18 | 96.4 | | Vendor | < 0.005 | < 0.005 | 0.09 | 0.03 | < 0.005 | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | _ | 66.4 | 66.4 | < 0.005 | 0.01 | 0.08 | 69.5 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.7. Building Construction (2025) - Unmitigated | Loca | ation | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------|-------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| |------|-------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | | - | - | - | _ | _ | _ | _ | | _ | | - | _ | _ | - | |---------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|---------|------|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.18 | 4.26 | 6.98 | 0.01 | 0.07 | _ | 0.07
| 0.07 | _ | 0.07 | _ | 1,199 | 1,199 | 0.05 | 0.01 | _ | 1,203 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.03 | 0.78 | 1.27 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | - | 199 | 199 | 0.01 | < 0.005 | _ | 199 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.73 | 0.61 | 0.60 | 10.5 | 0.00 | 0.00 | 0.11 | 0.11 | 0.00 | 0.00 | 0.00 | _ | 1,917 | 1,917 | 0.08 | 0.07 | 7.04 | 1,946 | | Vendor | 0.06 | 0.03 | 1.38 | 0.43 | 0.01 | 0.02 | 0.07 | 0.09 | 0.02 | 0.03 | 0.05 | _ | 1,254 | 1,254 | 0.03 | 0.19 | 3.56 | 1,315 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Worker | 0.64 | 0.57 | 0.66 | 7.94 | 0.00 | 0.00 | 0.11 | 0.11 | 0.00 | 0.00 | 0.00 | _ | 1,762 | 1,762 | 0.08 | 0.07 | 0.18 | 1,784 | | Vendor | 0.05 | 0.03 | 1.44 | 0.44 | 0.01 | 0.02 | 0.07 | 0.09 | 0.02 | 0.03 | 0.05 | _ | 1,255 | 1,255 | 0.03 | 0.19 | 0.09 | 1,313 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.17 | 0.15 | 0.19 | 2.18 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 464 | 464 | 0.02 | 0.02 | 0.79 | 471 | | Vendor | 0.01 | 0.01 | 0.37 | 0.11 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | 0.01 | 0.01 | _ | 327 | 327 | 0.01 | 0.05 | 0.40 | 342 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.03 | 0.03 | 0.03 | 0.40 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 76.9 | 76.9 | < 0.005 | < 0.005 | 0.13 | 78.0 | | Vendor | < 0.005 | < 0.005 | 0.07 | 0.02 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 54.1 | 54.1 | < 0.005 | 0.01 | 0.07 | 56.6 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.9. Paving (2025) - Unmitigated | Location | TOG | ROG | NOx | СО | | PM10E | | PM10T | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|------|-------|------|--------|------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.29 | 7.24 | 10.6 | 0.01 | 0.16 | _ | 0.16 | 0.15 | _ | 0.15 | _ | 1,511 | 1,511 | 0.06 | 0.01 | _ | 1,517 | | Paving | _ | 0.84 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|---------|------|---------|---------|---------|---------|---------|------|---------|---|------|------|---------|---------|------|------| | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.02 | 0.40 | 0.58 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 82.8 | 82.8 | < 0.005 | < 0.005 | _ | 83.1 | | Paving | _ | 0.05 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | < 0.005 | 0.07 | 0.11 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 13.7 | 13.7 | < 0.005 | < 0.005 | _ | 13.8 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | - | - | | Worker | 0.08 | 0.07 | 0.07 | 1.16 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 211 | 211 | 0.01 | 0.01 | 0.78 | 215 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 10.8 | 10.8 | < 0.005 | < 0.005 | 0.02 | 10.9 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 1.79 | 1.79 | < 0.005 | < 0.005 | < 0.005 | 1.81 | |---------|---------|---------|---------|------|------|------|---------|---------|------|------|------|---|------|------|---------|---------|---------|------| | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.11. Architectural Coating (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|------|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.45 | 1.28 | < 0.005 | 0.09 | _ | 0.09 | 0.08 | _ | 0.08 | _ | 178 | 178 | 0.01 | < 0.005 | _ | 179 | | Architect
ural
Coatings | _ | 48.8 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.45 | 1.28 | < 0.005 | 0.09 | _ | 0.09 | 0.08 | _ | 0.08 | _ | 178 | 178 | 0.01 | < 0.005 | _ | 179 | | Architect
ural
Coatings | _ | 48.8 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.16 | 0.14 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 19.5 | 19.5 | < 0.005 | < 0.005 | _ | 19.6 | | Architect
Coatings | _ | 5.34 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | |-------------------------------|--------------|---------|---------|------|---------|---------|---------|---------|---------|------|---------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | < 0.005
t | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | - | 3.23 | 3.23 | < 0.005 | < 0.005 | _ | 3.24 | | Architect
ural
Coatings | _ | 0.98 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.15 | 0.12 | 0.12 | 2.09 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 381 | 381 | 0.02 | 0.01 | 1.40 | 386 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.13 | 0.11 | 0.13 | 1.58 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 350 | 350 | 0.02 | 0.01 | 0.04 | 354 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.02 | 0.18 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 38.8 | 38.8 | < 0.005 | < 0.005 | 0.07 | 39.4 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 6.43 | 6.43 | < 0.005 | < 0.005 | 0.01 | 6.52 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 4. Operations Emissions Details 4.10. Soil Carbon Accumulation By Vegetation Type 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | TOG | ROG | | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|----------|------|----------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | <u> </u> | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | | TOG | ROG | | | | | | PM10T | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|------|-------------|-----|---------|---------|---------|----------|----------|----------|------|-------|------|-----|------|-----|------| | | TOG | RUG | IVUX | | 302 | PIVITUE | PIVITUD | PIVITUT | PIVIZ.3E | PIVIZ.3D | FIVIZ.51 | BCOZ | NBCO2 | CO21 | СП4 | INZU | IV. | COZE | | Daily,
Summer | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | (Max) | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------|---|---|---|---|---|---|---|----------|----------|---|---|---|----------|----------|----------|---|---|---| | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | <u> </u> | <u> </u> | _ | _ | _ | <u> </u> | <u> </u> | <u> </u> | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ### 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |-----------------------|-----------------------|------------|-----------|---------------|---------------------|-------------------| | Site Preparation | Site Preparation | 5/1/2024 | 6/11/2024 | 5.00 | 30.0 | _ | | Grading | Grading | 6/12/2024 | 7/23/2024 | 5.00 | 30.0 | _ | | Building Construction | Building Construction | 7/24/2024 | 5/13/2025 | 5.00 | 210 | _ | | Paving | Paving | 4/16/2025 | 5/13/2025 | 5.00 | 20.0 | _ | | Architectural Coating | Architectural Coating | 3/19/2025 | 5/13/2025 | 5.00 | 40.0 | _ | # 5.2. Off-Road Equipment ### 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |-----------------------|---------------------|-----------|----------------|----------------|---------------|------------|-------------| | Site Preparation | Rubber Tired Dozers | Diesel | Tier 4 Interim | 3.00 | 8.00 | 367 | 0.40 | | Grading | Excavators | Diesel | Tier 3 | 2.00 | 8.00 | 36.0 | 0.38 | | Grading | Graders | Diesel | Tier 4 Interim | 1.00 | 8.00 | 148 | 0.41 | | Grading | Rubber Tired Dozers | Diesel | Tier 4 Interim | 1.00 | 8.00 | 367 | 0.40 | | Grading | Scrapers | Diesel | Tier 4 Interim | 2.00 | 8.00 | 423 | 0.48 | | Building Construction | Cranes | Diesel | Tier 4 Interim | 2.00 | 8.00 | 367 | 0.29 | | Building Construction | Forklifts | Diesel | Tier 4 Interim | 4.00 | 8.00 | 82.0 | 0.20 | | Building Construction | Generator Sets | Diesel | Tier 3 | 2.00 | 8.00 | 14.0 | 0.74 | | Building Construction | Welders | Diesel | Tier 3 | 2.00 | 8.00 | 46.0 | 0.45 | | Paving | Pavers | Diesel | Tier 4 Interim | 2.00 | 8.00 | 81.0 | 0.42 | | Paving | Paving Equipment | Diesel | Tier 4 Interim | 2.00 | 8.00 | 89.0 | 0.36 | | Paving | Rollers | Diesel | Tier 3 | 2.00 | 8.00 | 36.0 | 0.38 | | Architectural Coating | Air Compressors | Diesel | Tier 3 | 1.00 | 8.00 | 37.0 | 0.48 | | Site Preparation | Crawler Tractors | Diesel | Tier 4 Interim | 4.00 | 8.00 | 87.0 | 0.43 | | Grading | Crawler Tractors | Diesel | Tier 4 Interim | 2.00 | 8.00 | 87.0 | 0.43 | | Building Construction | Crawler Tractors | Diesel | Tier 4 Interim | 4.00 | 8.00 | 87.0 | 0.43 | ### 5.3. Construction Vehicles ### 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |------------------|--------------|-----------------------|----------------|---------------| | Site Preparation | _ | _ | _ | _ | | Site Preparation | Worker | 18.0 | 18.5 | LDA,LDT1,LDT2 | | Site Preparation | Vendor | 6.00 | 10.2 | HHDT,MHDT | | Site Preparation | Hauling | 0.00 | 20.0 | HHDT | | Site Preparation | Onsite truck | 0.00 | 0.00 | HHDT | | Grading | _ | _ | _ | _ | |-----------------------|--------------|------|------|---------------| | Grading | Worker | 20.0 | 18.5 | LDA,LDT1,LDT2 | | Grading | Vendor | 6.00 | 10.2 | ннот,мнот | | Grading | Hauling | 429 | 20.0 | HHDT | | Grading | Onsite truck | 0.00 | 0.00 | HHDT | | Building Construction | _ | _ | _ | _ | | Building Construction | Worker | 136 | 18.5 | LDA,LDT1,LDT2 | | Building Construction | Vendor | 41.0 | 10.2 | ннот,мнот | | Building Construction | Hauling | 0.00 | 20.0 | HHDT | | Building Construction | Onsite truck | 0.00 | 0.00 | HHDT | | Paving | _ | _ | _ | _ | |
Paving | Worker | 15.0 | 18.5 | LDA,LDT1,LDT2 | | Paving | Vendor | 0.00 | 10.2 | ннот,мнот | | Paving | Hauling | 0.00 | 20.0 | HHDT | | Paving | Onsite truck | 0.00 | 0.00 | HHDT | | Architectural Coating | _ | _ | _ | _ | | Architectural Coating | Worker | 27.0 | 18.5 | LDA,LDT1,LDT2 | | Architectural Coating | Vendor | 0.00 | 10.2 | ннот,мнот | | Architectural Coating | Hauling | 0.00 | 20.0 | HHDT | | Architectural Coating | Onsite truck | 0.00 | 0.00 | HHDT | ### 5.4. Vehicles ### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ### 5.5. Architectural Coatings | Phase Name | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area
Coated (sq ft) | Non-Residential Exterior Area
Coated (sq ft) | Parking Area Coated (sq ft) | |-----------------------|--|--|---|---|-----------------------------| | Architectural Coating | 0.00 | 0.00 | 484,496 | 161,499 | 16,853 | ### 5.6. Dust Mitigation #### 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (sq. ft.) | Acres Paved (acres) | |------------------|---------------------------------|---------------------------------|----------------------|-------------------------------|---------------------| | Site Preparation | 0.00 | 0.00 | 105 | 0.00 | _ | | Grading | 0.00 | 102,901 | 120 | 0.00 | _ | | Paving | 0.00 | 0.00 | 0.00 | 0.00 | 6.45 | #### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | ### 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |----------------------------------|--------------------|-----------| | Unrefrigerated Warehouse-No Rail | 0.00 | 0% | | Parking Lot | 1.88 | 100% | | Other Asphalt Surfaces | 4.57 | 100% | ### 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2024 | 0.00 | 532 | 0.03 | < 0.005 | | 2025 | 0.00 | 532 | 0.03 | < 0.005 | |------|------|-----|------|---------| |------|------|-----|------|---------| ### 5.18. Vegetation 5.18.1. Land Use Change 5.18.1.1. Unmitigated | Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | |--------------------------|----------------------|----------------|-------------| | vegetation Land Ose Type | vegetation soil type | Illitial Acres | I mar Acres | #### 5.18.1. Biomass Cover Type #### 5.18.1.1. Unmitigated | Biomass Cover Type | Initial Acres | Final Acres | |---------------------|---------------|------------------| | Biomaco Covor 1) po | Title 7 to 60 | T ITIAL T TO TOO | #### 5.18.2. Sequestration #### 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|--------|------------------------------|---------------------------------| | | | | transfer de de de de la company | # 6. Climate Risk Detailed Report ### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 29.1 | annual days of extreme heat | | Extreme Precipitation | 2.10 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire 6.94 annual hectares burned | | |--------------------------------------|--| |--------------------------------------|--| Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ### 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 97.0 | | AQ-PM | 59.4 | | AQ-DPM | 37.5 | | Drinking Water | 9.23 | | Lead Risk Housing | 47.7 | | Pesticides | 62.1 | | Toxic Releases | 42.9 | | Traffic | 88.8 | | Effect Indicators | _ | |---------------------------------|------| | CleanUp Sites | 86.7 | | Groundwater | 47.4 | | Haz Waste Facilities/Generators | 10.2 | | Impaired Water Bodies | 0.00 | | Solid Waste | 52.9 | | Sensitive Population | _ | | Asthma | 60.6 | | Cardio-vascular | 85.8 | | Low Birth Weights | 31.7 | | Socioeconomic Factor Indicators | _ | | Education | 87.7 | | Housing | 81.3 | | Linguistic | 64.8 | | Poverty |
83.3 | | Unemployment | 60.6 | # 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Ine maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects high | Result for Project Census Tract | |--|---------------------------------| | Economic | | | | 6 251954229 | | Above Poverty | 6.351854228 | | Employed | 6.03105351 | | Median HI | 12.11343513 | | Education | _ | | Bachelor's or higher | 2.912870525 | | High school enrollment | 14.38470422 | | Preschool enrollment | 8.892595919 | |--|-------------| | Transportation | _ | | Auto Access | 50.17323239 | | Active commuting | 15.14179392 | | Social | _ | | 2-parent households | 34.73630181 | | Voting | 3.888104709 | | Neighborhood | _ | | Alcohol availability | 71.10227127 | | Park access | 2.194276915 | | Retail density | 13.39663801 | | Supermarket access | 2.399589375 | | Tree canopy | 1.013730271 | | Housing | _ | | Homeownership | 46.10547928 | | Housing habitability | 18.85025022 | | Low-inc homeowner severe housing cost burden | 75.25984858 | | Low-inc renter severe housing cost burden | 7.994353907 | | Uncrowded housing | 6.73681509 | | Health Outcomes | _ | | Insured adults | 2.810214295 | | Arthritis | 0.0 | | Asthma ER Admissions | 42.6 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | |---------------------------------------|------| | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.2 | | Cognitively Disabled | 44.8 | | Physically Disabled | 41.1 | | Heart Attack ER Admissions | 12.7 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 86.0 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 0.0 | | SLR Inundation Area | 0.0 | | Children | 51.6 | | Elderly | 79.3 | | English Speaking | 32.3 | | Foreign-born | 68.1 | | Outdoor Workers | 7.0 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 94.5 | | Traffic Density | 80.7 | | | | | Traffic Access | 23.0 | |------------------------|------| | Other Indices | _ | | Hardship | 97.3 | | Other Decision Support | _ | | 2016 Voting | 8.9 | ### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 79.0 | | Healthy Places Index Score for Project Location (b) | 2.00 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | Yes | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data | Screen | Justification | |-----------------------------------|---| | Land Use | Total Project area is 17.61 acres | | Construction: Construction Phases | Construction anticipated to begin May 2024 and end May 2025 | | Construction: Off-Road Equipment | Equipment based on equipment used for construction of other industrial projects in the area | |--------------------------------------|--| | Construction: Trips and VMT | Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction | | Construction: Architectural Coatings | Rule 1113 | # MFBC Building 14 (Construction) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 3. Construction Emissions Details - 3.1. Site Preparation (2024) Unmitigated - 3.3. Grading (2024) Unmitigated - 3.5. Building Construction (2024) Unmitigated - 3.7. Building Construction (2025) Unmitigated - 3.9. Paving (2025) Unmitigated - 3.11. Architectural Coating (2025) Unmitigated - 4. Operations Emissions Details - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data ## 1. Basic Project Information ## 1.1. Basic Project Information | Data Field | Value | |-----------------------------|--| | Project Name | MFBC Building 14 (Construction) | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 9.00 | | Location | 33.84962366468944, -117.25967142469695 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5479 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | ### 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|------|----------|-------------|-----------------------|---------|-----------------------------------|------------|-------------| | Unrefrigerated
Warehouse-No Rail | 355 | 1000sqft | 12.5 | 354,583 | 189,366 | 0.00 | _ | _ | | Parking Lot | 269 | Space | 1.34 | 0.00 | 0.00 | 0.00 | _ | _ | | | | | | | | | 1 | | | |-------|--------------|-----|----------|------|------|------|------|-------------|-------------| | - 101 | ther Asphalt | 224 | 1000sqft | 5.13 | 0.00 | 0.00 | 0.00 | | l <u> —</u> | | | urfaces | | ' | | | | | | | | 30 | illaces | | | | | | | | | #### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected ### 2. Emissions Summary #### 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|----------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 2.16 | 56.1 | 30.1 | 54.1 | 0.12 | 0.55 | 5.96 | 6.06 | 0.52 | 2.76 | 2.87 | _ | 15,905 | 15,905 | 0.45 | 1.50 | 20.1 | 16,382 | | Daily,
Winter
(Max) | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Unmit. | 1.67 | 54.9 | 20.3 | 39.0 | 0.06 | 0.39 | 2.72 | 3.11 | 0.37 | 0.65 | 1.02 | _ | 8,483 | 8,483 | 0.33 | 0.34 | 0.34 | 8,592 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.66 | 6.28 | 9.79 | 17.6 | 0.03 | 0.14 | 1.65 | 1.79 | 0.13 | 0.54 | 0.67 | _ | 4,319 | 4,319 | 0.15 | 0.23 | 2.46 | 4,394 | | Annual
(Max) | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | | Unmit. | 0.12 | 1.15 | 1.79 | 3.21 | 0.01 | 0.03 | 0.30 | 0.33 | 0.02 | 0.10 | 0.12 | <u> </u> | 715 | 715 | 0.03 | 0.04 | 0.41 | 728 | #### 2.2. Construction Emissions by Year, Unmitigated | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------
------|-------|------|-----|-----|---|------| Daily -
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |----------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|--------|--------|------|------|------|--------| | 2024 | 1.59 | 1.49 | 30.1 | 40.3 | 0.12 | 0.42 | 5.96 | 6.06 | 0.41 | 2.76 | 2.87 | _ | 15,905 | 15,905 | 0.45 | 1.50 | 20.1 | 16,382 | | 2025 | 2.16 | 56.1 | 27.4 | 54.1 | 0.07 | 0.55 | 2.92 | 3.47 | 0.52 | 0.70 | 1.22 | _ | 10,408 | 10,408 | 0.40 | 0.36 | 14.0 | 10,539 | | Daily -
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 1.54 | 1.45 | 18.9 | 36.7 | 0.06 | 0.30 | 2.33 | 2.63 | 0.29 | 0.56 | 0.85 | _ | 7,977 | 7,977 | 0.31 | 0.32 | 0.32 | 8,081 | | 2025 | 1.67 | 54.9 | 20.3 | 39.0 | 0.06 | 0.39 | 2.72 | 3.11 | 0.37 | 0.65 | 1.02 | _ | 8,483 | 8,483 | 0.33 | 0.34 | 0.34 | 8,592 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.66 | 0.61 | 9.79 | 17.6 | 0.03 | 0.14 | 1.65 | 1.79 | 0.13 | 0.54 | 0.67 | _ | 4,319 | 4,319 | 0.15 | 0.23 | 2.46 | 4,394 | | 2025 | 0.42 | 6.28 | 5.46 | 10.5 | 0.02 | 0.10 | 0.66 | 0.75 | 0.09 | 0.16 | 0.25 | _ | 2,223 | 2,223 | 0.09 | 0.09 | 1.40 | 2,252 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.12 | 0.11 | 1.79 | 3.21 | 0.01 | 0.03 | 0.30 | 0.33 | 0.02 | 0.10 | 0.12 | _ | 715 | 715 | 0.03 | 0.04 | 0.41 | 728 | | 2025 | 0.08 | 1.15 | 1.00 | 1.91 | < 0.005 | 0.02 | 0.12 | 0.14 | 0.02 | 0.03 | 0.05 | _ | 368 | 368 | 0.01 | 0.01 | 0.23 | 373 | ### 3. Construction Emissions Details ### 3.1. Site Preparation (2024) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.68 | 15.7 | 30.0 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,529 | 5,529 | 0.22 | 0.04 | _ | 5,548 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 5.66 | 5.66 | _ | 2.69 | 2.69 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|----------|------|------|----------|---------|---------|------|---------|---------|---------|---------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Average
Daily | | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 1.29 | 2.46 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 454 | 454 | 0.02 | < 0.005 | _ | 456 | | Dust
From
Material
Movemen | _ | _ | _ | _ | _ | _ | 0.47 | 0.47 | _ | 0.22 | 0.22 | _ | _ | - | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.24 | 0.45 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 75.2 | 75.2 | < 0.005 | < 0.005 | _ | 75.5 | | Dust
From
Material
Movemen | _ | _ | _ | _ | _ | _ | 0.08 | 0.08 | _ | 0.04 | 0.04 | _ | _ | - | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | Worker | 0.10 | 0.09 | 0.09 | 1.50 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 259 | 259 | 0.01 | 0.01 | 1.03 | 263 | | Vendor | 0.01 | 0.01 | 0.25 | 0.08 | < 0.005 | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | 0.01 | _ | 217 | 217 | < 0.005 | 0.03 | 0.61 | 228 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | | _ | | | | | 8 / 31 | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------| | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.10 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 19.8 | 19.8 | < 0.005 | < 0.005 | 0.04 | 20.1 | | Vendor | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 17.9 | 17.9 | < 0.005 | < 0.005 | 0.02 | 18.7 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 3.28 | 3.28 | < 0.005 | < 0.005 | 0.01 | 3.33 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.96 | 2.96 | < 0.005 | < 0.005 | < 0.005 | 3.10 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.3. Grading (2024) - Unmitigated | Location | | ROG | NOx | СО | | PM10E | | | PM2.5E | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|------|------|------|------|------|-------|------|------|--------|------|------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.88 | 20.0 | 36.2 | 0.06 | 0.26 | _ | 0.26 | 0.25 | _ | 0.25 | _ | 6,715 | 6,715 | 0.27 | 0.05 | _ | 6,738 | | Dust
From
Material
Movemen | _ | _ | _ | _ | _ | _ | 2.68 | 2.68 | _ | 0.98 | 0.98 | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | | | | | | | | | | | | | | | _ | | | | |--------------------------------------|----------|------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Average -
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.07 | 1.64 | 2.97 | 0.01 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 552 | 552 | 0.02 | < 0.005 | _ | 554 | | Dust
From
Material
Movemen: | | - | _ | _ | _ | _ | 0.22 | 0.22 | _ | 0.08 | 0.08 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.01 | 0.30 | 0.54 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 91.4 | 91.4 | < 0.005 | < 0.005 | _ | 91.7 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | - | _ | 0.04 | 0.04 | _ | 0.01 | 0.01 | _ | - | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.11 | 0.10 | 0.10 | 1.67 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 288 | 288 | 0.01 | 0.01 | 1.14 | 292 | | Vendor | 0.01 | 0.01 | 0.25 | 0.08 | < 0.005 | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | 0.01 | _ | 217 | 217 | < 0.005 | 0.03 | 0.61 | 228 | | Hauling | 0.36 | 0.14 | 9.81 | 2.36 | 0.06 | 0.16 | 0.60 | 0.77 | 0.16 | 0.22 | 0.38 | _ | 8,685 | 8,685 | 0.16 | 1.40 | 18.4 | 9,124 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Average -
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | Worker | 0.01 | 0.01 | 0.01 | 0.11 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 22.0 | 22.0 | < 0.005 | < 0.005 | 0.04 | 22.3 | | Hauling | 0.03 | 0.01 | 0.85 | 0.20 | < 0.005 | 0.01 | 0.05 | 0.06 | 0.01 | 0.02 | 0.03 | _ | 714 | 714 | 0.01 | 0.12 | 0.65 | 749 | |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------| | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 3.65 | 3.65 | < 0.005 | < 0.005 | 0.01 | 3.70 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.96 | 2.96 | < 0.005 | < 0.005 | < 0.005 | 3.10 | |
Hauling | 0.01 | < 0.005 | 0.15 | 0.04 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 118 | 118 | < 0.005 | 0.02 | 0.11 | 124 | ### 3.5. Building Construction (2024) - Unmitigated | | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.22 | 5.16 | 8.44 | 0.01 | 0.09 | _ | 0.09 | 0.08 | _ | 0.08 | _ | 1,452 | 1,452 | 0.06 | 0.01 | _ | 1,457 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 0.94 | 1.54 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 240 | 240 | 0.01 | < 0.005 | _ | 241 | |---------------------------|---------|---------|------|------|---------|---------|---------|------|---------|---------|---------|---|-------|-------|----------|---------|------|-------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.84 | 0.76 | 0.72 | 12.4 | 0.00 | 0.00 | 0.12 | 0.12 | 0.00 | 0.00 | 0.00 | _ | 2,145 | 2,145 | 0.09 | 0.07 | 8.51 | 2,177 | | Vendor | 0.06 | 0.04 | 1.58 | 0.49 | 0.01 | 0.02 | 0.08 | 0.10 | 0.02 | 0.03 | 0.05 | _ | 1,397 | 1,397 | 0.03 | 0.21 | 3.94 | 1,464 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.79 | 0.72 | 0.85 | 9.40 | 0.00 | 0.00 | 0.12 | 0.12 | 0.00 | 0.00 | 0.00 | _ | 1,971 | 1,971 | 0.09 | 0.07 | 0.22 | 1,996 | | Vendor | 0.06 | 0.04 | 1.66 | 0.50 | 0.01 | 0.02 | 0.08 | 0.10 | 0.02 | 0.03 | 0.05 | _ | 1,398 | 1,398 | 0.03 | 0.21 | 0.10 | 1,462 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.25 | 0.23 | 0.27 | 3.12 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.00 | 0.00 | _ | 629 | 629 | 0.03 | 0.02 | 1.16 | 638 | | Vendor | 0.02 | 0.01 | 0.52 | 0.16 | < 0.005 | 0.01 | 0.03 | 0.03 | 0.01 | 0.01 | 0.02 | _ | 440 | 440 | 0.01 | 0.07 | 0.53 | 461 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | - | _ | _ | | Worker | 0.05 | 0.04 | 0.05 | 0.57 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 104 | 104 | < 0.005 | < 0.005 | 0.19 | 106 | | Vendor | < 0.005 | < 0.005 | 0.10 | 0.03 | < 0.005 | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | _ | 72.9 | 72.9 | < 0.005 | 0.01 | 0.09 | 76.3 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.7. Building Construction (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|---------|------|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | - | 4,624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | - | | Off-Road
Equipmen | | 0.18 | 4.26 | 6.98 | 0.01 | 0.07 | _ | 0.07 | 0.07 | _ | 0.07 | _ | 1,199 | 1,199 | 0.05 | 0.01 | - | 1,203 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.03 | 0.78 | 1.27 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 199 | 199 | 0.01 | < 0.005 | _ | 199 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | - | - | _ | _ | _ | _ | - | _ | - | _ | _ | _ | | _ | _ | _ | _ | | Worker | 0.80 | 0.67 | 0.65 | 11.5 | 0.00 | 0.00 | 0.12 | 0.12 | 0.00 | 0.00 | 0.00 | _ | 2,100 | 2,100 | 0.09 | 0.07 | 7.72 | 2,132 | | Vendor | 0.06 | 0.03 | 1.51 | 0.47 | 0.01 | 0.02 | 0.08 | 0.10 | 0.02 | 0.03 | 0.05 | _ | 1,377 | 1,377 | 0.03 | 0.21 | 3.91 | 1,444 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Worker | 0.70 | 0.63 | 0.72 | 8.70 | 0.00 | 0.00 | 0.12 | 0.12 | 0.00 | 0.00 | 0.00 | _ | 1,930 | 1,930 | 0.09 | 0.07 | 0.20 | 1,955 | | Vendor | 0.06 | 0.03 | 1.58 | 0.48 | 0.01 | 0.02 | 0.08 | 0.10 | 0.02 | 0.03 | 0.05 | _ | 1,378 | 1,378 | 0.03 | 0.21 | 0.10 | 1,441 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.18 | 0.16 | 0.20 | 2.39 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | _ | 509 | 509 | 0.02 | 0.02 | 0.87 | 516 | | Vendor | 0.02 | 0.01 | 0.41 | 0.12 | < 0.005 | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | _ | 358 | 358 | 0.01 | 0.05 | 0.44 | 375 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.03 | 0.03 | 0.04 | 0.44 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 84.2 | 84.2 | < 0.005 | < 0.005 | 0.14 | 85.4 | | Vendor | < 0.005 | < 0.005 | 0.08 | 0.02 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 59.3 | 59.3 | < 0.005 | 0.01 | 0.07 | 62.1 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.9. Paving (2025) - Unmitigated | Location | TOG | ROG | NOx | СО | | PM10E | · · | PM10T | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|------|-------|------|--------|----------|------|-------|-------|----------|------|----------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.29 | 7.24 | 10.6 | 0.01 | 0.16 | _ | 0.16 | 0.15 | _ | 0.15 | _ | 1,511 | 1,511 | 0.06 | 0.01 | _ | 1,517 | | Paving | _ | 0.85 | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | <u> </u> | _ | <u> </u> | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|---------|------|---------|---------|---------|---------
---------|------|---------|---|------|------|---------|---------|------|------| | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | 0.02 | 0.40 | 0.58 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 82.8 | 82.8 | < 0.005 | < 0.005 | _ | 83.1 | | Paving | _ | 0.05 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipment | | < 0.005 | 0.07 | 0.11 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 13.7 | 13.7 | < 0.005 | < 0.005 | _ | 13.8 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | - | - | | Worker | 0.08 | 0.07 | 0.07 | 1.16 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 211 | 211 | 0.01 | 0.01 | 0.78 | 215 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 10.8 | 10.8 | < 0.005 | < 0.005 | 0.02 | 10.9 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 1.79 | 1.79 | < 0.005 | < 0.005 | < 0.005 | 1.81 | |---------|---------|---------|---------|------|------|------|---------|---------|------|------|------|---|------|------|---------|---------|---------|------| | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.11. Architectural Coating (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|------|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.45 | 1.28 | < 0.005 | 0.09 | _ | 0.09 | 0.08 | _ | 0.08 | _ | 178 | 178 | 0.01 | < 0.005 | _ | 179 | | Architect
ural
Coatings | _ | 53.3 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.45 | 1.28 | < 0.005 | 0.09 | _ | 0.09 | 0.08 | _ | 0.08 | _ | 178 | 178 | 0.01 | < 0.005 | _ | 179 | | Architect
ural
Coatings | _ | 53.3 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.16 | 0.14 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 19.5 | 19.5 | < 0.005 | < 0.005 | _ | 19.6 | | Architect
Coatings | _ | 5.84 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------------------------|---------|---------|---------|------|---------|---------|---------|---------|---------|------|---------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | - | 3.23 | 3.23 | < 0.005 | < 0.005 | _ | 3.24 | | Architect
ural
Coatings | _ | 1.07 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.16 | 0.13 | 0.13 | 2.32 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 423 | 423 | 0.02 | 0.01 | 1.55 | 429 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.14 | 0.13 | 0.14 | 1.75 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 389 | 389 | 0.02 | 0.01 | 0.04 | 394 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.02 | 0.01 | 0.02 | 0.20 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 43.1 | 43.1 | < 0.005 | < 0.005 | 0.07 | 43.7 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.04 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 7.14 | 7.14 | < 0.005 | < 0.005 | 0.01 | 7.24 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 4. Operations Emissions Details 4.10. Soil Carbon Accumulation By Vegetation Type 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | TOG | ROG | | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|----------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | | TOG | ROG | NOx | со | SO2 | | | | PM2.5E | | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R |
CO2e | |---------------------------|-----|-----|-----|----|-----|---|---|---|--------|---|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 5. Activity Data ### 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |------------------------------|------------------------------|------------|-----------|---------------|---------------------|-------------------| | Site Preparation | Site Preparation | 5/1/2024 | 6/11/2024 | 5.00 | 30.0 | _ | | Grading | Grading | 6/12/2024 | 7/23/2024 | 5.00 | 30.0 | _ | | Building Construction | Building Construction | 7/24/2024 | 5/13/2025 | 5.00 | 210 | _ | | Paving | Paving | 4/16/2025 | 5/13/2025 | 5.00 | 20.0 | _ | | Architectural Coating | Architectural Coating | 3/19/2025 | 5/13/2025 | 5.00 | 40.0 | _ | ### 5.2. Off-Road Equipment ### 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |-----------------------|---------------------|-----------|----------------|----------------|---------------|------------|-------------| | Site Preparation | Rubber Tired Dozers | Diesel | Tier 4 Interim | 3.00 | 8.00 | 367 | 0.40 | | Grading | Excavators | Diesel | Tier 3 | 2.00 | 8.00 | 36.0 | 0.38 | | Grading | Graders | Diesel | Tier 4 Interim | 1.00 | 8.00 | 148 | 0.41 | | Grading | Rubber Tired Dozers | Diesel | Tier 4 Interim | 1.00 | 8.00 | 367 | 0.40 | | Grading | Scrapers | Diesel | Tier 4 Interim | 2.00 | 8.00 | 423 | 0.48 | | Building Construction | Cranes | Diesel | Tier 4 Interim | 2.00 | 8.00 | 367 | 0.29 | | Building Construction | Forklifts | Diesel | Tier 4 Interim | 4.00 | 8.00 | 82.0 | 0.20 | | Building Construction | Generator Sets | Diesel | Tier 3 | 2.00 | 8.00 | 14.0 | 0.74 | | Building Construction | Welders | Diesel | Tier 3 | 2.00 | 8.00 | 46.0 | 0.45 | | Paving | Pavers | Diesel | Tier 4 Interim | 2.00 | 8.00 | 81.0 | 0.42 | | Paving | Paving Equipment | Diesel | Tier 4 Interim | 2.00 | 8.00 | 89.0 | 0.36 | | Paving | Rollers | Diesel | Tier 3 | 2.00 | 8.00 | 36.0 | 0.38 | | Architectural Coating | Air Compressors | Diesel | Tier 3 | 1.00 | 8.00 | 37.0 | 0.48 | | Site Preparation | Crawler Tractors | Diesel | Tier 4 Interim | 4.00 | 8.00 | 87.0 | 0.43 | | Grading | Crawler Tractors | Diesel | Tier 4 Interim | 2.00 | 8.00 | 87.0 | 0.43 | | Building Construction | Crawler Tractors | Diesel | Tier 4 Interim | 4.00 | 8.00 | 87.0 | 0.43 | ### 5.3. Construction Vehicles ### 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |------------------|--------------|-----------------------|----------------|---------------| | Site Preparation | _ | _ | _ | _ | | Site Preparation | Worker | 18.0 | 18.5 | LDA,LDT1,LDT2 | | Site Preparation | Vendor | 7.00 | 10.2 | HHDT,MHDT | | Site Preparation | Hauling | 0.00 | 20.0 | HHDT | | Site Preparation | Onsite truck | 0.00 | 0.00 | HHDT | | Grading | _ | _ | _ | _ | |-----------------------|--------------|------|------|---------------| | Grading | Worker | 20.0 | 18.5 | LDA,LDT1,LDT2 | | Grading | Vendor | 7.00 | 10.2 | HHDT,MHDT | | Grading | Hauling | 124 | 20.0 | HHDT | | Grading | Onsite truck | 0.00 | 0.00 | HHDT | | Building Construction | _ | _ | _ | _ | | Building Construction | Worker | 149 | 18.5 | LDA,LDT1,LDT2 | | Building Construction | Vendor | 45.0 | 10.2 | HHDT,MHDT | | Building Construction | Hauling | 0.00 | 20.0 | HHDT | | Building Construction | Onsite truck | 0.00 | 0.00 | HHDT | | Paving | _ | _ | _ | _ | | Paving | Worker | 15.0 | 18.5 | LDA,LDT1,LDT2 | | Paving | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Paving | Hauling | 0.00 | 20.0 | HHDT | | Paving | Onsite truck | 0.00 | 0.00 | HHDT | | Architectural Coating | _ | _ | _ | _ | | Architectural Coating | Worker | 30.0 | 18.5 | LDA,LDT1,LDT2 | | Architectural Coating | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Architectural Coating | Hauling | 0.00 | 20.0 | HHDT | | Architectural Coating | Onsite truck | 0.00 | 0.00 | HHDT | #### 5.4. Vehicles ### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ### 5.5. Architectural Coatings | Phase Name | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area
Coated (sq ft) | Non-Residential Exterior Area
Coated (sq ft) | Parking Area Coated (sq ft) | |-----------------------|--|--|---|---|-----------------------------| | Architectural Coating | 0.00 | 0.00 | 531,875 | 177,292 | 16,920 | ### 5.6. Dust Mitigation #### 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (sq. ft.) | Acres Paved (acres) | |------------------|---------------------------------|---------------------------------|----------------------|-------------------------------|---------------------| | Site Preparation | 0.00 | 0.00 | 105 | 0.00 | _ | | Grading | 0.00 | 29,742 | 120 | 0.00 | _ | | Paving | 0.00 | 0.00 | 0.00 | 0.00 | 6.47 | #### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | ### 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |----------------------------------|--------------------|-----------| | Unrefrigerated Warehouse-No Rail | 0.00 | 0% | | Parking Lot | 1.34 | 100% | | Other Asphalt Surfaces | 5.13 | 100% | ### 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2024 | 0.00 | 532 | 0.03 | < 0.005 | | 2025 0.00 532 0.03 < 0.005 | 0.00 532 0.03 < 0.005 | 532 0.03 < 0.005 | |----------------------------|-----------------------|------------------| |----------------------------|-----------------------|------------------| #### 5.18. Vegetation 5.18.1. Land Use Change 5.18.1.1. Unmitigated | Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | |------------------------------|----------------------|----------------|--------------| |
vegetation Land Ose Type | vegetation soil type | Illitial Acres | Filial Acres | #### 5.18.1. Biomass Cover Type #### 5.18.1.1. Unmitigated | Biomass Cover Type | Initial Acres | Final Acres | |--------------------|----------------|----------------| | Biomaco Covor Typo | Titlat / toroo | i iliai rioloo | #### 5.18.2. Sequestration #### 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|--------|------------------------------|---------------------------------| | | | | transfer de de de de la company | ## 6. Climate Risk Detailed Report #### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 29.1 | annual days of extreme heat | | Extreme Precipitation | 2.10 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth |
 Wildfire 6.94 annual hectares burned | | |--------------------------------------|--| |--------------------------------------|--| Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ### 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 97.0 | | AQ-PM | 59.4 | | AQ-DPM | 37.5 | | Drinking Water | 9.23 | | Lead Risk Housing | 47.7 | | Pesticides | 62.1 | | Toxic Releases | 42.9 | | Traffic | 88.8 | | Effect Indicators | _ | |---------------------------------|------| | CleanUp Sites | 86.7 | | Groundwater | 47.4 | | Haz Waste Facilities/Generators | 10.2 | | Impaired Water Bodies | 0.00 | | Solid Waste | 52.9 | | Sensitive Population | _ | | Asthma | 60.6 | | Cardio-vascular | 85.8 | | Low Birth Weights | 31.7 | | Socioeconomic Factor Indicators | _ | | Education | 87.7 | | Housing | 81.3 | | Linguistic | 64.8 | | Poverty | 83.3 | | Unemployment | 60.6 | ### 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 6.351854228 | | Employed | 6.03105351 | | Median HI | 12.11343513 | | Education | _ | | Bachelor's or higher | 2.912870525 | | High school enrollment | 14.38470422 | | Preschool enrollment | 8.892595919 | |--|-------------| | Transportation | _ | | Auto Access | 50.17323239 | | Active commuting | 15.14179392 | | Social | _ | | 2-parent households | 34.73630181 | | Voting | 3.888104709 | | Neighborhood | _ | | Alcohol availability | 71.10227127 | | Park access | 2.194276915 | | Retail density | 13.39663801 | | Supermarket access | 2.399589375 | | Tree canopy | 1.013730271 | | Housing | _ | | Homeownership | 46.10547928 | | Housing habitability | 18.85025022 | | Low-inc homeowner severe housing cost burden | 75.25984858 | | Low-inc renter severe housing cost burden | 7.994353907 | | Uncrowded housing | 6.73681509 | | Health Outcomes | _ | | Insured adults | 2.810214295 | | Arthritis | 0.0 | | Asthma ER Admissions | 42.6 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Diagnosed Diabetes 0.0 Lile Expostency at Birth 16.2 Cognitively Disabled 44.8 Heart Attack ER Admissions 1.7 Mental Health Not Good 0.0 Chronic Kidney Disabled 0.0 Pledestrian Injuries 80.0 Pedestrian Injuries 80.0 Plysical Health Not Good 0.0 Stroke 0.0 Hoalth Risk Behaviors 0.0 Binge Drinking 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Exposures Wildfire Risk 0.0 Stell Rundation Area 0.0 Children 51.6 Eldorly 9.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Wirders 68.1 Condoor Wirders 7.0 Climate Change Adaptive Capacity 69.1 Impervious Surface Cover 94.5 | Chronic Obstructive Pulmonary Disease | 0.0 | |--|---------------------------------------|------| | Life Expectancy at Birth 16.2 Cognitively Disabled 44.8 Physically Obstbled 41.1 Heart Attack ER Admissions 2.7 Mortal Health Not Good 0.0 Chronic Kidney Disease 0.0 Obesity 0.0 Pedestrian Injuries 86.0 Physical Health Not Good 0.0 Stroke 0.0 Hoalth Risk Behaviors - Binge Drinking 0.0 Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Expoures 0.0 Skill Rundation Area 0.0 Children 5.6 Ellerly 7.3 English Speaking 3.2 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity 7.0 Intelled Change Adaptive Capacity 9.45 | | | | Cognitively Disabled 44.8 Physically Disabled 41.1 Heart Attack ER Admissions 12.7 Mental Health Not Good 0 Chronic Kidney Disease 0 Obesity 6.0 Pedestrian Injuries 8.0 Physical Health Not Good 0.0 Stroke 0.0 Health Risk Behaviors - Binge Drinking 0.0 Current Smoker 0.0 No Leisur Time for Physical Activity 0.0 Vildiffer Risk 0.0 Sk I Inundation Area 0.0 Children 1.6 Elderly 79.3 English Speaking
32.3 Foreign-born 70.0 Culdoor Workers 7.0 Climate Change Adaptive Capacity 7.0 Impervious Surface Cover 94.5 | | 16.2 | | Heart Attack ER Admissions 1.27 Mental Health Not Good 0.0 Chronic Kidney Disease 0.0 Obesity 6.0 Pedestrian Injuries 6.0 Physical Health Not Good 0.0 Stroke 0.0 Health Risk Behaviors - Binge Drinking 0.0 Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Exposures - Wildfre Risk 0.0 SLR Inundation Area 0.0 Children 5.6 Eleidry 7.3 English Speaking 2.3 Foreign-born 6.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity - Impervious Surface Cover 9.5 | Cognitively Disabled | 44.8 | | Mental Health Not Good 0.0 Chronic Kidney Disease 0.0 Obesity 0.0 Pedestrian Injuries 86.0 Physical Health Not Good 0.0 Stroke 0.0 Health Risk Behaviors Binge Drinking 0.0 Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Cilmate Change Exposures Wildfire Risk 0.0 SLR Inudation Area 0.0 Children 51.6 Elderly 79.3 Eiglish Speaking 32.3 Foreign-born 68.1 Ouddor Workers 7.0 Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | Physically Disabled | 41.1 | | Chronic Kidney Disease 0.0 Obesity 0.0 Pedestrian Injuries 86.0 Physical Health Not Good 0.0 Stroke 0.0 Heath Risk Behaviors Binge Driking 0.0 Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Exposures Wildlifer Risk 0.0 Stz In Innation Area 0.0 Children 51.6 Elderly 9.3 English Speaking 3.3 Foreign-born 66.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | Heart Attack ER Admissions | 12.7 | | Obesity 0.0 Pedestrian Injuries 86.0 Physical Health Not Good 0.0 Stroke 0.0 Health Risk Behaviors Binge Drinking 0.0 Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Exposures Wildfüre Risk 0.0 Stel Inundation Area 0.0 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 66.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | Mental Health Not Good | 0.0 | | Pedestrian Injuries 86.0 Physical Health Not Good .0 Stroke .0 Health Risk Behaviors Binge Drinking .0 Current Smoker .0 No Leisure Time for Physical Activity .0 Climate Change Exposures Wildfire Risk .0 SLR Inundation Area .0 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | Chronic Kidney Disease | 0.0 | | Physical Health Not Good 0.0 Stroke 0.0 Health Risk Behaviors — Binge Drinking 0.0 Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Exposures — Wildfire Risk 0.0 SLR Inundation Area 0.0 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity — Impervious Surface Cover 94.5 | Obesity | 0.0 | | Stroke 0.0 Health Risk Behaviors Binge Drinking 0.0 Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Exposures Wildfire Risk 0.0 SLR Inundation Area 0.0 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | Pedestrian Injuries | 86.0 | | Health Risk Behaviors – Binge Drinking .00 Current Smoker .00 No Leisure Time for Physical Activity .00 Climate Change Exposures – Wildfire Risk .00 SLR Inundation Area .00 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity – Impervious Surface Cover 94.5 | Physical Health Not Good | 0.0 | | Binge Drinking 0.0 Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Exposures — Wildfire Risk 0.0 SLR Inundation Area 0.0 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity — Inpervious Surface Cover 94.5 | Stroke | 0.0 | | Current Smoker 0.0 No Leisure Time for Physical Activity 0.0 Climate Change Exposures — Wildfire Risk 0.0 SLR Inundation Area 0.0 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity — Inspervious Surface Cover 94.5 | Health Risk Behaviors | _ | | No Leisure Time for Physical Activity Climate Change Exposures Wildfire Risk 0.0 SLR Inundation Area 0.0 Children Elderly English Speaking Foreign-born Outdoor Workers Climate Change Adaptive Capacity Innervious Surface Cover | Binge Drinking | 0.0 | | Climate Change Exposures Wildfire Risk 0.0 SLR Inundation Area 0.0 Children Elderly English Speaking Foreign-born Outdoor Workers Outdoor Workers Climate Change Adaptive Capacity Innervious Surface Cover | Current Smoker | 0.0 | | Wildfire Risk 0.0 SLR Inundation Area 0.0 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity Inpervious Surface Cover 94.5 | No Leisure Time for Physical Activity | 0.0 | | SLR Inundation Area 0.0 Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | Climate Change Exposures | _ | | Children 51.6 Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity 7.0 Impervious Surface Cover 94.5 | Wildfire Risk | 0.0 | | Elderly 79.3 English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | SLR Inundation Area | 0.0 | | English Speaking 32.3 Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | Children | 51.6 | | Foreign-born 68.1 Outdoor Workers 7.0 Climate Change Adaptive Capacity — Impervious Surface Cover 94.5 | Elderly | 79.3 | | Outdoor Workers 7.0 Climate Change Adaptive Capacity — Impervious Surface Cover 94.5 | English Speaking | 32.3 | | Climate Change Adaptive Capacity Impervious Surface Cover 94.5 | Foreign-born | 68.1 | | Impervious Surface Cover 94.5 | Outdoor Workers | 7.0 | | | Climate Change Adaptive Capacity | _ | | Traffic Density 80.7 | Impervious Surface Cover | 94.5 | | | Traffic Density | 80.7 | | Traffic Access | 23.0 | |------------------------|------| | Other Indices | _ | | Hardship | 97.3 | | Other Decision Support | _ | | 2016 Voting | 8.9 | #### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 79.0 | | Healthy Places Index Score for Project Location (b) | 2.00 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | Yes | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. ### 8. User Changes to Default Data | Screen | Justification | |-----------------------------------|---| | Land Use | Total Project area is 18.96 acres | | Construction: Construction Phases | Construction anticipated to begin May 2024 and end May 2025 | | Construction: Off-Road Equipment | Equipment based on equipment used for construction of other industrial projects in the area | |--------------------------------------|--| | Construction: Trips and VMT | Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction | | Construction: Architectural Coatings | Rule 1113 | # MFBC Building 17 (Construction) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 3. Construction Emissions Details - 3.1. Site Preparation (2024) Unmitigated - 3.3. Site Preparation (2025) Unmitigated - 3.5. Grading (2025) Unmitigated - 3.7. Building Construction (2025) Unmitigated - 3.9. Paving (2025) Unmitigated - 3.11. Architectural Coating (2025) Unmitigated - 4. Operations Emissions Details - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk
Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information ## 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---| | Project Name | MFBC Building 17 (Construction) | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 9.00 | | Location | 33.856453754053824, -117.25956342190489 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5479 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | ## 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|------|----------|-------------|-----------------------|---------|-----------------------------------|------------|-------------| | Unrefrigerated
Warehouse-No Rail | 269 | 1000sqft | 10.0 | 268,955 | 166,691 | 0.00 | _ | _ | | Parking Lot | 261 | Space | 1.44 | 0.00 | 0.00 | 0.00 | _ | _ | | Other Asphalt | 183 | 1000saft | 4 19 | 0.00 | 0.00 | 0.00 | <u></u> | <u></u> | | |---------------|-----|----------|-------------|------|------|------|---------|---------|--| | Other Asphalt | 100 | 10003411 | 7.13 | 0.00 | 0.00 | 0.00 | | | | | Surfaces | | | | | | | | | | | Cariacoc | | | | | | | | | | #### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected ## 2. Emissions Summary ### 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | | | <i>J</i> , | | | | | J. | | | _ | _ | | _ | _ | _ | _ | |---------------------------|------|------|------|------------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 1.34 | 1.22 | 18.0 | 35.9 | 0.05 | 0.30 | 1.77 | 2.06 | 0.28 | 0.43 | 0.71 | _ | 7,241 | 7,241 | 0.28 | 0.25 | 8.80 | 7,331 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 2.79 | 43.1 | 71.8 | 49.7 | 0.36 | 1.11 | 14.7 | 15.8 | 1.10 | 4.34 | 5.45 | _ | 51,669 | 51,669 | 1.11 | 7.09 | 2.50 | 53,814 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 1.02 | 5.37 | 17.4 | 25.4 | 0.06 | 0.28 | 2.41 | 2.69 | 0.27 | 0.68 | 0.95 | _ | 8,645 | 8,645 | 0.26 | 0.73 | 5.68 | 8,876 | | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.19 | 0.98 | 3.17 | 4.64 | 0.01 | 0.05 | 0.44 | 0.49 | 0.05 | 0.12 | 0.17 | _ | 1,431 | 1,431 | 0.04 | 0.12 | 0.94 | 1,470 | ### 2.2. Construction Emissions by Year, Unmitigated | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| Daily -
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |----------------------------|------|------|------|------|---------|---------|------|------|---------|------|------|---|--------|--------|---------|---------|------|--------| | 2025 | 1.34 | 1.22 | 18.0 | 35.9 | 0.05 | 0.30 | 1.77 | 2.06 | 0.28 | 0.43 | 0.71 | _ | 7,241 | 7,241 | 0.28 | 0.25 | 8.80 | 7,331 | | Daily -
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.78 | 0.77 | 16.0 | 31.2 | 0.05 | 0.11 | 5.94 | 6.05 | 0.11 | 2.75 | 2.86 | _ | 5,923 | 5,923 | 0.24 | 0.08 | 0.04 | 5,952 | | 2025 | 2.79 | 43.1 | 71.8 | 49.7 | 0.36 | 1.11 | 14.7 | 15.8 | 1.10 | 4.34 | 5.45 | _ | 51,669 | 51,669 | 1.11 | 7.09 | 2.50 | 53,814 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.04 | 0.04 | 0.91 | 1.77 | < 0.005 | 0.01 | 0.34 | 0.34 | 0.01 | 0.16 | 0.16 | _ | 336 | 336 | 0.01 | < 0.005 | 0.04 | 338 | | 2025 | 1.02 | 5.37 | 17.4 | 25.4 | 0.06 | 0.28 | 2.41 | 2.69 | 0.27 | 0.68 | 0.95 | _ | 8,645 | 8,645 | 0.26 | 0.73 | 5.68 | 8,876 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.01 | 0.01 | 0.17 | 0.32 | < 0.005 | < 0.005 | 0.06 | 0.06 | < 0.005 | 0.03 | 0.03 | _ | 55.7 | 55.7 | < 0.005 | < 0.005 | 0.01 | 56.0 | | 2025 | 0.19 | 0.98 | 3.17 | 4.64 | 0.01 | 0.05 | 0.44 | 0.49 | 0.05 | 0.12 | 0.17 | _ | 1,431 | 1,431 | 0.04 | 0.12 | 0.94 | 1,470 | ## 3. Construction Emissions Details ## 3.1. Site Preparation (2024) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.68 | 15.7 | 30.0 | 0.05 | 0.10 | | 0.10 | 0.10 | _ | 0.10 | _ | 5,529 | 5,529 | 0.22 | 0.04 | _ | 5,548 | | Dust
From
Material
Movemen |
: | _ | _ | _ | | | 5.66 | 5.66 | | 2.69 | 2.69 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|----------|---------|------|------|---------|---------|------|---------|---------|---------|---------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 0.89 | 1.70 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 314 | 314 | 0.01 | < 0.005 | _ | 315 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 0.32 | 0.32 | _ | 0.15 | 0.15 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.16 | 0.31 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 52.0 | 52.0 | < 0.005 | < 0.005 | _ | 52.1 | | Dust
From
Material
Movemen | _ | _ | _ | _ | _ | _ | 0.06 | 0.06 | _ | 0.03 | 0.03 | _ | - | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.10 | 0.09 | 0.10 | 1.14 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 238 | 238 | 0.01 | 0.01 | 0.03 | 241 | | Vendor | 0.01 | < 0.005 | 0.18 | 0.06 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 155 | 155 | < 0.005 | 0.02 | 0.01 | 162 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 / 30 | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------| | Worker | 0.01 | < 0.005 | 0.01 | 0.07 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 13.7 | 13.7 | < 0.005 | < 0.005 | 0.03 | 13.9 | | Vendor | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 8.81 | 8.81 | < 0.005 | < 0.005 | 0.01 | 9.22 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 2.27 | 2.27 | < 0.005 | < 0.005 | < 0.005 | 2.30 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 1.46 | 1.46 | < 0.005 | < 0.005 | < 0.005 | 1.53 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.3. Site Preparation (2025) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|----------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|------|---------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
_ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.68 | 15.7 | 30.0 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,528 | 5,528 | 0.22 | 0.04 | _ | 5,547 | | Dust
From
Material
Movemen [:] | <u> </u> | _ | _ | _ | _ | _ | 5.66 | 5.66 | _ | 2.69 | 2.69 | _ | _ | _ | _ | - | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.02 | 0.40 | 0.76 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 141 | 141 | 0.01 | < 0.005 | _ | 141 | | Dust
From | _ | _ | _ | _ | _ | _ | 0.14 | 0.14 | _ | 0.07 | 0.07 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------| | Material
Movemen | ï | | | | | | | | | | | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | < 0.005 | 0.07 | 0.14 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 23.3 | 23.3 | < 0.005 | < 0.005 | _ | 23.4 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 0.03 | 0.03 | _ | 0.01 | 0.01 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.09 | 0.08 | 0.09 | 1.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 233 | 233 | 0.01 | 0.01 | 0.02 | 236 | | Vendor | 0.01 | < 0.005 | 0.18 | 0.05 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 153 | 153 | < 0.005 | 0.02 | 0.01 | 160 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 6.01 | 6.01 | < 0.005 | < 0.005 | 0.01 | 6.09 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.89 | 3.89 | < 0.005 | < 0.005 | < 0.005 | 4.08 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 0.99 | 0.99 | < 0.005 | < 0.005 | < 0.005 | 1.01 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.64 | 0.64 | < 0.005 | < 0.005 | < 0.005 | 0.67 | | Haulir | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |----------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | i iauiii | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.5. Grading (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|----------|----------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|---------|---------|------|-------| | Onsite | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.88 | 20.0 | 36.2 | 0.06 | 0.26 | _ | 0.26 | 0.25 | _ | 0.25 | _ | 6,715 | 6,715 | 0.27 | 0.05 | _ | 6,738 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 2.74 | 2.74 | _ | 0.99 | 0.99 | _ | _ | _ | _ | _ | _ | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | | _ | | Off-Road
Equipmen | | 0.07 | 1.64 | 2.97 | 0.01 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 552 | 552 | 0.02 | < 0.005 | _ | 554 | | Dust
From
Material
Movemen | _ | _ | _ | _ | _ | _ | 0.23 | 0.23 | _ | 0.08 | 0.08 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.30 | 0.54 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 91.4 | 91.4 | < 0.005 | < 0.005 | _ | 91.7 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 0.04 | 0.04 | _ | 0.01 | 0.01 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|--------|--------|---------|---------|---------|--------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.09 | 0.08 | 0.10 | 1.17 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 259 | 259 | 0.01 | 0.01 | 0.03 | 262 | | Vendor | 0.01 | < 0.005 | 0.18 | 0.05 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 153 | 153 | < 0.005 | 0.02 | 0.01 | 160 | | Hauling | 1.81 | 0.67 | 51.6 | 12.3 | 0.30 | 0.85 | 3.13 | 3.99 | 0.85 | 1.14 | 1.99 | _ | 44,542 | 44,542 | 0.83 | 7.01 | 2.46 | 46,653 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.10 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 21.6 | 21.6 | < 0.005 | < 0.005 | 0.04 | 21.9 | | Vendor | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 12.6 | 12.6 | < 0.005 | < 0.005 | 0.02 | 13.2 | | Hauling | 0.15 | 0.06 | 4.29 | 1.00 | 0.02 | 0.07 | 0.26 | 0.33 | 0.07 | 0.09 | 0.16 | _ | 3,660 | 3,660 | 0.07 | 0.58 | 3.35 | 3,836 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 3.57 | 3.57 | < 0.005 | < 0.005 | 0.01 | 3.62 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.08 | 2.08 | < 0.005 | < 0.005 | < 0.005 | 2.18 | | Hauling | 0.03 | 0.01 | 0.78 | 0.18 | < 0.005 | 0.01 | 0.05 | 0.06 | 0.01 | 0.02 | 0.03 | _ | 606 | 606 | 0.01 | 0.10 | 0.55 | 635 | ## 3.7. Building Construction (2025) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | |---------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|---------|------|-------| | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | - | 4,608 | 4,608 | 0.19 | 0.04 | - | 4,624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | - | _ | _ | _ | _ | _ | - | - | _ | - | - | _ | - | _ | _ | - | - | | Off-Road
Equipmen | | 0.40 | 9.43 | 15.4 | 0.03 | 0.16 | _ | 0.16 | 0.15 | _ | 0.15 | - | 2,651 | 2,651 | 0.11 | 0.02 | - | 2,660 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.72 | 2.81 | < 0.005 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | - | 439 | 439 | 0.02 |
< 0.005 | - | 440 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | - | - | _ | _ | _ | - | - | _ | - | - | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.61 | 0.51 | 0.49 | 8.73 | 0.00 | 0.00 | 0.09 | 0.09 | 0.00 | 0.00 | 0.00 | _ | 1,593 | 1,593 | 0.07 | 0.06 | 5.85 | 1,617 | | Vendor | 0.05 | 0.02 | 1.14 | 0.35 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 | 0.02 | 0.04 | _ | 1,040 | 1,040 | 0.02 | 0.16 | 2.95 | 1,091 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|------|------|---------|---------|------|------|---------|---------|---------|---|-------|-------|---------|------|------|-------| | Worker | 0.53 | 0.48 | 0.55 | 6.59 | 0.00 | 0.00 | 0.09 | 0.09 | 0.00 | 0.00 | 0.00 | _ | 1,464 | 1,464 | 0.07 | 0.06 | 0.15 | 1,483 | | Vendor | 0.05 | 0.02 | 1.20 | 0.36 | 0.01 | 0.02 | 0.06 | 0.08 | 0.02 | 0.02 | 0.04 | _ | 1,041 | 1,041 | 0.02 | 0.16 | 0.08 | 1,089 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.30 | 0.27 | 0.34 | 4.01 | 0.00 | 0.00 | 0.05 | 0.05 | 0.00 | 0.00 | 0.00 | _ | 853 | 853 | 0.04 | 0.03 | 1.45 | 865 | | Vendor | 0.03 | 0.01 | 0.69 | 0.21 | < 0.005 | 0.01 | 0.04 | 0.04 | 0.01 | 0.01 | 0.02 | _ | 599 | 599 | 0.01 | 0.09 | 0.74 | 627 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.06 | 0.05 | 0.06 | 0.73 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 141 | 141 | 0.01 | 0.01 | 0.24 | 143 | | Vendor | < 0.005 | < 0.005 | 0.13 | 0.04 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | _ | 99.1 | 99.1 | < 0.005 | 0.02 | 0.12 | 104 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.9. Paving (2025) - Unmitigated | Location | TOG | ROG | NOx | co | | | | | PM2.5E | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|------|------|---|------|--------|---|------|------|-------|-------|------|------|---|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.29 | 7.24 | 10.6 | 0.01 | 0.16 | _ | 0.16 | 0.15 | _ | 0.15 | _ | 1,511 | 1,511 | 0.06 | 0.01 | _ | 1,517 | | Paving | _ | 0.74 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|---------|---------|---------|------|---------|---------|---------|---------|---------|------|---------|---|------|------|---------|---------|---------|------| | Average
Daily | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.02 | 0.40 | 0.58 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 82.8 | 82.8 | < 0.005 | < 0.005 | - | 83.1 | | Paving | _ | 0.04 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | < 0.005 | 0.07 | 0.11 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 13.7 | 13.7 | < 0.005 | < 0.005 | - | 13.8 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | - | _ | _ | _ | _ | - | _ | - | _ | _ | _ | _ | _ | - | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | _ | _ | - | - | _ | _ | _ | | Worker | 0.07 | 0.06 | 0.07 | 0.88 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 194 | 194 | 0.01 | 0.01 | 0.02 | 197 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | - | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 10.8 | 10.8 | < 0.005 | < 0.005 | 0.02 | 10.9 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 1.79 | 1.79 | < 0.005 | < 0.005 | < 0.005 | 1.81 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.11. Architectural Coating (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|----------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------| | Onsite | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.45 | 1.28 | < 0.005 | 0.09 | _ | 0.09 | 0.08 | _ | 0.08 | _ | 178 | 178 | 0.01 | < 0.005 | _ | 179 | | Architect
ural
Coatings | _ | 40.7 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.16 | 0.14 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 19.5 | 19.5 | < 0.005 | < 0.005 | _ | 19.6 | | Architect
ural
Coatings | _ | 4.46 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 3.23 | 3.23 | < 0.005 | < 0.005 | _ | 3.24 | | Architect
Coatings | _ | 0.81 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|---------|------|------|------|---------|---------|------|------|------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.11 | 0.10 | 0.11 | 1.34 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 298 | 298 | 0.01 | 0.01 | 0.03 | 302 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.16 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 33.1 | 33.1 | < 0.005 | < 0.005 | 0.06 | 33.5 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 5.48 | 5.48 | < 0.005 | < 0.005 | 0.01 |
5.55 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 4. Operations Emissions Details 4.10. Soil Carbon Accumulation By Vegetation Type 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | | | | | | | | | | | | | | | | | 1 | | | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ### 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |-----------------------|-----------------------|------------|------------|---------------|---------------------|-------------------| | Site Preparation | Site Preparation | 12/3/2024 | 1/13/2025 | 5.00 | 30.0 | _ | | Grading | Grading | 1/14/2025 | 2/24/2025 | 5.00 | 30.0 | _ | | Building Construction | Building Construction | 2/25/2025 | 12/15/2025 | 5.00 | 210 | _ | | Paving | Paving | 11/18/2025 | 12/15/2025 | 5.00 | 20.0 | _ | | Architectural Coating | Architectural Coating | 10/21/2025 | 12/15/2025 | 5.00 | 40.0 | _ | ## 5.2. Off-Road Equipment ### 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |-----------------------|---------------------|-----------|----------------|----------------|---------------|------------|-------------| | Site Preparation | Rubber Tired Dozers | Diesel | Tier 4 Interim | 3.00 | 8.00 | 367 | 0.40 | | Grading | Excavators | Diesel | Tier 3 | 2.00 | 8.00 | 36.0 | 0.38 | | Grading | Graders | Diesel | Tier 4 Interim | 1.00 | 8.00 | 148 | 0.41 | | Grading | Rubber Tired Dozers | Diesel | Tier 4 Interim | 1.00 | 8.00 | 367 | 0.40 | | Grading | Scrapers | Diesel | Tier 4 Interim | 2.00 | 8.00 | 423 | 0.48 | | Building Construction | Cranes | Diesel | Tier 4 Interim | 2.00 | 8.00 | 367 | 0.29 | | Building Construction | Forklifts | Diesel | Tier 4 Interim | 4.00 | 8.00 | 82.0 | 0.20 | | Building Construction | Generator Sets | Diesel | Tier 3 | 2.00 | 8.00 | 14.0 | 0.74 | | Building Construction | Welders | Diesel | Tier 3 | 2.00 | 8.00 | 46.0 | 0.45 | |-----------------------|------------------|--------|----------------|------|------|------|------| | Paving | Pavers | Diesel | Tier 4 Interim | 2.00 | 8.00 | 81.0 | 0.42 | | Paving | Paving Equipment | Diesel | Tier 4 Interim | 2.00 | 8.00 | 89.0 | 0.36 | | Paving | Rollers | Diesel | Tier 3 | 2.00 | 8.00 | 36.0 | 0.38 | | Architectural Coating | Air Compressors | Diesel | Tier 3 | 1.00 | 8.00 | 37.0 | 0.48 | | Site Preparation | Crawler Tractors | Diesel | Tier 4 Interim | 4.00 | 8.00 | 87.0 | 0.43 | | Grading | Crawler Tractors | Diesel | Tier 4 Interim | 2.00 | 8.00 | 87.0 | 0.43 | | Building Construction | Crawler Tractors | Diesel | Tier 4 Interim | 4.00 | 8.00 | 87.0 | 0.43 | ### 5.3. Construction Vehicles ### 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |-----------------------|--------------|-----------------------|----------------|---------------| | Site Preparation | _ | _ | _ | _ | | Site Preparation | Worker | 18.0 | 18.5 | LDA,LDT1,LDT2 | | Site Preparation | Vendor | 5.00 | 10.2 | HHDT,MHDT | | Site Preparation | Hauling | 0.00 | 20.0 | HHDT | | Site Preparation | Onsite truck | 0.00 | 0.00 | HHDT | | Grading | _ | _ | _ | _ | | Grading | Worker | 20.0 | 18.5 | LDA,LDT1,LDT2 | | Grading | Vendor | 5.00 | 10.2 | HHDT,MHDT | | Grading | Hauling | 646 | 20.0 | HHDT | | Grading | Onsite truck | 0.00 | 0.00 | HHDT | | Building Construction | _ | _ | _ | _ | | Building Construction | Worker | 113 | 18.5 | LDA,LDT1,LDT2 | | Building Construction | Vendor | 34.0 | 10.2 | HHDT,MHDT | | Building Construction | Hauling | 0.00 | 20.0 | HHDT | | Building Construction | Onsite truck | 0.00 | 0.00 | HHDT | |-----------------------|--------------|------|------|---------------| | Paving | _ | _ | _ | _ | | Paving | Worker | 15.0 | 18.5 | LDA,LDT1,LDT2 | | Paving | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Paving | Hauling | 0.00 | 20.0 | HHDT | | Paving | Onsite truck | 0.00 | 0.00 | HHDT | | Architectural Coating | _ | _ | _ | _ | | Architectural Coating | Worker | 23.0 | 18.5 | LDA,LDT1,LDT2 | | Architectural Coating | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Architectural Coating | Hauling | 0.00 | 20.0 | HHDT | | Architectural Coating | Onsite truck | 0.00 | 0.00 | HHDT | #### 5.4. Vehicles #### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ### 5.5. Architectural Coatings | Phase Name | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area
Coated (sq ft) | Non-Residential Exterior Area
Coated (sq ft) | Parking Area Coated (sq ft) | |-----------------------|--|--|---|---|-----------------------------| | Architectural Coating | 0.00 | 0.00 | 403,433 | 134,478 | 14,721 | ### 5.6. Dust Mitigation ### 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (sq. ft.) | Acres Paved (acres) | |------------------|---------------------------------|---------------------------------|----------------------
-------------------------------|---------------------| | Site Preparation | 0.00 | 0.00 | 105 | 0.00 | _ | | Grading | 154,976 | 0.00 | 120 | 0.00 | _ | | Device of | 0.00 | 0.00 | 0.00 | 0.00 | F 60 | |---------------------------------------|------|------|------|------|------| | Paving | 0.00 | 0.00 | 0.00 | 0.00 | 5.63 | | · · · · · · · · · · · · · · · · · · · | | | | | | #### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | #### 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |----------------------------------|--------------------|-----------| | Unrefrigerated Warehouse-No Rail | 0.00 | 0% | | Parking Lot | 1.44 | 100% | | Other Asphalt Surfaces | 4.19 | 100% | ### 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2024 | 0.00 | 532 | 0.03 | < 0.005 | | 2025 | 0.00 | 532 | 0.03 | < 0.005 | ### 5.18. Vegetation #### 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated | Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | |--------------------------|----------------------|---------------|-------------| #### 5.18.1. Biomass Cover Type #### 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres 5.18.2. Sequestration 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|-----------|------------------------------|------------------------------| | 1.56 1,56 | Trainisc. | Liberiory Savea (ittiliysar) | ratarar Sas Savea (Starysar) | ### 6. Climate Risk Detailed Report #### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 29.1 | annual days of extreme heat | | Extreme Precipitation | 2.10 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 6.94 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. ### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ## 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 97.0 | | AQ-PM | 59.4 | | AQ-DPM | 37.5 | | Drinking Water | 9.23 | | Lead Risk Housing | 47.7 | | Pesticides | 62.1 | | Toxic Releases | 42.9 | | Traffic | 88.8 | | Effect Indicators | _ | | CleanUp Sites | 86.7 | | Groundwater | 47.4 | | Haz Waste Facilities/Generators | 10.2 | | Impaired Water Bodies | 0.00 | | Solid Waste | 52.9 | | Sensitive Population | _ | | Asthma | 60.6 | | Cardio-vascular | 85.8 | | Low Birth Weights | 31.7 | |---------------------------------|------| | Socioeconomic Factor Indicators | _ | | Education | 87.7 | | Housing | 81.3 | | Linguistic | 64.8 | | Poverty | 83.3 | | Unemployment | 60.6 | ### 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 6.351854228 | | Employed | 6.03105351 | | Median HI | 12.11343513 | | Education | | | Bachelor's or higher | 2.912870525 | | High school enrollment | 14.38470422 | | Preschool enrollment | 8.892595919 | | Transportation | _ | | Auto Access | 50.17323239 | | Active commuting | 15.14179392 | | Social | | | 2-parent households | 34.73630181 | | Voting | 3.888104709 | | Neighborhood | | | Alcohol availability | 71.10227127 | | Park access | 2.194276915 | |--|-------------| | Retail density | 13.39663801 | | Supermarket access | 2.399589375 | | Tree canopy | 1.013730271 | | Housing | _ | | Homeownership | 46.10547928 | | Housing habitability | 18.85025022 | | Low-inc homeowner severe housing cost burden | 75.25984858 | | Low-inc renter severe housing cost burden | 7.994353907 | | Uncrowded housing | 6.73681509 | | Health Outcomes | _ | | Insured adults | 2.810214295 | | Arthritis | 0.0 | | Asthma ER Admissions | 42.6 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.2 | | Cognitively Disabled | 44.8 | | Physically Disabled | 41.1 | | Heart Attack ER Admissions | 12.7 | | Mental Health Not Good
| 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | | | | Pedestrian Injuries | 86.0 | |---------------------------------------|------| | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 0.0 | | SLR Inundation Area | 0.0 | | Children | 51.6 | | Elderly | 79.3 | | English Speaking | 32.3 | | Foreign-born | 68.1 | | Outdoor Workers | 7.0 | | Climate Change Adaptive Capacity | | | Impervious Surface Cover | 94.5 | | Traffic Density | 80.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 97.3 | | Other Decision Support | _ | | 2016 Voting | 8.9 | ## 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |--|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 79.0 | | Healthy Places Index Score for Project Location (b) | 2.00 | |---|------| | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | Yes | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. ## 8. User Changes to Default Data | Screen | Justification | |--------------------------------------|--| | Land Use | Total Project area is 15.63 acres | | Construction: Construction Phases | Construction anticipated to begin December 2024 and end December 2025 | | Construction: Off-Road Equipment | Equipment based on equipment used for construction of other industrial projects in the area | | Construction: Trips and VMT | Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction | | Construction: Architectural Coatings | Rule 1113 | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. # MFBC Building 18 (Construction) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 3. Construction Emissions Details - 3.1. Site Preparation (2024) Unmitigated - 3.3. Site Preparation (2025) Unmitigated - 3.5. Grading (2025) Unmitigated - 3.7. Building Construction (2025) Unmitigated - 3.9. Paving (2025) Unmitigated - 3.11. Architectural Coating (2025) Unmitigated - 4. Operations Emissions Details - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information ## 1.1. Basic Project Information | Data Field | Value | |-----------------------------|--| | Project Name | MFBC Building 18 (Construction) | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 9.00 | | Location | 33.85642023269851, -117.26415304675538 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5479 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | ## 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|------|----------|-------------|-----------------------|--------|-----------------------------------|------------|-------------| | Unrefrigerated
Warehouse-No Rail | 334 | 1000sqft | 8.98 | 333,648 | 57,619 | 0.00 | _ | _ | | Parking Lot | 280 | Space | 1.58 | 0.00 | 0.00 | 0.00 | _ | _ | | Other Asphalt | 116 | 1000sqft | 2.66 | 0.00 | 0.00 | 0.00 | _ | _ | |---------------|-----|----------|------|------|------|------|---|---| | Surfaces | | | | | | | | | #### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected ## 2. Emissions Summary #### 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | | | <i>J</i> , | | | | | J. | | | _ | | | | | | | |---------------------------|------|------|------|------------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|--------| | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 1.50 | 1.34 | 18.4 | 38.1 | 0.05 | 0.30 | 2.20 | 2.50 | 0.28 | 0.53 | 0.82 | _ | 7,897 | 7,897 | 0.30 | 0.31 | 11.0 | 8,006 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 1.97 | 52.0 | 27.5 | 49.8 | 0.08 | 0.55 | 5.96 | 6.06 | 0.51 | 2.76 | 2.87 | _ | 9,985 | 9,985 | 0.40 | 0.44 | 0.34 | 10,097 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.96 | 6.36 | 13.6 | 25.5 | 0.04 | 0.22 | 1.75 | 1.97 | 0.21 | 0.49 | 0.69 | _ | 5,543 | 5,543 | 0.21 | 0.22 | 3.06 | 5,616 | | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.17 | 1.16 | 2.48 | 4.66 | 0.01 | 0.04 | 0.32 | 0.36 | 0.04 | 0.09 | 0.13 | _ | 918 | 918 | 0.04 | 0.04 | 0.51 | 930 | ### 2.2. Construction Emissions by Year, Unmitigated | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| Daily -
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |----------------------------|------|------|------|------|---------|---------|------|------|---------|------|------|---|-------|-------|---------|---------|------|--------| | 2025 | 1.50 | 1.34 | 18.4 | 38.1 | 0.05 | 0.30 | 2.20 | 2.50 | 0.28 | 0.53 | 0.82 | _ | 7,897 | 7,897 | 0.30 | 0.31 | 11.0 | 8,006 | | Daily -
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.78 | 0.77 | 16.1 | 31.2 | 0.05 | 0.11 | 5.96 | 6.06 | 0.11 | 2.76 | 2.87 | _ | 5,985 | 5,985 | 0.24 | 0.09 | 0.04 | 6,017 | | 2025 | 1.97 | 52.0 | 27.5 | 49.8 | 0.08 | 0.55 | 5.96 | 6.06 | 0.51 | 2.76 | 2.87 | _ | 9,985 | 9,985 | 0.40 | 0.44 | 0.34 | 10,097 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.04 | 0.04 | 0.91 | 1.77 | < 0.005 | 0.01 | 0.34 | 0.34 | 0.01 | 0.16 | 0.16 | _ | 340 | 340 | 0.01 | < 0.005 | 0.04 | 342 | | 2025 | 0.96 | 6.36 | 13.6 | 25.5 | 0.04 | 0.22 | 1.75 | 1.97 | 0.21 | 0.49 | 0.69 | _ | 5,543 | 5,543 | 0.21 | 0.22 | 3.06 | 5,616 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2024 | 0.01 | 0.01 | 0.17 | 0.32 | < 0.005 | < 0.005 | 0.06 | 0.06 | < 0.005 | 0.03 | 0.03 | _ | 56.3 | 56.3 | < 0.005 | < 0.005 | 0.01 | 56.6 | | 2025 | 0.17 | 1.16 | 2.48 | 4.66 | 0.01 | 0.04 | 0.32 | 0.36 | 0.04 | 0.09 | 0.13 | _ | 918 | 918 | 0.04 | 0.04 | 0.51 | 930 | ## 3. Construction Emissions Details ## 3.1. Site Preparation (2024) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
_ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.68 | 15.7 | 30.0 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,529 | 5,529 | 0.22 | 0.04 | _ | 5,548 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 5.66 | 5.66 | _ | 2.69 | 2.69 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|----------|------|------|------|---------|---------|------|---------|---------|---------|---------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.04 | 0.89 | 1.70 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 314 | 314 | 0.01 | < 0.005 | _ | 315 | | Dust
From
Material
Movemen | | _ | _ | - | _ | _ | 0.32 | 0.32 | - | 0.15 | 0.15 | _ | - | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.16 | 0.31 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 52.0 | 52.0 | < 0.005 | < 0.005 | _ | 52.1 | | Dust
From
Material
Movemen | _ | _ | _ | - | _ | _ | 0.06 | 0.06 | _ | 0.03 | 0.03 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.10 | 0.09 | 0.10 | 1.14 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 238 | 238 | 0.01 | 0.01 | 0.03 | 241 | | Vendor | 0.01 | 0.01 | 0.26 | 0.08 | < 0.005 | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | 0.01 | _ | 217 | 217 | < 0.005 | 0.03 | 0.02 | 227 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8 / 30 | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------| | Worker | 0.01 | < 0.005 | 0.01 | 0.07 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 13.7 | 13.7 | < 0.005 | < 0.005 | 0.03 | 13.9 | | Vendor | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 12.3 | 12.3 | < 0.005 | < 0.005 | 0.01 | 12.9 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 2.27 | 2.27 | < 0.005 | < 0.005 | < 0.005 | 2.30 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.04 | 2.04 | < 0.005 | < 0.005 | < 0.005 | 2.14 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.3. Site Preparation (2025) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|----------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|------|---------|------|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.68 | 15.7 | 30.0 | 0.05 | 0.10 | _ | 0.10 | 0.10 | _ | 0.10 | _ | 5,528 | 5,528 | 0.22 | 0.04 | _ | 5,547 | | Dust
From
Material
Movemen [:] | <u> </u> | _ | _ | _ | _ | _ | 5.66 | 5.66 | _ | 2.69 | 2.69 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.02 | 0.40 | 0.76 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 141 | 141 | 0.01 | < 0.005 | _ | 141 | | Dust
From | _ | _ | _ | _ | _ | _ | 0.14 | 0.14 | _ | 0.07 | 0.07 | _ | _ | _ | _ | _ | _ | _ | |-------------------------------------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------| | Material
Movemen | Ì. | | | | | | | | | | | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | < 0.005
t | < 0.005 | 0.07 | 0.14 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 23.3 | 23.3 | < 0.005 | < 0.005 | _ | 23.4 | | Dust
From
Material
Movemen | <u> </u> | _ | _ | _ | _ | _ | 0.03 | 0.03 | _ | 0.01 | 0.01 | _ | _ | _ | _ | _ | _ | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | - | - | _ | _ | - | _ | - | _ | _ | _ | _ | _ | | Worker | 0.09 | 0.08 | 0.09 | 1.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 233 | 233 | 0.01 | 0.01 | 0.02 | 236 | | Vendor | 0.01 | < 0.005 | 0.25 | 0.08 | < 0.005 | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | 0.01 | _ | 214 | 214 | < 0.005 | 0.03 | 0.02 | 224 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 6.01 | 6.01 | < 0.005 | < 0.005 | 0.01 | 6.09 | | Vendor | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 5.45 | 5.45 | < 0.005 | < 0.005 | 0.01 | 5.71 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 0.99 | 0.99 | < 0.005 | < 0.005 | < 0.005 | 1.01 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.90 | 0.90 | < 0.005 | < 0.005 | < 0.005 | 0.94 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |-------------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | ı iauiii iy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 3.5. Grading (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|------|----------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|--------------|---------|------|-------| | Onsite | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.88 | 20.0 | 36.2 | 0.06 | 0.26 | _ | 0.26 | 0.25 | _ | 0.25 | | 6,715 | 6,715 | 0.27 | 0.05 | _ | 6,738 | | Dust
From
Material
Movemen | | _ | _ | - | _ | _ | 2.67 | 2.67 | _ | 0.98 | 0.98 | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.64 | 2.97 | 0.01 | 0.02 | - | 0.02 | 0.02 | _ | 0.02 | _ | 552 | 552 | 0.02 | < 0.005 | _ | 554 | | Dust
From
Material
Movemen | | _ | _ | - | _ | _ | 0.22 | 0.22 | - | 0.08 | 0.08 | _ | - | _ | - | - | - | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen |
 0.01 | 0.30 | 0.54 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | _ | < 0.005 | _ | 91.4 | 91.4 | < 0.005 | < 0.005 | _ | 91.7 | | Dust
From
Material
Movemen | | _ | _ | _ | _ | _ | 0.04 | 0.04 | _ | 0.01 | 0.01 | | _ | _ | _ | _ | _ | _ | |-------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|---------|-------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.09 | 0.08 | 0.10 | 1.17 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 259 | 259 | 0.01 | 0.01 | 0.03 | 262 | | Vendor | 0.01 | < 0.005 | 0.25 | 0.08 | < 0.005 | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | 0.01 | _ | 214 | 214 | < 0.005 | 0.03 | 0.02 | 224 | | Hauling | 0.09 | 0.03 | 2.56 | 0.61 | 0.01 | 0.04 | 0.16 | 0.20 | 0.04 | 0.06 | 0.10 | _ | 2,206 | 2,206 | 0.04 | 0.35 | 0.12 | 2,311 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.01 | 0.10 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 21.6 | 21.6 | < 0.005 | < 0.005 | 0.04 | 21.9 | | Vendor | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 17.6 | 17.6 | < 0.005 | < 0.005 | 0.02 | 18.4 | | Hauling | 0.01 | < 0.005 | 0.21 | 0.05 | < 0.005 | < 0.005 | 0.01 | 0.02 | < 0.005 | < 0.005 | 0.01 | _ | 181 | 181 | < 0.005 | 0.03 | 0.17 | 190 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 3.57 | 3.57 | < 0.005 | < 0.005 | 0.01 | 3.62 | | Vendor | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.92 | 2.92 | < 0.005 | < 0.005 | < 0.005 | 3.05 | | Hauling | < 0.005 | < 0.005 | 0.04 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 30.0 | 30.0 | < 0.005 | < 0.005 | 0.03 | 31.5 | ## 3.7. Building Construction (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | |---------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|---------|------|-------| | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | - | 4,608 | 4,608 | 0.19 | 0.04 | - | 4,624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.69 | 16.4 | 26.8 | 0.05 | 0.28 | _ | 0.28 | 0.27 | _ | 0.27 | _ | 4,608 | 4,608 | 0.19 | 0.04 | _ | 4,624 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | - | _ | _ | _ | _ | _ | - | - | - | - | - | _ | - | _ | _ | - | - | | Off-Road
Equipmen | | 0.40 | 9.43 | 15.4 | 0.03 | 0.16 | _ | 0.16 | 0.15 | - | 0.15 | - | 2,651 | 2,651 | 0.11 | 0.02 | - | 2,660 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.72 | 2.81 | < 0.005 | 0.03 | _ | 0.03 | 0.03 | _ | 0.03 | - | 439 | 439 | 0.02 | < 0.005 | - | 440 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | _ | _ | _ | | Worker | 0.75 | 0.63 | 0.61 | 10.8 | 0.00 | 0.00 | 0.11 | 0.11 | 0.00 | 0.00 | 0.00 | _ | 1,973 | 1,973 | 0.08 | 0.07 | 7.25 | 2,003 | | Vendor | 0.06 | 0.03 | 1.44 | 0.45 | 0.01 | 0.02 | 0.08 | 0.10 | 0.02 | 0.03 | 0.05 | _ | 1,316 | 1,316 | 0.03 | 0.20 | 3.73 | 1,380 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|------|---------|------|------|---------|---------|------|------|---------|---------|------|---|-------|-------|---------|------|------|-------| | Worker | 0.66 | 0.59 | 0.68 | 8.17 | 0.00 | 0.00 | 0.11 | 0.11 | 0.00 | 0.00 | 0.00 | _ | 1,814 | 1,814 | 0.08 | 0.07 | 0.19 | 1,837 | | Vendor | 0.06 | 0.03 | 1.51 | 0.46 | 0.01 | 0.02 | 0.08 | 0.10 | 0.02 | 0.03 | 0.05 | _ | 1,316 | 1,316 | 0.03 | 0.20 | 0.10 | 1,377 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.38 | 0.34 | 0.42 | 4.97 | 0.00 | 0.00 | 0.07 | 0.07 | 0.00 | 0.00 | 0.00 | _ | 1,057 | 1,057 | 0.05 | 0.04 | 1.80 | 1,072 | | Vendor | 0.03 | 0.02 | 0.87 | 0.26 | 0.01 | 0.01 | 0.04 | 0.06 | 0.01 | 0.02 | 0.03 | _ | 757 | 757 | 0.02 | 0.12 | 0.93 | 793 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.07 | 0.06 | 0.08 | 0.91 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 175 | 175 | 0.01 | 0.01 | 0.30 | 177 | | Vendor | 0.01 | < 0.005 | 0.16 | 0.05 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | 0.01 | _ | 125 | 125 | < 0.005 | 0.02 | 0.15 | 131 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.9. Paving (2025) - Unmitigated | | TOG | ROG | | СО | | PM10E | | | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|------|-------|---|------|------|--------|------|------|-------|-------|------|------|---|-------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.29 | 7.24 | 10.6 | 0.01 | 0.16 | _ | 0.16 | 0.15 | _ | 0.15 | _ | 1,511 | 1,511 | 0.06 | 0.01 | _ | 1,517 | | Paving | _ | 0.56 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|--------------|---------|---------|------|---------|---------|---------|---------|---------|------|---------|---|------|------|---------|---------|---------|------| | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.02 | 0.40 | 0.58 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | - | 82.8 | 82.8 | < 0.005 | < 0.005 | _ | 83.1 | | Paving | _ | 0.03 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | < 0.005
t | < 0.005 | 0.07 | 0.11 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | - | 13.7 | 13.7 | < 0.005 | < 0.005 | _ | 13.8 | | Paving | _ | 0.01 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.07 | 0.06 | 0.07 | 0.88 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | _ | 194 | 194 | 0.01 | 0.01 | 0.02 | 197 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 10.8 | 10.8 | < 0.005 | < 0.005 | 0.02 | 10.9 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 1.79 | 1.79 | < 0.005 | < 0.005 | < 0.005 | 1.81 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 3.11. Architectural Coating (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|------|----------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------| | Onsite | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.07 | 1.45 | 1.28 | < 0.005 | 0.09 | _ | 0.09 | 0.08 | _ | 0.08 | _ | 178 | 178 | 0.01 | < 0.005 | _ | 179 | | Architect
ural
Coatings | _ | 49.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.16 | 0.14 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 19.5 | 19.5 | < 0.005 | < 0.005 | _ | 19.6 | | Architect
ural
Coatings | _ | 5.44 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 3.23 | 3.23 | < 0.005 | < 0.005 | _ | 3.24 | | Architect
Coatings | _ | 0.99 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---------|---------|---------|------|------|------|---------|---------|------|------|------|---|------|------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.13 | 0.12 | 0.14 | 1.63 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | _ | 363 | 363 | 0.02 | 0.01 | 0.04 | 367 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | 0.01 | 0.01 | 0.02 | 0.19 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 40.3 | 40.3 | < 0.005 | < 0.005 | 0.07 | 40.8 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | 0.00 | 0.00 | _ | 6.67 | 6.67 | < 0.005 | < 0.005 | 0.01 | 6.76 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 4. Operations Emissions Details 4.10. Soil Carbon Accumulation By Vegetation Type 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|----------|--------|----------|------|----------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | | <u> </u> | _ | <u> </u> | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | | | | | | | | | | | | | | | | | 1 | | | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|---| | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ### 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |-----------------------|-----------------------|------------|------------|---------------|---------------------|-------------------| | Site Preparation | Site Preparation | 12/3/2024 | 1/13/2025 | 5.00 | 30.0 | _ | | Grading | Grading | 1/14/2025 | 2/24/2025 | 5.00 | 30.0 | _ | | Building Construction | Building Construction | 2/25/2025 | 12/15/2025 | 5.00 | 210 | _ | | Paving | Paving | 11/18/2025 | 12/15/2025 | 5.00 | 20.0 | _ | | Architectural Coating | Architectural Coating | 10/21/2025 | 12/15/2025 | 5.00 | 40.0 | _ |
5.2. Off-Road Equipment ### 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |-----------------------|---------------------|-----------|----------------|----------------|---------------|------------|-------------| | Site Preparation | Rubber Tired Dozers | Diesel | Tier 4 Interim | 3.00 | 8.00 | 367 | 0.40 | | Grading | Excavators | Diesel | Tier 3 | 2.00 | 8.00 | 36.0 | 0.38 | | Grading | Graders | Diesel | Tier 4 Interim | 1.00 | 8.00 | 148 | 0.41 | | Grading | Rubber Tired Dozers | Diesel | Tier 4 Interim | 1.00 | 8.00 | 367 | 0.40 | | Grading | Scrapers | Diesel | Tier 4 Interim | 2.00 | 8.00 | 423 | 0.48 | | Building Construction | Cranes | Diesel | Tier 4 Interim | 2.00 | 8.00 | 367 | 0.29 | | Building Construction | Forklifts | Diesel | Tier 4 Interim | 4.00 | 8.00 | 82.0 | 0.20 | | Building Construction | Generator Sets | Diesel | Tier 3 | 2.00 | 8.00 | 14.0 | 0.74 | | Building Construction | Welders | Diesel | Tier 3 | 2.00 | 8.00 | 46.0 | 0.45 | |-----------------------|------------------|--------|----------------|------|------|------|------| | Paving | Pavers | Diesel | Tier 4 Interim | 2.00 | 8.00 | 81.0 | 0.42 | | Paving | Paving Equipment | Diesel | Tier 4 Interim | 2.00 | 8.00 | 89.0 | 0.36 | | Paving | Rollers | Diesel | Tier 3 | 2.00 | 8.00 | 36.0 | 0.38 | | Architectural Coating | Air Compressors | Diesel | Tier 3 | 1.00 | 8.00 | 37.0 | 0.48 | | Site Preparation | Crawler Tractors | Diesel | Tier 4 Interim | 4.00 | 8.00 | 87.0 | 0.43 | | Grading | Crawler Tractors | Diesel | Tier 4 Interim | 2.00 | 8.00 | 87.0 | 0.43 | | Building Construction | Crawler Tractors | Diesel | Tier 4 Interim | 4.00 | 8.00 | 87.0 | 0.43 | ### 5.3. Construction Vehicles ### 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |-----------------------|--------------|-----------------------|----------------|---------------| | Site Preparation | _ | _ | _ | _ | | Site Preparation | Worker | 18.0 | 18.5 | LDA,LDT1,LDT2 | | Site Preparation | Vendor | 7.00 | 10.2 | HHDT,MHDT | | Site Preparation | Hauling | 0.00 | 20.0 | HHDT | | Site Preparation | Onsite truck | 0.00 | 0.00 | HHDT | | Grading | _ | _ | _ | _ | | Grading | Worker | 20.0 | 18.5 | LDA,LDT1,LDT2 | | Grading | Vendor | 7.00 | 10.2 | HHDT,MHDT | | Grading | Hauling | 32.0 | 20.0 | HHDT | | Grading | Onsite truck | 0.00 | 0.00 | HHDT | | Building Construction | _ | _ | _ | _ | | Building Construction | Worker | 140 | 18.5 | LDA,LDT1,LDT2 | | Building Construction | Vendor | 43.0 | 10.2 | HHDT,MHDT | | Building Construction | Hauling | 0.00 | 20.0 | HHDT | | Building Construction | Onsite truck | 0.00 | 0.00 | HHDT | |-----------------------|--------------|------|------|---------------| | Paving | _ | _ | _ | _ | | Paving | Worker | 15.0 | 18.5 | LDA,LDT1,LDT2 | | Paving | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Paving | Hauling | 0.00 | 20.0 | HHDT | | Paving | Onsite truck | 0.00 | 0.00 | HHDT | | Architectural Coating | _ | _ | _ | _ | | Architectural Coating | Worker | 28.0 | 18.5 | LDA,LDT1,LDT2 | | Architectural Coating | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Architectural Coating | Hauling | 0.00 | 20.0 | HHDT | | Architectural Coating | Onsite truck | 0.00 | 0.00 | HHDT | ### 5.4. Vehicles #### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ### 5.5. Architectural Coatings | Phase Name | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area
Coated (sq ft) | Non-Residential Exterior Area
Coated (sq ft) | Parking Area Coated (sq ft) | |-----------------------|--|--|---|---|-----------------------------| | Architectural Coating | 0.00 | 0.00 | 500,472 | 166,824 | 11,091 | ### 5.6. Dust Mitigation #### 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (sq. ft.) | Acres Paved (acres) | |------------------|---------------------------------|---------------------------------|----------------------|-------------------------------|---------------------| | Site Preparation | 0.00 | 0.00 | 105 | 0.00 | _ | | Grading | 7,784 | 0.00 | 120 | 0.00 | _ | | Dovina | 0.00 | 0.00 | 0.00 | 0.00 | 4.24 | |--------|------|------|------|------|------| | Paving | 0.00 | 0.00 | 0.00 | 0.00 | 4.24 | | 3 | | | | | | #### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | ### 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |----------------------------------|--------------------|-----------| | Unrefrigerated Warehouse-No Rail | 0.00 | 0% | | Parking Lot | 1.58 | 100% | | Other Asphalt Surfaces | 2.66 | 100% | ### 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2024 | 0.00 | 532 | 0.03 | < 0.005 | | 2025 | 0.00 | 532 | 0.03 | < 0.005 | ### 5.18. Vegetation #### 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated | Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | |--------------------------|----------------------|---------------|-------------| #### 5.18.1. Biomass Cover Type #### 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres 5.18.2. Sequestration 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|-----------|---------------------------------|------------------------------| | 1.56 1,56 | Trainisc. | Liberially Savea (ittility Sai) | ratarar Sas Savea (Starysar) | ### 6. Climate Risk Detailed Report #### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 29.1 | annual days of extreme heat | | Extreme Precipitation | 2.10 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 6.94 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive
capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. ### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ## 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 97.0 | | AQ-PM | 59.4 | | AQ-DPM | 37.5 | | Drinking Water | 9.23 | | Lead Risk Housing | 47.7 | | Pesticides | 62.1 | | Toxic Releases | 42.9 | | Traffic | 88.8 | | Effect Indicators | _ | | CleanUp Sites | 86.7 | | Groundwater | 47.4 | | Haz Waste Facilities/Generators | 10.2 | | Impaired Water Bodies | 0.00 | | Solid Waste | 52.9 | | Sensitive Population | | | Asthma | 60.6 | | Cardio-vascular | 85.8 | | Low Birth Weights | 31.7 | |---------------------------------|------| | Socioeconomic Factor Indicators | _ | | Education | 87.7 | | Housing | 81.3 | | Linguistic | 64.8 | | Poverty | 83.3 | | Unemployment | 60.6 | ### 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 6.351854228 | | Employed | 6.03105351 | | Median HI | 12.11343513 | | Education | _ | | Bachelor's or higher | 2.912870525 | | High school enrollment | 14.38470422 | | Preschool enrollment | 8.892595919 | | Transportation | _ | | Auto Access | 50.17323239 | | Active commuting | 15.14179392 | | Social | _ | | 2-parent households | 34.73630181 | | Voting | 3.888104709 | | Neighborhood | _ | | Alcohol availability | 71.10227127 | | Park access | 2.194276915 | |--|-------------| | Retail density | 13.39663801 | | Supermarket access | 2.399589375 | | Tree canopy | 1.013730271 | | Housing | _ | | Homeownership | 46.10547928 | | Housing habitability | 18.85025022 | | Low-inc homeowner severe housing cost burden | 75.25984858 | | Low-inc renter severe housing cost burden | 7.994353907 | | Uncrowded housing | 6.73681509 | | Health Outcomes | _ | | Insured adults | 2.810214295 | | Arthritis | 0.0 | | Asthma ER Admissions | 42.6 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.2 | | Cognitively Disabled | 44.8 | | Physically Disabled | 41.1 | | Heart Attack ER Admissions | 12.7 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 86.0 | |---------------------------------------|------| | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 0.0 | | SLR Inundation Area | 0.0 | | Children | 51.6 | | Elderly | 79.3 | | English Speaking | 32.3 | | Foreign-born | 68.1 | | Outdoor Workers | 7.0 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 94.5 | | Traffic Density | 80.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 97.3 | | Other Decision Support | _ | | 2016 Voting | 8.9 | | | | ## 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |--|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 79.0 | | Healthy Places Index Score for Project Location (b) | 2.00 | |---|------| | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | Yes | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. ## 8. User Changes to Default Data | Screen | Justification | |--------------------------------------|--| | Land Use | Total Project area is 13.23 acres | | Construction: Construction Phases | Construction anticipated to begin December 2024 and end December 2025 | | Construction: Off-Road Equipment | Equipment based on equipment used for construction of other industrial projects in the area | | Construction: Trips and VMT | Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction | | Construction: Architectural Coatings | Rule 1113 | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. This page intentionally left blank #### **APPENDIX 3.2:** **CALEEMOD PROJECT OPERATIONAL EMISSIONS MODEL OUTPUTS** # MFBC Building 13 (Operations) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.2. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.2. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.2. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information ### 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---------------------------------------| | Project Name | MFBC Building 13 (Operations) | | Lead Agency | _ | | Land Use Scale | Project/site |
 Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 9.00 | | Location | 33.8463645366747, -117.25831888936246 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5479 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | ## 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq
ft) | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|------|-------------------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------| | Unrefrigerated
Warehouse-No Rail | 323 | 1000sqft | 11.2 | 322,997 | 162,890 | 0.00 | _ | _ | | User Defined
Industrial | 323 | User Defined Unit | 0.00 | 0.00 | 0.00 | 0.00 | _ | _ | | Parking Lot | 311 | Space | 1.88 | 0.00 | 0.00 | 0.00 | _ | _ | |---------------------------|-----|----------|------|------|------|------|---|---| | Other Asphalt
Surfaces | 199 | 1000sqft | 4.57 | 0.00 | 0.00 | 0.00 | _ | _ | #### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected ## 2. Emissions Summary ### 2.4. Operations Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 4.54 | 11.9 | 5.73 | 37.9 | 0.09 | 0.11 | 2.42 | 2.53 | 0.11 | 0.45 | 0.56 | 307 | 11,168 | 11,474 | 31.5 | 1.12 | 359 | 12,955 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 1.96 | 9.48 | 5.94 | 19.7 | 0.08 | 0.09 | 2.42 | 2.51 | 0.09 | 0.45 | 0.54 | 307 | 10,736 | 11,043 | 31.5 | 1.13 | 330 | 12,495 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 3.47 | 10.9 | 5.48 | 28.0 | 0.08 | 0.09 | 2.17 | 2.27 | 0.09 | 0.41 | 0.50 | 307 | 9,933 | 10,240 | 31.4 | 1.06 | 341 | 11,681 | | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | Unmit. | 0.63 | 1.98 | 1.00 | 5.10 | 0.01 | 0.02 | 0.40 | 0.41 | 0.02 | 0.07 | 0.09 | 50.8 | 1,645 | 1,695 | 5.20 | 0.17 | 56.4 | 1,934 | ### 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|--------|--------|---------|---------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Mobile | 2.04 | 1.78 | 5.62 | 23.9 | 0.09 | 0.09 | 2.42 | 2.51 | 0.09 | 0.45 | 0.54 | _ | 9,123 | 9,123 | 0.23 | 0.75 | 30.1 | 9,381 | | Area | 2.50 | 10.1 | 0.12 | 14.0 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 57.8 | 57.8 | < 0.005 | 0.01 | _ | 59.5 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,488 | 1,488 | 0.14 | 0.02 | _ | 1,497 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 143 | 499 | 642 | 14.7 | 0.35 | _ | 1,116 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 164 | 0.00 | 164 | 16.4 | 0.00 | _ | 572 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | 329 | 329 | | Total | 4.54 | 11.9 | 5.73 | 37.9 | 0.09 | 0.11 | 2.42 | 2.53 | 0.11 | 0.45 | 0.56 | 307 | 11,168 | 11,474 | 31.5 | 1.12 | 359 | 12,955 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 1.96 | 1.70 | 5.94 | 19.7 | 0.08 | 0.09 | 2.42 | 2.51 | 0.09 | 0.45 | 0.54 | _ | 8,749 | 8,749 | 0.24 | 0.75 | 0.78 | 8,980 | | Area | _ | 7.78 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,488 | 1,488 | 0.14 | 0.02 | _ | 1,497 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 143 | 499 | 642 | 14.7 | 0.35 | _ | 1,116 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 164 | 0.00 | 164 | 16.4 | 0.00 | _ | 572 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 329 | 329 | | Total | 1.96 | 9.48 | 5.94 | 19.7 | 0.08 | 0.09 | 2.42 | 2.51 | 0.09 | 0.45 | 0.54 | 307 | 10,736 | 11,043 | 31.5 | 1.13 | 330 | 12,495 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 1.76 | 1.52 | 5.40 | 18.3 | 0.08 | 0.08 | 2.17 | 2.25 | 0.08 | 0.41 | 0.48 | _ | 7,907 | 7,907 | 0.21 | 0.68 | 11.7 | 8,126 | | Area | 1.71 | 9.35 | 0.08 | 9.62 | < 0.005 | 0.01 | _ | 0.01 | 0.02 | _ | 0.02 | _ | 39.6 | 39.6 | < 0.005 | < 0.005 | _ | 40.7 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,488 | 1,488 | 0.14 | 0.02 | _ | 1,497 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 143 | 499 | 642 | 14.7 | 0.35 | _ | 1,116 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 164 | 0.00 | 164 | 16.4 | 0.00 | _ | 572 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 329 | 329 | | Total | 3.47 | 10.9 | 5.48 | 28.0 | 0.08 | 0.09 | 2.17 | 2.27 | 0.09 | 0.41 | 0.50 | 307 | 9,933 | 10,240 | 31.4 | 1.06 | 341 | 11,681 | |---------|------|------|------|------|---------|---------|------|---------|---------|------|---------|------|-------|--------|---------|---------|------|--------| | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | | Mobile | 0.32 | 0.28 | 0.99 | 3.35 | 0.01 | 0.01 | 0.40 | 0.41 | 0.01 | 0.07 | 0.09 | _ | 1,309 | 1,309 | 0.04 | 0.11 | 1.94 | 1,345 | | Area | 0.31 | 1.71 | 0.01 | 1.76 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 6.55 | 6.55 | < 0.005 | < 0.005 | _ | 6.74 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 246 | 246 | 0.02 | < 0.005 | _ | 248 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 23.7 | 82.6 | 106 | 2.44 | 0.06 | _ | 185 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 27.1 | 0.00 | 27.1 | 2.71 | 0.00 | _ | 94.8 | | Refrig. | _ | | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 54.5 | 54.5 | | Total | 0.63 | 1.98 | 1.00 | 5.10 | 0.01 | 0.02 | 0.40 | 0.41 | 0.02 | 0.07 | 0.09 | 50.8 | 1,645 | 1,695 | 5.20 | 0.17 | 56.4 | 1,934 | # 4. Operations Emissions Details ### 4.1. Mobile Emissions by Land Use #### 4.1.1. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 1.85 | 1.67 | 1.09 | 22.5 | 0.05 | 0.02 | 1.77 | 1.79 | 0.02 | 0.30 | 0.32 | _ | 4,889 | 4,889 | 0.16 | 0.11 | 17.7 | 4,944 | | User
Defined
Industrial | 0.20 | 0.11 | 4.52 | 1.36 | 0.04 | 0.07 | 0.65 | 0.72 | 0.07 | 0.15 | 0.22 | _ | 4,234 | 4,234 | 0.07 | 0.63 | 12.4 | 4,437 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |--|------|------|------|------|------|---------|------|------|---------|------|------|---|-------|-------|------|------|------|-------| | | 2.04 | 1.78 | 5.62 | 23.9 | 0.09 | 0.09 | 2.42 | 2.51 | 0.09 | 0.45 | 0.54 | _ | 9,123 | 9,123 | 0.23 | 0.75 | 30.1 | 9,381 | | Daily,
Winter
(Max) | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 1.77 | 1.59 | 1.21 | 18.3 | 0.04 | 0.02 | 1.77 | 1.79 | 0.02 | 0.30 | 0.32 | _ | 4,513 | 4,513 | 0.16 | 0.12 | 0.46 | 4,553 | | User
Defined
Industrial | 0.19 | 0.11 | 4.72 | 1.37 | 0.04 | 0.07 | 0.65 | 0.72 | 0.07 | 0.15 | 0.22 | - | 4,235 | 4,235 | 0.07 | 0.64 | 0.32 | 4,427 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 1.96 | 1.70 | 5.94 | 19.7 | 0.08 | 0.09 | 2.42 | 2.51 | 0.09 | 0.45 | 0.54 | _ | 8,749 | 8,749 | 0.24 | 0.75 | 0.78 | 8,980 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.29 | 0.26 | 0.21 | 3.12 | 0.01 | < 0.005 | 0.29 | 0.29 | < 0.005 | 0.05 | 0.05 | _ | 679 | 679 | 0.02 | 0.02 | 1.14 | 686 | | User
Defined
Industrial | 0.03 | 0.02 | 0.78 | 0.22 | 0.01 | 0.01 | 0.11 | 0.12 | 0.01 | 0.02 | 0.04 | - | 630 | 630 | 0.01 | 0.09 | 0.80 | 659 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.32 | 0.28 | 0.99 | 3.35 |
0.01 | 0.01 | 0.40 | 0.41 | 0.01 | 0.07 | 0.09 | | 1,309 | 1,309 | 0.04 | 0.11 | 1.94 | 1,345 | ### 4.2. Energy ### 4.2.1. Electricity Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|-------|------|---------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 1,420 | 1,420 | 0.13 | 0.02 | _ | 1,428 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 68.5 | 68.5 | 0.01 | < 0.005 | _ | 68.9 | | Other
Asphalt
Surfaces | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,488 | 1,488 | 0.14 | 0.02 | _ | 1,497 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,420 | 1,420 | 0.13 | 0.02 | _ | 1,428 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 68.5 | 68.5 | 0.01 | < 0.005 | _ | 68.9 | |--|---|---|---|---|---|---|---|---|---|---|---|---|-------|-------|---------|---------|---|-------| | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,488 | 1,488 | 0.14 | 0.02 | _ | 1,497 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | | _ | _ | _ | _ | | _ | _ | _ | _ | | _ | 235 | 235 | 0.02 | < 0.005 | _ | 236 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 11.3 | 11.3 | < 0.005 | < 0.005 | _ | 11.4 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 246 | 246 | 0.02 | < 0.005 | _ | 248 | ### 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |------------------------------|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | ## 4.3. Area Emissions by Source ### 4.3.2. Unmitigated | Source | TOG | ROG | NOx | co | SO2 | | PM10D | PM10T | | | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------------------------------|------|------|------|------|---------|------|-------|-------|------|---|--------|------|-------|------|---------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 6.93 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.84 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 2.50 | 2.30 | 0.12 | 14.0 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 57.8 | 57.8 | < 0.005 | 0.01 | _ | 59.5 | | Total | 2.50 | 10.1 | 0.12 | 14.0 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 57.8 | 57.8 | < 0.005 | 0.01 | _ | 59.5 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | | _ | | _ | | | | _ | _ | | _ | _ | | Consum
er
Products | _ | 6.93 | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Architect
ural
Coatings | _ | 0.84 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------------------|------|------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Total | _ | 7.78 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 1.27 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.15 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 0.31 | 0.29 | 0.01 | 1.76 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 6.55 | 6.55 | < 0.005 | < 0.005 | _ | 6.74 | | Total | 0.31 | 1.71 | 0.01 | 1.76 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 6.55 | 6.55 | < 0.005 | < 0.005 | _ | 6.74 | ## 4.4. Water Emissions by Land Use ## 4.4.2. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 143 | 499 | 642 | 14.7 | 0.35 | _ | 1,116 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|-------| | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 143 | 499 | 642 | 14.7 | 0.35 | _ | 1,116 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 143 | 499 | 642 | 14.7 | 0.35 | _ | 1,116 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 143 | 499 | 642 | 14.7 | 0.35 | _ | 1,116 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _
| _ | | 23.7 | 82.6 | 106 | 2.44 | 0.06 | _ | 185 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |------------------------------|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 23.7 | 82.6 | 106 | 2.44 | 0.06 | _ | 185 | ## 4.5. Waste Emissions by Land Use #### 4.5.2. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 164 | 0.00 | 164 | 16.4 | 0.00 | _ | 572 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 164 | 0.00 | 164 | 16.4 | 0.00 | _ | 572 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | 164 | 0.00 | 164 | 16.4 | 0.00 | _ | 572 | |--|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 164 | 0.00 | 164 | 16.4 | 0.00 | _ | 572 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 27.1 | 0.00 | 27.1 | 2.71 | 0.00 | _ | 94.8 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 27.1 | 0.00 | 27.1 | 2.71 | 0.00 | _ | 94.8 | ## 4.6. Refrigerant Emissions by Land Use #### 4.6.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|------|------| | Daily,
Summer
(Max) | _ | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 329 | 329 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 329 | 329 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 329 | 329 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 329 | 329 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 54.5 | 54.5 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 54.5 | 54.5 | ## 4.7. Offroad Emissions By Equipment Type #### 4.7.1. Unmitigated | Equipr | ne TO | OG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------|-------|----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | nt | Type | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.8. Stationary Emissions By Equipment Type #### 4.8.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | | | <i>J</i> , | | | | | <u>, , , , , , , , , , , , , , , , , , , </u> | | | | | | | | | | |---------------------------|-----|-----|-----|------------|-----|-------|-------|-------|---|--------|--------|------|-------|------|-----|-----|---|------| | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.9. User Defined Emissions By Equipment Type #### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Ontona |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.10. Soil Carbon Accumulation By Vegetation Type #### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio
n | TOG | ROG | | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | | | l | | | | | _ | | | | | | | | | | l | |-------|---|-----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total | _ | I — | I— | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.3. Avoided and Sequestered Emissions by
Species - Unmitigated | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|----------|---|----------|---|---|---|---|---|---|---| | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | <u> </u> | _ | _ | _ | _ | _ | | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ## 5.9. Operational Mobile Sources ## 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |-------------------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|-----------| | Unrefrigerated
Warehouse-No Rail | 382 | 255 | 236 | 125,244 | 6,662 | 4,455 | 4,123 | 2,184,166 | | User Defined Industrial | 72.0 | 48.2 | 44.6 | 23,606 | 1,483 | 992 | 918 | 486,098 | | Parking Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated #### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 484,496 | 161,499 | 16,853 | #### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ## 5.11. Operational Energy Consumption #### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |-------------------------------------|----------------------|-----|--------|--------|-----------------------| | Unrefrigerated Warehouse-No
Rail | 1,486,546 | 349 | 0.0330 | 0.0040 | 0.00 | | User Defined Industrial | 0.00 | 349 | 0.0330 | 0.0040 | 0.00 | | Parking Lot | 71,738 | 349 | 0.0330 | 0.0040 | 0.00 | | Other Asphalt Surfaces | 0.00 | 349 | 0.0330 | 0.0040 | 0.00 | ## 5.12. Operational Water and Wastewater Consumption ## 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |----------------------------------|-------------------------|--------------------------| | Unrefrigerated Warehouse-No Rail | 74,693,056 | 2,582,737 | | User Defined Industrial | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | ## 5.13. Operational Waste Generation #### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |----------------------------------|------------------|-------------------------| | Unrefrigerated Warehouse-No Rail | 304 | 0.00 | | User Defined Industrial | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | ## 5.14. Operational Refrigeration and Air Conditioning Equipment #### 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |-------------------------------------|----------------|--------------|-----|---------------|----------------------|-------------------|----------------| | Unrefrigerated
Warehouse-No Rail | Cold storage | User Defined | 150 | 7.50 | 7.50 | 7.50 | 25.0 | ## 5.15. Operational Off-Road Equipment #### 5.15.1. Unmitigated | Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor | Factor | |--|--------| |--|--------| ## 5.16. Stationary Sources #### 5.16.1. Emergency Generators and Fire Pumps | F | quipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor | |-----|----------------|------------|----------------|----------------|-----------------|------------|-------------| | - 1 | quipinent type | r der Type | Number per Day | riours per Day | riours per real | Horsepower | Load Factor | #### 5.16.2. Process Boilers | Equipment Type F | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) | |------------------|-----------|--------|--------------------------|------------------------------|------------------------------| |------------------|-----------|--------|--------------------------|------------------------------|------------------------------| #### 5.17. User Defined | Equipment Type | Fuel Type | |----------------|-----------| | _ | _ | ## 5.18. Vegetation 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated | Biomass Cover Type | Initial Acres | Final Acres | |--------------------|---------------|--------------| | Diomass Cover Type | miliai Acres | i ilai Acies | 5.18.2. Sequestration 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|----------|-------------------------------|-------------------------------| | nee type | Mullipel | Electricity Saveu (KWII/year) | Inatural Gas Saveu (Diu/year) | ## 6. Climate Risk Detailed Report #### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 29.1 | annual days of extreme heat | | Extreme Precipitation | 2.10 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 6.94 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for
the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ## 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 97.0 | | AQ-PM | 59.4 | | AQ-DPM | 37.5 | | Drinking Water | 9.23 | | Lead Risk Housing | 47.7 | | Pesticides | 62.1 | | Toxic Releases | 42.9 | | Traffic | 88.8 | | Effect Indicators | _ | | CleanUp Sites | 86.7 | | Groundwater | 47.4 | | Haz Waste Facilities/Generators | 10.2 | | Impaired Water Bodies | 0.00 | |---------------------------------|------| | Solid Waste | 52.9 | | Sensitive Population | | | Asthma | 60.6 | | Cardio-vascular | 85.8 | | Low Birth Weights | 31.7 | | Socioeconomic Factor Indicators | | | Education | 87.7 | | Housing | 81.3 | | Linguistic | 64.8 | | Poverty | 83.3 | | Unemployment | 60.6 | ## 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 6.351854228 | | Employed | 6.03105351 | | Median HI | 12.11343513 | | Education | _ | | Bachelor's or higher | 2.912870525 | | High school enrollment | 14.38470422 | | Preschool enrollment | 8.892595919 | | Transportation | _ | | Auto Access | 50.17323239 | | Active commuting | 15.14179392 | | Social | _ | |--|-------------| | 2-parent households | 34.73630181 | | Voting | 3.888104709 | | Neighborhood | _ | | Alcohol availability | 71.10227127 | | Park access | 2.194276915 | | Retail density | 13.39663801 | | Supermarket access | 2.399589375 | | Tree canopy | 1.013730271 | | Housing | _ | | Homeownership | 46.10547928 | | Housing habitability | 18.85025022 | | Low-inc homeowner severe housing cost burden | 75.25984858 | | Low-inc renter severe housing cost burden | 7.994353907 | | Uncrowded housing | 6.73681509 | | Health Outcomes | _ | | Insured adults | 2.810214295 | | Arthritis | 0.0 | | Asthma ER Admissions | 42.6 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.2 | | Cognitively Disabled | 44.8 | | Physically Disabled | 41.1 | |---------------------------------------|------| | Heart Attack ER Admissions | 12.7 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 86.0 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 0.0 | | SLR Inundation Area | 0.0 | | Children | 51.6 | | Elderly | 79.3 | | English Speaking | 32.3 | | Foreign-born | 68.1 | | Outdoor Workers | 7.0 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 94.5 | | Traffic Density | 80.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 97.3 | | Other Decision Support | _ | | 2016 Voting | 8.9 | |-------------|-----| | | | #### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 79.0 | | Healthy Places Index Score for Project Location (b) | 2.00 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | Yes | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. ## 8. User Changes to Default Data | Screen | Justification | |--------------------------|--| | Land Use | Total Project area is 17.61 acres | | Operations: Vehicle Data | Trip characteristics based on information provided in the Traffic Analysis | | Operations: Fleet Mix | Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis | | Operations: Energy Use | The Project will not use natural gas | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Operations: Refrigerants | Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is | |--------------------------|--| | i v | prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022 | # MFBC Building 14 (Operations) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.2. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.2. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.2. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By
Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information ## 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---| | Project Name | MFBC Building 14 (Operations) | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 9.00 | | Location | 33.849507171303635, -117.25967678848663 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5479 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | ## 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq
ft) | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|------|-------------------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------| | Unrefrigerated
Warehouse-No Rail | 355 | 1000sqft | 12.5 | 354,583 | 189,366 | 0.00 | _ | _ | | User Defined
Industrial | 355 | User Defined Unit | 0.00 | 0.00 | 0.00 | 0.00 | _ | _ | | Parking Lot | 269 | Space | 1.34 | 0.00 | 0.00 | 0.00 | _ | _ | |---------------------------|-----|----------|------|------|------|------|---|---| | Other Asphalt
Surfaces | 224 | 1000sqft | 5.13 | 0.00 | 0.00 | 0.00 | _ | _ | #### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected ## 2. Emissions Summary ### 2.4. Operations Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 5.24 | 13.1 | 15.0 | 42.8 | 0.17 | 0.25 | 3.78 | 4.03 | 0.25 | 0.76 | 1.01 | 337 | 20,031 | 20,368 | 34.7 | 2.44 | 417 | 22,380 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 2.41 | 10.5 | 15.6 | 23.0 | 0.17 | 0.23 | 3.78 | 4.01 | 0.22 | 0.76 | 0.99 | 337 | 19,586 | 19,922 | 34.7 | 2.45 | 363 | 21,882 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 3.64 | 11.7 | 11.6 | 27.9 | 0.12 | 0.18 | 2.77 | 2.95 | 0.18 | 0.56 | 0.74 | 337 | 14,993 | 15,330 | 34.6 | 1.91 | 379 | 17,141 | | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.66 | 2.14 | 2.11 | 5.10 | 0.02 | 0.03 | 0.51 | 0.54 | 0.03 | 0.10 | 0.14 | 55.8 | 2,482 | 2,538 | 5.72 | 0.32 | 62.7 | 2,838 | #### 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|--------|--------|---------|---------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 2.50 | 2.06 | 14.8 | 27.3 | 0.17 | 0.23 | 3.78 | 4.01 | 0.22 | 0.76 | 0.99 | _ | 17,812 | 17,812 | 0.39 | 2.03 | 55.6 | 18,483 | | Area | 2.74 | 11.1 | 0.13 | 15.4 | < 0.005 | 0.02 | _ | 0.02 | 0.03 | _ | 0.03 | _ | 63.4 | 63.4 | < 0.005 | 0.01 | _ | 65.3 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,608 | 1,608 | 0.15 | 0.02 | _ | 1,617 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 157 | 548 | 706 | 16.2 | 0.39 | _ | 1,226 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 180 | 0.00 | 180 | 18.0 | 0.00 | _ | 628 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 361 | 361 | | Total | 5.24 | 13.1 | 15.0 | 42.8 | 0.17 | 0.25 | 3.78 | 4.03 | 0.25 | 0.76 | 1.01 | 337 | 20,031 | 20,368 | 34.7 | 2.44 | 417 | 22,380 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 2.41 | 1.97 | 15.6 | 23.0 | 0.17 | 0.23 | 3.78 | 4.01 | 0.22 | 0.76 | 0.99 | _ | 17,430 | 17,430 | 0.39 | 2.04 | 1.44 | 18,049 | | Area | _ | 8.53 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,608 | 1,608 | 0.15 | 0.02 | _ | 1,617 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 157 | 548 | 706 | 16.2 | 0.39 | _ | 1,226 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 180 | 0.00 | 180 | 18.0 | 0.00 | _ | 628 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 361 | 361 | | Total | 2.41 | 10.5 | 15.6 | 23.0 | 0.17 | 0.23 | 3.78 | 4.01 | 0.22 | 0.76 | 0.99 | 337 | 19,586 | 19,922 | 34.7 | 2.45 | 363 | 21,882 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 1.76 | 1.44 | 11.5 | 17.4 | 0.12 | 0.17 | 2.77 | 2.94 | 0.16 | 0.56 | 0.72 | _ | 12,794 | 12,794 | 0.29 | 1.50 | 17.6 | 13,264 | | Area | 1.88 | 10.3 | 0.09 | 10.6 | < 0.005 | 0.01 | _ | 0.01 | 0.02 | _ | 0.02 | _ | 43.4 | 43.4 | < 0.005 | < 0.005 | _ | 44.7 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,608 | 1,608 | 0.15 | 0.02 | _ | 1,617 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 157 | 548 | 706 | 16.2 | 0.39 | _ | 1,226 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 180 | 0.00 | 180 | 18.0 | 0.00 | _ | 628 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 361 | 361 | | Total | 3.64 | 11.7 | 11.6 | 27.9 | 0.12 | 0.18 | 2.77 | 2.95 | 0.18 | 0.56 | 0.74 | 337 | 14,993 | 15,330 | 34.6 | 1.91 | 379 | 17,141 | |---------|------|------|------|------|---------|---------|----------|---------|---------|------|---------|------|--------|--------|----------|---------|------|--------| | Annual | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | | Mobile | 0.32 | 0.26 | 2.10 | 3.17 | 0.02 | 0.03 | 0.51 | 0.54 | 0.03 | 0.10 | 0.13 | _ | 2,118 | 2,118 | 0.05 | 0.25 | 2.91 | 2,196 | | Area | 0.34 | 1.87 | 0.02 | 1.93 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 7.19 | 7.19 | < 0.005 | < 0.005 | _ | 7.40 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 266 | 266 | 0.03 | < 0.005 | _ | 268 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 26.0 | 90.8 | 117 | 2.68 | 0.06 | _ | 203 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 29.7 | 0.00 | 29.7 | 2.97 | 0.00 | _ | 104 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 59.8 | 59.8 | | Total | 0.66 | 2.14 | 2.11 | 5.10 | 0.02 | 0.03 | 0.51 | 0.54 | 0.03 | 0.10 | 0.14 | 55.8 | 2,482 | 2,538 | 5.72 | 0.32 | 62.7 | 2,838 | # 4. Operations Emissions Details ## 4.1. Mobile Emissions by Land Use ## 4.1.1. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 1.90 | 1.72 | 1.13 | 23.2 | 0.05 | 0.02 | 1.83 | 1.85 | 0.02 | 0.31 | 0.33 | _ | 5,043 | 5,043 | 0.16 | 0.11 | 18.3 | 5,099 | | User
Defined
Industrial | 0.60 | 0.34 | 13.7 | 4.10 | 0.12 | 0.21 | 1.96 | 2.17 | 0.20 | 0.45 | 0.65 | _ | 12,769 | 12,769 | 0.22 | 1.92 | 37.3 | 13,384 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
--|------|------|------|------|------|---------|------|------|---------|------|------|---|--------|--------|------|------|------|--------| | | 2.50 | 2.06 | 14.8 | 27.3 | 0.17 | 0.23 | 3.78 | 4.01 | 0.22 | 0.76 | 0.99 | _ | 17,812 | 17,812 | 0.39 | 2.03 | 55.6 | 18,483 | | Daily,
Winter
(Max) | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 1.83 | 1.64 | 1.25 | 18.9 | 0.05 | 0.02 | 1.83 | 1.85 | 0.02 | 0.31 | 0.33 | _ | 4,655 | 4,655 | 0.17 | 0.12 | 0.47 | 4,696 | | User
Defined
Industrial | 0.58 | 0.33 | 14.3 | 4.14 | 0.12 | 0.21 | 1.96 | 2.17 | 0.20 | 0.45 | 0.65 | - | 12,775 | 12,775 | 0.22 | 1.92 | 0.97 | 13,353 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 2.41 | 1.97 | 15.6 | 23.0 | 0.17 | 0.23 | 3.78 | 4.01 | 0.22 | 0.76 | 0.99 | _ | 17,430 | 17,430 | 0.39 | 2.04 | 1.44 | 18,049 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.24 | 0.22 | 0.17 | 2.62 | 0.01 | < 0.005 | 0.24 | 0.25 | < 0.005 | 0.04 | 0.04 | _ | 571 | 571 | 0.02 | 0.02 | 0.96 | 577 | | User
Defined
Industrial | 0.08 | 0.04 | 1.93 | 0.55 | 0.02 | 0.03 | 0.26 | 0.29 | 0.03 | 0.06 | 0.09 | - | 1,547 | 1,547 | 0.03 | 0.23 | 1.95 | 1,619 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.32 | 0.26 | 2.10 | 3.17 | 0.02 | 0.03 | 0.51 | 0.54 | 0.03 | 0.10 | 0.13 | | 2,118 | 2,118 | 0.05 | 0.25 | 2.91 | 2,196 | ## 4.2. Energy #### 4.2.1. Electricity Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|-------|---------|---------|---|-------| | Daily,
Summer
(Max) | _ | - | _ | _ | - | _ | - | _ | _ | - | _ | - | _ | - | - | _ | _ | - | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,559 | 1,559 | 0.15 | 0.02 | _ | 1,568 | | User
Defined
Industrial | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 48.8 | 48.8 | < 0.005 | < 0.005 | _ | 49.1 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,608 | 1,608 | 0.15 | 0.02 | _ | 1,617 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,559 | 1,559 | 0.15 | 0.02 | _ | 1,568 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 48.8 | 48.8 | < 0.005 | < 0.005 | _ | 49.1 | |--|---|---|---|---|---|---|---|---|---|---|---|---|-------|-------|---------|---------|---|-------| | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,608 | 1,608 | 0.15 | 0.02 | _ | 1,617 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 258 | 258 | 0.02 | < 0.005 | _ | 260 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 8.09 | 8.09 | < 0.005 | < 0.005 | _ | 8.13 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 266 | 266 | 0.03 | < 0.005 | _ | 268 | ## 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |------------------------------|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | ## 4.3. Area Emissions by Source #### 4.3.2. Unmitigated | | | (| | <i>y</i> , <i>y</i> | | | | | J, | . , | | | | | | | | | |--------------------------------|------|------|------|---------------------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|---------|------|---|------| | Source | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 7.61 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.92 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 2.74 | 2.53 | 0.13 | 15.4 | < 0.005 | 0.02 | _ | 0.02 | 0.03 | _ | 0.03 | _ | 63.4 | 63.4 | < 0.005 | 0.01 | _ | 65.3 | | Total | 2.74 | 11.1 | 0.13 | 15.4 | < 0.005 | 0.02 | _ | 0.02 | 0.03 | _ | 0.03 | _ | 63.4 | 63.4 | < 0.005 | 0.01 | _ | 65.3 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 7.61 | _ | _ | _ | | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.92 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------------------|------|------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Total | _ | 8.53 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 1.39 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | | 0.17 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 0.34 | 0.32 | 0.02 | 1.93 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 7.19 | 7.19 | < 0.005 | < 0.005 | _ | 7.40 | | Total | 0.34 | 1.87 | 0.02 | 1.93 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 7.19 | 7.19 | < 0.005 | <
0.005 | _ | 7.40 | ## 4.4. Water Emissions by Land Use ## 4.4.2. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 157 | 548 | 706 | 16.2 | 0.39 | _ | 1,226 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|-------| | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 157 | 548 | 706 | 16.2 | 0.39 | _ | 1,226 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | - | 157 | 548 | 706 | 16.2 | 0.39 | _ | 1,226 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 157 | 548 | 706 | 16.2 | 0.39 | _ | 1,226 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 26.0 | 90.8 | 117 | 2.68 | 0.06 | _ | 203 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |------------------------------|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 26.0 | 90.8 | 117 | 2.68 | 0.06 | _ | 203 | # 4.5. Waste Emissions by Land Use # 4.5.2. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 180 | 0.00 | 180 | 18.0 | 0.00 | _ | 628 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 180 | 0.00 | 180 | 18.0 | 0.00 | _ | 628 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | 180 | 0.00 | 180 | 18.0 | 0.00 | _ | 628 | |--|---|---|---|---|---|---|---|---|---|---|----------|------|------|------|------|------|---|------| | User
Defined
Industrial | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 180 | 0.00 | 180 | 18.0 | 0.00 | _ | 628 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 29.7 | 0.00 | 29.7 | 2.97 | 0.00 | _ | 104 | | User
Defined
Industrial | _ | _ | - | _ | _ | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | - | _ | - | _ | _ | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 29.7 | 0.00 | 29.7 | 2.97 | 0.00 | _ | 104 | # 4.6. Refrigerant Emissions by Land Use ### 4.6.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|------|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 361 | 361 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 361 | 361 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | - | | _ | _ | _ | _ | _ | _ | _ | - | _ | - | - | 361 | 361 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 361 | 361 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | - | - | _ | _ | _ | _ | _ | _ | _ | - | _ | - | - | 59.8 | 59.8 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 59.8 | 59.8 | # 4.7. Offroad Emissions By Equipment Type ### 4.7.1. Unmitigated | Equ | uipme | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-----|-------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | nt | Тур | е | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|----------|---|---|---|----------|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.8. Stationary Emissions By Equipment Type ### 4.8.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.9. User Defined Emissions By Equipment Type ### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | (| | <i>y</i> , (0, <i>y</i> . | | · · · · · · · · · · · · · · · · · · · | | .,, | y , | | , | | | | | | | | |---------------------------|-----|-----|-----|---------------------------|-----|---------------------------------------|-------|-------|------------|--------|--------|------|-------|------|-----|-----|---|------| | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.10. Soil Carbon Accumulation By Vegetation Type ###
4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio
n | TOG | ROG | | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | | | l | | | | | _ | | | | | | | | | | l | |-------|---|-----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total | _ | I — | I— | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Subtotal | _ | _ | _ | _ | _ | | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data # 5.9. Operational Mobile Sources ## 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |-------------------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|-----------| | Unrefrigerated
Warehouse-No Rail | 394 | 34.5 | 13.8 | 105,241 | 6,871 | 601 | 241 | 1,835,333 | | User Defined Industrial | 214 | 18.7 | 7.48 | 57,157 | 4,452 | 390 | 156 | 1,189,128 | | Parking Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated #### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 531,875 | 177,292 | 16,920 | ### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ## 5.11. Operational Energy Consumption ### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |-------------------------------------|----------------------|-----|--------|--------|-----------------------| | Unrefrigerated Warehouse-No
Rail | 1,631,916 | 349 | 0.0330 | 0.0040 | 0.00 | | User Defined Industrial | 0.00 | 349 | 0.0330 | 0.0040 | 0.00 | | Parking Lot | 51,132 | 349 | 0.0330 | 0.0040 | 0.00 | | Other Asphalt Surfaces | 0.00 | 349 | 0.0330 | 0.0040 | 0.00 | # 5.12. Operational Water and Wastewater Consumption ## 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |----------------------------------|-------------------------|--------------------------| | Unrefrigerated Warehouse-No Rail | 81,997,319 | 3,002,533 | | User Defined Industrial | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | # 5.13. Operational Waste Generation ### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |----------------------------------|------------------|-------------------------| | Unrefrigerated Warehouse-No Rail | 333 | 0.00 | | User Defined Industrial | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | # 5.14. Operational Refrigeration and Air Conditioning Equipment ### 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |-------------------------------------|----------------|--------------|-----|---------------|----------------------|-------------------|----------------| | Unrefrigerated
Warehouse-No Rail | Cold storage | User Defined | 150 | 7.50 | 7.50 | 7.50 | 25.0 | # 5.15. Operational Off-Road Equipment ### 5.15.1. Unmitigated | Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor | Factor | |--|--------| |--|--------| # 5.16. Stationary Sources ### 5.16.1. Emergency Generators and Fire Pumps | Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor | |----------------|-----------|----------------|---------------|-----------------|------------|-------------| | - 4a.ba | | | | 110010 por 1001 | | | #### 5.16.2. Process Boilers | Equipment Type | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) | |----------------|---|--------|--------------------------|---|------------------------------| | 1 1 21 | 7 1 · · · · · · · · · · · · · · · · · · | | | • | | #### 5.17. User Defined | Ed | quipment Type | Fuel Type | |----|---------------|-----------| | _ | - | _ | ## 5.18. Vegetation 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres 5.18.2. Sequestration 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|--------|-------------------------------|------------------------------| | nee type | Number | Lieuticity Daved (KWIII/year) | Natural Gas Gaved (blu/year) | ## 6. Climate Risk Detailed Report ### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau
around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 29.1 | annual days of extreme heat | | Extreme Precipitation | 2.10 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 6.94 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about 3/4 an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures # 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 97.0 | | AQ-PM | 59.4 | | AQ-DPM | 37.5 | | Drinking Water | 9.23 | | Lead Risk Housing | 47.7 | | Pesticides | 62.1 | | Toxic Releases | 42.9 | | Traffic | 88.8 | | Effect Indicators | _ | | CleanUp Sites | 86.7 | | Groundwater | 47.4 | | Haz Waste Facilities/Generators | 10.2 | | Impaired Water Bodies | 0.00 | |---------------------------------|------| | Solid Waste | 52.9 | | Sensitive Population | _ | | Asthma | 60.6 | | Cardio-vascular | 85.8 | | Low Birth Weights | 31.7 | | Socioeconomic Factor Indicators | _ | | Education | 87.7 | | Housing | 81.3 | | Linguistic | 64.8 | | Poverty | 83.3 | | Unemployment | 60.6 | ## 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 6.351854228 | | Employed | 6.03105351 | | Median HI | 12.11343513 | | Education | _ | | Bachelor's or higher | 2.912870525 | | High school enrollment | 14.38470422 | | Preschool enrollment | 8.892595919 | | Transportation | _ | | Auto Access | 50.17323239 | | Active commuting | 15.14179392 | | Social | _ | |--|-------------| | 2-parent households | 34.73630181 | | Voting | 3.888104709 | | Neighborhood | _ | | Alcohol availability | 71.10227127 | | Park access | 2.194276915 | | Retail density | 13.39663801 | | Supermarket access | 2.399589375 | | Tree canopy | 1.013730271 | | Housing | _ | | Homeownership | 46.10547928 | | Housing habitability | 18.85025022 | | Low-inc homeowner severe housing cost burden | 75.25984858 | | Low-inc renter severe housing cost burden | 7.994353907 | | Uncrowded housing | 6.73681509 | | Health Outcomes | _ | | Insured adults | 2.810214295 | | Arthritis | 0.0 | | Asthma ER Admissions | 42.6 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.2 | | Cognitively Disabled | 44.8 | | Physically Disabled | 41.1 | |---------------------------------------|------| | Heart Attack ER Admissions | 12.7 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 86.0 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 0.0 | | SLR Inundation Area | 0.0 | | Children | 51.6 | | Elderly | 79.3 | | English Speaking | 32.3 | | Foreign-born | 68.1 | | Outdoor Workers | 7.0 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 94.5 | | Traffic Density | 80.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 97.3 | | Other Decision Support | _ | | 2016 Voting | 8.9 | |-------------|-----| | | | ### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 79.0 | | Healthy Places Index Score for Project Location (b) | 2.00 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | Yes | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. ### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data | Screen | Justification | |--------------------------|--| | Land Use | Total Project area is 18.96 acres | | Operations:
Vehicle Data | Trip characteristics based on information provided in the Traffic Analysis | | Operations: Fleet Mix | Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis | | Operations: Energy Use | The Project will not use natural gas | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Operations: Refrigerants | Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is | |--------------------------|--| | i v | prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022 | # MFBC Building 17 (Operations) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.2. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.2. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.2. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | |-----------------------------|---| | Project Name | MFBC Building 17 (Operations) | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 9.00 | | Location | 33.856453754053824, -117.25956342190489 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5479 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq
ft) | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|------|-------------------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------| | Unrefrigerated
Warehouse-No Rail | 269 | 1000sqft | 10.0 | 268,955 | 166,691 | 0.00 | _ | _ | | User Defined
Industrial | 269 | User Defined Unit | 0.00 | 0.00 | 0.00 | 0.00 | _ | _ | | Parking Lot | 261 | Space | 1.44 | 0.00 | 0.00 | 0.00 | _ | _ | |---------------------------|-----|----------|------|------|------|------|---|---| | Other Asphalt
Surfaces | 183 | 1000sqft | 4.19 | 0.00 | 0.00 | 0.00 | _ | _ | ### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary ### 2.4. Operations Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 3.78 | 9.88 | 4.88 | 31.6 | 0.07 | 0.09 | 2.03 | 2.12 | 0.09 | 0.38 | 0.47 | 255 | 9,379 | 9,634 | 26.2 | 0.95 | 299 | 10,871 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 1.64 | 7.89 | 5.06 | 16.4 | 0.07 | 0.08 | 2.03 | 2.10 | 0.07 | 0.38 | 0.45 | 255 | 9,019 | 9,275 | 26.2 | 0.95 | 275 | 10,488 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 2.89 | 9.06 | 4.67 | 23.3 | 0.06 | 0.08 | 1.82 | 1.90 | 0.08 | 0.34 | 0.42 | 255 | 8,343 | 8,598 | 26.2 | 0.89 | 284 | 9,802 | | Annual
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 0.53 | 1.65 | 0.85 | 4.25 | 0.01 | 0.01 | 0.33 | 0.35 | 0.01 | 0.06 | 0.08 | 42.3 | 1,381 | 1,424 | 4.33 | 0.15 | 47.0 | 1,623 | ### 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|----------|---------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 1.70 | 1.48 | 4.78 | 19.9 | 0.07 | 0.08 | 2.03 | 2.10 | 0.07 | 0.38 | 0.45 | _ | 7,678 | 7,678 | 0.20 | 0.63 | 25.2 | 7,897 | | Area | 2.08 | 8.40 | 0.10 | 11.7 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 48.1 | 48.1 | < 0.005 | < 0.005 | _ | 49.5 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,235 | 1,235 | 0.12 | 0.01 | _ | 1,242 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 119 | 418 | 537 | 12.3 | 0.30 | _ | 931 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 136 | 0.00 | 136 | 13.6 | 0.00 | _ | 477 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | 274 | 274 | | Total | 3.78 | 9.88 | 4.88 | 31.6 | 0.07 | 0.09 | 2.03 | 2.12 | 0.09 | 0.38 | 0.47 | 255 | 9,379 | 9,634 | 26.2 | 0.95 | 299 | 10,871 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 1.64 | 1.42 | 5.06 | 16.4 | 0.07 | 0.08 | 2.03 | 2.10 | 0.07 | 0.38 | 0.45 | _ | 7,367 | 7,367 | 0.20 | 0.64 | 0.65 | 7,564 | | Area | _ | 6.48 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,235 | 1,235 | 0.12 | 0.01 | _ | 1,242 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 119 | 418 | 537 | 12.3 | 0.30 | _ | 931 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 136 | 0.00 | 136 | 13.6 | 0.00 | _ | 477 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 274 | 274 | | Total | 1.64 | 7.89 | 5.06 | 16.4 | 0.07 | 0.08 | 2.03 | 2.10 | 0.07 | 0.38 | 0.45 | 255 | 9,019 | 9,275 | 26.2 | 0.95 | 275 | 10,488 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | | | Mobile | 1.47 | 1.27 | 4.60 | 15.3 | 0.06 | 0.07 | 1.82 | 1.89 | 0.07 | 0.34 | 0.41 | _ | 6,657 | 6,657 | 0.18 | 0.58 | 9.79 | 6,844 | | Area | 1.42 | 7.79 | 0.07 | 8.01 | < 0.005 | 0.01 | _ | 0.01 | 0.01 | _ | 0.01 | _ | 32.9 | 32.9 | < 0.005 | < 0.005 | _ | 33.9 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,235 | 1,235 | 0.12 | 0.01 | _ | 1,242 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 119 | 418 | 537 | 12.3 | 0.30 | _ | 931 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 136 | 0.00 | 136 | 13.6 | 0.00 | _ | 477 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 274 | 274 | | Total | 2.89 | 9.06 | 4.67 | 23.3 | 0.06 | 0.08 | 1.82 | 1.90 | 0.08 | 0.34 | 0.42 | 255 | 8,343 | 8,598 | 26.2 | 0.89 | 284 | 9,802 | |---------|------|------|------|------|---------|---------|------|---------|---------|------|---------|------|-------|-------|---------|---------|------|-------| | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 0.27 | 0.23 | 0.84 | 2.79 | 0.01 | 0.01 | 0.33 | 0.34 | 0.01 | 0.06 | 0.07 | _ | 1,102 | 1,102 | 0.03 | 0.10 | 1.62 | 1,133 | | Area | 0.26 | 1.42 | 0.01 | 1.46 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 |
_ | < 0.005 | _ | 5.45 | 5.45 | < 0.005 | < 0.005 | _ | 5.61 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 204 | 204 | 0.02 | < 0.005 | _ | 206 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 19.7 | 69.2 | 88.9 | 2.03 | 0.05 | _ | 154 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 22.6 | 0.00 | 22.6 | 2.25 | 0.00 | _ | 78.9 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 45.4 | 45.4 | | Total | 0.53 | 1.65 | 0.85 | 4.25 | 0.01 | 0.01 | 0.33 | 0.35 | 0.01 | 0.06 | 0.08 | 42.3 | 1,381 | 1,424 | 4.33 | 0.15 | 47.0 | 1,623 | # 4. Operations Emissions Details # 4.1. Mobile Emissions by Land Use ### 4.1.1. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 1.54 | 1.39 | 0.91 | 18.8 | 0.04 | 0.02 | 1.47 | 1.49 | 0.02 | 0.25 | 0.27 | | 4,070 | 4,070 | 0.13 | 0.09 | 14.7 | 4,115 | | User
Defined
Industrial | 0.17 | 0.10 | 3.87 | 1.15 | 0.03 | 0.06 | 0.55 | 0.61 | 0.06 | 0.13 | 0.18 | _ | 3,608 | 3,608 | 0.06 | 0.54 | 10.5 | 3,782 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |--|------|------|------|------|------|---------|------|------|---------|------|------|---|-------|-------|------|------|------|-------| | Total | 1.70 | 1.48 | 4.78 | 19.9 | 0.07 | 0.08 | 2.03 | 2.10 | 0.07 | 0.38 | 0.45 | _ | 7,678 | 7,678 | 0.20 | 0.63 | 25.2 | 7,897 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 1.48 | 1.33 | 1.01 | 15.2 | 0.04 | 0.02 | 1.47 | 1.49 | 0.02 | 0.25 | 0.27 | _ | 3,757 | 3,757 | 0.14 | 0.10 | 0.38 | 3,790 | | User
Defined
Industrial | 0.16 | 0.09 | 4.04 | 1.17 | 0.03 | 0.06 | 0.55 | 0.61 | 0.06 | 0.13 | 0.19 | _ | 3,610 | 3,610 | 0.06 | 0.54 | 0.27 | 3,773 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 1.64 | 1.42 | 5.06 | 16.4 | 0.07 | 0.08 | 2.03 | 2.10 | 0.07 | 0.38 | 0.45 | _ | 7,367 | 7,367 | 0.20 | 0.64 | 0.65 | 7,564 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.24 | 0.22 | 0.17 | 2.60 | 0.01 | < 0.005 | 0.24 | 0.24 | < 0.005 | 0.04 | 0.04 | _ | 565 | 565 | 0.02 | 0.02 | 0.95 | 571 | | User
Defined
Industrial | 0.03 | 0.02 | 0.67 | 0.19 | 0.01 | 0.01 | 0.09 | 0.10 | 0.01 | 0.02 | 0.03 | _ | 537 | 537 | 0.01 | 0.08 | 0.67 | 562 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.27 | 0.23 | 0.84 | 2.79 | 0.01 | 0.01 | 0.33 | 0.34 | 0.01 | 0.06 | 0.07 | _ | 1,102 | 1,102 | 0.03 | 0.10 | 1.62 | 1,133 | # 4.2. Energy ### 4.2.1. Electricity Emissions By Land Use - Unmitigated | Land | TOG | ROG | NOx | co | SO2 | PM10E | | | PM2.5E | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|------|----|-----|--------|---------|-------|----------|----------|----------|------|-------|-------|---------|---------|---|-------| | Use | 100 | ROG | INOX | | 302 | FWITOE | FINITUD | FWHOT | FIVIZ.SE | FIVIZ.SD | FIVIZ.51 | BC02 | NBC02 | 0021 | 0114 | INZO | | 0026 | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,182 | 1,182 | 0.11 | 0.01 | _ | 1,189 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 52.5 | 52.5 | < 0.005 | < 0.005 | _ | 52.8 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,235 | 1,235 | 0.12 | 0.01 | _ | 1,242 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | | _ | _ | _ | _ | _ | | _ | _ | _ | _ | 1,182 | 1,182 | 0.11 | 0.01 | _ | 1,189 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | _ | |--|---|---|---|---|---|---|---|---|---|---|---|---|-------|-------|---------|---------|---|-------| | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 52.5 | 52.5 | < 0.005 | < 0.005 | _ | 52.8 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,235 | 1,235 | 0.12 | 0.01 | _ | 1,242 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | | _ | _ | _ | _ | _ | _ | | | _ | | | 196 | 196 | 0.02 | < 0.005 | _ | 197 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 8.69 | 8.69 | < 0.005 | < 0.005 | _ | 8.74 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 204 | 204 | 0.02 | < 0.005 | _ | 206 | ## 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |------------------------------|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.3. Area Emissions by Source ### 4.3.2. Unmitigated | Source | TOG | ROG | NOx | co | SO2 | | PM10D | PM10T | PM2.5E | | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------------------------------|------|------|------|------|---------|------|-------|-------|--------|---|--------|------
-------|------|---------|---------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 5.77 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | Architect
ural
Coatings | _ | 0.70 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 2.08 | 1.92 | 0.10 | 11.7 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 48.1 | 48.1 | < 0.005 | < 0.005 | _ | 49.5 | | Total | 2.08 | 8.40 | 0.10 | 11.7 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 48.1 | 48.1 | < 0.005 | < 0.005 | _ | 49.5 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 5.77 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.70 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------------------|------|------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Total | _ | 6.48 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 1.05 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.13 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 0.26 | 0.24 | 0.01 | 1.46 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 5.45 | 5.45 | < 0.005 | < 0.005 | _ | 5.61 | | Total | 0.26 | 1.42 | 0.01 | 1.46 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 5.45 | 5.45 | < 0.005 | < 0.005 | _ | 5.61 | # 4.4. Water Emissions by Land Use ## 4.4.2. Unmitigated | Land
Use | TOG | ROG | | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 119 | 418 | 537 | 12.3 | 0.30 | _ | 931 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 119 | 418 | 537 | 12.3 | 0.30 | _ | 931 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | - | _ | - | - | _ | _ | _ | _ | _ | _ | 119 | 418 | 537 | 12.3 | 0.30 | _ | 931 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | 119 | 418 | 537 | 12.3 | 0.30 | _ | 931 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 19.7 | 69.2 | 88.9 | 2.03 | 0.05 | _ | 154 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |------------------------------|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | Total | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 19.7 | 69.2 | 88.9 | 2.03 | 0.05 | _ | 154 | # 4.5. Waste Emissions by Land Use ### 4.5.2. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 136 | 0.00 | 136 | 13.6 | 0.00 | _ | 477 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 136 | 0.00 | 136 | 13.6 | 0.00 | _ | 477 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | 136 | 0.00 | 136 | 13.6 | 0.00 | _ | 477 | |--|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | - | _ | _ | _ | - | - | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 136 | 0.00 | 136 | 13.6 | 0.00 | _ | 477 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 22.6 | 0.00 | 22.6 | 2.25 | 0.00 | _ | 78.9 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 22.6 | 0.00 | 22.6 | 2.25 | 0.00 | _ | 78.9 | # 4.6. Refrigerant Emissions by Land Use ### 4.6.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|------|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 274 | 274 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 274 | 274 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | _ | _ | | 274 | 274 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 274 | 274 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | 45.4 | 45.4 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 45.4 | 45.4 | # 4.7. Offroad Emissions By Equipment Type ## 4.7.1. Unmitigated | Equ | uipme | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-----|-------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | nt | Тур | е | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|----------|---|---|---|----------|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.8. Stationary Emissions By Equipment Type ## 4.8.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| |
Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.9. User Defined Emissions By Equipment Type #### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Ontona |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.10. Soil Carbon Accumulation By Vegetation Type ### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio
n | TOG | ROG | | со | | PM10E | | | PM2.5E | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|---|-------|---|---|--------|---|---|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | T/ | otal |
 |
 | _ |
_ |
 |
_ |
 |
 |
 | | |------|------|------|------|---|-------|------|-------|------|------|------|--| | - 10 | Mai | | | | | | | | | | | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | | NOx | со | | | | | | PM2.5D | | | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|---|---|-----|----|---|---|---|---|---|--------|---|---|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data # 5.9. Operational Mobile Sources ## 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |-------------------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|-----------| | Unrefrigerated
Warehouse-No Rail | 318 | 213 | 197 | 104,265 | 5,546 | 3,709 | 3,433 | 1,818,308 | | User Defined Industrial | 60.0 | 40.1 | 37.1 | 19,673 | 1,254 | 839 | 776 | 411,218 | | Parking Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated #### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 403,433 | 134,478 | 14,721 | #### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | # 5.11. Operational Energy Consumption #### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |-------------------------------------|----------------------|-----|--------|--------|-----------------------| | Unrefrigerated Warehouse-No
Rail | 1,237,825 | 349 | 0.0330 | 0.0040 | 0.00 | | User Defined Industrial | 0.00 | 349 | 0.0330 | 0.0040 | 0.00 | | Parking Lot | 54,948 | 349 | 0.0330 | 0.0040 | 0.00 | | Other Asphalt Surfaces | 0.00 | 349 | 0.0330 | 0.0040 | 0.00 | # 5.12. Operational Water and Wastewater Consumption ## 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |----------------------------------|-------------------------|--------------------------| | Unrefrigerated Warehouse-No Rail | 62,195,844 | 2,643,004 | | User Defined Industrial | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | # 5.13. Operational Waste Generation ## 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |----------------------------------|------------------|-------------------------| | Unrefrigerated Warehouse-No Rail | 253 | 0.00 | | User Defined Industrial | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | # 5.14. Operational Refrigeration and Air Conditioning Equipment ## 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |-------------------------------------|----------------|--------------|-----|---------------|----------------------|-------------------|----------------| | Unrefrigerated
Warehouse-No Rail | Cold storage | User Defined | 150 | 7.50 | 7.50 | 7.50 | 25.0 | # 5.15. Operational Off-Road Equipment ## 5.15.1. Unmitigated | Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor | Factor | |--|--------| |--|--------| # 5.16. Stationary Sources ## 5.16.1. Emergency Generators and Fire Pumps | Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor | |----------------|-----------|----------------|---------------
-----------------|------------|-------------| | - qa.po , p o | | | | 110010 por 1001 | | | #### 5.16.2. Process Boilers | Equipment Type F | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) | |------------------|-----------|--------|--------------------------|------------------------------|------------------------------| |------------------|-----------|--------|--------------------------|------------------------------|------------------------------| #### 5.17. User Defined | Equipment Type | Fuel Type | |----------------|-----------| | _ | _ | ## 5.18. Vegetation 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated | Biomass Cover Type | Initial Acres | Final Acres | |--------------------|---------------|-------------| | Biomass Cover Type | Initial Acres | Tital Acres | 5.18.2. Sequestration 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|----------|-------------------------------|-------------------------------| | nee type | Mullipel | Electricity Saveu (KWII/year) | Inatural Gas Saveu (Diu/year) | # 6. Climate Risk Detailed Report ### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 29.1 | annual days of extreme heat | | Extreme Precipitation | 2.10 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 6.94 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures # 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 97.0 | | AQ-PM | 59.4 | | AQ-DPM | 37.5 | | Drinking Water | 9.23 | | Lead Risk Housing | 47.7 | | Pesticides | 62.1 | | Toxic Releases | 42.9 | | Traffic | 88.8 | | Effect Indicators | _ | | CleanUp Sites | 86.7 | | Groundwater | 47.4 | | Haz Waste Facilities/Generators | 10.2 | | Impaired Water Bodies | 0.00 | |---------------------------------|------| | Solid Waste | 52.9 | | Sensitive Population | _ | | Asthma | 60.6 | | Cardio-vascular | 85.8 | | Low Birth Weights | 31.7 | | Socioeconomic Factor Indicators | _ | | Education | 87.7 | | Housing | 81.3 | | Linguistic | 64.8 | | Poverty | 83.3 | | Unemployment | 60.6 | ## 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 6.351854228 | | Employed | 6.03105351 | | Median HI | 12.11343513 | | Education | | | Bachelor's or higher | 2.912870525 | | High school enrollment | 14.38470422 | | Preschool enrollment | 8.892595919 | | Transportation | | | Auto Access | 50.17323239 | | Active commuting | 15.14179392 | | Social | _ | |--|-------------| | 2-parent households | 34.73630181 | | Voting | 3.888104709 | | Neighborhood | _ | | Alcohol availability | 71.10227127 | | Park access | 2.194276915 | | Retail density | 13.39663801 | | Supermarket access | 2.399589375 | | Tree canopy | 1.013730271 | | Housing | _ | | Homeownership | 46.10547928 | | Housing habitability | 18.85025022 | | Low-inc homeowner severe housing cost burden | 75.25984858 | | Low-inc renter severe housing cost burden | 7.994353907 | | Uncrowded housing | 6.73681509 | | Health Outcomes | _ | | Insured adults | 2.810214295 | | Arthritis | 0.0 | | Asthma ER Admissions | 42.6 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.2 | | Cognitively Disabled | 44.8 | | Physically Disabled | 41.1 | |---------------------------------------|------| | Heart Attack ER Admissions | 12.7 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 86.0 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 0.0 | | SLR Inundation Area | 0.0 | | Children | 51.6 | | Elderly | 79.3 | | English Speaking | 32.3 | | Foreign-born | 68.1 | | Outdoor Workers | 7.0 |
 Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 94.5 | | Traffic Density | 80.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 97.3 | | Other Decision Support | _ | | 2016 Voting | 8.9 | |-------------|-----| | | | #### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 79.0 | | Healthy Places Index Score for Project Location (b) | 2.00 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | Yes | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data | Screen | Justification | |--------------------------|--| | Land Use | Total Project area is 15.63 acres | | Operations: Vehicle Data | Trip characteristics based on information provided in the Traffic Analysis | | Operations: Fleet Mix | Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis | | Operations: Energy Use | The Project will not use natural gas | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Operations: Refrigerants | Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is | |--------------------------|--| | i v | prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022 | # MFBC Building 18 (Operations) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.2. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.2. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.2. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | |-----------------------------|--| | Project Name | MFBC Building 18 (Operations) | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 9.00 | | Location | 33.85642023269851, -117.26415304675538 | | County | Riverside-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5479 | | EDFZ | 11 | | Electric Utility | Southern California Edison | | Gas Utility | Southern California Gas | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq
ft) | Special Landscape
Area (sq ft) | Population | Description | |-------------------------------------|------|-------------------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------| | Unrefrigerated
Warehouse-No Rail | 334 | 1000sqft | 8.98 | 333,648 | 57,619 | 0.00 | _ | _ | | User Defined Industrial | 334 | User Defined Unit | 0.00 | 0.00 | 0.00 | 0.00 | _ | _ | | Parking Lot | 280 | Space | 1.58 | 0.00 | 0.00 | 0.00 | _ | _ | |---------------------------|-----|----------|------|------|------|------|---|---| | Other Asphalt
Surfaces | 116 | 1000sqft | 2.66 | 0.00 | 0.00 | 0.00 | _ | _ | ### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary ## 2.4. Operations Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 4.69 | 12.2 | 5.96 | 39.2 | 0.09 | 0.11 | 2.50 | 2.61 | 0.11 | 0.47 | 0.58 | 317 | 11,538 | 11,855 | 32.5 | 1.17 | 371 | 13,386 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 2.03 | 9.77 | 6.17 | 20.3 | 0.09 | 0.09 | 2.50 | 2.59 | 0.09 | 0.47 | 0.56 | 317 | 11,093 | 11,410 | 32.5 | 1.17 | 341 | 12,911 | | Average
Daily
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unmit. | 3.25 | 10.9 | 4.68 | 25.4 | 0.07 | 0.08 | 1.84 | 1.92 | 0.08 | 0.34 | 0.43 | 317 | 8,779 | 9,096 | 32.4 | 0.97 | 350 | 10,545 | | Annual
(Max) | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | | Unmit. | 0.59 | 1.99 | 0.85 | 4.64 | 0.01 | 0.01 | 0.34 | 0.35 | 0.02 | 0.06 | 0.08 | 52.5 | 1,453 | 1,506 | 5.37 | 0.16 | 57.9 | 1,746 | ## 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|----------|-------|--------|--------|--------|------|--------|--------|---------|---------|------|--------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 2.11 | 1.83 | 5.83 | 24.6 | 0.09 | 0.09 | 2.50 | 2.59 | 0.09 | 0.47 | 0.56 | _ | 9,448 | 9,448 | 0.24 | 0.78 | 31.1 | 9,716 | | Area | 2.58 | 10.4 | 0.12 | 14.5 | < 0.005 | 0.02 | _ | 0.02 | 0.03 | _ | 0.03 | _ | 59.7 | 59.7 | < 0.005 | 0.01 | _ | 61.4 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,524 | 1,524 | 0.14 | 0.02 | _ | 1,533 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 148 | 506 | 654 | 15.2 | 0.37 | _ | 1,143 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 169 | 0.00 | 169 | 16.9 | 0.00 | _ | 591 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 340 | 340 | | Total | 4.69 | 12.2 | 5.96 | 39.2 | 0.09 | 0.11 | 2.50 | 2.61 | 0.11 | 0.47 | 0.58 | 317 | 11,538 | 11,855 | 32.5 | 1.17 | 371 | 13,386 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 2.03 | 1.75 | 6.17 | 20.3 | 0.09 | 0.09 | 2.50 | 2.59 | 0.09 | 0.47 | 0.56 | _ | 9,062 | 9,062 | 0.25 | 0.79 | 0.81 | 9,303 | | Area | _ | 8.02 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,524 | 1,524 | 0.14 | 0.02 | _ | 1,533 | | Water | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | _ | 148 | 506 | 654 | 15.2 | 0.37 | _ | 1,143 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 169 | 0.00 | 169 | 16.9 | 0.00 | _ | 591 | |
Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 340 | 340 | | Total | 2.03 | 9.77 | 6.17 | 20.3 | 0.09 | 0.09 | 2.50 | 2.59 | 0.09 | 0.47 | 0.56 | 317 | 11,093 | 11,410 | 32.5 | 1.17 | 341 | 12,911 | | Average
Daily | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Mobile | 1.49 | 1.28 | 4.60 | 15.5 | 0.06 | 0.07 | 1.84 | 1.91 | 0.07 | 0.34 | 0.41 | _ | 6,707 | 6,707 | 0.18 | 0.58 | 9.88 | 6,894 | | Area | 1.77 | 9.65 | 0.08 | 9.94 | < 0.005 | 0.01 | _ | 0.01 | 0.02 | _ | 0.02 | _ | 40.9 | 40.9 | < 0.005 | < 0.005 | _ | 42.1 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 1,524 | 1,524 | 0.14 | 0.02 | _ | 1,533 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 148 | 506 | 654 | 15.2 | 0.37 | _ | 1,143 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 169 | 0.00 | 169 | 16.9 | 0.00 | _ | 591 | | Refrig. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 340 | 340 | | Total | 3.25 | 10.9 | 4.68 | 25.4 | 0.07 | 0.08 | 1.84 | 1.92 | 0.08 | 0.34 | 0.43 | 317 | 8,779 | 9,096 | 32.4 | 0.97 | 350 | 10,545 | |---------|------|------|------|------|---------|---------|------|---------|---------|------|---------|------|-------|-------|---------|---------|------|--------| | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | | Mobile | 0.27 | 0.23 | 0.84 | 2.83 | 0.01 | 0.01 | 0.34 | 0.35 | 0.01 | 0.06 | 0.07 | _ | 1,110 | 1,110 | 0.03 | 0.10 | 1.64 | 1,141 | | Area | 0.32 | 1.76 | 0.02 | 1.81 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 6.77 | 6.77 | < 0.005 | < 0.005 | _ | 6.96 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 252 | 252 | 0.02 | < 0.005 | _ | 254 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 24.5 | 83.8 | 108 | 2.52 | 0.06 | _ | 189 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 28.0 | 0.00 | 28.0 | 2.80 | 0.00 | _ | 97.9 | | Refrig. | _ | | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 56.3 | 56.3 | | Total | 0.59 | 1.99 | 0.85 | 4.64 | 0.01 | 0.01 | 0.34 | 0.35 | 0.02 | 0.06 | 0.08 | 52.5 | 1,453 | 1,506 | 5.37 | 0.16 | 57.9 | 1,746 | # 4. Operations Emissions Details # 4.1. Mobile Emissions by Land Use ## 4.1.1. Unmitigated | Land
Use | TOG | ROG | | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 1.90 | 1.72 | 1.13 | 23.2 | 0.05 | 0.02 | 1.83 | 1.85 | 0.02 | 0.31 | 0.33 | _ | 5,042 | 5,042 | 0.16 | 0.11 | 18.3 | 5,099 | | User
Defined
Industrial | 0.20 | 0.12 | 4.71 | 1.40 | 0.04 | 0.07 | 0.67 | 0.74 | 0.07 | 0.16 | 0.22 | _ | 4,406 | 4,406 | 0.08 | 0.66 | 12.8 | 4,617 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |--|------|------|------|------|------|---------|------|------|---------|------|------|---|-------|-------|------|------|------|-------| | | 2.11 | 1.83 | 5.83 | 24.6 | 0.09 | 0.09 | 2.50 | 2.59 | 0.09 | 0.47 | 0.56 | _ | 9,448 | 9,448 | 0.24 | 0.78 | 31.1 | 9,716 | | Daily,
Winter
(Max) | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 1.83 | 1.64 | 1.25 | 18.9 | 0.05 | 0.02 | 1.83 | 1.85 | 0.02 | 0.31 | 0.33 | _ | 4,655 | 4,655 | 0.17 | 0.12 | 0.47 | 4,696 | | User
Defined
Industrial | 0.20 | 0.11 | 4.92 | 1.42 | 0.04 | 0.07 | 0.67 | 0.74 | 0.07 | 0.16 | 0.22 | - | 4,407 | 4,407 | 0.08 | 0.66 | 0.33 | 4,607 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 2.03 | 1.75 | 6.17 | 20.3 | 0.09 | 0.09 | 2.50 | 2.59 | 0.09 | 0.47 | 0.56 | _ | 9,062 | 9,062 | 0.25 | 0.79 | 0.81 | 9,303 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.24 | 0.22 | 0.17 | 2.64 | 0.01 | < 0.005 | 0.25 | 0.25 | < 0.005 | 0.04 | 0.04 | _ | 574 | 574 | 0.02 | 0.02 | 0.96 | 580 | | User
Defined
Industrial | 0.03 | 0.02 | 0.67 | 0.19 | 0.01 | 0.01 | 0.09 | 0.10 | 0.01 | 0.02 | 0.03 | _ | 537 | 537 | 0.01 | 0.08 | 0.68 | 562 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.27 | 0.23 | 0.84 | 2.83 | 0.01 | 0.01 | 0.34 | 0.35 | 0.01 | 0.06 | 0.07 | | 1,110 | 1,110 | 0.03 | 0.10 | 1.64 | 1,141 | # 4.2. Energy ## 4.2.1. Electricity Emissions By Land Use - Unmitigated | | | | | | | ual) and | | | | | | | ND 0 0 c | 000= | 0.11 | | | | |--|-----|----------|-----|----|-----|----------|-------|-------|--------|--------|--------|------|----------|-------|------|---------|---|-------| | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,467 | 1,467 | 0.14 | 0.02 | _ | 1,475 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | - | _ | _ | - | - | _ | _ | - | - | _ | _ | 57.6 | 57.6 | 0.01 | < 0.005 | _ | 57.9 | | Other
Asphalt
Surfaces | _ | _ | _ | - | _ | _ | _ | _ | - | - | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,524 | 1,524 | 0.14 | 0.02 | _ | 1,533 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1,467 | 1,467 | 0.14 | 0.02 | _ | 1,475 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 57.6 | 57.6 | 0.01 | < 0.005 | _ | 57.9 | |--|---|---|---|---|---|---|---|---|---|---|---|---|-------|-------|---------|---------|---|-------| | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | | | _ | | _ | _ | _ | _ | _ | _ | _ | 1,524 | 1,524 | 0.14 | 0.02 | _ | 1,533 | | Annual | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 243 | 243 | 0.02 | < 0.005 | _ | 244 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 9.53 | 9.53 | < 0.005 | < 0.005 | _ | 9.59 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 252 | 252 | 0.02 | < 0.005 | _ | 254 | ## 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |
Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | User
Defined
Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |------------------------------|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.3. Area Emissions by Source ## 4.3.2. Unmitigated | Source | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|---------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 7.15 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.86 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 2.58 | 2.38 | 0.12 | 14.5 | < 0.005 | 0.02 | _ | 0.02 | 0.03 | _ | 0.03 | _ | 59.7 | 59.7 | < 0.005 | 0.01 | _ | 61.4 | | Total | 2.58 | 10.4 | 0.12 | 14.5 | < 0.005 | 0.02 | _ | 0.02 | 0.03 | _ | 0.03 | _ | 59.7 | 59.7 | < 0.005 | 0.01 | _ | 61.4 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 7.15 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.86 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------------------|------|------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Total | _ | 8.02 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | _ | 1.31 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Architect
ural
Coatings | _ | 0.16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Landsca
pe
Equipme
nt | 0.32 | 0.30 | 0.02 | 1.81 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 6.77 | 6.77 | < 0.005 | < 0.005 | _ | 6.96 | | Total | 0.32 | 1.76 | 0.02 | 1.81 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 6.77 | 6.77 | < 0.005 | < 0.005 | _ | 6.96 | # 4.4. Water Emissions by Land Use ## 4.4.2. Unmitigated | Land
Use | TOG | ROG | | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|-------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 148 | 506 | 654 | 15.2 | 0.37 | _ | 1,143 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |--|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|-------| | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 148 | 506 | 654 | 15.2 | 0.37 | _ | 1,143 | | Daily,
Winter
(Max) | _ | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | - | - | _ | _ | - | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 148 | 506 | 654 | 15.2 | 0.37 | _ | 1,143 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 148 | 506 | 654 | 15.2 | 0.37 | _ | 1,143 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | 24.5 | 83.8 | 108 | 2.52 | 0.06 | _ | 189 | | User
Defined
Industrial | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | |------------------------------|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | Total | _ | | _ | _ | _ | _ | _ | _ | | _ | _ | 24.5 | 83.8 | 108 | 2.52 | 0.06 | _ | 189 | # 4.5. Waste Emissions by Land Use ## 4.5.2. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 169 | 0.00 | 169 | 16.9 | 0.00 | _ | 591 | | User
Defined
Industrial | _ | - | _ | _ | _ | | _ | _ | _ | | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 169 | 0.00 | 169 | 16.9 | 0.00 | _ | 591 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 169 | 0.00 | 169 | 16.9 | 0.00 | _ | 591 | |--|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | User
Defined
Industrial | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | _ | _ | - | _ | _ | _ | _ | _ | - | - | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 169 | 0.00 | 169 | 16.9 | 0.00 | _ | 591 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 28.0 | 0.00 | 28.0 | 2.80 | 0.00 | _ | 97.9 | | User
Defined
Industrial | _ | _ | - | | _ | _ | _ | _ | _ | - | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 28.0 | 0.00 | 28.0 | 2.80 | 0.00 | _ | 97.9 | # 4.6. Refrigerant Emissions by Land Use ## 4.6.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|------|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 340 | 340 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 340 | 340 | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 340 | 340 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 340 | 340 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-No
Rail | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 56.3 | 56.3 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 56.3 | 56.3 | # 4.7. Offroad Emissions By Equipment Type ## 4.7.1.
Unmitigated | | | | | , , , , , , , , , , , , , , , , , , , | | | | | | | | | | | | | | | |---------|-----|-----|-----|---|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Equipme | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | nt | Туре | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|----------|---|---|---|----------|---|---|---|---|---| | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | <u> </u> | _ | _ | _ | <u> </u> | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.8. Stationary Emissions By Equipment Type ## 4.8.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | | | <i>J</i> , | | | | | <u>, , , , , , , , , , , , , , , , , , , </u> | | | | | | | | | | |---------------------------|-----|-----|-----|------------|-----|-------|-------|-------|---|--------|--------|------|-------|------|-----|-----|---|------| | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.9. User Defined Emissions By Equipment Type #### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.10. Soil Carbon Accumulation By Vegetation Type ### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | | ROG | | | | | | | PM2.5E | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|---|-----|---|---|---|---|---|---|--------|---|---|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | | _ | | _ | _ | _ | _ | _ | _ | _ | | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ |
_ | _ | _ | _ | _ |
_ | _ |
_ | |-------|---|---|---|---|---|---|---|-------|---|---|---|---|-------|---|-------| | iotai | | | | | | | | | | | | | | | | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ## 5.9. Operational Mobile Sources ## 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |-------------------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|-----------| | Unrefrigerated
Warehouse-No Rail | 394 | 42.1 | 16.8 | 105,799 | 6,871 | 735 | 294 | 1,845,055 | | User Defined Industrial | 74.0 | 7.91 | 3.17 | 19,871 | 1,534 | 164 | 65.7 | 412,009 | | Parking Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated #### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 500,472 | 166,824 | 11,091 | #### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ## 5.11. Operational Energy Consumption #### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |-------------------------------------|----------------------|-----|--------|--------|-----------------------| | Unrefrigerated Warehouse-No
Rail | 1,535,565 | 349 | 0.0330 | 0.0040 | 0.00 | | User Defined
Industrial | 0.00 | 349 | 0.0330 | 0.0040 | 0.00 | | Parking Lot | 60,291 | 349 | 0.0330 | 0.0040 | 0.00 | | Other Asphalt Surfaces | 0.00 | 349 | 0.0330 | 0.0040 | 0.00 | ## 5.12. Operational Water and Wastewater Consumption ## 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |----------------------------------|-------------------------|--------------------------| | Unrefrigerated Warehouse-No Rail | 77,156,100 | 913,590 | | User Defined Industrial | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | ## 5.13. Operational Waste Generation ## 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |----------------------------------|------------------|-------------------------| | Unrefrigerated Warehouse-No Rail | 314 | 0.00 | | User Defined Industrial | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | ## 5.14. Operational Refrigeration and Air Conditioning Equipment ## 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |-------------------------------------|----------------|--------------|-----|---------------|----------------------|-------------------|----------------| | Unrefrigerated
Warehouse-No Rail | Cold storage | User Defined | 150 | 7.50 | 7.50 | 7.50 | 25.0 | ## 5.15. Operational Off-Road Equipment ## 5.15.1. Unmitigated | Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor | Factor | |--|--------| |--|--------| ## 5.16. Stationary Sources ## 5.16.1. Emergency Generators and Fire Pumps | Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor | |----------------|-----------|----------------|---------------|-----------------|------------|-------------| | - 4a.ba | | | | 110010 por 1001 | | | #### 5.16.2. Process Boilers | Equipment Type F | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) | |------------------|-----------|--------|--------------------------|------------------------------|------------------------------| |------------------|-----------|--------|--------------------------|------------------------------|------------------------------| #### 5.17. User Defined | Equipment Type | Fuel Type | |----------------|-----------| | _ | _ | ## 5.18. Vegetation 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated | Biomass Cover Type | Initial Acres | Final Acres | |--------------------|---------------|--------------| | Diomass Cover Type | miliai Acres | i ilai Acies | 5.18.2. Sequestration 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|----------|-------------------------------|-------------------------------| | nee type | Mullipel | Electricity Saveu (KWII/year) | Inatural Gas Saveu (Diu/year) | ## 6. Climate Risk Detailed Report ### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 29.1 | annual days of extreme heat | | Extreme Precipitation | 2.10 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 6.94 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | N/A | N/A | N/A | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | N/A | N/A | N/A | N/A | | Wildfire | N/A | N/A | N/A | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | N/A | N/A | N/A | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ## 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | _ | | AQ-Ozone | 97.0 | | AQ-PM | 59.4 | | AQ-DPM | 37.5 | | Drinking Water | 9.23 | | Lead Risk Housing | 47.7 | | Pesticides | 62.1 | | Toxic Releases | 42.9 | | Traffic | 88.8 | | Effect Indicators | _ | | CleanUp Sites | 86.7 | | Groundwater | 47.4 | | Haz Waste Facilities/Generators | 10.2 | | Impaired Water Bodies | 0.00 | |---------------------------------|------| | Solid Waste | 52.9 | | Sensitive Population | _ | | Asthma | 60.6 | | Cardio-vascular | 85.8 | | Low Birth Weights | 31.7 | | Socioeconomic Factor Indicators | _ | | Education | 87.7 | | Housing | 81.3 | | Linguistic | 64.8 | | Poverty | 83.3 | | Unemployment | 60.6 | ## 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared
to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | _ | | Above Poverty | 6.351854228 | | Employed | 6.03105351 | | Median HI | 12.11343513 | | Education | | | Bachelor's or higher | 2.912870525 | | High school enrollment | 14.38470422 | | Preschool enrollment | 8.892595919 | | Transportation | | | Auto Access | 50.17323239 | | Active commuting | 15.14179392 | | 34.73630181 | |-------------| | 3.888104709 | | _ | | 71.10227127 | | 2.194276915 | | 13.39663801 | | 2.399589375 | | 1.013730271 | | _ | | 46.10547928 | | 18.85025022 | | 75.25984858 | | 7.994353907 | | 6.73681509 | | _ | | 2.810214295 | | 0.0 | | 42.6 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | 16.2 | | 44.8 | | | | Physically Disabled | 41.1 | |---------------------------------------|------| | Heart Attack ER Admissions | 12.7 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 86.0 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 0.0 | | SLR Inundation Area | 0.0 | | Children | 51.6 | | Elderly | 79.3 | | English Speaking | 32.3 | | Foreign-born | 68.1 | | Outdoor Workers | 7.0 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 94.5 | | Traffic Density | 80.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 97.3 | | Other Decision Support | _ | | 2016 Voting | 8.9 | |-------------|-----| | | | ### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 79.0 | | Healthy Places Index Score for Project Location (b) | 2.00 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | Yes | | Project Located in a Low-Income Community (Assembly Bill 1550) | Yes | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. ## 8. User Changes to Default Data | Screen | Justification | |--------------------------|--| | Land Use | Total Project area is 13.23 acres | | Operations: Vehicle Data | Trip characteristics based on information provided in the Traffic Analysis | | Operations: Fleet Mix | Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis | | Operations: Energy Use | The Project will not use natural gas | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Operations: Refrigerants | Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is | |--------------------------|--| | i v | prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022 | This page intentionally left blank