Appendix F-2

Noise Assessment

Freq Weight: A
Time Weight: FAST
Level Range: 40-100
Max dB: 62.8 - 2018/01/09 10:43:07
Level Range: 40-100
SEL: 70.9
Leq: 41.4

No.s	Date Time	(dB)				
11 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 106 111 112 1131 1136 141 1156 161 1171 1176 181 1176 181 181 181	2018/01/09 10: 43: 03 2018/01/09 10: 43: 18 2018/01/09 10: 43: 33 2018/01/09 10: 43: 48 2018/01/09 10: 44: 03 2018/01/09 10: 44: 18 2018/01/09 10: 44: 48 2018/01/09 10: 44: 33 2018/01/09 10: 44: 33 2018/01/09 10: 45: 03 2018/01/09 10: 45: 18 2018/01/09 10: 45: 48 2018/01/09 10: 45: 48 2018/01/09 10: 46: 03 2018/01/09 10: 46: 03 2018/01/09 10: 46: 33 2018/01/09 10: 46: 18 2018/01/09 10: 46: 48 2018/01/09 10: 47: 18 2018/01/09 10: 47: 18 2018/01/09 10: 47: 18 2018/01/09 10: 47: 18 2018/01/09 10: 48: 18 2018/01/09 10: 48: 03 2018/01/09 10: 48: 18 2018/01/09 10: 48: 18 2018/01/09 10: 48: 18 2018/01/09 10: 48: 18 2018/01/09 10: 48: 18 2018/01/09 10: 49: 18 2018/01/09 10: 50: 33 2018/01/09 10: 50: 33 2018/01/09 10: 50: 33 2018/01/09 10: 50: 33 2018/01/09 10: 51: 18 2018/01/09 10: 51: 18 2018/01/09 10: 51: 18 2018/01/09 10: 52: 33 2018/01/09 10: 52: 33 2018/01/09 10: 52: 33 2018/01/09 10: 52: 33 2018/01/09 10: 52: 33 2018/01/09 10: 53: 33 2018/01/09 10: 53: 33 2018/01/09 10: 53: 33 2018/01/09 10: 53: 33 2018/01/09 10: 53: 33 2018/01/09 10: 53: 33	52.8 40.6 40.2 42.6 39.9 40.3 40.6 41.0 40.3 40.7 44.5 42.2 42.3 43.0 41.3 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43	42. 7 40. 8 41. 8 40. 8 40. 8 40. 3 39. 8 40. 3 41. 2 42. 1 41. 0 42. 1 41. 0 42. 1 41. 0 42. 1 42. 1 43. 2 43. 3 40. 4 41. 0 45. 7 39. 8 40. 4 40. 3 40. 4 40. 4	39. 6 41. 8 40. 0 39. 6 40. 7 56. 2 40. 7 41. 8 45. 4 41. 8 42. 6 41. 0 41. 0	39. 3 40. 3 42. 4 41. 7 42. 4 39. 9 43. 3 41. 5 42. 3 41. 5 41. 5 40. 7 41. 0 39. 1 41. 0 39. 1 41. 0 39. 1 41. 3 39. 1 41. 3 39. 1 41. 3 41. 3 4 5 4 5 4 5 4 5 4 5 6 6 6 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	40. 4 40. 4 41. 9 40. 4 41. 9 51. 4 43. 4 43. 4 43. 4 43. 4 43. 3 44. 0 42. 1 43. 4 41. 0 42. 1 43. 4 40. 6 40. 7 41. 4 39. 5 40. 7 43. 4 40. 7 40. 7 40. 4 39. 5 40. 7 40. 7
206 211 216 221 226 231 236 241	2018/01/09 10: 53: 18 2018/01/09 10: 53: 33 2018/01/09 10: 53: 48 2018/01/09 10: 54: 03 2018/01/09 10: 54: 18 2018/01/09 10: 54: 33 2018/01/09 10: 54: 48 2018/01/09 10: 55: 03	39. 2 39. 6 39. 6 39. 9 38. 7 42. 0 39. 4 47. 0	39. 4 40. 0 38. 6 39. 2 40. 6 40. 0 39. 6 41. 2	40. 6 39. 8 39. 9 38. 8 39. 0 40. 6 41. 0 39. 7	39. 1 41. 2 39. 8 38. 6 42. 1 40. 4 40. 1 38. 8	39. 4 39. 8 39. 7 38. 8 39. 4 39. 4 40. 3 38. 7
246 251 256 261 266 271 276 281 286 291 296	2018/01/09 10: 55: 18 2018/01/09 10: 55: 33 2018/01/09 10: 55: 48 2018/01/09 10: 56: 03 2018/01/09 10: 56: 18 2018/01/09 10: 56: 33 2018/01/09 10: 56: 48 2018/01/09 10: 57: 03 2018/01/09 10: 57: 18 2018/01/09 10: 57: 33 2018/01/09 10: 57: 48	38. 7 39. 3 41. 2 38. 9 39. 9 40. 0 39. 8 42. 0 39. 3 40. 5	39. 1 38. 6 38. 5 38. 5 40. 8 40. 6 40. 3 40. 4 40. 4 40. 4	39. 7 38. 7 41. 0 39. 5 40. 1 41. 5 41. 3 40. 0 39. 1 40. 9 39. 4	39. 6 40. 2 40. 1 40. 8 40. 7 41. 3 39. 2 39. 6 39. 8 39. 8	39. 3 40. 2 39. 1 40. 0 40. 6 39. 2 39. 6 39. 6 40. 4 39. 0 38. 8

 $\begin{array}{c} \text{Site Preparation} \\ \text{Roadway Construction Noise Model (RCNM), Version 1.1} \end{array}$

Report date: Case Description: 01/26/2018 Site Preparation

**** Receptor #1 ****

		Basel i nes	(dBA)	
Description	Land Use	Daytime	Èveni ng	Ni ght
Singe Family Residence	Resi denti al	55.0	55.0	55.0

Equi pment

Description	I mpact Devi ce	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)
Grader	No	40	85.0		75. 0	0.0
Tractor	No	40	84.0		75. 0	0.0

Resul ts

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

Ni ght		Day	Cal cul ated (dBA) Eveni ng		Day Ni ght		Eveni ng			
Equi pment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax	Leq Leq	Lmax	Leq	Lmax	
Grader N/A	 N/A	 N/A	81.5 N/A	77.5 N/A	 N/A N/A	 N/A N/A	N/A	N/A	N/A	
Tractor N/A	N/A	N/A	80. 5 N/A	76. 5 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	
N/A	To N/A	otal N/A	81.5 N/A	80. 0 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	

**** Receptor #2 ****

		Basel i nes	(dBA)	
Description	Land Use	Daytime	Eveni ng	Ni ght
Single Family Residence	Resi denti al	55.0	55.0	55.0

Equi pment

Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Di stance (feet)	Estimated Shielding (dBA)				
Grader	No	40	85. 0		430.0	0.0				
Tractor	No	40	84.0		430.0	0.0				

Resul ts Page 1

Site Preparation

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght		Day	Cal cul ated (dBA) Eveni no) Di	ay Ni ght 	Eveni	Eveni ng	
	Lmax		Lmax Lmax	Leq Leq	Lmax Lmax 	Leq Leq	Lmax	Leq	Lmax
Grader N/A			 66. 3	62.3	N/A	 N/A	N/A	N/A	N/A
Tractor N/A	N/A	N/A	65. 3	61.3	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A	N/A To	otal	66. 3	64. 9	N/A N/A N/A N/A N/A	N/A N/A	N/A	N/A	N/A
IV/ A	IV/ A	IN/ A	N/ A		ceptor #3 *				
Descriptio	on		Land		Baselin Daytime	es (dBA)	ng Nig	ıht	
Single Fan	Single Family Residence Residentia			denti al	55. 0	 55	. 0 55	5. 0	
					ui pment				
Descriptio	on De	evi ce	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estima Shielo (dBA	ited li ng N)	
Grader Tractor		No	40 40	85. 0 84. 0		600. 0 600. 0		0. 0 0. 0	
				Res	sul ts				
		Noi s	e Limit E	 Exceedanc	ce (dBA)		Noise Li	mits (d	ВА)
Ni ght		Day	Cal cul at	ted (dBA) Eveninç	D.	ay Ni ght 	Eveni	ng	
Equi pment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Grader			63. 4	59. 4	N/A	 N/A	N/A	N/A	N/A
N/A Tractor	N/A	N/A	N/A 62. 4	N/A 58. 4	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A	N/A	N/A otal	N/A 63 4	N/A 62 O	N/A N/A	N/A N/A	N/A	N/A	N/A

62. 0 N/A

N/A

N/A

N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Total

63. 4 N/A

 $\begin{array}{c} \text{Grading} \\ \text{Roadway Construction Noise Model (RCNM), Version 1.1} \end{array}$

Report date:	01/26/2018
Case Description:	Gradi ng

**** Receptor #1 ****

Description	!	Land Use		Baselines Daytime	(dBA) Eveni ng	Ni ght	
Singe Family Resid	ence I	Resi denti a	ıl	55. 0	55. 0	55. 0	
			Equi p	oment			
Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Esti mated Shi el di ng (dBA)	
Concrete Saw Dozer Tractor Front End Loader	No No No No	20 40 40 40	84. 0	89. 6 81. 7)	75. 0 75. 0 75. 0 75. 0 75. 0	0. 0 0. 0 0. 0 0. 0	

Resul ts

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

Ni ght		Day	Cal cul ate	ed (dBA) Eveni ng		ay Ni ght 	Eveni	ng 	
Equi pment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Concrete : N/A Dozer	Saw N/A	 N/A	86. 1 N/A 78. 1	79. 1 N/A 74. 2	 N/A N/A N/A	 N/A N/A N/A	N/A N/A	N/A N/A	N/A N/A
N/A Tractor N/A	N/A N/A	N/A N/A	N/A 80. 5 N/A	N/A 76.5 N/A	N/A N/A N/A	N/A N/A N/A	N/A	N/A	N/A
Front End N/A N/A	N/A	N/A tal N/A	75.6 N/A 86.1 N/A	71.6 N/A 82.2 N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A	N/A N/A	N/A N/A

**** Receptor #2 ****

Description Single Family Resid	Land Use Resi denti al		Baselines Daytime 55.0	(dBA) Eveni ng 55. 0	Ni ght 55. 0	
			Equi p	ment		
Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)
			Pag	e 1		

Concrete Saw Dozer Tractor Front End Loader	No No No No	20 40 40 40	Grac 84. 0	89. 6 81. 7	4 4	30. 0 30. 0 30. 0 30. 0	0. 0 0. 0 0. 0 0. 0	l I	
			Resul	ts					
Noise Limit Exceedance (dBA)									
Ni ght	Cal o	cul ated Ev	 (dBA) eni ng 	D:	ay Night 	Eveni	ng 		
Equipment Leq Lmax	Leq I		Leq		Leq Leq	Lmax	Leq	Lmax	
Concrete Saw				N/A	N/A N/A	N/A	N/A	N/A	
N/A N/A Dozer	N/A 1 N/A 1	0.9 6 N/A 3.0 5	9. 0	N/A N/A	N/A	N/A	N/A	N/A	
N/A N/A Tractor N/A N/A	N/A 6! N/A I	N/A 5.3 6 N/A	1. 3	N/A N/A N/A	N/A N/A N/A	N/A	N/A	N/A	
Front End Loader N/A N/A	N/A 1	D. 4 5 N/A	6. 4	N/A N/A	N/A N/A	N/A	N/A	N/A	
	:al 70	0.96	7. 0	N/A N/A	N/A N/A	N/A	N/A	N/A	
N/A N/A N/A N/A N/A N/A **** Receptor #3 ****									
Baselines (dBA)									
Description		_and Use		Daytime	Eveni	ng Ni g	ht 		
Single Family Resi	dence I	Resi dent	ti al 55.0 55.0 55.0						
			Equi p	ment 					
Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actua Lmax (dBA)	Dist	eptor E ance S eet)	stimated hielding (dBA)		
Concrete Saw Dozer Tractor	No No No	20 40 40	84. 0		6 6	000. 0 000. 0	0. 0 0. 0 0. 0	l I	
Front End Loader	No	40		79. 1	C	00.0	0. 0		
			Resul						
	Noi oo lii	w: +				Noise Li	mits (dB	A)	
	Noise Lir	mı Exce	euance	(UDA)					
Ni ght	Cal o			 Da 	ay Ni ght 	Eveni	ng 		
Equi pment	I	 _max	Leq Pag	Lmax e 2	Leq	Lmax	Leq	Lmax	

				Gra	adi ng				
Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq			
Concrete	Saw		68. 0	61. 0	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Dozer			60. 1	56. 1	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Tractor			62. 4	58. 4	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Front End	Loader		57. 5	53. 5	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
	To	tal	68. 0	64. 1	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			

Building Construction Roadway Construction Noise Model (RCNM), Version 1.1

Report date: Case Description: 01/26/2018 Building Construction

**** Receptor #1 ****

DescriptionSinge Family Residence	Land Use Resi denti al		aselines ytime 55.0	(dBA) Eveni ng 55. 0	Ni ght 55. 0	
		Equi pme	nt			
Fatture to d			Spec	Actual	Receptor	
Esti mated	Impact	Usage	Lmax	Lmax	Di stance	
Shi el di ng Descri pti on	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)
Crane	No	16		80. 6	75. 0	
0.0 All Other Equipment > 5 H	IP No	50	85. 0		75.0	
0.0 All Other Equipment > 5 F 0.0	IP No	50	85. 0		75. 0	
Front End Loader	No	40		79. 1	75. 0	
0. 0 Tractor 0. 0	No	40	84.0		75. 0	

Resul ts

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght	Day	Cal cul ated (dBA) Eveni ng	Day Ni ght	Eveni ng
Equipment Lmax Leq	Lmax L	Lmax Leq eq Lmax Leq	Lmax Leq Lmax Leq	Lmax Leq
Crane		77.0 69.1	N/A N/A	- N/A N/A
N/A N/A All Other Equipme N/A N/A	ent > 5 HP	/A N/A N/A 81.5 78.5 /A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A
All Other Equipment N/A N/A	ent > 5 HP		N/A N/A N/A N/A	N/A N/A
Front End Loader N/A N/A	N/A N.	75.6 71.6 /A N/A N/A	N/A N/A N/A N/A	N/A N/A
Tractor N/A N/A	N/A N	80.5 76.5 /A N/A N/A	N/A N/A N/A N/A	N/A N/A
N/A N/A	Total	81.5 83.2 /A N/A N/A	N/A N/A N/A N/A	N/A N/A

**** Receptor #2 ****

Building Construction Baselines (dBA)

Description	Land Use		aytime	Eveni ng	Ni ght	
Single Family Residence	Resi denti a	ıl	55. 0	55. 0	55. 0	
		Equi pme	ent			
			Spec	Actual	Receptor	
Estimated	Impact	Usage	Lmax	Lmax	Di stance	
Shi el di ng Descri pti on 	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)
 Crane 0. 0	No	16		80. 6	430. 0	
All Other Equipment > 5 HP 0.0	No	50	85.0		430.0	
All Other Equipment > 5 HP 0.0	No	50	85.0		430. 0	
Front End Loader	No	40		79. 1	430.0	
0. 0 Tractor 0. 0	No	40	84. 0		430. 0	

Results

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght	Day	Cal cul ated (Eveni ng		Day i ght 	Eveni r	ng
Equi pment Lmax Leq	Lmax	Lmax Lo Leq Lmax	· .	max Leq max Leq	Lmax	Leq
Crane		61. 9 53		/A N/A	 N/A	N/A
N/A N/A All Other Equipme N/A N/A	N/A ent > 5 HF N/A		. 3 N	/A N/A /A N/A /A N/A	N/A	N/A
All Other Equipme N/A N/A			. 3 N	/A N/A /A N/A	N/A	N/A
Front End Loader	N/A	60. 4 56 N/A N/A	. 4 N	/A N/A /A N/A	N/A	N/A
Tractor N/A N/A	N/A	65. 3 61	. 3 N	/A N/A /A N/A	N/A	N/A
N/A N/A	Total N/A	66. 3 68 N/A N/A	. O N	/A N/A /A N/A	N/A	N/A
		**** Rec	eptor #3 **	**		
Description		Land Use	Baseline Daytime	s (dBA) Evening	Ni ght	

Equi pment Page 2

55.0

55.0

55.0

Resi denti al

Single Family Residence

Building Construction						
Estimated			Spec	Actual	Receptor	
	Impact	Usage	Lmax	Lmax	Di stance	
Shi el di ng Descri pti on 	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)
 Crane 0.0	No	16		80. 6	600. 0	
All Other Equipment > 5 HP 0.0	No	50	85. 0		600. 0	
All Other Equipment > 5 HP 0.0	No	50	85. 0		600. 0	
Front End Loader 0.0	No	40		79. 1	600. 0	
Tractor 0.0	No	40	84. 0		600. 0	

Resul ts

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght	Day	Cal cul ated (dBA) Eveni ng	Day Ni ght	Eveni ng
Equi pment Lmax Leq	Lmax L	Lmax Leq Leq Lmax Leq	Lmax Leq Lmax Leq	- Lmax Leq
Crane		59.0 51.0	N/A N/A	- - N/A N/A
N/A N/A All Other Equi _l N/A N/A	oment > 5 HP	I/A N/A N/A 63.4 60.4 I/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A
All Other Equip	oment > 5 HP N/A N	63.4 60.4 J/A N/A N/A	N/A N/A N/A N/A	N/A N/A
Front End Load	er	57. 5 53. 5 I/A N/A N/A	N/A N/A N/A N/A	N/A N/A
Tractor N/A N/A		62.4 58.4 I/A N/A N/A	N/A N/A N/A N/A	N/A N/A
N/A N/A	Total	63.4 65.1 I/A N/A N/A	N/A N/A N/A N/A	N/A N/A

Paving Roadway Construction Noise Model (RCNM), Version 1.1

Report date: 01/26/2018 Case Description: Paving

**** Receptor #1 ****

		Basel i ne	s (dBA)	
Description	Land Use	Daytime	Évení ng	Ni ght
Singe Family Residence	Resi denti al	55.0	55.0	55.0

Equi pment Spec Receptor **Estimated** Actual Impact Usage Lmax Lmax Di stance Shi el di ng Description Devi ce (%) (dBA) (dBA) (feet) (dBA) 75.0 Concrete Mixer Truck No 40 78.8 0.0 Concrete Mixer Truck 0.0 No 40 78.8 75.0 Drum Mixer 50 80.0 75.0 0.0 No 80. 0 77. 2 Drum Mixer No 50 75.0 0.0 75.0 50 Paver 0.0 No Roller 20 80.0 75.0 0.0 No Tractor 40 84.0 75.0 0.0 No

Results

Noise Limits (dBA) Noise Limits (dBA)

Ni ght		Day	Cal cul ate	ed (dBA) Eveni ng		ay Ni ght 	Eveni	ng	
Equi pment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Concrete			75.3	71.3	N/A	N/A	N/A	N/A	N/A
N/A Concrete			N/A 75. 3	N/A 71.3	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Drum Mixe	N/A r	N/A	N/A 76.5	N/A 73.5	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Drum Mixe	N/A r	N/A	N/A 76.5	N/A 73.5	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Paver N/A	N/A	N/A	73.7 N/A	70. 7 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Roller N/A	N/A	N/A	76.5 N/A	69.5 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Tractor N/A	N/A	N/A	80. 5 N/A	76.5 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
	1	Γotal	80. 5	81. 4	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			

**** Receptor #2 ****

Description

Land Use

Baselines (dBA)

Daytime Evening Night

Page 1

Pavi ng

Single Family Residence	Resi denti al	55.0	55.0	55.0

Equi pment

Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Esti mated Shi el di ng (dBA)
Concrete Mixer Truck	No	40		78.8	430.0	0.0
Concrete Mixer Truck	No	40		78.8	430.0	0. 0
Drum Mixer	No	50		80.0	430.0	0.0
Drum Mixer	No	50		80.0	430.0	0.0
Paver	No	50		77. 2	430.0	0.0
Roller	No	20		80.0	430.0	0.0
Tractor	No	40	84.0		430.0	0.0

Resul ts

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

Ni ght	Day	Cal cul ated (dBA) Eveni ng

Ni ght		Day	Cal cul ate	ed (dBA) Evening	D	ay Ni ght	Eveni	ng	
Equi pment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Concrete			60. 1	56. 1	 N/A	N/A	N/A	N/A	N/A
N/A Concrete N/A	Mi xer Tı	N/A ruck N/A	N/A 60. 1 N/A	N/A 56. 1 N/A	N/A N/A N/A	N/A N/A N/A	N/A	N/A	N/A
Drum Mixe	er	N/A	61. 3 N/A	58.3 N/A		N/A N/A	N/A	N/A	N/A
Drum Mixe N/A		N/A	61. 3 N/A	58. 3 N/A		N/A N/A	N/A	N/A	N/A
Paver N/A	N/A	N/A	58. 5 N/A	55.5 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Roller N/A	N/A	N/A	61.3 N/A	54.3 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Tractor N/A	N/A _	N/A	65.3 N/A	61.3 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A		otal N/A	65.3 N/A	66.2 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A

**** Receptor #3 ****

Description	Land Use	Baselines Daytime	(dBA) Eveni na	Ni aht
beschiptron	Lana 036	Day trille	Lvening	
Single Family Residence	Resi denti al	55.0	55. 0	55.0

Equi pment

Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)
			Page 2			

		F	Pavi ng			
Concrete Mixer Truck	No	40	Ü	78. 8	600.0	0.0
Concrete Mixer Truck	No	40		78.8	600.0	0.0
Drum Mixer	No	50		80.0	600.0	0.0
Drum Mixer	No	50		80.0	600. 0	0.0
Paver	No	50		77. 2	600. 0	0.0
Roller	No	20		80.0	600. 0	0.0
Tractor	No	40	84.0		600.0	0.0

Resul ts

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght		Day	Cal cul ate	ed (dBA) Evening		ay Ni ght	Eveni	ng	
Equipment			Lmax	Leq	 	Leq	 Lmax	Leq	Lmax
Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	LIIIdX	Leq	Liliax
Concrete			57. 2	53. 2	N/A	N/A	N/A	N/A	N/A
N/A Concrete			N/A 57. 2	N/A 53. 2	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Drum Mixe	N/A er	N/A	N/A 58. 4	N/A 55. 4	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Drum Mixe	N/A er	N/A	N/A 58. 4	N/A 55.4	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Paver	N/A	N/A	N/A 55. 6	N/A 52.6	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Roller N/A	N/A	N/A	58. 4 N/A	51. 4 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Tractor N/A	N/A	N/A	62. 4 N/A	58. 4 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A		otal N/A	62. 4 N/A	63.3 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A

Architectural Coating
Roadway Construction Noise Model (RCNM), Version 1.1

	Roa	adway Cons	structi	on Noise	Model (RCN	M), V€	ersion 1.1	
Report date: Case Description:		1/26/2018 chi tectur	ral Coa	ti ng				
		* * * *	* Recep	tor #1 **	**			
Description		_and Use		Daytime	es (dBA) Evening	Ni	ght	
Singe Family Resid	dence F	Residentia	al	55. 0	55. 0		55. 0	
			Equi p	ment				
Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Recept Di stan (feet	or ce)	Estimated Shi elding (dBA)	
Compressor (air)				77. 7	75	. 0	0. 0	
			Resul					
Noise Limits (dBA) Noise Limit Exceedance (dBA))	
Ni ght	 Cal Day	culated (Eve	dBA) eni ng	 Da N	ıy li ght	Eve	eni ng	
Equipment Leq Lmax	Leq	Lmax l Lmax l 	_eq 	Lmax Lmax	Leq Leq	Lmax	x Leq 	Lmax
Compressor (air)		74.1 70	0. 2	N/A	N/A	N/A	N/A	N/A
N/A N/A Tot N/A N/A	N/A tal 7 N/A	N/A 1 74.1 70 N/A 1	N/A D. 2 N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A	N/A	N/A
				tor #2 **				
Description		Land Use		Baseline Daytime	es (dBA) Evening	ı ı	Ni ght	
Single Family Resi	dence	Resi denti	al	55. 0	55. 0	•	55. 0	
			Equi p	ment				
Description	Impact Device	Usage (%)	Spec Lmax (dBA)		Recept Di stan (feet	ce	Estimated Shielding (dBA)	
Compressor (air)	No	40		77. 7	430	. 0	0.0	

Resul ts

Noise Limit Exceedance (dBA)

Page 1

Noise Limits (dBA)

Architectural Coating

Ni ght		Day	Cal cul ate	d (dBA) Eveni ng		ay Night 	Eveni	ng 	
Equipment Leq	 Lmax 	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Compressor N/A	Ν̈́/Α΄	 N/A	 59.0 N/A	55. O N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A	Tot N/A	al N/A	59. O N/A	55.0 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A

**** Receptor #3 ****

		Basel i nes	(dBA)	
Description	Land Use	Dayti me	Eveni ng	Ni ght
Single Family Residence	Resi denti al	55.0	55. 0	55.0

Equi pment

Description	Impact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Di stance (feet)	Estimated Shi el di ng (dBA)
Compressor (air)	No	40		 77. 7	600. 0	0.0

Resul ts

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

Ni ght		Day	Cal cul ate	d (dBA) Eveni ng		ay Ni ght 	Eveni	ng 	
Equi pment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Compressor N/A	N/A	N/A	56. 1 N/A	52. 1 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A	Tot N/A	al N/A	56. 1 N/A	52. 1 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A

Vibration Analysis

PPV (in/sec) = PPV {ref} * (25/D)^1.5

Where PPV = Peak Particle Velocity {ref} = PPV at the reference distance of 25 feet D = distance to the receptor

Equipment = Roller

PPV is 1.7x to 6x larger than RMS velocity

Assume typical conversion factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.010 in/sec Lv = 80 VdB

Equipment = Roller

PPV{ref} = 0.21 in/sec D = 430 feet PPV at receptor = 0.003 in/sec

PPV is 1.7x to 6x larger than RMS velocity

Assume typical conversion factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.001 in/sec Lv = 57 VdB

Equipment = Roller

 $PPV{ref} = 0.21 \text{ in/sec}$ D = 600 feet PPV at receptor = 0.002 in/sec

PPV is 1.7x to 6x larger than RMS velocity Assume typical conversion factor of

cal conversion factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.000 in/sec Lv = 53 VdB

Source: Chapter 12 Noise and Vibration During Construction in

Transit Noise and Vibration Assessment, April 1995

Harris Miller Miller & Hanson, Inc.

Prepared For: USDOT Federal Transit Administration

Criterion

US Bureau of Mines, 1971						
PPV, in/sec	Degree of Damage					
<2	Safe					
2 - 4	Plaster Cracking					
4 - 7	Minor Damage					
>7	Major Damage					

Canmet, Bauer, and Calder, 1977								
Equipment	PPV Threshold, in/sec	Type of Damage						
Rigid Mercury Switches	0.5	Trip Out						
House	2	Cracked Plaster						
Concrete Block	8	Crack in Block						
Cased Drill Holes	15	Horizontol Offset						
Pumps, Compressors	40	Shaft Misalignment						

Human Response Criteria

-	Equivalent Noise Level, dBA			
Level, Lv in VdB	Low freq (30Hz) Hi Freq (60 Hz)		Human Response	
65	25	40	Approximate threshold of perception, low-freq inaudible, but mid-freq excessive for sleeping	
75	25	50	Approx. dividing line between barely perceptible and clearly perceptible. Annoying vibration for	
75 35			most people. Low-freq acceptable for sleeping areas.	
95	15	45	E C	Vibration acceptable only if no more than 2 events/day for residential uses. Low-freq annoying in
85	40	60	sleeping areas; mid-freq unacceptable for sensitive uses, including schools and churches.	
90	50	65	Difficulty with tasks such as reading computer screens. Generally annoying for commercial uses.	

Impact Criteria

Impact official	Lv in VdB			
Land Use	Frequent Events	Occasional	Infrequent (<30	
	(70+/day)	Events (30-70)	events/day)	
Category 1: Vibration				
Sensitive	65	65	65	
Concert Halls	65	65	65	
TV Studios	65	65	65	
Recording Studios	65	65	65	
Category 2: Residences,				
hotels, sleeping areas	72	75	80	
Auditoriums	72	80	80	
Theaters	72	80	80	
Category 3: Institutional with				
primarily daytime use only	75	78	83	

Vibration Source Levels For Construction Equipment

		DD\/ -+ 0E #	A
		PPV at 25 ft	Approximate Lv
Equipment		(in/sec)	at 25 feet *
Impact Pile Driver	upper range	1.518	112
	typical	0.644	104
Sonic Pile Driver	upper range	0.734	105
	typical	0.17	93
Clam shovel drop (slurry			
wall construction)		0.202	94
Hydromill (slurry wall	in soil	0.008	66
construction)	in rock	0.017	75
Vibratory Roller		0.21	94
Hoe Ram		0.089	87
	large	0.089	87
Bulldozer	small	0.003	58
Caisson drilling		0.089	87
Loaded trucks		0.076	86
Jackhammer		0.035	79

RMS Velocity in decibels VdB with Vref of 1E-6 in/sec and PPV:RMS of ~

Vibration Analysis

PPV (in/sec) = PPV {ref} * (25/D)^1.5

Where PPV = Peak Particle Velocity {ref} = PPV at the reference distance of 25 feet D = distance to the receptor

Equipment = Large bulldozer

 $PPV{ref} = 0.089 \text{ in/sec}$ D = 75 feetPPV at receptor = 0.017 in/sec

PPV is 1.7x to 6x larger than RMS velocity Assume typical conversion factor of

ssume typical conversion factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.004 in/sec Lv = 73 VdB

Equipment = Large bulldozer

 $PPV{ref} = 0.089 \text{ in/sec}$ D = 430 feet PPV at receptor = 0.001 in/sec

PPV is 1.7x to 6x larger than RMS velocity

Assume typical conversion factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.000 in/sec Lv = 50 VdB

Equipment = Large bulldozer

 $PPV{ref} = 0.089 \text{ in/sec}$ D = 600 feet PPV at receptor = 0.001 in/sec

PPV is 1.7x to 6x larger than RMS velocity Assume typical conversion factor of

n factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.000 in/sec Lv = 46 VdB

Source: Chapter 12 Noise and Vibration During Construction in

Transit Noise and Vibration Assessment, April 1995

Harris Miller Miller & Hanson, Inc.

Prepared For: USDOT Federal Transit Administration

Criterion

US Bureau of Mines, 1971		
PPV, in/sec	Degree of Damage	
<2	Safe	
2 - 4	Plaster Cracking	
4 - 7	Minor Damage	
>7	Major Damage	

Canmet, Bauer, and Calder, 1977				
Equipment	PPV Threshold, in/sec	Type of Damage		
Rigid Mercury Switches	0.5	Trip Out		
House	2	Cracked Plaster		
Concrete Block	8	Crack in Block		
Cased Drill Holes	15	Horizontol Offset		
Pumps, Compressors	40	Shaft Misalignment		

Human Response Criteria

	Equivalent Noise Level, dBA		
Level, Lv in VdB	Low freq (30Hz) Hi Freq (60 Hz)		Human Response
65	25		Approximate threshold of perception, low-freq inaudible, but mid-freq excessive for sleeping
75	35	50	Approx. dividing line between barely perceptible and clearly perceptible. Annoying vibration for
73	33		most people. Low-freq acceptable for sleeping areas.
85	45		Vibration acceptable only if no more than 2 events/day for residential uses. Low-freq annoying in
85	45	00	sleeping areas; mid-freq unacceptable for sensitive uses, including schools and churches.
90	50	65	Difficulty with tasks such as reading computer screens. Generally annoying for commercial uses.

Impact Criteria

Impact Officia	Lv in VdB			
Land Use	Frequent Events	Occasional	Infrequent (<30	
	(70+/day)	Events (30-70)	events/day)	
Category 1: Vibration				
Sensitive	65	65	65	
Concert Halls	65	65	65	
TV Studios	65	65	65	
Recording Studios	65	65	65	
Category 2: Residences,				
hotels, sleeping areas	72	75	80	
Auditoriums	72	80	80	
Theaters	72	80	80	
Category 3: Institutional with				
primarily daytime use only	75	78	83	

Vibration Source Levels For Construction Equipment

		DD\/ -+ 0E #	A
		PPV at 25 ft	Approximate Lv
Equipment		(in/sec)	at 25 feet *
Impact Pile Driver	upper range	1.518	112
	typical	0.644	104
Sonic Pile Driver	upper range	0.734	105
	typical	0.17	93
Clam shovel drop (slurry			
wall construction)		0.202	94
Hydromill (slurry wall	in soil	0.008	66
construction)	in rock	0.017	75
Vibratory Roller		0.21	94
Hoe Ram		0.089	87
	large	0.089	87
Bulldozer	small	0.003	58
Caisson drilling		0.089	87
Loaded trucks		0.076	86
Jackhammer		0.035	79

* RMS Velocity in decibels VdB with Vref of 1E-6 in/sec and PPV:RMS of ~

Vibration Analysis

PPV (in/sec) = PPV {ref} * (25/D)^1.5

Where PPV = Peak Particle Velocity {ref} = PPV at the reference distance of 25 feet D = distance to the receptor

Equipment = Truck

 $PPV{ref} = 0.076 \text{ in/sec}$ D = 75 feet PPV at receptor = 0.015 in/sec

PPV is 1.7x to 6x larger than RMS velocity

Assume typical conversion factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.004 in/sec Lv = 71 VdB

Equipment = Ruck

PPV{ref} = 0.076 in/sec D = 430 feet PPV at receptor = 0.001 in/sec

PPV is 1.7x to 6x larger than RMS velocity

Assume typical conversion factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.000 in/sec Lv = 49 VdB

Equipment = Ruck

PPV{ref} = 0.076 in/sec D = 600 feet PPV at receptor = 0.001 in/sec

PPV is 1.7x to 6x larger than RMS velocity

Assume typical conversion factor of 4 PPV:RMS

Therefore estimated RMS velocity = 0.000 in/sec Lv = 44 VdB

Source: Chapter 12 Noise and Vibration During Construction in

Transit Noise and Vibration Assessment, April 1995

Harris Miller Miller & Hanson, Inc.

Prepared For: USDOT Federal Transit Administration

Criterion

US Bureau of Mines, 1971		
PPV, in/sec	Degree of Damage	
<2	Safe	
2 - 4	Plaster Cracking	
4 - 7	Minor Damage	
>7	Major Damage	

Canmet, Bauer, and Calder, 1977				
Equipment	PPV Threshold, in/sec	Type of Damage		
Rigid Mercury Switches	0.5	Trip Out		
House	2	Cracked Plaster		
Concrete Block	8	Crack in Block		
Cased Drill Holes	15	Horizontol Offset		
Pumps, Compressors	40	Shaft Misalignment		

Human Response Criteria

-	Equivalent Noise Level, dBA			
Level, Lv in VdB	Low freq (30Hz) Hi Freq (60 Hz)		Human Response	
65	25	40	Approximate threshold of perception, low-freq inaudible, but mid-freq excessive for sleeping	
75	25	50	Approx. dividing line between barely perceptible and clearly perceptible. Annoying vibration for	
75 35			most people. Low-freq acceptable for sleeping areas.	
95	15	45	E C	Vibration acceptable only if no more than 2 events/day for residential uses. Low-freq annoying in
85	40	60	sleeping areas; mid-freq unacceptable for sensitive uses, including schools and churches.	
90	50	65	Difficulty with tasks such as reading computer screens. Generally annoying for commercial uses.	

Impact Criteria

Impact Officia	Lv in VdB			
Land Use	Frequent Events	Occasional	Infrequent (<30	
	(70+/day)	Events (30-70)	events/day)	
Category 1: Vibration				
Sensitive	65	65	65	
Concert Halls	65	65	65	
TV Studios	65	65	65	
Recording Studios	65	65	65	
Category 2: Residences,				
hotels, sleeping areas	72	75	80	
Auditoriums	72	80	80	
Theaters	72	80	80	
Category 3: Institutional with				
primarily daytime use only	75	78	83	

Vibration Source Levels For Construction Equipment

		DD\/ -+ 05 #	Ammanda ata I
		PPV at 25 ft	Approximate Lv
Equipment		(in/sec)	at 25 feet *
Impact Pile Driver	upper range	1.518	112
	typical	0.644	104
Sonic Pile Driver	upper range	0.734	105
	typical	0.17	93
Clam shovel drop (slurry			
wall construction)		0.202	94
Hydromill (slurry wall	in soil	0.008	66
construction)	in rock	0.017	75
Vibratory Roller		0.21	94
Hoe Ram		0.089	87
	large	0.089	87
Bulldozer	small	0.003	58
Caisson drilling		0.089	87
Loaded trucks		0.076	86
Jackhammer		0.035	79

RMS Velocity in decibels VdB with Vref of 1E-6 in/sec and PPV:RMS of ~