Replenish Big Bear Program # **GREENHOUSE GAS ANALYSIS** **BIG BEAR AREA REGIONAL WASTEWATER AGENCY** PREPARED BY: Haseeb Qureshi hqureshi@urbanxroads.com Ali Dadabhoy adadabhoy@urbanxroads.com **SEPTEMBER 7, 2023** 15309-04 GHG Report # **TABLE OF CONTENTS** | | | F CONTENTS | | |----|-------|---|----| | | | CES | | | | | XHIBITS | | | | | ABLES | | | | | ABBREVIATED TERMS | | | EX | ECUTI | VE SUMMARY | 1 | | | ES.1 | Summary of Findings | 1 | | | ES.2 | Project Requirements | 1 | | 1 | IN | RODUCTION | | | | 1.1 | Site Location | | | | 1.2 | Project Description | | | 2 | | MATE CHANGE SETTING | | | _ | | Introduction to Global Climate Change (GCC) | | | | 2.1 | Global Climate Change Defined | | | | 2.2 | Greenhouse Gases | | | | 2.3 | Global Warming Potential | | | | 2.4 | Greenhouse Gas Emissions Inventories | | | | 2.6 | Effects of Climate Change in California | | | | 2.7 | Regulatory Setting | | | 3 | | OJECT GREENHOUSE GAS IMPACT | | | | 3.1 | Introduction | 42 | | | 3.2 | Standards of Significance | | | | 3.3 | California Emissions Estimator Model™ Employed To Analyze GHG Emissions | 42 | | | 3.4 | Construction Life-Cycle Analysis Not Required | 42 | | | 3.5 | Construction Emissions | 43 | | | 3.6 | Operational Emissions | 43 | | | 3.7 | Emissions Summary | 43 | | | 3.8 | Greenhouse Gas Emissions Findings and Recommendations | 44 | | 4 | RE | FERENCES | 46 | | 5 | CEI | RTIFICATIONS | 50 | # **APPENDICES** | APPENDIX 3.1: CALEEMOD REPLENISH BIG BEAR COMPONENT 1 UNMITIGATED EMISSIONS MODEL | |--| | OUTPUTS | | APPENDIX 3.2: CALEEMOD REPLENISH BIG BEAR COMPONENT 2 UNMITIGATED EMISSIONS MODEL | | OUTPUTS | | APPENDIX 3.3: CALEEMOD REPLENISH BIG BEAR COMPONENT 3 UNMITIGATED EMISSIONS MODEL | | OUTPUTS | | APPENDIX 3.4: CALEEMOD REPLENISH BIG BEAR COMPONENT 4 UNMITIGATED EMISSIONS MODEL | | OUTPUTS | | APPENDIX 3.5: CALEEMOD REPLENISH BIG BEAR COMPONENT 5 UNMITIGATED EMISSIONS MODEL | | OUTPUTS | | | | LIST OF EXHIBITS | | EXHIBIT 1-A: PROJECT LOCATION MAP6 | | EXHIBIT 2-A: SUMMARY OF PROJECTED GLOBAL WARMING IMPACT, 2070-2099 (AS COMPARED WITH | | 1961-1990) | | | | | | LIST OF TABLES | # **LIST OF ABBREVIATED TERMS** % Percent °C Degrees Celsius °F Degrees Fahrenheit (1) Reference AB Assembly Bill AB 32 Global Warming Solutions Act of 2006 AB 1493 Pavley Fuel Efficiency Standards AB 1181 California Water Conservation Landscaping Act of 2006 ACE Affordable Clean Energy Annex I Industrialized Nations APA Administrative Procedure Act AQIA Air Quality Impact Analysis BAU Business-As-Usual C_2F_6 Hexafluoroethane C₂H₆ Ethane $C_2H_2F_4$ Tetrafluroethane $C_2H_4F_2$ Ethylidene Fluoride CAA Federal Clean Air Act CalEEMod California Emissions Estimator Model CalEPA California Environmental Protection Agency CALGAPS California LBNL GHG Analysis of Policies Spreadsheet CALGreen California Green Building Standards Code CAPCOA California Air Pollution Control Officers Association CARB California Air Resource Board CBSC California Building Standards Commission CEC California Energy Commission CCR California Code of Regulations CEQA California Environmental Quality Act CDFA California Department of Food and Agriculture CFC Tetrafluoromethane CFC Chlorofluorocarbons CH₄ Methane CHF₃ Fluoroform CH₂FCF 1,1,1,2-tetrafluoroethane CH₃CF₂ 1,1-difluoroethane CNRA California Natural Resources Agency CNRA 2009 2009 California Climate Adaptation Strategy CO₂ Carbon Dioxide CO₂e Carbon Dioxide Equivalent Convention United Nation's Framework Convention on Climate Change COP Conference of the Parties CPUC California Public Utilities Commission EPA Environmental Protection Agency GCC Global Climate Change Gg Gigagram GHGA Greenhouse Gas Analysis GWP Global Warming Potential H₂O Water HFC Hydrofluorocarbons IPCC Intergovernmental Panel on Climate Change ISO Independent System Operator ITE Institute of Transportation Engineers kWh Kilowatt Hours lbs Pounds LBNL Lawrence Berkeley National Laboratory LCA Life-Cycle Analysis LCD Liquid Crystal Display LCFS Low Carbon Fuel Standard or Executive Order S-01-07 LEV III Low-Emission Vehicle LULUCF Land-Use, Land-Use Change and Forestry MMR Mandatory Reporting Rule MMTCO₂e Million Metric Ton of Carbon Dioxide Equivalent MPG Miles Per Gallon MPOs Metropolitan Planning Organizations MT/vr Metric Tons Per Year MTCO₂e Metric Ton of Carbon Dioxide Equivalent MTCO₂e/yr Metric Ton of Carbon Dioxide Equivalent Per Year MW Megawatts MWh Megawatts Per Hour MWELO California Department of Water Resources' Model Water Efficient N₂O Nitrous Oxide NDC Nationally Determined Contributions NF₃ Nitrogen Trifluoride NHTSA National Highway Traffic Safety Administration NIOSH National Institute for Occupational Safety and Health Non-Annex I Developing Nations OAL Office of Administrative Law OPR Office of Planning and Research PFC Perfluorocarbons ppb Parts Per Billion ppm Parts Per Million ppt Parts Per Trillion Project Replenish Big Bear Program RPS Renewable Portfolio Standards RTP/SCS Regional Transportation Plan/ Sustainable Communities Strategy SAR Second Assessment Report SB Senate Bill SB 32 California Global Warming Solutions Act of 2006 SB 375 Regional GHG Emissions Reduction Targets/Sustainable **Communities Strategies** SB 1078 Renewable Portfolio Standards SB 1368 Statewide Retail Provider Emissions Performance Standards SCAB South Coast Air Basin SCAG Southern California Association of Governments SCAQMD South Coast Air Quality Management District Scoping Plan California Air Resources Board Climate Change Scoping Plan SF₆ Sulfur Hexaflouride SLPS Short-Lived Climate Pollutant Strategy SP Service Population Title 20 Appliance Energy Efficiency Standards Title 24 California Building Code U.N. United Nations U.S. United States UNFCCC United Nations' Framework Convention on Climate Change URBEMIS Urban Emissions WCI Western Climate Initiative WRI World Resources Institute ZE/NZE Zero and Near-Zero Emissions ZEV Zero-Emissions Vehicles This page intentionally left blank # **EXECUTIVE SUMMARY** ## **ES.1** SUMMARY OF FINDINGS The results of this *Replenish Big Bear Program Greenhouse Gas Analysis* (GHGA) is summarized below based on the significance criteria in Section 3 of this report consistent with Appendix G of the California Environmental Quality Act (CEQA) Guidelines (1). Table ES-1 shows the findings of significance for potential greenhouse gas (GHG) impacts under CEQA. **TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS** | Analysis | Report
Section | Significance Findings | | |--|-------------------|-----------------------|-----------| | Analysis | | Unmitigated | Mitigated | | GHG Impact #1: The Project would not generate direct or indirect GHG emission that would result in a significant impact on the environment. | 3.8 | Less Than Significant | n/a | | GHG Impact #2: The Project would not conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs. | 3.8 | Less Than Significant | n/a | # **ES.2** PROJECT REQUIREMENTS The Project would be required to comply with regulations imposed by the State of California and the South Coast Air Quality Management District (SCAQMD) aimed at the reduction of air pollutant emissions. Those that are directly and indirectly applicable to the Project and that would assist in the reduction of GHG emissions include: - Global Warming Solutions Act of 2006 (Assembly Bill (AB) 32) (2). - Regional GHG Emissions Reduction Targets/Sustainable Communities Strategies (Senate Bill (SB) 375) (3). - Pavley Fuel Efficiency Standards (AB 1493). Establishes fuel efficiency ratings for new vehicles (4). - California Building Code (Title 24 California Code of Regulations (CCR)). Establishes energy efficiency requirements for new construction (5). - Appliance Energy Efficiency Standards (Title 20 CCR). Establishes energy efficiency requirements for appliances (6). - Low Carbon Fuel Standard (LCFS). Requires carbon content of fuel sold in California to be 10 percent (%) less by 2020 (7). - California Water Conservation in Landscaping Act of 2006 (AB 1881). Requires local agencies to adopt the Department of Water Resources updated Water Efficient Landscape Ordinance or equivalent by January 1, 2010 to ensure efficient landscapes in new development and reduced water waste in existing landscapes (8). - Statewide Retail Provider Emissions Performance Standards (SB 1368). Requires energy generators to achieve performance standards for GHG emissions (9). - Renewable Portfolio Standards (SB 1078 also referred to as RPS). Requires electric corporations to increase the amount of energy obtained from eligible renewable energy resources to 20 % by 2010 and 33% by 2020 (10). - California Global Warming Solutions Act of 2006 (SB 32). Requires the state to reduce statewide GHG emissions to 40% below 1990 levels by 2030, a reduction target that was first introduced in Executive Order B-30-15 (11). Promulgated regulations that will affect the Project's emissions are accounted for in the Project's GHG calculations provided in this report. In particular, AB 1493, LCFS, and RPS, and therefore are accounted for in the Project's emission calculations. This page intentionally left blank # 1 INTRODUCTION This report presents the results of the Greenhouse Gas Analysis (GHGA) prepared by Urban Crossroads, Inc., for the proposed Replenish Big Bear Program (Project). The purpose of this GHGA is to evaluate Project-related construction and operational emissions and determine the level of GHG impacts as a result of constructing and operating the proposed Project. # 1.1 SITE LOCATION The proposed Project site is located
within the Big Bear Valley Groundwater Management Zone (GMZ or Basin). Big Bear Lake and Baldwin Lake are located in the middle of this Basin. The overall project area consists of the Valley in the County of San Bernardino, as shown on Exhibit 1-A. # 1.2 PROJECT DESCRIPTION The proposed Project includes upgrades and additions to Big Bear Area Regional Wastewater Agency's (BBARWA) wastewater treatment plant (WWTP) to produce purified water through full advanced treatment to protect the receiving waters and their beneficial uses. The Replenish Big Bear Program would upgrade BBARWA's WWTP to produce full advanced treated water that would be retained within the Big Bear Valley watershed to be used to increase the sustainability of local water supplies, consequently, wastewater currently delivered to Lucerne Valley will be modified. The proposed Project consists of construction and operation of the various facilities which are separated into five project categories: 1) Replenish Big Bear Component 1: Lake Discharge Pipeline Alignment; 2) Replenish Big Bear Component 2: Shay Pond; 3) Replenish Big Bear Component 3: Evaporation Pond; 4) Replenish Big Bear Component 4: BBARWA WWTP Upgrades; and 5) Replenish Big Bear Component 5: Sand Canyon. #### REPLENISH BIG BEAR COMPONENT 1: BBARWA WWTP UPGRADES This Replenish Big Bear Component includes upgrades to the BBARWA WWTP, to include 2.2 MGD of full advanced treatment, producing up to 2,210 AFY of purified water. The upgrades include the construction of a 40,000 SF building which would provide the following upgrades and new construction in order of process flow: - Upgrades to the Oxidation Ditches - New Denitrification Filter - New UF and RO filtration membranes - New UV Disinfection - New AOP - New Pellet Reactor: 0.22 MGD The BBARWA WWTP Treatment Upgrades also includes the installation of about 1,350 LF of brine pipeline anticipated to be sized between 8" to 10" from the pellet reactor to the solar evaporation ponds. Additionally, the BBARWA WWTP Treatment Upgrades also includes installation of a 50 gpm brine pump station and a 1,520 gpm pump station at the BBARWA WWTP to pump purified water to Shay Pond and Stanfield Marsh. #### REPLENISH BIG BEAR COMPONENT 2: LAKE DISCHARGE PIPELINE ALIGNMENT The Replenish Big Bear Program would ultimately install a pipeline utilizing one of three alignments from the WWTP to Stanfield Marsh in the amount of about 19,940 LF sized at 12" in diameter. ## REPLENISH BIG BEAR COMPONENT 3: SHAY POND CONVEYANCE PIPELINE The Replenish Big Bear Program would ultimately install about 710 LF of 4" pipeline to reach Shay Pond from either an existing pipeline or a new 6" pipeline that would be 5,600 LF. As such, this Replenish Big Bear Component includes the installation of up to 6,310 LF of conveyance pipeline. ## REPLENISH BIG BEAR COMPONENT 4: EVAPORATION POND The Replenish Big Bear Program would include between 23 and 57 acres of evaporation ponds at the BBARWA WWTP site. The ponds would be segmented into different storage basins to allow for evaporation of the brine stream in a cycle of filling with brine, allowing the brine to evaporate, and then removing remaining brine. This Replenish Big Bear Component includes the installation of up to 2 monitoring wells. #### REPLENISH BIG BEAR COMPONENT 5: SAND CANYON The Sand Canyon groundwater recharge project involves extracting Project water stored in the Lake to a temporary storage pond using existing infrastructure owned by a local resort. The Project water will then be pumped and conveyed to the Sand Canyon recharge area using a new pump station and pipeline. As part of the Replenish Big Bear Program, the following will be constructed: - A new 471 gpm pump station near the snowmaking pond, at the BBLDWP Sand Canyon Well site, to convey water to Sand Canyon. - A new 8-inch pipeline that will discharge into Sand Canyon and will be approximately 7,200 feet in length. - Two monitoring wells for groundwater recharge at Sand Canyon, as required by the future discharge permit. - Installation of erosion control using rip rap or similar erosion control methods, at Sand Canyon. JOHNSON VI HOLCOMB VALLEY Site SAN BERNAREINO Souices: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esti Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap cantalputors, and the GIS **EXHIBIT 1-A: PROJECT LOCATION MAP** This page intentionally left blank # 2 CLIMATE CHANGE SETTING # 2.1 Introduction to Global Climate Change (GCC) GCC is defined as the change in average meteorological conditions on the earth with respect to temperature, precipitation, and storms. The majority of scientists believe that the climate shift taking place since the Industrial Revolution is occurring at a quicker rate and magnitude than in the past. Scientific evidence suggests that GCC is the result of increased concentrations of GHGs in the earth's atmosphere, including carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), and fluorinated gases. The majority of scientists believe that this increased rate of climate change is the result of GHGs resulting from human activity and industrialization over the past 200 years. An individual project like the proposed Project evaluated in this GHGA cannot generate enough GHG emissions to affect a discernible change in global climate. However, the proposed Project may participate in the potential for GCC by its incremental contribution of GHGs combined with the cumulative increase of all other sources of GHGs, which when taken together constitute potential influences on GCC. Because these changes may have serious environmental consequences, Section 3.0 will evaluate the potential for the proposed Project to have a significant effect upon the environment as a result of its potential contribution to the greenhouse effect. # 2.2 GLOBAL CLIMATE CHANGE DEFINED GCC refers to the change in average meteorological conditions on the earth with respect to temperature, wind patterns, precipitation and storms. Global temperatures are regulated by naturally occurring atmospheric gases such as water vapor, CO_2 , N_2O , CH_4 , hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). These particular gases are important due to their residence time (duration they stay) in the atmosphere, which ranges from 10 years to more than 100 years. These gases allow solar radiation into the earth's atmosphere, but prevent radioactive heat from escaping, thus warming the earth's atmosphere. GCC can occur naturally as it has in the past with the previous ice ages. Gases that trap heat in the atmosphere are often referred to as GHGs. GHGs are released into the atmosphere by both natural and anthropogenic activity. Without the natural GHG effect, the earth's average temperature would be approximately 61 degrees Fahrenheit (°F) cooler than it is currently. The cumulative accumulation of these gases in the earth's atmosphere is considered to be the cause for the observed increase in the earth's temperature. # 2.3 GREENHOUSE GASES # 2.3.1 GHGs and Health Effects GHGs trap heat in the atmosphere, creating a GHG effect that results in global warming and climate change. Many gases demonstrate these properties and as discussed in Table 2-1. For the purposes of this analysis, emissions of CO₂, CH₄, and N₂O were evaluated (see Table 3-1 later in this report) because these gases are the primary contributors to GCC from development projects. Although there are other substances such as fluorinated gases that also contribute to GCC, these fluorinated gases were not evaluated as their sources are not well-defined and do not contain accepted emissions factors or methodology to accurately calculate these gases. **TABLE 2-1: GREENHOUSE GASES** | Greenhouse Gases | Description | Sources | Health Effects | |-------------------------|--|--|---| | Greenhouse Gases Water | Water is the most abundant, important, and variable GHG in the atmosphere. Water vapor is not considered a pollutant; in the atmosphere it maintains a climate necessary for life. Changes in its concentration
are primarily considered to be a result of climate feedbacks related to the warming of the atmosphere rather than a direct result of industrialization. A climate feedback is an indirect, or secondary, change, either positive or negative, that occurs within the climate system in response to a forcing mechanism. The feedback loop in which water is involved is critically important to projecting future climate change. As the temperature of the atmosphere rises, more water is evaporated from ground storage (rivers, oceans, reservoirs, soil). Because the air is warmer, the relative humidity can be higher (in essence, the air is able to 'hold' more water when it is warmer), leading to more water vapor in the atmosphere. As a GHG, the higher concentration of water vapor is then able to absorb more thermal indirect energy radiated from the Earth, thus further warming the atmosphere can then hold more water vapor and so on and so on. This is referred to as a "positive feedback loop." The extent to which this positive feedback loop will continue is | The main source of water vapor is evaporation from the oceans (approximately 85%). Other sources include evaporation from other water bodies, sublimation (change from solid to gas) from sea ice and snow, and transpiration from plant leaves. | Health Effects There are no known direct health effects related to water vapor at this time. It should be noted however that when some pollutants react with water vapor, the reaction forms a transport mechanism for some of these pollutants to enter the human body through water vapor. | | Greenhouse Gases | Description | Sources | Health Effects | |-------------------------|--|--|---| | | unknown as there are also dynamics that hold the positive feedback loop in check. As an example, when water vapor increases in the atmosphere, more of it will eventually condense into clouds, which are more able to reflect incoming solar radiation (thus allowing less energy to reach the earth's surface and heat it up) (12). | | | | CO ₂ | CO ₂ is an odorless and colorless GHG. Since the industrial revolution began in the mid-1700s, the sort of human activity that increases GHG emissions has increased dramatically in scale and distribution. Data from the past 50 years suggests a corollary increase in levels and concentrations. As an example, prior to the industrial revolution, CO ₂ concentrations were fairly stable at 280 parts per million (ppm). Today, they are around 370 ppm, an increase of more than 30%. Left unchecked, the concentration of CO ₂ in the atmosphere is projected to increase to a minimum of 540 ppm by 2100 as a direct result of anthropogenic sources (13). | CO ₂ is emitted from natural and manmade sources. Natural sources include: the decomposition of dead organic matter; respiration of bacteria, plants, animals and fungus; evaporation from oceans; and volcanic outgassing. Anthropogenic sources include: the burning of coal, oil, natural gas, and wood. CO ₂ is naturally removed from the air by photosynthesis, dissolution into ocean water, transfer to soils and ice caps, and chemical weathering of carbonate rocks (14). | Outdoor levels of CO ₂ are not high enough to result in negative health effects. According to the National Institute for Occupational Safety and Health (NIOSH) high concentrations of CO ₂ can result in health effects such as: headaches, dizziness, restlessness, difficulty breathing, sweating, increased heart rate, increased cardiac output, increased blood pressure, coma, asphyxia, and/or convulsions. It should be noted that current concentrations of CO ₂ in the earth's atmosphere are estimated to be approximately 370 ppm, the actual reference exposure level (level at which adverse health effects typically occur) is at exposure levels of 5,000 ppm averaged over 10 hours in a 40-hour workweek and short-term reference exposure levels of 30,000 ppm averaged over a 15 minute period (15). | | Greenhouse Gases | Description | Sources | Health Effects | |-------------------------|---|--|---| | CH ₄ | CH ₄ is an extremely effective absorber of radiation, although its atmospheric concentration is less than CO ₂ and its lifetime in the atmosphere is brief (10-12 years), compared to other GHGs. | CH ₄ has both natural and anthropogenic sources. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of CH ₄ . Other anthropocentric sources include fossil-fuel combustion and biomass burning (16). | CH ₄ is extremely reactive with oxidizers, halogens, and other halogen-containing compounds. Exposure to high levels of CH ₄ can cause asphyxiation, loss of consciousness, headache and dizziness, nausea and vomiting, weakness, loss of coordination, and an increased breathing rate. | | N ₂ O | N ₂ O, also known as laughing gas, is a colorless GHG. Concentrations of N ₂ O also began to rise at the beginning of the industrial revolution. In 1998, the global concentration was 314 parts per billion (ppb). | N ₂ O is produced by microbial processes in soil and water, including those reactions which occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions) also contribute to its atmospheric load. It is used as an aerosol spray propellant, i.e., in whipped cream bottles. It is also | N ₂ O can cause dizziness, euphoria, and sometimes slight hallucinations. In small doses, it is considered harmless. However, in some cases, heavy and extended use can cause Olney's Lesions (brain damage) (17). | | Greenhouse Gases | Description | Sources | Health Effects | |-------------------------------|---|---|---| | | | used in potato chip bags to keep chips
fresh. It is used in rocket engines and in race cars. N₂O can be transported into the stratosphere, be deposited on the earth's surface, and be converted to other compounds by chemical reaction (17). | | | Chlorofluorocarbons
(CFCs) | CFCs are gases formed synthetically by replacing all hydrogen atoms in CH ₄ or ethane (C ₂ H ₆) with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble and chemically unreactive in the troposphere (the level of air at the earth's surface). | CFCs have no natural source but were first synthesized in 1928. They were used for refrigerants, aerosol propellants and cleaning solvents. Due to the discovery that they are able to destroy stratospheric ozone, a global effort to halt their production was undertaken and was extremely successful, so much so that levels of the major CFCs are now remaining steady or declining. However, their long atmospheric lifetimes mean that some of the CFCs will remain in the atmosphere for over 100 years (18). | In confined indoor locations, working with CFC-113 or other CFCs is thought to result in death by cardiac arrhythmia (heart frequency too high or too low) or asphyxiation. | | Greenhouse Gases | Description | Sources | Health Effects | |-------------------------|--|--|--| | HFCs | HFCs are synthetic, man-made chemicals that are used as a substitute for CFCs. Out of all the GHGs, they are one of three groups with the highest global warming potential (GWP). The HFCs with the largest measured atmospheric abundances are (in order), fluoroform (CHF ₃), 1,1,1,2-tetrafluoroethane (CH ₂ FCF), and 1,1-difluoroethane (CH ₃ CF ₂). Prior to 1990, the only significant emissions were of CHF ₃ . CH ₂ FCF emissions are increasing due to its use as a refrigerant. | HFCs are manmade for applications such as automobile air conditioners and refrigerants. | No health effects are known to result from exposure to HFCs. | | PFCs | PFCs have stable molecular structures and do not break down through chemical processes in the lower atmosphere. High-energy ultraviolet rays, which occur about 60 kilometers above earth's surface, are able to destroy the compounds. Because of this, PFCs have very long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane (CF ₄) and hexafluoroethane (C ₂ F ₆). The EPA estimates that concentrations of CF ₄ in the atmosphere are over 70 parts per trillion (ppt). | The two main sources of PFCs are primary aluminum production and semiconductor manufacture. | No health effects are known to result from exposure to PFCs. | | SF ₆ | SF ₆ is an inorganic, odorless, colorless, nontoxic, nonflammable gas. It also has the highest GWP of any gas evaluated (23,900) (19). The EPA indicates that concentrations in the 1990s were about 4 ppt. | SF ₆ is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection. | In high concentrations in confined areas, the gas presents the hazard of suffocation because it displaces the oxygen needed for breathing. | | Greenhouse Gases | Description | Sources | Health Effects | |--|--|--|---| | Nitrogen Trifluoride
(NF ₃) | NF ₃ is a colorless gas with a distinctly moldy odor. The World Resources Institute (WRI) indicates that NF ₃ has a 100-year GWP of 17,200 (20). | NF ₃ is used in industrial processes and is produced in the manufacturing of semiconductors, Liquid Crystal Display (LCD) panels, types of solar panels, and chemical lasers. | Long-term or repeated exposure may affect the liver and kidneys and may cause fluorosis (21). | The potential health effects related directly to the emissions of CO₂, CH₄, and N₂O as they relate to development projects such as the proposed Project are still being debated in the scientific community. Their cumulative effects to GCC have the potential to cause adverse effects to human health. Increases in Earth's ambient temperatures would result in more intense heat waves, causing more heat-related deaths. Scientists also purport that higher ambient temperatures would increase disease survival rates and result in more widespread disease. Climate change will likely cause shifts in weather patterns, potentially resulting in devastating droughts and food shortages in some areas (22). Exhibit 2-A presents the potential impacts of global warming (23). EXHIBIT 2-A: SUMMARY OF PROJECTED GLOBAL WARMING IMPACT, 2070-2099 (AS COMPARED WITH 1961-1990) Source: Barbara H. Allen-Diaz. "Climate change affects us all." University of California, Agriculture and Natural Resources, 2009. # 2.4 GLOBAL WARMING POTENTIAL GHGs have varying GWP values. GWP of a GHG indicates the amount of warming a gas cause over a given period of time and represents the potential of a gas to trap heat in the atmosphere. CO_2 is utilized as the reference gas for GWP, and thus has a GWP of 1. CO_2 equivalent (CO_2 e) is a term used for describing the difference GHGs in a common unit. CO_2 e signifies the amount of CO_2 which would have the equivalent GWP. The atmospheric lifetime and GWP of selected GHGs are summarized at Table 2-2. As shown in the table below, GWP for the 6^{th} Assessment Report, the Intergovernmental Panel on Climate Change (IPCC)'s scientific and socio-economic assessment on climate change, range from 1 for CO_2 to 25,200 for SF_6 (24). TABLE 2-2: GWP AND ATMOSPHERIC LIFETIME OF SELECT GHGS | Coo | Atmospheric Lifetime | GWP (100-year time horizon) | | |------------------|----------------------|-----------------------------------|--| | Gas | (years) | 6 th Assessment Report | | | CO ₂ | Multiple | 1 | | | CH ₄ | 12 .4 | 28 | | | N ₂ O | 121 | 273 | | | HFC-23 | 222 | 14,600 | | | HFC-134a | 13.4 | 1,526 | | | HFC-152a | 1.5 | 164 | | | SF ₆ | 3,200 | 25,200 | | Source: IPCC Second Assessment Report, 1995 and IPCC Sixth Assessment Report, 2022 # 2.5 Greenhouse Gas Emissions Inventories # **2.5.1 GLOBAL** Worldwide anthropogenic GHG emissions are tracked by the IPCC for industrialized nations (referred to as Annex I) and developing nations (referred to as Non-Annex I). Human GHG emissions data for Annex I nations are available through 2020. Based on the latest available data, the sum of these emissions totaled approximately 28,026,643 gigagram (Gg) CO₂e¹ (25) (26) as summarized on Table 2-3. (URBAN 15309-04 GHG Report 15 The global emissions are the sum of Annex I and non-Annex I countries, without counting Land-Use, Land-Use Change and Forestry (LULUCF). For countries without 2020 data, the United Nations' Framework Convention on Climate Change (UNFCCC) data for the most recent year were used U.N. Framework Convention on Climate Change, "Annex I Parties – GHG total without LULUCF," The most recent GHG emissions for China and India are from 2014 and 2016, respectively. #### 2.5.2 UNITED STATES As noted in Table 2-3, the United States, as a single country, was the number two producer of GHG emissions in 2020. TABLE 2-3: TOP GHG PRODUCING COUNTRIES AND THE EUROPEAN UNION 2 | Emitting Countries | GHG Emissions (Gg CO₂e) | |--------------------------------------|-------------------------| | China | 12,300,200 | | United States | 5,981,354 | | European Union (27-member countries) | 3,706,110 | | India | 2,839,420 | | Russian Federation | 2,051,437 | | Japan | 1,148,122 | | Total | 28,026,643 | #### 2.5.3 STATE OF CALIFORNIA California has significantly slowed the rate of growth of GHG emissions due to the implementation of energy efficiency programs as well as adoption of strict emission controls but is still a substantial contributor to the United States (U.S.) emissions inventory total (27). The California Air Resource Board (CARB) compiles GHG inventories for the State of California. Based upon the 2022 GHG inventory data (i.e., the latest year for which data are available) for the 2000-2020 GHG emissions period, California emitted an average 369.2 million metric tons of CO_2e per year (MMTCO₂e/yr) or 369,200 Gg CO_2e (6.17% of the total United States GHG emissions) (28). # 2.6 EFFECTS OF CLIMATE CHANGE IN CALIFORNIA # 2.6.1 PUBLIC HEALTH Higher temperatures may increase the frequency, duration, and intensity of conditions conducive to air pollution formation. For example, days with weather conducive to ozone formation could increase from 25 to 35% under the lower warming range to 75 to 85% under the medium warming range. In addition, if global background ozone levels increase as predicted in some scenarios, it may become impossible to meet local air quality standards.
Air quality could be further compromised by increases in wildfires, which emit fine particulate matter that can travel long distances, depending on wind conditions. Based on *Our Changing Climate Assessing the Risks to California by the California Climate Change Center*, large wildfires could become up to 55% more frequent if GHG emissions are not significantly reduced (29). In addition, under the higher warming range scenario, there could be up to 100 more days per year with temperatures above 90°F in Los Angeles and 95°F in Sacramento by 2100. This is a large increase over historical patterns and approximately twice the increase projected if temperatures _ ² Used https://unfccc.int data for Annex I countries. Consulted the CAIT Climate Data Explorer in https://www.climatewatchdata.org site to reference Non-Annex I countries of China and India. rempain within or below the lower warming range. Rising temperatures could increase the risk of death from dehydration, heat stroke/exhaustion, heart attack, stroke, and respiratory distress caused by extreme heat. # 2.6.2 WATER RESOURCES A vast network of man-made reservoirs and aqueducts captures and transports water throughout the state from northern California rivers and the Colorado River. The current distribution system relies on Sierra Nevada snowpack to supply water during the dry spring and summer months. Rising temperatures, potentially compounded by decreases in precipitation, could severely reduce spring snowpack, increasing the risk of summer water shortages. If temperatures continue to increase, more precipitation could fall as rain instead of snow, and the snow that does fall could melt earlier, reducing the Sierra Nevada spring snowpack by as much as 70 to 90%. Under the lower warming range scenario, snowpack losses could be only half as large as those possible if temperatures were to rise to the higher warming range. How much snowpack could be lost depends in part on future precipitation patterns, the projections for which remain uncertain. However, even under the wetter climate projections, the loss of snowpack could pose challenges to water managers and hamper hydropower generation. It could also adversely affect winter tourism. Under the lower warming range, the ski season at lower elevations could be reduced by as much as a month. If temperatures reach the higher warming range and precipitation declines, there might be many years with insufficient snow for skiing and snowboarding. The State's water supplies are also at risk from rising sea levels. An influx of saltwater could degrade California's estuaries, wetlands, and groundwater aquifers. Saltwater intrusion caused by rising sea levels is a major threat to the quality and reliability of water within the southern edge of the Sacramento/San Joaquin River Delta – a major fresh water supply. #### 2.6.3 AGRICULTURE Increased temperatures could cause widespread changes to the agriculture industry reducing the quantity and quality of agricultural products statewide. First, California farmers could possibly lose as much as 25% of the water supply needed. Although higher CO₂ levels can stimulate plant production and increase plant water-use efficiency, California's farmers could face greater water demand for crops and a less reliable water supply as temperatures rise. Crop growth and development could change, as could the intensity and frequency of pest and disease outbreaks. Rising temperatures could aggravate ozone pollution, which makes plants more susceptible to disease and pests and interferes with plant growth. Plant growth tends to be slow at low temperatures, increasing with rising temperatures up to a threshold. However, faster growth can result in less-than-optimal development for many crops, so rising temperatures could worsen the quantity and quality of yield for a number of California's agricultural products. Products likely to be most affected include wine grapes, fruits and nuts. In addition, continued GCC could shift the ranges of existing invasive plants and weeds and alter competition patterns with native plants. Range expansion could occur in many species while range contractions may be less likely in rapidly evolving species with significant populations already established. Should range contractions occur, new or different weed species could fill the emerging gaps. Continued GCC could alter the abundance and types of many pests, lengthen pests' breeding season, and increase pathogen growth rates. #### 2.6.4 FORESTS AND LANDSCAPES GCC has the potential to intensify the current threat to forests and landscapes by increasing the risk of wildfire and altering the distribution and character of natural vegetation. If temperatures rise into the medium warming range, the risk of large wildfires in California could increase by as much as 55%, which is almost twice the increase expected if temperatures stay in the lower warming range. However, since wildfire risk is determined by a combination of factors, including precipitation, winds, temperature, and landscape and vegetation conditions, future risks will not be uniform throughout the state. In contrast, wildfires in northern California could increase by up to 90% due to decreased precipitation. Moreover, continued GCC has the potential to alter natural ecosystems and biological diversity within the state. For example, alpine and subalpine ecosystems could decline by as much as 60 to 80% by the end of the century as a result of increasing temperatures. The productivity of the state's forests has the potential to decrease as a result of GCC. ## 2.6.5 RISING SEA LEVELS Rising sea levels, more intense coastal storms, and warmer water temperatures could increasingly threaten the state's coastal regions. Under the higher warming range scenario, sea level is anticipated to rise 22 to 35 inches by 2100. Elevations of this magnitude would inundate low-lying coastal areas with saltwater, accelerate coastal erosion, threaten vital levees and inland water systems, and disrupt wetlands and natural habitats. Under the lower warming range scenario, sea level could rise 12-14 inches. ## 2.7 REGULATORY SETTING ## 2.7.1 International Climate change is a global issue involving GHG emissions from all around the world; therefore, countries such as the ones discussed below have made an effort to reduce GHGs. # **IPCC** In 1988, the United Nations (U.N.) and the World Meteorological Organization established the IPCC to assess the scientific, technical and socioeconomic information relevant to understanding the scientific basis of risk of human-induced climate change, its potential impacts, and options for adaptation and mitigation. # United Nation's Framework Convention on Climate Change (UNFCCC) On March 21, 1994, the U.S. joined a number of countries around the world in signing the Convention. Under the Convention, governments gather and share information on GHG emissions, national policies, and best practices; launch national strategies for addressing GHG emissions and adapting to expected impacts, including the provision of financial and technological support to developing countries; and cooperate in preparing for adaptation to the impacts of climate change. #### **INTERNATIONAL CLIMATE CHANGE TREATIES** The Kyoto Protocol is an international agreement linked to the Convention. The major feature of the Kyoto Protocol is that it sets binding targets for 37 industrialized countries and the European community for reducing GHG emissions at an average of 5% against 1990 levels over the five-year period 2008–2012. The Convention (as discussed above) encouraged industrialized countries to stabilize emissions; however, the Protocol commits them to do so. Developed countries have contributed more emissions over the last 150 years; therefore, the Protocol places a heavier burden on developed nations under the principle of "common but differentiated responsibilities." In 2001, President George W. Bush indicated that he would not submit the treaty to the U.S. Senate for ratification, which effectively ended American involvement in the Kyoto Protocol. In December 2009, international leaders met in Copenhagen to address the future of international climate change commitments post-Kyoto. No binding agreement was reached in Copenhagen; however, the Committee identified the long-term goal of limiting the maximum global average temperature increase to no more than 2 degrees Celsius (°C) above pre-industrial levels, subject to a review in 2015. The UN Climate Change Committee held additional meetings in Durban, South Africa in November 2011; Doha, Qatar in November 2012; and Warsaw, Poland in November 2013. The meetings are gradually gaining consensus among participants on individual climate change issues. On September 23, 2014 more than 100 Heads of State and Government and leaders from the private sector and civil society met at the Climate Summit in New York hosted by the U.N. At the Summit, heads of government, business and civil society announced actions in areas that would have the greatest impact on reducing emissions, including climate finance, energy, transport, industry, agriculture, cities, forests, and building resilience. Parties to the U.N. Framework Convention on Climate Change (UNFCCC) reached a landmark agreement on December 12, 2015 in Paris, charting a fundamentally new course in the two-decade-old global climate effort. Culminating a four-year negotiating round, the new treaty ends the strict differentiation between developed and developing countries that characterized earlier efforts, replacing it with a common framework that commits all countries to put forward their best efforts and to strengthen them in the years ahead. This includes, for the first time, requirements that all parties report regularly on their emissions and implementation efforts and undergo international
review. The agreement and a companion decision by parties were the key outcomes of the conference, known as the 21st session of the UNFCCC Conference of the Parties (COP) 21. Together, the Paris Agreement and the accompanying COP decision: - Reaffirm the goal of limiting global temperature increase well below 2°C, while urging efforts to limit the increase to 1.5 degrees; - Establish binding commitments by all parties to make "nationally determined contributions" (NDCs), and to pursue domestic measures aimed at achieving them; - Commit all countries to report regularly on their emissions and "progress made in implementing and achieving" their NDCs, and to undergo international review; - Commit all countries to submit new NDCs every five years, with the clear expectation that they will "represent a progression" beyond previous ones; - Reaffirm the binding obligations of developed countries under the UNFCCC to support the efforts of developing countries, while for the first time encouraging voluntary contributions by developing countries too; - Extend the current goal of mobilizing \$100 billion a year in support by 2020 through 2025, with a new, higher goal to be set for the period after 2025; - Extend a mechanism to address "loss and damage" resulting from climate change, which explicitly will not "involve or provide a basis for any liability or compensation;" - Require parties engaging in international emissions trading to avoid "double counting;" and - Call for a new mechanism, similar to the Clean Development Mechanism under the Kyoto Protocol, enabling emission reductions in one country to be counted toward another country's NDC (C2ES 2015a) (30). Following President Biden's day one executive order, the United States officially rejoined the landmark Paris Agreement on February 19, 2021, positioning the country to once again be part of the global climate solution. Meanwhile, city, state, business, and civic leaders across the country and around the world have been ramping up efforts to drive the clean energy advances needed to meet the goals of the agreement and put the brakes on dangerous climate change. # 2.7.2 NATIONAL Prior to the last decade, there have been no concrete federal regulations of GHGs or major planning for climate change adaptation. The following are actions regarding the federal government, GHGs, and fuel efficiency. #### **GHG** ENDANGERMENT In Massachusetts v. Environmental Protection Agency 549 U.S. 497 (2007), decided on April 2, 2007, the United States Supreme Court (U.S. Court) found that four GHGs, including CO₂, are air pollutants subject to regulation under Section 202(a)(1) of the Clean Air Act (CAA). The Court held that the EPA Administrator must determine whether emissions of GHGs from new motor vehicles cause or contribute to air pollution, which may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned decision. On December 7, 2009, the EPA Administrator signed two distinct findings regarding GHGs under section 202(a) of the CAA: - Endangerment Finding: The Administrator finds that the current and projected concentrations of the six key well-mixed GHGs— CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆—in the atmosphere threaten the public health and welfare of current and future generations. - Cause or Contribute Finding: The Administrator finds that the combined emissions of these well-mixed GHGs from new motor vehicles and new motor vehicle engines contribute to the GHG pollution, which threatens public health and welfare. These findings do not impose requirements on industry or other entities. However, this was a prerequisite for implementing GHG emissions standards for vehicles, as discussed in the section "Clean Vehicles" below. After a lengthy legal challenge, the U.S. Court declined to review an Appeals Court ruling that upheld the EPA Administrator's findings (31). #### **CLEAN VEHICLES** Congress first passed the Corporate Average Fuel Economy law in 1975 to increase the fuel economy of cars and light duty trucks. The law has become more stringent over time. On May 19, 2009, President Obama put in motion a new national policy to increase fuel economy for all new cars and trucks sold in the U.S. On April 1, 2010, the EPA and the Department of Transportation's National Highway Traffic Safety Administration (NHTSA) announced a joint final rule establishing a national program that would reduce GHG emissions and improve fuel economy for new cars and trucks sold in the U.S. The first phase of the national program applies to passenger cars, light-duty trucks, and medium-duty (MD) passenger vehicles, covering model years 2012 through 2016. They require these vehicles to meet an estimated combined average emissions level of 250 grams of CO₂ per mile, equivalent to 35.5 miles per gallon (mpg) if the automobile industry were to meet this CO₂ level solely through fuel economy improvements. Together, these standards would cut CO₂ emissions by an estimated 960 million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012–2016). The EPA and the NHTSA issued final rules on a second-phase joint rulemaking establishing national standards for light-duty vehicles for model years 2017 through 2025 in August 2012. The new standards for model years 2017 through 2025 apply to passenger cars, light-duty trucks, and MD passenger vehicles. The final standards are projected to result in an average industry fleetwide level of 163 grams/mile of CO₂ in model year 2025, which is equivalent to 54.5 mpg if achieved exclusively through fuel economy improvements. The EPA and the U.S. Department of Transportation issued final rules for the first national standards to reduce GHG emissions and improve fuel efficiency of heavy-duty trucks (HDT) and buses on September 15, 2011, effective November 14, 2011. For combination tractors, the agencies are proposing engine and vehicle standards that begin in the 2014 model year and achieve up to a 20% reduction in CO₂ emissions and fuel consumption by the 2018 model year. For HDT and vans, the agencies are proposing separate gasoline and diesel truck standards, which phase in starting in the 2014 model year and achieve up to a 10% reduction for gasoline vehicles and a 15% reduction for diesel vehicles by the 2018 model year (12 and 17% respectively if accounting for air conditioning leakage). Lastly, for vocational vehicles, the engine and vehicle standards would achieve up to a 10% reduction in fuel consumption and CO_2 emissions from the 2014 to 2018 model years. On April 2, 2018, the EPA signed the Mid-term Evaluation Final Determination, which declared that the MY 2022-2025 GHG standards are not appropriate and should be revised (32). This Final Determination serves to initiate a notice to further consider appropriate standards for MY 2022-2025 light-duty vehicles. On August 2, 2018, the NHTSA in conjunction with the EPA, released a notice of proposed rulemaking, the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021-2026 Passenger Cars and Light Trucks (SAFE Vehicles Rule). The SAFE Vehicles Rule was proposed to amend existing Corporate Average Fuel Economy (CAFE) and tailpipe CO₂ standards for passenger cars and light trucks and to establish new standards covering model years 2021 through 2026. As of March 31, 2020, the NHTSA and EPA finalized the SAFE Vehicle Rule which increased stringency of CAFE and CO₂ emissions standards by 1.5% each year through model year 2026 (33). On December 21, 2021, after reviewing all the public comments submitted on NHTSA's April 2021 Notice of Proposed Rulemaking, NHTSA finalizes the CAFE Preemption rulemaking to withdraw its portions of the so-called SAFE I Rule. The final rule concludes that the SAFE I Rule overstepped the agency's legal authority and established overly broad prohibitions that did not account for a variety of important state and local interests. The final rule ensures that the SAFE I Rule will no longer form an improper barrier to states exploring creative solutions to address their local communities' environmental and public health challenges (34). On March 31, 2022, NHTSA finalized CAFE standards for MY 2024-2026. The standards for passenger cars and light trucks for MYs 2024-2025 were increased at a rate of 8% per year and then increased at a rate of 10% per year for MY 2026 vehicles. NHTSA currently projects that the revised standards would require an industry fleet-wide average of roughly 49 mpg in MY 2026 and would reduce average fuel outlays over the lifetimes of affected vehicles that provide consumers hundreds of dollars in net savings. These standards are directly responsive to the agency's statutory mandate to improve energy conservation and reduce the nation's energy dependence on foreign sources (35). ## MANDATORY REPORTING OF GHGS The Consolidated Appropriations Act of 2008, passed in December 2007, requires the establishment of mandatory GHG reporting requirements. On September 22, 2009, the EPA issued the Final Mandatory Reporting of GHGs Rule, which became effective January 1, 2010. The rule requires reporting of GHG emissions from large sources and suppliers in the U.S. and is intended to collect accurate and timely emissions data to inform future policy decisions. Under the rule, suppliers of fossil fuels or industrial GHGs, manufacturers of vehicles and engines, and facilities that emit 25,000 metric tons per year (MT/yr) or more of GHG emissions are required to submit annual reports to the EPA. #### **NEW SOURCE REVIEW** The EPA issued a final rule on May 13, 2010, that establishes thresholds for GHGs that define when permits under the New Source Review Prevention of Significant Deterioration and Title V Operating Permit programs are required for new and existing industrial facilities. This final rule "tailors" the requirements of these CAA
permitting programs to limit which facilities will be required to obtain Prevention of Significant Deterioration and Title V permits. In the preamble to the revisions to the Federal Code of Regulations, the EPA states: "This rulemaking is necessary because without it the Prevention of Significant Deterioration and Title V requirements would apply, as of January 2, 2011, at the 100 or 250 tons per year levels provided under the CAA, greatly increasing the number of required permits, imposing undue costs on small sources, overwhelming the resources of permitting authorities, and severely impairing the functioning of the programs. EPA is relieving these resource burdens by phasing in the applicability of these programs to GHG sources, starting with the largest GHG emitters. This rule establishes two initial steps of the phase-in. The rule also commits the agency to take certain actions on future steps addressing smaller sources but excludes certain smaller sources from Prevention of Significant Deterioration and Title V permitting for GHG emissions until at least April 30, 2016." The EPA estimates that facilities responsible for nearly 70% of the national GHG emissions from stationary sources will be subject to permitting requirements under this rule. This includes the nation's largest GHG emitters—power plants, refineries, and cement production facilities. # STANDARDS OF PERFORMANCE FOR GHG EMISSIONS FOR NEW STATIONARY SOURCES: ELECTRIC UTILITY GENERATING UNITS As required by a settlement agreement, the EPA proposed new performance standards for emissions of CO₂ for new, affected, fossil fuel-fired electric utility generating units on March 27, 2012. New sources greater than 25 megawatts (MW) would be required to meet an output-based standard of 1,000 pounds (lbs) of CO₂ per MW-hour (MWh), based on the performance of widely used natural gas combined cycle technology. It should be noted that on February 9, 2016, the Supreme Court issued a stay of this regulation pending litigation. Additionally, the current EPA Administrator has also signed a measure to repeal the Clean Power Plan, including the CO₂ standards. The Clean Power Plan was officially repealed on June 19, 2019, when the EPA issued the final Affordable Clean Energy rule (ACE). Under ACE, new state-specific emission guidelines were established that provided existing coal-fired electric utility generating units with achievable standards. On January 19, 2021, the D.C. Circuit Court of Appeals ruled that the EPA's ACE Rule for GHG emissions from power plants rested on an erroneous interpretation of the CAA that barred EPA from considering measures beyond those that apply at and to an individual source. The court therefore vacated and remanded the ACE Rule and adopted a replacement rule which regulates CO_2 emissions from existing power plants, potentially again considering generation shifting and other measures to more aggressively target power sector emissions. # **CAP-AND-TRADE** Cap-and-trade refers to a policy tool where emissions are limited to a certain amount and can be traded or provides flexibility on how the emitter can comply. Successful examples in the U.S. include the Acid Rain Program and the N_2O Budget Trading Program and Clean Air Interstate Rule in the northeast. There is no federal GHG cap-and-trade program currently; however, some states have joined to create initiatives to provide a mechanism for cap-and-trade. The Regional GHG Initiative is an effort to reduce GHGs among the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont. Each state caps CO_2 emissions from power plants, auctions CO_2 emission allowances, and invests the proceeds in strategic energy programs that further reduce emissions, save consumers money, create jobs, and build a clean energy economy. The Initiative began in 2008 and in 2020 has retained all participating states. The Western Climate Initiative (WCI) partner jurisdictions have developed a comprehensive initiative to reduce regional GHG emissions to 15% below 2005 levels by 2020. The partners were originally California, British Columbia, Manitoba, Ontario, and Quebec. However, Manitoba and Ontario are not currently participating. California linked with Quebec's cap-and-trade system January 1, 2014, and joint offset auctions took place in 2015. While the WCI has yet to publish whether it has successfully reached the 2020 emissions goal initiative set in 2007, SB 32, requires that California, a major partner in the WCI, adopt the goal of reducing statewide GHG emissions to 40% below the 1990 level by 2030. ## **SMARTWAY PROGRAM** The SmartWay Program is a public-private initiative between the EPA, large and small trucking companies, rail carriers, logistics companies, commercial manufacturers, retailers, and other federal and state agencies. Its purpose is to improve fuel efficiency and the environmental performance (reduction of both GHG emissions and air pollution) of the goods movement supply chains. SmartWay is comprised of four components (36): - 1. SmartWay Transport Partnership: A partnership in which freight carriers and shippers commit to benchmark operations, track fuel consumption, and improve performance annually. - 2. SmartWay Technology Program: A testing, verification, and designation program to help freight companies identify equipment, technologies, and strategies that save fuel and lower emissions. - 3. SmartWay Vehicles: A program that ranks light-duty cars and small trucks and identifies superior environmental performers with the SmartWay logo. - 4. SmartWay International Interests: Guidance and resources for countries seeking to develop freight sustainability programs modeled after SmartWay. SmartWay effectively refers to requirements geared towards reducing fuel consumption. Most large trucking fleets driving newer vehicles are compliant with SmartWay design requirements. Moreover, over time, all HDTs will have to comply with the CARB GHG Regulation that is designed with the SmartWay Program in mind, to reduce GHG emissions by making them more fuel-efficient. For instance, in 2015, 53 foot or longer dry vans or refrigerated trailers equipped with a combination of SmartWay-verified low-rolling resistance tires and SmartWay-verified aerodynamic devices would obtain a total of 10% or more fuel savings over traditional trailers. Through the SmartWay Technology Program, the EPA has evaluated the fuel saving benefits of various devices through grants, cooperative agreements, emissions and fuel economy testing, demonstration projects and technical literature review. As a result, the EPA has determined the following types of technologies provide fuel saving and/or emission reducing benefits when used properly in their designed applications, and has verified certain products: - Idle reduction technologies less idling of the engine when it is not needed would reduce fuel consumption. - Aerodynamic technologies minimize drag and improve airflow over the entire tractor-trailer vehicle. Aerodynamic technologies include gap fairings that reduce turbulence between the tractor and trailer, side skirts that minimize wind under the trailer, and rear fairings that reduce turbulence and pressure drop at the rear of the trailer. - Low rolling resistance tires can roll longer without slowing down, thereby reducing the amount of fuel used. Rolling resistance (or rolling friction or rolling drag) is the force resisting the motion when a tire rolls on a surface. The wheel will eventually slow down because of this resistance. - Retrofit technologies include things such as diesel particulate filters, emissions upgrades (to a higher tier), etc., which would reduce emissions. - Federal excise tax exemptions. #### **EXECUTIVE ORDER 13990** On January 20, 2021, Federal agencies were directed to immediately review, and take action to address, Federal regulations promulgated and other actions taken during the last 4 years that conflict with national objectives to improve public health and the environment; ensure access to clean air and water; limit exposure to dangerous chemicals and pesticides; hold polluters accountable, including those who disproportionately harm communities of color and low-income communities; reduce GHG emissions; bolster resilience to the impacts of climate change; restore and expand our national treasures and monuments; and prioritize both environmental justice and employment. #### 2.7.3 CALIFORNIA #### **LEGISLATIVE ACTIONS TO REDUCE GHGS** The State of California legislature has enacted a series of bills that constitute the most aggressive program to reduce GHGs of any state in the nation. Some legislation such as the landmark AB 32 was specifically enacted to address GHG emissions. Other legislation such as Title 24 and Title 20 energy standards were originally adopted for other purposes such as energy and water conservation, but also provide GHG reductions. This section describes the major provisions of the legislation. #### **AB 32** The California State Legislature enacted AB 32, which required that GHGs emitted in California be reduced to 1990 levels by the year 2020 (this goal has been met³). GHGs as defined under AB 32 include CO_2 , CH_4 , N_2O , HFCs, PFCs, and SF_6 . Since AB 32 was enacted, a seventh chemical, NF_3 , has also been added to the list of GHGs. CARB is the state agency charged with monitoring and regulating sources of GHGs. Pursuant to AB 32, CARB adopted regulations to achieve the maximum technologically feasible and cost-effective GHG emission reductions. AB 32 states the following: "Global warming poses a serious threat to the economic well-being, public health, natural resources, and the environment of California. The potential adverse impacts of global warming include the exacerbation of air quality problems, a reduction in the quality and supply of water to the state from the Sierra
snowpack, a rise in sea levels resulting in the displacement of thousands of coastal businesses and residences, damage to marine ecosystems and the natural environment, and an increase in the incidences of infectious diseases, asthma, and other human health-related problems." #### **SB 32** On September 8, 2016, Governor Jerry Brown signed the SB 32 and its companion bill, AB 197. SB 32 requires the state to reduce statewide GHG emissions to 40% below 1990 levels by 2030, a reduction target that was first introduced in Executive Order B-30-15. The new legislation builds upon the AB 32 goal and provides an intermediate goal to achieving S-3-05, which sets a statewide GHG reduction target of 80% below 1990 levels by 2050. AB 197 creates a legislative committee to oversee regulators to ensure that CARB not only responds to the Governor, but also the Legislature (11). ## **2017 CARB SCOPING PLAN** In November 2017, CARB released the *Final 2017 Scoping Plan Update*, which identifies the State's post-2020 reduction strategy. The *Final 2017 Scoping Plan Update* reflects the 2030 target of a 40% reduction below 1990 levels, set by Executive Order B-30-15 and codified by SB 32. Key programs that the proposed Second Update builds upon include the Cap-and-Trade Regulation, the LCFS, and much cleaner cars, trucks and freight movement, utilizing cleaner, renewable energy, and strategies to reduce CH₄ emissions from agricultural and other wastes. The *Final 2017 Scoping Plan Update* establishes a new emissions limit of 260 MMTCO₂e for the year 2030, which corresponds to a 40% decrease in 1990 levels by 2030 (37). California's climate strategy will require contributions from all sectors of the economy, including the land base, and will include enhanced focus on zero- and near-zero-emission (ZE/NZE) vehicle technologies; continued investment in renewables, including solar roofs, wind, and other _ ³ Based upon the 2019 GHG inventory data (i.e., the latest year for which data are available) for the 2000-2017 GHG emissions period, California emitted an average 424.1 MMTCO₂e **Invalid source specified.**. This is less than the 2020 emissions target of 431 MMTCO₂e. distributed generation; greater use of low carbon fuels; integrated land conservation and development strategies; coordinated efforts to reduce emissions of short-lived climate pollutants (CH₄, black carbon, and fluorinated gases); and an increased focus on integrated land use planning to support livable, transit-connected communities and conservation of agricultural and other lands. Requirements for direct GHG reductions at refineries will further support air quality co-benefits in neighborhoods, including in disadvantaged communities historically located adjacent to these large stationary sources, as well as efforts with California's local air pollution control and air quality management districts (air districts) to tighten emission limits on a broad spectrum of industrial sources. Major elements of the *Final 2017 Scoping Plan Update* framework include: - Implementing and/or increasing the standards of the Mobile Source Strategy, which include increasing ZEV buses and trucks. - LCFS, with an increased stringency (18% by 2030). - Implementing SB 350, which expands the RPS to 50% RPS and doubles energy efficiency savings by 2030. - California Sustainable Freight Action Plan, which improves freight system efficiency, utilizes near-zero emissions technology, and deployment of zero-emission vehicles (ZEV) trucks. - Implementing the proposed Short-Lived Climate Pollutant Strategy (SLPS), which focuses on reducing CH₄ and hydroflurocarbon emissions by 40% and anthropogenic black carbon emissions by 50% by year 2030. - Continued implementation of SB 375. - Post-2020 Cap-and-Trade Program that includes declining caps. - 20% reduction in GHG emissions from refineries by 2030. - Development of a Natural and Working Lands Action Plan to secure California's land base as a net carbon sink. Note, however, that the Final 2017 Scoping Plan Update acknowledges that: "[a]chieving net zero increases in GHG emissions, resulting in no contribution to GHG impacts, may not be feasible or appropriate for every project, however, and the inability of a project to mitigate its GHG emissions to net zero does not imply the project results in a substantial contribution to the cumulatively significant environmental impact of climate change under CEQA." In addition to the statewide strategies listed above, the *Final 2017 Scoping Plan Update* also identifies local governments as essential partners in achieving the State's long-term GHG reduction goals and identifies local actions to reduce GHG emissions. As part of the recommended actions, CARB recommends that local governments achieve a community-wide goal to achieve emissions of no more than 6 metric tons of CO₂e (MTCO₂e) or less per capita by 2030 and 2 MTCO₂e or less per capita by 2050. For CEQA projects, CARB states that lead agencies may develop evidenced-based bright-line numeric thresholds—consistent with the Scoping Plan and the State's long-term GHG goals—and projects with emissions over that amount may be required to incorporate on-site design features and mitigation measures that avoid or minimize project emissions to the degree feasible; or, a performance-based metric using a CAP or other plan to reduce GHG emissions is appropriate. According to research conducted by the Lawrence Berkeley National Laboratory (LBNL) and supported by CARB, California, under its existing and proposed GHG reduction policies, could achieve the 2030 goals under SB 32. The research utilized a new, validated model known as the California LBNL GHG Analysis of Policies Spreadsheet (CALGAPS), which simulates GHG and criteria pollutant emissions in California from 2010 to 2050 in accordance to existing and future GHG-reducing policies. The CALGAPS model showed that by 2030, emissions could range from 211 to 428 MTCO₂e per year (MTCO₂e/yr), indicating that "even if all modeled policies are not implemented, reductions could be sufficient to reduce emissions 40% below the 1990 level [of SB 32]." CALGAPS analyzed emissions through 2050 even though it did not generally account for policies that might be put in place after 2030. Although the research indicated that the emissions would not meet the State's 80% reduction goal by 2050, various combinations of policies could allow California's cumulative emissions to remain very low through 2050 (38) (39). #### **2022 CARB Scoping Plan** On December 15, 2022, CARB adopted the 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan) (40). The 2022 Scoping Plan builds on the 2017 Scoping Plan as well as the requirements set forth by AB 1279, which directs the state to become carbon neutral no later than 2045. To achieve this statutory objective, the 2022 Scoping Plan lays out how California can reduce GHG emissions by 85% below 1990 levels and achieve carbon neutrality by 2045. The Scoping Plan scenario to do this is to "deploy a broad portfolio of existing and emerging fossil fuel alternatives and clean technologies, and align with statutes, Executive Orders, Board direction, and direction from the governor." The 2022 Scoping Plan sets one of the most aggressive approaches to reach carbon neutrality in the world. Unlike the 2017 Scoping Plan, CARB no longer includes a numeric per capita threshold and instead advocates for compliance with a local GHG reduction strategy (CAP) consistent with CEQA Guidelines section 15183.5. The key elements of the 2022 CARB Scoping Plan focus on transportation - the regulations that will impact this sector are adopted and enforced by CARB on vehicle manufacturers and outside the jurisdiction and control of local governments. As stated in the Plan's executive summary: "The major element of this unprecedented transformation is the aggressive reduction of fossil fuels wherever they are currently used in California, building on and accelerating carbon reduction programs that have been in place for a decade and a half. That means rapidly moving to zero-emission transportation; electrifying the cars, buses, trains, and trucks that now constitute California's single largest source of planet-warming pollution." "[A]pproval of this plan catalyzes a number of efforts, including the development of new regulations as well as amendments to strengthen regulations and programs already in place, not just at CARB but across state agencies." Under the 2022 Scoping Plan, the State will lead efforts to meet the 2045 carbon neutrality goal through implementation of the following objectives: - Reimagine roadway projects that increase VMT in a way that meets community needs and reduces the need to drive. - Double local transit capacity and service frequencies by 2030. - Complete the High-Speed Rail (HSR) System and other elements of the intercity rail network by 2040. - Expand and complete planned networks of high-quality active transportation infrastructure. - Increase availability and affordability of bikes, e-bikes, scooters, and other alternatives to lightduty vehicles, prioritizing needs of underserved communities. - Shift revenue generation for transportation projects away from the gas tax into more durable sources by 2030. - Authorize and implement roadway pricing strategies and reallocate revenues to equitably improve transit, bicycling, and other sustainable transportation choices. - Prioritize addressing key transit bottlenecks and other infrastructure investments to improve transit operational efficiency over investments that increase VMT. - Develop and implement a statewide transportation demand management (TDM) framework with VMT mitigation requirements for large employers and large developments. - Prevent uncontrolled growth of autonomous vehicle (AV) VMT, particularly zero-passenger miles. - Channel new mobility services towards pooled use models, transit complementarity, and lower VMT
outcomes. - Establish an integrated statewide system for trip planning, booking, payment, and user accounts that enables efficient and equitable multimodal systems. - Provide financial support for low-income and disadvantaged Californians' use of transit and new mobility services. - Expand universal design features for new mobility services. - Accelerate infill development in existing transportation-efficient places and deploy strategic resources to create more transportation-efficient locations. - Encourage alignment in land use, housing, transportation, and conservation planning in adopted regional plans (RTP/SCS and RHNA) and local plans (e.g., general plans, zoning, and local transportation plans). - Accelerate production of affordable housing in forms and locations that reduce VMT and affirmatively further fair housing policy objectives. - Reduce or eliminate parking requirements (and/or enact parking maximums, as appropriate) and promote redevelopment of excess parking, especially in infill locations. - Preserve and protect existing affordable housing stock and protect existing residents and businesses from displacement and climate risk. Included in the 2022 Scoping Plan is a set of Local Actions (Appendix D to the 2022 Scoping Plan) aimed at providing local jurisdictions with tools to reduce GHGs and assist the state in meeting the ambitious targets set forth in the 2022 Scoping Plan. Appendix D to the 2022 Scoping Plan includes a section on evaluating plan-level and project-level alignment with the State's Climate Goals in CEQA GHG analyses. In this section, CARB identifies several recommendations and strategies that should be considered for new development in order to determine consistency with the 2022 Scoping Plan. Notably, this section is focused on Residential and Mixed-Use Projects, in fact CARB states in Appendix D (page 4): "...focuses primarily on climate action plans (CAPs) and local authority over new residential development. It does not address other land use types (e.g., industrial) or air permitting." Additionally on Page 21 in Appendix D, CARB states: "The recommendations outlined in this section apply only to residential and mixed-use development project types. California currently faces both a housing crisis and a climate crisis, which necessitates prioritizing recommendations for residential projects to address the housing crisis in a manner that simultaneously supports the State's GHG and regional air quality goals. CARB plans to continue to explore new approaches for other land use types in the future." As such, it would be inappropriate to apply the requirements contained in Appendix D of the 2022 Scoping Plan to any land use types other than residential or mixed-use residential development. #### **CAP-AND-TRADE PROGRAM** The Scoping Plan identifies a Cap-and-Trade Program as one of the key strategies for California to reduce GHG emissions. According to CARB, a cap-and-trade program will help put California on the path to meet its goal of achieving a 40% reduction in GHG emissions from 1990 levels by 2030. Under cap-and-trade, an overall limit on GHG emissions from capped sectors is established, and facilities subject to the cap will be able to trade permits to emit GHGs within the overall limit. CARB adopted a California Cap-and-Trade Program pursuant to its authority under AB 32. The Cap-and-Trade Program is designed to reduce GHG emissions from regulated entities by more than 16% between 2013 and 2020, and by an additional 40% by 2030. The statewide cap for GHG emissions from the capped sectors (e.g., electricity generation, petroleum refining, and cement production) commenced in 2013 and will decline over time, achieving GHG emission reductions throughout the program's duration. Covered entities that emit more than 25,000 MTCO₂e/yr must comply with the Cap-and-Trade Program. Triggering of the 25,000 MTCO₂e/yr "inclusion threshold" is measured against a subset of emissions reported and verified under the California Regulation for the Mandatory Reporting of GHG Emissions (Mandatory Reporting Rule or "MRR"). Under the Cap-and-Trade Program, CARB issues allowances equal to the total amount of allowable emissions over a given compliance period and distributes these to regulated entities. Covered entities are allocated free allowances in whole or part (if eligible), and may buy allowances at auction, purchase allowances from others, or purchase offset credits. Each covered entity with a compliance obligation is required to surrender "compliance instruments" for each MTCO₂e of GHG they emit. There also are requirements to surrender compliance instruments covering 30% of the prior year's compliance obligation by November of each year (41). The Cap-and-Trade Program provides a firm cap, which provides the highest certainty of achieving the 2030 target. An inherent feature of the Cap-and-Trade program is that it does not guarantee GHG emissions reductions in any discrete location or by any particular source. Rather, GHG emissions reductions are only guaranteed on an accumulative basis. As summarized by CARB in the *First Update to the Climate Change Scoping Plan*: "The Cap-and-Trade Regulation gives companies the flexibility to trade allowances with others or take steps to cost-effectively reduce emissions at their own facilities. Companies that emit more have to turn in more allowances or other compliance instruments. Companies that can cut their GHG emissions have to turn in fewer allowances. But as the cap declines, aggregate emissions must be reduced. In other words, a covered entity theoretically could increase its GHG emissions every year and still comply with the Cap-and-Trade Program if there is a reduction in GHG emissions from other covered entities. Such a focus on aggregate GHG emissions is considered appropriate because climate change is a global phenomenon, and the effects of GHG emissions are considered cumulative." (42) The Cap-and-Trade Program covered approximately 80% of California's GHG emissions (37). The Cap-and-Trade Program covers the GHG emissions associated with electricity consumed in California, whether generated in-state or imported. Accordingly, GHG emissions associated with CEQA projects' electricity usage are covered by the Cap-and-Trade Program. The Cap-and-Trade Program also covers fuel suppliers (natural gas and propane fuel providers and transportation fuel providers) to address emissions from such fuels and from combustion of other fossil fuels not directly covered at large sources in the Program's first compliance period. The Cap-and-Trade Program covers the GHG emissions associated with the combustion of transportation fuels in California, whether refined in-state or imported. #### THE SUSTAINABLE COMMUNITIES AND CLIMATE PROTECTION ACT OF 2008 (SB 375) According to SB 375, the transportation sector is the largest contributor of GHG emissions, which emits over 40% of the total GHG emissions in California. SB 375 states, "Without improved land use and transportation policy, California will not be able to achieve the goals of AB 32." SB 375 does the following: it (1) requires metropolitan planning organizations to include sustainable community strategies in their regional transportation plans for reducing GHG emissions, (2) aligns planning for transportation and housing, and (3) creates specified incentives for the implementation of the strategies. Concerning CEQA, SB 375, as codified in Public Resources Code Section 21159.28, states that CEQA findings for certain projects are not required to reference, describe, or discuss (1) growth inducing impacts, or (2) any project-specific or cumulative impacts from cars and light-duty truck trips generated by the project on global warming or the regional transportation network, if the project: - 1. Is in an area with an approved sustainable communities strategy or an alternative planning strategy that the CARB accepts as achieving the GHG emission reduction targets. - 2. Is consistent with that strategy (in designation, density, building intensity, and applicable policies). - 3. Incorporates the mitigation measures required by an applicable prior environmental document. #### **AB 1493** The second phase of the implementation for the Pavley bill was incorporated into Amendments to the Low-Emission Vehicle Program (LEV III) or the Advanced Clean Cars (ACC) program. The ACC program combines the control of smog-causing pollutants and GHG emissions into a single coordinated package of requirements for MY 2017 through 2025. The regulation will reduce GHGs from new cars by 34% from 2016 levels by 2025. The new rules will clean up gasoline and diesel-powered cars, and deliver increasing numbers of zero-emission technologies, such as full battery electric cars, newly emerging plug-in hybrid EV and hydrogen fuel cell cars. The package will also ensure adequate fueling infrastructure is available for the increasing numbers of hydrogen fuel cell vehicles planned for deployment in California. On March 9, EPA reinstated California's authority under the Clean Air Act to implement its own GHG emission standards for cars and light trucks, which other states can also adopt and enforce. With this authority restored, EPA will continue partnering with states to advance the next generation of clean vehicle technologies. #### CLEAN ENERGY AND POLLUTION REDUCTION ACT OF 2015 (SB 350) In October 2015, the legislature approved, and the Governor signed SB 350, which reaffirms California's commitment to reducing its GHG emissions and addressing climate change. Key provisions include an increase in the RPS, higher energy efficiency requirements for buildings, initial strategies towards a regional electricity grid, and improved infrastructure for EV charging stations. Provisions for a 50% reduction in the use of petroleum statewide were removed from the Bill because of opposition and concern that it would prevent the Bill's passage.
Specifically, SB 350 requires the following to reduce statewide GHG emissions: - Increase the amount of electricity procured from renewable energy sources from 33% to 50% by 2030, with interim targets of 40% by 2024, and 25% by 2027. - Double the energy efficiency in existing buildings by 2030. This target will be achieved through the California Public Utility Commission (CPUC), the California Energy Commission (CEC), and local publicly owned utilities. - Reorganize the Independent System Operator to develop more regional electrify transmission markets and to improve accessibility in these markets, which will facilitate the growth of renewable energy markets in the western United States. #### 2.7.3.1 EXECUTIVE ORDERS RELATED TO GHG EMISSIONS California's Executive Branch has taken several actions to reduce GHGs through the use of Executive Orders. Although not regulatory, they set the tone for the state and guide the actions of state agencies. #### **EXECUTIVE ORDER B-55-18 AND SB 100** SB 100 and Executive Order B-55-18 were signed by Governor Brown on September 10, 2018. Under the existing RPS, 25% of retail sales of electricity are required to be from renewable sources by December 31, 2016, 33% by December 31, 2020, 40% by December 31, 2024, 45% by December 31, 2027, and 50% by December 31, 2030. SB 100 raises California's RPS requirement to 50% renewable resources target by December 31, 2026, and to achieve a 60% target by December 31, 2030. SB 100 also requires that retail sellers and local publicly owned electric utilities procure a minimum quantity of electricity products from eligible renewable energy resources so that the total kilowatt hours (kWh) of those products sold to their retail end-use customers achieve 44% of retail sales by December 31, 2024, 52% by December 31, 2027, and 60% by December 31, 2030. In addition to targets under AB 32 and SB 32, Executive Order B-55-18 establishes a carbon neutrality goal for the state of California by 2045; and sets a goal to maintain net negative emissions thereafter. The Executive Order directs the California Natural Resources Agency (CNRA), California EPA (CalEPA), the California Department of Food and Agriculture (CDFA), and CARB to include sequestration targets in the Natural and Working Lands Climate Change Implementation Plan consistent with the carbon neutrality goal. #### **EXECUTIVE ORDER S-3-05** Former California Governor Arnold Schwarzenegger announced on June 1, 2005, through Executive Order S-3-05, the following reduction targets for GHG emissions: - By 2010, reduce GHG emissions to 2000 levels. - By 2020, reduce GHG emissions to 1990 levels. - By 2050, reduce GHG emissions to 80% below 1990 levels. The 2050 reduction goal represents what some scientists believe is necessary to reach levels that will stabilize the climate. The 2020 goal was established to be a mid-term target. Because this is an executive order, the goals are not legally enforceable for local governments or the private sector. #### **EXECUTIVE ORDER S-01-07 (LCFS)** Governor Schwarzenegger signed Executive Order S-01-07 on January 18, 2007. The order mandates that a statewide goal shall be established to reduce the carbon intensity of California's transportation fuels by at least 10% by 2020. CARB adopted the LCFS on April 23, 2009. After a series of legal changes, in order to address the Court ruling, CARB was required to bring a new LCFS regulation to the Board for consideration in February 2015. The proposed LCFS regulation was required to contain revisions to the 2010 LCFS as well as new provisions designed to foster investments in the production of the low-carbon intensity fuels, offer additional flexibility to regulated parties, update critical technical information, simplify and streamline program operations, and enhance enforcement. On November 16, 2015, the Office of Administrative Law (OAL) approved the Final Rulemaking Package. The new LCFS regulation became effective on January 1, 2016. In 2018, CARB approved amendments to the regulation, which included strengthening the carbon intensity benchmarks through 2030 in compliance with the SB 32 GHG emissions reduction target for 2030. The amendments included crediting opportunities to promote zero emission vehicle adoption, alternative jet fuel, carbon capture and sequestration, and advanced technologies to achieve deep decarbonization in the transportation sector (43). #### **EXECUTIVE ORDER S-13-08** Executive Order S-13-08 states that "climate change in California during the next century is expected to shift precipitation patterns, accelerate sea level rise and increase temperatures, thereby posing a serious threat to California's economy, to the health and welfare of its population and to its natural resources." Pursuant to the requirements in the Order, the 2009 California Climate Adaptation Strategy (CNRA 2009) was adopted, which is the "...first statewide, multi-sector, region-specific, and information-based climate change adaptation strategy in the United States." Objectives include analyzing risks of climate change in California, identifying and exploring strategies to adapt to climate change, and specifying a direction for future research. #### **EXECUTIVE ORDER B-30-15** On April 29, 2015, Governor Brown issued an executive order to establish a California GHG reduction target of 40% below 1990 levels by 2030. The Governor's executive order aligned California's GHG reduction targets with those of leading international governments ahead of the U.N. Climate Change Conference in Paris late 2015. The Order sets a new interim statewide GHG emission reduction target to reduce GHG emissions to 40% below 1990 levels by 2030 in order to ensure California meets its target of reducing GHG emissions to 80% below 1990 levels by 2050 and directs CARB to update the *2017 Scoping Plan* to express the 2030 target in terms of MMTCO₂e. The Order also requires the state's climate adaptation plan to be updated every three years, and for the State to continue its climate change research program, among other provisions. As with Executive Order S-3-05, this Order is not legally enforceable as to local governments and the private sector. Legislation that would update AB 32 to make post 2020 targets and requirements a mandate is in process in the State Legislature. #### 2.7.3.2 CALIFORNIA REGULATIONS AND BUILDING CODES California has a long history of adopting regulations to improve energy efficiency in new and remodeled buildings. These regulations have kept California's energy consumption relatively flat even with rapid population growth. #### TITLE 20 CCR Sections 1601 ET SEQ. — APPLIANCE EFFICIENCY REGULATIONS CCR, Title 20: Division 2, Chapter 4, Article 4, Sections 1601-1608: Appliance Efficiency Regulations regulates the sale of appliances in California. The Appliance Efficiency Regulations include standards for both federally regulated appliances and non-federally regulated appliances. 23 categories of appliances are included in the scope of these regulations. The standards within these regulations apply to appliances that are sold or offered for sale in California, except those sold wholesale in California for final retail sale outside the state and those designed and sold exclusively for use in recreational vehicles or other mobile equipment (CEC 2012). #### TITLE 24 CCR PART 6 - CALIFORNIA ENERGY CODE The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. #### TITLE 24 CCR PART 11 – CALIFORNIA GREEN BUILDING STANDARDS CODE California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on August 1, 2009, and is administered by the California Building Standards Commission. CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that became effective on January 1, 2023. The CEC anticipates that the 2022 energy code will provide \$1.5 billion in consumer benefits and reduce GHG emissions by 10 million metric tons (44). The Project would be required to comply with the applicable standards in place at the time plan check submittals are made. These require, among other items (45): #### Nonresidential Mandatory Measures - Short-term bicycle parking. If the new project or an additional alteration is anticipated to generate visitor traffic, provide permanently anchored bicycle racks within 200 feet of the visitors' entrance, readily visible to passers-by, for 5% of new visitor motorized vehicle parking spaces being added, with a minimum of one two-bike capacity rack (5.106.4.1.1). - Long-term bicycle parking. For new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5% of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility (5.106.4.1.2). - Designated parking for clean air vehicles. In new projects or additions to alterations that add 10 or more vehicular parking spaces, provide designated parking for any combination of low-emitting, fuel-efficient and carpool/van pool vehicles as shown in Table 5.106.5.2 (5.106.5.2). - EV charging stations. New construction shall facilitate the future installation of EV supply equipment. The compliance requires empty raceways for future conduit and documentation
that the electrical system has adequate capacity for the future load. The number of spaces to be provided for is contained in Table 5.106. 5.3.3 (5.106.5.3). Additionally, Table 5.106.5.4.1 specifies requirements for the installation of raceway conduit and panel power requirements for medium- and heavy-duty electric vehicle supply equipment for warehouses, grocery stores, and retail stores. - Outdoor light pollution reduction. Outdoor lighting systems shall be designed to meet the backlight, uplight and glare ratings per Table 5.106.8 (5.106.8). - Construction waste management. Recycle and/or salvage for reuse a minimum of 65% of the nonhazardous construction and demolition waste in accordance with Section 5.408.1.1. 5.405.1.2, or 5.408.1.3; or meet a local construction and demolition waste management ordinance, whichever is more stringent (5.408.1). - Excavated soil and land clearing debris. 100% of trees, stumps, rocks and associated vegetation and soils resulting primarily from land clearing shall be reuse or recycled. For a phased project, such material may be stockpiled on site until the storage site is developed (5.408.3). - Recycling by Occupants. Provide readily accessible areas that serve the entire building and are identified for the depositing, storage, and collection of non-hazardous materials for recycling, including (at a minimum) paper, corrugated cardboard, glass, plastics, organic waste, and metals or meet a lawfully enacted local recycling ordinance, if more restrictive (5.410.1). - Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with the following: - Water Closets. The effective flush volume of all water closets shall not exceed 1.28 gallons per flush (5.303.3.1) - Urinals. The effective flush volume of wall-mounted urinals shall not exceed 0.125 gallons per flush (5.303.3.2.1). The effective flush volume of floor- mounted or other urinals shall not exceed 0.5 gallons per flush (5.303.3.2.2). - Showerheads. Single showerheads shall have a minimum flow rate of not more than 1.8 gallons per minute and 80 psi (5.303.3.3.1). When a shower is served by more than one showerhead, the combine flow rate of all showerheads and/or other shower outlets controlled by a single valve shall not exceed 1.8 gallons per minute at 80 psi (5.303.3.3.2). - Faucets and fountains. Nonresidential lavatory faucets shall have a maximum flow rate of not more than 0.5 gallons per minute at 60 psi (5.303.3.4.1). Kitchen faucets shall have a maximum flow rate of not more than 1.8 gallons per minute of 60 psi (5.303.3.4.2). Wash fountains shall have a maximum flow rate of not more than 1.8 gallons per minute (5.303.3.4.3). Metering faucets shall not deliver more than 0.20 gallons per cycle (5.303.3.4.4). Metering faucets for wash fountains shall have a maximum flow rate not more than 0.20 gallons per cycle (5.303.3.4.5). - Outdoor potable water uses in landscaped areas. Nonresidential developments shall comply with a local water efficient landscape ordinance or the current California Department of Water Resources' Model Water Efficient Landscape Ordinance (MWELO), whichever is more stringent (5.304.1). - Water meters. Separate submeters or metering devices shall be installed for new buildings or additions in excess of 50,000 sf or for excess consumption where any tenant within a new building or within an addition that is project to consume more than 1,000 gallons per day (GPD) (5.303.1.1 and 5.303.1.2). - Outdoor water uses in rehabilitated landscape projects equal or greater than 2,500 sf. Rehabilitated landscape projects with an aggregate landscape area equal to or greater than 2,500 sf requiring a building or landscape permit (5.304.3). - Commissioning. For new buildings 10,000 sf and over, building commissioning shall be included in the design and construction processes of the building project to verify that the building systems and components meet the owner's or owner representative's project requirements (5.410.2). #### **MWELO** The MWELO was required by AB 1881, the Water Conservation Act. The bill required local agencies to adopt a local landscape ordinance at least as effective in conserving water as the Model Ordinance by January 1, 2010. Governor Brown's Drought Executive Order of April 1, 2015 (Executive Order B-29-15) directed Department of Water Resources (DWR) to update the Ordinance through expedited regulation. The California Water Commission approved the revised Ordinance on July 15, 2015 effective December 15, 2015. New development projects that include landscape areas of 500 sf or more are subject to the Ordinance. The update requires: - More efficient irrigation systems; - Incentives for graywater usage; - Improvements in on-site stormwater capture; - Limiting the portion of landscapes that can be planted with high water use plants; and - Reporting requirements for local agencies. #### CARB REFRIGERANT MANAGEMENT PROGRAM CARB adopted a regulation in 2009 to reduce refrigerant GHG emissions from stationary sources through refrigerant leak detection and monitoring, leak repair, system retirement and retrofitting, reporting and recordkeeping, and proper refrigerant cylinder use, sale, and disposal. The regulation is set forth in sections 95380 to 95398 of Title 17, CCR. The rules implementing the regulation establish a limit on statewide GHG emissions from stationary facilities with refrigeration systems with more than 50 lbs of a high GWP refrigerant. The refrigerant management program is designed to (1) reduce emissions of high-GWP GHG refrigerants from leaky stationary, non-residential refrigeration equipment; (2) reduce emissions from the installation and servicing of refrigeration and air-conditioning appliances using high-GWP refrigerants; and (3) verify GHG emission reductions. #### **TRACTOR-TRAILER GHG REGULATION** The tractors and trailers subject to this regulation must either use EPA SmartWay certified tractors and trailers or retrofit their existing fleet with SmartWay verified technologies. The regulation applies primarily to owners of 53-foot or longer box-type trailers, including both dryvan and refrigerated-van trailers, and owners of the HD tractors that pull them on California highways. These owners are responsible for replacing or retrofitting their affected vehicles with compliant aerodynamic technologies and low rolling resistance tires. Sleeper cab tractors model year 2011 and later must be SmartWay certified. All other tractors must use SmartWay verified low rolling resistance tires. There are also requirements for trailers to have low rolling resistance tires and aerodynamic devices. #### PHASE I AND 2 HEAVY-DUTY VEHICLE GHG STANDARDS In September 2011, CARB has adopted a regulation for GHG emissions from HDTs and engines sold in California. It establishes GHG emission limits on truck and engine manufacturers and harmonizes with the EPA rule for new trucks and engines nationally. Existing HD vehicle regulations in California include engine criteria emission standards, tractor-trailer GHG requirements to implement SmartWay strategies (i.e., the Heavy-Duty Tractor-Trailer GHG Regulation), and in-use fleet retrofit requirements such as the Truck and Bus Regulation. The EPA rule has compliance requirements for new compression and spark ignition engines, as well as trucks from Class 2b through Class 8. Compliance requirements began with MY 2014 with stringency levels increasing through MY 2018. The rule organizes truck compliance into three groupings, which include a) HD pickups and vans; b) vocational vehicles; and c) combination tractors. The EPA rule does not regulate trailers. CARB staff has worked jointly with the EPA and the NHTSA on the next phase of federal GHG emission standards for medium-duty trucks (MDT) and HDT vehicles, called federal Phase 2. The federal Phase 2 standards were built on the improvements in engine and vehicle efficiency required by the Phase 1 emission standards and represent a significant opportunity to achieve further GHG reductions for 2018 and later MY HDT vehicles, including trailers. The EPA and NHTSA have proposed to roll back GHG and fuel economy standards for cars and light-duty trucks, which suggests a similar rollback of Phase 2 standards for MDT and HDT vehicles may be pursued. #### SB 97 AND THE CEQA GUIDELINES UPDATE Passed in August 2007, SB 97 added Section 21083.05 to the Public Resources Code. The code states "(a) On or before July 1, 2009, the Office of Planning and Research (OPR) shall prepare, develop, and transmit to the Resources Agency guidelines for the mitigation of GHG emissions or the effects of GHG emissions as required by this division, including, but not limited to, effects associated with transportation or energy consumption. (b) On or before January 1, 2010, the Resources Agency shall certify and adopt guidelines prepared and developed by the OPR pursuant to subdivision (a)." In 2012, Public Resources Code Section 21083.05 was amended to state: "The Office of Planning and Research and the Natural Resources Agency shall periodically update the guidelines for the mitigation of greenhouse gas emissions or the effects of greenhouse gas emissions as required by this division, including, but not limited to, effects associated with transportation or energy consumption, to incorporate new information or criteria established by the State Air Resources Board pursuant to Division 25.5 (commencing with Section 38500) of the Health and Safety Code." On December 28, 2018, the Natural Resources Agency announced the OAL approved the amendments to the *CEQA Guidelines* for implementing CEQA. The CEQA Amendments provide guidance to public agencies regarding the analysis and mitigation of the effects of GHG emissions in CEQA documents. The CEQA Amendments fit within the existing CEQA framework by amending existing *CEQA Guidelines* to
reference climate change. Section 15064.4 was added the *CEQA Guidelines* and states that in determining the significance of a project's GHG emissions, the lead agency should focus its analysis on the reasonably foreseeable incremental contribution of the project's emissions to the effects of climate change. A project's incremental contribution may be cumulatively considerable even if it appears relatively insignificant compared to statewide, national, or global emissions. The agency's analysis should consider a timeframe that is appropriate for the project. The agency's analysis also must reasonably reflect evolving scientific knowledge and state regulatory schemes. Additionally, a lead agency may use a model or methodology to estimate GHG emissions resulting from a project. The lead agency has discretion to select the model or methodology it considers most appropriate to enable decision makers to intelligently take into account the project's incremental contribution to climate change. The lead agency must support its selection of a model or methodology with substantial evidence. The lead agency should explain the limitations of the particular model or methodology selected for use (46). #### 2.7.4 REGIONAL The project is within the South Coast Air Basin (SCAB), which is under the jurisdiction of the SCAQMD. #### **SCAQMD** SCAQMD is the agency responsible for air quality planning and regulation in the SCAB. The SCAQMD addresses the impacts to climate change of projects subject to SCAQMD permit as a lead agency if they are the only agency having discretionary approval for the project and acts as a responsible agency when a land use agency must also approve discretionary permits for the project. The SCAQMD acts as an expert commenting agency for impacts to air quality. This expertise carries over to GHG emissions, so the agency helps local land use agencies through the development of models and emission thresholds that can be used to address GHG emissions. In 2008, SCAQMD formed a Working Group to identify GHG emissions thresholds for land use projects that could be used by local lead agencies in the SCAB. The Working Group developed several different options that are contained in the SCAQMD Draft Guidance Document – Interim CEQA GHG Significance Threshold, that could be applied by lead agencies. The working group has not provided additional guidance since release of the interim guidance in 2008. The SCAQMD Board has not approved the thresholds; however, the Guidance Document provides substantial evidence supporting the approaches to significance of GHG emissions that can be considered by the lead agency in adopting its own threshold. The current interim thresholds consist of the following tiered approach: Tier 1 consists of evaluating whether or not the project qualifies for any applicable exemption under CEQA. - Tier 2 consists of determining whether the project is consistent with a GHG reduction plan. If a project is consistent with a qualifying local GHG reduction plan, it does not have significant GHG emissions. - Tier 3 consists of screening values, which the lead agency can choose, but must be consistent with all projects within its jurisdiction. A project's construction emissions are averaged over 30 years and are added to the project's operational emissions. If a project's emissions are below one of the following screening thresholds, then the project is less than significant: - o Residential and Commercial land use: 3,000 MTCO₂e/yr - o Industrial land use: 10,000 MTCO₂e/yr - Based on land use type: residential: 3,500 MTCO₂e/yr; commercial: 1,400 MTCO₂e/yr; or mixed use: 3,000 MTCO₂e/yr - Tier 4 has the following options: - Option 1: Reduce Business-as-Usual (BAU) emissions by a certain percentage; this percentage is currently undefined. - Option 2: Early implementation of applicable AB 32 Scoping Plan measures - Option 3: 2020 target for service populations (SP), which includes residents and employees: 4.8 MTCO₂e per SP per year for projects and 6.6 MTCO₂e per SP per year for plans; - Option 3, 2035 target: 3.0 MTCO₂e per SP per year for projects and 4.1 MTCO₂e per SP per year for plans - Tier 5 involves mitigation offsets to achieve target significance threshold. The SCAQMD's interim thresholds used the Executive Order S-3-05-year 2050 goal as the basis for the Tier 3 screening level. Achieving the Executive Order's objective would contribute to worldwide efforts to cap CO₂ concentrations at 450 ppm, thus stabilizing global climate. SCAQMD only has authority over GHG emissions from development projects that include air quality permits. At this time, it is unknown if the project would include stationary sources of emissions subject to SCAQMD permits. Notwithstanding, if the Project requires a stationary permit, it would be subject to the applicable SCAQMD regulations. SCAQMD Regulation XXVII, adopted in 2009 includes the following rules: - Rule 2700 defines terms and post global warming potentials. - Rule 2701, SoCal Climate Solutions Exchange, establishes a voluntary program to encourage, quantify, and certify voluntary, high quality certified GHG emission reductions in the SCAQMD. - Rule 2702, GHG Reduction Program created a program to produce GHG emission reductions within the SCAQMD. The SCAQMD will fund projects through contracts in response to requests for proposals or purchase reductions from other parties. This page intentionally left blank #### 3 PROJECT GREENHOUSE GAS IMPACT #### 3.1 Introduction The Project has been evaluated to determine if it will result in a significant GHG impact. The significance of these potential impacts is described in the following section. #### 3.2 STANDARDS OF SIGNIFICANCE The criteria used to determine the significance of potential Project-related GHG impacts are taken from the Initial Study Checklist in Appendix G of the State CEQA Guidelines (14 California Code of Regulations §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to GHG if it would (1): - Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment? - Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs? #### 3.3 CALIFORNIA EMISSIONS ESTIMATOR MODEL™ EMPLOYED TO ANALYZE GHG EMISSIONS In May 2023 California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including SCAQMD, released the latest version of the CalEEMod Version 2022.1.1.12. The purpose of this model is to calculate construction-source and operational-source criteria pollutant (VOCs, NO_x, SO_x, CO, PM₁₀, and PM_{2.5}) and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation (47). Accordingly, the latest version of CalEEMod has been used for this Project to determine construction and operational air quality emissions. CalEEMod output for both construction and operational scenarios is provided in Appendix 3.1. #### 3.4 CONSTRUCTION LIFE-CYCLE ANALYSIS NOT REQUIRED A full life-cycle analysis (LCA) for construction and operational activity is not included in this analysis due to the lack of consensus guidance on LCA methodology at this time (48). Life-cycle analysis (i.e., assessing economy-wide GHG emissions from the processes in manufacturing and transporting all raw materials used in the project development, infrastructure and on-going operations) depends on emission factors or econometric factors that are not well established for all processes. At this time, an LCA would be extremely speculative and thus has not been prepared. Additionally, the SCAQMD recommends analyzing direct and indirect project GHG emissions generated within California and not life-cycle emissions because the life-cycle effects from a project could occur outside of California, might not be very well understood or documented, and would be challenging to mitigate (49). Additionally, the science to calculate life cycle emissions is not yet established or well defined; therefore, SCAQMD has not recommended, and is not requiring, life-cycle emissions analysis. #### 3.5 Construction Emissions Project construction activities would result in emissions of CO_2 and CH_4 . The report *Replenish Big Bear Program Air Quality Impact Analysis Report* (AQIA) (Urban Crossroads, Inc.) contains detailed information regarding construction activity (50). #### 3.6 OPERATIONAL EMISSIONS In terms of operational GHG emissions, the proposed Project involves the construction of monitoring wells, conveyance facilities and ancillary facilities, evaporation ponds, advanced water purification facilities, and associated improvements. The proposed Project does not include any substantive new stationary or mobile sources of emissions, and therefore, by its very nature, will not generate quantifiable GHG emissions from Project operations. The Project does not propose a trip-generating land use or facilities that would generate any substantive amount of on-going GHG emissions. While it is anticipated that the Project would require intermittent maintenance to be, such maintenance would be minimal requiring a negligible amount of traffic trips on an annual basis. Additionally, based on information provided by BBARWA and the Project Team, the Project will include the installation of solar, which is expected to generate approximately 3,652,117 kWh per year. Therefore, there is no significant operational impact expected, as shown on Table 3-1. #### 3.7 EMISSIONS SUMMARY As shown in Table 3-1, the Project will result in approximately 1,499.63 MTCO₂e/yr from construction and operational activities. **TABLE 3-1: PROJECT GHG EMISSIONS** | Emission Source | Emissions (MT/yr) | | | | | | | | | | | | |---|-------------------|----------|------------------
--------------|------------|--|--|--|--|--|--|--| | Ellission source | CO ₂ | CH₄ | N ₂ O | Refrigerants | Total CO₂e | | | | | | | | | Annual construction-related emissions amortized over 30 years | 361.89 | 1.94E-02 | 2.38E-02 | 2.10E-01 | 369.69 | | | | | | | | | Mobile Source | 0.10 | 0.00 | 0.00 | 0.00 | 0.10 | | | | | | | | | Area Source | 0.81 | 0.00 | 0.00 | 0.00 | 0.81 | | | | | | | | | Energy Source | 44.95 | 4.61 | 0.00 | 0.00 | 45.08 | | | | | | | | | Water Usage | 834.41 | 0.06 | 0.01 | 0.00 | 837.91 | | | | | | | | | Waste | 3.35 | 0.34 | 0.00 | 0.00 | 11.74 | | | | | | | | | Stationary Source | 233.51 | 166.79 | 0.01 | 0.00 | 234.28 | | | | | | | | | Total CO₂e (All Sources) | 1,499.63 | | | | | | | | | | | | Source: CalEEMod output, See Appendices 3.1 through 3.5 for detailed model outputs. #### 3.8 Greenhouse Gas Emissions Findings and Recommendations # GHG Impact #1: The Project would generate direct or indirect GHG emission that would result in a significant impact on the environment. The Big Bear Area Regional Wastewater Agency has not adopted its own numeric threshold of significance for determining impacts with respect to GHG emissions. A screening threshold of 3,000 MTCO₂e/yr or 10,000 MTCO₂e/yr to determine if additional analysis is required is an acceptable approach. This approach is a widely accepted screening threshold used by numerous cities and counties in the SCAB and is based on the SCAQMD staff's proposed GHG screening threshold for stationary source emissions for non-industrial projects, as described in the SCAQMD's Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans (SCAQMD Interim GHG Threshold). The SCAQMD Interim GHG Threshold identifies a screening threshold to determine whether additional analysis is required (51). The Project will result in approximately 1,499.63 MTCO₂e/yr from construction and operational activities. As such, the Project would not exceed the SCAQMD's recommended numeric threshold of 3,000 MTCO₂e or 10,000 MTCO₂e/yr if it were applied. Thus, the Project would not result in a cumulatively considerable impact with respect to GHG emissions. # GHG Impact #2: The Project would not conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHG. As discussed above, the Project involves construction activity and does not propose a tripgenerating land use or facilities that would generate any substantive amount of on-going GHG emissions. As presented in Table 3-1, the Project's GHG emissions are below the 3,000 MTCO₂e/yr and 10,000 MTCO₂e/yr thresholds. As concluded in Impact Statement GHG-1 the proposed project would not have the potential to generate a significant amount of GHGs emissions. As such, the proposed Project will not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs. Impacts are considered less than significant in this regard. This page intentionally left blank #### 4 REFERENCES - 1. **State of California.** 2019 CEQA California Environmental Quality Act. 2019. - 2. **Air Resources Board.** Assembly Bill 32: Global Warming Solutions Act. [Online] 2006. http://www.arb.ca.gov/cc/ab32/ab32.htm. - 3. —. Sustainable Communities. [Online] 2008. http://www.arb.ca.gov/cc/sb375/sb375.htm. - 4. —. Clean Car Standards Pavley, Assembly Bill 1493. [Online] September 24, 2009. http://www.arb.ca.gov/cc/ccms/ccms.htm. - 5. **Building Standards Commission.** California Building Standards Code (Title 24, California Code of Regulations). [Online] http://www.bsc.ca.gov/codes.aspx. - 6. **California Energy Commission.** California Code of Regulations, TITLE 20, Division 2. [Online] September 3, 2013. http://www.energy.ca.gov/reports/title20/index.html. - 7. **Air Resources Board.** Title 17 California Code of Regulation. [Online] 2010. http://www.arb.ca.gov/regs/regs-17.htm. - 8. **Department of Water Resources.** Updated Model Water Efficient Landscape Ordinance AB 1881. [Online] 2006. [Cited: November 13, 2013.] http://www.water.ca.gov/wateruseefficiency/landscapeordinance/updatedOrd_history.cfm. - 9. **California Energy Commission.** SB 1368 Emission Performance Standards. [Online] September 29, 2006. http://www.energy.ca.gov/emission_standards/. - 10. —. Renewables Portfolio Standard (RPS). [Online] 2002. http://www.energy.ca.gov/portfolio/. - 11. **California Legislative Information.** Senate Bill No. 32. [Online] September 8, 2016. https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB32. - 12. **National Oceanic and Atmospheric Administration.** Greenhouse Gases Water Vapor. *NOAA National Centers For Environmental Information.* [Online] https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php?section=watervapor. - 13. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. International Panel on Climate Change. 4, 2007. - 14. *The Carbon Cycle and Climate Change.* **Bennington, Bret J.** 1, s.l.: Brooks/Cole. ISBN 1 3: 978-0-495-73855-8. - 15. **The National Institute for Occupational Safety and Health.** Carbon Dioxide. *Centers for Disease Control and Prevention.* [Online] https://www.cdc.gov/niosh/npg/npgd0103.html. - 16. **National Oceanic and Atmospheric Administration.** Greenhouse Gases Methane. *NOAA National Centers for Environmental Information.* [Online] https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php?section=methane. - 17. World Resources Institute. Climate Analysis Indicator Tool (CAIT). [Online] http://cait.wri.org. - 18. **National Oceanic and Atmospheric Administration.** Greenhouse Gases Chlorofluorocarbons. *NOAA National Centers For Environmental Information.* [Online] https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php?section=chlorofluorocarbons. - 19. **United States Environmental Protection Agency.** Regulation for Reducting Sulfur Hexafluoride Emissions from Gas Insulated Switchgear. *Environmental Protection Agency.* [Online] May 7, 2014. - https://www.epa.gov/sites/production/files/2016-02/documents/mehl-arb-presentation-2014-wkshp.pdf. - 20. **World Resources Institute.** Nitrogen Trifluoride Now Required in GHG Protocol Greenhouse Gas Emissions Inventory. [Online] May 22, 2013. https://www.wri.org/blog/2013/05/nitrogen-trifluoride-now-required-ghg-protocol-greenhouse-gas-emissions-inventories. - 21. **National Center for Biotechnology Information.** Nitrogen Trifluoride. *PubChem Compound Database.* [Online] https://pubchem.ncbi.nlm.nih.gov/compound/24553. - 22. **American Lung Association.** Climate Change. [Online] http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/. - 23. **Barbara H. Allen-Diaz.** Climate change affects us all. *University of California Agriculture and Natural Resources*. [Online] April 1, 2009. http://calag.ucanr.edu/Archive/?article=ca.v063n02p51. - 24. Intergovernmental Panel on Climate Change. Climate Change 2021 The Physical Science Basis. Climate Change 2021 The Physical Science Basis. [Online] https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/. - 25. United Nations. GHG Profiles Annex I. [Online] http://di.unfccc.int/ghg_profile_annex1. - 26. —. GHG Profiles Non-Annex I. [Online] http://di.unfccc.int/ghg_profile_non_annex1. - 27. World Resources Institute. Climate Analysis Indicator Tool (CAIT). [Online] http://cait.wri.org. - 28. **Air Resources Board.** 2022 GHG Inventory. *California Greenhouse Gas Emission Inventory 2000-2020 Edition.* [Online] [Cited: February 1, 2022.] http://www.arb.ca.gov/cc/inventory/data/data.htm. - 29. California Energy Commission. Our Changing Climate Assessing the Risks to California. 2006. - 30. **Center for Climate and Energy Solutions (C2ES).** Outcomes of the U.N. Climate Change Conference. *Center for Climate and Energy Solutions (C2ES).* [Online] 2015. http://www.c2es.org/international/negotiations/cop21-paris/summary. - 31. **Agency, United States Environmental Protection.** Endangerment and Cause or Contribute Findings for Greenhouse Gases under the Section 202(a) of the Clean Air Act. *United States Environmental Protection Agency.* [Online] https://www.epa.gov/ghgemissions/endangerment-and-cause-or-contribute-findings-greenhouse-gases-under-section-202a-clean. - 32. **Federal Register.** Mid-Term Evaluation of Greenhouse Gas Emissions Standards for Model Year 2022-2025 Light-Duty Vehicles. [Online] 2018. https://www.federalregister.gov/documents/2018/04/13/2018-07364/mid-term-evaluation-of-greenhouse-gas-emissions-standards-for-model-year-2022-2025-light-duty. - 33. **Administration, National Highway Traffic Safety.** SAFE: The Safer Affordable Fuel-Efficient 'SAFE' Vehicle Rule. *National Highway Traffic Safety Administration*. [Online] 2020. https://www.nhtsa.gov/corporate-average-fuel-economy/safe. - 34. **National Highway Traffic Safety Administration.** Corporate Average Fuel Economy. [Online] https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy. - 35. **Department of Transportation.** Corporate Average Fuel Economy Standards for Model Years 2024-2026 Passenger Cars and Light Trucks. [Online] https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-04/Final-Rule-Preamble_CAFE-MY-2024-2026.pdf. - 36. **United States Environmental Protection Agency.** SmartWay. [Online] https://www.epa.gov/smartway/learn-about-smartway. - 37. **California Air Resources Board.** California's 2017 Climate Change Scoping Plan . [Online] 2017. https://ww3.arb.ca.gov/cc/scopingplan/scoping_plan_2017_es.pdf. - 38. Lawrence Berkeley National Laboratory. California's Policies Can Significantly Cut Greenhouse Gas Emissions through 2030. *Lawrence Berkeley National Laboratory*. [Online] January 22, 2015. http://newscenter.lbl.gov/2015/01/22/californias-policies-can-significantly-cut-greenhouse-gas-emissions-2030/. - 39. **Ernest Orlando Lawrence
Berkeley National Laboratory.** Modeling California policy impacts on greenhouse gas emissions. [Online] 2015. https://eaei.lbl.gov/sites/all/files/lbnl-7008e.pdf. - 40. California Air Resources Board. 2022 Scoping Plan for Achieving Carbon Neutrality. - 41. —. Legal Disclaimer & User's Notice. [Online] April 2019. https://ww3.arb.ca.gov/cc/capandtrade/capandtrade/ct_reg_unofficial.pdf. - 42. —. Climate Change Scoping Plan. [Online] 2014. https://ww3.arb.ca.gov/cc/scopingplan/2013_update/first_update_climate_change_scoping_plan.p df. - 43. —. Low Carbon Fuel Standard. [Online] December 2019. https://ww3.arb.ca.gov/fuels/lcfs/lcfs.htm. - 44. **California Energy Commission.** Energy Commission Adopts Updated Building Standards to Improve Efficiency, Reduce Emissions from Homes and Businesses. [Online] August 11, 2021. https://www.energy.ca.gov/news/2021-08/energy-commission-adopts-updated-building-standards-improve-efficiency-reduce-0. - 45. **California Department of General Services.** 2022 CALGreen Code. *CALGreen.* [Online] https://codes.iccsafe.org/content/CAGBC2022P1. - 46. Association of Environmental Professionals. 2018 CEQA California Environmental Quality Act. 2018. - 47. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] September 2016. www.caleemod.com. - 48. **California Natural Resources Agency.** Final Statement of Reasons for Regulatory Action, Amendments to the State CEQA Guidelines Addressing Analysis and Mitigation of Greenhouse Gas Emissions Pursuant to SB97. [Online] December 2009. - 49. Minutes for the GHG CEQA Significance. South Coast Air Quality Managment District. 2008. - 50. **Urban Crossroads, Inc.** *Replenish Biq Bear Program Air Quality Impact Analysis Report.* 2023. - 51. **South Coast Air Quality Management District.** Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans. [Online] http://www.aqmd.gov/hb/2008/December/081231a.htm. This page intentionally left blank #### 5 CERTIFICATIONS The contents of this GHG study report represent an accurate depiction of the GHG impacts associated with the proposed Replenish Big Bear Program Project. The information contained in this GHG report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com Haseeb Qureshi Principal URBAN CROSSROADS, INC. hqureshi@urbanxroads.com #### **EDUCATION** Master of Science in Environmental Studies California State University, Fullerton • May 2010 Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June 2006 #### **PROFESSIONAL AFFILIATIONS** AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials #### **PROFESSIONAL CERTIFICATIONS** Environmental Site Assessment – American Society for Testing and Materials • June 2013 Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – California Air Resources Board • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006 This page intentionally left blank ### APPENDIX 3.1: CALEEMOD REPLENISH BIG BEAR COMPONENT 1 UNMITIGATED EMISSIONS MODEL OUTPUTS # 15309-WWTP Upgrades (Unmitigated) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 2.3. Construction Emissions by Year, Mitigated - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 2.6. Operations Emissions by Sector, Mitigated - 3. Construction Emissions Details - 3.1. Linear, Grading & Excavation (2026) Unmitigated - 3.2. Linear, Grading & Excavation (2026) Mitigated - 3.3. Linear, Grading & Excavation (2027) Unmitigated - 3.4. Linear, Grading & Excavation (2027) Mitigated - 3.5. Demolition (2025) Unmitigated - 3.6. Demolition (2025) Mitigated - 3.7. Building Construction (2025) Unmitigated - 3.8. Building Construction (2025) Mitigated - 3.9. Building Construction (2026) Unmitigated - 3.10. Building Construction (2026) Mitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.1.2. Mitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.2. Electricity Emissions By Land Use Mitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.2.4. Natural Gas Emissions By Land Use Mitigated - 4.3. Area Emissions by Source - 4.3.1. Unmitigated - 4.3.2. Mitigated - 4.4. Water Emissions by Land Use - 4.4.1. Unmitigated - 4.4.2. Mitigated - 4.5. Waste Emissions by Land Use - 4.5.1. Unmitigated - 4.5.2. Mitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.6.2. Mitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.7.2. Mitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.8.2. Mitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.9.2. Mitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.2.2. Mitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.3.2. Mitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.9.2. Mitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.1.2. Mitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.10.4. Landscape Equipment Mitigated - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.11.2. Mitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.12.2. Mitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.13.2. Mitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.14.2. Mitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.15.2. Mitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1.2. Mitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.1.2. Mitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 5.18.2.2. Mitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | |-----------------------------|-----------------------------------| | Project Name | 15309-WWTP Upgrades (Unmitigated) | | Construction Start Date | 1/1/2025 | | Operational Year | 2027 | | ead Agency | | | and Use Scale | Project/site | | analysis Level for Defaults | County | | Vindspeed (m/s) | 2.50 | | Precipitation (days) | 1.80 | | ocation | 34.269428, -116.815824 | | County | San Bernardino-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | AZ | 5156 | | EDFZ | 10 | | Electric Utility | Bear Valley Electric Service | | Gas Utility | Southwest Gas Corp. | | pp Version | 2022.1.1.18 | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq | Special Landscape | Population | Description | |------------------|------|------|-------------|-----------------------|--------------------|-------------------|------------|-------------| | | | | | | ft) | Area (sq ft) | | | | Unrefrigerated
Warehouse-Rail | 40.0 | 1000sqft | 0.92 | 40,000 | 0.00 | - | _ | _ | |----------------------------------|------|----------|------|--------|------|----|--------------|--------------| | Other Non-Asphalt
Surfaces | 2.00 | Acre | 2.00 | 0.00 | 0.00 | | _ | Pump Station | | Parking Lot | 0.50 | Acre | 0.50 | 0.00 | 0.00 | j- | - | _ | | User Defined Linear | 0.26 | Mile | 0.14 | 0.00 | 0.00 | _ | _ | _ | | Other Asphalt
Surfaces | 0.44 | Acre | 0.44 | 0.00 | 0.00 | - | _ | Remaining SF | ## 1.3. User-Selected Emission Reduction Measures by Emissions Sector | Sector | # | Measure Title | |--------|--------|--| | Energy | E-10-B | Establish Onsite Renewable Energy Systems: Solar Power | # 2. Emissions Summary ### 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx
 СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | - | | - | - | - | - | | | | - | | | | | | | | | Unmit. | 4.18 | 3.82 | 27.5 | 44.3 | 0.08 | 1.10 | 6.19 | 7.30 | 1.02 | 1.93 | 2.95 | - | 12,560 | 12,560 | 0.56 | 0.57 | 21.3 | 12,766 | | Daily,
Winter
(Max) | _ | | | | | - | - | - | - | | - | - | | _ | - | | | | | Unmit. | 5.21 | 4.63 | 30.9 | 56.2 | 0.16 | 1.15 | 13.1 | 13.4 | 1.06 | 3.06 | 3.82 | - | 26,339 | 26,339 | 2.04 | 3.77 | 1.79 | 27,515 | | Average
Daily
(Max) | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | - | | Unmit. | 2.72 | 2.46 | 18.6 | 26.1 | 0.06 | 0.70 | 4.55 | 5.24 | 0.65 | 1.36 | 2.01 | _ | 9,047 | 9,047 | 0.46 | 0.56 | 7.33 | 9,233 | | Annual
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |-----------------|------|------|------|------|------|------|------|------|------|------|------|---|-------|-------|------|------|------|-------| | Unmit. | 0.50 | 0.45 | 3.40 | 4.76 | 0.01 | 0.13 | 0.83 | 0.96 | 0.12 | 0.25 | 0.37 | _ | 1,498 | 1,498 | 0.08 | 0.09 | 1.21 | 1,529 | ## 2.2. Construction Emissions by Year, Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------------------------|---------|---------|------|------|---------|---------|-------|-------|---------|---------|---------|------|--------|--------|---------|---------|------|--------| | Daily -
Summer
(Max) | - | _ | - | _ | - | _ | - | - | _ | _ | - | - | - | | _ | - | _ | _ | | 2025 | 4.18 | 3.82 | 27.5 | 44.3 | 0.08 | 1.10 | 6.19 | 7.30 | 1.02 | 1.93 | 2.95 | _ | 12,560 | 12,560 | 0.56 | 0.57 | 21.3 | 12,766 | | 2026 | 4.03 | 3.67 | 25.4 | 42.3 | 0.08 | 1.01 | 6.19 | 7.20 | 0.93 | 1.93 | 2.87 | - | 12,440 | 12,440 | 0.54 | 0.57 | 19.4 | 12,642 | | Daily -
Winter
(Max) | - | | | | | | | | | | - | | - | | | | - | | | 2025 | 4.16 | 3.80 | 27.7 | 38.8 | 0.16 | 1.10 | 13.1 | 13.4 | 1.02 | 3.06 | 3.38 | - | 26,339 | 26,339 | 2.04 | 3.77 | 1.79 | 27,515 | | 2026 | 5.21 | 4.63 | 30.9 | 56.2 | 0.09 | 1.15 | 9.73 | 10.9 | 1.06 | 2.76 | 3.82 | _ | 17,376 | 17,376 | 0.51 | 0.70 | 0.83 | 17,598 | | 2027 | 1.19 | 0.96 | 5.01 | 18.1 | 0.02 | 0.13 | 3.53 | 3.66 | 0.12 | 0.83 | 0.94 | - | 5,177 | 5,177 | 0.08 | 0.13 | 0.30 | 5,218 | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 2025 | 2.72 | 2.39 | 18.6 | 25.9 | 0.06 | 0.70 | 4.55 | 5.24 | 0.65 | 1.36 | 2.01 | - | 9,047 | 9,047 | 0.46 | 0.56 | 7.33 | 9,233 | | 2026 | 2.70 | 2.46 | 17.2 | 26.1 | 0.05 | 0.67 | 4.27 | 4.94 | 0.62 | 1.32 | 1.94 | - | 8,305 | 8,305 | 0.29 | 0.38 | 5.82 | 8,432 | | 2027 | 0.03 | 0.02 | 0.11 | 0.40 | < 0.005 | < 0.005 | 0.08 | 0.08 | < 0.005 | 0.02 | 0.02 | - | 112 | 112 | < 0.005 | < 0.005 | 0.11 | 113 | | Annual | - | _ | - | - | _ | _ | _ | - | _ | - | _ | - | 1- | - | - | - | _ | _ | | 2025 | 0.50 | 0.44 | 3.40 | 4.73 | 0.01 | 0.13 | 0.83 | 0.96 | 0.12 | 0.25 | 0.37 | _ | 1,498 | 1,498 | 0.08 | 0.09 | 1.21 | 1,529 | | 2026 | 0.49 | 0.45 | 3.14 | 4.76 | 0.01 | 0.12 | 0.78 | 0.90 | 0.11 | 0.24 | 0.35 | - | 1,375 | 1,375 | 0.05 | 0.06 | 0.96 | 1,396 | | 2027 | < 0.005 | < 0.005 | 0.02 | 0.07 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | - | 18.6 | 18.6 | < 0.005 | < 0.005 | 0.02 | 18.8 | ## 2.3. Construction Emissions by Year, Mitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | | | | | | | | | | | | | | | | | _ | |----------------------------|---------|---------|------|------|---------|---------|-------|-------|---------|---------|---------|------|--------|--------|---------|---------|------|--------| | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily -
Summer
(Max) | - | | _ | | | | - | | | | - | | | _ | - | | _ | | | 2025 | 4.18 | 3.82 | 27.5 | 44.3 | 0.08 | 1.10 | 6.19 | 7.30 | 1.02 | 1.93 | 2.95 | _ | 12,560 | 12,560 | 0.56 | 0.57 | 21.3 | 12,766 | | 2026 | 4.03 | 3.67 | 25.4 | 42.3 | 0.08 | 1.01 | 6.19 | 7.20 | 0.93 | 1.93 | 2.87 | _ | 12,440 | 12,440 | 0.54 | 0.57 | 19.4 | 12,642 | | Daily -
Winter
(Max) | - | - | - | | - | - | | | - | | - | | - | _ | - | - | _ | - | | 2025 | 4.16 | 3.80 | 27.7 | 38.8 | 0.16 | 1.10 | 13.1 | 13.4 | 1.02 | 3.06 | 3.38 | - | 26,339 | 26,339 | 2.04 | 3.77 | 1.79 | 27,515 | | 2026 | 5.21 | 4.63 | 30.9 | 56.2 | 0.09 | 1.15 | 9.73 | 10.9 | 1.06 | 2.76 | 3.82 | _ | 17,376 | 17,376 | 0.51 | 0.70 | 0.83 | 17,598 | | 2027 | 1.19 | 0.96 | 5.01 | 18.1 | 0.02 | 0.13 | 3.53 | 3.66 | 0.12 | 0.83 | 0.94 | - | 5,177 | 5,177 | 0.08 | 0.13 | 0.30 | 5,218 | | Average
Daily | - | - | - | - | _ | _ | - | - | - | - | - | - | _ | - | - | - | - | - | | 2025 | 2.72 | 2.39 | 18.6 | 25.9 | 0.06 | 0.70 | 4.55 | 5.24 | 0.65 | 1.36 | 2.01 | - | 9,047 | 9,047 | 0.46 | 0.56 | 7.33 | 9,233 | | 2026 | 2.70 | 2.46 | 17.2 | 26.1 | 0.05 | 0.67 | 4.27 | 4.94 | 0.62 | 1.32 | 1.94 | - | 8,305 | 8,305 | 0.29 | 0.38 | 5.82 | 8,432 | | 2027 | 0.03 | 0.02 | 0.11 | 0.40 | < 0.005 | < 0.005 | 0.08 | 0.08 | < 0.005 | 0.02 | 0.02 | - | 112 | 112 | < 0.005 | < 0.005 | 0.11 | 113 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2025 | 0.50 | 0.44 | 3.40 | 4.73 | 0.01 | 0.13 | 0.83 | 0.96 | 0.12 | 0.25 | 0.37 | _ | 1,498 | 1,498 | 0.08 | 0.09 | 1.21 | 1,529 | | 2026 | 0.49 | 0.45 | 3.14 | 4.76 | 0.01 | 0.12 | 0.78 | 0.90 | 0.11 | 0.24 | 0.35 | _ | 1,375 | 1,375 | 0.05 | 0.06 | 0.96 | 1,396 | | 2027 | < 0.005 | < 0.005 | 0.02 | 0.07 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | _ | 18.6 | 18.6 | < 0.005 | < 0.005 | 0.02 | 18.8 | ## 2.4. Operations Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | | | | | - | | | | _ | | _ | _ | - | - | - | - | _ | - | | Unmit. | 1.20 | 2.01 | 4.33 | 5.92 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 10,709 | 10,729 | 2.75 | 0.09 | 0.00 | 10,824 | | Mit. | 1.20 | 2.01 | 4.33 | 5.92 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 5,694 | 5,714 | 2.41 | 0.05 | 0.00 | 5,788 | |---------------------------|------|------|------|------|---------|------|------|------|------|------|------|------|--------|--------|------|------|------|--------| | %
Reduced | - | - | - | - | - | - | - | - | - | - | - | - | 47% | 47% | 12% | 48% | - | 47% | | Daily,
Winter
(Max) | _ | _ | - | | - | - | - | | - | | - | | - | | T | - | - | _ | | Unmit. | 0.89 | 1.73 | 4.31 | 4.18 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 10,701 | 10,722 | 2.75 | 0.09 | 0.00 | 10,816 | | Mit. | 0.89 | 1.73 | 4.31 | 4.18 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 5,687 | 5,707 | 2.41 | 0.05 | 0.00 | 5,781 | | %
Reduced | - | - | - | - | - | - | - | - | - | - | - | - | 47% | 47% | 12% | 48% | - | 47% | | Average
Daily
(Max) | - | | | | | - | | | | | | | | | Ī | | - | | | Unmit. | 1.10 | 1.92 | 4.32 | 5.37 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 10,706 | 10,727 | 2.75 | 0.09 | 0.00 | 10,821 | | Mit. | 1.10 | 1.92 | 4.32 | 5.37 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 5,691 | 5,712 | 2.41 | 0.05 | 0.00 | 5,786 | | %
Reduced | - | - | - | - | - | - | - | 1- | - | - | - | - | 47% | 47% | 12% | 48% | - | 47% | | Annual
(Max) | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | | Unmit. | 0.20 | 0.35 | 0.79 | 0.98 | < 0.005 | 0.09 | 0.00 | 0.09 | 0.09 | 0.00 | 0.09 | 3.35 | 1,773 | 1,776 | 0.46 | 0.01 | 0.00 | 1,792 | | Mit. | 0.20 | 0.35 | 0.79 | 0.98 | < 0.005 | 0.09 | 0.00 | 0.09 | 0.09 | 0.00 | 0.09 | 3.35 | 942 | 946 | 0.40 | 0.01 | 0.00 | 958 | | %
Reduced | - | - | 1 | - | - | - | - | - | - | - | 1 | - | 47% | 47% | 12% | 48% | - | 47% | ### 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------| | Daily,
Summer
(Max) | | | _ | _ | | | _ | | | _ | _ | | | | | _ | _ | | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.31 | 1.21 | 0.01 | 1.74 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | - | < 0.005 | - | 7.15 | 7.15 | < 0.005 | < 0.005 | _ | 7.18 | |---------------------------|------|------|------|------|---------|---------|------|---------|---------|------|---------|------|--------|--------|---------|---------|------|--------| | Energy | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | - | 0.02 | 0.02 | - | 0.02 | - | 5,258 | 5,258 | 0.37 | 0.04 | - | 5,280 | | Water | _ | _ | I - | _ | - | _ | _ | - | _ | - | _ | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | - | 5,061 | | Waste | _ | - | 1- | - | - | _ | - | - | _ | - | _ | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | - | 70.9 | | Stationar
y | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Total | 1.20 | 2.01
 4.33 | 5.92 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 10,709 | 10,729 | 2.75 | 0.09 | 0.00 | 10,824 | | Daily,
Winter
(Max) | _ | | | | | | - | | _ | - | - | - | - | - | - | _ | - | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | _ | 0.93 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | - | - | | Energy | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | - | 0.02 | _ | 5,258 | 5,258 | 0.37 | 0.04 | - | 5,280 | | Water | _ | - | - | - | - | _ | _ | _ | _ | _ | _ | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | _ | 5,061 | | Waste | _ | - | 1- | - | - | - | _ | - | _ | - | - | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | - | 70.9 | | Stationar
y | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Total | 0.89 | 1.73 | 4.31 | 4.18 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 10,701 | 10,722 | 2.75 | 0.09 | 0.00 | 10,816 | | Average
Daily | - | | - | | - | - | - | | - | - | - | - | - | - | - | - | - | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.21 | 1.12 | 0.01 | 1.19 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 4.90 | 4.90 | < 0.005 | < 0.005 | - | 4.92 | | Energy | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 5,258 | 5,258 | 0.37 | 0.04 | - | 5,280 | | Water | _ | - | - | - | - | - | _ | - | _ | - | - | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | _ | 5,061 | | Waste | _ | - | - | - | - | _ | _ | - | _ | _ | - | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | _ | 70.9 | | Stationar
y | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Total | 1.10 | 1.92 | 4.32 | 5.37 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 10,706 | 10,727 | 2.75 | 0.09 | 0.00 | 10,821 | | Annual | - | - | - | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.04 | 0.20 | < 0.005 | 0.22 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 0.81 | 0.81 | < 0.005 | < 0.005 | - | 0.81 | |----------------|---------|---------|---------|------|---------|---------|------|---------|---------|------|---------|------|-------|-------|---------|---------|------|-------| | Energy | < 0.005 | < 0.005 | 0.04 | 0.03 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 871 | 871 | 0.06 | 0.01 | - | 874 | | Water | _ | _ | _ | _ | - | _ | _ | - | _ | - | - | 0.00 | 834 | 834 | 0.06 | 0.01 | _ | 838 | | Waste | _ | - | - | - | - | - | - | - | _ | - | - | 3.35 | 0.00 | 3.35 | 0.34 | 0.00 | _ | 11.7 | | Stationar
y | 0.16 | 0.14 | 0.75 | 0.73 | < 0.005 | 0.08 | 0.00 | 0.08 | 0.08 | 0.00 | 0.08 | 0.00 | 66.7 | 66.7 | < 0.005 | < 0.005 | 0.00 | 66.9 | | Total | 0.20 | 0.35 | 0.79 | 0.98 | < 0.005 | 0.09 | 0.00 | 0.09 | 0.09 | 0.00 | 0.09 | 3.35 | 1,773 | 1,776 | 0.46 | 0.01 | 0.00 | 1,792 | # 2.6. Operations Emissions by Sector, Mitigated | Sector | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|---------|---------|------|-------| | Daily,
Summer
(Max) | - | - | Ť | Ť | - | - | - | - | - | | - | | | - | Ĺ | | _ | | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.31 | 1.21 | 0.01 | 1.74 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 7.15 | 7.15 | < 0.005 | < 0.005 | - | 7.18 | | Energy | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | _ | 0.02 | _ | 244 | 244 | 0.02 | < 0.005 | _ | 244 | | Water | _ | - | - | - | - | - | _ | - | - | - | - | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | _ | 5,061 | | Waste | _ | - | _ | - | _ | - | _ | - | _ | _ | _ | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | - | 70.9 | | Stationar
y | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Total | 1.20 | 2.01 | 4.33 | 5.92 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 5,694 | 5,714 | 2.41 | 0.05 | 0.00 | 5,788 | | Daily,
Winter
(Max) | | - | | 1 | - | - | | - | - | - | - | | - | - | - | - | - | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | - | 0.93 | - | - | - | - | - | - | _ | - | _ | _ | - | - | - | _ | - | - | | Energy | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | - | 0.02 | 0.02 | - | 0.02 | _ | 244 | 244 | 0.02 | < 0.005 | - | 244 | | Water | _ | _ | 1_ | 1 | _ | _ | _ | | _ | _ | _ | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | | 5,061 | | Waste | _ | _ | _ | - | _ | - | _ | _ | _ | - | - | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | _ | 70.9 | |------------------|---------|---------|---------|------|---------|---------|------|---------|---------|------|---------|------|-------|-------|---------|---------|------|-------| | Stationar
y | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Total | 0.89 | 1.73 | 4.31 | 4.18 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 5,687 | 5,707 | 2.41 | 0.05 | 0.00 | 5,781 | | Average
Daily | - | - | - | | - | - | - | - | - | | - | | - | - | - | - | - | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.21 | 1.12 | 0.01 | 1.19 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 4.90 | 4.90 | < 0.005 | < 0.005 | _ | 4.92 | | Energy | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | - | 0.02 | 0.02 | - | 0.02 | _ | 244 | 244 | 0.02 | < 0.005 | _ | 244 | | Water | _ | - | - | - | - | - | - | - | - | - | - | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | - | 5,061 | | Waste | _ | - | _ | - | _ | _ | _ | - | _ | _ | _ | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | _ | 70.9 | | Stationar
y | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Total | 1.10 | 1.92 | 4.32 | 5.37 | 0.01 | 0.48 | 0.00 | 0.48 | 0.48 | 0.00 | 0.48 | 20.3 | 5,691 | 5,712 | 2.41 | 0.05 | 0.00 | 5,786 | | Annual | - | - | - | - | - | - | - | - | _ | - | - | - | - | - | 1- | _ | | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.04 | 0.20 | < 0.005 | 0.22 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | - | < 0.005 | - | 0.81 | 0.81 | < 0.005 | < 0.005 | _ | 0.81 | | Energy | < 0.005 | < 0.005 | 0.04 | 0.03 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 40.3 | 40.3 | < 0.005 | < 0.005 | - | 40.5 | | Water | _ | - | - | - | - | - | - | - | - | - | - | 0.00 | 834 | 834 | 0.06 | 0.01 | _ | 838 | | Waste | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | 3.35 | 0.00 | 3.35 | 0.34 | 0.00 | _ | 11.7 | | Stationar
y | 0.16 | 0.14 | 0.75 | 0.73 | < 0.005 | 0.08 | 0.00 | 0.08 | 0.08 | 0.00 | 0.08 | 0.00 | 66.7 | 66.7 | < 0.005 | < 0.005 | 0.00 | 66.9 | | Total | 0.20 | 0.35 | 0.79 | 0.98 | < 0.005 | 0.09 | 0.00 | 0.09 | 0.09 | 0.00 | 0.09 | 3.35 | 942 | 946 | 0.40 | 0.01 | 0.00 | 958 | # 3. Construction Emissions Details #### 3.1. Linear, Grading & Excavation (2026) - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | | | × | 1- | Y | | | | | 10/04 | | | | | | | | - | | 16 / 81 | Onsite | _ | - | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------------------------|--------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|-------| | Daily,
Summer
(Max) | _ | - | | | | | - | | - | | | r | | - | | - | - | - | | Daily,
Winter
(Max) | | | | | - | - | - | - | - | - | | | | | - | | - | | | Off-Road
Equipmen | | 0.59 | 4.26 | 6.30 | 0.02 | 0.14 | - | 0.14 | 0.13 | - | 0.13 | - | 1,863 | 1,863 | 0.08 | 0.02 | - | 1,869 | | Dust
From
Material
Movement | _
t | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | 1 | - | - | - | 1- | - | - | - | - | 1- | - | 1- 1 | - | - | - | | Off-Road
Equipmen | | 0.04 | 0.26 | 0.38 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 113 | 113 | < 0.005 | < 0.005 | - | 113 | | Dust
From
Material
Movement |
t | | | | - | | 0.00 | 0.00 | - | 0.00 | 0.00 | - | - | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.05 | 0.07 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 18.7 | 18.7 | < 0.005 | < 0.005 | - | 18.8 | | Dust
From
Material
Movement | | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | |
Offsite | _ | | - | _ | _ | | _ | _ | _ | _ | _ | _ | | - | - | _ | _ | _ | | Daily,
Summer
(Max) | | | - | - | - | - | - | | - | | | | | | | - | - | - | |---------------------------|------|---------|------|------|------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|---| | Daily,
Winter
(Max) | | - | - | | - | - | - | | - | | | | | - | | - | - | - | | Worker | 0.50 | 0.38 | 1.03 | 12.7 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | _ | 3,383 | 3,383 | 0.01 | 0.11 | 0.33 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.03 | 0.02 | 0.07 | 0.82 | 0.00 | 0.00 | 0.21 | 0.21 | 0.00 | 0.05 | 0.05 | - | 208 | 208 | < 0.005 | 0.01 | 0.33 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Annual | - | - | - | - | - | - | - | - | - | _ | - | _ | - | - | - | _ | _ | _ | | Worker | 0.01 | < 0.005 | 0.01 | 0.15 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.01 | 0.01 | _ | 34.5 | 34.5 | < 0.005 | < 0.005 | 0.06 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | ### 3.2. Linear, Grading & Excavation (2026) - Mitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------| | Onsite | _ | _ | _ | 1- | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | | | - | | - | | | | - | - | - | - | - | - | - | - | | | | Daily,
Winter
(Max) | _ | | | | | | | | _ | - | | | - | - | | - | | - | | Off-Road
Equipmen | | 0.59 | 4.26 | 6.30 | 0.02 | 0.14 | - | 0.14 | 0.13 | | 0.13 | - | 1,863 | 1,863 | 0.08 | 0.02 | - | 1,869 | | Dust
From
Material | - | - | - | | | - | 0.00 | 0.00 | - | 0.00 | 0.00 | - | - | | | - | | r | |--------------------------------------|--------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|------| | Movement | t | | | | | | | | | | | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | | Off-Road
Equipmen | | 0.04 | 0.26 | 0.38 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 113 | 113 | < 0.005 | < 0.005 | - | 113 | | Dust
From
Material
Movement | _
t | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | - | - | | | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | - | _ | _ | _ | - | _ | _ | _ | _ | - | - | _ | _ | _ | _ | - | | Off-Road
Equipmen | | 0.01 | 0.05 | 0.07 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 18.7 | 18.7 | < 0.005 | < 0.005 | - | 18.8 | | Dust
From
Material
Movement | _
t | | | T | | | 0.00 | 0.00 | - | 0.00 | 0.00 | | | | - | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | 1- | _ | _ | _ | | Daily,
Summer
(Max) | - | - | - | - | - | | - | - | - | - | - | - | - | | | - | - | | | Daily,
Winter
(Max) | _ | - | | | - | | - | | - | - | - | - | - | | | | - | | | Worker | 0.50 | 0.38 | 1.03 | 12.7 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | - | 3,383 | 3,383 | 0.01 | 0.11 | 0.33 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 19 / 81 | Average
Daily | - | - | - | - | - | - | - | - | _ | - | - | | - | - | - | - | - | - | |------------------|------|---------|------|------|------|------|----------|------|------|------|------|---|------|------|---------|---------|------|---| | Worker | 0.03 | 0.02 | 0.07 | 0.82 | 0.00 | 0.00 | 0.21 | 0.21 | 0.00 | 0.05 | 0.05 | - | 208 | 208 | < 0.005 | 0.01 | 0.33 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | - | _ | 1 | _ | _ | <u> </u> | 1 | _ | - | _ | - | _ | - | - | _ | - | - | | Worker | 0.01 | < 0.005 | 0.01 | 0.15 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.01 | 0.01 | - | 34.5 | 34.5 | < 0.005 | < 0.005 | 0.06 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | ### 3.3. Linear, Grading & Excavation (2027) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------------------------------------|--------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|----------|---------|------|-------| | Onsite | _ | 1- | _ | 1 | 1- | Ĭ- | i- | - | _ | - | - | - | _ | - | <u> </u> | 1- | _ | _ | | Daily,
Summer
(Max) | _ | | | | - | | - | - | - | | - | | | | | - | - | | | Daily,
Winter
(Max) | _ | | | | | | - | | - | - | - | - | | | | - | - | | | Off-Road
Equipmen | | 0.59 | 4.09 | 6.32 | 0.02 | 0.13 | - | 0.13 | 0.12 | - | 0.12 | - | 1,862 | 1,862 | 0.08 | 0.02 | - | 1,868 | | Dust
From
Material
Movement | _
t | | | | - | | 0.00 | 0.00 | | 0.00 | 0.00 | _ | | | - | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | - | | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.01 | 0.09 | 0.14 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 40.1 | 40.1 | < 0.005 | < 0.005 | - | 40.2 | | Dust
From
Material
Movement | _ | | - | | _ | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | | Γ | |--------------------------------------|---------|---------|---------|------|---------|---------|------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 6.64 | 6.64 | < 0.005 | < 0.005 | - | 6.66 | | Dust
From
Material
Movement | _ | | - | | | | 0.00 | 0.00 | | 0.00 | 0.00 | - | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | - | - | - | - | - | - | - | - | - | - | - | 1- | - | 1- | - | - | 1- | | Daily,
Summer
(Max) | _ | - | - | - | - | _ | - | | - | - | - | | - | - | - | - | - | - | | Daily,
Winter
(Max) | _ | _ | - | | - | - | - | | - | - | - | - | - | | | _ | - | | | Worker | 0.49 | 0.37 | 0.92 | 11.8 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | _ | 3,315 | 3,315 | 0.01 | 0.11 | 0.30 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | 1- | - | - | - | - | - | | Worker | 0.01 | 0.01 | 0.02 | 0.27 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.02 | 0.02 | - | 72.4 | 72.4 | < 0.005 | < 0.005 | 0.11 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | _ | _ | - | _ | _ | - | _ | - | _ | _ | - | - | 1- | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | - | 12.0 | 12.0 | < 0.005 | < 0.005 | 0.02 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling 0. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | |------------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|---| #### 3.4. Linear, Grading & Excavation (2027) - Mitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
-------------------------------------|--------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|-------|---------|---------|------|-------| | Onsite | _ | - | - | - | _ | _ | _ | 1— | _ | _ | _ | - | _ | _ | _ | - | - | _ | | Daily,
Summer
(Max) | _ | _ | - | | | | | | | | | | | _ | | | _ | | | Daily,
Vinter
Max) | - | | - | | - | - | - | - | - | _ | - | - | - | - | - | - | - | | | Off-Road
Equipmen | | 0.59 | 4.09 | 6.32 | 0.02 | 0.13 | - | 0.13 | 0.12 | - | 0.12 | - | 1,862 | 1,862 | 0.08 | 0.02 | - | 1,868 | | Dust
From
Material
Movemen | _
t | | | | - | | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | | | - | _ | _ | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.01 | 0.09 | 0.14 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 40.1 | 40.1 | < 0.005 | < 0.005 | - | 40.2 | | Dust
From
Material
Movemen | _
t | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | Annual | _ | _ | - | 1- | - | _ | - | - | _ | _ | _ | - | _ | - | 1 | - | - | - | | Off-Road
Equipmen | | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 6.64 | 6.64 | < 0.005 | < 0.005 | - | 6.66 | | Dust
From
Material
Movemer | —
nt | | | | | T | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | - | | |-------------------------------------|---------|---------|---------|------|------|------|------|------|------|---------|---------|---|-------|-------|---------|---------|------|---| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | | Daily,
Summer
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Daily,
Winter
(Max) | - | - | - | | | | - | | | - | - | - | | - | | - | - | | | Worker | 0.49 | 0.37 | 0.92 | 11.8 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | - | 3,315 | 3,315 | 0.01 | 0.11 | 0.30 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | _ | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.01 | 0.01 | 0.02 | 0.27 | 0.00 | 0.00 | 0.08 | 0.08 | 0.00 | 0.02 | 0.02 | - | 72.4 | 72.4 | < 0.005 | < 0.005 | 0.11 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Annual | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1- | - | - | - | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | - | 12.0 | 12.0 | < 0.005 | < 0.005 | 0.02 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | # 3.5. Demolition (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | - | - | - | - | - | | _ | - | - | - | | | | - | - | - | | |--------------------------------------|--------|------|------|------|------|------|---------|---------|------|---------|---------|---|------|------|------|------|------|---| | Daily,
Winter
(Max) | _ | - | - | | | | - | - | - | - | - | | - | - | | | - | - | | Dust
From
Material
Movement | _
t | - | - | | | | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | | | | | | | | | Demolitio
n | _ | - | - | - | - | - | 3.24 | 3.24 | - | 0.49 | 0.49 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Dust
From
Material
Movement | _
t | | | | | | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | | | | | | | | Demolitio
n | - | - | - | | - | - | 0.18 | 0.18 | - | 0.03 | 0.03 | - | - | - | - | - | - | - | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | - | - | - | - | - | - | - | _ | _ | _ | _ | - | - | - | - | - | - | | Dust
From
Material
Movement |
t | | | | | | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | | | | | | | | | Demolitio
n | - | - | - | - | - | - | 0.03 | 0.03 | - | < 0.005 | < 0.005 | - | 1 | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | _ | _ | - | _ | - | - | _ | _ | _ | _ | - | - | _ | _ | _ | _ | | Daily,
Summer
(Max) | - | | - | | | | - | | | - | | | | | | | - | | |---------------------------|------|---------|------|------|---------|---------|------|------|---------|------|------|---|--------|--------|---------|---------|------|---| | Daily,
Winter
(Max) | - | | - | | - | | - | | | - | | | | - | - | _ | - | | | Worker | 0.51 | 0.39 | 1.14 | 13.7 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | _ | 3,452 | 3,452 | 0.12 | 0.11 | 0.37 | - | | Vendor | 0.52 | 0.12 | 6.59 | 2.89 | 0.06 | 0.11 | 2.10 | 2.21 | 0.11 | 0.58 | 0.69 | _ | 7,322 | 7,322 | 0.46 | 1.11 | 0.55 | _ | | Hauling | 1.70 | 0.23 | 17.3 | 8.55 | 0.10 | 0.20 | 4.26 | 4.46 | 0.20 | 1.17 | 1.37 | _ | 15,565 | 15,565 | 1.47 | 2.55 | 0.87 | _ | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.03 | 0.02 | 0.07 | 0.80 | 0.00 | 0.00 | 0.19 | 0.19 | 0.00 | 0.05 | 0.05 | _ | 192 | 192 | 0.01 | 0.01 | 0.33 | - | | Vendor | 0.03 | 0.01 | 0.37 | 0.16 | < 0.005 | 0.01 | 0.11 | 0.12 | 0.01 | 0.03 | 0.04 | _ | 401 | 401 | 0.02 | 0.06 | 0.51 | _ | | Hauling | 0.09 | 0.01 | 0.96 | 0.47 | 0.01 | 0.01 | 0.23 | 0.24 | 0.01 | 0.06 | 0.07 | _ | 853 | 853 | 0.08 | 0.14 | 0.80 | _ | | Annual | _ | _ | - | _ | _ | _ | - | _ | _ | - | _ | _ | - | _ | _ | _ | - | - | | Worker | 0.01 | < 0.005 | 0.01 | 0.15 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.01 | 0.01 | _ | 31.8 | 31.8 | < 0.005 | < 0.005 | 0.06 | - | | Vendor | 0.01 | < 0.005 | 0.07 | 0.03 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | 0.01 | 0.01 | _ | 66.4 | 66.4 | < 0.005 | 0.01 | 0.08 | _ | | Hauling | 0.02 | < 0.005 | 0.18 | 0.09 | < 0.005 | < 0.005 | 0.04 | 0.04 | < 0.005 | 0.01 | 0.01 | _ | 141 | 141 | 0.01 | 0.02 | 0.13 | _ | ### 3.6. Demolition (2025) - Mitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | - | _ | - | | | | | | | | | | | | | | _ | | | Daily,
Winter
(Max) | | | _ | | | _ | | | _ | | | | _ | | | | _ | | | Dust
From
Material
Movement |
t | | | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | | - | | | | | | |--------------------------------------|--------|------|------|------|------|------|---------|---------|------|---------|---------|---|-------|-------|------|------|------|---| | Demolitio
n | - | - | - | - | 1- | - | 3.24 | 3.24 | - | 0.49 | 0.49 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Dust
From
Material
Movement | _
t | | | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | - | | | | | | | | Demolitio
n | _ | - | - | - | - | - | 0.18 | 0.18 | - | 0.03 | 0.03 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | - | _ | _ | _ | - | _ | - | _ | _ | _ | _ | - | - | _ | - | _ | _ | | Dust
From
Material
Movement | _
t | | - | - | - | - | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | - | - | | | - | | | | Demolitio
n | - | - | - | - | - | - | 0.03 | 0.03 | - | < 0.005 | < 0.005 | - | 1- | - | 1- | 1- | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | - | 1- | 1- | 1 | - | 1- | - | - | - | Î- | - | 1- | 1- | - | 1- | 1- | - | | Daily,
Summer
(Max) | - | | - | | - | - | | | - | - | - | - | - | | - | - | - | - | | Daily,
Winter
(Max) | | | - | | - | | - | | | - | | | - | | r | | - | | | Worker | 0.51 | 0.39 | 1.14 | 13.7 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | _ | 3,452 | 3,452 | 0.12 | 0.11 | 0.37 | _ | | Vendor | 0.52 | 0.12 | 6.59 | 2.89 | 0.06 | 0.11 | 2.10 | 2.21 | 0.11 | 0.58 |
0.69 | - | 7,322 | 7,322 | 0.46 | 1.11 | 0.55 | _ | |------------------|------|---------|------|----------------|---------|---------|------|----------------|---------|------|------|----|--------|--------|---------|---------|------|---| | Hauling | 1.70 | 0.23 | 17.3 | 8.55 | 0.10 | 0.20 | 4.26 | 4.46 | 0.20 | 1.17 | 1.37 | - | 15,565 | 15,565 | 1.47 | 2.55 | 0.87 | _ | | Average
Daily | - | - | - | 1 | - | - | - | | - | | - | | - | _ | - | - | - | - | | Worker | 0.03 | 0.02 | 0.07 | 0.80 | 0.00 | 0.00 | 0.19 | 0.19 | 0.00 | 0.05 | 0.05 | 1- | 192 | 192 | 0.01 | 0.01 | 0.33 | - | | Vendor | 0.03 | 0.01 | 0.37 | 0.16 | < 0.005 | 0.01 | 0.11 | 0.12 | 0.01 | 0.03 | 0.04 | _ | 401 | 401 | 0.02 | 0.06 | 0.51 | - | | Hauling | 0.09 | 0.01 | 0.96 | 0.47 | 0.01 | 0.01 | 0.23 | 0.24 | 0.01 | 0.06 | 0.07 | - | 853 | 853 | 0.08 | 0.14 | 0.80 | - | | Annual | - | - | - | I - | _ | _ | - | I - | _ | - | - | - | - | - | - | _ | _ | - | | Worker | 0.01 | < 0.005 | 0.01 | 0.15 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.01 | 0.01 | - | 31.8 | 31.8 | < 0.005 | < 0.005 | 0.06 | - | | Vendor | 0.01 | < 0.005 | 0.07 | 0.03 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | 0.01 | 0.01 | - | 66.4 | 66.4 | < 0.005 | 0.01 | 0.08 | - | | Hauling | 0.02 | < 0.005 | 0.18 | 0.09 | < 0.005 | < 0.005 | 0.04 | 0.04 | < 0.005 | 0.01 | 0.01 | _ | 141 | 141 | 0.01 | 0.02 | 0.13 | | # 3.7. Building Construction (2025) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|--------|----------|------|------|------|----------|----------------|-------|--------|--------|--------|------|-------|-------|------|------|----------|-------| | Onsite | _ | <u> </u> | - | 1- | _ | <u> </u> | I - | - | - | - | - | - | _ | - | _ | 1- | <u> </u> | _ | | Daily,
Summer
(Max) | _ | | - | | - | | - | - | - | - | - | - | - | - | - | - | | - | | Off-Road
Equipmen | | 2.89 | 24.0 | 23.9 | 0.06 | 1.07 | - | 1.07 | 0.98 | - | 0.98 | - | 6,142 | 6,142 | 0.25 | 0.05 | - | 6,163 | | Dust
From
Material
Movemen | _
t | | | | | | 1.91 | 1.91 | | 0.90 | 0.90 | _ | | - | - | | - | - | | Architect
ural
Coatings | _ | 0.48 | | | - | | | | - | - | - | - | - | - | - | | | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Daily,
Winter | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |-------------------------------------|--------|------|------|------|------|------|------|------|------|------|------|----|-------|-------|------|------|------|-------| | (Max) | Off-Road
Equipmen | | 2.89 | 24.0 | 23.9 | 0.06 | 1.07 | - | 1.07 | 0.98 | - | 0.98 | | 6,142 | 6,142 | 0.25 | 0.05 | _ | 6,163 | | Dust
From
Material
Movemen | _
t | | | | - | | 1.91 | 1.91 | - | 0.90 | 0.90 | | | | - | | - | | | Architect
ural
Coatings | _ | 0.48 | | | | | - | | - | - | | | - | | - | - | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | - | - | - | - | 1 | | - | - | - | 1- | - | - | 1 | | - | - | | Off-Road
Equipmen | | 1.79 | 14.9 | 14.8 | 0.04 | 0.66 | - | 0.66 | 0.61 | - | 0.61 | - | 3,798 | 3,798 | 0.15 | 0.03 | - | 3,811 | | Dust
From
Material
Movemen | _
t | - | - | | | - | 1.18 | 1.18 | - | 0.56 | 0.56 | | | | | | | | | Architect
ural
Coatings | | 0.29 | | | | - | - | | | | - | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | - | - | _ | _ | - | - | _ | _ | 1- | - | _ | _ | _ | 1- | _ | _ | | Off-Road
Equipmen | | 0.33 | 2.71 | 2.69 | 0.01 | 0.12 | - | 0.12 | 0.11 | - | 0.11 | - | 629 | 629 | 0.03 | 0.01 | - | 631 | | Dust
From
Material
Movemen | _
t | - | | | - | - | 0.22 | 0.22 | - | 0.10 | 0.10 | | | | | - | - | - | | Architect
ural
Coatings | - | 0.05 | - | | | | - | | | | | | | | | | | | |-------------------------------|------|---------|------|------|---------|---------|------|------|---------|------|------|---|-------|-------|------|------|------|---| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | _ | - | _ | _ | _ | - | _ | - | - | - | _ | - | - | - | - | - | | Daily,
Summer
(Max) | - | | - | | - | | - | | - | | - | | - | | - | | - | | | Worker | 0.52 | 0.41 | 1.03 | 19.3 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | _ | 3,769 | 3,769 | 0.12 | 0.11 | 14.1 | - | | Vendor | 0.14 | 0.03 | 1.65 | 0.77 | 0.01 | 0.03 | 0.55 | 0.58 | 0.03 | 0.15 | 0.18 | _ | 1,920 | 1,920 | 0.12 | 0.29 | 5.58 | - | | Hauling | 0.08 | 0.01 | 0.77 | 0.40 | < 0.005 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.06 | - | 728 | 728 | 0.07 | 0.12 | 1.58 | - | | Daily,
Winter
(Max) | - | - | - | | - | - | - | | - | | - | - | - | | - | - | - | - | | Worker | 0.51 | 0.39 | 1.14 | 13.7 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | - | 3,452 | 3,452 | 0.12 | 0.11 | 0.37 | - | | Vendor | 0.14 | 0.03 | 1.73 | 0.76 | 0.01 | 0.03 | 0.55 | 0.58 | 0.03 | 0.15 | 0.18 | - | 1,920 | 1,920 | 0.12 | 0.29 | 0.14 | - | | Hauling | 0.08 | 0.01 | 0.81 | 0.40 | < 0.005 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.06 | - | 728 | 728 | 0.07 | 0.12 | 0.04 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.31 | 0.24 | 0.77 | 9.03 | 0.00 | 0.00 | 2.18 | 2.18 | 0.00 | 0.51 | 0.51 | - | 2,165 | 2,165 | 0.07 | 0.07 | 3.77 | - | | Vendor | 0.08 | 0.02 | 1.08 | 0.47 | 0.01 | 0.02 | 0.34 | 0.36 | 0.02 | 0.09 | 0.11 | - | 1,187 | 1,187 | 0.07 | 0.18 | 1.50 | - | | Hauling | 0.05 | 0.01 | 0.51 | 0.25 | < 0.005 | 0.01 | 0.12 | 0.13 | 0.01 | 0.03 | 0.04 | - | 450 | 450 | 0.04 | 0.07 | 0.42 | - | | Annual | _ | - | _ | - | - | _ | _ | - | - | - | - | - | - | - | 1- | - | - | _ | | Worker | 0.06 | 0.04 | 0.14 | 1.65 | 0.00 | 0.00 | 0.40 | 0.40 | 0.00 | 0.09 | 0.09 | - | 358 | 358 | 0.01 | 0.01 | 0.62 | - | | Vendor | 0.02 | < 0.005 | 0.20 | 0.09 | < 0.005 | < 0.005 | 0.06 | 0.07 | < 0.005 | 0.02 | 0.02 | - | 197 | 197 | 0.01 | 0.03 | 0.25 | _ | | Hauling | 0.01 | < 0.005 | 0.09 | 0.05 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | 0.01 | 0.01 | | 74.6 | 74.6 | 0.01 | 0.01 | 0.07 | _ | # 3.8. Building Construction (2025) - Mitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |-------------------------------------|--------|------|------|------|------------|-------|-------|-------|---------|--------|--------|------|-------|-------|------|------|------|-------| | Onsite | _ | _ | _ | _ | <u>'</u> — | - | _ | _ | <u></u> | _ | _ | _ | _ | _ | _ | 1- | _ | _ | | Daily,
Summer
(Max) | | | - | - | - | - | | | - | - | | | - | | | - | - | r | | Off-Road
Equipmen | | 2.89 | 24.0 | 23.9 | 0.06 | 1.07 | - | 1.07 | 0.98 | - | 0.98 | - | 6,142 | 6,142 | 0.25 | 0.05 | - | 6,163 | | Dust
From
Material
Movemen | _
t | | | | | | 1.91 | 1.91 | - | 0.90 | 0.90 | - | | | | | | | | Architect
ural
Coatings | _ | 0.48 | | | | | | | | | _ | - | - | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | Daily,
Winter
(Max) | _ | | - | | | | | | | | - | - | - | - | - | | - | | | Off-Road
Equipmen | | 2.89 | 24.0 | 23.9 | 0.06 | 1.07 | - | 1.07 | 0.98 | - | 0.98 | - | 6,142 | 6,142 | 0.25 | 0.05 | - | 6,163 | | Dust
From
Material
Movemen | _
t | | | | | | 1.91 | 1.91 | | 0.90 | 0.90 | | | | | | - | - | | Architect
ural
Coatings | _ | 0.48 | | | | | | | | | - | | | - | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | | - | - | - | | Off-Road
Equipmen | | 1.79 | 14.9 | 14.8 | 0.04 | 0.66 | - | 0.66 | 0.61 | - | 0.61 | - | 3,798 | 3,798 | 0.15 | 0.03 | - | 3,811 | | Dust
From
Material
Movement | _ | | | | | | 1.18 | 1.18 | | 0.56 | 0.56 | | | Г | | | | Г | |--------------------------------------|------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|------|------|-----| | Architect
ural
Coatings | | 0.29 | | - | - | - | | - | - | - | - | | - | | | H | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | - | 1- | 1- | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | | Off-Road
Equipmen | | 0.33 | 2.71 | 2.69 | 0.01 | 0.12 | - | 0.12 | 0.11 | - | 0.11 | - | 629 | 629 | 0.03 | 0.01 | - | 631 | | Dust
From
Material
Movement | t | - | - | | - | - | 0.22 | 0.22 | | 0.10 | 0.10 | | - | | | | - | | | Architect
ural
Coatings | _ | 0.05 | T | | - | | - | | Ī | | - | | - | | - | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | - | - | - | | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | | Daily,
Summer
(Max) | _ | - | - | 1 | - | - | - | r | | - | - | - | - | - | ľ | | - | | | Worker | 0.52 | 0.41 | 1.03 | 19.3 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | - | 3,769 | 3,769 | 0.12 | 0.11 | 14.1 | _ | | Vendor | 0.14 | 0.03 | 1.65 | 0.77 | 0.01 | 0.03 | 0.55 | 0.58 | 0.03 | 0.15 | 0.18 | - | 1,920 | 1,920 | 0.12 | 0.29 | 5.58 | - | | Hauling | 0.08 | 0.01 | 0.77 | 0.40 | < 0.005 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.06 | _ | 728 |
728 | 0.07 | 0.12 | 1.58 | _ | | Daily,
Winter
(Max) | | - | | | - | | - | L | | F | - | F | - | F | П | | | Г | | Worker | 0.51 | 0.39 | 1.14 | 13.7 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | _ | 3,452 | 3,452 | 0.12 | 0.11 | 0.37 | - | | Vendor | 0.14 | 0.03 | 1.73 | 0.76 | 0.01 | 0.03 | 0.55 | 0.58 | 0.03 | 0.15 | 0.18 | - | 1,920 | 1,920 | 0.12 | 0.29 | 0.14 | - | | Hauling | 0.08 | 0.01 | 0.81 | 0.40 | < 0.005 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.06 | _ | 728 | 728 | 0.07 | 0.12 | 0.04 | _ | | Average
Daily | - | - | - | - | - | - | - | - | - | | - | | - | - | - | - | - | | |------------------|------|---------|------|------|---------|---------|------|------|---------|------|------|---|-------|-------|------|------|------|---| | Worker | 0.31 | 0.24 | 0.77 | 9.03 | 0.00 | 0.00 | 2.18 | 2.18 | 0.00 | 0.51 | 0.51 | - | 2,165 | 2,165 | 0.07 | 0.07 | 3.77 | - | | Vendor | 0.08 | 0.02 | 1.08 | 0.47 | 0.01 | 0.02 | 0.34 | 0.36 | 0.02 | 0.09 | 0.11 | - | 1,187 | 1,187 | 0.07 | 0.18 | 1.50 | - | | Hauling | 0.05 | 0.01 | 0.51 | 0.25 | < 0.005 | 0.01 | 0.12 | 0.13 | 0.01 | 0.03 | 0.04 | 1 | 450 | 450 | 0.04 | 0.07 | 0.42 | - | | Annual | _ | - | _ | _ | _ | - | - | 1 | _ | - | - | - | - | - | - | _ | _ | - | | Worker | 0.06 | 0.04 | 0.14 | 1.65 | 0.00 | 0.00 | 0.40 | 0.40 | 0.00 | 0.09 | 0.09 | - | 358 | 358 | 0.01 | 0.01 | 0.62 | - | | Vendor | 0.02 | < 0.005 | 0.20 | 0.09 | < 0.005 | < 0.005 | 0.06 | 0.07 | < 0.005 | 0.02 | 0.02 | - | 197 | 197 | 0.01 | 0.03 | 0.25 | - | | Hauling | 0.01 | < 0.005 | 0.09 | 0.05 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | 0.01 | 0.01 | _ | 74.6 | 74.6 | 0.01 | 0.01 | 0.07 | _ | ### 3.9. Building Construction (2026) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|--------|----------|------|----------|----------|----------|-------|--------------|--------|------|--------|------|-------|-------|------|------|--------------|-------| | Onsite | _ | <u> </u> | - | <u> </u> | <u> </u> | <u> </u> | I - | - | _ | _ | _ | _ | - | - | - | 11- | - | 1 | | Daily,
Summer
(Max) | _ | | - | | | | | - | - | | - | | | | T | | | _ | | Off-Road
Equipmer | | 2.78 | 22.2 | 23.4 | 0.06 | 0.97 | - | 0.97 | 0.89 | - | 0.89 | - | 6,145 | 6,145 | 0.25 | 0.05 | - | 6,166 | | Dust
From
Material
Movemen | _
t | - | | | - | | 1.91 | 1.91 | | 0.90 | 0.90 | _ | | _ | - | | - | _ | | Architect
ural
Coatings | - | 0.48 | - | | | | | | | | - | - | | - | - | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Daily,
Winter
(Max) | - | | - | - | | - | - | | - | - | - | - | - | - | - | | - | | | Off-Road
Equipmen | | 2.78 | 22.2 | 23.4 | 0.06 | 0.97 | - | 0.97 | 0.89 | | 0.89 | 1 | 6,145 | 6,145 | 0.25 | 0.05 | - | 6,166 | |--------------------------------------|------|------|------|------|------|------|------|------|------|------|------|----|-------|-------|------|------|------|-------| | Dust
From
Material
Movement | _ | | | | | | 1.91 | 1.91 | | 0.90 | 0.90 | | | | | | | Ī | | Architect
ural
Coatings | _ | 0.48 | - | | | | - | | | | | | | | | | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | | Off-Road
Equipmen | | 1.82 | 14.5 | 15.3 | 0.04 | 0.64 | - | 0.64 | 0.59 | - | 0.59 | - | 4,029 | 4,029 | 0.16 | 0.03 | - | 4,042 | | Dust
From
Material
Movement | _ | | | | | | 1.25 | 1.25 | | 0.59 | 0.59 | | | | I | | | - | | Architect
ural
Coatings | _ | 0.31 | | | | | | | - | | | | | | | | | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | - | - | - | - | - | - | - | _ | _ | _ | - | - | - | - | - | _ | - | | Off-Road
Equipmen | | 0.33 | 2.65 | 2.79 | 0.01 | 0.12 | - | 0.12 | 0.11 | - | 0.11 | - | 667 | 667 | 0.03 | 0.01 | - | 669 | | Dust
From
Material
Movement | _ | | | | | | 0.23 | 0.23 | | 0.11 | 0.11 | | | | | | | - | | Architect
ural
Coatings | | 0.06 | | Ī | | | - | | - | - | | | | | | | | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1- | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | - | - | - | - | - | - | - | _ | _ | - | - | _ | - | _ | _ | - | _ | |---------------------------|------|---------|------|------|---------|---------|------|------|---------|------|------|---|-------|-------|---------|------|------|---| | Daily,
Summer
(Max) | - | | | | - | | - | | - | - | - | | - | | Ī | | | | | Worker | 0.51 | 0.40 | 0.92 | 17.8 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | - | 3,692 | 3,692 | 0.12 | 0.11 | 12.8 | - | | Vendor | 0.14 | 0.02 | 1.56 | 0.73 | 0.01 | 0.03 | 0.55 | 0.58 | 0.03 | 0.15 | 0.18 | - | 1,888 | 1,888 | 0.10 | 0.29 | 5.15 | - | | Hauling | 0.07 | 0.01 | 0.74 | 0.39 | < 0.005 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.06 | - | 715 | 715 | 0.06 | 0.11 | 1.48 | - | | Daily,
Winter
(Max) | | | - | | - | - | - | | - | | - | | - | - | | | | | | Worker | 0.50 | 0.38 | 1.03 | 12.7 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | _ | 3,383 | 3,383 | 0.01 | 0.11 | 0.33 | _ | | Vendor | 0.14 | 0.02 | 1.63 | 0.73 | 0.01 | 0.03 | 0.55 | 0.58 | 0.03 | 0.15 | 0.18 | _ | 1,888 | 1,888 | 0.10 | 0.29 | 0.13 | _ | | Hauling | 0.07 | 0.01 | 0.77 | 0.39 | < 0.005 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.06 | _ | 715 | 715 | 0.06 | 0.11 | 0.04 | _ | | Average
Daily | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | | Worker | 0.33 | 0.25 | 0.75 | 8.83 | 0.00 | 0.00 | 2.31 | 2.31 | 0.00 | 0.54 | 0.54 | - | 2,249 | 2,249 | 0.01 | 0.08 | 3.62 | _ | | Vendor | 0.09 | 0.01 | 1.08 | 0.48 | 0.01 | 0.02 | 0.36 | 0.38 | 0.02 | 0.10 | 0.12 | - | 1,238 | 1,238 | 0.07 | 0.19 | 1.45 | - | | Hauling | 0.05 | < 0.005 | 0.51 | 0.26 | < 0.005 | 0.01 | 0.13 | 0.14 | 0.01 | 0.04 | 0.04 | - | 469 | 469 | 0.04 | 0.08 | 0.42 | _ | | Annual | _ | _ | - | - | _ | _ | - | 1- | _ | - | - | - | - | - | 1- | - | _ | _ | | Worker | 0.06 | 0.05 | 0.14 | 1.61 | 0.00 | 0.00 | 0.42 | 0.42 | 0.00 | 0.10 | 0.10 | - | 372 | 372 | < 0.005 | 0.01 | 0.60 | - | | Vendor | 0.02 | < 0.005 | 0.20 | 0.09 | < 0.005 | < 0.005 | 0.07 | 0.07 | < 0.005 | 0.02 | 0.02 | - | 205 | 205 | 0.01 | 0.03 | 0.24 | _ | | Hauling | 0.01 | < 0.005 | 0.09 | 0.05 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | 0.01 | 0.01 | _ | 77.6 | 77.6 | 0.01 | 0.01 | 0.07 | - | ### 3.10. Building Construction (2026) - Mitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | - | _ | - | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | - | _ | | - | - | - | | | | | _ | _ | | _ | - | | - | - | | Off-Road
Equipmen | | 2.78 | 22.2 | 23.4 | 0.06 | 0.97 | _ | 0.97 | 0.89 | | 0.89 | | 6,145 | 6,145 | 0.25 | 0.05 | _ | 6,166 | |--------------------------------------|------|------|------|------|------|------|------|------|------|------|------|---|-------|-------|------|------|------|-------| | Dust
From
Material
Movement | _ | | - | | | | 1.91 | 1.91 | | 0.90 | 0.90 | | | | | | | | | Architect
ural
Coatings | _ | 0.48 | | | | | | | | | | | | | | | | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Daily,
Winter
(Max) | _ | | | | | | | | | | | - | | | | | | - | | Off-Road
Equipmen | | 2.78 | 22.2 | 23.4 | 0.06 | 0.97 | - | 0.97 | 0.89 | - | 0.89 | - | 6,145 | 6,145 | 0.25 | 0.05 | - | 6,166 | | Dust
From
Material
Movement | _ | Ī | - | | | | 1.91 | 1.91 | | 0.90 | 0.90 | | | | | | | | | Architect
ural
Coatings | _ | 0.48 | | | | | | | | | | | - | | | | | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | - | - | - | - | - | _ | - | - | | - | - | 1 | - | _ | - | | Off-Road
Equipmen | | 1.82 | 14.5 | 15.3 | 0.04 | 0.64 | - | 0.64 | 0.59 | - | 0.59 | - | 4,029 | 4,029 | 0.16 | 0.03 | - | 4,042 | | Oust
From
Material
Movement | _ | | | | | | 1.25 | 1.25 | | 0.59 | 0.59 | | | | | | | | | Architect
ural
Coatings | | 0.31 | - | J- | - | - | | j- | - | - | - | - | - | F | - | J- | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | |-------------------------------------|--------|---------|------|------|---------|------|------|------|------|------|------|----|-------|-------|------|------|------|-----| | Annual | - | _ | - | _ | _ | _ | _ | _ | _ | - | - | - | - | - | - | - | _ | - | | Off-Road
Equipmen | | 0.33 | 2.65 | 2.79 | 0.01 | 0.12 | - | 0.12 | 0.11 | - | 0.11 | - | 667 | 667 | 0.03 | 0.01 | _ | 669 | | Dust
From
Material
Movemen | _
t | | | r | | | 0.23 | 0.23 | | 0.11 | 0.11 | | | | | | | Ī | | Architect
ural
Coatings | - | 0.06 | - | | | - | - | | - | - | - | | - | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | - | _ | - | _ | - | _ | _ | _ | _ | _ | - | _ | - | _ | _ | _ | | Daily,
Summer
(Max) | - | - | - | | - | | - | | | - | - | | - | - | - | | - | | | Worker | 0.51 | 0.40 | 0.92 | 17.8 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | _
 3,692 | 3,692 | 0.12 | 0.11 | 12.8 | _ | | Vendor | 0.14 | 0.02 | 1.56 | 0.73 | 0.01 | 0.03 | 0.55 | 0.58 | 0.03 | 0.15 | 0.18 | - | 1,888 | 1,888 | 0.10 | 0.29 | 5.15 | - | | Hauling | 0.07 | 0.01 | 0.74 | 0.39 | < 0.005 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.06 | - | 715 | 715 | 0.06 | 0.11 | 1.48 | - | | Daily,
Winter
(Max) | _ | - | - | - | - | - | - | | - | - | - | - | - | - | - | - | | - | | Worker | 0.50 | 0.38 | 1.03 | 12.7 | 0.00 | 0.00 | 3.53 | 3.53 | 0.00 | 0.83 | 0.83 | - | 3,383 | 3,383 | 0.01 | 0.11 | 0.33 | _ | | Vendor | 0.14 | 0.02 | 1.63 | 0.73 | 0.01 | 0.03 | 0.55 | 0.58 | 0.03 | 0.15 | 0.18 | - | 1,888 | 1,888 | 0.10 | 0.29 | 0.13 | _ | | Hauling | 0.07 | 0.01 | 0.77 | 0.39 | < 0.005 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.06 | - | 715 | 715 | 0.06 | 0.11 | 0.04 | _ | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | - | | Worker | 0.33 | 0.25 | 0.75 | 8.83 | 0.00 | 0.00 | 2.31 | 2.31 | 0.00 | 0.54 | 0.54 | - | 2,249 | 2,249 | 0.01 | 0.08 | 3.62 | _ | | Vendor | 0.09 | 0.01 | 1.08 | 0.48 | 0.01 | 0.02 | 0.36 | 0.38 | 0.02 | 0.10 | 0.12 | - | 1,238 | 1,238 | 0.07 | 0.19 | 1.45 | - | | Hauling | 0.05 | < 0.005 | 0.51 | 0.26 | < 0.005 | 0.01 | 0.13 | 0.14 | 0.01 | 0.04 | 0.04 | 1_ | 469 | 469 | 0.04 | 0.08 | 0.42 | _ | | Annual | _ | - | _ | - | _ | _ | - | - | _ | _ | - | - | - | - | - | _ | _ | _ | |---------|------|---------|------|------|---------|---------|------|------|---------|------|------|---|------|------|---------|------|------|---| | Worker | 0.06 | 0.05 | 0.14 | 1.61 | 0.00 | 0.00 | 0.42 | 0.42 | 0.00 | 0.10 | 0.10 | - | 372 | 372 | < 0.005 | 0.01 | 0.60 | - | | Vendor | 0.02 | < 0.005 | 0.20 | 0.09 | < 0.005 | < 0.005 | 0.07 | 0.07 | < 0.005 | 0.02 | 0.02 | _ | 205 | 205 | 0.01 | 0.03 | 0.24 | _ | | Hauling | 0.01 | < 0.005 | 0.09 | 0.05 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | 0.01 | 0.01 | _ | 77.6 | 77.6 | 0.01 | 0.01 | 0.07 | _ | # 4. Operations Emissions Details #### 4.1. Mobile Emissions by Land Use #### 4.1.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-------------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------| | Daily,
Summer
(Max) | - | - | | | - | - | | _ | _ | - | - | | - | _ | | - | - | - | | Unrefrige
rated
Warehou
se-Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | - | | 1 | - | - | | | - | - | | | - | | | 1 | | - | | Unrefrige
Warehous | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |--|-------------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | - | - | _ | - | _ | - | | | _ | - | - | - | - | _ | _ | - | | Unrefrige
rated
Warehou
se-Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 4.1.2. Mitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | | _ | _ | _ | | - | | _ | | | | _ | _ | _ | | | | | Unrefrige rated | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |--|-------------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | | - | | - | | - | | - | - | - | - | | | 1 | | - | - | | Unrefrige
rated
Warehou
se-Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | - | - | 1- | - | - | - | - | - | - | - | - | - | - | - | 1- | 1- | - | | Unrefrige
rated
Warehou
se-Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |------------------------------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 4.2. Energy #### 4.2.1. Electricity Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------| | Daily,
Summer
(Max) | - | - | | - | 1- | | - | | - | | - | | - | | Ė | - | - | | | Unrefrige
rated
Warehou
se-Rail | | | - | | | | | - | - | - | - | | 5,015 | 5,015 | 0.34 | 0.04 | - | 5,036 | | Other
Non-Asph
Surfaces | | | | | | | | | - | | - | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | - | - | - | | | _ | - | - | _ | _ | - | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Other
Asphalt
Surfaces | | | - | | | - | | | - | _ | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | - | - | - | _ | - | - | _ | _ | _ | - | 5,015 | 5,015 | 0.34 | 0.04 | - | 5,036 | | Daily,
Winter
(Max) | - | | | | 7 | | | - | _ | _ | - | - | - | - | | | - | | | Unrefrige —
rated
Warehou | | - | - | | | - | | | | | - | 5,015 | 5,015 | 0.34 | 0.04 | | 5,036 | |--|---|----|---|---|---|----|---|---|---|---|---|-------|-------|------|------|---|-------| | Other —
Non-Asphalt
Surfaces | F | - | - | - | | - | F | | F | - | - | 0.00 | 0.00 | 0.00 | 0.00 | Н | 0.00 | | Parking —
Lot | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other —
Asphalt
Surfaces | | - | - | - | | | | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total — | - | - | - | - | - | 1- | - | - | - | - | - | 5,015 | 5,015 | 0.34 | 0.04 | - | 5,036 | |
Annual — | _ | 1- | _ | - | _ | - | _ | - | _ | - | - | - | _ | - | - | - | _ | | Unrefrige —
rated
Warehou
se-Rail | | | | | | | | | | | | 830 | 830 | 0.06 | 0.01 | | 834 | | Other —
Non-Asphalt
Surfaces | | - | | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking —
Lot | - | - | | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other —
Asphalt
Surfaces | | 1 | Ī | | - | | | | | Ī | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total — | _ | 1_ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 830 | 830 | 0.06 | 0.01 | _ | 834 | #### 4.2.2. Electricity Emissions By Land Use - Mitigated | Land
Use | TOG | ROG | NOx | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | - | _ | _ | - | _ | _ | _ | | _ | _ | _ | | - | _ | | | _ | | Unrefrige
Warehouse | | - | - | - | - | - | - | | - | | - | | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | |--|----------|---|---|---|---|---|----|---|---|---|---|---|------|------|------|------|---|------| | Other
Non-Aspha
Surfaces | —
alt | - | - | - | - | - | - | ŀ | - | F | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | _ | - | - | - | _ | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | | - | | - | - | F | - | - | - | | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | - | - | - | - | 1- | | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Daily,
Winter
(Max) | | - | - | | - | | - | | | | | - | | | | | - | | | Unrefrige
rated
Warehou
se-Rail | | Ī | | Ī | L | Ī | | | 1 | | | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Other
Non-Aspha
Surfaces | —
alt | Г | - | | - | - | - | | - | - | - | | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | _ | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | | - | | | | | | | - | | | 1 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | - | - | _ | - | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Annual | _ | _ | - | _ | - | _ | - | _ | - | _ | - | - | - | _ | - | - | - | _ | | Unrefrige
rated
Warehou
se-Rail | | | | | | | | | | | | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Other
Non-Aspha
Surfaces | —
alt | - | - | | - | | | | - | | | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | - | - | - | - | - | - | - | - | _ | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | |------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|------|------|------|------|---|------| | Other
Asphalt
Surfaces | - | | - | _ | - | _ | | | _ | | | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--|-------------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|---|------| | Daily,
Summer
(Max) | _ | | | - | | - | - | - | | - | _ | | - | - | - | - | - | - | | Unrefrige
rated
Warehou
se-Rail | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | | 0.02 | 0.02 | - | 0.02 | | 244 | 244 | 0.02 | < 0.005 | _ | 244 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | - | 0.02 | 0.02 | _ | 0.02 | - | 244 | 244 | 0.02 | < 0.005 | - | 244 | | Daily,
Winter
(Max) | _ | | | | | | | | | - | - | - | - | _ | | | - | | | Unrefrige
rated
Warehou
se-Rail | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | | 0.02 | 0.02 | - | 0.02 | | 244 | 244 | 0.02 | < 0.005 | | 244 | | Other
Non-Asph | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | |--|-------------|---------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Surfaces | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | - | 0.02 | 0.02 | _ | 0.02 | _ | 244 | 244 | 0.02 | < 0.005 | _ | 244 | | Annual | _ | - | - | - | - | - | _ | _ | _ | - | _ | - | - | - | - | - | - | - | | Unrefrige
rated
Warehou
se-Rail | < 0.005 | < 0.005 | 0.04 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | - | < 0.005 | - | 40.3 | 40.3 | < 0.005 | < 0.005 | - | 40.5 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | < 0.005 | < 0.005 | 0.04 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 40.3 | 40.3 | < 0.005 | < 0.005 | _ | 40.5 | #### 4.2.4. Natural Gas Emissions By Land Use - Mitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | | | | | | | _ | | | | | | | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-Rail | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | | 0.02 | 0.02 | | 0.02 | | 244 | 244 | 0.02 | < 0.005 | | 244 | |--|-------------|---------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | - | 0.02 | - | 244 | 244 | 0.02 | < 0.005 | - | 244 | | Daily,
Winter
(Max) | | | - | | - | - | | | | - | | | - | | T | | | | | Unrefrige
rated
Warehou
se-Rail | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | Ī | 0.02 | 0.02 | - | 0.02 | - | 244 | 244 | 0.02 | < 0.005 | - | 244 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | 0.02 | 0.01 | 0.20 | 0.17 | < 0.005 | 0.02 | _ | 0.02 | 0.02 | - | 0.02 | _ | 244 | 244 | 0.02 | < 0.005 | _ | 244 | | Annual | _ | - | - | 1- | _ | _ | - | - | - | _ | _ | - | - | _ | - | - | _ | - | | Unrefrige
rated
Warehou
se-Rail | < 0.005 | < 0.005 | 0.04 | 0.03 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | | < 0.005 | | 40.3 | 40.3 | < 0.005 | < 0.005 | - | 40.5 | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | |-------------------------------|-------------|---------|------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | < 0.005 | < 0.005 | 0.04 | 0.03 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 40.3 | 40.3 | < 0.005 | < 0.005 | _ | 40.5 | ### 4.3. Area Emissions by Source #### 4.3.1. Unmitigated | Source | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |--------------------------------|------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|---|------| | Daily,
Summer
(Max) | _ | | - | _ | - | _ | - | _ | _ | | - | - | - | - | - | - | - | _ | | Consum
er
Products | | 0.87 | - | | | - | - | - | - | _ | - | _ | | _ | | - | - | | | Architect
ural
Coatings | | 0.06 | | | - | - | | | - | - | - | _ | - | - | _ | - | - | | |
Landsca
pe
Equipme
nt | | 0.29 | 0.01 | 1.74 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | _ | < 0.005 | _ | 7.15 | 7.15 | < 0.005 | < 0.005 | | 7.18 | | Total | 0.31 | 1.21 | 0.01 | 1.74 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | _ | < 0.005 | - | 7.15 | 7.15 | < 0.005 | < 0.005 | _ | 7.18 | | Daily,
Winter
(Max) | _ | | | | - | - | - | - | _ | _ | - | _ | - | _ | - | - | - | _ | | Consum
er
Products | - | 0.87 | - | | - | - | | - | - | | - | | - | - | - | - | - | | |--------------------------------|------|------|---------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Architect
ural
Coatings | | 0.06 | - | - | - | - | - | - | _ | _ | - | _ | - | - | - | - | - | - | | Total | - | 0.93 | _ | - | - | _ | - | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | | Annual | - | _ | - | - | - | _ | _ | - | _ | _ | - | - | _ | - | - | _ | _ | _ | | Consum
er
Products | _ | 0.16 | - | _ | - | | - | | - | - | - | - | - | | - | | - | - | | Architect
ural
Coatings | - | 0.01 | - | - | | | - | | | - | | Ī | | | - | | - | - | | Landsca
pe
Equipme
nt | 0.04 | 0.04 | < 0.005 | 0.22 | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | | < 0.005 | | 0.81 | 0.81 | < 0.005 | < 0.005 | _ | 0.81 | | Total | 0.04 | 0.20 | < 0.005 | 0.22 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.81 | 0.81 | < 0.005 | < 0.005 | _ | 0.81 | #### 4.3.2. Mitigated | Source | TOG | ROG | | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | | Consum
er
Products | _ | 0.87 | | | _ | | | | | | | | | | | | | _ | | Architect ural Coatings | | 0.06 | - | | _ | - | | | _ | | _ | _ | _ | | - | - | | - | | Landsca
pe
Equipme | 0.31 | 0.29 | 0.01 | 1.74 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 7.15 | 7.15 | < 0.005 | < 0.005 | - | 7.18 | |--------------------------------|------|------|---------|------|---------|---------|---|---------|---------|---|---------|---|------|------|---------|---------|---|------| | Total | 0.31 | 1.21 | 0.01 | 1.74 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 7.15 | 7.15 | < 0.005 | < 0.005 | - | 7.18 | | Daily,
Winter
(Max) | _ | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Consum
er
Products | _ | 0.87 | - | - | - | _ | - | - | - | - | - | | - | - | - | - | - | r | | Architect
ural
Coatings | _ | 0.06 | - | - | - | | - | - | - | - | - | - | | - | - | - | - | | | Total | _ | 0.93 | _ | - | _ | _ | _ | - | _ | _ | _ | - | - | - | _ | _ | _ | - | | Annual | _ | _ | - | - | _ | _ | _ | - | _ | - | _ | - | - | - | - | _ | - | - | | Consum
er
Products | _ | 0.16 | - | - | - | | - | - | - | - | - | - | | - | - | - | - | | | Architect
ural
Coatings | - | 0.01 | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Landsca
pe
Equipme
nt | 0.04 | 0.04 | < 0.005 | 0.22 | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | | < 0.005 | Ī | 0.81 | 0.81 | < 0.005 | < 0.005 | | 0.81 | | Total | 0.04 | 0.20 | < 0.005 | 0.22 | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | _ | < 0.005 | _ | 0.81 | 0.81 | < 0.005 | < 0.005 | _ | 0.81 | # 4.4. Water Emissions by Land Use #### 4.4.1. Unmitigated | Land | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Use | Daily,
Summer
(Max) | - | | - | | - | | - | | | | | - | - | | - | | | | |--|----------|---|---|---|---|---|---|---|---|---|---|------|-------|-------|------|------|---|-------| | Unrefrige
rated
Warehou
se-Rail | _ | | - | | - | | - | | | | | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | - | 5,061 | | Other
Non-Asph
Surfaces | —
alt | | - | | - | | | | | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | - | | - | - | - | | - | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | _ | _ | _ | - | _ | _ | - | - | - | - | - | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | - | 5,061 | | Daily,
Winter
(Max) | - | | - | | | | | F | | | - | - | | | F | | | | | Unrefrige
rated
Warehou
se-Rail | _ | | - | | - | | - | | | | | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | | 5,061 | | Other
Non-Asph
Surfaces | —
alt | - | - | | - | | 1 | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | - | - | 1 | - | - | - | - | - | - | - | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | - | | | - | - | | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | - | - | - | - | - | _ | _ | _ | - | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | _ | 5,061 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 1- | 1_ | _ | _ | | Unrefrige —
rated
Warehou
se-Rail | | | | | | | | | 0.00 | 834 | 834 | 0.06 | 0.01 | | 838 | |--|----------|----|---|----|---|----|---|---|------|------|------|------|------|----|------| | Other —
Non-Asphalt
Surfaces | - | - | - | | | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking —
Lot | | 1 | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other —
Asphalt
Surfaces | | | | - | | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total — |
- - | 1- | - | 1- | - | 1- | - | 1 | 0.00 | 834 | 834 | 0.06 | 0.01 | 1- | 838 | ### 4.4.2. Mitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|----------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------| | Daily,
Summer
(Max) | _ | - | - | - | | - | - | - | - | - | _ | - | - | - | - | - | - | | | Unrefrige
rated
Warehou
se-Rail | _ | | | | - | | | | _ | _ | _ | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | | 5,061 | | Other
Non-Asph
Surfaces | —
alt | | - | | | | | | _ | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | _ | - | - | - | - | - | - | - | - | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | _ | | - | | | - | - | - | - | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | - | 5,061 | | Daily, —
Winter
(Max) | | - | - | - | | - | - | - | | - | | | - | - | - | - | | |--|---|---|---|----|---|---|---|---|---|---|------|-------|-------|------|------|---|-------| | Unrefrige —
rated
Warehou
se-Rail | | - | | | | - | | | Г | | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | | 5,061 | | Other —
Non-Asphalt
Surfaces | | - | | - | | - | - | | r | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking —
Lot | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other —
Asphalt
Surfaces | | | - | - | | | | - | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total — | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 5,040 | 5,040 | 0.35 | 0.04 | _ | 5,061 | | Annual — | - | - | - | 1- | - | - | - | - | - | - | 1- | - | - | 1- | - | - | - | | Unrefrige —
rated
Warehou
se-Rail | | - | | | | - | | | - | | 0.00 | 834 | 834 | 0.06 | 0.01 | - | 838 | | Other —
Non-Asphalt
Surfaces | | | | - | | | - | - | | Ī | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking —
Lot | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other —
Asphalt
Surfaces | | - | 1 | - | - | | - | - | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 834 | 834 | 0.06 | 0.01 | _ | 838 | ## 4.5. Waste Emissions by Land Use ## 4.5.1. Unmitigated | ₋and
Jse | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|----------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | - | - | - | F | - | | - | | | - | - | | - | | | T | | | | Jnrefrige
rated
Warehou
se-Rail | | | | | | | | | | | | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | - | 70.9 | | Other
Non-Asph
Surfaces | —
alt | | | | - | - | - | | | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
₋ot | _ | - | - | - | _ | _ | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Other
Asphalt
Surfaces | - | - | - | - | | | - | | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | otal | _ | - | _ | - | - | - | - | - | - | - | - | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | - | 70.9 | | Daily,
Vinter
Max) | _ | | - | - | - | - | | | - | - | - | - | | - | - | T | - | | | Inrefrige
ated
Varehou
e-Rail | - | | | | _ | - | | | | - | | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | _ | 70.9 | | Other
Non-Asph
Surfaces | —
alt | | | | _ | - | - | | | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Parking
Lot | _ | - | - | _ | _ | _ | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | _ | | | | - | - | - | | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00
 | otal | | _ | | | | | _ | _ | _ | _ | _ | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | _ | 70.9 | | Annual — | _ | _ | - | _ | _ | _ | - | - | - | - | - | _ | _ | _ | _ | _ | _ | |--|---|---|---|---|---|----|---|---|---|----|------|------|------|------|------|---|------| | Unrefrige —
rated
Warehou
se-Rail | | | | | | | | - | | | 3.35 | 0.00 | 3.35 | 0.34 | 0.00 | | 11.7 | | Other —
Non-Asphalt
Surfaces | | - | | - | 1 | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking —
Lot | 1 | - | | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other —
Asphalt
Surfaces | | | | | | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total — | _ | _ | | _ | | 1- | _ | - | - | 1- | 3.35 | 0.00 | 3.35 | 0.34 | 0.00 | - | 11.7 | ### 4.5.2. Mitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | - | - | - | - | - | - | - | | | - | - | - | | - | T | - | - | - | | Unrefrige
rated
Warehou
se-Rail | | | | | - | - | | | | - | - | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | - | 70.9 | | Other
Non-Aspl
Surfaces | | | | | | | | | - | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | - | - | 1 | - | - | - | - | - | _ | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | - | - | - | F | 1 | F | - | | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | _ | 70.9 | |--|----------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | Daily,
Winter
(Max) | - | | | | - | - | - | | - | | | | - | - | - | | - | - | | Unrefrige
rated
Warehou
se-Rail | _ | | | | - | | Ī | | | | | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | - | 70.9 | | Other
Non-Asph
Surfaces | —
alt | | - | r | | - | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | - | - | - | - | - | - | | | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | 0.00 | | Other
Asphalt
Surfaces | - | | - | | F | T | - | I | | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | - | - | - | - | - | - | - | - | - | _ | _ | 20.3 | 0.00 | 20.3 | 2.03 | 0.00 | - | 70.9 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Unrefrige
rated
Warehou
se-Rail | | | | | | | | | | | | 3.35 | 0.00 | 3.35 | 0.34 | 0.00 | | 11.7 | | Other
Non-Asph
Surfaces | —
alt | | | | | Ī | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | _ | - | - | 1 | - | - | - | 1 | - | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Other
Asphalt
Surfaces | | | - | | - | - | - | - | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3.35 | 0.00 | 3.35 | 0.34 | 0.00 | _ | 11.7 | ## 4.6. Refrigerant Emissions by Land Use ### 4.6.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | , | , | J, J | | | ' | | J, | | , | | | | | | | | |---------------------------|-----|-----|-----|------|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | | | - | | _ | - | | _ | _ | - | | _ | - | - | _ | - | _ | _ | | Total | - | - | - | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | _ | | Daily,
Winter
(Max) | - | - | - | - | - | - | _ | _ | | - | - | - | - | - | - | _ | - | - | | Total | - | - | - | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - 1 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.6.2. Mitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | - | - | - | | | - | - | | - | - | _ | _ | - | | | - | - | | Total | _ | - | _ | _ | - | - | _ | _ | _ | _ | _ | - | _ | _ | - | | _ | _ | | Daily,
Winter
(Max) | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | | Total | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | - | _ | _ | - | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.7. Offroad Emissions By Equipment Type #### 4.7.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme | | ROG | | | | PM10E | | | PM2.5E | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-------|-----|-----|---|-----|---------|---------|---------|----------|---------|-----------|------|-------|------|------|------|---|------| | nt | | ROO | NOX | | 002 | I WITOL | I WITOD | I WITOT | I WIZ.JL | 1 WZ.3D | 1 1012.01 | D002 | NBOOZ | 0021 | OI I | 1420 | | 0026 | | Туре | Daily,
Summer
(Max) | - | _ | _ | _ | _ | | _ | | _ | | _ | _ | _ | _ | _ | _ | - | | | Total | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | - | - | - | - | - | - | | | - | - | - | - | - | - | _ | - | - | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | - 111 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.7.2. Mitigated | Equipme
nt
Type | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | - | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | | Total | - | - | - | _ | _ | - | - | - | _ | _ | _ | _ | _ | _ | - | _ | _ | - | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | - | | _ | | | _ | | _ | _ | _ | | _ | - | | Total | _ | _ | _ | _ | _ | - | - 1 | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | | Annual — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | |----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--| | Total — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | ## 4.8. Stationary Emissions By Equipment Type ### 4.8.1. Unmitigated | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|------|------| | Daily,
Summer
(Max) | - | | | - | | - | - | - | - | - | - | - | | - | - | _ | - | | | Fire
Pump | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 0.00 | | undefine
d | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 404 | | Total | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Daily,
Winter
(Max) | - | - | - | - | - | _ | _ | - | - | - | _ | - | | _ | - | - | - | - | | Fire
Pump | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 0.00 | | undefine
d | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 404 | | Total | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Annual | - | 1- | - | - | - | - | - | - | - | - | - | - | _ | _ | _ | - | _ | _ | | Fire
Pump | 0.16 | 0.14 | 0.75 | 0.73 | < 0.005 | 0.08 | 0.00 | 0.08 | 0.08 | 0.00 | 0.08 | 0.00 | 66.7 | 66.7 | < 0.005 | < 0.005 | 0.00 | 0.00 | | undefine
d | - | - | - | - | - | - | - | - | _ | - | - | - | _ | - | - | - | _ | 66.9 | | Total | 0.16 | 0.14 | 0.75 | 0.73 | < 0.005 | 0.08 | 0.00 | 0.08 | 0.08 | 0.00 | 0.08 | 0.00 | 66.7 | 66.7 | < 0.005 | < 0.005 | 0.00 | 66.9 | #### 4.8.2. Mitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|------|------| | Daily,
Summer
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Fire
Pump | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 0.00 | | undefine
d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 404 | | Total | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Daily,
Winter
(Max) | - | - | - | | - | _ | - | - | - | | - |
| - | - | _ | _ | _ | _ | | Fire
Pump | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 0.00 | | undefine
d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | - | _ | 404 | | Total | 0.87 | 0.79 | 4.11 | 4.01 | < 0.005 | 0.46 | 0.00 | 0.46 | 0.46 | 0.00 | 0.46 | 0.00 | 403 | 403 | 0.02 | < 0.005 | 0.00 | 404 | | Annual | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | - | _ | - | _ | _ | - | - | | Fire
Pump | 0.16 | 0.14 | 0.75 | 0.73 | < 0.005 | 0.08 | 0.00 | 0.08 | 0.08 | 0.00 | 0.08 | 0.00 | 66.7 | 66.7 | < 0.005 | < 0.005 | 0.00 | 0.00 | | undefine
d | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | 66.9 | | Total | 0.16 | 0.14 | 0.75 | 0.73 | < 0.005 | 0.08 | 0.00 | 0.08 | 0.08 | 0.00 | 0.08 | 0.00 | 66.7 | 66.7 | < 0.005 | < 0.005 | 0.00 | 66.9 | ## 4.9. User Defined Emissions By Equipment Type #### 4.9.1. Unmitigated | Equipme
Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | | _ | | _ | | _ | | _ | - | | | _ | - | | | | | | Total | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | - | - | - | - | - | - | _ | - | - | - | - | - | _ | - | - | - | _ | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.9.2. Mitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | - | - | | | | _ | | - | _ | - | | _ | _ | - | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | | | _ | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.10. Soil Carbon Accumulation By Vegetation Type ### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | TOG | ROG | | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | | | _ | | - | _ | | _ | | - | | _ | - | - | - | - | _ | - | | Total | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | | Daily,
Winter
(Max) | - | - | - | - | _ | - | _ | _ | _ | - | | _ | _ | - | _ | - | _ | - | | Total | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | | | | _ | | | | _ | _ | - | _ | _ | | - | | _ | _ | | Total | - | - | - | - | - | - | - | - | - | _ | - | | _ | - | - | | _ | _ | | Daily,
Winter | _ | _ | _ | _ | _ | - | - | - | - | - | - | - | - | - | - | - | _ | - | | (Max) | Total | - | - | - | _ | - | _ | - | - | _ | _ | _ | - | _ | - | - | - | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | - | - | _ | _ | | Total | - | - | - | - | - | - | _ | _ | _ | _ | - | - | _ | _ | - | _ | _ | - | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | - | - | | | | | - | _ | - | - | - | _ | - | | - | | - | | Avoided | - | - | - | - | - | - | - | - | - | - | _ | - | - | _ | _ | _ | _ | - | | Subtotal | _ | _ | _ | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | | Sequest
ered | - | - | - | | | - | _ | - | _ | _ | _ | _ | - | - | - | - | - | | | Subtotal | - | - | - | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | - | - | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | | Subtotal | _ | _ | - | - | - | - | _ | _ | _ | _ | _ | - | _ | _ | - | - | _ | - | | - | - | - | 1- | - | - | - | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | - | | Daily,
Winter
(Max) | | | | I | | | | | - | | - | | | | T | | | | | Avoided | - | - | - | 1- | 1- | | - | - | _ | _ | - | - | - | - | I- | - | - | - | | Subtotal | _ | - | _ | - | - | _ | - | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | | Sequest
ered | - | - | - | | | - | - | - | - | - | - | - | - | - | - | - | - | - | | Subtotal | - | _ | - | - | - | _ | - | - | _ | _ | _ | - | _ | - | _ | - | _ | - | | Remove
d | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | | - | - | | Subtotal | - | - | _ | - | - | _ | _ | - | - | _ | _ | _ | _ | - | _ | - | _ | _ | | _ | - | - | - | - | - | _ | - | - | - | _ | - | - | _ | - | - | - | _ | - | | Annual | - | - | _ | - | - | _ | - | _ | - | _ | _ | _ | _ | - | _ | _ | _ | _ | | Avoided | - | - | - | - | 1- | - | - | - | _ | _ | _ | _ | - | - | - | _ | _ | - | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest — | _ | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | |------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----| | Subtotal — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove — d | - | - | - | - | _ | - | - | - | _ | - | | _ | _ | - | _ | - | - | | Subtotal — | - | - | - | _ | _ | - | 1 | - | - | - | - | _ | _ | - | - | - | - 1 | | | _ | _ | | | | _ | - | _ | _ | _ | _ | | | | _ | _ | _ | ### 4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | | | _ | | | | | | | | _ | _ | | _ | | | | Total | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Daily,
Winter
(Max) | - | _ | _ | _ | _ | | | | | | | | | | | | | | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | ### 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated | Land | TOG | ROG | NOx | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Use | 030 | Daily, | _ | | _ | | | | | | _ | | | | _ | _ | _ | _ | _ | Summer | (Max) | , | Total | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | | _ | _ | | _ | _ | | Daily,
Winter
(Max) | | - | - | - | - | - | _ | | _ | | - | | - | | _ | | _ | - | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total | _ | _ | - | - | _ | - | - | - | _ | _ | _ | - | _ | - | - | _ | _ | - | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | _ | _ | _ | | Total | _ | - | - | - | - | _ | - | - | _ | - | - | - | _ | - | - | _ | _ | _ | ### 4.10.6. Avoided and Sequestered Emissions by Species - Mitigated | Species | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | | PM2.5D | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|---|--------|---|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | _ | - | | | | - | - | - | - | - | - | - | - | - | | | - | | Avoided | _ | _ | - | - | - | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Subtotal | _ | - | - | - | - | - | - | - | _ | _ | _ | _ | - | - | - | - | _ | - | | Sequest ered | - | - | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | | Subtotal | - | - | - | - | - | - | _ | _ | - |
_ | _ | - | _ | _ | - | - | - | - | | Remove
d | - | - | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | | Subtotal | _ | - | - | - | - | - | - | - | - | - | _ | _ | - | _ | - | - | - | - | | - | _ | _ | - | | | _ | _ | _ | _ | - | - | - | _ | - | - | - | _ | _ | | Daily,
Winter
(Max) | - | | - | | | - | - | | _ | _ | - | - | - | | - | | - | | | Avoided | - | - | 1- | 1- | - | - | - | - | - | _ | - | - | _ | - | 1- | 1- | - | _ | | Subtotal | - | - | - | - | - | _ | - | _ | - | _ | - | - | _ | - | - | - | _ | - | | Sequest ered | - | | - | | - | - | - | - | - | _ | - | - | - | - | - | - | _ | - | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | - | | _ | | - | | - | Г | _ | - | - | - | _ | _ | - | - | _ | _ | |--------------|---|---|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Subtotal | _ | - | 1- | - | - | - | - | - | - | - | - | - | _ | _ | _ | _ | _ | _ | | - | _ | - | _ | _ | _ | _ | _ | - | - | _ | - | _ | _ | _ | - | - | - | _ | | Annual | _ | - | - | - | _ | - | - | - | - | _ | - | - | _ | _ | _ | _ | _ | _ | | Avoided | _ | - | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | - | - | - | - | - | - | - | _ | _ | - | - | _ | _ | _ | _ | _ | _ | | Sequest ered | - | - | - | - | _ | _ | - | - | - | - | - | - | _ | _ | - | - | _ | - | | Subtotal | _ | - | _ | I- | _ | - | - | - | - | - | - | - | - | - | - | - | _ | _ | | Remove
d | - | - | - | - | - | _ | - | - | - | - | - | _ | _ | - | - | _ | _ | - | | Subtotal | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | _ | # 5. Activity Data ## 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |------------------------------|------------------------------|------------|-----------|---------------|---------------------|-----------------------| | Linear, Grading & Excavation | Linear, Grading & Excavation | 12/1/2026 | 1/11/2027 | 5.00 | 30.0 | Pipeline Installation | | Demolition | Demolition | 1/1/2025 | 1/29/2025 | 5.00 | 20.0 | _ | | Building Construction | Building Construction | 2/19/2025 | 12/1/2026 | 5.00 | 465 | _ | ## 5.2. Off-Road Equipment ### 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |------------|----------------|-----------|-------------|----------------|---------------|------------|-------------| | | | | | | | | | | Linear, Grading & Excavation | Bore/Drill Rigs | Diesel | Average | 1.00 | 8.00 | 83.0 | 0.50 | |------------------------------|----------------------------|--------|---------|------|------|------|------| | Linear, Grading & Excavation | Off-Highway Trucks | Diesel | Average | 1.00 | 8.00 | 376 | 0.38 | | Linear, Grading & Excavation | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 4.00 | 84.0 | 0.37 | | Building Construction | Rubber Tired Dozers | Diesel | Average | 1.00 | 8.00 | 367 | 0.40 | | Building Construction | Graders | Diesel | Average | 1.00 | 8.00 | 148 | 0.41 | | Building Construction | Cranes | Diesel | Average | 1.00 | 8.00 | 367 | 0.29 | | Building Construction | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 | | Building Construction | Off-Highway Trucks | Diesel | Average | 2.00 | 8.00 | 376 | 0.38 | | Building Construction | Crawler Tractors | Diesel | Average | 1.00 | 4.00 | 87.0 | 0.43 | | Building Construction | Forklifts | Diesel | Average | 1.00 | 4.00 | 82.0 | 0.20 | ## 5.2.2. Mitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |------------------------------|----------------------------|-----------|-------------|----------------|---------------|------------|-------------| | Linear, Grading & Excavation | Bore/Drill Rigs | Diesel | Average | 1.00 | 8.00 | 83.0 | 0.50 | | Linear, Grading & Excavation | Off-Highway Trucks | Diesel | Average | 1.00 | 8.00 | 376 | 0.38 | | Linear, Grading & Excavation | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 4.00 | 84.0 | 0.37 | | Building Construction | Rubber Tired Dozers | Diesel | Average | 1.00 | 8.00 | 367 | 0.40 | | Building Construction | Graders | Diesel | Average | 1.00 | 8.00 | 148 | 0.41 | | Building Construction | Cranes | Diesel | Average | 1.00 | 8.00 | 367 | 0.29 | | Building Construction | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 | | Building Construction | Off-Highway Trucks | Diesel | Average | 2.00 | 8.00 | 376 | 0.38 | | Building Construction | Crawler Tractors | Diesel | Average | 1.00 | 4.00 | 87.0 | 0.43 | | Building Construction | Forklifts | Diesel | Average | 1.00 | 4.00 | 82.0 | 0.20 | |-----------------------|-----------|--------|---------|------|------|------|------| ## 5.3. Construction Vehicles ### 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |------------------------------|--------------|-----------------------|----------------|---------------| | Demolition | _ | _ | _ | - | | Demolition | Worker | 50.0 | 100 | LDA,LDT1,LDT2 | | Demolition | Vendor | 25.0 | 100 | HHDT,MHDT | | Demolition | Hauling | 46.0 | 100 | HHDT | | Demolition | Onsite truck | _ | - | HHDT | | Building Construction | _ | _ | _ | _ | | Building Construction | Worker | 50.0 | 100 | LDA,LDT1,LDT2 | | Building Construction | Vendor | 6.56 | 100 | HHDT,MHDT | | Building Construction | Hauling | 2.15 | 100 | HHDT | | Building Construction | Onsite truck | - | - | HHDT | | Linear, Grading & Excavation | _ | _ | _ | _ | | Linear, Grading & Excavation | Worker | 50.0 | 100 | LDA,LDT1,LDT2 | | Linear, Grading & Excavation | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Linear, Grading & Excavation | Hauling | 0.00 | 100 | HHDT | | Linear, Grading & Excavation | Onsite truck | _ | _ | HHDT | ### 5.3.2. Mitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |------------|-----------|-----------------------|----------------|---------------| | Demolition | _ | _ | _ | _ | | Demolition | Worker | 50.0 | 100 | LDA,LDT1,LDT2 | | Demolition | Vendor | 25.0 | 100 | HHDT,MHDT | | Demolition | Hauling | 46.0 | 100 | HHDT | |------------------------------|--------------|------|------|---------------| | Demolition | Onsite truck | _ | _ | HHDT | | Building Construction | _ | _ | _ | _ | | Building Construction | Worker | 50.0 | 100 | LDA,LDT1,LDT2 | | Building Construction | Vendor | 6.56 | 100 | HHDT,MHDT | | Building Construction | Hauling | 2.15 | 100 | HHDT | | Building Construction | Onsite truck | _ | _ | HHDT | | Linear, Grading & Excavation | _ | _ | _ | _ | | Linear, Grading & Excavation | Worker | 50.0 | 100 | LDA,LDT1,LDT2 | | Linear, Grading & Excavation | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Linear, Grading & Excavation | Hauling | 0.00 | 100 | HHDT | | Linear, Grading & Excavation | Onsite truck | _ | _ | HHDT | #### 5.4. Vehicles ### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ## 5.5. Architectural Coatings | Phase Name | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area
Coated (sq ft) | Non-Residential Exterior Area
Coated (sq ft) | Parking Area Coated (sq ft) | |-----------------------|--|--|---|---|-----------------------------| | Building Construction | 0.00 | 0.00 | 60,000 | 20,000 | 7,684 | ## 5.6. Dust Mitigation ## 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | | Material Demolished (Ton of Debris) | Acres Paved (acres) | |------------------------------|---------------------------------|---------------------------------|------|-------------------------------------|---------------------| | Linear, Grading & Excavation | | _ | 0.14 | 0.00 | _ | | | | 67 | / 81 | | | | Demolition | _ | 1,350 | 0.14 | 3,000 | - | |-----------------------|---|-------|------|-------|---| | Building Construction | _ | 8,000 | 581 | 0.00 | _ | ### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | ### 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |-------------------------------|--------------------|-----------| | Unrefrigerated Warehouse-Rail | 0.00 | 0% | | Other Non-Asphalt Surfaces | 2.00 | 0% | | Parking Lot | 0.50 | 100% | | User Defined Linear | 0.14 | 100% | | Other Asphalt Surfaces | 0.44 | 100% | ### 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2025 | 0.00 | 565 | 0.03 | < 0.005 | | 2026 | 0.00 | 482 | 0.03 | < 0.005 | | 2027 | 0.00 | 482 | 0.03 | < 0.005 | ### 5.9. Operational Mobile Sources #### 5.9.1. Unmitigated | La | and Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |----|--------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------| |----|--------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------| | Unrefrigerated
Warehouse-Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |----------------------------------|------|------|------|------|------|------|------|------| | Other Non-Asphalt Surfaces | 0.00 | 0.00
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 5.9.2. Mitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |----------------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------| | Unrefrigerated
Warehouse-Rail | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Non-Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Other Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated 5.10.1.2. Mitigated ### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 60,000 | 20,000 | 7,684 | #### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | #### 5.10.4. Landscape Equipment - Mitigated | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ### 5.11. Operational Energy Consumption #### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |-------------------------------|----------------------|-----|--------|--------|-----------------------| | Unrefrigerated Warehouse-Rail | 3,800,000 | 482 | 0.0330 | 0.0040 | 760,427 | | Other Non-Asphalt Surfaces | 0.00 | 482 | 0.0330 | 0.0040 | 0.00 | | Parking Lot | 0.00 | 482 | 0.0330 | 0.0040 | 0.00 | | Other Asphalt Surfaces | 0.00 | 482 | 0.0330 | 0.0040 | 0.00 | ### 5.11.2. Mitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |-------------------------------|----------------------|-----|--------|--------|-----------------------| | Unrefrigerated Warehouse-Rail | 0.00 | 482 | 0.0330 | 0.0040 | 760,427 | | Other Non-Asphalt Surfaces | 0.00 | 482 | 0.0330 | 0.0040 | 0.00 | | Parking Lot | 0.00 | 482 | 0.0330 | 0.0040 | 0.00 | | Other Asphalt Surfaces | 0.00 | 482 | 0.0330 | 0.0040 | 0.00 | |------------------------|------|-----|--------|--------|------| | | | | | | | ### 5.12. Operational Water and Wastewater Consumption ### 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |-------------------------------|-------------------------|--------------------------| | Unrefrigerated Warehouse-Rail | 0.00 | 719,653,531 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | ### 5.12.2. Mitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |-------------------------------|-------------------------|--------------------------| | Unrefrigerated Warehouse-Rail | 0.00 | 719,653,531 | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | | Parking Lot | 0.00 | 0.00 | | Other Asphalt Surfaces | 0.00 | 0.00 | ## 5.13. Operational Waste Generation ### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |-------------------------------|------------------|-------------------------| | Unrefrigerated Warehouse-Rail | 37.6 | - | | Other Non-Asphalt Surfaces | 0.00 | _ | | Parking Lot | 0.00 | - | | Other Asphalt Surfaces | 0.00 | <u> </u> | Load Factor #### 5.13.2. Mitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |-------------------------------|------------------|-------------------------| | Unrefrigerated Warehouse-Rail | 37.6 | _ | | Other Non-Asphalt Surfaces | 0.00 | _ | | Parking Lot | 0.00 | _ | | Other Asphalt Surfaces | 0.00 | _ | ### 5.14. Operational Refrigeration and Air Conditioning Equipment #### 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |-------------------|----------------|-------------|-----|---------------|----------------------|-------------------|----------------| | 5.14.2. Mitigated | | | | | | | | | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | ### 5.15. Operational Off-Road Equipment #### 5.15.1. Unmitigated **Equipment Type** | 1 | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |---|------------------|-----------|-------------|----------------|---------------|------------|-------------| | | 45.0 Mg | | | | | | | | 5 | .15.2. Mitigated | | | | | | | | | | | | | | | | Number per Day Hours Per Day Horsepower ### 5.16. Stationary Sources #### 5.16.1. Emergency Generators and Fire Pumps Fuel Type **Engine Tier** | Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor | |----------------|-----------|----------------|---------------|----------------|------------|-------------| | Fire Pump | Diesel | 1.00 | 24.0 | 8,760 | 5.00 | 0.73 | | Fire Pump | Diesel | 1.00 | 24.0 | 8,760 | 25.0 | 0.73 | | Fire Pump | Diesel | 1.00 | 24.0 | 8,760 | 15.0 | 0.73 | #### 5.16.2. Process Boilers | ٠ | Equipment Type | Fuel Type | Number | Boiler Rating (MMBtu/hr) | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) | |---|----------------|-----------|--------|--------------------------|--------------------------------|------------------------------| | | _darba | | | 20101 (1011) | Dany Hoat Input (IIII Dia asy) | / | #### 5.17. User Defined | Equipment Type | Fuel Type | |----------------|-----------| | _ | | ### 5.18. Vegetation 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated | the state of s | | Name of the last o | In the second se | |--|----------------------
--|--| | Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | | | | | | ### 5.18.1.2. Mitigated | Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | |--------------------------|----------------------|---------------|-------------| ### 5.18.1. Biomass Cover Type ### 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres #### 5.18.1.2. Mitigated | Biomass Cover Type | Initial Acres | Final A | cres | |-----------------------|---------------|------------------------------|------------------------------| | 5.18.2. Sequestration | | | | | 5.18.2.1. Unmitigated | | | | | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | | 5.18.2.2. Mitigated | | | | | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | ### 6. Climate Risk Detailed Report ### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 38.6 | annual days of extreme heat | | Extreme Precipitation | 7.50 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 35.6 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 0 | 0 | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 0 | 0 | N/A | | Wildfire | 1 | 0 | 0 | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 0 | 0 | 0 | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 1 | 1 | 4 | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 1 | 1 | 2 | | Wildfire | 1 | 1 | 1 | 2 | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 1 | 1 | 1 | 2 | | |-------------------------|---|---|---|---|--| |-------------------------|---|---|---|---|--| The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project
refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ### 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|--| | Exposure Indicators | —————————————————————————————————————— | | AQ-Ozone | 97.6 | | AQ-PM | 1.68 | | AQ-DPM | 4.41 | | Drinking Water | 60.7 | | Lead Risk Housing | 11.6 | | Pesticides | 11.0 | | Toxic Releases | 8.39 | | Traffic | 1.35 | | Effect Indicators | _ | | CleanUp Sites | 0.00 | | Groundwater | 0.00 | | Haz Waste Facilities/Generators | 0.00 | | mpaired Water Bodies | 0.00 | | Solid Waste | 11.6 | | Sensitive Population | - | | |---------------------------------|------|--| | Asthma | 63.6 | | | Cardio-vascular | 92.9 | | | Low Birth Weights | 66.3 | | | Socioeconomic Factor Indicators | _ | | | Education | 33.5 | | | Housing | 22.1 | | | Linguistic | 8.49 | | | Poverty | 67.0 | | | Unemployment | 64.5 | | ## 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | - | | Above Poverty | 54.07416913 | | Employed | 2.34826126 | | Median HI | 47.09354549 | | Education | | | Bachelor's or higher | 24.38085461 | | High school enrollment | 100 | | Preschool enrollment | 95.7141024 | | Transportation | | | Auto Access | 86.34672142 | | Active commuting | 8.161170281 | | Social | | | 2-parent households | 29.38534582 | | Voting | 73.38637239 | |--|-------------| | Neighborhood | | | Alcohol availability | 87.1423072 | | Park access | 51.00731426 | | Retail density | 9.110740408 | | Supermarket access | 10.57359168 | | Tree canopy | 85.29449506 | | Housing | _ | | Homeownership | 77.15898884 | | Housing habitability | 49.54446298 | | Low-inc homeowner severe housing cost burden | 35.91684845 | | Low-inc renter severe housing cost burden | 3.708456307 | | Uncrowded housing | 96.93314513 | | Health Outcomes | _ | | Insured adults | 30.92518927 | | Arthritis | 0.0 | | Asthma ER Admissions | 46.4 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.7 | | Cognitively Disabled | 5.2 | | Physically Disabled | 5.0 | | Heart Attack ER Admissions | 10.8 | | Mental Health Not Good | 0.0 | |---------------------------------------|------| | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 59.1 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | - | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | - | | Wildfire Risk | 87.1 | | SLR Inundation Area | 0.0 | | Children | 65.5 | | Elderly | 25.8 | | English Speaking | 82.2 | | Foreign-born | 0.7 | | Outdoor Workers | 31.4 | | Climate Change Adaptive Capacity | | | Impervious Surface Cover | 94.7 | | Traffic Density | 3.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 62.9 | | Other Decision Support | | | 2016 Voting | 81.4 | #### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 19.0 | | Healthy Places Index Score for Project Location (b) | 41.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | No | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. ### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. ## 8. User Changes to Default Data | Screen | Justification | |---|--| | Construction: Construction Phases | Based on Client Provided data and construction schedule | | Construction: Off-Road Equipment | Client Provided construction equipment list | | Construction: Trips and VMT | Per Project applicant, the hauling trucks would travel a distance of up to 100 miles round trip, as such hauling for both the Linear, Grading & Excavation and Demolition phase was adjusted to 100 miles. | | Operations: Vehicle Data | No trips data available | | Operations: Architectural Coatings | SCAQMD Rule 1113 | | Construction: Dust From Material Movement | Export expected per Project data | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Construction: Architectural Coatings | SCAQMD Rule 1113 | |--------------------------------------|--| | Operations: Energy Use | Electricity adjusted based on client provided data | | Operations: Water and Waste Water | Taken from 2022 Lake Analysis report | This page intentionally left blank CALEEMOD REPLENISH BIG BEAR COMPONENT 2 UNMITIGATED EMISSIONS MODEL OUTPUTS # 15309-Lake Pipeline (Unmitigated) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 3. Construction Emissions Details - 3.1. Linear, Grading & Excavation (2025) Unmitigated - 3.3. Linear, Grading & Excavation (2026) Unmitigated - 3.5. Linear, Drainage, Utilities, & Sub-Grade (2026) Unmitigated - 3.7. Demolition (2025) Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.1. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.1. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.1. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | | |-----------------------------|-----------------------------------|--| | Project Name | 15309-Lake Pipeline
(Unmitigated) | | | Construction Start Date | 5/1/2025 | | | Operational Year | 2027 | | | Lead Agency | _ | | | and Use Scale | Project/site | | | Analysis Level for Defaults | County | | | Nindspeed (m/s) | 2.50 | | | Precipitation (days) | 1.80 | | | Location | 34.269428, -116.815824 | | | County | San Bernardino-South Coast | | | Dity | Unincorporated | | | Air District | South Coast AQMD | | | Air Basin | South Coast | | | AZ | 5156 | | | EDFZ | 10 | | | Electric Utility | Bear Valley Electric Service | | | Gas Utility | Southwest Gas Corp. | | | App Version | 2022.1.1.18 | | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq | Special Landscape | Population | Description | |------------------|------|------|-------------|-----------------------|--------------------|-------------------|------------|-------------| | | | | | | ft) | Area (sq ft) | | | | User Defined Linear | 3.78 | Mile | 2.06 | 0.00 | _ | _ | - | - | |-------------------------------|------|------|------|------|------|---|---|---| | Other Non-Asphalt
Surfaces | 1.00 | Acre | 1.00 | 0.00 | 0.00 | - | - | - | ### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary ### 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | - | | - | | - | - | - | | | | - | | | | | - | - | | | Unmit. | 3.47 | 1.41 | 28.1 | 27.2 | 0.15 | 0.49 | 8.51 | 9.00 | 0.47 | 2.05 | 2.52 | - | 22,975 | 22,975 | 1.96 | 3.22 | 47.5 | 24,031 | | Daily,
Winter
(Max) | - | | - | - | | - | | | - | | | | | | - | - | - | | | Unmit. | 2.98 | 1.53 | 22.0 | 25.8 | 0.11 | 0.46 | 5.63 | 6.09 | 0.43 | 1.45 | 1.89 | - | 17,145 | 17,145 | 1.26 | 2.04 | 0.86 | 17,776 | | Average
Daily
(Max) | - | | | | | - | - | - | - | | - | | | | - | - | - | | | Unmit. | 1.33 | 0.55 | 11.1 | 9.79 | 0.06 | 0.19 | 2.89 | 3.08 | 0.18 | 0.73 | 0.91 | - | 8,713 | 8,713 | 0.74 | 1.21 | 7.77 | 9,099 | | Annual
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Unmit. | 0.24 | 0.10 | 2.03 | 1.79 | 0.01 | 0.03 | 0.53 | 0.56 | 0.03 | 0.13 | 0.17 | _ | 1,443 | 1,443 | 0.12 | 0.20 | 1.29 | 1,506 | ### 2.2. Construction Emissions by Year, Unmitigated | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily -
Summer
(Max) | - | - | Ī | T | - | _ | - | - | - | | _ | _ | - | - | - | | - | _ | | 2025 | 3.47 | 1.41 | 28.1 | 27.2 | 0.15 | 0.49 | 8.51 | 9.00 | 0.47 | 2.05 | 2.52 | - | 22,975 | 22,975 | 1.96 | 3.22 | 47.5 | 24,031 | | 2026 | 0.79 | 0.65 | 4.07 | 11.1 | 0.01 | 0.14 | 1.24 | 1.38 | 0.13 | 0.29 | 0.42 | _ | 2,467 | 2,467 | 0.09 | 0.05 | 4.47 | 2,489 | | Daily -
Winter
(Max) | - | | - | | _ | _ | - | | - | - | - | | _ | - | - | | - | _ | | 2025 | 2.30 | 0.98 | 18.8 | 16.9 | 0.10 | 0.33 | 4.40 | 4.73 | 0.32 | 1.16 | 1.48 | _ | 15,029 | 15,029 | 1.26 | 2.04 | 0.80 | 15,670 | | 2026 | 2.98 | 1.53 | 22.0 | 25.8 | 0.11 | 0.46 | 5.63 | 6.09 | 0.43 | 1.45 | 1.89 | - | 17,145 | 17,145 | 1.20 | 2.01 | 0.86 | 17,776 | | Average
Daily | - | - | - | - | - | - | - | - | - | - 1 | - | | - | - | _ | - | _ | _ | | 2025 | 1.33 | 0.55 | 11.1 | 9.79 | 0.06 | 0.19 | 2.89 | 3.08 | 0.18 | 0.73 | 0.91 | _ | 8,713 | 8,713 | 0.74 | 1.21 | 7.77 | 9,099 | | 2026 | 0.50 | 0.37 | 2.90 | 5.68 | 0.01 | 0.09 | 0.82 | 0.91 | 0.08 | 0.20 | 0.28 | _ | 1,845 | 1,845 | 0.07 | 0.11 | 1.51 | 1,880 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2025 | 0.24 | 0.10 | 2.03 | 1.79 | 0.01 | 0.03 | 0.53 | 0.56 | 0.03 | 0.13 | 0.17 | _ | 1,443 | 1,443 | 0.12 | 0.20 | 1.29 | 1,506 | | 2026 | 0.09 | 0.07 | 0.53 | 1.04 | < 0.005 | 0.02 | 0.15 | 0.17 | 0.01 | 0.04 | 0.05 | | 305 | 305 | 0.01 | 0.02 | 0.25 | 311 | # 2.4. Operations Emissions Compared Against Thresholds | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------| | Daily,
Summer
(Max) | - | | - | 1 | _ | | _ | | _ | | | _ | _ | _ | _ | _ | Ī | - | | Unmit. | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | - | - | - | - | - | - | _ | _ | - | - | - | - | - | - | - | - | - | | Unmit. | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily
(Max) | - | | | | | | | | | | | | | | | | | | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Unmit. | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual
(Max) | - | - | - | - | - | - | - | - | 1- | - | - | | - | - | - | - | - | - | | Unmit. | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------| | Daily,
Summer
(Max) | - | - | - | _ | - | - | _ | - | - | - | - | _ | _ | _ | - | | - | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Water | _ | _ | - | - | - | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | _ | _ | _ | - | - | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | | - | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | - | 0.22 | - | - | - | - | _ | - | - | - | _ | - | - | - | - | 1- | 1- | - | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Water | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Waste | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | |------------------|------|------|------|------|------|------|----------|------|------|------|------|------|------|------|------|------|----------|------| | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1- | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Water | _ | - | _ | - | _ | - | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | - | - | - | - | - | - | - | - | - | _ | _ | _ | 1- | - | - | - | _ | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 1 - | 0.00 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 | | Water | - | - | - | _ | - | _ | 1- | - | - | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | _ | _ | _ | - | _ | - | <u> </u> | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3. Construction Emissions Details ## 3.1. Linear, Grading & Excavation (2025) - Unmitigated | Location - | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-----------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---
-------| | Onsite - | _ | - | - | - | - | - | - | - | _ | _ | - | - | - | - | - | _ | - | - | | Daily, -
Summer
(Max) | | _ | | | - | | | | _ | | | | | | _ | | - | | | Off-Road (
Equipment | | 0.68 | 4.92 | 6.09 | 0.02 | 0.18 | - | 0.18 | 0.16 | - | 0.16 | - | 1,799 | 1,799 | 0.07 | 0.01 | - | 1,805 | | Dust
From
Material | - | - | - | - | | | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 — | - - | - | - | - | - | | |--------------------------------------|--------|------|------|------|---------|------|---------|---------|------|---------|-----------|---------|-------|------|---------|------|-------| | Movement | t | | | | | | | | | | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 — | - 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Daily,
Winter
(Max) | _ | | - | | | - | - | | - | | | | | I | | _ | r | | Off-Road
Equipmen | | 0.68 | 4.92 | 6.09 | 0.02 | 0.18 | - | 0.18 | 0.16 | - | 0.16 — | - 1,799 | 1,799 | 0.07 | 0.01 | - | 1,805 | | Dust
From
Material
Movement | _
t | | | | | | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 — | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 — | - 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | | - - | - | - | - | - | - | | Off-Road
Equipmen | | 0.33 | 2.36 | 2.92 | 0.01 | 0.08 | - | 0.08 | 0.08 | - | 0.08 — | - 862 | 862 | 0.03 | 0.01 | - | 865 | | Dust
From
Material
Movement | _
t | Ī | Ī | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 — | - - | - | - | | - | T | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 — | - 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | | - - | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.06 | 0.43 | 0.53 | < 0.005 | 0.02 | - | 0.02 | 0.01 | - | 0.01 — | - 143 | 143 | 0.01 | < 0.005 | - | 143 | | Dust
From
Material
Movement | _ | - | - | - | | | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 — | | - | - | - | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 — | - 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | - | - | _ | - | - | - | _ | - | _ | - | _ | - | _ | - | _ | _ | _ | - | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|--------|---------|---------|------|---| | Daily,
Summer
(Max) | - | | | | - | | | | | | - | | | | T | | - | - | | Worker | 0.16 | 0.12 | 0.31 | 5.78 | 0.00 | 0.00 | 1.06 | 1.06 | 0.00 | 0.25 | 0.25 | - | 1,131 | 1,131 | 0.04 | 0.03 | 4.24 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 1.33 | 0.18 | 13.0 | 6.69 | 0.08 | 0.16 | 3.34 | 3.50 | 0.16 | 0.91 | 1.07 | - | 12,194 | 12,194 | 1.15 | 1.99 | 26.4 | _ | | Daily,
Winter
(Max) | - | | | - | | | - | | - | | | | | | | | - | - | | Worker | 0.15 | 0.12 | 0.34 | 4.11 | 0.00 | 0.00 | 1.06 | 1.06 | 0.00 | 0.25 | 0.25 | _ | 1,036 | 1,036 | 0.04 | 0.03 | 0.11 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 1.33 | 0.18 | 13.5 | 6.70 | 0.08 | 0.16 | 3.34 | 3.50 | 0.16 | 0.91 | 1.07 | _ | 12,195 | 12,195 | 1.15 | 2.00 | 0.69 | _ | | Average
Daily | - | - | - | | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | | Worker | 0.07 | 0.06 | 0.18 | 2.10 | 0.00 | 0.00 | 0.51 | 0.51 | 0.00 | 0.12 | 0.12 | _ | 504 | 504 | 0.02 | 0.02 | 0.88 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.64 | 0.09 | 6.59 | 3.21 | 0.04 | 0.08 | 1.60 | 1.67 | 0.08 | 0.44 | 0.51 | _ | 5,846 | 5,846 | 0.55 | 0.96 | 5.50 | - | | Annual | _ | _ | 1- | - | _ | - | 1- | 1 | - | - | - | - | _ | - | - | - | - | _ | | Worker | 0.01 | 0.01 | 0.03 | 0.38 | 0.00 | 0.00 | 0.09 | 0.09 | 0.00 | 0.02 | 0.02 | - | 83.4 | 83.4 | < 0.005 | < 0.005 | 0.15 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.12 | 0.02 | 1.20 | 0.59 | 0.01 | 0.01 | 0.29 | 0.31 | 0.01 | 0.08 | 0.09 | _ | 968 | 968 | 0.09 | 0.16 | 0.91 | - | # 3.3. Linear, Grading & Excavation (2026) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | - | - | _ | - | _ | _ | _ | - | _ | _ | _ | _ | | Daily,
Summer
(Max) | | | - | | - | - | | | | | - | _ | | | - | - | - | - | | Daily,
Winter
(Max) | _ | | - | - | - | _ | - | _ | | _ | - | | | | | | - | | |-------------------------------------|-------|------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmen | | 0.67 | 4.65 | 6.11 | 0.02 | 0.16 | - | 0.16 | 0.15 | - | 0.15 | - | 1,800 | 1,800 | 0.07 | 0.01 | - | 1,806 | | Dust
From
Material
Movemen |
t | | | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | | - | | - | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.03 | 0.19 | 0.25 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 74.0 | 74.0 | < 0.005 | < 0.005 | - | 74.2 | | Dust
From
Material
Movemen |
t | - | | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | _ | - | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | Annual | _ | _ | 1- | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | 0.01 | 0.03 | 0.05 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 12.2 | 12.2 | < 0.005 | < 0.005 | - | 12.3 | | Dust
From
Material
Movemen |
t | | I | | | - | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | _ | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | - | _ | - | _ | _ | | Daily,
Summer
(Max) | _ | | Ī | | - | | | | | | - | | | - | | | - | | | Daily,
Winter
(Max) | | - | - | - | | _ | - | | | | - | - | | | | | - | - | |---------------------------|---------|---------|---------|------|---------|---------|------|------|---------|---------|---------|---|--------|--------|---------|---------|------|---| | Worker | 0.15 | 0.11 | 0.31 | 3.81 | 0.00 | 0.00 | 1.06 | 1.06 | 0.00 | 0.25 | 0.25 | - | 1,015 | 1,015 | < 0.005 | 0.03 | 0.10 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 1.25 | 0.10 | 13.0 | 6.54 | 0.08 | 0.16 | 3.34 | 3.50 | 0.16 | 0.91 | 1.07 | - | 11,972 | 11,972 | 1.07 | 1.92 | 0.64 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.01 | < 0.005 | 0.01 | 0.17 | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.01 | 0.01 | - | 42.3 | 42.3 | < 0.005 | < 0.005 | 0.07 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.05 | < 0.005 | 0.54 | 0.27 | < 0.005 | 0.01 | 0.14 | 0.14 | 0.01 | 0.04 | 0.04 | - | 492 | 492 | 0.04 | 0.08 | 0.44 | - | | Annual | _ | _ | _ | - | _ | _ | - | - | - | - | - | - | - | - | - | _ | _ | - | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | - | 7.00 | 7.00 | < 0.005 | < 0.005 | 0.01 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.01 | < 0.005 | 0.10 | 0.05 | < 0.005 | < 0.005 | 0.03 | 0.03 | < 0.005 | 0.01 | 0.01 | - | 81.5 | 81.5 | 0.01 | 0.01 | 0.07 | _ | ## 3.5. Linear, Drainage, Utilities, & Sub-Grade (2026) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|--------|------|------|------|--------------|-------|-------|-------|--------|--------|--------|------|----------|-------|------|------|------|-------| | Onsite | _ | _ | - | 1 | - | _ | _ | 1- | _ | - | _ | _ | <u> </u> | _ | _ | 1- | _ | - | | Daily,
Summer
(Max) | - | | | - | - | - | - | - | - | - | - | | - | _ | | | - | - | | Off-Road
Equipmen | | 0.51 | 3.75 | 4.89 | 0.01 | 0.14 | - | 0.14 | 0.13 | - | 0.13 | - | 1,175 | 1,175 | 0.05 | 0.01 | - | 1,179 | | Dust
From
Material
Movemen | _
t | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Daily,
Winter | - | - | 1- | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |-------------------------------------|--------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|-------| | (Max) | Off-Road
Equipmen | | 0.51 | 3.75 | 4.89 | 0.01 | 0.14 | - | 0.14 | 0.13 | - | 0.13 | - | 1,175 | 1,175 | 0.05 | 0.01 | - | 1,179 | | Dust
From
Material
Movemen | _
t | | | | | - | 0.00 | 0.00 | | 0.00 | 0.00 | | | | - | | - | - |
| Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | - | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.27 | 1.95 | 2.55 | 0.01 | 0.07 | - | 0.07 | 0.07 | - | 0.07 | - | 612 | 612 | 0.02 | < 0.005 | - | 614 | | Dust
From
Material
Movemen | _
t | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Annual | _ | - | - | - | _ | - | _ | | _ | _ | _ | | - | - | _ | _ | _ | - | | Off-Road
Equipmen | | 0.05 | 0.36 | 0.46 | < 0.005 | 0.01 | 1- | 0.01 | 0.01 | - | 0.01 | - | 101 | 101 | < 0.005 | < 0.005 | - | 102 | | Dust
From
Material
Movemen |
t | | | | | - | 0.00 | 0.00 | | 0.00 | 0.00 | - | | - | - | | _ | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Offsite | _ | _ | _ | - | - | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | - | | | | - | - | - | | | | - | | - | | | | - | - | | Worker | 0.18 | 0.14 | 0.32 | 6.23 | 0.00 | 0.00 | 1.24 | 1.24 | 0.00 | 0.29 | 0.29 | _ | 1,292 | 1,292 | 0.04 | 0.04 | 4.47 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|---| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Daily,
Winter
(Max) | - | | | | | | - | | | | | | | | | | - | - | | Worker | 0.17 | 0.13 | 0.36 | 4.44 | 0.00 | 0.00 | 1.24 | 1.24 | 0.00 | 0.29 | 0.29 | - | 1,184 | 1,184 | < 0.005 | 0.04 | 0.12 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | E | | Worker | 0.09 | 0.07 | 0.21 | 2.45 | 0.00 | 0.00 | 0.64 | 0.64 | 0.00 | 0.15 | 0.15 | - | 625 | 625 | < 0.005 | 0.02 | 1.01 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | _ | _ | - | | Worker | 0.02 | 0.01 | 0.04 | 0.45 | 0.00 | 0.00 | 0.12 | 0.12 | 0.00 | 0.03 | 0.03 | - | 103 | 103 | < 0.005 | < 0.005 | 0.17 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | # 3.7. Demolition (2025) - Unmitigated | | TOG | ROG | NOx | СО | SO2 | | | | | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|------|------|---------|------|------|------|------|--------|--------|------|-------|------|------|---------|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | | - | - | - | _ | | | | | - | - | | _ | _ | | | | | | Off-Road
Equipment | | 0.28 | 2.32 | 2.77 | < 0.005 | 0.06 | - | 0.06 | 0.06 | - | 0.06 | _ | 366 | 366 | 0.01 | < 0.005 | - | 368 | | Demolitio
n | - | - | - | - | - | - | 1.81 | 1.81 | - | 0.27 | 0.27 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | |---------------------------|------|------|------|------|---------|---------|------|---------|---------|------|---------|---|-------|-------|---------|---------|------|------| | Daily,
Winter
(Max) | _ | - | | - | - | _ | - | | - | - | - | | - | - | | _ | - | - | | Average
Daily | _ | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.05 | 0.44 | 0.53 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 70.3 | 70.3 | < 0.005 | < 0.005 | - | 70.5 | | Demolitio
n | - | - | - | - | - | - | 0.35 | 0.35 | - | 0.05 | 0.05 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Н | | Annual | _ | _ | - | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | - | _ | | Off-Road
Equipmen | | 0.01 | 0.08 | 0.10 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 11.6 | 11.6 | < 0.005 | < 0.005 | - | 11.7 | | Demolitio
n | - | - | - | - | - | - | 0.06 | 0.06 | - | 0.01 | 0.01 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | - | - | - | - | - | _ | - | _ | _ | - | _ | - | - | _ | _ | _ | - | | Daily,
Summer
(Max) | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Worker | 0.05 | 0.04 | 0.10 | 1.93 | 0.00 | 0.00 | 0.35 | 0.35 | 0.00 | 0.08 | 0.08 | _ | 377 | 377 | 0.01 | 0.01 | 1.41 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.78 | 0.11 | 7.55 | 3.90 | 0.05 | 0.09 | 1.95 | 2.04 | 0.09 | 0.53 | 0.63 | - | 7,108 | 7,108 | 0.67 | 1.16 | 15.4 | - | | Daily,
Winter
(Max) | _ | - | - | | - | - | - | | - | - | - | - | - | - | - | - | - | | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.01 | 0.01 | 0.02 | 0.28 | 0.00 | 0.00 | 0.07 | 0.07 | 0.00 | 0.02 | 0.02 | _ | 67.1 | 67.1 | < 0.005 | < 0.005 | 0.12 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | |---------|---------|---------|---------|------|---------|---------|------|------|---------|---------|---------|---|-------|-------|---------|---------|------|---| | Hauling | 0.15 | 0.02 | 1.54 | 0.75 | 0.01 | 0.02 | 0.37 | 0.39 | 0.02 | 0.10 | 0.12 | - | 1,363 | 1,363 | 0.13 | 0.22 | 1.28 | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | - | - | - | _ | - | - | _ | - | - | _ | - | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | - | 11.1 | 11.1 | < 0.005 | < 0.005 | 0.02 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.03 | < 0.005 | 0.28 | 0.14 | < 0.005 | < 0.005 | 0.07 | 0.07 | < 0.005 | 0.02 | 0.02 | _ | 226 | 226 | 0.02 | 0.04 | 0.21 | - | # 4. Operations Emissions Details # 4.1. Mobile Emissions by Land Use ### 4.1.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|--------------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------| | Daily,
Summer
(Max) | | - | Ī | | | - | _ | _ | | | | | - | _ | Ī | r | | - | | Other
Non-Asph
Surfaces | 0.00
nalt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | | - | | | | | | - | - | - | | - | | | | | - | | Other
Non-Asph
Surfaces | 0.00
nalt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | - | _ | _ | 1- | - | _ | | Other
Non-As
Surface | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |----------------------------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------| | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 4.2. Energy ### 4.2.1. Electricity Emissions By Land Use - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land I | тоо | | NO | 00 | 000 | PM10E | DMAOD | PM10T | DMO EE | DMO ED | DMO ST | DOOG | NIDOOO | СООТ | OLIA | Noo | | 000- | |-------------------------------|----------|-----|-----|----|-----|-------|-------|---------|--------|--------|--------|------|--------|------|------|------|----|------| | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PIVITOT | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | - | | | - | - | | _ | _ | | - | _ | - | - | - | - | - | | | | Other
Non-Asph
Surfaces | —
alt | | - | | - | - | | - | - | | - | _ | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | _ | _ | _ | _ | - | _ | _ | - | _ | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | - | | | _ | - | | | - | - | | | - | - | - | | | | | | Other
Non-Asph
Surfaces | —
alt | | - | | - | | | - | _ | | | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | _ | _ | - |
_ | - | - | - | - | _ | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Annual | _ | - | - | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | | Other
Non-Asph
Surfaces | —
alt | | | | - | | _ | _ | - | _ | - | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | _ | - | - | - | - | - | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 1- | 0.00 | ### 4.2.3. Natural Gas Emissions By Land Use - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | (1.0, 0. | o., . o. o. | J j, 10 | <i>j</i> | ridai, aria | | , | , a.a,, | , | J | | | | | | | | |---|------|----------|-------------|---------|----------|-------------|-------|-------|---------|--------|--------|------|-------|------|------|------|---|------| | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | D <mark>aily,</mark>
Summer
(Max) | _ | - | - | | - | - | - | | - | - | - | | - | - | | - | | | | Other
Non-Aspl
Surfaces | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Daily,
Winter
(Max) | _ | - | - | r | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Other
Non-Aspl
Surfaces | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | _ | II- | - | _ | _ | _ | _ | - | - | _ | _ | - | _ | - | _ | _ | - | _ | | Other
Non-Aspl
Surfaces | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.3. Area Emissions by Source ### 4.3.1. Unmitigated | Ontona | · Onatai | 110 (10) 44 | y ioi aai | .y, to., y. | ioi aiiii | adi, dila | 000 | ioracy io | adily, iv | 11/91 101 | armaarj | | | | | | | | |---------------------------|----------|-------------|-----------|-------------|-----------|-----------|-------|-----------|-----------|-----------|---------|------|-------|------|-----|-----|---|------| | Source | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | - | _ | - | _ | - | _ | - | - | _ | _ | - | - | | | Consum
er
Products | - | < 0.005 | - | | | | | | | | | | | | | | - | | |--------------------------------|------|---------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|----|------| | Architect
ural
Coatings | - | 0.22 | | - | - | - | | - | - | | - | | - | | | | | - | | Landsca
pe
Equipme
nt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Daily,
Winter
(Max) | - | - | - | | - | | | | | - | | - | | | | | | | | Consum
er
Products | _ | < 0.005 | - | - | - | - | | - | - | - | - | | | | | - | - | - | | Architect
ural
Coatings | - | 0.22 | | | - | | Г | r | - | | - | - | - | | - | - | Г | | | Total | _ | 0.22 | - | 1- | 1- | - | - | - | _ | - | _ | - | _ | _ | - | _ | - | - | | Annual | _ | - | _ | - | - | - | - | - | _ | _ | - | _ | - | - | - | _ | _ | _ | | Consum
er
Products | - | < 0.005 | - | - | - | - | T | - | - | | - | ľ | | | - | | - | | | Architect
ural
Coatings | _ | 0.04 | - | | - | - | | 1 | - | - | | | | | | | - | | | Landsca
pe
Equipme
nt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | l | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 1- | 0.00 | # 4.4. Water Emissions by Land Use ### 4.4.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | | PM2.5E | | | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |-------------------------------|-----------|-----|-----|----|-----|-------|-------|---|--------|---|---|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | - | _ | | | _ | | | | - | _ | | _ | | | - | _ | - | | Other
Non-Asph
Surfaces | | - | - | _ | _ | - | | | | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | _ | _ | _ | _ | _ | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | - | Г | Г | Г | - | - | - | | - | - | - | - | - | - | - | - | - | - | | Other
Non-Asph
Surfaces | | - | - | | | - | - | | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | - | - | - | _ | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Other
Non-Asph
Surfaces | —
nalt | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | ### 4.5. Waste Emissions by Land Use #### 4.5.1. Unmitigated | | | | (, 6.6. | , 101 0.0 | <i>y</i> ,, <i>y</i> . | | iai, aira | · · · · · · · · · · · · · · · · · · · | o, c.c., .c. | J. J | , , | o, | | | | | | | | |------|----|---|---------|-----------|------------------------|-----|-----------|---------------------------------------|--------------|--|--------|--------|------|-------|------|-----|-----|---|------| | Land | TO | G | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Use | | | | | | | | | | | _ | _ | _ | | | | | | | | Daily, —
Summer
(Max) | | | | | | | | | | - | | | | | | - | | |------------------------------------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|----|------| | Other —
Non-Asphalt
Surfaces | - | | | - | | | | - | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total — | _ | - | _ | - | _ | _ | _ | _ | _ | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily, —
Winter
(Max) | | | | | | | r | F | | | | | | | | - | F | | Other —
Non-Asphalt
Surfaces | | | | | - | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total — | _ | - | _ | - | | - | _ | - | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Annual — | _ | - | - | - | | - | - | - | - | - | - | 1- | - | - | _ | - | - | | Other —
Non-Asphalt
Surfaces | - | - | | - | - | - | - | | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total — | - | _ | - | - | - | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1- | 0.00 | # 4.6. Refrigerant Emissions by Land Use ### 4.6.1. Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | | - | - | - | - | | _ | - | _ | - | _ | - | - | - | - | _ | | | Total | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Daily,
Winter
(Max) | - | | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | | | Total — | _ | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | - | _ | |----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Annual — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | ### 4.7. Offroad Emissions By Equipment Type ### 4.7.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | (, | , | , | | , | | | , , , , , , , , , , , , , , , , , , , | , | , | | | | | | | | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|---------------------------------------|--------|--------|------|-------|------|-----|-----|---|------| | Equipme
nt
Type | TOG | ROG | NOx | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | - | - | - | - | _ | - | _ | - | - | - | - | _ | - | - | - | - | - | - | | Total | - | _ | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | | Daily,
Winter
(Max) | - | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - " | | Total | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.8. Stationary Emissions By Equipment Type ### 4.8.1. Unmitigated | П | Equipme | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---|---------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Н | nt | ш | Туре | Daily,
Summer
(Max) | - | - | | - | _ | _ | - | | - | - | | - | _ | _ | _ | - | _ | _ | |---------------------------|---|---|----------|---|---|---|----------|---|---|----------|---|----|---|---|----------|----|---|---| | Total | _ | - | - | _
| _ | _ | <u> </u> | - | - | I — | _ | - | - | _ | <u> </u> | - | _ | - | | Daily,
Winter
(Max) | - | - | - | | - | - | | | - | - | - | - | - | - | - | - | - | | | Total | _ | - | - | - | _ | _ | - | - | - | - | - | - | _ | _ | _ | - | - | _ | | Annual | _ | _ | ! | _ | _ | _ | 1_ | _ | _ | <u> </u> | - | 1_ | _ | _ | 1_ | 1_ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.9. User Defined Emissions By Equipment Type ### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme nt | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | | _ | - | _ | - | _ | - | | | _ | | _ | | _ | _ | | | | Total | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | | Daily,
Winter
(Max) | _ | _ | _ | _ | _ | _ | | | | | | | | | | - | - | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ ! | | Annual | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | - | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.10. Soil Carbon Accumulation By Vegetation Type ## 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Vegetatio
n | TOG | ROG | | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | | | | | _ | _ | | | | | | | - | - | - | _ | _ | | | Total | - | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | - | - | - | - | - | _ | - | - | - | - | - | - | _ | - | _ | - | _ | - | | Total | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - 1 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | - | | - | | - | - | - | _ | - | - | | - | - | - | _ | _ | - | | Total | - | - | - | - | - | _ | _ | _ | _ | _ | - | - | _ | _ | - | | _ | - | | Daily,
Winter
(Max) | - | - | - | - | _ | - | | | - | - | - | - | - | - | - | - | - | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | - | - | - | - | _ | _ | - | _ | _ | _ | - | - | _ | _ | - | _ | _ | _ | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | - | - | | | | | - | _ | - | - | - | _ | - | | - | | - | | Avoided | - | - | - | - | - | - | - | - | - | - | _ | - | - | _ | _ | _ | _ | - | | Subtotal | _ | _ | _ | _ | - | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | | Sequest
ered | - | - | - | | | - | _ | - | _ | _ | _ | - | - | - | - | - | - | | | Subtotal | - | - | - | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | - | - | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | | Subtotal | _ | _ | - | - | - | - | _ | _ | _ | _ | _ | - | _ | _ | - | - | _ | - | | - | - | - | 1- | - | - | - | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | - | | Daily,
Winter
(Max) | | | | I | | | | | - | | - | | | | T | | | | | Avoided | - | - | - | 1- | 1- | | - | - | _ | _ | - | - | - | - | I- | - | - | - | | Subtotal | _ | - | _ | - | - | _ | - | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | | Sequest
ered | - | - | - | | | - | - | - | - | - | - | - | - | - | - | - | - | - | | Subtotal | - | _ | - | - | - | _ | - | - | _ | _ | _ | - | - | - | _ | - | _ | - | | Remove
d | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | | - | - | | Subtotal | - | - | _ | - | - | _ | _ | - | - | _ | _ | _ | _ | - | _ | _ | _ | _ | | _ | - | - | - | - | - | _ | - | - | - | _ | - | - | _ | - | - | - | _ | - | | Annual | - | - | _ | - | - | _ | - | _ | - | _ | _ | _ | _ | - | _ | _ | _ | _ | | Avoided | _ | - | - | - | 1- | - | - | - | _ | _ | _ | _ | - | - | - | _ | _ | - | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Subtotal — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | | Remove — d | _ | _ | _ | _ | _ | _ | - | - | - | _ | _ | _ | _ | _ | _ | _ | - | | Subtotal — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | | | | | _ | _ | _ | | | | | | | _ | _ | _ | # 5. Activity Data ### 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |--|--|------------|------------|---------------|---------------------|-------------------| | Linear, Grading & Excavation | Linear, Grading & Excavation | 5/1/2025 | 1/21/2026 | 5.00 | 190 | _ | | Linear, Drainage, Utilities, & Sub-Grade | Linear, Drainage, Utilities, & Sub-Grade | 1/21/2026 | 10/13/2026 | 5.00 | 190 | - | | Demolition | Demolition | 5/1/2025 | 8/7/2025 | 5.00 | 70.0 | _ | ## 5.2. Off-Road Equipment ### 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |------------------------------|-------------------------------|-----------|-------------|----------------|---------------|------------|-------------| | Linear, Grading & Excavation | Excavators | Diesel | Average | 1.00 | 8.00 | 36.0 | 0.38 | | Linear, Grading & Excavation | Tractors/Loaders/Backh
oes | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 | | Linear, Grading & Excavation | Plate Compactors | Diesel | Average | 1.00 | 8.00 | 8.00 | 0.43 | | Linear, Grading & Excavation | Signal Boards | Electric | Average | 1.00 | 8.00 | 6.00 | 0.82 | | Linear, Grading & Excavation | Off-Highway Trucks | Diesel | Average | 1.00 | 8.00 | 376 | 0.38 | |---|-----------------------------|--------|---------|------|------|------|------| | Linear, Drainage,
Utilities, & Sub-Grade | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 | | Linear, Drainage,
Utilities, & Sub-Grade | Plate Compactors | Diesel | Average | 1.00 | 6.00 | 8.00 | 0.43 | | Linear, Drainage,
Utilities, & Sub-Grade | Rollers | Diesel | Average | 1.00 | 6.00 | 36.0 | 0.38 | | Linear, Drainage,
Utilities, & Sub-Grade | Off-Highway Trucks | Diesel | Average | 1.00 | 4.00 | 376 | 0.38 | | Linear, Drainage,
Utilities, & Sub-Grade | Excavators | Diesel | Average | 1.00 | 4.00 | 36.0 | 0.38 | | Linear, Drainage,
Utilities, & Sub-Grade | Pavers | Diesel | Average | 1.00 | 2.00 | 81.0 | 0.42 | | Linear, Drainage,
Utilities, & Sub-Grade | Plate Compactors | Diesel | Average | 1.00 | 2.00 | 8.00 | 0.43 | | Demolition | Concrete/Industrial
Saws | Diesel | Average | 2.00 | 6.00 | 33.0 | 0.73 | ## 5.3. Construction Vehicles # 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |--|--------------|-----------------------|----------------|---------------| | Linear, Grading & Excavation | _ | _ | _ | _ | | Linear, Grading & Excavation | Worker | 15.0 | 100 | LDA,LDT1,LDT2 | | Linear, Grading & Excavation | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Linear, Grading & Excavation | Hauling | 36.0 | 100 | HHDT | | Linear, Grading & Excavation | Onsite truck | _ | _ | HHDT | | Linear, Drainage, Utilities, & Sub-Grade | _ | _ | _ | _ | | Linear, Drainage, Utilities, & Sub-Grade | Worker | 17.5 | 100 | LDA,LDT1,LDT2 | | Linear, Drainage, Utilities, & Sub-Grade | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Linear, Drainage, Utilities, & Sub-Grade | Hauling | 0.00 | 20.0 | HHDT | |--|--------------|------|------|---------------| | Linear, Drainage, Utilities, & Sub-Grade | Onsite truck | _ | _ | HHDT | | Demolition | _ | _ | _ | _ | | Demolition | Worker | 5.00 | 100 | LDA,LDT1,LDT2 | | Demolition | Vendor | _ | 10.2 | HHDT,MHDT | | Demolition | Hauling | 21.0 | 100 | HHDT | | Demolition | Onsite truck | _ | _ | HHDT | ### 5.4. Vehicles #### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ### 5.5. Architectural Coatings | Т | Phase Name | Residential Interior Area Coated | Residential Exterior Area Coated | Non-Residential Interior Area | Non-Residential Exterior Area | Parking Area Coated (sq ft) | |---|------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|-----------------------------|
| Ш | | (sq ft) | (sq ft) | Coated (sq ft) | Coated (sq ft) | | ## 5.6. Dust Mitigation ## 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (Ton of Debris) | Acres Paved (acres) | |--|---------------------------------|---------------------------------|----------------------|-------------------------------------|---------------------| | Linear, Grading & Excavation | _ | 19,940 | 5.00 | 0.00 | _ | | Linear, Drainage, Utilities, & Sub-Grade | _ | _ | 2.06 | 0.00 | _ | | Demolition | 0.00 | 0.00 | 0.00 | 5,875 | _ | ### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | | 21 | / // | | | Water Exposed Area 3 74% 74% | |------------------------------| |------------------------------| ## 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |----------------------------|--------------------|-----------| | User Defined Linear | 5.00 | 100% | | Other Non-Asphalt Surfaces | 66.0 | 0% | ### 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2025 | 29.4 | 565 | 0.03 | < 0.005 | | 2026 | 29.4 | 482 | 0.03 | < 0.005 | ## 5.9. Operational Mobile Sources ### 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |-------------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------| | Other Non-Asphalt
Surfaces | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 0.00 | 0.00 | 172,498 | ### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ### 5.11. Operational Energy Consumption ### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |----------------------------|----------------------|-----|--------|--------|-----------------------| | Other Non-Asphalt Surfaces | 0.00 | 482 | 0.0330 | 0.0040 | 0.00 | ### 5.12. Operational Water and Wastewater Consumption ### 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |----------------------------|-------------------------|--------------------------| | Other Non-Asphalt Surfaces | 0.00 | 0.00 | ### 5.13. Operational Waste Generation ### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |----------------------------|------------------|-------------------------| | Other Non-Asphalt Surfaces | 0.00 | _ | ### 5.14. Operational Refrigeration and Air Conditioning Equipment #### 5.14.1. Unmitigated 5.18. Vegetation **Equipment Type** 5.18.1. Land Use Change Fuel Type #### 5.18.1.1. Unmitigated | Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres | |--------------------------|----------------------|---------------|-------------| | | | | | 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated | Biomass Cover Type | Initial Acres | Final Acres | |--------------------|---------------|-------------| |--------------------|---------------|-------------| 5.18.2. Sequestration 5.18.2.1. Unmitigated | Tree Type | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) | |-----------|---------|-------------------------------|-------------------------------| | nos typo | Tomas C | = country carea (itting) care | raiara. Sas Sarsa (Star) sar) | # 6. Climate Risk Detailed Report ### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | | |------------------------------|-----------------------------|--|--| | Temperature and Extreme Heat | 38.6 | annual days of extreme heat | | | Extreme Precipitation | 7.50 | annual days with precipitation above 20 mm | | | Sea Level Rise | 0.00 | meters of inundation depth | | | Wildfire | 35.6 | annual hectares burned | | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 0 | 0 | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 0 | 0 | N/A | | Wildfire | 1 | 0 | 0 | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 0 | 0 | 0 | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 1 | 1 | 4 | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 1 | 1 | 2 | | Wildfire | 1 | 1 | 1 | 2 | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 1 | 1 | 1 | 2 | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ## 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum
CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | | |---------------------------------|---------------------------------|--| | Exposure Indicators | - | | | AQ-Ozone | 97.6 | | | AQ-PM | 1.68 | | | AQ-DPM | 4.41 | | | Drinking Water | 60.7 | | | Lead Risk Housing | 11.6 | | | Pesticides | 11.0 | | | Toxic Releases | 8.39 | | | Traffic | 1.35 | | | Effect Indicators | | | | CleanUp Sites | 0.00 | | | Groundwater | 0.00 | | | Haz Waste Facilities/Generators | 0.00 | | | Impaired Water Bodies | 0.00 | |---------------------------------|------| | Solid Waste | 11.6 | | Sensitive Population | | | Asthma | 63.6 | | Cardio-vascular | 92.9 | | Low Birth Weights | 66.3 | | Socioeconomic Factor Indicators | _ | | Education | 33.5 | | Housing | 22.1 | | Linguistic | 8.49 | | Poverty | 67.0 | | Unemployment | 64.5 | ### 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | - | | Above Poverty | 54.07416913 | | Employed | 2.34826126 | | Median HI | 47.09354549 | | Education | _ | | Bachelor's or higher | 24.38085461 | | ligh school enrollment | 100 | | Preschool enrollment | 95.7141024 | | ransportation | _ | | Auto Access | 86.34672142 | | Active commuting | 8.161170281 | | Social | _ | |--|-------------| | 2-parent households | 29.38534582 | | Voting | 73.38637239 | | Neighborhood | _ | | Alcohol availability | 87.1423072 | | Park access | 51.00731426 | | Retail density | 9.110740408 | | Supermarket access | 10.57359168 | | Tree canopy | 85.29449506 | | Housing | | | Homeownership | 77.15898884 | | Housing habitability | 49.54446298 | | Low-inc homeowner severe housing cost burden | 35.91684845 | | Low-inc renter severe housing cost burden | 3.708456307 | | Uncrowded housing | 96.93314513 | | Health Outcomes | | | Insured adults | 30.92518927 | | Arthritis | 0.0 | | Asthma ER Admissions | 46.4 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.7 | | Cognitively Disabled | 5.2 | | | | | Physically Disabled | 5.0 | |---------------------------------------|------| | Heart Attack ER Admissions | 10.8 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 59.1 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 87.1 | | SLR Inundation Area | 0.0 | | Children | 65.5 | | Elderly | 25.8 | | English Speaking | 82.2 | | Foreign-born | 0.7 | | Outdoor Workers | 31.4 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 94.7 | | Traffic Density | 3.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 62.9 | | Other Decision Support | _ | | 2016 Voting | 81.4 | |-------------|------| ### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 19.0 | | Healthy Places Index Score for Project Location (b) | 41.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | No | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. ### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data | Screen | Justification | |-----------------------------------|--| | Construction: Construction Phases | Client Provided Schedule | | Construction: Off-Road Equipment | Client Provided Equipment list | | Construction: Trips and VMT | 13 haul trucks and 2 worker trucks accounted for in Linear, Grading & Excavation Phase in addition to default CalEEMod hauling trucks. Per Project applicant, the hauling trucks would travel a distance of up to 100 miles round trip, as such hauling for both the Linear, Grading & Excavation and Demolition phase was adjusted to 100 miles. | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. This page intentionally left blank CALEEMOD REPLENISH BIG BEAR COMPONENT 3 UNMITIGATED EMISSIONS MODEL OUTPUTS # 15309-Shay Ponds (Unmitigated) Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 3. Construction Emissions Details - 3.1. Linear, Grading & Excavation (2025) Unmitigated - 3.3. Linear, Grading & Excavation (2026) Unmitigated - 3.5. Linear, Drainage, Utilities, & Sub-Grade (2026) Unmitigated - 4. Operations Emissions Details - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | | | | | | | |-----------------------------|--------------------------------|--|--|--|--|--|--| | Project Name | 15309-Shay Ponds (Unmitigated) | | | | | | | | Construction Start Date | 5/1/2025 | | | | | | | | Lead Agency | _ | | | | | | | | and Use Scale | Project/site | | | | | | | | Analysis Level for Defaults | County | | | | | | | | Nindspeed (m/s) | 3.30 | | | | | | | | Precipitation (days) | 1.80 | | | | | | | | ocation | 34.253674, -116.80784 | | | | | | | | County | San Bernardino-South Coast | | | | | | | | City | Unincorporated | | | | | | | | Air District | South Coast AQMD | | | | | | | | Air Basin | South Coast | | | | | | | | AZ | 5156 | | | | | | | | EDFZ | 10 | | | | | | | | Electric Utility | Bear Valley Electric Service | | | | | | | | Gas Utility | Southwest Gas Corp. | | | | | | | | App Version | 2022.1.1.18 | | | | | | | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq
ft) | Special Landscape
Area (sq ft) | Population | Description | |---------------------|------|------|-------------|-----------------------|---------------------------|-----------------------------------|------------|-------------| | User Defined Linear | 1.20 | Mile | 0.65 | 0.00 | _ | _ | _ | _ | #### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected ## 2. Emissions Summary ### 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Daily,
Summer
(Max) | _ | | | | | | | | _ | | | - | _ | - | | | _ | | | Unmit. | 1.44 | 0.92 | 10.8 | 10.2 | 0.06 | 0.29 | 1.66 | 1.95 | 0.28 | 0.45 | 0.73 | _ | 7,464 | 7,464 | 0.47 | 0.85 | 15.0 | 7,744 | | Daily,
Winter
(Max) | _ | - | - | - | _ | - | _ | _ | _ | | | | _ | _ | _ | _ | _ | - | | Unmit. | 1.96 | 1.33 | 13.8 | 14.2 | 0.07 | 0.39 | 1.66 | 2.05 | 0.37 | 0.45 | 0.82 | - | 8,444 | 8,444 | 0.47 | 0.85 | 0.39 | 8,710 | |
Average
Daily
(Max) | - | - | - | | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | | Unmit. | 0.69 | 0.44 | 5.32 | 4.81 | 0.03 | 0.14 | 0.80 | 0.94 | 0.13 | 0.22 | 0.35 | _ | 3,573 | 3,573 | 0.22 | 0.41 | 3.12 | 3,704 | | Annual
(Max) | - | - | | - | _ | _ | - | - | - | - | - | - | _ | _ | _ | - | _ | - | | Unmit. | 0.13 | 0.08 | 0.97 | 0.88 | < 0.005 | 0.03 | 0.15 | 0.17 | 0.02 | 0.04 | 0.06 | _ | 592 | 592 | 0.04 | 0.07 | 0.52 | 613 | ### 2.2. Construction Emissions by Year, Unmitigated | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily -
Summer
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | - | _ | _ | - | | 2025 | 1.44 | 0.92 | 10.8 | 10.2 | 0.06 | 0.29 | 1.66 | 1.95 | 0.28 | 0.45 | 0.73 | - | 7,464 | 7,464 | 0.47 | 0.85 | 15.0 | 7,744 | |----------------------------|------|------|------|-------|---------|------|------|------|------|---------|------|---|-------|-------|------|------|------|-------| | 2026 | 0.56 | 0.47 | 3.30 | 4.32 | 0.01 | 0.12 | 0.00 | 0.12 | 0.11 | 0.00 | 0.11 | - | 1,087 | 1,087 | 0.04 | 0.01 | 0.00 | 1,091 | | Daily -
Winter
(Max) | - | | | | | - | | | - | | - | T | - | | - | | _ | - | | 2025 | 1.44 | 0.92 | 11.0 | 10.00 | 0.06 | 0.29 | 1.66 | 1.95 | 0.28 | 0.45 | 0.73 | - | 7,451 | 7,451 | 0.47 | 0.85 | 0.39 | 7,717 | | 2026 | 1.96 | 1.33 | 13.8 | 14.2 | 0.07 | 0.39 | 1.66 | 2.05 | 0.37 | 0.45 | 0.82 | _ | 8,444 | 8,444 | 0.47 | 0.85 | 0.36 | 8,710 | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 2025 | 0.69 | 0.44 | 5.32 | 4.81 | 0.03 | 0.14 | 0.80 | 0.94 | 0.13 | 0.22 | 0.35 | - | 3,573 | 3,573 | 0.22 | 0.41 | 3.12 | 3,704 | | 2026 | 0.35 | 0.28 | 2.15 | 2.66 | 0.01 | 0.07 | 0.07 | 0.14 | 0.07 | 0.02 | 0.09 | - | 868 | 868 | 0.04 | 0.04 | 0.25 | 881 | | Annual | - | - | - | - | _ | - | 1 | - | - | - | - | - | - | - | - | - | _ | - | | 2025 | 0.13 | 0.08 | 0.97 | 0.88 | < 0.005 | 0.03 | 0.15 | 0.17 | 0.02 | 0.04 | 0.06 | - | 592 | 592 | 0.04 | 0.07 | 0.52 | 613 | | 2026 | 0.06 | 0.05 | 0.39 | 0.49 | < 0.005 | 0.01 | 0.01 | 0.03 | 0.01 | < 0.005 | 0.02 | _ | 144 | 144 | 0.01 | 0.01 | 0.04 | 146 | # 3. Construction Emissions Details ### 3.1. Linear, Grading & Excavation (2025) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|-----|------|------|------|------|-------|---------|---------|--------|---------|---------|------|-------|-------|------|------|---|-------| | Onsite | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | - | | Daily,
Summer
(Max) | - | | | | - | _ | | | | | | - | _ | _ | | - | - | _ | | Off-Road
Equipmen | | 0.82 | 5.81 | 7.09 | 0.02 | 0.22 | - | 0.22 | 0.20 | - | 0.20 | _ | 1,940 | 1,940 | 0.08 | 0.02 | _ | 1,947 | | Dust
From
Material
Movemen | t | | | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | |--------------------------------------|--------|------|------|------|---------|------|---------|---------|------|---------|---------|---|-------|-------|------|---------|------|-------| | Daily,
Winter
(Max) | _ | - | - | - | - | - | - | - | - | - | - | - | - | | | - | - | T | | Off-Road
Equipmen | | 0.82 | 5.81 | 7.09 | 0.02 | 0.22 | - | 0.22 | 0.20 | | 0.20 | - | 1,940 | 1,940 | 0.08 | 0.02 | - | 1,947 | | Dust
From
Material
Movement | _
t | | | | - | - | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | | | | | | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | _ | - | _ | - | - | - | _ | - | - | - | 1 | - | - | - | - | - | | Off-Road
Equipmen | | 0.39 | 2.78 | 3.40 | 0.01 | 0.10 | - | 0.10 | 0.09 | - | 0.09 | - | 930 | 930 | 0.04 | 0.01 | - | 933 | | Dust
From
Material
Movement |
t | | | | | - | < 0.005 | < 0.005 | _ | < 0.005 | < 0.005 | - | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | - | 1- | 1- | 1- | I- | 1- | - | _ | - | - | - | 1- | - | 1- | 1- | - | - | | Off-Road
Equipmen | | 0.07 | 0.51 | 0.62 | < 0.005 | 0.02 | - | 0.02 | 0.02 | - | 0.02 | - | 154 | 154 | 0.01 | < 0.005 | - | 155 | | Dust
From
Material
Movement |
t | - | | | - | _ | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | _ | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | _ | | _ | | - | | _ | | | | _ | | _ | | | | | | |---------------------------|---------|---------|---------|------|---------|---------|------|------|---------|---------|---------|---|-------|-------|---------|---------|------|---| | Worker | 0.02 | 0.02 | 0.04 | 0.77 | 0.00 | 0.00 | 0.14 | 0.14 | 0.00 | 0.03 | 0.03 | _ | 151 | 151 | < 0.005 | < 0.005 | 0.56 | - | | Vendor | 0.27 | 0.06 | 3.28 | 1.53 | 0.03 | 0.06 | 1.09 | 1.15 | 0.06 | 0.30 | 0.36 | _ | 3,807 | 3,807 | 0.24 | 0.58 | 11.1 | - | | Hauling | 0.17 | 0.02 | 1.66 | 0.86 | 0.01 | 0.02 | 0.43 | 0.45 | 0.02 | 0.12 | 0.14 | - | 1,565 | 1,565 | 0.15 | 0.26 | 3.39 | - | | Daily,
Winter
(Max) | - | | - | - | - | | - | | _ | | | - | - | | | | - | - | | Worker | 0.02 | 0.02 | 0.05 | 0.55 | 0.00 | 0.00 | 0.14 | 0.14 | 0.00 | 0.03 | 0.03 | - | 138 | 138 | < 0.005 | < 0.005 | 0.01 | _ | | Vendor | 0.27 | 0.06 | 3.42 | 1.50 | 0.03 | 0.06 | 1.09 | 1.15 | 0.06 | 0.30 | 0.36 | _ | 3,808 | 3,808 | 0.24 | 0.58 | 0.29 | _ | | Hauling | 0.17 | 0.02 | 1.74 | 0.86 | 0.01 | 0.02 | 0.43 | 0.45 | 0.02 | 0.12 | 0.14 | _ | 1,565 | 1,565 | 0.15 | 0.26 | 0.09 | _ | | Average
Daily | - | _ | - | - | - | - | - | - | _ | - | - | | - | - | - | - | - | - | | Worker | 0.01 | 0.01 | 0.02 | 0.28 | 0.00 | 0.00 | 0.07 | 0.07 | 0.00 | 0.02 | 0.02 | - | 67.1 | 67.1 | < 0.005 | < 0.005 | 0.12 | - | | Vendor | 0.13 | 0.03 | 1.67 | 0.72 | 0.01 | 0.03 | 0.52 | 0.55 | 0.03 | 0.14 | 0.17 | - | 1,826 | 1,826 | 0.11 | 0.28 | 2.30 | - | | Hauling | 0.08 | 0.01 | 0.85 | 0.41 | < 0.005 | 0.01 | 0.21 | 0.21 | 0.01 | 0.06 | 0.07 | _ | 750 | 750 | 0.07 | 0.12 | 0.71 | _ | | Annual | _ | _ | _ | - | - | - | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | - | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | - | 11.1 | 11.1 | < 0.005 | < 0.005 | 0.02 | - | | Vendor | 0.02 | 0.01 | 0.30 | 0.13 | < 0.005 | 0.01 | 0.10 | 0.10 | 0.01 | 0.03 | 0.03 | - | 302 | 302 | 0.02 | 0.05 | 0.38 | - | | Hauling | 0.01 | < 0.005 | 0.15 | 0.08 | < 0.005 | < 0.005 | 0.04 | 0.04 | < 0.005 | 0.01 | 0.01 | _ | 124 | 124 | 0.01 | 0.02 | 0.12 | _ | ## 3.3. Linear, Grading & Excavation (2026) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | - | _ | _ | - | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | | Daily,
Summer
(Max) | - | _ | _ | - | _ | _ | _ | - | | | | | | - | _ | | - | | | Daily,
Winter
(Max) | | | | | _ | | | | _ | | _ | | _ | | | | - | | |-------------------------------------|--------|------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Off-Road
Equipmer | | 0.80 | 5.53 | 7.09 | 0.02 | 0.20 | - | 0.20 | 0.18 | - | 0.18 | - | 1,942 | 1,942 | 0.08 | 0.02 | - | 1,948 | | Dust
From
Material
Movemen | _
t | | | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | | - | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | | Off-Road
Equipmer | | 0.03 | 0.23 | 0.29 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 79.8 | 79.8 | < 0.005 | < 0.005 | - | 80.1 | | Dust
From
Material
Movemen |
t | | I | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | - | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | 1- | _ | 1- | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Off-Road
Equipmer | | 0.01 | 0.04 | 0.05 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 13.2 | 13.2 | < 0.005 | < 0.005 | - | 13.3 | | Dust
From
Material
Movemen | _
t | | I | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | - | | - | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | _ | - | _ | _ | _ | _ | - | - | - | _ | _ | _ | _ | - | _ | _ | | Daily,
Summer
(Max) | - | | T | | - | | | | | | _ | | - | - | | | - | | | Daily,
Winter
(Max) | _ | | _ | _ | - | | | | _ | | - | | - | | | | _ | | |---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|---------|---| | Worker | 0.02 | 0.02 | 0.04 | 0.51 | 0.00 | 0.00 | 0.14 | 0.14 | 0.00 | 0.03 | 0.03 | - | 135 | 135
| < 0.005 | < 0.005 | 0.01 | _ | | Vendor | 0.27 | 0.03 | 3.22 | 1.44 | 0.03 | 0.06 | 1.09 | 1.15 | 0.06 | 0.30 | 0.36 | _ | 3,743 | 3,743 | 0.21 | 0.58 | 0.26 | _ | | Hauling | 0.16 | 0.01 | 1.66 | 0.84 | 0.01 | 0.02 | 0.43 | 0.45 | 0.02 | 0.12 | 0.14 | - | 1,537 | 1,537 | 0.14 | 0.25 | 0.08 | - | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.02 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | - | 5.64 | 5.64 | < 0.005 | < 0.005 | 0.01 | _ | | Vendor | 0.01 | < 0.005 | 0.13 | 0.06 | < 0.005 | < 0.005 | 0.04 | 0.05 | < 0.005 | 0.01 | 0.01 | - | 154 | 154 | 0.01 | 0.02 | 0.18 | - | | Hauling | 0.01 | < 0.005 | 0.07 | 0.03 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | 0.01 | - | 63.1 | 63.1 | 0.01 | 0.01 | 0.06 | - | | Annual | - | _ | _ | _ | _ | _ | - | _ | _ | - | _ | - | - | _ | - | _ | _ | - | | Worker | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | - | 0.93 | 0.93 | < 0.005 | < 0.005 | < 0.005 | - | | Vendor | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | - | 25.5 | 25.5 | < 0.005 | < 0.005 | 0.03 | - | | Hauling | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 10.5 | 10.5 | < 0.005 | < 0.005 | 0.01 | - | ### 3.5. Linear, Drainage, Utilities, & Sub-Grade (2026) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------------|--------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|----------|-------|------|------|------|-------| | Onsite | _ | - | - | - | - | _ | _ | 1- | _ | - | _ | - | <u> </u> | _ | - | - | - | - | | Daily,
Summer
(Max) | - | | Г | | | - | - | - | - | - | - | - | | _ | Г | | | | | Off-Road
Equipmer | | 0.47 | 3.30 | 4.32 | 0.01 | 0.12 | - | 0.12 | 0.11 | - | 0.11 | - | 1,087 | 1,087 | 0.04 | 0.01 | - | 1,091 | | Dust
From
Material
Movemen | _
t | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Daily,
Winter | - | - | 1- | 1 | - | | - | - | - | - | - | - | - | - | - | - | - | | |-------------------------------------|--------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|---------|---------|------|-------| | (Max) | Off-Road
Equipmen | | 0.47 | 3.30 | 4.32 | 0.01 | 0.12 | - | 0.12 | 0.11 | - | 0.11 | - | 1,087 | 1,087 | 0.04 | 0.01 | - | 1,091 | | Dust
From
Material
Movemen | _
t | | П | Г | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | 1 | | - | - | - | - | | Off-Road
Equipmen | | 0.24 | 1.72 | 2.25 | 0.01 | 0.06 | - | 0.06 | 0.06 | - | 0.06 | - | 566 | 566 | 0.02 | < 0.005 | - | 568 | | Dust
From
Material
Movemen | _
t | | | | | - | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | 1- | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Off-Road
Equipmen | | 0.04 | 0.31 | 0.41 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 93.7 | 93.7 | < 0.005 | < 0.005 | - | 94.0 | | Dust
From
Material
Movemen | _
t | - | | | | | 0.00 | 0.00 | - | 0.00 | 0.00 | - | - | - | - | _ | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Offsite | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | - | | Daily,
Summer
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|---| | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Daily,
Winter
(Max) | - | | - | | | | | | - | | - | | - | | | | - | | | Worker | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Average
Daily | - | - | - | | - | - | - | | - | - | - | - | - | | - | - | - | - | | Worker | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | - | | Worker | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | # 4. Operations Emissions Details 4.10. Soil Carbon Accumulation By Vegetation Type 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio
n | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | | - | - | _ | - | - | _ | | _ | _ | _ | _ | _ | - | - | _ | - | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily, —
Winter | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |--------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | (Max) | | | | | | | | | | | | | | | | | | | Total — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual — | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | | _ | | | | | Total — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | | | | - | - | | | | | _ | | - | - | | | - | - | | Total | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | - | - | | - | - | - | | | - | - | - | - | - | - | - | - | - | - | | Total | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | - | | | | | - | - | - | | | | _ | _ | | - | - | _ | | Avoided | _ | _ | _ | _ | - | _ | - | - | - | - | - | _ | - | - | _ | - | _ | - | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest | - | - | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | _ | _ | _ | _ | |---------------------------|---|---|---|---|----|---|-----|-----|---|---|---|---|---|---|-----|---|---|-----| | Subtotal | _ | - | _ | _ | _ | - | _ | - | _ | - | _ | _ | _ | - | _ | _ | _ | - | | Remove
d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - 1 | | Subtotal | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | _ | _ | - | _ | - | _ | - | | Daily,
Winter
(Max) | - | | | | | | | | | | _ | | - | - | _ | | | | | Avoided | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | - | - | - | - | - | _ | _ | _ | - | _ | _ | _ | _ | - | _ | _ | _ | - | | Sequest ered | - | - | - | - | - | - | - 1 | - | - | - | _ | _ | _ | _ | - | - | _ | - | | Subtotal | _ | - | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | - |
- | - | - | - | _ | - | - | - | - | - | _ | - | _ | - | _ | - | _ | - | | Annual | _ | _ | _ | - | _ | - | - | _ | _ | _ | - | _ | _ | _ | - | _ | _ | _ | | Avoided | - | - | _ | - | _ | - | _ | - | _ | - | _ | - | _ | - | _ | - | _ | - 1 | | Subtotal | _ | _ | _ | _ | _ | - | _ | - | _ | - | _ | _ | _ | - | _ | _ | _ | _ | | Sequest ered | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - 1 | - | - | - | | Subtotal | - | _ | - | - | _ | _ | _ | - 1 | - | - | _ | - | _ | - | _ | - | _ | - 1 | | Remove
d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Subtotal | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | | - | - | | - | | 1- | | - | - | _ | - | _ | - | _ | - | _ | - | _ | - | # 5. Activity Data ### 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |--|--|------------|------------|---------------|---------------------|-------------------| | Linear, Grading & Excavation | Linear, Grading & Excavation | 5/1/2025 | 1/21/2026 | 5.00 | 190 | - | | Linear, Drainage, Utilities, & Sub-Grade | Linear, Drainage, Utilities, & Sub-Grade | 1/21/2026 | 10/13/2026 | 5.00 | 190 | - | ## 5.2. Off-Road Equipment ### 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |---|-------------------------------|-----------|-------------|----------------|---------------|------------|-------------| | Linear, Grading &
Excavation | Signal Boards | Electric | Average | 1.00 | 8.00 | 6.00 | 0.82 | | Linear, Grading & Excavation | Excavators | Diesel | Average | 1.00 | 8.00 | 36.0 | 0.38 | | Linear, Grading & Excavation | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 | | Linear, Grading & Excavation | Plate Compactors | Diesel | Average | 1.00 | 8.00 | 8.00 | 0.43 | | Linear, Grading &
Excavation | Rollers | Diesel | Average | 1.00 | 8.00 | 36.0 | 0.38 | | Linear, Grading & Excavation | Off-Highway Trucks | Diesel | Average | 1.00 | 8.00 | 376 | 0.38 | | Linear, Drainage,
Utilities, & Sub-Grade | Tractors/Loaders/Backh
oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 | | Linear, Drainage,
Utilities, & Sub-Grade | Plate Compactors | Diesel | Average | 1.00 | 6.00 | 8.00 | 0.43 | | Linear, Drainage,
Utilities, & Sub-Grade | Rollers | Diesel | Average | 1.00 | 6.00 | 36.0 | 0.38 | | Linear, Drainage,
Utilities, & Sub-Grade | Excavators | Diesel | Average | 1.00 | 4.00 | 36.0 | 0.38 | |---|--------------------|--------|---------|------|------|------|------| | Linear, Drainage, | Off-Highway Trucks | Diesel | Average | 1.00 | 4.00 | 376 | 0.38 | #### 5.3. Construction Vehicles ### 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |--|--------------|-----------------------|----------------|---------------| | Linear, Grading & Excavation | _ | _ | _ | _ | | Linear, Grading & Excavation | Worker | 2.00 | 100 | LDA,LDT1,LDT2 | | Linear, Grading & Excavation | Vendor | 13.0 | 100 | HHDT,MHDT | | Linear, Grading & Excavation | Hauling | 4.62 | 100 | HHDT | | Linear, Grading & Excavation | Onsite truck | _ | _ | HHDT | | Linear, Drainage, Utilities, & Sub-Grade | _ | _ | _ | <u> </u> | | Linear, Drainage, Utilities, & Sub-Grade | Worker | 0.00 | 18.5 | LDA,LDT1,LDT2 | | Linear, Drainage, Utilities, & Sub-Grade | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Linear, Drainage, Utilities, & Sub-Grade | Hauling | 0.00 | 20.0 | HHDT | | Linear, Drainage, Utilities, & Sub-Grade | Onsite truck | _ | _ | HHDT | #### 5.4. Vehicles ### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ### 5.5. Architectural Coatings | -1 | | B 11 (11) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | B II CIEC I A G I I | N. B. H. CHILLER | N. B. H. CIEVA | D 11 A O (1/ W) | |----|------------|---|----------------------------------|-------------------------------|-------------------------------|-----------------------------| | - | Phase Name | Residential Interior Area Coated | Residential Exterior Area Coated | Non-Residential Interior Area | Non-Residential Exterior Area | Parking Area Coated (sq ft) | | | | (ti) | (ft) | 0 (1 / 4) | O = 4 = 4 (= = 4) | | | | | (sq ft) | (sq ft) | Coated (sq ft) | Coated (sq ft) | | ### 5.6. Dust Mitigation ### 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (sq. ft.) | Acres Paved (acres) | |--|---------------------------------|---------------------------------|----------------------|-------------------------------|---------------------| | Linear, Grading & Excavation | _ | 7,020 | 0.65 | 0.00 | _ | | Linear, Drainage, Utilities, & Sub-Grade | - | _ | 0.65 | 0.00 | _ | ### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | ### 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |---------------------|--------------------|-----------| | User Defined Linear | 0.65 | 100% | ### 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2025 | 29.4 | 565 | 0.03 | < 0.005 | | 2026 | 29.4 | 482 | 0.03 | < 0.005 | ### 5.18. Vegetation ### 5.18.1. Land Use Change #### 5.18.1.1. Unmitigated Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres 5.18.1. Biomass Cover Type 5.18.1.1. Unmitigated Biomass Cover Type Initial Acres Final Acres 5.18.2. Sequestration 5.18.2.1. Unmitigated Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year) ### 6. Climate Risk Detailed Report ### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 39.3 | annual days of extreme heat | | Extreme Precipitation | 4.40 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 31.0 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 0 | 0 | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 0 | 0 | N/A | | Wildfire | 1 | 0 | 0 | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 0 | 0 | 0 | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project
refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 1 | 1 | 4 | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 1 | 1 | 2 | | Wildfire | 1 | 1 | 1 | 2 | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | |-------------------------|-----|-----|-----|-----| | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 1 | 1 | 1 | 2 | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ### 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | - | | AQ-Ozone | 97.6 | | AQ-PM | 1.68 | | AQ-DPM | 4.41 | | Drinking Water | 60.7 | | Lead Risk Housing | 11.6 | | Pesticides | 11.0 | | Toxic Releases | 8.39 | | Traffic | 1.35 | | Effect Indicators | | | CleanUp Sites | 0.00 | | Groundwater | 0.00 | | Haz Waste Facilities/Generators | 0.00 | | Impaired Water Bodies | 0.00 | |---------------------------------|------| | Solid Waste | 11.6 | | Sensitive Population | | | Asthma | 63.6 | | Cardio-vascular | 92.9 | | Low Birth Weights | 66.3 | | Socioeconomic Factor Indicators | _ | | Education | 33.5 | | Housing | 22.1 | | Linguistic | 8.49 | | Poverty | 67.0 | | Unemployment | 64.5 | ### 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |------------------------|---------------------------------| | Economic | - | | Above Poverty | 54.07416913 | | Employed | 2.34826126 | | Median HI | 47.09354549 | | Education | _ | | Bachelor's or higher | 24.38085461 | | ligh school enrollment | 100 | | Preschool enrollment | 95.7141024 | | ransportation | _ | | Auto Access | 86.34672142 | | Active commuting | 8.161170281 | | Social | _ | |--|-------------| | 2-parent households | 29.38534582 | | Voting | 73.38637239 | | Neighborhood | _ | | Alcohol availability | 87.1423072 | | Park access | 51.00731426 | | Retail density | 9.110740408 | | Supermarket access | 10.57359168 | | Tree canopy | 85.29449506 | | Housing | | | Homeownership | 77.15898884 | | Housing habitability | 49.54446298 | | Low-inc homeowner severe housing cost burden | 35.91684845 | | Low-inc renter severe housing cost burden | 3.708456307 | | Uncrowded housing | 96.93314513 | | Health Outcomes | _ | | Insured adults | 30.92518927 | | Arthritis | 0.0 | | Asthma ER Admissions | 46.4 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.7 | | Cognitively Disabled | 5.2 | | | | | Physically Disabled | 5.0 | |---------------------------------------|------| | Heart Attack ER Admissions | 10.8 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 59.1 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 87.1 | | SLR Inundation Area | 0.0 | | Children | 65.5 | | Elderly | 25.8 | | English Speaking | 82.2 | | Foreign-born | 0.7 | | Outdoor Workers | 31.4 | | Climate Change Adaptive Capacity | _ | | Impervious Surface Cover | 94.7 | | Traffic Density | 3.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 62.9 | | Other Decision Support | _ | | 2016 Voting | 81.4 | |-------------|------| | 2010 voting | 01.4 | #### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 19.0 | | Healthy Places Index Score for Project Location (b) | 41.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | No | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. ## 8. User Changes to Default Data | Screen | Justification | |-----------------------------------|---| | Construction: Construction Phases | Client Provided Schedule | | Construction: Off-Road Equipment | Client Provided Equipment list | | Construction: Trips and VMT | 13 haul trucks and 2 worker trucks accounted for in Linear, Grading & Excavation Phase. | b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. This page intentionally left blank #### **APPENDIX 3.4:** CALEEMOD REPLENISH BIG BEAR COMPONENT 4 UNMITIGATED EMISSIONS MODEL OUTPUTS # 15309-Evaporation Ponds Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 3. Construction Emissions Details - 3.1. Site Preparation (2025) Unmitigated - 3.3. Site Preparation (2026) Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.2. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.2. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.2. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy
Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value Value | |-----------------------------|------------------------------| | Project Name | 15309-Evaporation Ponds | | Construction Start Date | 5/1/2025 | | Operational Year | 2027 | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 1.80 | | Location | 34.270764, -116.820355 | | County | San Bernardino-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5156 | | EDFZ | 10 | | Electric Utility | Bear Valley Electric Service | | Gas Utility | Southwest Gas Corp. | | App Version | 2022.1.1.14 | # 1.2. Land Use Types | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq | Special Landscape | Population | Description | |------------------|------|------|-------------|-----------------------|--------------------|-------------------|------------|-------------| | | | | | | ft) | Area (sq ft) | | | | Other Non-Asphalt 57.0 Acre | 57.0 | 0.00 | 0.00 | _ | | | |-----------------------------|------|------|------|---|-------------|--| | Other Non-Asphalt 57.0 Acre | 57.0 | 0.00 | 0.00 | _ | | | | Surfaces | | | | | | | ### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary ## 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | - | - | Ī | _ | _ | | _ | - | - | - | - | - | - | - | - | - | - | | Unmit. | 27.3 | 25.2 | 77.7 | 92.4 | 0.20 | 3.24 | 7.07 | 10.3 | 2.94 | 2.41 | 5.34 | - | 23,481 | 23,481 | 1.15 | 0.79 | 10.9 | 23,755 | | Daily,
Winter
(Max) | _ | | | | - | | | | _ | _ | | | - | - | - | | _ | | | Unmit. | 27.2 | 25.2 | 77.9 | 91.3 | 0.20 | 3.24 | 7.07 | 10.3 | 2.94 | 2.41 | 5.34 | _ | 23,418 | 23,418 | 1.15 | 0.79 | 0.28 | 23,681 | | Average
Daily
(Max) | - | - | - | - | - | | | | - | - | - | - | - | - | - | H | | - | | Unmit. | 15.1 | 14.0 | 40.3 | 50.2 | 0.11 | 1.69 | 3.97 | 5.66 | 1.53 | 1.35 | 2.88 | _ | 13,113 | 13,113 | 0.62 | 0.43 | 2.46 | 13,259 | | Annual
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Unmit. | 2.75 | 2.55 | 7.35 | 9.16 | 0.02 | 0.31 | 0.72 | 1.03 | 0.28 | 0.25 | 0.53 | _ | 2,171 | 2,171 | 0.10 | 0.07 | 0.41 | 2,195 | ## 2.2. Construction Emissions by Year, Unmitigated | Year TOG ROG NOx CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O R CO2e | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---|------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| |---|------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily -
Summer
(Max) | - | | - | | - | | | | | | | | | | | | | | |----------------------------|------|------|------|------|------|------|------|------|------|------|------|---|--------|----------|------|------|------|--------| | 2025 | 27.3 | 25.2 | 77.7 | 92.4 | 0.20 | 3.24 | 7.07 | 10.3 | 2.94 | 2.41 | 5.34 | - | 23,481 | 23,481 | 1.15 | 0.79 | 10.9 | 23,755 | | 2026 | 26.8 | 24.9 | 71.5 | 90.3 | 0.20 | 3.01 | 7.07 | 10.1 | 2.72 | 2.41 | 5.13 | - | 23,400 | 23,400 | 1.12 | 0.76 | 10.1 | 23,665 | | Daily -
Winter
(Max) | | | - | | | | - | | | | | | | | T | | | | | 2025 | 27.2 | 25.2 | 77.9 | 91.3 | 0.20 | 3.24 | 7.07 | 10.3 | 2.94 | 2.41 | 5.34 | _ | 23,418 | 23,418 | 1.15 | 0.79 | 0.28 | 23,681 | | 2026 | 26.8 | 24.9 | 71.7 | 89.3 | 0.20 | 3.01 | 7.07 | 10.1 | 2.72 | 2.41 | 5.13 | _ | 23,338 | 23,338 | 1.10 | 0.76 | 0.26 | 23,593 | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 2025 | 13.1 | 12.1 | 37.4 | 43.9 | 0.10 | 1.55 | 3.39 | 4.94 | 1.41 | 1.15 | 2.56 | _ | 11,232 | 11,232 | 0.55 | 0.38 | 2.26 | 11,361 | | 2026 | 15.1 | 14.0 | 40.3 | 50.2 | 0.11 | 1.69 | 3.97 | 5.66 | 1.53 | 1.35 | 2.88 | _ | 13,113 | 13,113 | 0.62 | 0.43 | 2.46 | 13,259 | | Annual | _ | - | - | - | _ | - | _ | - | _ | _ | _ | - | - | <u>-</u> | - | - | 1- | _ | | 2025 | 2.38 | 2.21 | 6.83 | 8.01 | 0.02 | 0.28 | 0.62 | 0.90 | 0.26 | 0.21 | 0.47 | - | 1,860 | 1,860 | 0.09 | 0.06 | 0.37 | 1,881 | | 2026 | 2.75 | 2.55 | 7.35 | 9.16 | 0.02 | 0.31 | 0.72 | 1.03 | 0.28 | 0.25 | 0.53 | _ | 2,171 | 2,171 | 0.10 | 0.07 | 0.41 | 2,195 | # 2.4. Operations Emissions Compared Against Thresholds | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------| | Daily,
Summer
(Max) | _ | | | - | - | | | | _ | | | - | | _ | | _ | _ | | | Unmit. | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | | - | | - | | | - | - | | | | - | - | - | - | - | | | Unmit. | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily
(Max) | _ | | - | | - | | | | | | - | | | | | | | - | |---------------------------|---------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|------|------|---------|---------|---------|------| | Unmit. | < 0.005 | 0.38 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.62 | 0.62 | < 0.005 | < 0.005 | < 0.005 | 0.63 | | Annual
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Unmit. | < 0.005 | 0.07 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.10 | 0.10 | < 0.005 | < 0.005 | < 0.005 | 0.10 | # 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------| | Daily,
Summer
(Max) | - | - | - | | - | - | _ | | - | - | - | _ | _ | | _ | - | - | | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Water | _ | - | _ | - | _ | - | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | _ | _ | _ | - | _ | - | _ | - | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |]- | 0.00 | | Total | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | - | - | - | - | - | - | | - | - | - | - | - | - | - | - | - | | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | _ | 0.38 | - | - | - | - | _ | _ | _ | _ | _ | - | - | - | - | - | 1- | - | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Water | _ | _ | - | - | _ | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Waste | _ | _ | _ | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | | - | _ | - | - | - | _ | _ | _ | - | _ | - | - | - | | - | - | |------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|------|------|---------|---------|---------|------| | Mobile | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 0.62 | 0.62 | < 0.005 | < 0.005 | < 0.005 | 0.63 | | Area | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Water | _ | - | _ | - | _ | - | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | _ | _ | _ | - | - | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | < 0.005 | 0.38 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.62 | 0.62 | < 0.005 | < 0.005 | < 0.005 | 0.63 | | Annual | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | | Mobile | < 0.005 | < 0.005 | <
0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.10 | 0.10 | < 0.005 | < 0.005 | < 0.005 | 0.10 | | Area | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Water | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | < 0.005 | 0.07 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.10 | 0.10 | < 0.005 | < 0.005 | < 0.005 | 0.10 | # 3. Construction Emissions Details ## 3.1. Site Preparation (2025) - Unmitigated | Location 1 | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-----------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|---|--------| | Onsite - | - | _ | - | - | - | - | - | _ | _ | _ | - | - | - | _ | - | _ | - | - | | Daily, -
Summer
(Max) | | _ | | | _ | | | | _ | | | | | _ | _ | | - | | | Off-Road 2
Equipment | | 25.1 | 73.6 | 86.5 | 0.18 | 3.19 | - | 3.19 | 2.89 | - | 2.89 | - | 19,001 | 19,001 | 0.77 | 0.15 | - | 19,066 | | _ | | | | | | | | | | | 7 | | | | | | | | |--------------------------------------|------|------|------|------|------|------|------|------|------|------|------|----|--------|--------|------|------|------|--------| | Dust
From
Material
Movement | _ | | | | | | 5.34 | 5.34 | | 1.96 | 1.96 | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | | - | | | - | - | - | | - | | - | - | | | | - | | | Off-Road
Equipmen | | 25.1 | 73.6 | 86.5 | 0.18 | 3.19 | - | 3.19 | 2.89 | - | 2.89 | - | 19,001 | 19,001 | 0.77 | 0.15 | - | 19,066 | | Dust
From
Material
Movement | _ | | | | | | 5.34 | 5.34 | | 1.96 | 1.96 | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | | | Off-Road
Equipmen | | 12.0 | 35.3 | 41.5 | 0.08 | 1.53 | - | 1.53 | 1.38 | - | 1.38 | - | 9,110 | 9,110 | 0.37 | 0.07 | - | 9,141 | | Dust
From
Material
Movement | _ | Ī | T | | | Ī | 2.56 | 2.56 | | 0.94 | 0.94 | | - | - | - | | - | | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Н | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1- | _ | _ | - | _ | _ | _ | | Off-Road
Equipmen | | 2.20 | 6.44 | 7.57 | 0.02 | 0.28 | - | 0.28 | 0.25 | - | 0.25 | - | 1,508 | 1,508 | 0.06 | 0.01 | - | 1,513 | | Dust
From
Material
Movement | | - | - | | | - | 0.47 | 0.47 | - | 0.17 | 0.17 | - | - | - | _ | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1- | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | - | - | - | - | - | _ | - | _ | _ | | - | - | - | _ | _ | _ | - | |---------------------------|------|---------|------|------|---------|---------|------|------|---------|------|----------|---|-------|-------|---------|---------|------|-------| | Daily,
Summer
(Max) | - | | - | | | - | - | | | - | | | | | _ | | - | | | Worker | 0.10 | 0.08 | 0.21 | 3.85 | 0.00 | 0.00 | 0.71 | 0.71 | 0.00 | 0.17 | 0.17 | _ | 754 | 754 | 0.02 | 0.02 | 2.82 | 764 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.41 | 0.06 | 3.96 | 2.04 | 0.02 | 0.05 | 1.02 | 1.07 | 0.05 | 0.28 | 0.33 | - | 3,726 | 3,726 | 0.35 | 0.61 | 8.08 | 3,924 | | Daily,
Winter
(Max) | | | - | | - | - | - | | | | | | - | | | - | | | | Worker | 0.10 | 0.08 | 0.23 | 2.74 | 0.00 | 0.00 | 0.71 | 0.71 | 0.00 | 0.17 | 0.17 | - | 690 | 690 | 0.02 | 0.02 | 0.07 | 698 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.41 | 0.05 | 4.13 | 2.05 | 0.02 | 0.05 | 1.02 | 1.07 | 0.05 | 0.28 | 0.33 | _ | 3,726 | 3,726 | 0.35 | 0.61 | 0.21 | 3,917 | | Average
Daily | - | - | - | 1 | - | - | - | | - | - | - | - | - | - | - | - | - | - | | Worker | 0.05 | 0.04 | 0.12 | 1.40 | 0.00 | 0.00 | 0.34 | 0.34 | 0.00 | 0.08 | 0.08 | - | 336 | 336 | 0.01 | 0.01 | 0.58 | 340 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.20 | 0.03 | 2.01 | 0.98 | 0.01 | 0.02 | 0.49 | 0.51 | 0.02 | 0.13 | 0.16 | _ | 1,786 | 1,786 | 0.17 | 0.29 | 1.68 | 1,879 | | Annual | _ | _ | - | - | _ | _ | - | - | _ | - | - | - | 1- | - | 1- | - | _ | _ | | Worker | 0.01 | 0.01 | 0.02 | 0.26 | 0.00 | 0.00 | 0.06 | 0.06 | 0.00 | 0.01 | 0.01 | - | 55.6 | 55.6 | < 0.005 | < 0.005 | 0.10 | 56.3 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.04 | < 0.005 | 0.37 | 0.18 | < 0.005 | < 0.005 | 0.09 | 0.09 | < 0.005 | 0.02 | 0.03 | _ | 296 | 296 | 0.03 | 0.05 | 0.28 | 311 | # 3.3. Site Preparation (2026) - Unmitigated | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | | Daily,
Summer
(Max) | - | | _ | | | - | | | | | | _ | | _ | - | | - | - | | Off-Road
Equipmen | | 24.8 | 67.5 | 84.7 | 0.18 | 2.96 | - | 2.96 | 2.67 | - | 2.67 | — 19,00 | 19,004 | 0.77 | 0.15 | - | 19,069 | |--------------------------------------|--------|------|------|------|------|------|------|------|------|------|------|---------------|-----------|------|------|------|--------| | Dust
From
Material
Movement | _
t | | - | | - | | 5.34 | 5.34 | | 1.96 | 1.96 | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | | - | | - | - | - | | - | - | - | - - | | - | - | - | | | Off-Road
Equipmen | | 24.8 | 67.5 | 84.7 | 0.18 | 2.96 | - | 2.96 | 2.67 | - | 2.67 | — 19,00 | 19,004 | 0.77 | 0.15 | - | 19,069 | | Dust
From
Material
Movement | _
t | | - | | | | 5.34 | 5.34 | - | 1.96 | 1.96 | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | _ | - - | - | - | - | - | | | Off-Road
Equipmen | | 13.9 | 37.9 | 47.6 | 0.10 | 1.66 | - | 1.66 | 1.50 | - | 1.50 | — 10,6 | 73 10,673 | 0.43 | 0.09 | _ | 10,710 | | Dust
From
Material
Movement |
t | | | | | | 3.00 | 3.00 | | 1.10 | 1.10 | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | - | _ | _ | - | - | _ | _ | _ | - | - | _ - | - | - | - | - | - | | Off-Road
Equipmen | | 2.54 | 6.92 | 8.68 | 0.02 | 0.30 | - | 0.30 | 0.27 | - | 0.27 | — 1,76 | 1,767 | 0.07 | 0.01 | - | 1,773 | | Dust
From
Material
Movement | _
t | - | - | | - | - | 0.55 | 0.55 | - | 0.20 | 0.20 | | | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|------|---------|------|------|---------|---------|------|------|---------|------|------|----|-------|-------|----------------|---------|------|-------| | Offsite | _ | _ | _ | - | _ | _ | _ | _ | - | _ | - | - | - | _ | - | - | _ | - | | Daily,
Summer
(Max) | - | - | - | - | - | - | - | | - | - | - | | - | | | - | - | | | Worker | 0.10 | 0.08 | 0.18 | 3.56 | 0.00 | 0.00 | 0.71 | 0.71 | 0.00 | 0.17 | 0.17 | - | 738 | 738 | 0.02 | 0.02 | 2.55 | 748 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.38 | 0.03 | 3.81 | 2.00 | 0.02 | 0.05 | 1.02 | 1.07 | 0.05 | 0.28 | 0.33 | - | 3,658 | 3,658 | 0.33 | 0.59 | 7.59 | 3,848 | | Daily,
Winter
(Max) | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | - | | | Worker | 0.10 | 0.08 | 0.21 | 2.54 | 0.00 | 0.00 | 0.71 | 0.71 | 0.00 | 0.17 | 0.17 | - | 677 | 677 | < 0.005 | 0.02 | 0.07 | 683 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.38 | 0.03 | 3.96 | 2.00 | 0.02 | 0.05 | 1.02 | 1.07 | 0.05 | 0.28 | 0.33 | - | 3,658 | 3,658 | 0.33 | 0.59 | 0.20 | 3,841 | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.06 | 0.04 | 0.13 | 1.51 | 0.00 | 0.00 | 0.40 | 0.40 | 0.00 | 0.09 | 0.09 | - | 385 | 385 | < 0.005 | 0.01 | 0.62 | 390 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.21 | 0.02 | 2.25 | 1.12 | 0.01 | 0.03 | 0.57 | 0.60 | 0.03 | 0.16 | 0.18 | - | 2,054 | 2,054 | 0.18 | 0.33 | 1.84 | 2,159 | | Annual | - | _ | - | - | _ | - | - | - | 1- | - | 1- | - | - | - | (- | - | - | - | | Worker | 0.01 | 0.01 | 0.02 | 0.28 | 0.00 | 0.00 | 0.07 |
0.07 | 0.00 | 0.02 | 0.02 | - | 63.8 | 63.8 | < 0.005 | < 0.005 | 0.10 | 64.5 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.04 | < 0.005 | 0.41 | 0.20 | < 0.005 | < 0.005 | 0.10 | 0.11 | < 0.005 | 0.03 | 0.03 | 1- | 340 | 340 | 0.03 | 0.05 | 0.30 | 357 | # 4. Operations Emissions Details # 4.1. Mobile Emissions by Land Use ## 4.1.1. Unmitigated Mobile source emissions results are presented in Sections 2.6. No further detailed breakdown of emissions is available. ## 4.2. Energy #### 4.2.1. Electricity Emissions By Land Use - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |--------------------------------|----------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | _ | | | | _ | _ | | | _ | | _ | | _ | _ | _ | _ | _ | - | | Other
Non-Aspha
Surfaces | —
alt | | | | _ | - | - | | | | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | - | - | _ | _ | _ | _ | _ | _ | - | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | _ | | - | r | _ | - | - | | - | | - | | _ | - | - | _ | _ | - | | Other
Non-Aspha
Surfaces | —
alt | | | Т | - | - | - | | - | | - | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | - | - | - | - | - | - | _ | _ | _ | - | _ | _ | | Other
Non-Aspha
Surfaces | —
alt | _ | - | - | _ | - | - | | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | ### 4.2.3. Natural Gas Emissions By Land Use - Unmitigated | | | | | | J, | | , | | | , | | , | _ | | | | | | | |---|------|-----|------|-----|-----|------|-------|-------|-------|--------|--------|--------|-------|--------|------|------|-----|----|------| | - | | | | | 0.0 | 000 | | | | | | | | | 000- | | | | 000 | | | Land | HOG | IROG | NOx | CO | ISO2 | PM10E | PM10D | PM101 | PM2.5E | PM2.5D | PM2.51 | IBCO2 | INBCO2 | CO21 | ICH4 | N2O | IR | CO2e | Use | Daily,
Summer
(Max) | _ | | - | | - | | | | | | | | - | | | - | | | |-------------------------------|-------------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Daily,
Winter
(Max) | _ | | | | | | T | r | | | | r | | Г | - | | - | | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | T | 0.00 | 0.00 | - | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Annual | _ | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Other
Non-Asph
Surfaces | 0.00
alt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | # 4.3. Area Emissions by Source ## 4.3.2. Unmitigated | Source | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|------|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | | _ | _ | | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | | 0.20 | _ | | - | | | | | | - | - | | | - | | | _ | | Architect
ural
Coatings | - | 0.19 | | | | | | | - | Г | | | | | | | | | |--------------------------------|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------| | Landsca
pe
Equipme
nt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | T | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Total | 0.00 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | - | - | - | | - | - | - | - | - | - | - | - | - | | - | - | - | - | | Consum
er
Products | - | 0.20 | | | | | - | | | | | | - | - | | | | | | Architect
ural
Coatings | - | 0.19 | - | | | | - | | | - | | | | | | | - | | | Total | _ | 0.38 | _ | - | _ | _ | - | - | _ | - | _ | - | - | - | _ | _ | - | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Consum
er
Products | | 0.04 | - | | - | | - | | - | | | | - | | | | | | | Architect
ural
Coatings | - | 0.03 | | | | | - | | | | | | | - | | | | | | Landsca
pe
Equipme
nt | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | - | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | - | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.4. Water Emissions by Land Use # 4.4.2. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|----------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|-------|------| | Daily,
Summer
(Max) | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Other
Non-Asph
Surfaces | —
alt | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | - | - | - | - | _ | - | - | - | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Daily,
Winter
(Max) | _ | - | - | - | - | - | - | | - | - | - | - | - | - | - | | - | - | | Other
Non-Asph
Surfaces | —
alt | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | - | - | _ | _ | - | - | - | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - 1// | 0.00 | | Annual | - | - | I- | _ | _ | _ | _ | - | - | _ | - | - | _ | - | _ | _ | _ | _ | | Other
Non-Asph
Surfaces | —
alt | - | - | - | _ | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.5. Waste Emissions by Land Use ### 4.5.2. Unmitigated | Land | TOG | ROG | NOx | СО | SO2 | | | PM10T | | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-----------------|-----|-----|-----|----|-----|---|---|-------|---|---|---|------|-------|------|-----|-----|---|------| | Use | Daily, | - | - | _ | _ | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | | Summer
(Max) | Other —
Non-Asphalt
Surfaces | | | | | | | | - | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | |------------------------------------|---|---|---|---|---|---|---|---|---|---|------|------|------|------|------|---|------| | Total — | _ | - | - | - | _ | _ | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Daily, —
Winter
(Max) | - | - | | - | - | - | - | - | | - | | | - | | | - | - | | Other —
Non-Asphalt
Surfaces | - | - | | - | | - | - | - | | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | F | 0.00 | | Total — | - | - | - | | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Annual — | - | _ | - | - | - | _ | - | - | - | _ | - | - | - | - | 1- | - | - | | Other —
Non-Asphalt
Surfaces | - | | | - | - | - | | - | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total — | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.6. Refrigerant Emissions by Land Use ## 4.6.1. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | | | | | | _ | _ | _ | _ | _ | _ | _ | | _ | | _ | - | | Total | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | | Daily,
Winter
(Max) | - | | | - | _ | - | | | | | | | _ | | | - | _ | - | | Total | _ | _ | _ | - | _ | _ | - | - | _ | _ | - | - | _ | _ | - | - | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.7. Offroad Emissions By Equipment Type #### 4.7.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | | со | SO2 | PM10E | PM10D | | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|---|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | | | _ | _ | - | _ | | | | _ | - | _ | - | - | - | _ | | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | | _ | | _ | _ | | | | | | | _ | | - | | _ | | | Total | _ | - | - | _ | _ | _ | _ | _ | _ | _ | _ |
_ | _ | _ | _ | _ | - | - | | Annual | - | - | - | - | - | - 1 | - | - | - | - | | - | - | - | - | - | - | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.8. Stationary Emissions By Equipment Type ### 4.8.1. Unmitigated | Equipme nt Type | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | | | | | | _ | _ | _ | | | _ | | | | | - | | | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | Daily, —
Winter
(Max) | - | | - | - | - | - | - | - | - | - | - | _ | _ | - | _ | - | - | _ | |-----------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total – | | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual — | | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Total – | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.9. User Defined Emissions By Equipment Type ### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt
Type | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | | | | _ | | - | | | | _ | | - | _ | | _ | | | | Total | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | _ | - | _ | _ | _ | | Daily,
Winter
(Max) | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Annual | - | - | _ | _ | _ | - | - | - | _ | _ | - | _ | _ | - | - | - | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.10. Soil Carbon Accumulation By Vegetation Type #### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | n | Daily,
Summer
(Max) | - | _ | _ | _ | - | _ | - | - | _ | - | - | _ | - | - | - | - | - | - | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Total | _ | - | - | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | - | - | | | - | - | | r | | | Т | | - | - | - | - | - | - | | Total | _ | - | - | - | _ | _ | - | - | - | - | - | - | _ | _ | _ | _ | _ | _ | | Annual | _ | _ | _ | | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | | | - | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | - | _ | | | _ | - | _ | | | | - | _ | _ | - | - | - | - | _ | | Total | - | - | - | _ | _ | _ | - | _ | _ | - | - | _ | _ | _ | _ | - | _ | _ | | Annual | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | ### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | | | _ | | | | | | | | | | | | | | | | |----------|------|------|------|------|---------|---------|---------|--------|------------|-------------|------|--------|------|-------|------|-----|------| Consider | TOO | DOC | NO | 1000 | DIMAGE | DMAAAD | DMAAOT | DMOCE | DMO CD | DMO ET | DCCC | NIDCOO | COST | CLIA | NOO | I D | 0000 | | Species | IIUG | IRUG | INUX | 1502 | PIVITUE | PIVITUD | PIVITUT | PM2.5E | 1 PIVIZ.5D | 1 PIVIZ.5 I | BCOZ | INBCOZ | LU21 | I CH4 | INZO | IK | COZe | | | | | | | | | | | | | | | | 1.5 | | | | | Daily,
Summer
(Max) | | | - | | - | | - | - | | - | - | - | - | | _ | - | _ | | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Avoided | _ | _ | _ | _ | _ | _ | - | _ | _ | - | - | _ | - | _ | _ | _ | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | | Sequest
ered | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Subtotal | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | _ | _ | _ | _ | - | - | _ | | Remove
d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Subtotal | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | - | _ | _ | _ | - | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Avoided | _ | _ | - | _ | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | | Subtotal | _ | - | - | - | - | - | _ | - | - | - | - | - | _ | - | _ | - | _ | _ | | Sequest
ered | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Subtotal | _ | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | _ | | Remove
d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Subtotal | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | - | | _ | _ | _ | - | - | - | _ | - | - | _ | - | - | - | - | _ | - | _ | _ | _ | | Annual | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Avoided | _ | - | _ | _ | _ | - | - | - | _ | - | - | - | _ | - | - | - | _ | - | | Subtotal | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Sequest
ered | _ | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove — d | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | |------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Subtotal — | - | - | - | - | _ | _ | _ | - | - | - | - | - | _ | _ | _ | - | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ## 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |------------------|------------------|------------|------------|---------------|---------------------|-------------------| | Site Preparation | Site Preparation | 5/1/2025 | 10/14/2026 | 5.00 | 380 | _ | # 5.2. Off-Road Equipment ## 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |------------------|-----------------------------|-----------|-------------|----------------|---------------|------------|-------------| | Site Preparation | Rubber Tired Dozers | Diesel | Average | 2.00 | 8.00 | 367 | 0.40 | | Site Preparation | Crushing/Proc.
Equipment | Gasoline | Average | 2.00 | 2.00 | 12.0 | 0.85 | | Site Preparation | Off-Highway Trucks | Diesel | Average | 2.00 | 8.00 | 376 | 0.38 | | Site Preparation | Scrapers | Diesel | Average | 7.00 | 8.00 | 423 | 0.48 | | Site Preparation | Excavators | Diesel | Average | 2.00 | 8.00 | 36.0 | 0.38 | ### 5.3. Construction Vehicles ### 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |------------------|-----------|-----------------------|----------------|-------------| | Site Preparation | _ | _ | _ | _ | | Site Preparation | Worker | 10.0 | 100 | LDA,LDT1,LDT2 | |------------------|--------------|------|------|---------------| | Site Preparation | Vendor | _ | 10.2 | HHDT,MHDT | | Site Preparation | Hauling | 11.0 | 100 | HHDT | | Site Preparation | Onsite truck | - | _ | HHDT | #### 5.4. Vehicles ### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ### 5.5. Architectural Coatings | ı | Phase Name | Residential Interior Area Coated | Residential Exterior Area Coated | Non-Residential Interior Area | Non-Residential Exterior Area | Parking Area Coated (sq ft) | |---|------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|-----------------------------| | П | | (sq ft) | (sq ft) | Coated (sq ft) | Coated (sq ft) | | ## 5.6. Dust Mitigation ### 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (sq. ft.) | Acres Paved (acres) | |------------------|---------------------------------|---------------------------------|----------------------|-------------------------------|---------------------| | Site Preparation | _ | 175,000 | 3,040 | 0.00 | _ | ### 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------
----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | ## 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |----------------------------|--------------------|-----------| | Other Non-Asphalt Surfaces | 57.0 | 0% | ## 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2025 | 0.00 | 565 | 0.03 | < 0.005 | | 2026 | 0.00 | 482 | 0.03 | < 0.005 | ## 5.9. Operational Mobile Sources ### 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |---------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------| | Total all Land Uses | 0.00 | 0.00 | 0.00 | 3.00 | 0.00 | 0.00 | 0.00 | 300 | ## 5.10. Operational Area Sources 5.10.1. Hearths 5.10.1.1. Unmitigated ### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 0.00 | 0.00 | 148,975 | ### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | ## 5.11. Operational Energy Consumption #### 5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |----------------------------|----------------------|-----|--------|--------|-----------------------| | Other Non-Asphalt Surfaces | 0.00 | 482 | 0.0330 | 0.0040 | 0.00 | ### 5.12. Operational Water and Wastewater Consumption ### 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |----------------------------|-------------------------|--------------------------| | Other Non-Asphalt Surfaces | 0.00 | 0.00 | ## 5.13. Operational Waste Generation #### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |----------------------------|------------------|-------------------------| | Other Non-Asphalt Surfaces | 0.00 | <u>-</u> | ## 5.14. Operational Refrigeration and Air Conditioning Equipment ### 5.14.1. Unmitigated | | | | | _ | | | | |---------------|----------------|-------------|-----|---------------|----------------------|-------------------|----------------| | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Service | ## 5.15. Operational Off-Road Equipment #### 5.15.1. Unmitigated #### 5.18.2. Sequestration #### 5.18.2.1. Unmitigated | Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year) | - | |--|---| |--|---| ## 6. Climate Risk Detailed Report ### 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 38.6 | annual days of extreme heat | | Extreme Precipitation | 7.50 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 35.6 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 0 | 0 | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | |-------------------------|-----|-----|-----|-----|--| | Sea Level Rise | 1 | 0 | 0 | N/A | | | Wildfire | 1 | 0 | 0 | N/A | | | Flooding | N/A | N/A | N/A | N/A | | | Drought | N/A | N/A | N/A | N/A | | | Snowpack Reduction | N/A | N/A | N/A | N/A | | | Air Quality Degradation | 0 | 0 | 0 | N/A | | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 1 | 1 | 4 | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 1 | 1 | 2 | | Wildfire | 1 | 1 | 1 | 2 | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 1 | 1 | 1 | 2 | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures # 7. Health and Equity Details ### 7.1. CalEnviroScreen 4.0 Scores | Indicator | Result for Project Census Tract | |---------------------------------|---------------------------------| | Exposure Indicators | i - | | AQ-Ozone | 97.6 | | AQ-PM | 1.68 | | AQ-DPM | 4.41 | | Drinking Water | 60.7 | | Lead Risk Housing | 11.6 | | Pesticides | 11.0 | | Toxic Releases | 8.39 | | Traffic | 1.35 | | Effect Indicators | _ | | CleanUp Sites | 0.00 | | Groundwater | 0.00 | | Haz Waste Facilities/Generators | 0.00 | | Impaired Water Bodies | 0.00 | | Solid Waste | 11.6 | | Sensitive Population | _ | | Asthma | 63.6 | | Cardio-vascular | 92.9 | | Low Birth Weights | 66.3 | | Socioeconomic Factor Indicators | _ | | Education | 33.5 | | Housing | 22.1 | | Linguistic | 8.49 | | |--------------|------|--| | Poverty | 67.0 | | | Unemployment | 64.5 | | # 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for
Project Census Tract | |------------------------|---------------------------------| | Economic | - | | Above Poverty | 54.07416913 | | Employed | 2.34826126 | | Median HI | 47.09354549 | | Education | _ | | Bachelor's or higher | 24.38085461 | | High school enrollment | 100 | | Preschool enrollment | 95.7141024 | | Transportation | - | | Auto Access | 86.34672142 | | Active commuting | 8.161170281 | | Social | _ | | 2-parent households | 29.38534582 | | Voting | 73.38637239 | | Neighborhood | - | | Alcohol availability | 87.1423072 | | Park access | 51.00731426 | | Retail density | 9.110740408 | | Supermarket access | 10.57359168 | | Tree canopy | 85.29449506 | | Homeownership Housing habitability Low-inc homeowner severe housing cost burden Low-inc renter severe housing cost burden | 77.15898884
49.54446298 | |--|----------------------------| | Housing habitability Low-inc homeowner severe housing cost burden Low-inc renter severe housing cost burden | 49.54446298 | | Low-inc homeowner severe housing cost burden Low-inc renter severe housing cost burden | | | Low-inc renter severe housing cost burden | | | | 35.91684845 | | Uncrowded housing | 3.708456307 | | | 96.93314513 | | Health Outcomes | _ | | Insured adults | 30.92518927 | | Arthritis | 0.0 | | Asthma ER Admissions | 46.4 | | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 16.7 | | Cognitively Disabled | 5.2 | | Physically Disabled | 5.0 | | Heart Attack ER Admissions | 10.8 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 59.1 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | | | Binge Drinking | 0.0 | |---------------------------------------|------| | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | | | Wildfire Risk | 87.1 | | SLR Inundation Area | 0.0 | | Children | 65.5 | | Elderly | 25.8 | | English Speaking | 82.2 | | Foreign-born | 0.7 | | Outdoor Workers | 31.4 | | Climate Change Adaptive Capacity | | | Impervious Surface Cover | 94.7 | | Traffic Density | 3.7 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 62.9 | | Other Decision Support | | | 2016 Voting | 81.4 | # 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 19.0 | | Healthy Places Index Score for Project Location (b) | 41.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | No | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. #### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. # 8. User Changes to Default Data | Screen | Justification | |-----------------------------------|--| | Construction: Construction Phases | Client Provided schedule | | Construction: Off-Road Equipment | Client provided equipment list | | Construction: Trips and VMT | Client provided total worker trips and hauling trips which equals 8,000 round trips. | This page intentionally left blank CALEEMOD REPLENISH BIG BEAR COMPONENT 5 UNMITIGATED EMISSIONS MODEL OUTPUTS # 15309-Sand Canyon Detailed Report #### Table of Contents - 1. Basic Project Information - 1.1. Basic Project Information - 1.2. Land Use Types - 1.3. User-Selected Emission Reduction Measures by Emissions Sector - 2. Emissions Summary - 2.1. Construction Emissions Compared Against Thresholds - 2.2. Construction Emissions by Year, Unmitigated - 2.4. Operations Emissions Compared Against Thresholds - 2.5. Operations Emissions by Sector, Unmitigated - 3. Construction Emissions Details - 3.1. Linear, Grading & Excavation (2025) Unmitigated - 3.3. Linear, Grading & Excavation (2026) Unmitigated - 3.5. Linear, Drainage, Utilities, & Sub-Grade (2026) Unmitigated - 3.7. Demolition (2025) Unmitigated - 3.9. Building Construction (2025) Unmitigated - 3.11. Building Construction (2026) Unmitigated - 4. Operations Emissions Details - 4.1. Mobile Emissions by Land Use - 4.1.1. Unmitigated - 4.2. Energy - 4.2.1. Electricity Emissions By Land Use Unmitigated - 4.2.3. Natural Gas Emissions By Land Use Unmitigated - 4.3. Area Emissions by Source - 4.3.2. Unmitigated - 4.4. Water Emissions by Land Use - 4.4.2. Unmitigated - 4.5. Waste Emissions by Land Use - 4.5.2. Unmitigated - 4.6. Refrigerant Emissions by Land Use - 4.6.1. Unmitigated - 4.7. Offroad Emissions By Equipment Type - 4.7.1. Unmitigated - 4.8. Stationary Emissions By Equipment Type - 4.8.1. Unmitigated - 4.9. User Defined Emissions By Equipment Type - 4.9.1. Unmitigated - 4.10. Soil Carbon Accumulation By Vegetation Type - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated - 5. Activity Data - 5.1. Construction Schedule - 5.2. Off-Road Equipment - 5.2.1. Unmitigated - 5.3. Construction Vehicles - 5.3.1. Unmitigated - 5.4. Vehicles - 5.4.1. Construction Vehicle Control Strategies - 5.5. Architectural Coatings - 5.6. Dust Mitigation - 5.6.1. Construction Earthmoving Activities - 5.6.2. Construction Earthmoving Control Strategies - 5.7. Construction Paving - 5.8. Construction Electricity Consumption and Emissions Factors - 5.9. Operational Mobile Sources - 5.9.1. Unmitigated - 5.10. Operational Area Sources - 5.10.1. Hearths - 5.10.1.1. Unmitigated - 5.10.2. Architectural Coatings - 5.10.3. Landscape Equipment - 5.11. Operational Energy Consumption - 5.11.1. Unmitigated - 5.12. Operational Water and Wastewater Consumption - 5.12.1. Unmitigated - 5.13. Operational Waste Generation - 5.13.1. Unmitigated - 5.14. Operational Refrigeration and Air Conditioning Equipment - 5.14.1. Unmitigated - 5.15. Operational Off-Road Equipment - 5.15.1. Unmitigated - 5.16. Stationary Sources - 5.16.1. Emergency Generators and Fire Pumps - 5.16.2. Process Boilers - 5.17. User Defined - 5.18. Vegetation - 5.18.1. Land Use Change - 5.18.1.1. Unmitigated - 5.18.1. Biomass Cover Type - 5.18.1.1. Unmitigated - 5.18.2. Sequestration - 5.18.2.1. Unmitigated - 6. Climate Risk Detailed Report - 6.1. Climate Risk Summary - 6.2. Initial Climate Risk Scores - 6.3. Adjusted Climate Risk Scores - 6.4. Climate Risk Reduction Measures - 7. Health and Equity Details - 7.1. CalEnviroScreen 4.0 Scores - 7.2. Healthy Places Index Scores - 7.3. Overall Health & Equity Scores - 7.4. Health & Equity Measures - 7.5. Evaluation Scorecard - 7.6. Health & Equity Custom Measures - 8. User Changes to Default Data # 1. Basic Project Information # 1.1. Basic Project Information | Data Field | Value | |-----------------------------|----------------------------| | Project Name | 15309-Sand Canyon | | Construction Start Date | 5/1/2025 | | Operational Year | 2027 | | Lead Agency | _ | | Land Use Scale | Project/site | | Analysis Level for Defaults | County | | Windspeed (m/s) | 2.50 | | Precipitation (days) | 1.80 | | Location | 34.224799, -116.85662 | | County | San Bernardino-South Coast | | City | Unincorporated | | Air District | South Coast AQMD | | Air Basin | South Coast | | TAZ | 5157 | | EDFZ | 10 | | Electric Utility | Southern California Edison | | Gas Utility | Southwest Gas Corp. | | App Version | 2022.1.1.14 | # 1.2. Land Use Types | 1 | Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Landscape Area (sq | Special Landscape | Population | Description | |---|------------------|------|------|-------------|-----------------------|--------------------|-------------------|------------|-------------| | ı | | | | | | ft) | Area (sq ft) | | | | User Defined Linear | 1.37 | Mile | 0.74 | 0.00 | - | - | _ | Pipeline | |-------------------------------|------|------|------|------|------|---|---|-----------------------| | Other Non-Asphalt
Surfaces | 2.00 | Acre | 2.00 | 0.00 | 0.00 | - | - | Pump/Monitoring Wells | | Parking Lot | 0.50 | Acre | 0.50 | 0.00 | 0.00 | - | _ | _ | ### 1.3. User-Selected Emission Reduction Measures by Emissions Sector No measures selected # 2. Emissions Summary ### 2.1. Construction Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Daily,
Summer
(Max) | _ | | - | | - | - | - | _ | _ | _ | - | _ | | - | - | _ | | - | | Unmit. | 3.23 | 1.73 | 24.2 | 28.7 | 0.11 | 0.60 | 6.86 | 7.46 | 0.56 | 1.60 | 2.16 | - | 16,984 | 16,984 | 1.34 | 2.11 | 34.1 | 17,682 | | Daily,
Winter
(Max) | | | - | | - | - | - | - | - | - | | | - | | - | Ī | - | | |
Unmit. | 3.53 | 2.37 | 24.7 | 36.0 | 0.10 | 0.73 | 5.42 | 6.16 | 0.68 | 1.35 | 2.03 | - | 15,465 | 15,465 | 0.86 | 1.36 | 0.74 | 15,893 | | Average
Daily
(Max) | | | | | | - | | - | _ | - | - | - | - | - | - | | - | | | Unmit. | 1.24 | 0.75 | 9.47 | 11.7 | 0.04 | 0.26 | 2.04 | 2.31 | 0.24 | 0.51 | 0.76 | - | 6,132 | 6,132 | 0.43 | 0.68 | 5.38 | 6,350 | | Annual
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Unmit. | 0.23 | 0.14 | 1.73 | 2.13 | 0.01 | 0.05 | 0.37 | 0.42 | 0.04 | 0.09 | 0.14 | _ | 1,015 | 1,015 | 0.07 | 0.11 | 0.89 | 1,051 | ### 2.2. Construction Emissions by Year, Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | | | , | , | , , , , | | , | , | | , | , | , | | | | | | | | |----------------------------|------|------|------|---------|---------|-------|-------|-------|--------|--------|--------|------|--------|--------|------|------|------|--------| | Year | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily -
Summer
(Max) | - | | | | | | - | - | - | | - | | | | - | | | - | | 2025 | 3.23 | 1.73 | 24.2 | 28.7 | 0.11 | 0.60 | 6.86 | 7.46 | 0.56 | 1.60 | 2.16 | _ | 16,984 | 16,984 | 1.34 | 2.11 | 34.1 | 17,682 | | 2026 | 1.48 | 1.14 | 9.93 | 20.8 | 0.04 | 0.32 | 2.27 | 2.59 | 0.29 | 0.55 | 0.85 | - | 5,995 | 5,995 | 0.25 | 0.34 | 11.1 | 6,114 | | Daily -
Winter
(Max) | - | | - | | | - | - | | - | | - | - | - | _ | - | - | - | - | | 2025 | 2.54 | 1.57 | 19.2 | 24.2 | 0.08 | 0.55 | 4.01 | 4.55 | 0.51 | 1.02 | 1.53 | - | 12,475 | 12,475 | 0.86 | 1.34 | 0.66 | 12,898 | | 2026 | 3.53 | 2.37 | 24.7 | 36.0 | 0.10 | 0.73 | 5.42 | 6.16 | 0.68 | 1.35 | 2.03 | _ | 15,465 | 15,465 | 0.83 | 1.36 | 0.74 | 15,893 | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | _ | - | - | _ | - | _ | | 2025 | 1.24 | 0.75 | 9.47 | 11.7 | 0.04 | 0.26 | 2.04 | 2.31 | 0.24 | 0.51 | 0.76 | _ | 6,132 | 6,132 | 0.43 | 0.68 | 5.38 | 6,350 | | 2026 | 0.74 | 0.57 | 4.76 | 8.65 | 0.02 | 0.16 | 1.05 | 1.21 | 0.15 | 0.25 | 0.40 | _ | 2,633 | 2,633 | 0.09 | 0.13 | 2.01 | 2,678 | | Annual | _ | - | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 2025 | 0.23 | 0.14 | 1.73 | 2.13 | 0.01 | 0.05 | 0.37 | 0.42 | 0.04 | 0.09 | 0.14 | _ | 1,015 | 1,015 | 0.07 | 0.11 | 0.89 | 1,051 | | 2026 | 0.13 | 0.10 | 0.87 | 1.58 | < 0.005 | 0.03 | 0.19 | 0.22 | 0.03 | 0.05 | 0.07 | _ | 436 | 436 | 0.02 | 0.02 | 0.33 | 443 | # 2.4. Operations Emissions Compared Against Thresholds Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Un/Mit. | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|------|-------| | Daily,
Summer
(Max) | - | - | - | - | | | - | - | - | - | | - | - | - | | | | | | Unmit. | 2.16 | 1.99 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,035 | 1,035 | 0.04 | 0.01 | 0.00 | 1,039 | | Daily,
Winter
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Unmit. | 2.16 | 1.99 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,035 | 1,035 | 0.04 | 0.01 | 0.00 | 1,039 | 9 / 46 | Average
Daily
(Max) | - | - | - | | - | - | - | | | - | - | - | - | | | - | - | - | |---------------------------|------|------|------|------|---------|------|------|------|------|------|------|------|-------|-------|------|---------|------|-------| | Unmit. | 2.16 | 1.99 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,035 | 1,035 | 0.04 | 0.01 | 0.00 | 1,039 | | Annual
(Max) | - | - | - | - | - | - | - | - | 1- | - | - | - | 1 | - | - | - | - | - | | Unmit. | 0.39 | 0.36 | 1.87 | 1.59 | < 0.005 | 0.18 | 0.00 | 0.18 | 0.18 | 0.00 | 0.18 | 0.00 | 171 | 171 | 0.01 | < 0.005 | 0.00 | 172 | # 2.5. Operations Emissions by Sector, Unmitigated | Sector | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|---------|---------|------|-------| | Daily,
Summer
(Max) | | | | | - | - | | - | | _ | - | _ | | | - | - | - | | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | _ | 0.02 | - | - | - | _ | _ | - | _ | _ | _ | _ | _ | - | - | - | _ | - | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | - | 27.8 | 27.8 | < 0.005 | < 0.005 | _ | 27.9 | | Water | _ | _ | - | 1- | - | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | _ | _ | - | - | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Stationar
y | 2.16 | 1.97 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,007 | 1,007 | 0.04 | 0.01 | 0.00 | 1,011 | | Total | 2.16 | 1.99 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,035 | 1,035 | 0.04 | 0.01 | 0.00 | 1,039 | | Daily,
Winter
(Max) | - | | | | | - | - | - | _ | _ | - | - | - | - | | - | _ | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | _ | 0.02 | - | 1- | - | _ | _ | - | _ | _ | - | - | - | - | _ | _ | - | - | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 27.8 | 27.8 | < 0.005 | < 0.005 | - | 27.9 | | Water | _ | _ | - | I- | _ | _ | _ | - | - | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Stationar | 2.16 | 1.97 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,007 | 1,007 | 0.04 | 0.01 | 0.00 | 1,011 | |------------------|------|---------|------|------|---------|------|----------|------|------|------|------|------|-------|-------|---------|---------|------|-------| | Total | 2.16 | 1.99 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,035 | 1,035 | 0.04 | 0.01 | 0.00 | 1,039 | | Average
Daily | - | - | - | | - | | - | | - | | - | - | - | | - | - | - | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | _ | 0.02 | _ | _ | - | - | _ | _ | _ | - | _ | - | - | - | _ | _ | _ | _ | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 27.8 | 27.8 | < 0.005 | < 0.005 | - | 27.9 | | Water | _ | _ | - | - | _ | - | <u> </u> | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Waste | _ | - | - | 1- | - | - | 1- | 1- | - | - | 1- | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Stationar
y | 2.16 | 1.97 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,007 | 1,007 | 0.04 | 0.01 | 0.00 | 1,011 | | Total | 2.16 | 1.99 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,035 | 1,035 | 0.04 | 0.01 | 0.00 | 1,039 | | Annual | _ | _ | - | 1- | _ | - | 1- | - | _ | _ | _ | _ | - | - | 1- | _ | _ | - | | Mobile | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Area | _ | < 0.005 | _ | - | _ | _ | 1- | - | _ | _ | _ | _ | 1- | - | 1- | _ | _ | - | | Energy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1- | 0.00 | 0.00 | _ | 0.00 | _ | 4.60 | 4.60 | < 0.005 | < 0.005 | - | 4.62 | | Water | _ | _ | - | - | _ | - | 1- | _ | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Waste | _ | _ | - | - | _ | - | _ | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Stationar
y | 0.39 | 0.36 | 1.87 | 1.59 | < 0.005 | 0.18 | 0.00 | 0.18 | 0.18 | 0.00 | 0.18 | 0.00 | 167 | 167 | 0.01 | < 0.005 | 0.00 | 167 | | Total | 0.39 | 0.36 | 1.87 | 1.59 | < 0.005 | 0.18 | 0.00 | 0.18 | 0.18 | 0.00 | 0.18 | 0.00 | 171 | 171 | 0.01 | < 0.005 | 0.00 | 172 | # 3. Construction Emissions Details # 3.1. Linear, Grading & Excavation (2025) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | | | | | - | | | | | | | | | | | | | | |--------------------------------------|----------|------|------|------|---------|------|------|------|------|---------|---------|---|-------|-------|------|---------|------|-------| | Off-Road
Equipmen | | 1.06 | 8.12 | 9.44 | 0.02 | 0.37 | - | 0.37 | 0.34 | - | 0.34 | - | 2,285 | 2,285 | 0.09 | 0.02 | - | 2,293 | | Dust
From
Material
Movement | _
t | | П | | | | 0.07 | 0.07 | | 0.01 | 0.01 | | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | | | | | - | | | | | | - | | | | | - | | | Off-Road
Equipmen | | 1.06 | 8.12 | 9.44 | 0.02 | 0.37 | - | 0.37 | 0.34 | - | 0.34 | - | 2,285 | 2,285 | 0.09 | 0.02 | - | 2,293 | | Dust
From
Material
Movement | _
t | | Ī | | | | 0.07 | 0.07 | | 0.01 | 0.01 | | | | - | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | - | - | - | _ | - | - | - | _ | - | - | - | - | - | - | 1 |
- | - | | Off-Road
Equipmen | | 0.51 | 3.88 | 4.51 | 0.01 | 0.18 | - | 0.18 | 0.16 | - | 0.16 | - | 1,091 | 1,091 | 0.04 | 0.01 | - | 1,095 | | Dust
From
Material
Movement | <u> </u> | | | | | | 0.03 | 0.03 | | < 0.005 | < 0.005 | | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | - | - | - | - | _ | - | _ | _ | _ | - | - | _ | _ | - | - | - | | Off-Road
Equipmen | | 0.09 | 0.71 | 0.82 | < 0.005 | 0.03 | - | 0.03 | 0.03 | - | 0.03 | - | 181 | 181 | 0.01 | < 0.005 | - | 181 | | Dust
From
Material
Movemer | —
nt | | | | | | 0.01 | 0.01 | | < 0.005 | < 0.005 | | | | | | | | |-------------------------------------|---------|------|------|------|---------|------|------|------|------|---------|---------|---|-------|-------|---------|---------|------|-------| | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | - | - | _ | _ | _ | _ | - | _ | _ | - | - | - | _ | - | _ | | Daily,
Summer
(Max) | - | | - | - | - | | - | - | | - | - | r | - | - | - | - | - | F | | Worker | 0.21 | 0.16 | 0.41 | 7.70 | 0.00 | 0.00 | 1.41 | 1.41 | 0.00 | 0.33 | 0.33 | - | 1,508 | 1,508 | 0.05 | 0.05 | 5.65 | 1,528 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.67 | 0.09 | 6.48 | 3.35 | 0.04 | 0.08 | 1.67 | 1.75 | 0.08 | 0.46 | 0.54 | _ | 6,097 | 6,097 | 0.58 | 1.00 | 13.2 | 6,422 | | Daily,
Winter
(Max) | - | | | | - | - | - | | | - | - | - | - | | | | - | - | | Worker | 0.20 | 0.16 | 0.46 | 5.49 | 0.00 | 0.00 | 1.41 | 1.41 | 0.00 | 0.33 | 0.33 | _ | 1,381 | 1,381 | 0.05 | 0.05 | 0.15 | 1,396 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.67 | 0.09 | 6.76 | 3.35 | 0.04 | 0.08 | 1.67 | 1.75 | 0.08 | 0.46 | 0.54 | _ | 6,097 | 6,097 | 0.58 | 1.00 | 0.34 | 6,409 | | Average
Daily | - | - | - | 1 | - | - | - | 1 | - | 1 | - | - | | - | - | - | - | - | | Worker | 0.10 | 0.07 | 0.24 | 2.79 | 0.00 | 0.00 | 0.67 | 0.67 | 0.00 | 0.16 | 0.16 | - | 669 | 669 | 0.02 | 0.02 | 1.17 | 677 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.32 | 0.04 | 3.28 | 1.60 | 0.02 | 0.04 | 0.80 | 0.83 | 0.04 | 0.22 | 0.26 | - | 2,911 | 2,911 | 0.27 | 0.48 | 2.74 | 3,063 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | - | - | _ | - | - | _ | - | _ | _ | _ | | Worker | 0.02 | 0.01 | 0.04 | 0.51 | 0.00 | 0.00 | 0.12 | 0.12 | 0.00 | 0.03 | 0.03 | - | 111 | 111 | < 0.005 | < 0.005 | 0.19 | 112 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.06 | 0.01 | 0.60 | 0.29 | < 0.005 | 0.01 | 0.15 | 0.15 | 0.01 | 0.04 | 0.05 | - | 482 | 482 | 0.05 | 0.08 | 0.45 | 507 | # 3.3. Linear, Grading & Excavation (2026) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e | |-------------------------------------|-------|----------|------|------|---------|---------|---------|---------|---------|---------|---------|------|----------|-------|----------|---------|----------|-------| | Onsite | _ | <u> </u> | _ | _ | _ | _ | _ | _ | _ | - | - | 1- | <u> </u> | - | <u> </u> | _ | <u> </u> | 1- | | Daily,
Summer
(Max) | - | | - | | - | | - | | - | _ | - | | - | - | | - | - | - | | Daily,
Winter
(Max) | - | | - | | | | - | | _ | | - | | - | - | | | - | | | Off-Road
Equipmen | | 1.03 | 7.73 | 9.43 | 0.02 | 0.34 | - | 0.34 | 0.31 | - | 0.31 | - | 2,286 | 2,286 | 0.09 | 0.02 | - | 2,294 | | Dust
From
Material
Movemen |
t | | - | | - | | 0.07 | 0.07 | | 0.01 | 0.01 | | - | | - | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.04 | 0.33 | 0.41 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 98.4 | 98.4 | < 0.005 | < 0.005 | - | 98.8 | | Dust
From
Material
Movemen |
t | | | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | | - | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | - | - | - | _ | _ | _ | _ | _ | _ | _ | - | _ | - | - | _ | - | - | | Off-Road
Equipmen | | 0.01 | 0.06 | 0.07 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 16.3 | 16.3 | < 0.005 | < 0.005 | - | 16.4 | | Dust
From
Material
Movemen | t | | | | | | < 0.005 | < 0.005 | | < 0.005 | < 0.005 | | | | | | | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|---------|---------|---------|------|---------|---------|------|------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Offsite | _ | _ | - | - | _ | _ | _ | - | _ | _ | - | - | - | - | _ | - | _ | - | | Daily,
Summer
(Max) | - | - | - | | - | - | - | | - | - | - | | - | | | _ | - | | | Daily,
Winter
(Max) | - | - | - | | - | - | - | | - | - | - | | - | | - | - | - | | | Worker | 0.20 | 0.15 | 0.41 | 5.08 | 0.00 | 0.00 | 1.41 | 1.41 | 0.00 | 0.33 | 0.33 | _ | 1,353 | 1,353 | < 0.005 | 0.05 | 0.13 | 1,367 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.63 | 0.05 | 6.48 | 3.27 | 0.04 | 0.08 | 1.67 | 1.75 | 0.08 | 0.46 | 0.54 | - | 5,986 | 5,986 | 0.53 | 0.96 | 0.32 | 6,285 | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | 1- | - | - | - | - | - | | Worker | 0.01 | 0.01 | 0.02 | 0.23 | 0.00 | 0.00 | 0.06 | 0.06 | 0.00 | 0.01 | 0.01 | - | 59.1 | 59.1 | < 0.005 | < 0.005 | 0.10 | 59.8 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.03 | < 0.005 | 0.28 | 0.14 | < 0.005 | < 0.005 | 0.07 | 0.08 | < 0.005 | 0.02 | 0.02 | - | 258 | 258 | 0.02 | 0.04 | 0.23 | 271 | | Annual | _ | - | _ | _ | _ | - | _ | - | _ | _ | _ | _ | - | _ | - | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.04 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | _ | 9.78 | 9.78 | < 0.005 | < 0.005 | 0.02 | 9.89 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | < 0.005 | < 0.005 | 0.05 | 0.03 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | - | 42.7 | 42.7 | < 0.005 | 0.01 | 0.04 | 44.8 | # 3.5. Linear, Drainage, Utilities, & Sub-Grade (2026) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Summer
(Max) | | | | | | | - | | | - | - | | | | - | | _ | | | Off-Road
Equipmen | | 0.75 | 6.00 | 7.37 | 0.02 | 0.23 | - | 0.23 | 0.21 | | 0.21 | | 1,810 | 1,810 | 0.07 | 0.01 | - | 1,816 | |--------------------------------------|--------|------|------|------|---------|------|------|------|------|------|------|---|-------|-------|------|---------|------|-------| | Dust
From
Material
Movement | _
t | | | | - | - | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | - | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | | - | | - | - | - | | - | - | - | - | - | | - | | - | - | | Off-Road
Equipmen | | 0.75 | 6.00 | 7.37 | 0.02 | 0.23 | - | 0.23 | 0.21 | - | 0.21 | - | 1,810 | 1,810 | 0.07 | 0.01 | - | 1,816 | | Dust
From
Material
Movement | _
t | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | - | | | | | _ | | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | _ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Off-Road
Equipmen | | 0.39 | 3.12 | 3.84 | 0.01 | 0.12 | - | 0.12 | 0.11 | - | 0.11 | - | 942 | 942 | 0.04 | 0.01 | - | 945 | | Dust
From
Material
Movement | _
t | | | | | | 0.00 | 0.00 | | 0.00 | 0.00 | | | | | | | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | - | _ | - | - | - | - | _ | _ | _ | _ | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.07 | 0.57 | 0.70 | < 0.005 | 0.02 | - | 0.02 | 0.02 | - | 0.02 | - | 156 | 156 | 0.01 | < 0.005 | - | 157 | | Dust
From
Material
Movement | _
t | | | | - | - | 0.00 | 0.00 | | 0.00 | 0.00 | | - | | - | | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|------|------|------|------|------|------|------|------|------|------|------|---|-------|-------|----------|---------|------|-------| | Offsite | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Daily,
Summer
(Max) | - | - | | - | - | | - | | - | - | - | - | - | - | | | | | | Worker | 0.20 | 0.16 | 0.37 | 7.12 | 0.00 | 0.00 |
1.41 | 1.41 | 0.00 | 0.33 | 0.33 | - | 1,477 | 1,477 | 0.05 | 0.05 | 5.11 | 1,497 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | - | - | - | - | - | - | - | | - | - | - | | | - | - | - | - | | Worker | 0.20 | 0.15 | 0.41 | 5.08 | 0.00 | 0.00 | 1.41 | 1.41 | 0.00 | 0.33 | 0.33 | - | 1,353 | 1,353 | < 0.005 | 0.05 | 0.13 | 1,367 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | - | | - | - | - | - | - | - | - | | - | - | - | - | - | - | - | - | | Worker | 0.10 | 0.08 | 0.24 | 2.80 | 0.00 | 0.00 | 0.73 | 0.73 | 0.00 | 0.17 | 0.17 | - | 714 | 714 | < 0.005 | 0.02 | 1.15 | 723 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | - | - | - | - |]- | - | - | - | - | - | 1- | - | - | - | <u>-</u> | - | - | - | | Worker | 0.02 | 0.01 | 0.04 | 0.51 | 0.00 | 0.00 | 0.13 | 0.13 | 0.00 | 0.03 | 0.03 | - | 118 | 118 | < 0.005 | < 0.005 | 0.19 | 120 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.7. Demolition (2025) - Unmitigated | | | | , | , , | | , | , | | | , | , | | | | | | | | |----------|-----|-----|-----|-----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Onsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily, | _ | - | - | - | - | - | _ | - | _ | - | - | - | 1- | - | - | - | _ | - | |---------------------------|------|---------|------|------|---------|---------|------|---------|---------|---------|---------|---|------|------|---------|---------|------|------| | Summer
(Max) | Off-Road
Equipmen | | 0.28 | 2.32 | 2.77 | < 0.005 | 0.06 | - | 0.06 | 0.06 | - | 0.06 | | 366 | 366 | 0.01 | < 0.005 | - | 368 | | Demolitio
n | - | - | - | - | - | - | 1.62 | 1.62 | - | 0.25 | 0.25 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | | | - | | | | - | | | | _ | | | | | | - | | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.02 | 0.13 | 0.15 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 20.1 | 20.1 | < 0.005 | < 0.005 | - | 20.1 | | Demolitio
n | - | - | - | - | - | - | 0.09 | 0.09 | - | 0.01 | 0.01 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | | Off-Road
Equipmen | | < 0.005 | 0.02 | 0.03 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 3.32 | 3.32 | < 0.005 | < 0.005 | - | 3.34 | | Demolitio
n | - | - | - | - | - | - | 0.02 | 0.02 | - | < 0.005 | < 0.005 | - | - | - | - | - | - | - | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | - | - | - | - | _ | - | - | - | _ | _ | - | - | | Daily,
Summer
(Max) | | | | - | - | | - | | | - | - | - | - | - | _ | - | - | | | Worker | 0.05 | 0.04 | 0.10 | 1.93 | 0.00 | 0.00 | 0.35 | 0.35 | 0.00 | 0.08 | 0.08 | - | 377 | 377 | 0.01 | 0.01 | 1.41 | 382 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.69 | 0.09 | 6.75 | 3.49 | 0.04 | 0.08 | 1.74 | 1.82 | 0.08 | 0.48 | 0.56 | _ | 6,351 | 6,351 | 0.60 | 1.04 | 13.8 | 6,689 | |---------------------------|---------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Daily,
Winter
(Max) | | - | | | - | - | - | - | - | - | | - | | - | | | - | | | Average
Daily | _ | - | _ | - | - | - | - | - | _ | _ | - | - | - | - | - | _ | - | - | | Worker | < 0.005 | < 0.005 | 0.01 | 0.08 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | < 0.005 | < 0.005 | _ | 19.2 | 19.2 | < 0.005 | < 0.005 | 0.03 | 19.4 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.04 | 0.01 | 0.39 | 0.19 | < 0.005 | < 0.005 | 0.10 | 0.10 | < 0.005 | 0.03 | 0.03 | - | 348 | 348 | 0.03 | 0.06 | 0.33 | 366 | | Annual | _ | _ | _ | - | - | - | - | _ | _ | _ | _ | - | - | _ | - | _ | _ | _ | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | - | 3.18 | 3.18 | < 0.005 | < 0.005 | 0.01 | 3.22 | | Vendor | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Hauling | 0.01 | < 0.005 | 0.07 | 0.03 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | 0.01 | _ | 57.6 | 57.6 | 0.01 | 0.01 | 0.05 | 60.6 | # 3.9. Building Construction (2025) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|----------|------|------|------|-------|-------|-------|--------------|--------|--------|------|--------------|------|------|---------|------|------| | Onsite | _ | <u> </u> | 4- | 1- | - | 1- | - | - | - | - | - | - | - | - | - | 1 | _ | _ | | Daily,
Summer
(Max) | - | | | | - | | - | - | - | - | - | - | | - | - | - | - | - | | Off-Road
Equipmen | | 0.19 | 2.17 | 3.86 | 0.01 | 0.07 | - | 0.07 | 0.07 | - | 0.07 | - | 609 | 609 | 0.02 | < 0.005 | - | 611 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | | | | - | | | - | - | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.19 | 2.17 | 3.86 | 0.01 | 0.07 | - | 0.07 | 0.07 | - | 0.07 | - | 609 | 609 | 0.02 | < 0.005 | - | 611 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|------|------|------|------|---------|------|------|------|---------|------|---------|---|-------|-------|---------|---------|------|-------| | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmer | | 0.08 | 0.86 | 1.53 | < 0.005 | 0.03 | - | 0.03 | 0.03 | - | 0.03 | - | 241 | 241 | 0.01 | < 0.005 | - | 242 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | - | _ | - | _ | _ | _ | _ | _ | | Off-Road
Equipmer | | 0.01 | 0.16 | 0.28 | < 0.005 | 0.01 | - | 0.01 | < 0.005 | - | < 0.005 | - | 39.9 | 39.9 | < 0.005 | < 0.005 | - | 40.0 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Offsite | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | 1- | _ | _ | _ | | Daily,
Summer
(Max) | | - | 1- | - | - | | | | - | | - | - | - | - | | - | | | | Worker | 0.05 | 0.04 | 0.10 | 1.93 | 0.00 | 0.00 | 0.35 | 0.35 | 0.00 | 0.08 | 0.08 | _ | 377 | 377 | 0.01 | 0.01 | 1.41 | 382 | | Vendor | 0.13 | 0.03 | 1.51 | 0.71 | 0.01 | 0.03 | 0.50 | 0.53 | 0.03 | 0.14 | 0.17 | - | 1,757 | 1,757 | 0.11 | 0.27 | 5.11 | 1,844 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | | | | - | | | | | | - | | - | | | | - | | | Worker | 0.05 | 0.04 | 0.11 | 1.37 | 0.00 | 0.00 | 0.35 | 0.35 | 0.00 | 0.08 | 0.08 | - | 345 | 345 | 0.01 | 0.01 | 0.04 | 349 | | Vendor | 0.13 | 0.03 | 1.58 | 0.69 | 0.01 | 0.03 | 0.50 | 0.53 | 0.03 | 0.14 | 0.17 | - | 1,757 | 1,757 | 0.11 | 0.27 | 0.13 | 1,839 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | | Worker | 0.02 | 0.02 | 0.05 | 0.58 | 0.00 | 0.00 | 0.14 | 0.14 | 0.00 | 0.03 | 0.03 | _ | 138 | 138 | < 0.005 | < 0.005 | 0.24 | 140 | | Vendor | 0.05 | 0.01 | 0.63 | 0.27 | 0.01 | 0.01 | 0.20 | 0.21 | 0.01 | 0.05 | 0.07 | _ | 695 | 695 | 0.04 | 0.10 | 0.87 | 728 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Worker | < 0.005 | < 0.005 | 0.01 | 0.11 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.01 | 0.01 | - | 22.9 | 22.9 | < 0.005 | < 0.005 | 0.04 | 23.2 | |---------|---------|---------|------|------|---------|---------|------|------|---------|------|------|---
------|------|---------|---------|------|------| | Vendor | 0.01 | < 0.005 | 0.12 | 0.05 | < 0.005 | < 0.005 | 0.04 | 0.04 | < 0.005 | 0.01 | 0.01 | _ | 115 | 115 | 0.01 | 0.02 | 0.14 | 121 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 3.11. Building Construction (2026) - Unmitigated | Location | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|----------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------| | Onsite | _ | _ | - | <u> </u> | - | _ | _ | _ | _ | _ | _ | - | i- | - | 1 | _ | - | - | | Daily,
Summer
(Max) | _ | | - | | | | - | | | - | - | - | - | - | | | - | | | Off-Road
Equipmen | | 0.18 | 2.04 | 3.86 | 0.01 | 0.06 | - | 0.06 | 0.05 | - | 0.05 | - | 611 | 611 | 0.02 | < 0.005 | - | 613 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | _ | - | - | | | - | - | - | - | _ | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.18 | 2.04 | 3.86 | 0.01 | 0.06 | - | 0.06 | 0.05 | - | 0.05 | - | 611 | 611 | 0.02 | < 0.005 | - | 613 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Off-Road
Equipmen | | 0.04 | 0.43 | 0.81 | < 0.005 | 0.01 | - | 0.01 | 0.01 | - | 0.01 | - | 128 | 128 | 0.01 | < 0.005 | - | 128 | | Onsite
truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | - | - | - | 1- | 1- | - | - | - | - | - | - | - | 1- | - | 1- | - | - | - | | Off-Road
Equipmen | | 0.01 | 0.08 | 0.15 | < 0.005 | < 0.005 | - | < 0.005 | < 0.005 | - | < 0.005 | - | 21.2 | 21.2 | < 0.005 | < 0.005 | - | 21.2 | | Onsite truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |---------------------------|---------|---------|---------|------|---------|---------|------|------|---------|---------|---------|---|-------|-------|---------|---------|------|-------| | Offsite | - | _ | - | _ | _ | _ | _ | - | _ | - | - | - | 1- | _ | - | _ | _ | - | | Daily,
Summer
(Max) | _ | _ | _ | - | - | _ | - | | - | - | - | | - | | | - | - | | | Worker | 0.05 | 0.04 | 0.09 | 1.78 | 0.00 | 0.00 | 0.35 | 0.35 | 0.00 | 0.08 | 0.08 | - | 369 | 369 | 0.01 | 0.01 | 1.28 | 374 | | Vendor | 0.13 | 0.02 | 1.43 | 0.66 | 0.01 | 0.03 | 0.50 | 0.53 | 0.03 | 0.14 | 0.17 | _ | 1,728 | 1,728 | 0.10 | 0.27 | 4.71 | 1,814 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Daily,
Winter
(Max) | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | 0.05 | 0.04 | 0.10 | 1.27 | 0.00 | 0.00 | 0.35 | 0.35 | 0.00 | 0.08 | 0.08 | - | 338 | 338 | < 0.005 | 0.01 | 0.03 | 342 | | Vendor | 0.12 | 0.02 | 1.49 | 0.67 | 0.01 | 0.03 | 0.50 | 0.53 | 0.03 | 0.14 | 0.17 | _ | 1,728 | 1,728 | 0.10 | 0.27 | 0.12 | 1,809 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Average
Daily | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Worker | 0.01 | 0.01 | 0.02 | 0.28 | 0.00 | 0.00 | 0.07 | 0.07 | 0.00 | 0.02 | 0.02 | - | 71.8 | 71.8 | < 0.005 | < 0.005 | 0.12 | 72.7 | | Vendor | 0.03 | < 0.005 | 0.32 | 0.14 | < 0.005 | 0.01 | 0.11 | 0.11 | 0.01 | 0.03 | 0.03 | _ | 362 | 362 | 0.02 | 0.06 | 0.42 | 379 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Annual | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Worker | < 0.005 | < 0.005 | < 0.005 | 0.05 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | < 0.005 | < 0.005 | - | 11.9 | 11.9 | < 0.005 | < 0.005 | 0.02 | 12.0 | | Vendor | < 0.005 | < 0.005 | 0.06 | 0.03 | < 0.005 | < 0.005 | 0.02 | 0.02 | < 0.005 | 0.01 | 0.01 | - | 59.9 | 59.9 | < 0.005 | 0.01 | 0.07 | 62.8 | | Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | # 4. Operations Emissions Details # 4.1. Mobile Emissions by Land Use # 4.1.1. Unmitigated Mobile source emissions results are presented in Sections 2.6. No further detailed breakdown of emissions is available. ## 4.2. Energy ### 4.2.1. Electricity Emissions By Land Use - Unmitigated | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|-----------|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|---|------| | Daily,
Summer
(Max) | - | - | | | | | | | | - | - | | | | | | | - | | Other
Non-Asph
Surfaces | —
nalt | | - | | | | | | - | _ | - | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | - | - | - | - | - | - | - | - | - | - | - | - | 27.8 | 27.8 | < 0.005 | < 0.005 | - | 27.9 | | Total | _ | - | - | - | - | - | _ | _ | - | - | - | - | 27.8 | 27.8 | < 0.005 | < 0.005 | - | 27.9 | | Daily,
Winter
(Max) | - | | - | - | | | - | - | - | | - | - | | - | - | - | - | | | Other
Non-Asph
Surfaces | —
nalt | | r | | - | - | - | - | - | - | - | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | - | - | - | | - | - | - | - | - | - | - | - | 27.8 | 27.8 | < 0.005 | < 0.005 | - | 27.9 | | Total | _ | _ | - | - | 1- | _ | _ | _ | _ | _ | _ | _ | 27.8 | 27.8 | < 0.005 | < 0.005 | - | 27.9 | | Annual | _ | - | - | 1- | 1- | _ | _ | - | - | - | _ | - | - | _ | - | _ | _ | - | | Other
Non-Asph
Surfaces | —
nalt | | | | - | - | - | - | _ | - | | | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | - | - | - | - | - | - | - | - | - | - | - | - | 4.60 | 4.60 | < 0.005 | < 0.005 | - | 4.62 | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 4.60 | 4.60 | < 0.005 | < 0.005 | _ | 4.62 | ### 4.2.3. Natural Gas Emissions By Land Use - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|--------------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | - | - | - | - | - | - | - | - | - | _ | - | - | - | - | - | - | - | - | | Other
Non-Aspl
Surfaces | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | _ | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Daily,
Winter
(Max) | | | | | - | | - | - | | _ | - | - | | | | | Ī | | | Other
Non-Aspl
Surfaces | 0.00
halt | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | - | _ | 1- | - | _ | _ | _ | _ | _ | - | _ | - | - | - | - | _ | - | - | | Other
Non-Aspl
Surfaces | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | - | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.3. Area Emissions by Source ### 4.3.2. Unmitigated | Source | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |-------------------------------|-----|---------|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | | - | | | | - | | - | _ | _ | | | - | - | | - | - | | Consum
er
Products | _ | 0.01 | _ | | | | | | _ | | _ | _ | - | | | | | | | Architect
ural
Coatings | _ | 0.01 | - | | | | - | | _ | _ | - | - | - | - | - | | - | - | | Total | _ | 0.02 | - | - | - | - | - | - | - | _ | | - | - | - | _ | _ | - | - | | Daily,
Winter
(Max) | _ | - | - | | | | | | - | _ | - | _ | - | | | | - | - | | Consum
er
Products | - | 0.01 | - | | | | - | | - | - | - | - | | | r | | - | Г | | Architect
ural
Coatings | _ | 0.01 | - | | | | | | - | | _ | _ | - | | | | | | | Total | _ | 0.02 | - | - | - | - | - | - | - | - | _ | _ | - | - | 1- | _ | _ | - | | Annual | _ | _ | - | | - | _ | _ | _ | _ | - | _ | - | _ | _ | 1- | 1- | _ | - | | Consum
er
Products | | < 0.005 | | | | - | - | - | _ | | - | | - | | | | - | | | Architect
ural
Coatings | _ | < 0.005 | - | | | | - | | - | _ | - | - | - | | | | | | | Total | _ | < 0.005 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 4.4. Water Emissions by Land Use ### 4.4.2. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
------------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Other
Non-Asp
Surfaces | | - | - | - | | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | - | - | - | - | - | _ | - | - | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | - | - | _ | - | - | - | - | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Daily,
Winter
(Max) | - | | | | | - | - | - | - | - | - | - | - | - | - | | | | | Other
Non-Asp
Surfaces | | T | | | Ī | - | | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | - | | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | - | _ | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Other
Non-Asp
Surfaces | | - | - | | - | - | | | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | # 4.5. Waste Emissions by Land Use ### 4.5.2. Unmitigated | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |------------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------| | Daily,
Summer
(Max) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Other
Non-Asp
Surfaces | | - | - | - | | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Parking
Lot | - | - | - | - | - | _ | - | - | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | - | - | - | _ | - | - | - | - | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Daily,
Winter
(Max) | - | | | | | - | - | - | - | - | - | - | - | - | - | | | | | Other
Non-Asp
Surfaces | | T | | | Ī | - | | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | - | | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | _ | _ | _ | - | _ | _ | _ | - | _ | _ | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | | Annual | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Other
Non-Asp
Surfaces | | - | - | | - | - | | | _ | _ | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Parking
Lot | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | | Total | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | ### 4.6. Refrigerant Emissions by Land Use #### 4.6.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | OTTOTIO | | (10) 00 | , | <i>y</i> ,, <i>y</i> . | | , | J | 107 C.O.J | G.Gy, | | J. 11 . J. J. J. J. | | | | | _ | | | |---------------------------|-----|---------|-----|------------------------|-----|-------|-------|-----------|--------|--------|---------------------|------|-------|------|-----|-----|--------|------| | Land
Use | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | | Daily,
Summer
(Max) | | | _ | | _ | | _ | | _ | | _ | _ | _ | | _ | | - | | | Total | _ | _ | _ | _ | _ | - | - | - | _ | - | _ | _ | _ | - | - | - | _ | - | | Daily,
Winter
(Max) | - | - | _ | _ | _ | - | - | _ | _ | - | - | - | _ | - | - | - | _ | - 7 | | Total | _ | _ | _ | - | - | - | - | - | _ | _ | _ | _ | _ | _ | - | _ | - 1/// | _ | | Annual | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ## 4.7. Offroad Emissions By Equipment Type #### 4.7.1. Unmitigated | Equipme
nt
Type | TOG | ROG | NOx | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | | | | _ | _ | | _ | | | | | | _ | _ | _ | _ | | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | - | - | - | - | _ | | | | | | - | | _ | _ | - | - | - | | Total - | _ | _ | - | - | - | _ | _ | _ | - | - | _ | _ | _ | _ | _ | _ | _ | _ | |----------|---|---|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Annual - | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | iorai - | _ | _ | <u> </u> | | | | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | ## 4.8. Stationary Emissions By Equipment Type ### 4.8.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme
nt | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|---------|------|-------| | Type Daily, Summer (Max) | - | - | - | - | | | - | | - | - | - | - | - | - | - | - | - | - | | Fire
Pump | 2.16 | 1.97 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,007 | 1,007 | 0.04 | 0.01 | 0.00 | 1,011 | | Total | 2.16 | 1.97 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,007 | 1,007 | 0.04 | 0.01 | 0.00 | 1,011 | | Daily,
Winter
(Max) | - | - | - | - | - | - | - | - | _ | - | | | - | | | | | | | Fire
Pump | 2.16 | 1.97 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,007 | 1,007 | 0.04 | 0.01 | 0.00 | 1,011 | | Total | 2.16 | 1.97 | 10.3 | 8.72 | 0.01 | 1.01 | 0.00 | 1.01 | 1.01 | 0.00 | 1.01 | 0.00 | 1,007 | 1,007 | 0.04 | 0.01 | 0.00 | 1,011 | | Annual | _ | - | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | - | | | Fire
Pump | 0.39 | 0.36 | 1.87 | 1.59 | < 0.005 | 0.18 | 0.00 | 0.18 | 0.18 | 0.00 | 0.18 | 0.00 | 167 | 167 | 0.01 | < 0.005 | 0.00 | 167 | | Total | 0.39 | 0.36 | 1.87 | 1.59 | < 0.005 | 0.18 | 0.00 | 0.18 | 0.18 | 0.00 | 0.18 | 0.00 | 167 | 167 | 0.01 | < 0.005 | 0.00 | 167 | ## 4.9. User Defined Emissions By Equipment Type #### 4.9.1. Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Equipme nt Type | TOG | ROG | | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|------|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|-----|------| | Daily,
Summer
(Max) | - | - | | | _ | | _ | | - | | | | - | | _ | | | | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | - | _ | _ | _ | - | - | _ | _ | _ | - | - | _ | _ | _ | _ | _ | _ | - | | Total | - 11 | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - 7 | _ | | Annual | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | ## 4.10. Soil Carbon Accumulation By Vegetation Type ### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated | Vegetatio
n | TOG | ROG | | | _ | PM10E | | _ | PM2.5E | | | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|---|---|-------|---|---|--------|---|---|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | - | | | | | | | - | - | | | - | | - | - | | | | Total Daily, Winter (Max) | _ | | - | | | - | _ | - | _ | _ | - | | _ | _ | - | - | - | - | | Total | - | - | _ | - | - | - | - | _ | - | - | - | _ | _ | _ | - | - | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | - | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | #### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) | Land
Use | TOG | ROG | | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | - | | | | - | | | | | | | | - | - | - | | - | | | Total | - | - | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | _ | | Daily,
Winter
(Max) | - | - | | - | _ | - 1 | | | | _ | - | | - | - 1 | - | | - | - | | Total | - | - | - | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | - | _ | _ | | Annual | - | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Total | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | #### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated | Species | TOG | ROG | NOx | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e | |---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------| | Daily,
Summer
(Max) | _ | - | - | | | | | | | | | | _ | | | | | _ | | Avoided | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
_ | _ | _ | _ | _ | _ | | Subtotal | _ | 1- | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Sequest ered | - | - | - | - | - | - | - | - | - | - | - | - | _ | - | - | - | - | - | | Subtotal | _ | - | - | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | | Remove
d | - | - | _ | - | - | - | _ | - | _ | - | _ | - | _ | - | _ | - | - | - | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Daily,
Winter
(Max) | _ | | - | | | _ | _ | | _ | | _ | _ | _ | _ | | | | | |---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | Avoided | _ | _ | - | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Subtotal | - | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | | Sequest ered | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Subtotal | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Remove
d | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | - | | Subtotal | _ | _ | _ | - | _ | - | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | | Annual | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Avoided | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | | Subtotal | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Sequest ered | _ | - | - | - | - | - | - | - | _ | - | - | - | - | _ | - | - | _ | _ | | Subtotal | - | - | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | - | - | - | _ | _ | | Remove
d | _ | - | - | - | - | - | - | - | _ | - | - | - | - | | - | - | _ | - | | Subtotal | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | # 5. Activity Data ### 5.1. Construction Schedule | Phase Name | Phase Type | Start Date | End Date | Days Per Week | Work Days per Phase | Phase Description | |------------------------------|------------------------------|------------|-----------|---------------|---------------------|-------------------| | Linear, Grading & Excavation | Linear, Grading & Excavation | 5/2/2025 | 1/22/2026 | 5.00 | 190 | - | | Linear, Drainage, Utilities, & Sub-Grade | Linear, Drainage, Utilities, & Sub-Grade | 1/22/2026 | 10/14/2026 | 5.00 | 190 | | |--|--|-----------|------------|------|------|---| | Demolition | Demolition | 5/1/2025 | 5/29/2025 | 5.00 | 20.0 | - | | Building Construction | Building Construction | 6/13/2025 | 4/17/2026 | 5.00 | 220 | - | # 5.2. Off-Road Equipment # 5.2.1. Unmitigated | Phase Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |---|-------------------------------|-----------|-------------|----------------|---------------|------------|-------------| | Linear, Grading &
Excavation | Tractors/Loaders/Backh
oes | Diesel | Average | 1.00 | 4.00 | 84.0 | 0.37 | | Linear, Grading & Excavation | Crawler Tractors | Diesel | Average | 1.00 | 4.00 | 87.0 | 0.43 | | Linear, Grading & Excavation | Excavators | Diesel | Average | 1.00 | 8.00 | 36.0 | 0.38 | | Linear, Grading &
Excavation | Plate Compactors | Diesel | Average | 1.00 | 8.00 | 8.00 | 0.43 | | Linear, Grading &
Excavation | Pavers | Diesel | Average | 1.00 | 8.00 | 81.0 | 0.42 | | Linear, Grading & Excavation | Rollers | Diesel | Average | 1.00 | 8.00 | 36.0 | 0.38 | | Linear, Grading & Excavation | Off-Highway Trucks | Diesel | Average | 1.00 | 8.00 | 376 | 0.38 | | Linear, Grading & Excavation | Signal Boards | Electric | Average | 1.00 | 8.00 | 6.00 | 0.82 | | Linear, Drainage,
Utilities, & Sub-Grade | Cranes | Diesel | Average | 1.00 | 4.00 | 367 | 0.29 | | Linear, Drainage,
Utilities, & Sub-Grade | Forklifts | Diesel | Average | 1.00 | 4.00 | 82.0 | 0.20 | | Linear, Drainage,
Utilities, & Sub-Grade | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 | | Linear, Drainage,
Utilities, & Sub-Grade | Plate Compactors | Diesel | Average | 1.00 | 6.00 | 8.00 | 0.43 | |---|-----------------------------|--------|---------|------|------|------|------| | Linear, Drainage,
Utilities, & Sub-Grade | Rollers | Diesel | Average | 1.00 | 6.00 | 36.0 | 0.38 | | Linear, Drainage,
Utilities, & Sub-Grade | Excavators | Diesel | Average | 1.00 | 4.00 | 36.0 | 0.38 | | Linear, Drainage,
Utilities, & Sub-Grade | Off-Highway Trucks | Diesel | Average | 1.00 | 4.00 | 376 | 0.38 | | Linear, Drainage,
Utilities, & Sub-Grade | Pavers | Diesel | Average | 1.00 | 2.00 | 81.0 | 0.42 | | Demolition | Concrete/Industrial
Saws | Diesel | Average | 2.00 | 6.00 | 33.0 | 0.73 | | Building Construction | Bore/Drill Rigs | Diesel | Average | 1.00 | 8.00 | 83.0 | 0.50 | | Building Construction | Plate Compactors | Diesel | Average | 1.00 | 2.00 | 8.00 | 0.43 | | Building Construction | Tractors/Loaders/Backh oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 | ## 5.3. Construction Vehicles ## 5.3.1. Unmitigated | Phase Name | Trip Type | One-Way Trips per Day | Miles per Trip | Vehicle Mix | |------------------------------|--------------|-----------------------|----------------|---------------| | Demolition | _ | _ | _ | <u> </u> | | Demolition | Worker | 5.00 | 100 | LDA,LDT1,LDT2 | | Demolition | Vendor | - | 10.2 | HHDT,MHDT | | Demolition | Hauling | 18.8 | 100 | HHDT | | Demolition | Onsite truck | - | _ | HHDT | | Linear, Grading & Excavation | _ | - | _ | _ | | Linear, Grading & Excavation | Worker | 20.0 | 100 | LDA,LDT1,LDT2 | | Linear, Grading & Excavation | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Linear, Grading & Excavation | Hauling | 18.0 | 100 | HHDT | | Linear, Grading & Excavation | Onsite truck | _ | _ | HHDT | |--|--------------|------|------|---------------| | Linear, Drainage, Utilities, & Sub-Grade | _ | - | _ | _ | | Linear, Drainage, Utilities, & Sub-Grade | Worker | 20.0 | 100 | LDA,LDT1,LDT2 | | Linear, Drainage, Utilities, & Sub-Grade | Vendor | 0.00 | 10.2 | HHDT,MHDT | | Linear, Drainage, Utilities, & Sub-Grade | Hauling | 0.00 | 20.0 | HHDT | | Linear, Drainage, Utilities, & Sub-Grade | Onsite truck | _ | _ | HHDT | | Building Construction | _ | _ | _ | _ | | Building Construction | Worker | 5.00 | 100 | LDA,LDT1,LDT2 | | Building Construction | Vendor | 6.00 | 100 | HHDT,MHDT | | Building Construction | Hauling | 0.00 | 20.0 | HHDT | | Building Construction | Onsite truck | _ | _ | HHDT | #### 5.4. Vehicles ### 5.4.1. Construction Vehicle Control Strategies Non-applicable. No control strategies activated by user. ### 5.5. Architectural Coatings | Phase Name | Residential Interior Area Coated | Residential Exterior Area Coated | Non-Residential Interior Area | Non-Residential Exterior Area | Parking Area Coated (sq ft) | |------------|----------------------------------|----------------------------------|-------------------------------|-------------------------------|-----------------------------| | | (sq ft) | (sq ft) | Coated (sq ft) | Coated (sq ft) | | ## 5.6. Dust Mitigation ### 5.6.1. Construction Earthmoving Activities | Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Acres Graded (acres) | Material Demolished (Ton of Debris) | Acres Paved (acres) | |--|---------------------------------|---------------------------------|----------------------|-------------------------------------|---------------------| | Linear, Grading & Excavation | _ | 7,210 | 0.74 | 0.00 | _ | | Linear, Drainage, Utilities, & Sub-Grade | _ | _ | 0.74 | 0.00 | _ | | Demolition | 0.00 | 0.00 | 0.00 | 1,500 | _ | |------------|------|------|------|-------|---| ## 5.6.2. Construction Earthmoving Control Strategies | Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction | |----------------------------|---------------------|----------------|-----------------| | Water Exposed Area | 3 | 74% | 74% | ## 5.7. Construction Paving | Land Use | Area Paved (acres) | % Asphalt | |----------------------------|--------------------|-----------| | User Defined Linear | 0.74 | 100% | | Other Non-Asphalt Surfaces | 2.00 | 0% | | Parking Lot | 0.50 | 100% | ### 5.8. Construction Electricity Consumption and Emissions Factors kWh per Year and Emission Factor (lb/MWh) | Year | kWh per Year | CO2 | CH4 | N2O | |------|--------------|-----|------|---------| | 2025 | 29.4 | 349 | 0.03 | < 0.005 | | 2026 | 29.4 | 346 | 0.03 | < 0.005 | ### 5.9. Operational Mobile Sources #### 5.9.1. Unmitigated | Land Use Type | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year | |---------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------| | Total all Land Uses | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ### 5.10. Operational Area Sources #### 5.10.1. Hearths #### 5.10.1.1. Unmitigated #### 5.10.2. Architectural Coatings | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated (sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) | |--|--|--|--|-----------------------------| | 0 | 0.00 | 0.00 | 0.00 | 6,534 | #### 5.10.3. Landscape Equipment | Season | Unit | Value | |-------------|--------|-------| | Snow Days | day/yr | 0.00 | | Summer Days | day/yr | 250 | # 5.11. Operational Energy Consumption ####
5.11.1. Unmitigated Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr) | Land Use | Electricity (kWh/yr) | CO2 | CH4 | N2O | Natural Gas (kBTU/yr) | |----------------------------|----------------------|-----|--------|--------|-----------------------| | Other Non-Asphalt Surfaces | 0.00 | 532 | 0.0330 | 0.0040 | 0.00 | | Parking Lot | 19,079 | 532 | 0.0330 | 0.0040 | 0.00 | ## 5.12. Operational Water and Wastewater Consumption ### 5.12.1. Unmitigated | Land Use | Indoor Water (gal/year) | Outdoor Water (gal/year) | |----------------------------|-------------------------|--------------------------| | Other Non-Asphalt Surfaces | 0.00 | 0.00 | Parking Lot 0.00 0.00 ## 5.13. Operational Waste Generation #### 5.13.1. Unmitigated | Land Use | Waste (ton/year) | Cogeneration (kWh/year) | |----------------------------|------------------|-------------------------| | Other Non-Asphalt Surfaces | 0.00 | _ | | Parking Lot | 0.00 | _ | ### 5.14. Operational Refrigeration and Air Conditioning Equipment ### 5.14.1. Unmitigated | Land Use Type | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced | |---------------|----------------|-------------|-----|---------------|----------------------|-------------------|----------------| |---------------|----------------|-------------|-----|---------------|----------------------|-------------------|----------------| # 5.15. Operational Off-Road Equipment #### 5.15.1. Unmitigated | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor | |----------------|------------|--------------|----------------|----------------|-------------|--------------| | Equipment Type | i dei Type | Lingine riei | Number per Day | Hours I er Day | Tiorsepower | Load I actor | | | | | | | | | ## 5.16. Stationary Sources #### 5.16.1. Emergency Generators and Fire Pumps | Equipment Type | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower | Load Factor | |----------------|-----------|----------------|---------------|----------------|------------|-------------| | Fire Pump | Diesel | 1.00 | 24.0 | 8,760 | 25.0 | 0.73 | #### 5.16.2. Process Boilers # 6. Climate Risk Detailed Report 6.1. Climate Risk Summary Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100. | Climate Hazard | Result for Project Location | Unit | |------------------------------|-----------------------------|--| | Temperature and Extreme Heat | 38.1 | annual days of extreme heat | | Extreme Precipitation | 8.60 | annual days with precipitation above 20 mm | | Sea Level Rise | 0.00 | meters of inundation depth | | Wildfire | 32.4 | annual hectares burned | Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. #### 6.2. Initial Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 0 | 0 | N/A | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 0 | 0 | N/A | | Wildfire | 1 | 0 | 0 | N/A | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 0 | 0 | 0 | N/A | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. #### 6.3. Adjusted Climate Risk Scores | Climate Hazard | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score | |------------------------------|----------------|-------------------|-------------------------|---------------------| | Temperature and Extreme Heat | 5 | 1 | 1 | 4 | | Extreme Precipitation | N/A | N/A | N/A | N/A | | Sea Level Rise | 1 | 1 | 1 | 2 | | Wildfire | 1 | 1 | 1 | 2 | | Flooding | N/A | N/A | N/A | N/A | | Drought | N/A | N/A | N/A | N/A | | Snowpack Reduction | N/A | N/A | N/A | N/A | | Air Quality Degradation | 1 | 1 | 1 | 2 | The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures. #### 6.4. Climate Risk Reduction Measures ## 7. Health and Equity Details #### 7.1. CalEnviroScreen 4.0 Scores The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------------|---------------------------------| | Exposure Indicators | | | AQ-Ozone | 98.7 | | AQ-PM | 4.43 | | AQ-DPM | 1.14 | | | 41 / 46 | | Drinking Water | 70.5 | |---------------------------------|------| | Lead Risk Housing | 65.1 | | Pesticides | 4.55 | | Toxic Releases | 18.1 | | Traffic | 3.04 | | Effect Indicators | _ | | CleanUp Sites | 0.00 | | Groundwater | 0.00 | | Haz Waste Facilities/Generators | 1.80 | | Impaired Water Bodies | 90.1 | | Solid Waste | 75.7 | | Sensitive Population | _ | | Asthma | 26.6 | | Cardio-vascular | 44.6 | | Low Birth Weights | 67.2 | | Socioeconomic Factor Indicators | - | | Education | 9.73 | | Housing | 12.8 | | Linguistic | 0.26 | | Poverty | 55.9 | | Unemployment | 35.0 | # 7.2. Healthy Places Index Scores The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. | Indicator | Result for Project Census Tract | |---------------|---------------------------------| | Economic | | | Above Poverty | 53.62504812 | | Employed | 15.8475555 | |--|-------------| | Median HI | 38.16245348 | | Education | | | Bachelor's or higher | 57.65430515 | | High school enrollment | 0.372128834 | | Preschool enrollment | 1.873476197 | | Transportation | | | Auto Access | 44.50147568 | | Active commuting | 57.28217631 | | Social | _ | | 2-parent households | 49.63428718 | | Voting | 87.82240472 | | Neighborhood | _ | | Alcohol availability | 85.88476838 | | Park access | 61.54240985 | | Retail density | 2.078788656 | | Supermarket access | 11.39484152 | | Tree canopy | 94.22558707 | | Housing | _ | | Homeownership | 62.4534839 | | Housing habitability | 66.86770178 | | Low-inc homeowner severe housing cost burden | 47.83780316 | | Low-inc renter severe housing cost burden | 50.78916977 | | Uncrowded housing | 77.4541255 | | Health Outcomes | _ | | Insured adults | 70.78147055 | | Arthritis | 0.0 | | | | | Asthma ER Admissions | 68.5 |
---------------------------------------|------| | High Blood Pressure | 0.0 | | Cancer (excluding skin) | 0.0 | | Asthma | 0.0 | | Coronary Heart Disease | 0.0 | | Chronic Obstructive Pulmonary Disease | 0.0 | | Diagnosed Diabetes | 0.0 | | Life Expectancy at Birth | 87.1 | | Cognitively Disabled | 32.0 | | Physically Disabled | 7.5 | | Heart Attack ER Admissions | 26.6 | | Mental Health Not Good | 0.0 | | Chronic Kidney Disease | 0.0 | | Obesity | 0.0 | | Pedestrian Injuries | 97.6 | | Physical Health Not Good | 0.0 | | Stroke | 0.0 | | Health Risk Behaviors | _ | | Binge Drinking | 0.0 | | Current Smoker | 0.0 | | No Leisure Time for Physical Activity | 0.0 | | Climate Change Exposures | _ | | Wildfire Risk | 72.7 | | SLR Inundation Area | 0.0 | | Children | 75.0 | | Elderly | 8.4 | | English Speaking | 75.9 | | Foreign-born | 3.5 | |----------------------------------|------| | Outdoor Workers | 55.8 | | Climate Change Adaptive Capacity | | | Impervious Surface Cover | 98.3 | | Traffic Density | 2.9 | | Traffic Access | 23.0 | | Other Indices | _ | | Hardship | 33.2 | | Other Decision Support | _ | | 2016 Voting | 97.1 | ### 7.3. Overall Health & Equity Scores | Metric | Result for Project Census Tract | |---|---------------------------------| | CalEnviroScreen 4.0 Score for Project Location (a) | 24.0 | | Healthy Places Index Score for Project Location (b) | 21.0 | | Project Located in a Designated Disadvantaged Community (Senate Bill 535) | No | | Project Located in a Low-Income Community (Assembly Bill 1550) | No | | Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No | a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. ### 7.4. Health & Equity Measures No Health & Equity Measures selected. #### 7.5. Evaluation Scorecard Health & Equity Evaluation Scorecard not completed. #### 7.6. Health & Equity Custom Measures No Health & Equity Custom Measures created. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. # 8. User Changes to Default Data | Screen | Justification | |-----------------------------------|------------------------------------| | Characteristics: Project Details | Rural Big Bear | | Construction: Construction Phases | Client Provided Schedule | | Construction: Off-Road Equipment | Client provided schedule | | Construction: Trips and VMT | Client provided pump station trips | This page intentionally left blank