1520 WEST SAN CARLOS STREET MIXED USE PROJECT AIR QUALITY ASSESSMENT

San José, California

October 20, 2022

Prepared for:

Patrick Kallas Associate Project Manager David J Powers & Associates Inc. 1871 The Alameda Suite 200 San José, CA 95126

Prepared by:

Casey Divine Jordyn Bauer Zachary Palm

ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue Cotati, CA 94931 (707) 794-0400

I&R Project#: 21-110

Introduction

This report addresses the potential air quality and community risk impacts associated with the construction of the proposed mixed-use project located at 1520 West San Carlos Street in San José, California. Air quality impacts from this project would be associated with the demolition of the existing land uses, construction of the new building and infrastructure, and operation of the project. Air pollutant emissions were predicted using appropriate computer models. In addition, the potential health risk impacts associated with construction and operation of the project and the impact of existing toxic air contaminant (TAC) sources affecting the nearby and proposed sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).¹

Project Description

The project site is currently developed with existing commercial and residential properties. The project proposes to demolish the existing uses and construct a new seven-story mixed-use building on a 1.62-acre site. The proposed building would include 256 residential units and approximately 15,203 square feet (sf) of first- and second-floor commercial space. It would also include a 261 space, two-level parking garage on the ground floor of the building and one level below ground. Of the 261 parking spaces, 27 spaces would be provided for electric vehicles. Construction is expected to begin in June 2023 and will be completed by October 2024.

Setting

The project is located in Santa Clara County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM_{10}), and fine particulate matter ($PM_{2.5}$).

Air Pollutants of Concern

High ozone levels are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO_X). These precursor pollutants react under certain meteorological conditions to form high ozone levels. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ozone levels. The highest ozone levels in the Bay Area occur in the eastern and southern inland valleys downwind of existing air pollutant sources. High ozone levels aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant of the Bay Area. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM₁₀) and fine particulate matter where particles have a diameter of 2.5 micrometers or less (PM_{2.5}). Elevated concentrations of PM₁₀ and PM_{2.5} are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter levels

¹ Bay Area Air Quality Management District, *CEQA Air Quality Guidelines*, May 2017.

aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

Toxic Air Contaminants

TACs are a broad class of compounds known to cause morbidity or mortality, often because they cause cancer. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about threequarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs. Health risks from TACs are estimated using the Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines, which were published in February of 2015.² See *Attachment 1* for a detailed description of the community risk modeling methodology used in this assessment.

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, people over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site are the multi-family residences to the north and west, and single-family residences to the east and south. This project would introduce new sensitive receptors (i.e., residents) to the area.

Regulatory Setting

Federal Regulations

The United States Environmental Protection Agency (EPA) sets nationwide emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and

² OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA also sets nationwide fuel standards. However, California also has the ability to set motor vehicle emission standards and standards for fuel, as long as they are the same or more stringent than the nationwide standards.

In the past decade the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel engines are a significant source of NO_X and particulate matter (PM_{2.5}) and because the EPA has identified DPM as a probable carcinogen. Implementation of the heavy-duty diesel on-road vehicle standards and the non-road diesel engine standards are estimated to reduce particulate matter and NO_X emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.³

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. Current standards have reduced the amount of sulfur allowed by 97 percent for highway diesel fuel (from 500 parts per million by weight [ppmw] to 15 ppmw), and by 99 percent for off-highway diesel fuel (from about 3,000 ppmw to 15 ppmw). The low sulfur highway fuel (15 ppmw sulfur), also called ultralow sulfur diesel (ULSD), is currently required for use by all diesel vehicles in the U.S.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

State Regulations

To address the issue of diesel emissions in the state, CARB developed the *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.*⁴ In addition to requiring more stringent emission standards for new on-road and off-road mobile sources and stationary diesel-fueled engines to reduce particulate matter emissions by 90 percent, a significant component of the plan involves application of emission control strategies to existing diesel vehicles and equipment. Many of the measures of the Diesel Risk Reduction Plan have been approved and adopted, including the federal on-road and non-road diesel engine emission standards for new engines, as well as adoption of regulations for low sulfur fuel in California.

CARB has adopted and implemented a number of regulations for stationary and mobile sources to reduce emissions of DPM. Several of these regulatory programs affect medium and heavy-duty diesel trucks that represent the bulk of DPM emissions from California highways. CARB regulations require on-road diesel trucks to be retrofitted with particulate matter controls or replaced to meet 2010 or later engine standards that have much lower DPM and PM_{2.5} emissions. This regulation will substantially reduce these emissions between 2013 and 2023. While new

³ USEPA, 2000. *Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements*. EPA420-F-00-057. December.

⁴ California Air Resources Board, 2000. *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.* October.

trucks and buses will meet strict federal standards, this measure is intended to accelerate the rate at which the fleet either turns over so there are more cleaner vehicles on the road or is retrofitted to meet similar standards. With this regulation, older, more polluting trucks would be removed from the roads sooner.

CARB has also adopted and implemented regulations to reduce DPM and NO_X emissions from inuse (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce DPM and NO_X exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleet-averaged emission rates. Implementation of this regulation, in conjunction with stringent federal off-road equipment engine emission limits for new vehicles, will significantly reduce emissions of DPM and NO_X.

Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the NAAQS and CAAQS. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area.⁵ The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program is implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses is used to focus emission reduction measures in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. The BAAQMD has identified six communities as impacted as part of the CARE program: Concord, Richmond/San Pablo, Western Alameda County, San José, Redwood City/East Palo Alto, and Eastern San Francisco.

⁵ See BAAQMD: <u>https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program</u>, accessed 2/18/2021.

Additionally, overburdened communities are areas located (i) within a census tract identified by the California Communities Environmental Health Screening Tool (CalEnviroScreen), Version 4.0 implemented by OEHHA, as having an overall score at or above the 70th percentile, or (ii) within 1,000 feet of any such census tract.⁶ The project site is located in the San José CARE area but not within an overburdened area as identified by CalEnviroScreen as the Project site is scored at the 53rd percentile.⁷

The BAAQMD California Environmental Quality Act (*CEQA*) Air Quality Guidelines⁸ were prepared to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They also include assessment methodologies for TACs, odors, and GHG emissions.

San José Envision 2040 General Plan

The San José Envision 2040 General Plan includes goals, policies, and actions to reduce exposure of the City's sensitive population to exposure of air pollution and toxic air contaminants or TACs. The following goals, policies, and actions are applicable to the proposed project and this assessment:

Applicable Goals – Air Pollutant Emission Reduction

Goal MS-10 Minimize emissions from new development.

Applicable Policies – Air Pollutant Emission Reduction

- MS-10.1 Assess projected air emissions from new development in conformance with the BAAQMD CEQA Guidelines and relative to state and federal standards. Identify and implement feasible air emission reduction measures.
- MS-10.2 Consider the cumulative air quality impacts from proposed developments for proposed land use designation changes and new development, consistent with the region's Clean Air Plan and State law.
- MS-10.3 Promote the expansion and improvement of public transportation services and facilities, where appropriate, to both encourage energy conservation and reduce air pollution.
- MS-10.5 In order to reduce vehicle miles traveled and traffic congestion, require new development within 2,000 feet of an existing or planned transit station to encourage the use of public transit and minimize the dependence on the automobile through the application of site design guidelines and transit incentives.

⁶ See BAAQMD: <u>https://www.baaqmd.gov/~/media/dotgov/files/rules/reg-2-permits/2021-amendments/documents/20210722_01_appendixd_mapsofoverburdenedcommunities-pdf.pdf?la=en</u>, accessed 10/1/2021.

⁷ OEHAA, CalEnviroScreen 4.0 Indicator Maps <u>https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40</u>

⁸ Bay Area Air Quality Management District, 2017. CEQA Air Quality Guidelines. May.

- MS-10.7 Encourage regional and statewide air pollutant emission reduction through energy conservation to improve air quality.
- MS-10.11 Enforce the City's wood-burning appliance ordinance to limit air pollutant emissions from residential and commercial buildings.
- MS-10.13 As a part of City of San José Sustainable City efforts, educate the public about air polluting household consumer products and activities that generate air pollution. Increase public awareness about the alternative products and activities that reduce air pollutant emissions.

Applicable Goals – Toxic Air Contaminants

Goal MS-11 Minimize exposure of people to air pollution and toxic air contaminants such as ozone, carbon monoxide, lead, and particulate matter.

Applicable Policies – Toxic Air Contaminants

- MS-11.1 Require completion of air quality modeling for sensitive land uses such as new residential developments that are located near sources of pollution such as freeways and industrial uses. Require new residential development projects and projects categorized as sensitive receptors to incorporate effective mitigation into project designs or be located an adequate distance from sources of toxic air contaminants (TACs) to avoid significant risks to health and safety.
- MS-11.2 For projects that emit toxic air contaminants, require project proponents to prepare health risk assessments in accordance with BAAQMD-recommended procedures as part of environmental review and employ effective mitigation to reduce possible health risks to a less than significant level. Alternatively, require new projects (such as, but not limited to, industrial, manufacturing, and processing facilities) that are sources of TACs to be located an adequate distance from residential areas and other sensitive receptors.
- MS-11.4 Encourage the installation of appropriate air filtration at existing schools, residences, and other sensitive receptor uses adversely affected by pollution sources.
- MS-11.5 Encourage the use of pollution absorbing trees and vegetation in buffer areas between substantial sources of TACs and sensitive land uses.

Actions – Toxic Air Contaminants

MS-11.6 Develop and adopt a comprehensive Community Risk Reduction Plan that includes: baseline inventory of TACs and PM_{2.5}, emissions from all sources, emissions reduction targets, and enforceable emission reduction strategies and performance measures. The Community Risk Reduction Plan will include enforcement and monitoring tools to ensure regular review of progress toward the

emission reduction targets, progress reporting to the public and responsible agencies, and periodic updates of the plan, as appropriate.

- MS-11.7 Consult with BAAQMD to identify stationary and mobile TAC sources and determine the need for and requirements of a health risk assessment for proposed developments.
- MS-11.8 For new projects that generate truck traffic, require signage which reminds drivers that the State truck idling law limits truck idling to five minutes.

Applicable Goals – Construction Air Emissions

Goal MS-13 Minimize air pollutant emissions during demolition and construction activities.

Applicable Policies – Construction Air Emissions

MS-13.1 Include dust, particulate matter, and construction equipment exhaust control measures as conditions of approval for subdivision maps, site development and planned development permits, grading permits, and demolition permits. At minimum, conditions shall conform to construction mitigation measures recommended in the current BAAQMD CEQA Guidelines for the relevant project size and type.

Applicable Actions – Construction Air Emissions

MS-13.4 Adopt and periodically update dust, particulate, and exhaust control standard measures for demolition and grading activities to include on project plans as conditions of approval based upon construction mitigation measures in the BAAQMD CEQA Guidelines.

Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA and these significance thresholds were contained in the District's 2011 *CEQA Air Quality Guidelines*. These thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA. The thresholds were challenged through a series of court proceedings and were mostly upheld. BAAQMD updated its thresholds in the *CEQA Air Quality Guidelines* in 2017. The latest BAAQMD significance thresholds used in this analysis are summarized in Table 1. Community health risks are considered significant if they exceed these thresholds.

Cuitonia Ain Dollutont	Construction Thresholds	Operational Thresholds		
Criteria Air Pollutant	Average Daily Emissions (lbs./day)	Average Daily Emissions (lbs./day)	Annual Average Emissions (tons/year)	
ROG	54	54	10	
NO _x	54	54	10	
PM ₁₀	82 (Exhaust)	82	15	
PM _{2.5}	54 (Exhaust)	54	10	
СО	Not Applicable	9.0 ppm (8-hour average) or 20.0 ppm (1-hour average)		
Fugitive Dust	Construction Dust Ordinance or other Best Management Practices	None		
Health Risks and Hazards	Single Sources Within 1,000-foot Zone of Influence	Combined Sources (Cumulative from all sources within 1000-foot zone of influence		
Excess Cancer Risk	10 per one million	100 per 0	one million	
Hazard Index	1.0	10.0		
Incremental annual PM _{2.5}	$0.3 \ \mu g/m^3$	0.8 µg/m ³		
Note: ROG = reactive organic gases, NOx = nitrogen oxides, PM_{10} = course particulate matter or particulates with an aerodynamic diameter of 10 micrometers (µm) or less, $PM_{2.5}$ = fine particulate matter or particulates with an aerodynamic diameter of 2.5µm or less.				

 Table 1.
 BAAQMD CEQA Significance Thresholds

Source: Bay Area Air Quality Management District, 2017

AIR QUALITY IMPACTS AND MITIGATION MEASURES

Impact AIR-1: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

The Bay Area is considered a non-attainment area for ground-level O₃ and PM_{2.5} under both the NAAQS and the CAAQS. The area is also considered non-attainment for PM₁₀ under the CAAQS, but not the NAAQS. The area has attained both State and Federal ambient air quality standards for CO. As part of an effort to attain and maintain ambient air quality standards for O₃, PM_{2.5} and PM₁₀, the BAAQMD has established thresholds of significance for these air pollutants and their precursors. The O₃ precursor pollutant thresholds are for ROG and NOx, while PM₁₀, and PM_{2.5} have specific thresholds. The thresholds apply to both construction period emissions and operational period emissions.

Construction Period Emissions

The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types, size, and anticipated construction schedule were input to CalEEMod.

The CARB EMission FACtors 2021 (EMFAC2021) model was used to predict emissions from construction traffic, which includes worker travel, vendor trucks, and haul trucks.⁹ The CalEEMod model output along with construction inputs are included in *Attachment 2* and EMFAC2021 vehicle emissions modeling outputs are included in *Attachment 3*.

CalEEMod Inputs

Land Use Inputs

The proposed project land uses were entered into CalEEMod as described in Table 2.

	Jeer Bana	e se instats		
Project Land Uses	Size	Units	Square Feet (sf)	Acreage
Apartments Mid Rise	256	Dwelling Unit	187,279	
Regional Shopping Center	15.20	1,000 sf	15,203	1.62
Enclosed Parking with Elevator	261	Parking Spaces	96,853	

Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size, and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario, including equipment list and schedule, were based on information provided by the project applicant.

The project construction equipment worksheet included the schedule for each phase of construction (included in *Attachment 2*). Within each construction phase, the quantity of equipment to be used along with the average use hours per day and total number of workdays was based on CalEEMod defaults and updated and approved by the applicant. The construction schedule assumed that the earliest possible start date would be June 2023 and the project would be built out over a period of approximately 16 months or 350 construction workdays. The earliest year of operation was assumed to be 2025.

Construction Truck Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the estimate of demolition material to be exported, soil imported and/or exported to the site, and the estimate of concrete and asphalt used for construction. CalEEMod provides daily estimates of worker and vendor trips for each applicable phase. The total trips for those were computed by multiplying the daily trip rate by the number of days in that phase. Haul trips for demolition and grading were developed by CalEEMod using the provided demolition and grading volumes, assuming each truck could carry 10 tons per load. The number

⁹ See CARB's EMFAC2021 Emissions Inventory at <u>https://arb.ca.gov/emfac/emissions-inventory</u>

of concrete and asphalt total round haul trips were estimated for the project and converted to total one-way trips, assuming two trips per delivery.

The latest version of the CalEEMod model is based on the older version of the CARB EMFAC2017 motor vehicle emission factor model. This model has been superseded by the EMFAC2021 model. However, CalEEMod has not been updated to include EMFAC2021. The construction traffic information was combined with EMFAC2021 motor vehicle emissions factors. EMFAC2021 provides aggregate emission rates in grams per mile for each vehicle type. The vehicle mix for this study was based on CalEEMod defaults, where worker trips are assumed to be comprised of light-duty autos (EMFAC category LDA) and light duty trucks (EMFAC category LDT1 and LDT2). Vendor trips are comprised of delivery and large trucks (EMFAC category MHDT and HHDT) and haul trips, including concrete trucks, are comprised of large trucks (EMFAC category HHDT). Travel distances are based on CalEEMod default lengths, which are 10.8 miles for worker travel, 7.3 miles for vendor trips and 20 miles for hauling (demolition material export and soil import/export). Since CalEEMod does not appear to specifically address concrete or asphalt truck trips, these were treated as vendor travel distances. Each trip was assumed to include an idle time of 5 minutes. Emissions associated with vehicle starts were also included. On-road emission rates from the year 2023 and 2024 for Santa Clara County were used. Table 3 provides the traffic inputs that were combined with EMFAC2021 emission rates to compute vehicle emissions.

CalEEMod	Trips by Trip Type			
Run/Land Uses and Construction Phase	Total Worker ¹	Total Vendor ¹	Total Haul ²	Notes
Vehicle mix ¹	50% LDA 25% LDT1 25% LDT2	50% MHDT 50% HHDT	100% HHDT	
Trip Length (miles)	10.8	7.3	20.0 (Demo/Soil) 7.3 (Cement/Asphalt)	CalEEMod default distance with 5-min truck idle time.
Demolition	390	-	148	Estimated 19,850-sf existing site demo. 26,000-sf pavement demo. Default worker trips.
Site Preparation	270	-	-	CalEEMod default worker trips.
Grading	315	-	4,312	7,000-cy soil import, 27,500-cy soil export. CalEEMod default worker trips.
Trenching	105	-	-	CalEEMod default worker trips.
Building Construction	59,800	11,960	4,320	Estimated 18,000-cy of concrete. CalEEMod default worker and vendor trips.
Architectural Coating	615	-	-	CalEEMod default worker trips.
Paving	2,024	-	4	2 asphalt truck deliveries. CalEEMod default worker trips.
Notes: ¹ Based on 2023 and 2024 EMFAC2021 light-duty vehicle fleet mix for Santa Clara County. ² Includes demolition and grading trips estimated by CalEEMod based on amount of material to be removed. Concrete and asphalt trips estimated based on data provided by the applicant.				

 Table 3.
 Construction Traffic Data Used for EMFAC2021 Model Runs

Summary of Computed Construction Emissions

Average daily emissions were annualized for each year of construction by dividing the annual construction emissions by the number of active workdays during that year. Table 4 shows the unmitigated annualized average daily construction emissions of ROG, NOx, PM₁₀ exhaust, and PM_{2.5} exhaust during construction of the project. As indicated in Table 4, predicted unmitigated annualized project construction emissions would not exceed the BAAQMD significance thresholds during any year of construction.

abic 4. Construction I criou Emissions - Ommugated							
Year	ROG	NOx	PM ₁₀ Exhaust	PM2.5 Exhaust			
Constructio	n Emissions Per	Year (Tons)					
2023	0.17	1.43	0.07	0.06			
2024	1.64	1.88	0.10	0.08			
Average Daily Constru	uction Emissions	Per Year (pound	s/day)				
2023 (153 construction workdays)	2.18	18.68	0.95	0.76			
2024 (197 construction workdays)	16.68	19.05	0.97	0.78			
BAAQMD Thresholds (pounds per day)	54 lbs./day	54 lbs./day	82 lbs./day	54 lbs./day			
Exceed Threshold?	No	No	No	No			

Table 4.Construction Period Emissions - Unmitigated

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM₁₀ and PM_{2.5}. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less-than-significant if best management practices are implemented to reduce these emissions. *Mitigation Measure AQ-1 would implement BAAQMD's standard and enhanced best management practices*.

Mitigation Measure AQ-1: Implement BAAQMD-Recommended Standard and Enhanced Measures to Control Particulate Matter Emissions during Construction.

Measures to reduce DPM and fugitive dust (i.e., PM_{2.5}) emissions from construction are recommended to and ensure that health impacts to nearby sensitive receptors are minimized. During any construction period ground disturbance, the applicant shall ensure that the project contractor implements both basic and additional measures to control dust and exhaust. Implementation of the dust control measures recommended by BAAQMD and listed below would reduce the air quality impacts associated with grading and new construction to a less-than-significant level. The contractor shall implement the following enhanced best management practices:

- 1. All exposed surfaces shall be watered at a frequency adequate to maintain minimum soil moisture of 12 percent. Moisture content can be verified by lab samples or moisture probe.
- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.

- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 mph.
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- 6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.
- 7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- 8. Post a publicly visible sign with the telephone number and person to contact at the Lead Agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number shall also be visible to ensure compliance with applicable regulations.
- 9. All excavation, grading, and/or demolition activities shall be suspended when average wind speeds exceed 20 mph.
- 10. Wind breaks (e.g., trees, fences) shall be installed on the windward side(s) of actively disturbed areas of construction. Wind breaks should have at maximum 50 percent air porosity.
- 11. Vegetative ground cover (e.g., fast-germinating native grass seed) shall be planted in disturbed areas as soon as possible and watered appropriately until vegetation is established.
- 12. The simultaneous occurrence of excavation, grading, and ground-disturbing construction activities on the same area at any one time shall be limited. Activities shall be phased to reduce the amount of disturbed surfaces at any one time.
- 13. Avoid tracking of visible soil material on to public roadways by employing the following measures if necessary: (1) Site accesses to a distance of 100 feet from public paved roads shall be treated with a 6 to 12-inch compacted layer of wood chips, mulch, or gravel and (2) washing truck tires and construction equipment of prior to leaving the site.
- 14. Sandbags or other erosion control measures shall be installed to prevent silt runoff to public roadways from sites with a slope greater than one percent.

Effectiveness of Mitigation Measure AQ-1

Mitigation Measure AQ-1 represents standard and enhanced mitigation measures that would achieve greater than an 80 percent reduction in on-site fugitive PM_{2.5} emissions. These measures are consistent with recommendations in the BAAMQD CEQA Guidance for providing "best management practices" to control construction emissions.

Operational Period Emissions

Operational air emissions from the project would be generated primarily from autos driven by future residents and employees. Evaporative ROG emissions from architectural coatings and maintenance products (classified as consumer products) are also associated with these types of projects. CalEEMod was used to estimate emissions from operation of the proposed project assuming full build-out.

CalEEMod Inputs

Land Uses

The project land uses were input to CalEEMod as described above for the construction period modeling.

Model Year

Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CalEEMod. The earliest year of full operation would be 2025 if construction begins in 2023. Emissions associated with build-out later than 2025 would be lower.

Traffic Information

CalEEMod allows the user to enter specific vehicle trip generation rates. Therefore, the projectspecific daily trip generation rate provided by the traffic consultant was entered into the model.¹⁰ The project would produce approximately 1,967 daily trips. When accounting for the *Residential-Retail Internal Reduction, VMT Reduction, and Location Based Reduction* adjustments, the project would produce 1,522 net daily trips. The daily trip generation was calculated using ITE trip generation rates, the size of the project, and the adjusted total automobile trips after reductions. The Saturday and Sunday trip rates were derived by multiplying the ratio of the CalEEMod default rates for Saturday and Sunday trips to the default weekday rate with the project-specific daily weekday trip rate. The default trip lengths and trip types specified by CalEEMod were used.

EMFAC2021 Adjustment

The vehicle emissions factors and fleet mix used in CalEEMod are based on EMFAC2017, which is an older CARB emissions model for on-road mobile sources. Since the release of CalEEMod Version 2020.4.0, a new emission factor model has been made available by CARB. EMFAC2021 became available for use in January 2021and includes the latest data on California's car and truck fleets and travel activity. The CalEEMod default vehicle emission factors and fleet mix based on EMFAC2017 were updated using the emission rates and fleet mix from EMFAC2021. On road

¹⁰ Hexagon Transportation Consultants, Inc., 1520 W. San Carlos Street Mixed-Use Development Transportation Analysis, August 2, 2022.

emission rates from 2025 Santa Clara County were used (See *Attachment 3*). More details about the updates in emissions calculation methodologies and data are available in the EMFAC2021 Technical Support Document.¹¹

Energy

An emission factor of 178 pounds of CO₂ per megawatt of electricity produced was entered into CalEEMod, which is based on San Jose Clean Energy's (SJCE) 2020 emissions rate.¹² It should be noted that per Climate Smart San Jose and San Jose's Greenhouse Gas Reduction Strategy, SJCE's goal is to provide 100-percent carbon-free electricity prior to 2030.¹³

CalEEMod includes the 2019 Title 24 Building Standards. However, the City of San José passed an ordinance in December 2020 that prohibits the use of natural gas infrastructure in new residential, office, and most retail-type buildings.¹⁴ This ordinance applies to any new construction starting August 1, 2021. Natural gas use for the residential land use was set to zero and reassigned to electricity use in CalEEMod.

Other Inputs

Default model assumptions for emissions associated with solid waste generation and water use were applied to the project. Wastewater treatment was estimated to be 100% aerobic conditions to represent City wastewater treatment plant conditions. The project site would not send wastewater to on-site septic tanks or facultative lagoons.

Existing Uses

A CalEEMod run was not developed for the existing use of the site. The site currently consists of commercial and residential uses. No specific trip generation rates for the existing uses were provided.

Summary of Computed Operational Emissions

Annual emissions were predicted using CalEEMod and daily emissions were estimated assuming 365 days of operation. Table 5 shows unmitigated net average daily operational emissions of ROG, NO_X, total PM₁₀, and total PM_{2.5} during operation of the project. Operational period emissions would not exceed the BAAQMD significance thresholds.

¹¹ See CARB 2021: <u>https://ww2.arb.ca.gov/our-work/programs/mobile-source-emissions-inventory/road-documentation/msei-modeling-tools-emfac</u>

¹² San Jose Clean Energy Website, Standard GreenSource service. Web: <u>https://sanjosecleanenergy.org/commercial-rates/</u>

¹³ City of San José, 2020. "2030 Greenhouse Gas Reduction Strategy", August. Web: https://www.sanjoseca.gov/home/showpublisheddocument/63667/637347412207870000

¹⁴ City of San José, 2020. "Expand Natural Gas Ban", December. Web: https://www.sanjoseca.gov/Home/Components/News/News/2210/4699

Scenario	ROG	NOx	PM ₁₀	PM _{2.5}
2025 Annual Project Operational Emissions (tons/year)	1.84	0.59	1.08	0.28
BAAQMD Thresholds (tons /year)	10 tons	10 tons	15 tons	10 tons
Exceed Threshold?	No	No	No	No
2025 Daily Project Operational Emissions (pounds/day) ¹	10.10	3.23	5.92	1.55
BAAQMD Thresholds (pounds/day)	54 lbs.	54 lbs.	82 lbs.	54 lbs.
Exceed Threshold?	No	No	No	No
Notes: ¹ Assumes 365-day operation.				

Table 5.Operational Period Emissions

Impact AIR-2: Expose sensitive receptors to substantial pollutant concentrations?

Project impacts related to increased community risk can occur either by introducing a new source of TACs with the potential to adversely affect existing sensitive receptors in the project vicinity or by significantly exacerbating existing cumulative TAC impacts. This project would introduce new sources of TACs during construction (i.e., on-site construction and truck hauling emissions) and operation (i.e., mobile sources).

Project construction activity would generate dust and equipment exhaust that would affect nearby sensitive receptors. The project would not include the installation of any stationary TAC emissions sources (i.e., generators) but would generate some traffic consisting of mostly light-duty gasoline-powered vehicles, which would produce TAC and air pollutant emissions.

Project impacts to existing sensitive receptors were addressed for temporary construction activities and long-term operational conditions. There are also several sources of existing TACs and localized air pollutants in the vicinity of the project. The impact of existing sources of TACs was assessed in terms of the cumulative risk.

Community Risk Methodology for Construction and Operation

Community risk impacts were addressed by predicting increased cancer risk, the increase in annual PM_{2.5} concentrations, and by computing the Hazard Index (HI) for non-cancer health risks. The risk impacts from the project are the combination of risks from construction and operation sources. These sources include on-site construction activity, construction truck hauling, and increased traffic from the project. To evaluate the increased cancer risks from the project, a 30-year exposure period was used, per BAAQMD guidance,¹⁵ with the sensitive receptors being exposed to both project construction and operation emissions during this timeframe.

The project increased cancer risk is computed by summing the project construction cancer risk and operation cancer risk contributions. Unlike the increased maximum cancer risk, the annual PM_{2.5} concentration and HI values are not additive but based on the annual maximum values for the entirety of the project. The project maximally exposed individual (MEI) is identified as the sensitive receptor that is most impacted by the project's construction and operation.

¹⁵ BAAQMD, 2016. *BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines*. December 2016.

The methodology for computing community risks impacts is contained in *Attachment 1*. This involved the calculation of TAC and PM_{2.5} emissions, dispersion modeling of these emissions, and computations of cancer risk and non-cancer health effects.

Modeled Sensitive Receptors

Receptors for this assessment included locations where sensitive populations closest to the project would be present for extended periods of time (i.e., chronic exposures). This includes the existing residences on all sides of the site, as shown in Figure 1. Residential receptors are assumed to include all receptor groups (i.e., third trimester, infants, children, and adults) with almost continuous exposure to project emissions. While there are additional sensitive receptors within 1,000 feet of the project site, the receptors chosen are adequate to identify maximum impacts from the project.

Community Health Risk from Project Construction

The primary community risk impact issues associated with construction emissions are cancer risk and exposure to PM_{2.5}. A health risk assessment of the project construction activities was conducted that evaluated potential health effects to nearby sensitive receptors from construction emissions of DPM and PM_{2.5}.¹⁶ This assessment included dispersion modeling to predict the offsite concentrations resulting from project construction, so that lifetime cancer risks and non-cancer health effects could be evaluated.

Construction Emissions

The CalEEMod and EMFAC2021 models provided total annual PM_{10} exhaust emissions (assumed to be DPM) for the off-road construction equipment and for exhaust emissions from on-road vehicles, with total DPM emissions from all construction stages estimated to be 0.13 tons (256 pounds). The on-road emissions are a result of haul truck travel, worker travel, and vendor deliveries during construction. A trip length of half a mile was used to represent vehicle travel while at or near the construction site. It was assumed that these emissions from on-road vehicles traveling at or near the site would occur at the construction site. Fugitive $PM_{2.5}$ dust emissions were calculated by CalEEMod and EMFAC2021 to be 0.12 tons (231 pounds) for the overall construction period.

Dispersion Modeling

The U.S. EPA AERMOD dispersion model was used to predict DPM and PM_{2.5} concentrations at sensitive receptors (i.e., residences) in the vicinity of the project construction area. The AERMOD dispersion model is a BAAQMD-recommended model for use in modeling analysis of these types

¹⁶ DPM is identified by California as a toxic air contaminant due to the potential to cause cancer.

of emission activities for CEQA projects. ^{17,18} Emission sources for the construction site were grouped into two categories: exhaust emissions of DPM and fugitive PM_{2.5} dust emissions.

Construction Sources

Combustion equipment DPM exhaust emissions were modeled as a series of point sources with a nine-foot release height (construction equipment exhaust stack height) placed at 23 feet (7 meter) intervals throughout the construction site. This resulted in 179 individual point sources being used to represent mobile equipment DPM exhaust emissions in the construction area, with DPM emissions occurring throughout the project construction site. In addition, the following stack parameters were used: a vertical release, a stack diameter of 2.5 inches, an exhaust temperature of 918°F, and an exit velocity of 309 feet per second. Point source plume rise is calculated by the AERMOD dispersion model. Emissions from vehicle travel on- and off-site were also distributed among the point sources throughout the site. The locations of the point sources used for the modeling are identified in Figure 1.

For modeling fugitive PM_{2.5} emissions, a near-ground level release height of 7 feet (2 meters) was used for the area source. Fugitive dust emissions at construction sites come from a variety of sources, including truck and equipment travel, grading activities, truck loading (with loaders) and unloading (rear or bottom dumping), loaders and excavators moving and transferring soil and other materials, etc. All of these activities result in fugitive dust emissions at various heights at the point(s) of generation. Once generated, the dust plume will tend to rise as it moves downwind across the site and exit the site at a higher elevation than when it was generated. For all these reasons, a 7-foot release height was used as the average release height across the construction site. Emissions from the construction equipment and on-road vehicle travel were distributed throughout the modeled area sources. Figure 1 shows the project construction site and receptors.

AERMOD Inputs and Meteorological Data

The modeling used a five-year meteorological data set (2013-2017) from the San José Airport prepared for use with the AERMOD model by the BAAQMD. Construction emissions were modeled as occurring daily between 7:00 a.m. to 6:00 p.m., when the majority of construction activity would occur. Annual DPM and PM_{2.5} concentrations from construction activities during the 2023-2024 period were calculated using the model. DPM and PM_{2.5} concentrations were calculated at nearby sensitive receptors. Receptor heights of 5 feet (1.5 meters) and 15 feet (4.5 meters) were used to represent the breathing height of nearby residents.¹⁹

¹⁷ BAAQMD, 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May. Web: <u>https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</u>

¹⁸ BAAQMD, 2020, *BAAQMD Health Risk Assessment Modeling Protocol*. December. Web: <u>https://www.baaqmd.gov/~/media/files/ab617-community-health/facility-risk-</u> reduction/documents/baaqmd hra modeling protocol-pdf.pdf?la=en

¹⁹ Bay Area Air Quality Management District, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: <u>https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</u>

Summary of Construction Community Risk Impacts

The maximum increased cancer risks were calculated using the modeled TAC concentrations combined with the OEHHA guidance for age sensitivity factors and exposure parameters as recommended by BAAQMD, as described in *Attachment 1*. Non-cancer health hazards and maximum PM_{2.5} concentrations were also calculated and identified. Age-sensitivity factors reflect the greater sensitivity of infants and small children to cancer causing TACs. Third trimester, infant, child, and adult exposures were assumed to occur at all residences during the entire construction period.

The maximum modeled annual $PM_{2.5}$ concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI value was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation DPM reference exposure level of 5 μ g/m³.

The maximum modeled annual DPM and PM_{2.5} concentrations were identified at nearby sensitive receptors to find the MEIs. Results of this assessment indicated that the cancer risk MEI and the annual PM_{2.5} MEI were located at different residences. The cancer risk MEI was located on the second floor (15 feet above ground) of a multi-family residence to the southeast of the project site. The annual PM_{2.5} concentration MEI was located on the first floor (5 feet above ground) of a single-family residence south of the project site. The location of the MEIs and nearby sensitive receptors are shown in Figure 1. Table 6 summarizes the maximum cancer risks, PM_{2.5} concentrations, and health hazard indexes for project related construction activities. *Attachment 4* to this report includes the emission calculations used for the construction modeling and the cancer risk calculations.

Community Risks from Project Operation

Stationary equipment that could emit substantial TACs (e.g., emergency generators) are not planned for this project. Diesel powered vehicles are the primary concern with local traffic-generated TAC impacts. Per BAAQMD recommended risks and methodology, a road with less than 10,000 total vehicle per day is considered a low-impact source of TACs.²⁰ This project would generate 1,967 daily trips or 1,522 net daily trips when taking into account the trip reductions.²¹ The project traffic would be dispersed on the roadway system with a majority of the trips being from light-duty vehicles (i.e., passenger automobiles), which is a fraction of 10,000 daily vehicles. In addition, projects with the potential to cause or contribute to increased cancer risk from traffic include those that have attract high numbers of diesel-powered on road trucks or use off-road diesel equipment on site. Therefore, this is not a project of concern for mobile sources and emissions from project traffic are considered negligible and not included in the analysis.

²⁰ BAAQMD, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: <u>https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</u>

^{2012.}pdf?la=en ²¹ Hexagon Transportation Consultants, Inc., 1520 W. San Carlos Street Mixed-Use Development Transportation Analysis, August 2, 2022.

Figure 1. Locations of Project Construction Site, Off-Site Sensitive Receptors, and Maximum TAC Impact Locations (MEIs)

Summary of Project-Related Community Risks at the Off-Site Project MEI

For this project, the sensitive receptors identified in Figure 1 as the construction MEIs are also the project MEIs. At this location, the MEIs would be exposed to emissions from 17 months of construction. The annual PM_{2.5} concentration and HI values are based on an annual maximum risk for the entirety of the project. As shown in Table 6, the unmitigated maximum cancer risks and annual PM_{2.5} concentration from construction activities at the MEI locations would exceed the BAAQMD single-source significance thresholds. However, with the incorporation of the *Mitigation Measure AQ-1 and AQ-2*, the mitigated risk and hazard values would reduce emissions such that cancer risk and PM_{2.5} concentration caused by construction would no longer exceed the BAAQMD single-source significance thresholds. The unmitigated annual HI at the MEI does not exceed its respective BAAQMD single-source significance thresholds.

	Sourco	Cancer Risk	Annual PM _{2.5}	Hazard			
Source		(per million)	$(\mu g/m^3)$	Index			
Project Construction	Unmitigated	61.34 (infant)	1.08	0.04			
	Mitigated*	7.62 (infant)	0.21	0.01			
	BAAQMD Single-Source Threshold	10	0.3	1.0			
Exceed Threshold?	Unmitigated	Yes	Yes	No			
	Mitigated*	No	No	No			

 Table 6.
 Construction Risk Impacts at the Off-Site Receptors

* Construction equipment with Tier 4 interim engines and enhanced BMPs as Mitigation Measures.

Cumulative Community Risks of all TAC Sources at the Off-Site Project MEI

Community health risk assessments typically look at all substantial sources of TACs that can affect sensitive receptors that are located within 1,000 feet of the project site (i.e., influence area). These sources include freeways or highways, busy surface streets, and stationary sources identified by BAAQMD.

A review of the project area based on provided traffic information indicated that West San Carlos Street would have average daily traffic (ADT) exceeding 10,000 vehicles. Other nearby streets would have less than 10,000 vehicles per day. A review of BAAQMD's stationary source map website identified one stationary source with the potential to affect the project MEI. Figure 2 shows the location of the sources affecting the MEI. Community risk impacts from these sources upon the MEI are reported in Table 7. Details of the modeling and community risk calculations are included in *Attachment 5*.

Local Roadways - West San Carlos Street

A refined analysis of potential health impacts from vehicle traffic on West San Carlos Street was conducted. The refined analysis involved predicting emissions for the traffic volume and mix of vehicle types on the roadway near the project site and using an atmospheric dispersion model to predict exposure to TACs. The associated cancer risks are then computed based on the modeled exposures. *Attachment 1* includes a description of how community risk impacts, including cancer risk are computed.

Traffic Emissions Modeling

This analysis involved the development of DPM, organic TACs, and PM_{2.5} emissions for traffic on West San Carlos Street using the Caltrans version of the EMFAC2017 emissions model, known as CT-EMFAC2017. CT-EMFAC2017 provides emission factors for mobile source criteria pollutants and TACs, including DPM. Emission processes modeled include running exhaust for DPM, PM_{2.5} and total organic compounds (e.g., TOG), running evaporative losses for TOG, and tire and brake wear and fugitive road dust for PM_{2.5}. All PM_{2.5} emissions from all vehicles were used, rather than just the PM_{2.5} fraction from diesel powered vehicles, because all vehicle types (i.e., gasoline and diesel powered) produce PM_{2.5}. DPM emissions are projected to decrease in the future and are reflected in the CT-EMFAC2017 emissions data.

Figure 2. Project Site and Nearby TAC and PM_{2.5} Sources

Inputs to the model include region (i.e., Santa Clara County), type of road (i.e., major/collector), truck percentage for non-state highways in Santa Clara County (3.51 percent),²² traffic mix assigned by CT-EMFAC2017 for the county, year of analysis (2023 – construction start year), and season (annual).

In order to estimate TAC and PM_{2.5} emissions over the 30-year exposure period used for calculating the increased cancer risks for sensitive receptors at the project MEI, the CT-EMFAC2017 model was used to develop vehicle emission factors for the year 2023 (project construction year). Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CT-EMFAC2017. Year 2023 emissions were conservatively assumed as being representative of future conditions over the time period that cancer risks are evaluated since, as discussed above, overall vehicle emissions, and in particular diesel truck emissions, will decrease in the future.

²² BAAQMD, 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May. Web: <u>https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</u>

The ADT on West San Carlos Street was based on AM and PM peak-hour background plus project traffic volumes provided by the project's traffic consultant.²³ The calculated ADT on West San Carlos Street was 17,248 vehicles. Average hourly traffic distributions for Santa Clara County roadways were developed using the EMFAC model,²⁴ which were then applied to the ADT volumes to obtain estimated hourly traffic volumes and emissions for the roadway. For all hours of the day, the average speed of 30 mph on the roadway was assumed for all vehicles, 5 mph below the posted speed limit on West San Carlos Street to account for peak period congestion and the amount of access in the area.

Dispersion Modeling

Dispersion modeling of TAC and PM_{2.5} emissions was conducted using the EPA AERMOD air quality dispersion model, which is recommended by the BAAQMD for this type of analysis.²⁵ TAC and PM_{2.5} emissions from traffic on West San Carlos Street within about 1,000 feet of the project site were evaluated. Vehicle traffic emissions were modeled in AERMOD using a series of volume sources along a line (line volume sources), with line segments used to represent the opposing travel lanes on the roadway. The same meteorological data used in the construction dispersion modeling were used in the roadway modeling. Other inputs to the model included road geometry, hourly traffic emissions, and receptor locations and heights. Annual TAC and PM_{2.5} concentrations at the project MEI for 2023 from traffic on the roadway were calculated using receptor heights of 5 feet (1.5 meters) and 15 feet (4.5 meters) to represent the breathing heights on the first and second floors of the nearby residences.

Computed Cancer and Non-Cancer Health Impacts

The cancer risk, PM_{2.5} concentration, and HI impacts from West San Carlos Street on the project MEI are shown in Table 7. Figure 2 shows the roadway links used for the modeling. Details of the emission calculations, dispersion modeling, and cancer risk calculations for the receptors with the maximum cancer risk from the roadway's traffic are provided in *Attachment 5*.

Construction Risk Impacts from Nearby Developments

Based on the City's website,²⁶ the following planned or approved projects are located within 1,000 feet of the proposed project:

• West San Carlos Mixed Use – this project is located at 1530 West San Carlos, which is adjacent to the project site on the west side. This project would include construction of a seven-story mixed use apartment building and a five-story affordable housing building, totaling 202 residential units and 15,582 square feet of commercial space. This project is

²³ Hexagon Transportation Consultants, Inc., 1520 W. San Carlos Street Mixed-Use Development Transportation Analysis, August 2, 2022.

²⁴ The Burden output from EMFAC2007, a previous version of CARB's EMFAC model, was used for this since the current web-based version of EMFAC2017 does not include Burden type output with hour-by-hour traffic volume information.

²⁵ BAAQMD. Recommended Methods for Screening and Modeling Local Risks and Hazards. May 2012

²⁶ City of San Jose, Private / Key Economic Development Projects Map, Web: https://gis.sanjoseca.gov/maps/devprojects/

currently approved and was analyzed by *Illingworth & Rodkin, Inc.*. Therefore, there is potential for this project to be constructed simultaneously or consecutively with the proposed project.

- **329** Page Street this project is located approximately 280 feet east of the project site. This project proposes the construction of a six-story building with 82 residential units and is currently under construction. Therefore, some construction could overlap with the proposed project or occur simultaneously.
- **259 Meridian** Ave this project is located approximately 790 feet northeast of the project site. This project proposes the construction of a seven-story mixed-use building with 241 residential dwelling units and 1,400 square feet of ground-floor commercial space. The project is currently approved and was analyzed by Illingworth & Rodkin, Inc.. Therefore, there is potential for this project to be constructed simultaneously or consecutively with the proposed project.

The mitigated construction risks and hazard impact values for certain developments were available from their air quality technical reports either conducted by Illingworth & Rodin, Inc. or on the City of San José Environmental Review website for Active EIRs,²⁷ Completed EIRs,²⁸ or Negative Declaration / Initial Studies.²⁹ For the purpose of this analysis, it was conservatively assumed the entire construction period from the proposed project would overlap with the nearby developments' construction schedule. This approach likely provides an overestimate of the community risk and hazard levels because it assumes that maximum impacts from the nearby development occurs concurrently with the proposed project at the proposed project's MEI. The mitigated construction risks reported in that air quality assessment were included in Table 7. For projects where the mitigated construction risks were not available, it was assumed that those projects would have impacts just below the BAAQMD single-source thresholds. This is likely an overestimation of the community risk and hazard levels but provides the most conservative analysis.

BAAQMD Permitted Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAOMD's Permitted Stationary Sources 2020 geographic information system (GIS) map website.³⁰ This mapping tool identifies the location of nearby stationary sources and their estimated risk and hazard impacts, including emissions and adjustments to account for new OEHHA guidance. One source was identified using this tool, a diesel generator. The BAAQMD GIS website provided

²⁹ City of San José, Negative Declaration / Initial Studies, https://www.sanjoseca.gov/yourgovernment/departments/planning-building-code-enforcement/planning-division/environmentalplanning/environmental-review/negative-declaration-initial-studies ³⁰ BAAQMD, Web:

²⁷ City of San José, Active EIRs, https://www.sanjoseca.gov/your-government/departments/planning-building-codeenforcement/planning-division/environmental-planning/environmental-review/active-eirs

²⁸ City of San José, *Completed EIRs*, https://www.sanjoseca.gov/your-government/departments/planning-buildingcode-enforcement/planning-division/environmental-planning/environmental-review/completed-eirs

https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=845658c19eae4594b9f4b805fb9d89a3

screening risks and hazards for this source. Therefore, a stationary source information request was not required to be submitted to BAAQMD.

The screening risk and hazard levels provided by BAAQMD for the stationary source was adjusted for distance using BAAQMD's *Distance Adjustment Multiplier Tool for Generic Sources*. Community risk impacts from the stationary source upon the MEIs are reported in Table 7.

Summary of Cumulative Risks at the Project MEI

Table 7 reports both the project and cumulative community risk impacts at the sensitive receptors most affected by project construction (i.e., the MEI). The project's unmitigated construction maximum cancer risk and annual PM_{2.5} concentration exceeds the BAAQMD single-source thresholds. With the implementation of *Mitigation Measure AQ-1 and AQ-2*, the project's cancer risk and PM_{2.5} concentration would be lowered to a level below the single-source threshold. The cumulative annual PM_{2.5} concentration would exceed BAAQMD thresholds due to the concentration from the existing TAC sources and simultaneous construction of nearby developments. The cumulative threshold would be exceeded in the case where all construction activity occurs simultaneously. The cumulative cancer risk and HI (unmitigated or mitigated) would not exceed the BAAQMD cumulative-source thresholds.

Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index	
	Project Ir	npacts		
Project Construction	Unmitigated	61.34 (infant)	1.08	0.04
	Mitigated	7.62 (infant)	0.21	0.01
BAAQMD Single-Source Thres	hold	10	0.3	1.0
Exceed Threshold?	Unmitigated	Yes	Yes	No
	Mitigated	No	No	No
	Cumulative	Impacts		
West San Carlos Street, ADT 17	,248	0.82	0.07	< 0.01
San Jose Water Company (Facility ID #19794, Generator), MEI at 535 feet		2.51	< 0.01	< 0.01
	Cumulative Temporary	Construction Sour	ces	
West San Carlos Mixed Use Mit Emissions – adjacent west	igated Construction	3.6	0.13	0.01
329 Page Street Mitigated Construction Emissions – 280 feet east		<10.0	<0.3	<1.0
259 Meridian Avenue Mitigated Construction Emissions – 790 feet northeast		7.4	0.11	< 0.01
Combined Sources Unmitigated		<85.67	<1.70	1.08
	Mitigated	<31.95	<0.83	1.05
BAAQMD Cumu	lative Source Threshold	100	0.8	10.0
Exceed Threshold?	Unmitigated	No	Yes	No
	Mitigated	No	Yes	No

Table 7.	Cumulative	Community	v Risk Im	pacts at th	ne Project MEIs

Mitigation Measure AQ-2: Use construction equipment that has low diesel particulate matter exhaust emissions.

Implement a feasible plan to reduce DPM emissions by 85 percent such that increased cancer risk and annual PM_{2.5} concentrations from construction would be reduced below TAC significance levels as follows:

- 1. All construction equipment larger than 25 horsepower used at the site for more than two continuous days or 20 hours total shall meet U.S. EPA Tier 4 emission standards for PM (PM₁₀ and PM_{2.5}), if feasible, otherwise,
 - a. If use of Tier 4 equipment is not available, alternatively use equipment that meets U.S. EPA emission standards for Tier 3 engines and include particulate matter emissions control equivalent to CARB Level 3 verifiable diesel emission control devices that altogether achieve an 85 percent reduction in particulate matter exhaust in comparison to uncontrolled equipment; alternatively (or in combination).
- 2. Alternatively, the applicant may develop another construction operations plan demonstrating that the construction equipment used on-site would achieve a reduction in construction diesel particulate matter emissions by 85 percent or greater. Elements of the plan could include a combination of some of the following measures:
 - Implementation of No. 1 above to use Tier 4 engines or alternatively fueled equipment,
 - Installation of electric power lines during early construction phases to avoid use of diesel generators and compressors,
 - Use of electrically-powered equipment,
 - Forklifts and aerial lifts used for exterior and interior building construction shall be electric or propane/natural gas powered,
 - Change in construction build-out plans to lengthen phases, and
 - Implementation of different building techniques that result in less diesel equipment usage.

Such a construction operations plan would be subject to review by an air quality expert and approved by the City prior to construction.

Effectiveness of Mitigation Measure AQ-1 and AQ-2

CalEEMod was used to compute emissions associated with this mitigation measure assuming that all equipment met U.S. EPA Tier 4 Interim engine standards and BAAQMD best management practices for construction were included. With these implemented, the project's construction cancer risk levels (assuming infant exposure) would be reduced by 88 percent to 7.62 per million and the PM_{2.5} concentration would be reduced by 81 percent to 0.21 μ g/m³. As a result, the project's construction risks and hazards would be reduced below the BAAQMD single-source thresholds.

Non-CEQA: On-site Community Risk Assessment for TAC Sources - New Project Sensitive Residences

The City's General Plan Policy MS-11.1 requires new residential development projects and projects categorized as sensitive receptors to incorporate effective mitigation into their designs to avoid significant risks to health and safety. BAAQMD's recommended thresholds for health risks and hazards, shown in Table 1, are used to evaluate on-site exposure.

A health risk assessment was completed to assess the impact that the existing TAC sources would have on the new proposed sensitive receptors (residents) introduced by the project. The same TAC sources identified above were used in this assessment.³¹ Figure 3 shows the on-site sensitive receptors in relation to the nearby TAC sources. Results are listed in Table 8. *Attachment 5* includes the dispersion modeling and risk calculations for TAC source impacts upon the proposed on-site sensitive receptors.

Local Roadways - West San Carlos Street

The roadway impacts on new project residents was conducted in the same manner as described above for the off-site MEI. However, year 2025 (operational year) was conservatively assumed as being representative of future conditions. An analysis based on 2025 resulted in an increased ADT on West San Carlos Street of 17,586 vehicles. On-site receptors were placed throughout the project site with a spacing of 7 meters (23 feet). Roadway impacts were modeled at receptor heights of 5 feet (1.5 meters) and 22 feet (6.7 meters) representing sensitive receptors on the first and second floors of the proposed building. The portion of the roadway included in the modeling is shown in Figure 3 along with the project site and receptor locations where impacts were modeled.

Maximum increased cancer risks were calculated for the residents at the project site using the maximum modeled TAC concentrations. A 30-year exposure period was used in calculating cancer risks assuming the residents would include infants and adults were assumed to be in the new apartments for 24 hours per day for 350 days per year. The highest impacts from West San Carlos Street occurred at a receptor on the second floor of the project site. No dwelling units are located along West San Carlos Street until the 3rd floor of the proposed building. Cancer risks associated with the roadway are greatest closest to the roadway and decrease with distance from the road. The roadway impacts at the project site are shown in Table 8. Details of the emission calculations, dispersion modeling, and cancer risk calculations are contained in *Attachment 5*.

³¹ We note that to the extent this analysis considers *existing* air quality issues in relation to the impact on *future residents* of the Project, it does so for informational purposes only pursuant to the judicial decisions in *CBIA v. BAAQMD* (2015) 62 Cal.4th 369, 386 and *Ballona Wetlands Land Trust v. City of Los Angeles* (2011) 201 Cal.App.4th 455, 473, which confirm that the impacts of the environment on a project are excluded from CEQA unless the project itself "exacerbates" such impacts.

Stationary Sources

The stationary source screening analysis for the new project sensitive receptors was conducted in the same manner as described above for the construction MEI. Table 8 includes the health risk assessment results for the stationary sources.

Summary of Cumulative Community Risks at the Project Site

Community risk impacts from the existing and TAC sources upon the project site are reported in Table 8. The risks from the singular TAC sources are compared against the BAAQMD single-source threshold. The risks from all the sources are then combined and compared against the BAAQMD cumulative-source threshold. As shown, none of the sources exceed the single-source or cumulative-source thresholds.

Table 8.	Impacts from	Combined Sources	s to Project Site Receptors
	impacts nom	Complitud Sources	

Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index
West San Carlos Street, ADT 17,586	1.19	0.11	< 0.01
San Jose Water Company (Facility ID #19802, Generator), MEI at 490 feet	3.52	< 0.01	<0.01
Cumulative Temporary Co	nstruction Source	S	
West San Carlos Mixed Use Mitigated Construction Emissions – adjacent west	3.6	0.13	0.01
329 Page Street Mitigated Construction Emissions – 280 feet east	<10.0	<0.3	<1.0
259 Meridian Avenue Mitigated Construction Emissions – 790 feet northeast	7.4	0.11	<0.01
BAAQMD Single-Source Threshold	10	0.3	1.0
Exceed Threshold?	No	No	No
Cumulative Total	25.71	0.66	1.04
BAAQMD Cumulative Source Threshold	100	0.8	10.0
Exceed Threshold?	No	No	No

Figure 3. Locations of Project Site, On-Site Residential Receptors, Roadway Models, Stationary Sources, and Maximum TAC Impacts

Supporting Documentation

Attachment 1 is the methodology used to compute community risk impacts, including the methods to compute lifetime cancer risk from exposure to project emissions.

Attachment 2 includes the CalEEMod output for project construction and operational criteria air pollutant emissions. Also included are any modeling assumptions.

Attachment 3 includes the EMFAC2021 emissions modeling.

Attachment 4 is the construction health risk assessment. AERMOD dispersion modeling files for these assessments, which are quite voluminous, are available upon request and would be provided in digital format.

Attachment 5 includes the cumulative community risk calculations, modeling results, and health risk calculations from sources affecting the MEI.

Attachment 1: Health Risk Calculation Methodology

A health risk assessment (HRA) for exposure to Toxic Air Contaminates (TACs) requires the application of a risk characterization model to the results from the air dispersion model to estimate potential health risk at each sensitive receptor location. The State of California Office of Environmental Health Hazard Assessment (OEHHA) and California Air Resources Board (CARB) develop recommended methods for conducting health risk assessments. The most recent OEHHA risk assessment guidelines were published in February of 2015.³² These guidelines incorporate substantial changes designed to provide for enhanced protection of children, as required by State law, compared to previous published risk assessment guidelines. CARB has provided additional guidance on implementing OEHHA's recommended methods.³³ This HRA used the 2015 OEHHA risk assessment guidelines and CARB guidance. The BAAQMD has adopted recommended procedures for applying the newest OEHHA guidelines as part of Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants.³⁴ Exposure parameters from the OEHHA guidelines and the recent BAAQMD HRA Guidelines were used in this evaluation.

Cancer Risk

Potential increased cancer risk from inhalation of TACs is calculated based on the TAC concentration over the period of exposure, inhalation dose, the TAC cancer potency factor, and an age sensitivity factor to reflect the greater sensitivity of infants and children to cancer causing TACs. The inhalation dose depends on a person's breathing rate, exposure time and frequency and duration of exposure. These parameters vary depending on the age, or age range, of the persons being exposed and whether the exposure is considered to occur at a residential location or other sensitive receptor location.

The current OEHHA guidance recommends that cancer risk be calculated by age groups to account for different breathing rates and sensitivity to TACs. Specifically, they recommend evaluating risks for the third trimester of pregnancy to age zero, ages zero to less than two (infant exposure), ages two to less than 16 (child exposure), and ages 16 to 70 (adult exposure). Age sensitivity factors (ASFs) associated with the different types of exposure are an ASF of 10 for the third trimester and infant exposures, an ASF of 3 for a child exposure, and an ASF of 1 for an adult exposure. Also associated with each exposure type are different breathing rates, expressed as liters per kilogram of body weight per day (L/kg-day) or liters per kilogram of body weight per 8-hour period for the case of worker or school child exposures. As recommended by the BAAQMD for residential exposures, 95th percentile breathing rates are used for the third trimester and infant exposures. BAAQMD recommends using the 95th percentile 8-hour breathing rates. Additionally, CARB and the BAAQMD recommend the use of a residential exposure duration of

³² OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

³³ CARB, 2015. Risk Management Guidance for Stationary Sources of Air Toxics. July 23.

³⁴ BAAQMD, 2016. BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. December 2016.

30 years for sources with long-term emissions (e.g., roadways). For workers, assumed to be adults, a 25-year exposure period is recommended by the BAAQMD. For school children a 9-year exposure period is recommended by the BAAQMD.

Under previous OEHHA and BAAQMD HRA guidance, residential receptors are assumed to be at their home 24 hours a day, or 100 percent of the time. In the 2015 Risk Assessment Guidance, OEHHA includes adjustments to exposure duration to account for the fraction of time at home (FAH), which can be less than 100 percent of the time, based on updated population and activity statistics. The FAH factors are age-specific and are: 0.85 for third trimester of pregnancy to less than 2 years old, 0.72 for ages 2 to less than 16 years, and 0.73 for ages 16 to 70 years. Use of the FAH factors is allowed by the BAAQMD if there are no schools in the project vicinity have a cancer risk of one in a million or greater assuming 100 percent exposure (FAH = 1.0).

Functionally, cancer risk is calculated using the following parameters and formulas:

Cancer Risk (per million) = *CPF x Inhalation Dose x ASF x ED/AT x FAH x 10⁶* Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless) Inhalation Dose = $C_{air} x DBR^* x A x (EF/365) x 10^{-6}$ Where: Cair = concentration in air (µg/m³) DBR = daily breathing rate (L/kg body weight-day) 8HrBR = 8-hour breathing rate (L/kg body weight-8 hours) A = Inhalation absorption factor EF = Exposure frequency (days/year) 10⁻⁶ = Conversion factor

* An 8-hour breathing rate (8HrBR) is used for worker and school child exposures.

The health risk parameters used in this evaluation are summarized as follows:

	Exposure Type ᢣ	Infant		Child	Adult
Parameter	Age Range →	3 rd Trimester	0<2	2 < 16	16 - 30
DPM Cancer Potency Factor (mg/kg-day) ⁻¹		1.10E+00	1.10E+00	1.10E+00	1.10E+00
Daily Breathing Rate (L/kg-day) 80 th Percentile Rate		273	758	572	261
Daily Breathing Rate (L/kg-day) 95 th Percentile Rate		361	1,090	745	335
8-hour Breathing Rate (L/kg-8 hours) 95 th Percentile Rate		-	1,200	520	240
Inhalation Absorption Factor		1	1	1	1
Averaging Time (years)		70	70	70	70
Exposure Duration (years)		0.25	2	14	14*
Exposure Frequency (days/year)		350	350	350	350*
Age Sensitivity Factor		10	10	3	1
Fraction of Time at Home (FA	H)	0.85-1.0	0.85-1.0	0.72-1.0	0.73*

Non-Cancer Hazards

Non-cancer health risk is usually determined by comparing the predicted level of exposure to a chemical to the level of exposure that is not expected to cause any adverse effects (reference exposure level), even to the most susceptible people. Potential non-cancer health hazards from TAC exposure are expressed in terms of a hazard index (HI), which is the ratio of the TAC concentration to a reference exposure level (REL). OEHHA has defined acceptable concentration levels for contaminants that pose non-cancer health hazards. TAC concentrations below the REL are not expected to cause adverse health impacts, even for sensitive individuals. The total HI is calculated as the sum of the HIs for each TAC evaluated and the total HI is compared to the BAAQMD significance thresholds to determine whether a significant non-cancer health impact from a project would occur.

Typically, for residential projects located near roadways with substantial TAC emissions, the primary TAC of concern with non-cancer health effects is diesel particulate matter (DPM). For DPM, the chronic inhalation REL is 5 micrograms per cubic meter ($\mu g/m^3$).

Annual PM2.5 Concentrations

While not a TAC, fine particulate matter (PM_{2.5}) has been identified by the BAAQMD as a pollutant with potential non-cancer health effects that should be included when evaluating potential community health impacts under the California Environmental Quality Act (CEQA). The thresholds of significance for PM_{2.5} (project level and cumulative) are in terms of an increase in the annual average concentration. When considering PM_{2.5} impacts, the contribution from all sources of PM_{2.5} emissions should be included. For projects with potential impacts from nearby local roadways, the PM_{2.5} impacts should include those from vehicle exhaust emissions, PM_{2.5} generated from vehicle tire and brake wear, and fugitive emissions from re-suspended dust on the roads.

Attachment 2: CalEEMod Modeling Inputs and Outputs

			1	Air Quality	Noise Co	onstru	ction In	forma	ation Data Request	
	roject N	ame:	1520 W Sa	In Carlos		_			Complete ALL Portions in Yellow	
Image: Decision of the construction of the		Broloct Size					acros disturbad			
		Project Size	ize256 Dwelling Units		1.62 total project acres disturb		acres disturbed			
									Pile Driving? Y/N? - NO	
									Project include on-site GENERATOR OR FIRE PUMP during project OPERATION?	
B B			9875	s.f. office/commercial					Y/N? NO	
			N/A	s.f. other, specify:					IF YES (if BOTH separate values)>	
			96853	s.f. parking garage	26	1 spaces			Kilowatts/Horsepower:	
Image: Control of the contro				- f manthing lat		_	*****		Fuel Type:	
			N/A	s.r. parking lot	N/A	_spaces				
Decision from Part of the second									Location in project (Plans Desired if Available):	
Control Description IP Control Control <thcontrol< th=""> <thcontrol< th=""> <thco< td=""><td></td><td>Construction Hours</td><td>7</td><td>am to</td><td colspan="2">6 pm</td><td></td><td></td><td></td></thco<></thcontrol<></thcontrol<>		Construction Hours	7	am to	6 pm					
Rescription IP Lead Point Mean del Marcol Mean del Marcol <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT</td></th<>									DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT	
Output Beschiption 19 Load Fedor Normaly Normal Normal Consents Immediate Enternant					Total			HP .		
Image: Consistent State Text Date: Vertical Total part of the state of the sta	Quantity	Description	HP	Load Factor	Hours/day	Work Days	Avg. Hours per day	Annual Hours	Comments	
Importe Inclusion Inclusion <thi< td=""><td></td><td>Demolition</td><td>Start Date:</td><td>6/1/2023</td><td>Total phase:</td><td>28</td><td></td><td></td><td>Overall Import/Export Volumes</td></thi<>		Demolition	Start Date:	6/1/2023	Total phase:	28			Overall Import/Export Volumes	
3 Decention 160 3.3 6 2 6.23 Decention Square ficking is backing 2 Nation for Decention 207 0 <t< td=""><td>1</td><td>Concrete/Industrial Saws</td><td>End Date: 81</td><td>0,73</td><td></td><td>8 28</td><td>R</td><td>13245</td><td>5 Demolition Volume</td></t<>	1	Concrete/Industrial Saws	End Date: 81	0,73		8 28	R	13245	5 Demolition Volume	
2 Mode: Tax Date: 2/7 0.4 0 4420 0 4420 (c) to be triss to bade? Description Set Program Set Program <ths< td=""><td>3</td><td>Excavators</td><td>158</td><td>0.38</td><td></td><td>8 28</td><td>8</td><td>40347</td><td>7 Square footage of buildings to be demolished</td></ths<>	3	Excavators	158	0.38		8 28	8	40347	7 Square footage of buildings to be demolished	
One Registerion Constraint Co	2	Rubber-Tired Dozers	247 97	0.4		8 28	8 0	44262	2 (or total tons to be hauled) 7.850sf Commercial / 12.000sf Residential - DEMO	
Site Programme Bart Date: Programme Control Programme Control Programme Control Contro Control <thcontro< t<="" td=""><td></td><td>Other Equipment?</td><td>0.</td><td>0.01</td><td></td><td></td><td>0</td><td>,</td><td>N/A- Hauling volume (tons)</td></thcontro<>		Other Equipment?	0.	0.01			0	,	N/A- Hauling volume (tons)	
Biology Foto Date 700 at 1 100 at 10000 3 Discription Date (1) 0.41 0.50 0.5000 4 Discription Date (1) 0.41 0.50 0.5000 4 Discription Date (1) 0.41 0.5000 0.5000 4 Discription Date (1) Discription Date (1) 0.5000 0.5000 5 Discription Date (1) Discription Date (1) Discription Date (1) Discription Date (1) 1 Discription Date (1) 1 Discription Date (1)		Site Preparation	Start Date:	7/10/2023	Total phase:	15			Any pavement demoished and hauled? 26,000 sf of Pavement DEMO	
3 Display 107 0.41 0 5 0 3300 4 Technic SeeSeSeSeCon 97 0.97 8 15 0 3300 4 Technic SeeSeSeSeCon 97 0.97 8 15 0 3300 4 Feeder Feeder Feeder 90.327 7081 phase: 20 10 Secondary Secondar		_	End Date:	7/28/2023			_			
4 More support Factors Looker Barbons First Pack Picture Pack <td>3</td> <td>Graders Rubber Tired Dozers</td> <td>187</td> <td>0.41</td> <td></td> <td>8 15</td> <td>0</td> <td>35568</td> <td>8</td>	3	Graders Rubber Tired Dozers	187	0.41		8 15	0	35568	8	
Other Legispinant? Inclusion Build besit: Build besi	4	Tractors/Loaders/Backhoes	97	0.37		8 15	8	17227	7	
Gradie / Securities State date: M 2023 Paid Pair: M 2023 Paid Pair: Soit Hutting Volume 1 Excenter 18 0.34 6 25 6 503 Expert seame = 77.000 cable yards: 1 Outpoint 10 0.41 6 25 6 1533 Expert seame = 77.000 cable yards: 1 Outpoint 10 0.41 6 25 6 1533 Expert seame = 77.000 cable yards: 1 Outpoint 10 0.41 6 25 6 2534 1 Textoring formation 0.70 8 20 6 7423 1 Textoring formation 108 0.30 6 20 6 7423 1 Textoring formation 108 0.30 6 3 6 6 742 1 Textoring formation 109 0.37 6 200 1 10000 1 Textoring formation 109 0.37 20		Other Equipment?								
End Date: End Date: Canadian Canadian Solid Hauding Volume 1 Resenters 100 0.34 0.25 0.1000 Property Volume = 7.000 ouch youth 1 Resenters 0.7		Grading / Excavation	Start Date:	8/1/2023	Total phase:	25				
1 Distriction 199 0.21 2 0 1000 Dependence 1 Robber free Doern 247 0.41 6 19920 19920 2 Dependence 27 0.41 6 19920 19920 3 Totache doernee 0.73 6 2 0 0 3 Totache doernee 0.73 6 2 0 0 0 Dinef Expansion 0 3 2 0 0 0 1 Totache doernee 0 </td <td></td> <td></td> <td>End Date:</td> <td>8/29/2023</td> <td></td> <td></td> <td></td> <td>10000</td> <td>Soil Hauling Volume</td>			End Date:	8/29/2023				10000	Soil Hauling Volume	
1 Radie: Tred Dearm 247 0.4 8 23 8 1970 2 Concretification (addient data) (addien	1	Excavators	158	0.38		8 25 8 25	8	12008	Export volume = 27,500 cubic yards Import volume = 7,000 cubic yards	
Image: second	1	Rubber Tired Dozers	247	0.4		8 25	8	19760		
Offer End particity Internation Statu Statu <td>3</td> <td>Concrete/Industrial Saws Tractors/Loaders/Backhoes</td> <td>97</td> <td>0.73</td> <td></td> <td>8 25</td> <td>0</td> <td>21534</td> <td>J 4</td>	3	Concrete/Industrial Saws Tractors/Loaders/Backhoes	97	0.73		8 25	0	21534	J 4	
Trenching/Foundation Bant Date: 19320203 Point Pather: 200 Point Pather:		Other Equipment?								
Inductor End Date: 10/2023 Image: state of the s		Trenching/Foundation	Start Date:	9/5/2023	Total phase:	20				
1 Tractorizade/Bischole 97 0.37 8 20 8 67/2 1 Execution 10 0.37 8 20 8 600 0 Other Equancian 1 <td< td=""><td></td><td></td><td>End Date:</td><td>10/3/2023</td><td></td><td></td><td></td><td></td><td></td></td<>			End Date:	10/3/2023						
Other Equipment? No	1	Tractor/Loader/Backhoe	97	0.37		8 20	8	5742 9606	2 a	
Building - Exterior Start Date: 100/223 Total phase: 200 Cement Tracks - 1,000 TRMPS - 18,000 cyds total Concrete 1 Concet 200 0 7 21022 Electrice (VM) Otherwise assumed cleanel 1 Concet 200 8 11002 Description Description </td <td></td> <td>Other Equipment?</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>		Other Equipment?					-			
End Date: 10/14/024 10 10 3 Foldiffs 89 0.2 8 260 8 111072 Liqued Propane (LPG)? (YN)		Building - Exterior	Start Date:	10/4/2023	Total phase:	260			Cement Trucks- 1,800 TRIPS = 18,000 c/yds total Concrete	
1 Cranes 231 0.29 7 200 7 12122 Edech? (M) Otherwise assumed desel 3 Folding color 69 0.2 8 200 7 12122 Edech? (M) Otherwise assumed desel 1 Wedens 69 0.31 0 200 7 12527 Usual Color (M) Otherwise assumed desel 1 Wedens 64 0.31 0 200 7 12520 Otherwise assumed desel 0 Wedens 46 0.45 8 200 6 43056 0 Other Explorent? - - - - - - 1 Wedens 5147 Date: 61/1222 Total phase: 46 - </td <td></td> <td>-</td> <td>End Date:</td> <td>10/1/2024</td> <td></td> <td></td> <td>_</td> <td></td> <td></td>		-	End Date:	10/1/2024			_			
1 Generator Sets 64 0.74 8 260 8 122233 Ortemporary line power? (YN)	3	Forklifts	231	0.29		7 260 8 260	/ 8	121922	Electric? (Y/N) Otherwise assumed diesel Liquid Propane (LPG)? (Y/N) Otherwise Assumed diesel	
3 Indefors/Loading/Backhoes 97 0.37 1 200 7 19999 0 Other Equipment? 6 200 8 43056 1 Waders 46 0.45 8 200 8 43056 1 Mickers Start Date: 61/12024 Total phase: 40 6 69986 1 Ar Compressors 78 0.48 6 40 6 69986 0 Other Equipment? 0 0 0 0 0 0 Other Equipment? 0 0 0 0 0 0 Paving Start Date: 32/2024 Total phase: 40 0 0 0 Paving Equipment? 12 0.36 8 40 8 39444 2 Paving Equipment 132 0.36 8 40 8 39444 2 Paving Equipment 132 0.36 8 40 8 39444 2 Paving Equipment 132 0.36 8 40 </td <td>1</td> <td>Generator Sets</td> <td>84</td> <td>0.74</td> <td></td> <td>8 260</td> <td>8</td> <td>129293</td> <td>3 Or temporary line power? (Y/N)</td>	1	Generator Sets	84	0.74		8 260	8	129293	3 Or temporary line power? (Y/N)	
Other Equipment? Image: Start Date: 6/1/2024 Total phase: 40 1 Ar Compressons 78 0.48 6 40 6 9806 1 Ar Compressons 78 0.48 6 40 6 9806 Are Lift 62 0 0 0 0 0 Are Compressons 78 0.48 6 40 6 9806 Are Lift 62 0.31 0 0 0 0 Paving Start Date: 5/20/2024 0 0 0 0 2 Pointig Eulpment 130 0.42 8 40 6 30413 2 Rointig Eulpment 132 0.42 8 40 6 30413 2 Rointig Eulpment 132 0.42 8 40 6 30413 2 Rointig Eulpment 132 0.43 6 19456 6 3 0.43 <	3	Velders	97 46	0.37		7 260 8 260	7	195959	6	
uilding - Interior/Architectural Coating Start Date: 6/1/2024 Total phase: 40 1 Air Compressors 78 0.48 6 40 6 8986 Aerial Lift 62 0.31 0 0 Paving Start Date: 3/23/2024 Total phase: 40 Paving Start Date: 3/23/2024 Total phase: 40 Cement and Motar Mixers 9 0.56 0 0 2 Paving Start Date: 5/2/2024 0 0 2 Paving Explorment 132 0.36 8 40 8 2 Paving Explorment 132 0.36 8 40 8 2 Paving Explorment 132 0.36 8 40 8 3 78 0 0 0 0 0 0.37 0 0 0 4ditional Phases Start Date: 0 0 0 4ditional Phases Sta		Other Equipment?								
Image: Non-Weight of the system Brit Date: Brit 2024 Image: Non-Weight of the system 1 Art compressors 75 0.48 6 40 6 8996 Artial Lift 62 0.31 0 0 0 Other Equipment? 0 0 0 0 Paving Start Date: 3/23/2024 0 0 Cement and Motar Mixers 9 0.66 0 0 2 Pavers 130 0.42 8 40 8 34944 2 Pavers 130 0.42 8 40 8 30413 2 Reliers 80 0.38 8 40 8 19456 Other Equipment? 0 0 0 0 0 0 Additional Phases Start Date: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uilding - Int	erior/Architectural Coating	Start Date:	6/1/2024	Total phase:	40				
Arring books 10 0.00 0 0000 Other Equipment? 0 0 0 Paving Start Date: 3/23/2024 Total phase: 40 0 Cement and Mortar Mixers 9 0.56 0 0 2 Pavers 130 0.42 8 40 8 2 Paving Equipment 132 0.36 8 40 8 2 Pavers 130 0.42 8 40 8 39444 2 Paving Equipment 132 0.36 8 40 8 39443 2 Rollers 80 0.33 8 40 8 39444 2 Rollers 80 0.33 8 40 8 39441 4 Device Start Date: 0 0 0 0 0 Other Equipment? 1 0 0 0 0 Other Equipment? 1 0 0 0 4dditional Phases Start Date: 0 0 0 4dditional Phases Start Date: 0 0 0 4dditional Phases Start Date: 0 0 0 <td>1</td> <td>Air Compressore</td> <td>End Date:</td> <td>8/1/2024</td> <td></td> <td>6 10</td> <td></td> <td>0007</td> <td></td>	1	Air Compressore	End Date:	8/1/2024		6 10		0007		
Other Equipment? Image: Start Date: 3/23/2024 Total phase: 40 Paving Start Date: 5/20/2024 Image: Start Date: 5/20/2024 Cement and Motar Mixers 9 0.56 0 0 2 Pavers 130 0.42 8 40 8 2. Paving Equipment 132 0.36 8 40 8 2. Paving Equipment 132 0.36 8 40 8 2. Paving Equipment 132 0.36 8 40 8 3. Tractors/Loaders/Backhoes 97 0.37 0 0 Other Equipment? Image: Start Date: Image: Start Date: Image: Start Date: Image: Start Date: Image: Start Date: Start Date: Additional Phases Start Date: Image: Start Date: Image: Start Date: Image: Start Date: Start Date: Image: Start Date: Image: Start Date: Image: Start Date: Start Dat		Aerial Lift	62	0.40		40	0	0980	5 D	
Paving Start Date: 3/23/2024 Total phase: 40 Cement and Mortar Mixers 9 0.56 0 0 2 Pavers 130 0.42 8 40 8 34944 2 Paving Equipment 132 0.36 8 40 8 34944 2 Paving Equipment 132 0.36 8 40 8 34944 2 Paving Equipment 132 0.36 8 40 8 34944 2 Rollers 80 0.38 8 40 8 34944 3 Instant Stackness 97 0.37 0 0 0 Other Equipment? 0 0 0 0 Additional Phases Start Date: #DIV/01 0 0 4 4 #DIV/01 0 #DIV/01 0 0 #DIV/01 0 4 4 #DIV/01 0 #DIV/01 0 0 #DIV/01 0 0 #DIV/01 0 </td <td></td> <td>Other Equipment?</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Other Equipment?								
Start Date: 5/20/2024 Image: Start Date: 5/20/2024 Cement and Mottar Mixers 9 0.56 0 0 2 Pavers 130 0.42 8 40 8 2 Paving Equipment 132 0.36 8 40 8 2 Roving Equipment 132 0.36 8 40 8 2 Roving Equipment 132 0.36 8 40 8 3 Tractors/Loaders/Backhoes 97 0.37 0 0 Other Equipment? 0 0 0 Additional Phases Start Date: 0 0 Additional Phases Start Date: 0 0 Image: Start Date: 0 0 0 Image: Start Date: Start Date: 0 0 0 Image: Start Date: Start Dat		Paving	Start Date:	3/23/2024	Total phase:	40				
Cement and Mottar Mixers 9 0.56 0 0 0 2 Pavers 130 0.42 8 40 8 34944 2 Paving Equipment 132 0.36 8 40 8 34944 2 Rollers 80 0.38 8 40 8 34944 1 Tractors/Loaders/Backhoes 97 0.37 0 0 0 Other Equipment? - - 0 0 0 0 Additional Phases Start Date: Total phase: - - - - Additional Phases Start Date: - - #DIV/0! 0 - - - -			Start Date:	5/20/2024				1		
2 Paving Equipment 132 0.36 6 40 6 30413 2 Rolers 80 0.38 6 40 6 13445 3 Address 80 0.37 0 0 0 Other Equipment? 0.37 0 0 0 Additional Phases Start Date: Total phase: 4 4 Additional Phases Start Date: 4 4 4 Start Date: 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2	Cement and Mortar Mixers Pavers	9	0.56		8 40	0 8	34944	Asphalt - 10 cubic vards or 2 round trips	
2 Noters 80 0.38 8 40 8 19456 IntractalLader/Blackhoes 97 0.37 0 0 0 Other Equipment? 0 0 0 0 Additional Phases Start Date: 0 0 0 Start Date: 0 0 0 0 Additional Phases Start Date: 0 0 Start Date: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	Paving Equipment	132	0.36		8 40	8	30413		
Other Equipment? Image: Control of the sheet is to provide an example of inputs augument listed in this sheet is to provide an example of inputs	2	Tractors/Loaders/Backhoes	80	0.38		o 40	8	19456 C		
Additional Phases Start Date: Total phase: Image: Control of the start Date: Start Date: #Div/0 0 #Div/0 <td></td> <td>Other Equipment?</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Other Equipment?								
Start Date: #Div/0 #Div/0 0		Additional Phases	Start Date:		Total phase:					
#DIV/00 0 #DIV/00 0 #DIV/01 0 <t< td=""><td></td><td></td><td>Start Date:</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			Start Date:							
aujument types listed in "Equipment Types" worksheet tab. #DIV/01 0 aujument listed in this sheet is to provide an example of inputs Complete one sheet for each project component is assumed that water trucks would be used during grading tid or subtract hapses and encomparise Hold to be the sheet is to provide an example of inputs							#DIV/0! #DIV/0!	0		
#DIV/01 0 upipment types listed in "Equipment Types" worksheet tab. #DIV/01 upipment listed in this sheet is to provide an example of inputs Complete one sheet for each project component is assumed that water trucks would be used during grading did or subtract bases and enzyment did or subtract bases and enzyment							#DIV/0!	C		
quipment types listed in "Equipment Types" worksheet tab. quipment listed in this sheet is to provide an example of inputs Complete one sheet for each project component is assumed that water trucks would be used during grading dor subtract bases and enzyment to appropriate							#DIV/0! #DIV/0!	0		
quipment types instea in Equipment Types" worksheet tab. quipment listed in this sheet is to provide an example of inputs Complete one sheet for each project component is assumed that water trucks would be used during grading dor subtract bases and enzyment to appropriate		and the second						Ĺ		
uppent listed in this sheet is to provide an example of inputs Complete one sneet for each project component is assumed that water trucks would be used during grading did or subtract bases and enzyoarding the share and enzyoardine divide the state of	quipment ty	rpes listed in "Equipment Types" v	worksheet tab.		Complet		ohaat fa		h project component	
is assume that water trucks would be used during grading did or subtract holes and an and the subtract holes and environment as a periodic to the subtract holes and environment as a periodic to the subtract holes and environment as a morporate did to the subtract holes and environment as morporate did to the subtract holes and environ	uipment lis	ted in this sheet is to provide an example	mple of inputs		Complet	e one	sneet fo	or eac	in project component	
	s assumed	that water trucks would be used duri act phases and equipment, as and	ing grading propriate		1					

Construction Criteria Air Pollutants								
Unmitigated	ROG	NOX	PM10 Exhaust	PM2.5 Exhaust	CO2e			
Year		MT						
2023	0.12	1.16	0.05	0.05	178.53			
2024	1.59	1.55	0.07	0.07	276.73			
EMFAC								
2023	0.05	0.27	0.02	0.01	246.71			
2024	0.06	0.33	0.02	0.01	311.13			
Total Construction Emissions by Year								
2023	0.17	1.43	0.07	0.06	425.23			
2024	1.64	1.88	0.10	0.08	587.86			
	Total Construction Emissions							
Tons	1.81	3.30	0.17	0.14	1013.10			
Pounds/Workdays		Workdays						
2023	2.18	18.68	0.95	0.76		153		
2024	16.68	19.05	0.97	0.78		197		
Threshold - lbs/day	54.0	54.0	82.0	54.0				
Pounds	18.86	37.72	1.92	1.54	0.00			
Average	10.34	18.88	0.96	0.77	0.00	350.00		
Threshold - lbs/day	54.0	54.0	82.0	54.0				

Operational Criteria Air Pollutants									
Unmitigated	ROG	NOX	Total PM10	Total PM2.5					
Year 2023-2024									
Total	1.84	0.59	1.08	0.28					
Tons/year	1.84	0.59	1.08	0.28					
Threshold - Tons/year	10.0	10.0	15.0	10.0					
Pounds Per Day	10.10	3.23	5.92	1.55					
Threshold - lbs/day	54.0	54.0	82.0	54.0					
	Traffic Consu	ultant Trip	Gen			CalEEMoo	d Default		
--	---------------	-------------	-------------	-----------	------------------	----------	-----------	-------	
Land Use		Size	Daily Trips	New Trips	Weekday Trip Gen	Weekday	Sat	Sun	
Apartments Mid-Rise	DU	256	1,393	1,098	4.29	5.44	4.91	4.09	
Residential- Retail Internal Reduction	15%		-86			Rev	3.87	3.22	
Location Based Reduction	13%		-170						
VMT Reduction	3.41%		-39						
Shopping Center	KSF	15.203	574	425	27.96	37.75	46.12	21.1	
Residential- Retail Internal Reduction	15%		-86			Rev	34.15	15.63	
Location Based Reduction	13%		-63						

											А	M Pea	k Hou	r			PM Pe	ak Hou	r	
	ITE Land		% of Vehicle	VM	IT ⁴	%		Da	ily	Pk-Hr	Spli	t		Trip		Pk-Hr	Split		Trip	
Land Use	Use Code	Location	Mode Share	Existing	Project	Reduction	Size	Rate	Trip	Rate	in (Dut	in	Out	Total	Rate	In Out	In	Out	Total
Proposed Land Uses																				
Multifamily Housing (Mid-Rise) ¹	221						256 Dwelling Units	5.44	1,393	0.36	26% 7	4%	24	68	92	0.44	61% 39%	69	44	113
- Residential - Retail Internal Red	luction ²								-86				-1	-1	-2			-5	-4	-9
- Location Based Reduction ³		Urban Low-Transi	t 87%			13%			-170				-3	-9	-12			-8	-5	-13
- VMT Reduction ⁴				7.34	7.09	3.41%			-39				-1	-2	-3			-2	-1	-3
Residential Sub-Total									1,098				19	56	75			54	34	88
Shopping Center ¹	820						15,203 Square Feet	37.75	574	0.94	62% 3	8%	9	5	14	3.81	48% 52%	28	30	58
- Residential - Retail Internal Red	luction ²					15%			-86				-1	-1	-2			-4	-5	-9
- Location Based Reduction ³		Urban Low-Transi	t 87%			13%			-63				-1	-1	-2			-3	-3	-6
Retail Sub-Total									424				7	3	10			21	22	43
Baseline Vehicle Trips (Before	e Reductions,)							1,967				33	73	106			97	74	171
Gross Project Trips After Re	eductions								1,522				26	59	85			75	56	131

Notes:

¹ Source: ITE *Trip Generation Manual*, 10th Edition 2017, average trip generation rates.

² As prescribed by the Transportation Impact Analysis Guidelines from VTA (October 2014), the maximum trip reduction for a mixed-use development project with residential and retail is equal to 15% off the smaller trip generator.

³ The project site is located within an urban low-transit area based on the City of San Jose VMT Evaluation Tool (February 29, 2019). The location-based vehicle mode shares are obtained from Table 6 of the City of San Jose Transportation Analysis Handbook (April 2018). The trip reductions are based on the percent of mode share for all of the other modes of travel besides vehicle.

⁴ VMT per capita for residential use. Existing and project VMTs were estimated using the City of San Jose VMT Evaluation Tool.

It is assumed that every percent reduction in VMT per-capita is equivalent to one percent reduction in peak-hour vehicle trips.

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

1520 W San Carlos, San Jose

Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	261.00	Space	0.00	96,853.00	0
Apartments Mid Rise	256.00	Dwelling Unit	1.62	187,279.00	732
Regional Shopping Center	15.20	1000sqft	0.00	15,203.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2025
Utility Company	San Jose Clean Energy				
CO2 Intensity (Ib/MWhr)	178	CH4 Intensity (Ib/MWhr)	0.033	N2O Intensity ((Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - San Jose Clean Energy 2020 rate = 178 lb/MWh.

Land Use - Provided construction data - total project area.

Construction Phase - Provided schedule - construction worksheet.

Off-road Equipment -

Off-road Equipment - Provided schedule - construction worksheet.

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Trips and VMT - EMFAC2021 adjustment 0 trips, pavement demo = 26,000-sqft, building const = 18,000-cy concrete, paving = 10-cy asphalt.

Demolition - Existing Building Demo = 7,850 sqft Commercial + 12,000 sqft Residential = 19,850 sqft total demo.

Grading - Grading = 7,000-cy imported, 27,500-cy exported.

Vehicle Trips - Provided trip gen with reduction adjustments.

Vehicle Emission Factors - EMFAC2021 Vehicle Emissions Factors Santa Clara County 2025.

Woodstoves - No hearths.

Energy Use - San Jose Reach Code - no natural gas - convert to electricity.

Water And Wastewater - Wastewater treatment 100% aerobic - no septic tanks or lagoons.

Construction Off-road Equipment Mitigation - Enhanced BMPs, tier 4 interim mitigation.

Fleet Mix - EMFAC2021 Fleet Mix Santa Clara County 2025.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadMoistureContent	0	12
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	5.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	11.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim

tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstructionPhase	NumDays	10.00	44.00
tblConstructionPhase	NumDays	200.00	260.00
tblConstructionPhase	NumDays	20.00	26.00
tblConstructionPhase	NumDays	4.00	21.00
tblConstructionPhase	NumDays	10.00	41.00
tblConstructionPhase	NumDays	2.00	15.00
tblEnergyUse	NT24E	3,054.10	3,978.74
tblEnergyUse	NT24NG	3,155.00	0.00
tblEnergyUse	T24E	70.89	1,602.68
tblEnergyUse	T24E	2.46	3.15
tblEnergyUse	T24NG	5,226.68	0.00
tblEnergyUse	T24NG	2.34	0.00
tblFireplaces	FireplaceDayYear	11.14	0.00
tblFireplaces	FireplaceHourDay	3.50	0.00
tblFireplaces	FireplaceWoodMass	228.80	0.00
tblFireplaces	NumberGas	38.40	0.00
tblFireplaces	NumberNoFireplace	10.24	0.00

tblFireplaces	NumberWood	43.52	0.00
tblFleetMix	HHD	6.3770e-003	7.4400e-003
tblFleetMix	HHD	6.3770e-003	7.4400e-003
tblFleetMix	HHD	6.3770e-003	7.4400e-003
tblFleetMix	LDA	0.57	0.53
tblFleetMix	LDA	0.57	0.53
tblFleetMix	LDA	0.57	0.53
tblFleetMix	LDT1	0.06	0.04
tblFleetMix	LDT1	0.06	0.04
tblFleetMix	LDT1	0.06	0.04
tblFleetMix	LDT2	0.19	0.23
tblFleetMix	LDT2	0.19	0.23
tblFleetMix	LDT2	0.19	0.23
tblFleetMix	LHD1	0.02	0.02
tblFleetMix	LHD1	0.02	0.02
tblFleetMix	LHD1	0.02	0.02
tblFleetMix	LHD2	5.1580e-003	5.7400e-003
tblFleetMix	LHD2	5.1580e-003	5.7400e-003
tblFleetMix	LHD2	5.1580e-003	5.7400e-003
tblFleetMix	MCY	0.02	0.02
tblFleetMix	МСҮ	0.02	0.02
tblFleetMix	МСҮ	0.02	0.02
tblFleetMix	MDV	0.12	0.13
tblFleetMix	MDV	0.12	0.13
tblFleetMix	MDV	0.12	0.13
tblFleetMix	МН	2.7200e-003	2.5850e-003
tblFleetMix	МН	2.7200e-003	2.5850e-003
tblFleetMix	МН	2.7200e-003	2.5850e-003
tblFleetMix	MHD	8.0300e-003	9.4250e-003

tblFleetMix	MHD	8.0300e-003	9.4250e-003
tblFleetMix	MHD	8.0300e-003	9.4250e-003
tblFleetMix	OBUS	8.9300e-004	1.0570e-003
tblFleetMix	OBUS	8.9300e-004	1.0570e-003
tblFleetMix	OBUS	8.9300e-004	1.0570e-003
tblFleetMix	SBUS	9.0000e-004	6.8400e-004
tblFleetMix	SBUS	9.0000e-004	6.8400e-004
tblFleetMix	SBUS	9.0000e-004	6.8400e-004
tblFleetMix	UBUS	3.7200e-004	4.1300e-004
tblFleetMix	UBUS	3.7200e-004	4.1300e-004
tblFleetMix	UBUS	3.7200e-004	4.1300e-004
tblGrading	MaterialExported	0.00	27,500.00
tblGrading	MaterialImported	0.00	7,000.00
tblLandUse	LandUseSquareFeet	104,400.00	96,853.00
tblLandUse	LandUseSquareFeet	256,000.00	187,279.00
tblLandUse	LandUseSquareFeet	15,200.00	15,203.00
tblLandUse	LotAcreage	2.35	0.00
tblLandUse	LotAcreage	6.74	1.62
tblLandUse	LotAcreage	0.35	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00

tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	6.00	7.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	6.00	7.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblProjectCharacteristics	CO2IntensityFactor	807.98	178
tblTripsAndVMT	HaulingTripNumber	90.00	0.00
tblTripsAndVMT	HaulingTripNumber	4,313.00	0.00
tblTripsAndVMT	VendorTripNumber	46.00	0.00
tblTripsAndVMT	WorkerTripNumber	15.00	0.00
tblTripsAndVMT	WorkerTripNumber	18.00	0.00
tblTripsAndVMT	WorkerTripNumber	15.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblTripsAndVMT	WorkerTripNumber	230.00	0.00
tblTripsAndVMT	WorkerTripNumber	15.00	0.00
tblTripsAndVMT	WorkerTripNumber	46.00	0.00
tblVehicleEF	HHD	0.02	0.23
tblVehicleEF	HHD	0.05	0.12
tblVehicleEF	HHD	6.32	5.18

tblVehicleEF	HHD	0.41	0.76
tblVehicleEF	HHD	5.9250e-003	6.8500e-004
tblVehicleEF	HHD	1,030.26	813.97
tblVehicleEF	HHD	1,386.58	1,586.83
tblVehicleEF	HHD	0.05	0.02
tblVehicleEF	HHD	0.16	0.13
tblVehicleEF	HHD	0.22	0.25
tblVehicleEF	HHD	6.0000e-006	1.4000e-005
tblVehicleEF	HHD	5.35	3.97
tblVehicleEF	HHD	2.67	1.77
tblVehicleEF	HHD	2.32	2.75
tblVehicleEF	HHD	2.5050e-003	2.0970e-003
tblVehicleEF	HHD	0.06	0.08
tblVehicleEF	HHD	0.04	0.04
tblVehicleEF	HHD	0.02	0.03
tblVehicleEF	HHD	2.3970e-003	2.0000e-003
tblVehicleEF	HHD	0.03	0.03
tblVehicleEF	HHD	8.8870e-003	8.7820e-003
tblVehicleEF	HHD	0.02	0.02
tblVehicleEF	HHD	1.0000e-006	0.00
tblVehicleEF	HHD	2.0000e-006	1.6100e-004
tblVehicleEF	HHD	8.6000e-005	4.8000e-005
tblVehicleEF	HHD	0.43	0.33
tblVehicleEF	HHD	1.0000e-006	0.00
tblVehicleEF	HHD	0.03	0.02
tblVehicleEF	HHD	3.8000e-005	4.3200e-004
tblVehicleEF	HHD	2.0000e-006	0.00
tblVehicleEF	HHD	9.5860e-003	7.0990e-003
tblVehicleEF	HHD	0.01	0.01

tblVehicleEF	HHD	2.0000e-006	1.6100e-004
tblVehicleEF	HHD	8.6000e-005	4.8000e-005
tblVehicleEF	HHD	0.49	0.59
tblVehicleEF	HHD	1.0000e-006	0.00
tblVehicleEF	HHD	0.08	0.14
tblVehicleEF	HHD	3.8000e-005	4.3200e-004
tblVehicleEF	HHD	3.0000e-006	0.00
tblVehicleEF	LDA	1.5230e-003	1.8410e-003
tblVehicleEF	LDA	0.04	0.06
tblVehicleEF	LDA	0.49	0.61
tblVehicleEF	LDA	2.00	2.71
tblVehicleEF	LDA	226.89	237.67
tblVehicleEF	LDA	48.21	61.73
tblVehicleEF	LDA	3.7350e-003	3.8850e-003
tblVehicleEF	LDA	0.02	0.03
tblVehicleEF	LDA	0.03	0.03
tblVehicleEF	LDA	0.15	0.22
tblVehicleEF	LDA	0.04	7.1370e-003
tblVehicleEF	LDA	1.2360e-003	1.1200e-003
tblVehicleEF	LDA	1.6250e-003	1.8490e-003
tblVehicleEF	LDA	0.02	2.4980e-003
tblVehicleEF	LDA	1.1380e-003	1.0310e-003
tblVehicleEF	LDA	1.4940e-003	1.7000e-003
tblVehicleEF	LDA	0.03	0.26
tblVehicleEF	LDA	0.08	0.08
tblVehicleEF	LDA	0.03	0.00
tblVehicleEF	LDA	5.5720e-003	6.9420e-003
tblVehicleEF	LDA	0.03	0.20
tblVehicleEF	LDA	0.18	0.27

tblVehicleEF	LDA	2.2440e-003	2.3490e-003
tblVehicleEF	LDA	4.7700e-004	6.1000e-004
tblVehicleEF	LDA	0.03	0.26
tblVehicleEF	LDA	0.08	0.08
tblVehicleEF	LDA	0.03	0.00
tblVehicleEF	LDA	8.1000e-003	0.01
tblVehicleEF	LDA	0.03	0.20
tblVehicleEF	LDA	0.19	0.30
tblVehicleEF	LDT1	3.1240e-003	5.5770e-003
tblVehicleEF	LDT1	0.05	0.10
tblVehicleEF	LDT1	0.77	1.31
tblVehicleEF	LDT1	2.16	4.86
tblVehicleEF	LDT1	272.37	319.18
tblVehicleEF	LDT1	58.50	84.00
tblVehicleEF	LDT1	5.2980e-003	8.6270e-003
tblVehicleEF	LDT1	0.02	0.04
tblVehicleEF	LDT1	0.06	0.11
tblVehicleEF	LDT1	0.20	0.36
tblVehicleEF	LDT1	0.04	9.2190e-003
tblVehicleEF	LDT1	1.5310e-003	1.8130e-003
tblVehicleEF	LDT1	1.9900e-003	2.7500e-003
tblVehicleEF	LDT1	0.02	3.2270e-003
tblVehicleEF	LDT1	1.4090e-003	1.6690e-003
tblVehicleEF	LDT1	1.8300e-003	2.5290e-003
tblVehicleEF	LDT1	0.07	0.56
tblVehicleEF	LDT1	0.13	0.16
tblVehicleEF	LDT1	0.06	0.00
tblVehicleEF	LDT1	0.01	0.02
tblVehicleEF	LDT1	0.07	0.44

tblVehicleEF	LDT1	0.25	0.50
tblVehicleEF	LDT1	2.6950e-003	3.1550e-003
tblVehicleEF	LDT1	5.7900e-004	8.3000e-004
tblVehicleEF	LDT1	0.07	0.56
tblVehicleEF	LDT1	0.13	0.16
tblVehicleEF	LDT1	0.06	0.00
tblVehicleEF	LDT1	0.02	0.04
tblVehicleEF	LDT1	0.07	0.44
tblVehicleEF	LDT1	0.27	0.54
tblVehicleEF	LDT2	2.6570e-003	2.5920e-003
tblVehicleEF	LDT2	0.06	0.08
tblVehicleEF	LDT2	0.69	0.78
tblVehicleEF	LDT2	2.60	3.42
tblVehicleEF	LDT2	290.83	327.62
tblVehicleEF	LDT2	63.01	84.01
tblVehicleEF	LDT2	5.2770e-003	5.6470e-003
tblVehicleEF	LDT2	0.03	0.04
tblVehicleEF	LDT2	0.05	0.06
tblVehicleEF	LDT2	0.23	0.31
tblVehicleEF	LDT2	0.04	8.8600e-003
tblVehicleEF	LDT2	1.3020e-003	1.2920e-003
tblVehicleEF	LDT2	1.6610e-003	2.0610e-003
tblVehicleEF	LDT2	0.02	3.1010e-003
tblVehicleEF	LDT2	1.1980e-003	1.1890e-003
tblVehicleEF	LDT2	1.5270e-003	1.8950e-003
tblVehicleEF	LDT2	0.06	0.28
tblVehicleEF	LDT2	0.11	0.08
tblVehicleEF	LDT2	0.06	0.00
tblVehicleEF	LDT2	0.01	0.01

tblVehicleEF	LDT2	0.06	0.21
tblVehicleEF	LDT2	0.26	0.35
tblVehicleEF	LDT2	2.8770e-003	3.2380e-003
tblVehicleEF	LDT2	6.2400e-004	8.3000e-004
tblVehicleEF	LDT2	0.06	0.28
tblVehicleEF	LDT2	0.11	0.08
tblVehicleEF	LDT2	0.06	0.00
tblVehicleEF	LDT2	0.02	0.01
tblVehicleEF	LDT2	0.06	0.21
tblVehicleEF	LDT2	0.29	0.39
tblVehicleEF	LHD1	4.8220e-003	5.1940e-003
tblVehicleEF	LHD1	7.2910e-003	7.2220e-003
tblVehicleEF	LHD1	0.01	0.02
tblVehicleEF	LHD1	0.18	0.20
tblVehicleEF	LHD1	0.66	0.82
tblVehicleEF	LHD1	1.01	2.16
tblVehicleEF	LHD1	8.77	8.60
tblVehicleEF	LHD1	764.47	764.97
tblVehicleEF	LHD1	11.28	17.60
tblVehicleEF	LHD1	7.4300e-004	6.3700e-004
tblVehicleEF	LHD1	0.04	0.04
tblVehicleEF	LHD1	0.02	0.03
tblVehicleEF	LHD1	0.05	0.05
tblVehicleEF	LHD1	0.57	0.59
tblVehicleEF	LHD1	0.29	0.42
tblVehicleEF	LHD1	8.5700e-004	6.8500e-004
tblVehicleEF	LHD1	0.08	0.08
tblVehicleEF	LHD1	9.8070e-003	9.4200e-003
tblVehicleEF	LHD1	9.0910e-003	0.01

tblVehicleEF	LHD1	2.3900e-004	2.0600e-004
tblVehicleEF	LHD1	8.2000e-004	6.5600e-004
tblVehicleEF	LHD1	0.03	0.03
tblVehicleEF	LHD1	2.4520e-003	2.3550e-003
tblVehicleEF	LHD1	8.6510e-003	0.01
tblVehicleEF	LHD1	2.2000e-004	1.8900e-004
tblVehicleEF	LHD1	1.8120e-003	0.12
tblVehicleEF	LHD1	0.07	0.03
tblVehicleEF	LHD1	0.02	0.02
tblVehicleEF	LHD1	9.4400e-004	0.00
tblVehicleEF	LHD1	0.09	0.08
tblVehicleEF	LHD1	0.19	0.17
tblVehicleEF	LHD1	0.06	0.11
tblVehicleEF	LHD1	8.5000e-005	8.4000e-005
tblVehicleEF	LHD1	7.4620e-003	7.4710e-003
tblVehicleEF	LHD1	1.1200e-004	1.7400e-004
tblVehicleEF	LHD1	1.8120e-003	0.12
tblVehicleEF	LHD1	0.07	0.03
tblVehicleEF	LHD1	0.03	0.03
tblVehicleEF	LHD1	9.4400e-004	0.00
tblVehicleEF	LHD1	0.10	0.10
tblVehicleEF	LHD1	0.19	0.17
tblVehicleEF	LHD1	0.07	0.12
tblVehicleEF	LHD2	2.9270e-003	3.0230e-003
tblVehicleEF	LHD2	6.3420e-003	6.4550e-003
tblVehicleEF	LHD2	7.0910e-003	0.01
tblVehicleEF	LHD2	0.14	0.14
tblVehicleEF	LHD2	0.56	0.53
tblVehicleEF	LHD2	0.57	1.20

tblVehicleEF	LHD2	13.74	13.69
tblVehicleEF	LHD2	740.94	811.00
tblVehicleEF	LHD2	7.36	9.64
tblVehicleEF	LHD2	1.7280e-003	1.6800e-003
tblVehicleEF	LHD2	0.07	0.08
tblVehicleEF	LHD2	0.01	0.02
tblVehicleEF	LHD2	0.09	0.09
tblVehicleEF	LHD2	0.68	0.81
tblVehicleEF	LHD2	0.16	0.23
tblVehicleEF	LHD2	1.4520e-003	1.3890e-003
tblVehicleEF	LHD2	0.09	0.09
tblVehicleEF	LHD2	0.01	0.01
tblVehicleEF	LHD2	0.01	0.02
tblVehicleEF	LHD2	1.2200e-004	9.1000e-005
tblVehicleEF	LHD2	1.3890e-003	1.3290e-003
tblVehicleEF	LHD2	0.04	0.03
tblVehicleEF	LHD2	2.6970e-003	2.6660e-003
tblVehicleEF	LHD2	0.01	0.02
tblVehicleEF	LHD2	1.1200e-004	8.4000e-005
tblVehicleEF	LHD2	9.1300e-004	0.06
tblVehicleEF	LHD2	0.04	0.02
tblVehicleEF	LHD2	0.02	0.02
tblVehicleEF	LHD2	4.8500e-004	0.00
tblVehicleEF	LHD2	0.11	0.11
tblVehicleEF	LHD2	0.09	0.09
tblVehicleEF	LHD2	0.04	0.06
tblVehicleEF	LHD2	7.1520e-003	7.8120e-003
tblVehicleEF	LHD2	7.3000e-005	9.5000e-005
tblVehicleEF	LHD2	9.1300e-004	0.06

tblVehicleEF	LHD2	0.04	0.02
tblVehicleEF	LHD2	0.02	0.02
tblVehicleEF	LHD2	4.8500e-004	0.00
tblVehicleEF	LHD2	0.12	0.13
tblVehicleEF	LHD2	0.09	0.09
tblVehicleEF	LHD2	0.04	0.06
tblVehicleEF	MCY	0.32	0.16
tblVehicleEF	MCY	0.25	0.18
tblVehicleEF	MCY	18.37	12.31
tblVehicleEF	MCY	9.09	7.97
tblVehicleEF	MCY	210.00	187.27
tblVehicleEF	MCY	60.43	47.31
tblVehicleEF	MCY	0.07	0.04
tblVehicleEF	MCY	0.02	7.6910e-003
tblVehicleEF	MCY	1.14	0.56
tblVehicleEF	MCY	0.27	0.13
tblVehicleEF	MCY	0.01	0.01
tblVehicleEF	MCY	2.0310e-003	1.9250e-003
tblVehicleEF	MCY	2.9300e-003	3.4640e-003
tblVehicleEF	MCY	5.0400e-003	4.2000e-003
tblVehicleEF	MCY	1.8970e-003	1.7990e-003
tblVehicleEF	MCY	2.7510e-003	3.2530e-003
tblVehicleEF	MCY	0.90	3.86
tblVehicleEF	MCY	0.67	3.56
tblVehicleEF	MCY	0.48	0.00
tblVehicleEF	MCY	2.18	1.02
tblVehicleEF	MCY	0.52	3.76
tblVehicleEF	MCY	1.92	1.31
tblVehicleEF	MCY	2.0780e-003	1.8510e-003

tblVehicleEF	MCY	5.9800e-004	4.6800e-004
tblVehicleEF	MCY	0.90	0.09
tblVehicleEF	MCY	0.67	3.56
tblVehicleEF	MCY	0.48	0.00
tblVehicleEF	МСҮ	2.71	1.24
tblVehicleEF	МСҮ	0.52	3.76
tblVehicleEF	МСҮ	2.09	1.42
tblVehicleEF	MDV	2.9890e-003	3.3070e-003
tblVehicleEF	MDV	0.06	0.09
tblVehicleEF	MDV	0.72	0.87
tblVehicleEF	MDV	2.79	3.62
tblVehicleEF	MDV	351.34	394.23
tblVehicleEF	MDV	74.92	100.26
tblVehicleEF	MDV	6.9960e-003	7.5830e-003
tblVehicleEF	MDV	0.03	0.04
tblVehicleEF	MDV	0.06	0.09
tblVehicleEF	MDV	0.26	0.38
tblVehicleEF	MDV	0.04	8.9720e-003
tblVehicleEF	MDV	1.3680e-003	1.3100e-003
tblVehicleEF	MDV	1.7330e-003	2.0690e-003
tblVehicleEF	MDV	0.02	3.1400e-003
tblVehicleEF	MDV	1.2620e-003	1.2070e-003
tblVehicleEF	MDV	1.5940e-003	1.9020e-003
tblVehicleEF	MDV	0.07	0.34
tblVehicleEF	MDV	0.12	0.09
tblVehicleEF	MDV	0.06	0.00
tblVehicleEF	MDV	0.01	0.01
tblVehicleEF	MDV	0.06	0.26
tblVehicleEF	MDV	0.31	0.45

tblVehicleEF	MDV	3.4720e-003	3.8950e-003
tblVehicleEF	MDV	7.4100e-004	9.9100e-004
tblVehicleEF	MDV	0.07	0.34
tblVehicleEF	MDV	0.12	0.09
tblVehicleEF	MDV	0.06	0.00
tblVehicleEF	MDV	0.02	0.02
tblVehicleEF	MDV	0.06	0.26
tblVehicleEF	MDV	0.34	0.49
tblVehicleEF	МН	8.5740e-003	0.01
tblVehicleEF	МН	0.02	0.03
tblVehicleEF	МН	0.80	1.11
tblVehicleEF	МН	1.94	2.37
tblVehicleEF	МН	1,472.19	1,680.13
tblVehicleEF	МН	17.63	22.07
tblVehicleEF	МН	0.06	0.07
tblVehicleEF	МН	0.03	0.03
tblVehicleEF	МН	1.26	1.49
tblVehicleEF	МН	0.24	0.30
tblVehicleEF	МН	0.13	0.04
tblVehicleEF	МН	0.01	0.01
tblVehicleEF	МН	0.02	0.03
tblVehicleEF	МН	2.5000e-004	2.9600e-004
tblVehicleEF	МН	0.06	0.02
tblVehicleEF	МН	3.2830e-003	3.3090e-003
tblVehicleEF	МН	0.02	0.03
tblVehicleEF	МН	2.3000e-004	2.7200e-004
tblVehicleEF	МН	0.58	30.56
tblVehicleEF	МН	0.05	7.99
tblVehicleEF	МН	0.21	0.00

tblVehicleEF	МН	0.06	0.08
tblVehicleEF	МН	0.01	0.19
tblVehicleEF	МН	0.09	0.11
tblVehicleEF	МН	0.01	0.02
tblVehicleEF	МН	1.7400e-004	2.1800e-004
tblVehicleEF	МН	0.58	30.56
tblVehicleEF	МН	0.05	7.99
tblVehicleEF	МН	0.21	0.00
tblVehicleEF	МН	0.08	0.10
tblVehicleEF	МН	0.01	0.19
tblVehicleEF	МН	0.10	0.12
tblVehicleEF	MHD	3.6170e-003	0.01
tblVehicleEF	MHD	1.5120e-003	9.5360e-003
tblVehicleEF	MHD	8.8700e-003	8.3140e-003
tblVehicleEF	MHD	0.39	0.67
tblVehicleEF	MHD	0.21	0.30
tblVehicleEF	MHD	1.02	1.00
tblVehicleEF	MHD	70.85	158.59
tblVehicleEF	MHD	1,065.91	1,213.65
tblVehicleEF	MHD	8.98	8.21
tblVehicleEF	MHD	0.01	0.02
tblVehicleEF	MHD	0.14	0.16
tblVehicleEF	MHD	7.2880e-003	5.8580e-003
tblVehicleEF	MHD	0.40	0.85
tblVehicleEF	MHD	1.45	1.01
tblVehicleEF	MHD	1.70	1.40
tblVehicleEF	MHD	3.2300e-004	1.7620e-003
tblVehicleEF	MHD	0.13	0.05
tblVehicleEF	MHD	7.0640e-003	0.01

tbl\/obicloEE	МП	1 13000 001	1 01000 004
	עחוא	1.13008-004	1.01008-004
tblVehicleEF	MHD	3.0900e-004	1.6850e-003
tblVehicleEF	MHD	0.06	0.02
tblVehicleEF	MHD	6.7520e-003	0.01
tblVehicleEF	MHD	1.0400e-004	9.3000e-005
tblVehicleEF	MHD	3.5500e-004	0.02
tblVehicleEF	MHD	0.02	5.6030e-003
tblVehicleEF	MHD	0.02	0.03
tblVehicleEF	MHD	1.8800e-004	0.00
tblVehicleEF	MHD	0.01	0.03
tblVehicleEF	MHD	0.02	0.05
tblVehicleEF	MHD	0.05	0.05
tblVehicleEF	MHD	6.7200e-004	1.4720e-003
tblVehicleEF	MHD	0.01	0.01
tblVehicleEF	MHD	8.9000e-005	8.1000e-005
tblVehicleEF	MHD	3.5500e-004	0.02
tblVehicleEF	MHD	0.02	5.6030e-003
tblVehicleEF	MHD	0.02	0.04
tblVehicleEF	MHD	1.8800e-004	0.00
tblVehicleEF	MHD	0.02	0.05
tblVehicleEF	MHD	0.02	0.05
tblVehicleEF	MHD	0.05	0.05
tblVehicleEF	OBUS	7.0670e-003	7.5140e-003
tblVehicleEF	OBUS	3.3170e-003	9.5930e-003
tblVehicleEF	OBUS	0.02	0.02
tblVehicleEF	OBUS	0.60	0.52
tblVehicleEF	OBUS	0.39	0.44
tblVehicleEF	OBUS	1.79	1.87
tblVehicleEF	OBUS	94.25	87.04
	1	\Ī	

tblVehicleEF	OBUS	1,303.83	1,366.10
tblVehicleEF	OBUS	14.82	14.86
tblVehicleEF	OBUS	0.01	0.01
tblVehicleEF	OBUS	0.13	0.16
tblVehicleEF	OBUS	0.02	0.01
tblVehicleEF	OBUS	0.39	0.36
tblVehicleEF	OBUS	1.46	0.97
tblVehicleEF	OBUS	1.10	0.99
tblVehicleEF	OBUS	1.2700e-004	4.0400e-004
tblVehicleEF	OBUS	0.13	0.05
tblVehicleEF	OBUS	7.4740e-003	0.02
tblVehicleEF	OBUS	1.4700e-004	1.3100e-004
tblVehicleEF	OBUS	1.2200e-004	3.8700e-004
tblVehicleEF	OBUS	0.06	0.02
tblVehicleEF	OBUS	7.1370e-003	0.01
tblVehicleEF	OBUS	1.3500e-004	1.2100e-004
tblVehicleEF	OBUS	1.0870e-003	0.07
tblVehicleEF	OBUS	0.02	0.02
tblVehicleEF	OBUS	0.05	0.04
tblVehicleEF	OBUS	4.8600e-004	0.00
tblVehicleEF	OBUS	0.02	0.04
tblVehicleEF	OBUS	0.04	0.08
tblVehicleEF	OBUS	0.09	0.09
tblVehicleEF	OBUS	8.9500e-004	8.2300e-004
tblVehicleEF	OBUS	0.01	0.01
tblVehicleEF	OBUS	1.0870e-003	0.07
tblVehicleEF	OBUS	0.02	0.02
tblVehicleEF	OBUS	0.06	0.05
tblVehicleEF	OBUS	4.8600e-004	0.00

tblVehicleEF	OBUS	0.03	0.06
tblVehicleEF	OBUS	0.04	0.08
tblVehicleEF	OBUS	0.09	0.10
tblVehicleEF	SBUS	0.06	0.08
tblVehicleEF	SBUS	5.7290e-003	0.09
tblVehicleEF	SBUS	5.1560e-003	4.8980e-003
tblVehicleEF	SBUS	2.37	1.69
tblVehicleEF	SBUS	0.47	0.86
tblVehicleEF	SBUS	0.74	0.67
tblVehicleEF	SBUS	345.98	189.05
tblVehicleEF	SBUS	1,037.30	1,017.84
tblVehicleEF	SBUS	4.26	3.78
tblVehicleEF	SBUS	0.05	0.02
tblVehicleEF	SBUS	0.13	0.13
tblVehicleEF	SBUS	5.0100e-003	4.3540e-003
tblVehicleEF	SBUS	3.34	1.34
tblVehicleEF	SBUS	4.41	2.41
tblVehicleEF	SBUS	0.90	0.49
tblVehicleEF	SBUS	3.3290e-003	1.2090e-003
tblVehicleEF	SBUS	0.74	0.04
tblVehicleEF	SBUS	0.01	0.01
tblVehicleEF	SBUS	0.03	0.01
tblVehicleEF	SBUS	5.1000e-005	4.1000e-005
tblVehicleEF	SBUS	3.1850e-003	1.1550e-003
tblVehicleEF	SBUS	0.32	0.02
tblVehicleEF	SBUS	2.7110e-003	2.6430e-003
tblVehicleEF	SBUS	0.03	0.01
tblVehicleEF	SBUS	4.7000e-005	3.8000e-005
tblVehicleEF	SBUS	5.9800e-004	0.03

tblVehicleEF	SBUS	5.7950e-003	7.7750e-003
tblVehicleEF	SBUS	0.26	0.19
tblVehicleEF	SBUS	2.6700e-004	0.00
tblVehicleEF	SBUS	0.08	0.05
tblVehicleEF	SBUS	0.01	0.02
tblVehicleEF	SBUS	0.03	0.03
tblVehicleEF	SBUS	3.2940e-003	1.7180e-003
tblVehicleEF	SBUS	9.9090e-003	9.4580e-003
tblVehicleEF	SBUS	4.2000e-005	3.7000e-005
tblVehicleEF	SBUS	5.9800e-004	0.03
tblVehicleEF	SBUS	5.7950e-003	7.7750e-003
tblVehicleEF	SBUS	0.38	0.30
tblVehicleEF	SBUS	2.6700e-004	0.00
tblVehicleEF	SBUS	0.09	0.15
tblVehicleEF	SBUS	0.01	0.02
tblVehicleEF	SBUS	0.03	0.03
tblVehicleEF	UBUS	1.66	0.50
tblVehicleEF	UBUS	1.6700e-003	3.7330e-003
tblVehicleEF	UBUS	12.57	5.88
tblVehicleEF	UBUS	0.14	0.52
tblVehicleEF	UBUS	1,657.49	1,082.15
tblVehicleEF	UBUS	1.39	3.18
tblVehicleEF	UBUS	0.28	0.17
tblVehicleEF	UBUS	1.1100e-003	6.1420e-003
tblVehicleEF	UBUS	0.71	0.30
tblVehicleEF	UBUS	0.01	0.04
tblVehicleEF	UBUS	0.07	0.12
tblVehicleEF	UBUS	0.03	0.04
tblVehicleEF	UBUS	5.2020e-003	5.6850e-003

tblVehicleEF	UBUS	1.5000e-005	1.2000e-005
tblVehicleEF	UBUS	0.03	0.04
tblVehicleEF	UBUS	8.3320e-003	0.01
tblVehicleEF	UBUS	4.9760e-003	5.4350e-003
tblVehicleEF	UBUS	1.4000e-005	1.1000e-005
tblVehicleEF	UBUS	2.4000e-005	0.01
tblVehicleEF	UBUS	2.0100e-004	3.7860e-003
tblVehicleEF	UBUS	1.1000e-005	0.00
tblVehicleEF	UBUS	0.02	0.06
tblVehicleEF	UBUS	4.0000e-005	7.9870e-003
tblVehicleEF	UBUS	6.9810e-003	0.01
tblVehicleEF	UBUS	0.01	8.8540e-003
tblVehicleEF	UBUS	1.4000e-005	3.1000e-005
tblVehicleEF	UBUS	2.4000e-005	0.01
tblVehicleEF	UBUS	2.0100e-004	3.7860e-003
tblVehicleEF	UBUS	1.1000e-005	0.00
tblVehicleEF	UBUS	1.70	0.57
tblVehicleEF	UBUS	4.0000e-005	7.9870e-003
tblVehicleEF	UBUS	7.6430e-003	0.01
tblVehicleTrips	ST_TR	4.91	3.87
tblVehicleTrips	ST_TR	46.12	34.15
tblVehicleTrips	SU_TR	4.09	3.22
tblVehicleTrips	SU_TR	21.10	15.63
tblVehicleTrips	WD_TR	5.44	4.29
tblVehicleTrips	WD_TR	37.75	27.96
tblWater	AerobicPercent	87.46	100.00
tblWater	AerobicPercent	87.46	100.00
tblWater	AerobicPercent	87.46	100.00
tblWater	AnaerobicandFacultativeLagoonsPercent	2.21	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblWater	AnaerobicandFacultativeLagoonsPercent	2.21	0.00
tblWater	AnaerobicandFacultativeLagoonsPercent	2.21	0.00
tblWater	SepticTankPercent	10.33	0.00
tblWater	SepticTankPercent	10.33	0.00
tblWater	SepticTankPercent	10.33	0.00
tblWoodstoves	NumberCatalytic	5.12	0.00
tblWoodstoves	NumberNoncatalytic	5.12	0.00
tblWoodstoves	WoodstoveDayYear	14.12	0.00
tblWoodstoves	WoodstoveWoodMass	582.40	0.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	ns/yr							MT	/yr		
2023	0.1205	1.1596	1.1164	2.0400e-003	0.2335	0.0542	0.2878	0.1135	0.0505	0.1640	0.0000	177.2962	177.2962	0.0492	0.0000	178.5257
2024	1.5870	1.5463	1.9321	3.1900e-003	0.0000	0.0714	0.0714	0.0000	0.0670	0.0670	0.0000	275.0429	275.0429	0.0676	0.0000	276.7329
Maximum	1.5870	1.5463	1.9321	3.1900e-003	0.2335	0.0714	0.2878	0.1135	0.0670	0.1640	0.0000	275.0429	275.0429	0.0676	0.0000	276.7329

Page 1 of 1

1520 W San Carlos, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	ns/yr							MT.	/yr		
2023	0.0365	0.7578	1.3211	2.0400e-003	0.0911	4.5800e- 003	0.0957	0.0221	4.5800e- 003	0.0267	0.0000	177.2960	177.2960	0.0492	0.0000	178.5255
2024	1.4784	1.3040	2.1554	3.1900e-003	0.0000	9.1900e- 003	9.1900e-003	0.0000	9.1900e- 003	9.1900e-003	0.0000	275.0426	275.0426	0.0676	0.0000	276.7325
Maximum	1.4784	1.3040	2.1554	3.1900e-003	0.0911	9.1900e- 003	0.0957	0.0221	9.1900e- 003	0.0267	0.0000	275.0426	275.0426	0.0676	0.0000	276.7325

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	11.28	23.80	-14.04	0.00	61.00	89.04	70.81	80.50	88.28	84.45	0.00	0.00	0.00	0.00	0.00	0.00
Quarter	Sta	art Date	End	Date	Maxim	um Unmitiga	ated ROG + N	OX (tons/qua	arter)	Мах	imum Mitigat	ed ROG + NC	DX (tons/quar	ter)		
1	6-	-1-2023	8-31-	-2023			0.7137			0.3815 0.2761						
2	9-	-1-2023	11-30	-2023			0.3660			0.2761						
3	12	-1-2023	2-29-	-2024			0.4963			0.3720						
4	3-	-1-2024	5-31-	-2024			0.7116			0.5947						
5	6-	-1-2024	8-31-	-2024			1.9481			1.8278						
6	9-	-1-2024	9-30-	-2024			0.1598			0.1226						
			Hig	hest			1.9481					1.8278				

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ıs/yr							МТ	/yr		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Area	0.9961	0.0219	1.9016	1.0000e-004		0.0106	0.0106		0.0106	0.0106	0.0000	3.1099	3.1099	2.9900e- 003	0.0000	3.1846
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	186.8296	186.8296	0.0346	4.2000e-003	188.9466
Mobile	0.8479	0.5681	5.2138	0.0113	1.0613	8.0200e- 003	1.0694	0.2647	7.4900e- 003	0.2722	0.0000	1,046.4382	1,046.4382	0.0607	0.0509	1,063.1167
Waste						0.0000	0.0000		0.0000	0.0000	27.1440	0.0000	27.1440	1.6042	0.0000	67.2480
Water						0.0000	0.0000		0.0000	0.0000	6.2996	10.9453	17.2449	0.0237	0.0140	21.9934
Total	1.8440	0.5900	7.1154	0.0114	1.0613	0.0186	1.0799	0.2647	0.0180	0.2827	33.4435	1,247.3230	1,280.7665	1.7262	0.0690	1,344.4893

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Area	0.9961	0.0219	1.9016	1.0000e-004		0.0106	0.0106		0.0106	0.0106	0.0000	3.1099	3.1099	2.9900e- 003	0.0000	3.1846
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	186.8296	186.8296	0.0346	4.2000e-003	188.9466
Mobile	0.8479	0.5681	5.2138	0.0113	1.0613	8.0200e- 003	1.0694	0.2647	7.4900e- 003	0.2722	0.0000	1,046.4382	1,046.4382	0.0607	0.0509	1,063.1167
Waste						0.0000	0.0000		0.0000	0.0000	27.1440	0.0000	27.1440	1.6042	0.0000	67.2480
Water						0.0000	0.0000		0.0000	0.0000	6.2996	10.9453	17.2449	0.0237	0.0140	21.9934
Total	1.8440	0.5900	7.1154	0.0114	1.0613	0.0186	1.0799	0.2647	0.0180	0.2827	33.4435	1,247.3230	1,280.7665	1.7262	0.0690	1,344.4893

ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10 Total	Fugitive	Exhaust	PM2.5	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
				PM10	PM10		PM2.5	PM2.5	Total						

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Percent	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Reduction																

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	6/1/2023	7/6/2023	5	26	
2	Site Preparation	Site Preparation	7/10/2023	7/28/2023	5	15	
3	Grading	Grading	8/1/2023	8/29/2023	5	21	
4	Trenching	Trenching	9/5/2023	10/3/2023	5	21	
5	Building Construction	Building Construction	10/4/2023	10/1/2024	5	260	
6	Paving	Paving	3/23/2024	5/20/2024	5	41	
7	Architectural Coating	Architectural Coating	6/1/2024	8/1/2024	5	44	

Acres of Grading (Site Preparation Phase): 22.5

Acres of Grading (Grading Phase): 21

Acres of Paving: 0

Residential Indoor: 379,240; Residential Outdoor: 126,413; Non-Residential Indoor: 22,805; Non-Residential Outdoor: 7,602; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Excavators	3	8.00	158	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Site Preparation	Graders	0	0.00	187	0.41
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	4	8.00	97	0.37

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Grading	Excavators	1	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Trenching	Excavators	1	8.00	158	0.38
Trenching	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Paving	Cement and Mortar Mixers	0	0.00	9	0.56
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Paving	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor Vehicle	Hauling Vehicle
	Count	Number	Number	Number	Length	Length	Length	Class	Class	Class
Demolition	6	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	6	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Trenching	2	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.1 Mitigation Measures Construction

- Use Cleaner Engines for Construction Equipment
- Replace Ground Cover
- Water Exposed Area
- Water Unpaved Roads
- Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					9.7700e- 003	0.0000	9.7700e-003	1.4800e- 003	0.0000	1.4800e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0295	0.2793	0.2554	5.0000e-004		0.0130	0.0130		0.0121	0.0121	0.0000	44.1897	44.1897	0.0124	0.0000	44.4991
Total	0.0295	0.2793	0.2554	5.0000e-004	9.7700e- 003	0.0130	0.0227	1.4800e- 003	0.0121	0.0135	0.0000	44.1897	44.1897	0.0124	0.0000	44.4991

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT	/yr		
Fugitive Dust					3.8100e- 003	0.0000	3.8100e-003	2.9000e- 004	0.0000	2.9000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.5900e- 003	0.1763	0.3208	5.0000e-004		8.0000e- 004	8.0000e-004		8.0000e- 004	8.0000e-004	0.0000	44.1896	44.1896	0.0124	0.0000	44.4990
Total	7.5900e- 003	0.1763	0.3208	5.0000e-004	3.8100e- 003	8.0000e- 004	4.6100e-003	2.9000e- 004	8.0000e- 004	1.0900e-003	0.0000	44.1896	44.1896	0.0124	0.0000	44.4990

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.3 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	s/yr							MT	/yr		
Fugitive Dust					0.1474	0.0000	0.1474	0.0758	0.0000	0.0758	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0200	0.2064	0.1368	2.9000e-004		9.5000e- 003	9.5000e-003		8.7400e- 003	8.7400e-003	0.0000	25.0880	25.0880	8.1100e- 003	0.0000	25.2909
Total	0.0200	0.2064	0.1368	2.9000e-004	0.1474	9.5000e- 003	0.1569	0.0758	8.7400e- 003	0.0845	0.0000	25.0880	25.0880	8.1100e- 003	0.0000	25.2909

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Fugitive Dust					0.0575	0.0000	0.0575	0.0148	0.0000	0.0148	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	5.2300e- 003	0.0912	0.1722	2.9000e-004		4.7000e- 004	4.7000e-004		4.7000e- 004	4.7000e-004	0.0000	25.0880	25.0880	8.1100e- 003	0.0000	25.2908
Total	5.2300e- 003	0.0912	0.1722	2.9000e-004	0.0575	4.7000e- 004	0.0580	0.0148	4.7000e- 004	0.0152	0.0000	25.0880	25.0880	8.1100e- 003	0.0000	25.2908

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category								MT	/yr							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.4 Grading - 2023

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Fugitive Dust					0.0763	0.0000	0.0763	0.0363	0.0000	0.0363	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0180	0.1883	0.1549	3.1000e-004		8.1400e- 003	8.1400e-003		7.4900e- 003	7.4900e-003	0.0000	27.3636	27.3636	8.8500e- 003	0.0000	27.5849
Total	0.0180	0.1883	0.1549	3.1000e-004	0.0763	8.1400e- 003	0.0845	0.0363	7.4900e- 003	0.0438	0.0000	27.3636	27.3636	8.8500e- 003	0.0000	27.5849

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Fugitive Dust					0.0298	0.0000	0.0298	7.0700e- 003	0.0000	7.0700e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	5.4600e- 003	0.1085	0.1994	3.1000e-004		5.1000e- 004	5.1000e-004		5.1000e- 004	5.1000e-004	0.0000	27.3636	27.3636	8.8500e- 003	0.0000	27.5849
Total	5.4600e- 003	0.1085	0.1994	3.1000e-004	0.0298	5.1000e- 004	0.0303	7.0700e- 003	5.1000e- 004	7.5800e-003	0.0000	27.3636	27.3636	8.8500e- 003	0.0000	27.5849

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category								MT	/yr							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.5 Trenching - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	3.5700e- 003	0.0324	0.0576	9.0000e-005		1.5900e- 003	1.5900e-003		1.4600e- 003	1.4600e-003	0.0000	7.6364	7.6364	2.4700e- 003	0.0000	7.6981
Total	3.5700e- 003	0.0324	0.0576	9.0000e-005		1.5900e- 003	1.5900e-003		1.4600e- 003	1.4600e-003	0.0000	7.6364	7.6364	2.4700e- 003	0.0000	7.6981

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive Exh PM10 PM	aust P 110	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr								MT	/yr		
Off-Road	1.4000e- 003	0.0381	0.0657	9.0000e-005	1.40 00	00e- 1. 04	.4000e-004		1.4000e- 004	1.4000e-004	0.0000	7.6364	7.6364	2.4700e- 003	0.0000	7.6981
Total	1.4000e- 003	0.0381	0.0657	9.0000e-005	1.40 00	00e- 1. 04	.4000e-004		1.4000e- 004	1.4000e-004	0.0000	7.6364	7.6364	2.4700e- 003	0.0000	7.6981

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

lotal	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.6 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Off-Road	0.0495	0.4531	0.5117	8.5000e-004		0.0220	0.0220		0.0207	0.0207	0.0000	73.0185	73.0185	0.0174	0.0000	73.4527
Total	0.0495	0.4531	0.5117	8.5000e-004		0.0220	0.0220		0.0207	0.0207	0.0000	73.0185	73.0185	0.0174	0.0000	73.4527

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0168	0.3437	0.5630	8.5000e-004		2.6600e- 003	2.6600e-003		2.6600e- 003	2.6600e-003	0.0000	73.0184	73.0184	0.0174	0.0000	73.4527
Total	0.0168	0.3437	0.5630	8.5000e-004		2.6600e- 003	2.6600e-003		2.6600e- 003	2.6600e-003	0.0000	73.0184	73.0184	0.0174	0.0000	73.4527

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Building Construction - 2024 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.1450	1.3242	1.5924	2.6500e-003		0.0604	0.0604		0.0568	0.0568	0.0000	228.3714	228.3714	0.0540	0.0000	229.7215
Total	0.1450	1.3242	1.5924	2.6500e-003		0.0604	0.0604		0.0568	0.0568	0.0000	228.3714	228.3714	0.0540	0.0000	229.7215

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.0526	1.0749	1.7606	2.6500e-003		8.3300e- 003	8.3300e-003		8.3300e- 003	8.3300e-003	0.0000	228.3711	228.3711	0.0540	0.0000	229.7212
Total	0.0526	1.0749	1.7606	2.6500e-003		8.3300e- 003	8.3300e-003		8.3300e- 003	8.3300e-003	0.0000	228.3711	228.3711	0.0540	0.0000	229.7212

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.7 Paving - 2024

Unmitigated Construction On-Site

Page 1 of 1

1520 W San Carlos, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0203	0.1953	0.2998	4.7000e-004		9.6000e- 003	9.6000e-003		8.8400e- 003	8.8400e-003	0.0000	41.0544	41.0544	0.0133	0.0000	41.3863
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0203	0.1953	0.2998	4.7000e-004		9.6000e- 003	9.6000e-003		8.8400e- 003	8.8400e-003	0.0000	41.0544	41.0544	0.0133	0.0000	41.3863

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

Page 1 of 1

1520 W San Carlos, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/	/yr							MT	/yr		
Off-Road	6.8500e- 003	0.2058	0.3546	4.7000e-004		7.7000e- 004	7.7000e-004		7.7000e- 004	7.7000e-004	0.0000	41.0543	41.0543	0.0133	0.0000	41.3863
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.8500e- 003	0.2058	0.3546	4.7000e-004		7.7000e- 004	7.7000e-004		7.7000e- 004	7.7000e-004	0.0000	41.0543	41.0543	0.0133	0.0000	41.3863

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.8 Architectural Coating - 2024

Unmitigated Construction On-Site

Page 1 of 1

1520 W San Carlos, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating	1.4178					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	3.9800e- 003	0.0268	0.0398	7.0000e-005		1.3400e- 003	1.3400e-003		1.3400e- 003	1.3400e-003	0.0000	5.6172	5.6172	3.2000e- 004	0.0000	5.6251
Total	1.4218	0.0268	0.0398	7.0000e-005		1.3400e- 003	1.3400e-003		1.3400e- 003	1.3400e-003	0.0000	5.6172	5.6172	3.2000e- 004	0.0000	5.6251

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Archit. Coating	1.4178					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.2000e- 003	0.0233	0.0403	7.0000e-005		9.0000e- 005	9.0000e-005		9.0000e- 005	9.0000e-005	0.0000	5.6172	5.6172	3.2000e- 004	0.0000	5.6251
Total	1.4190	0.0233	0.0403	7.0000e-005		9.0000e- 005	9.0000e-005		9.0000e- 005	9.0000e-005	0.0000	5.6172	5.6172	3.2000e- 004	0.0000	5.6251

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	s/yr							MT	yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Mitigated	0.8479	0.5681	5.2138	0.0113	1.0613	8.0200e- 003	1.0694	0.2647	7.4900e- 003	0.2722	0.0000	1,046.4382	1,046.4382	0.0607	0.0509	1,063.1167
Unmitigated	0.8479	0.5681	5.2138	0.0113	1.0613	8.0200e- 003	1.0694	0.2647	7.4900e- 003	0.2722	0.0000	1,046.4382	1,046.4382	0.0607	0.0509	1,063.1167

4.2 Trip Summary Information

	Av	erage Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Mid Rise	1 098 24	990 72	824 32	2 410 649	2 410 649
Enclosed Parking with Elevator	0.00	0.00	0.00	_,	_,,
Regional Shopping Center	424.99	519.08	237.58	721,764	721,764
Total	1,523.23	1,509.80	1,061.90	3,132,414	3,132,414

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Mid Rise	H-W or C-W H-S or C-C 10.80 4.80		5.70	31.00	15.00	54.00	86	11	3
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Regional Shopping Center	9.50	7.30	7.30	16.30	64.70	19.00	54	35	11

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.528224	0.040364	0.230108	0.128589	0.023276	0.005740	0.009425	0.007440	0.001057	0.000413	0.022096	0.000684	0.002585
Enclosed Parking with Elevator	0.528224	0.040364	0.230108	0.128589	0.023276	0.005740	0.009425	0.007440	0.001057	0.000413	0.022096	0.000684	0.002585

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Pagional Shanning Contor	Ξ	0 528224	0.040364	0.220108	0 129590	0 022276	0.005740	0.000/25	0.007440	0.001057	0.000/12	0 022006	0 000684	0 002585
Regional Shopping Center		0.JZ0ZZ4 <u>-</u>	0.040304	0.230100	0.120309	0.023270	0.003740	0.009423	0.007440	0.001037	0.000413	0.022090	0.000004	0.002303
a 11 a	-	-	-	-		-		-	-			-		
	-	-	-		-	-	-			-	-	-		
	-	-	-	-	-	-	-	-	-	-	-	•	-	
													the second se	

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	186.8296	186.8296	0.0346	4.2000e-003	188.9466
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	186.8296	186.8296	0.0346	4.2000e-003	188.9466
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ns/yr							МТ	/yr		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Apartments Mid	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Rise															
Enclosed Parking	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
with Elevator															
Regional Shopping	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Center															
Total		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	is/yr							MT	/yr		
Apartments Mid Rise	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Regional Shopping Center	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.3 Energy by Land Use - Electricity

Unmitigated

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Land Use	kWh/yr		MT	/yr	
Apartments Mid Rise	1.61865e+ 006	130.6891	0.0242	2.9400e-003	132.1700
Enclosed Parking with Elevator	526880	42.5400	7.8900e-003	9.6000e-004	43.0221
Regional Shopping Center	168449	13.6005	2.5200e-003	3.1000e-004	13.7546
Total		186.8296	0.0346	4.2100e-003	188.9466

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	ſ/yr	
Apartments Mid Rise	1.61865e+ 006	130.6891	0.0242	2.9400e-003	132.1700
Enclosed Parking with Elevator	526880	42.5400	7.8900e-003	9.6000e-004	43.0221
Regional Shopping Center	168449	13.6005	2.5200e-003	3.1000e-004	13.7546
Total		186.8296	0.0346	4.2100e-003	188.9466

6.0 Area Detail

6.1 Mitigation Measures Area

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.9961	0.0219	1.9016	1.0000e-004		0.0106	0.0106		0.0106	0.0106	0.0000	3.1099	3.1099	2.9900e- 003	0.0000	3.1846
Unmitigated	0.9961	0.0219	1.9016	1.0000e-004		0.0106	0.0106		0.0106	0.0106	0.0000	3.1099	3.1099	2.9900e- 003	0.0000	3.1846

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tor	ns/yr							МТ	/yr		
Architectural Coating	0.1418					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.7971					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	0.0573	0.0219	1.9016	1.0000e-004		0.0106	0.0106		0.0106	0.0106	0.0000	3.1099	3.1099	2.9900e- 003	0.0000	3.1846
Total	0.9961	0.0219	1.9016	1.0000e-004		0.0106	0.0106		0.0106	0.0106	0.0000	3.1099	3.1099	2.9900e- 003	0.0000	3.1846

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	SubCategory tons/yr							MT/yr								
Architectural Coating	0.1418					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.7971					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	0.0573	0.0219	1.9016	1.0000e-004		0.0106	0.0106		0.0106	0.0106	0.0000	3.1099	3.1099	2.9900e- 003	0.0000	3.1846
Total	0.9961	0.0219	1.9016	1.0000e-004		0.0106	0.0106		0.0106	0.0106	0.0000	3.1099	3.1099	2.9900e- 003	0.0000	3.1846

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		M	Г/yr	
Mitigated	17.2449	0.0237	0.0140	21.9934
Unmitigated	17.2449	0.0237	0.0140	21.9934

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Apartments Mid Rise	16.6794 / 10.5153	16.1596	0.0222	0.0131	20.6080
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Regional Shopping Center	1.1259 / 0.690069	1.0852	1.5000e-003	8.8000e-004	1.3855
Total		17.2449	0.0237	0.0139	21.9934

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Apartments Mid Rise	16.6794 / 10.5153	16.1596	0.0222	0.0131	20.6080
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Regional Shopping Center	1.1259 / 0.690069	1.0852	1.5000e-003	8.8000e-004	1.3855

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Total	17.2449	0.0237	0.0139	21.9934

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		M	T/yr	
Mitigated	27.1440	1.6042	0.0000	67.2480
Unmitigated	27.1440	1.6042	0.0000	67.2480

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
Apartments Mid Rise	117.76	23.9042	1.4127	0.0000	59.2217
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Regional Shopping Center	15.96	3.2397	0.1915	0.0000	8.0263
Total		27.1440	1.6042	0.0000	67.2480

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
Apartments Mid Rise	117.76	23.9042	1.4127	0.0000	59.2217
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Regional Shopping Center	15.96	3.2397	0.1915	0.0000	8.0263
Total		27.1440	1.6042	0.0000	67.2480

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators														
Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type								

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
User Defined Equipment					
Equipment Type	Number				
11.0 Vegetation					

Attachment 3: EMFAC2021 Calculations

Summary of Construction Traffic Emissions (EMFAC2021)															
					Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5					
Pollutants	ROG	NOx	СО	SO2	PM10	PM10	Total	PM2.5	PM2.5	Total	NBio- CO2	CH4	N2O	CO2e	
YEAR					Τοι	ns					Metric	Tons			
	Criteria Pollutants														
2023	0.0465	0.2691	0.5510	0.0025	0.1290	0.0187	0.1477	0.0194	0.0078	0.0272	238.6673	0.0143	0.0258	246.7082	
2024	0.0560	0.3299	0.6636	0.0031	0.1657	0.0239	0.1897	0.0249	0.0098	0.0348	301.0152	0.0176	0.0325	311.1296	
						Toxic Air	Contamina	nts (0.5 Mil	e Trip Lengt	h)					
2023	0.039265	0.074866	0.180511	0.000196	0.006077	0.000976	0.007052	0.000914	0.000451	0.001366	19.1105506	0.004394	0.003082	20.138713	
2024 0.047715 0.094213 0.219714 0.000246 0.007809						0.00124	0.009049	0.001175	0.000567	0.001742	24.0763577	0.005412	0.003866	25.3637423	

CalEEMod Construction Inputs

	CalEEMod WORKER	CalEEMod VENDOR	Total Worker	Total Vendor	CalEEMod HAULING	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor Vehicle	Hauling Vehicle	Worker	Vendor	Hauling
Phase	TRIPS	TRIPS	Trips	Trips	TRIPS	Length	Length	Length	Class	Class	Class	VMT	VMT	VMT
Demolition	1	5 () 390) (148	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	4212	0	2960
Site Preparation	13	3 () 27() (0	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	2916	0	0
Grading	1	5 () 31	5 0	4,312	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	3402	0	86240
Trenching	!	5 () 10	5 0	0	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	1134	0	0
Building Construction	23	0 46	5 59800) 11960	4320	10.8	7.3	7.	3 LD_Mix	HDT_Mix	HHDT	645840	87308	31536
Paving	1	5 (0 61	5 0	4	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	6642	0	80
Architectural Coating	4	5 (2024	1 O	0	10.8	7.3	7.	3 LD_Mix	HDT_Mix	HHDT	21859.2	0	0

Number of Days Per Year				
2023	<mark>6/1/23</mark>	12/31/23	214	153
2024	<mark>1/1/24</mark>	10/1/24	275	197
			489	350 Total Workdays

Phase	Start Date	End Date	Days/Week	Workdays
Demolition	6/1/2023	7/6/2023	5	26
Site Preparation	7/10/2023	7/28/2023	5	15
Grading	8/1/2023	8/29/2023	5	21
Trenching	9/5/2023	10/3/2023	5	21
Building Construction	10/4/2023	10/1/2024	5	260
Paving	3/23/2024	5/20/2024	5	41
Architectural Coating	6/1/2024	8/1/2024	5	44

Source: EMFACION (V.O.2.) Emission Rates Region Type County Exegence: State Cara Calendar Year 2023 Source: Annual White: Calendar Year 2020 Collegation White: Calendar Year CAMP CANDO Calegation White: Calendar UNIT: The Calendar Part of the Ruber, PARW and PMTW, giving for STRDX, HOTSOAK and RUHLOSS, givehicle/dary for DEX: and DURN. PHEV calendared based on total VMT.

one magay is chi micrim, juppaj is mpi, gina na nata, mar mi gup a ana, na zon manazi, gun nata na anna an ann																												
Region C	endar Y Vehicle (at Model Yea Sneed Fuel	Population Total VMT CVM	T EVMT	Trins NOv		NOV STREEPM2 5 RU!	PM2.5 IDI PM2.5 STR	PM2.5 PMPM2.5 PMPM10	BURPM10 IDIEPM10	STR PM10_PM'P	M10 PMICO2 RU		2 STREACHA RUNEC	H4 IDLEX CH4 STE	FINZO RUNENZO	IDLEINZO STREIROG	RUNEROG IDLEDE	ING STREIRING HO	TSROG BUINERO	5 DULR TOG BUNE		STREETING HOTS	TOG BUNITOG	HUR NH3 RUNFCC	BUNEXCO IDLEX (O STREX SOV RUNES	OV IDLEX SOX STREX
Santa Clara	2023 HHDT	Apprezate Apprezate Gasoline	3 454009 114 3093 114	13093 0	69 10781 8 10	07874 0	1.602501 0.00493	0 0.0017	0.005 0.035266 0.00	5362 0.0.00	849 0.02 0	100759 2306.8	17 0 4	9 81185 0 340225	0 0.000	18 0 208909	0 0.045697 2.10	4867 0	0.000979 0.1583	4 1 426645 10	65375 3 071416	0 0.00	1072 0 158374	1 426645 10.6	375 0.040468	83 0074 0	1 02738 0 022805	0 0 000492
Santa Clara	2023 HHDT	Aggregate Aggregate Diesel	8235.059 991289 9	91289 0	120860.8 1.9	69368 63.40488	2.849455 0.025957	0.031631 0	0.008769 0.027531 0.02	7131 0.033061	0 0.035077 0	0.078661 1656.80	01 12241.32	0 0.000809	0.237446	0 0.26103 1.92	28625 0 0.01	7417 5.112156	0	0 0	0 0.019828	5.819801	0 0	0	0 0.214624 0	.087393 74.20136	0 0.015689 /	0.115918 0
Santa Clara	2023 HHDT	Aggregate Aggregate Electricity	6.70171 411.5054	0 411.5054	103.2044	0 0	0 0	0 0	0.00874 0.013383	0 0	0 0.03496 0	0.038238	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0
Santa Clara	2023 HHDT	Aggregate Aggregate Natural Ga	753.7366 53295.97 532	95.97 0	6914.034 1.20	08844 13.92832	0 0.001774	0.024237 0	0.009 0.046729 0.00	1929 0.02636	0 0.036 0	0.133512 1398.	51 10630.2	0 2.44811	37.44665	0 0.285095 2.16	67036 0 0.05	4572 0.572265	0	0 0	0 2.520799	38,25947	0 0	0	0 0.860105 1	3.78246 74.03965	0 0	0 0
Santa Clara	2023 LDA	Aggregate Aggregate Gasoline	601938.3 22370251 223	70251 0	2795479 0.04	J47412 0	0.27189 0.001217	0 0.001992	0.002 0.002656 0.00	1323 0 0.00	167 0.008 0	0.007588 281.4	43 0 7	1.66478 0.002603	0 0.0764	19 0.004995	0 0.034134 0.0	1016 0	0.353794 0.0947	8 0.240611 1.4	480552 0.014823	0 0.38	7359 0.094758	0.240611 1.48'	1552 0.033781 0	.787617 0	3.436611 0.002782	0 0.000708
Santa Clara	2023 LDA	Aggregate Aggregate Diesel	1871.125 56220.8 56	220.8 0	8000.531 0.23	38318 0	0 0.018559	0 0	0.002 0.002698 0.01	3399 0	0 0.008 0	0.007709 234.4	26 0	0 0.001413	0	0 0.036934	0 0.03	0417 0	0	0 0	0 0.034627	0	0 0	0	0 0.0031 0	.342459 0	0 0.002221	0 0
Santa Clara	2023 LDA	Aggregate Aggregate Electricity	53751.15 2268185	0 2268185	265250.1	0 0	0 0	0 0	0.002 0.001532	0 0	0 0.008 0	0.004377	0 0	0 0	ò	0 0	0 0	0 0	0	0 0	0 0	ò	0 0	0	0 0	0 0	0 0	0 0
Santa Clara	2023 LDA	Aggregate Aggregate Plug-in Hyb	15805.32 700610.9 356	649.7 343961.3	65355 0.0	.00334 0	0.11551 0.000664	0 0.002171	0.002 0.001373 0.00	0 0.00	361 0.008 0	0.003922 142.11	02 0 6	6.08871 0.000457	0 0.0426	4 0.000605	0 0.020916 0.00	1444 0	0.173285 0.0406	2 0.036088 0.4	47056 0.002108	0 0.18	3725 0.040642	0.036088 0.44"	056 0.019705 0	219913 0	1.339893 0.001405	0 0.000653
Santa Clara	2023 LDT1	Aggregate Aggregate Gasoline	53782.25 1744480 174	44480 0	239737.9 0.14	43293 0	0.404336 0.00185	0 0.002837	0.002 0.003239 0.00	2012 0 0.00	0.008 0.008 0	0.009253 332.65	35 0.8	8.31133 0.006987	0 0.1125	57 0.010257	0 0.039834 0.03	1222 0	0.583212 0.1741	5 0.503091 2.1	807011 0.045546	0 0.63	8542 0.174145	0.503091 2.80*	011 0.035775 1	.553409 0	5.660037 0.003289	0 0.000873
Santa Clara	2023 LDT1	Aggregate Aggregate Diesel	26.04714 391.8698 391	.8698 0	75.17737 1.65	59056 0	0 0.24041	0 0	0.002 0.003728 0.2	5128 0	0 0.008 0	0.010651 415.54	48 0	0 0.013928	0	0 0.06547	0 0.25	9852 0	0	0 0	0 0.341362	0	0 0	0	0 0.0031 1	.601395 0	0 0.003938	0 0
Santa Clara	2023 LDT1	Aggregate Aggregate Electricity	194.8941 7068.184	0 7068.184	916.4832	0 0	0 0	0 0	0.002 0.00154	0 0	0 0.008	0.0044	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0
Santa Clara	2023 LDT1	Aggregate Aggregate Plug-in Hyb	43.27677 2048.369 944	.1579 1104.211	178.9495 0.00	03025 0	0.11551 0.000387	0 0.00141	0.002 0.001383 0.00	0 0.00	1534 0.008 0	0.003951 128.76	49 0 7	0.85641 0.000412	0 0.0424	89 0.000544	0 0.020762 0.00	1308 0	0.173285 0.0245	4 0.021781 0.	285922 0.001909	0 0.18	9725 0.024584	0.021781 0.28	922 0.019359 0	.199575 0	1.339893 0.001273	0 0.000701
Santa Clara	2023 LDT2	Aggregate Aggregate Gasoline	280180.4 10140967 1014	40967 0	1311796 0.03	77207 0	0.358346 0.001265	0 0.002003	0.002 0.003125 0.00	1375 0 0.00	179 0.008 0	0.008929 348.39	61 08	9.54446 0.003121	0 0.0877	59 0.006381	0 0.038646 0.01	2417 0	0.410727 0.0851	9 0.224187 1.4	404898 0.018118	0 0.44	1694 0.085119	0.224187 1.40/	898 0.035545 0	.896823 0	3.892097 0.003444	0 0.000885
Santa Clara	2023 LDT2	Aggregate Aggregate Diesel	978.4967 36936.87 369	136.87 0	4673.401 0.04	46157 0	0 0.005431	0 0	0.002 0.003102 0.00	5677 0	0 0.008 0	0.008863 313.066	66 0	0 0.00065	0	0 0.049324	0 0 0.01	3984 0	0	0 0	0 0.015919	0	0 0	0	0 0.0031 0	.132099 0	0 0.002966	0 0
Santa Clara	2023 LDT2	Aggregate Aggregate Electricity	1105.879 38931.7	0 38931.7	5663.051	0 0	0 0	0 0	0.002 0.001525	0 0	0 0.008 0	0.004357	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0
Santa Clara	2023 LDT2	Aggregate Aggregate Plug-in Hyb	1696.55 77270.66 371	42.68 40127.98	7015.234 0.00	03154 0	0.11551 0.000504	0 0.001759	0.002 0.001378 0.00	0 0.00	1913 0.008 0	0.003938 134.254	45 0 7	7.03601 0.000429	0 0.0424	57 0.000568	0 0.020778 0.00	1364 0	0.173285 0.026	4 0.024448 0.3	318232 0.00199	0 0.18	₹725 0.02624	0.024448 0.318	232 0.020144 0	.207985 0	1.339893 0.001327	0 0.000762
Santa Clara	2023 LHDT1	Aggregate Aggregate Gasoline	19180.96 711085.5 711	085.5 0	285767.8 0.19	.97814 0.037373	0.6588 0.001595	0 0.000328	0.002 0.0273 0.00	1734 0 0.00	0.008	0.078 889.74	24 120.2664 2	5.83956 0.009485	0.115635 0.0345	16 0.011082 0.00	03012 0.051891 0.04	7656 0.428153	0.172233 0.0505	4 0.277601 2.9	913784 0.069539	0.62476 0.18	\$574 0.050564	0.277601 2.917	784 0.044872 1	.225109 3.753425	3.080251 0.008796 0	0.001189 0.000255
Santa Clara	2023 LHDT1	Aggregate Aggregate Diesel	9807.465 384084.8 384	084.8 0	123365.6 1.78	80633 2.029274	0 0.038253	0.026974 0	0.003 0.0273 0.03	9983 0.028193	0 0.012	0.078 635.4	27 132.908	0 0.008623	0.005098	0 0.100112 0.0	02094 0 0.18	15652 0.10976	0	0 0	0 0.211352	0.124954	0 0	0	0 0.16551 0	.518876 0.909745	0 0.006021 C	0.001259 0
Santa Clara	2023 LHDT2	Aggregate Aggregate Gasoline	2494.382 90793.04 907	93.04 0	37162.58 0.18	.87016 0.036817	0.642061 0.001446	0 0.00026	0.002 0.03185 0.00	1572 0 0.00	283 0.008	0.091 997.384	45 138.7974 2	5.72325 0.007074	0.114568 0.0334	51 0.01097 0.00	02967 0.050452 0.03	13047 0.42203	0.165607 0.0469	3 0.25097 2.0	576301 0.048222	0.615826 0.18	1319 0.046993	0.25097 2.67F	301 0.044967 0	.961891 3.759407	3.119312 0.00986 0	0.001372 0.000254
Santa Clara	2023 LHDT2	Aggregate Aggregate Diesel	4479.532 176769.2 176	769.2 0	56346.87 1.43	16942 1.998258	0 0.034177	0.027026 0	0.003 0.03185 0.03	5723 0.028248	0 0.012	0.091 764.503	39 212.1206	0 0.007824	0.005098	0 0.120448 0.0	03342 0 0.16	8448 0.10976	0	0 0	0 0.191767	0.124954	0 0	0	0 0.178982 /	J.44054 0.909745	0 0.007244	0.00201 0
Santa Clara	2023 MCY	Aggregate Aggregate Gasoline	27894.5 164894.5 164	1894.5 0	55788.99 0.51	86927 0	0.142374 0.001778	0 0.003413	0.001 0.0042 0.00	1899 0 0.00	626 0.004	0.012 188.309	93 0 4	9.59811 0.167622	0 0.1874	32 0.040223	0 0.008379 1.10	15923 0	1.392636 3.56	1 3.745685 3.9	347874 1.324135	0 1.51	3873 3.5601	3.745685 3.947	874 0.00876 17	3.08956 0	8.051197 0.001862	0 0.00049
Santa Clara	2023 MDV	Aggregate Aggregate Gasoline	153799.1 5358084 53	58084 0	712433.9 0.1	.11759 0	0.470106 0.001289	0 0.002144	0.002 0.003187 0.00	1402 0 0.00	331 0.008 0	0.009106 422.679	91 0 1	09.0331 0.004406	0 0.1102	32 0.008479	0 0.043081 0.01	8826 0	0.559259 0.1019	5 0.285798 1	.72733 0.02744	0 0.61	2315 0.101975	0.285798 1.77	733 0.035428 1	.067328 0	4.333252 0.004179	0 0.001078
Santa Clara	2023 MDV	Aggregate Aggregate Diesel	2374.918 86834.44 868	134.44 0	11267.05 0.05	.53096 0	0 0.00515	0 0	0.002 0.003181 0.00	5383 0	0 0.008	0.00909 411.16	32 0	0 0.000529	0	0 0.064779	0 0 0.01	1397 0	0	0 0	0 0.012975	0	0 0	0	0 0.0031 0	.202592 0	0 0.003896	0 0
Santa Clara	2023 MDV	Aggregate Aggregate Electricity	1130.115 40073.7	0 40073.7	5799.833	0 0	0 0	0 0	0.002 0.001524	0 0	0 0.008 0	0.004354	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0
Santa Clara	2023 MDV	Aggregate Aggregate Plug-in Hyb	986.0895 41899.14 207	87.35 21111.79	4077.48 0.00	,03256 0	0.11551 0.000638	0 0.002151	0.002 0.001376 0.00	0 0.00	1339 0.008	0.00393 138.53	32 0 9	6.68489 0.000441	0 0.0422	51 0.000581	0 0.020595 0.00	1408 0	0.173285 0.029	IS 0.028058 0.3	359617 0.002054	0 0.18	3725 0.02985	0.028058 0.355	617 0.020837 0	.214483 0	1.339893 0.00137	0 0.000956
Santa Clara	2023 MH	Aggregate Aggregate Gasoline	2522.745 22546.87 225	46.87 0	252.3754 0.43	79133 0	0.412521 0.001781	0 0.000428	0.003 0.015756 0.00	1937 0 0.00	0.012 0	0.045017 1948.24	43 03	1.87585 0.018146	0 0.0380	28 0.02809	0 0.042647 0.08	12252 0	0.163779 13.039	IS 0.30297 4.3	773625 0.120022	0 0.17	318 13.03985	0.30297 4.77?	625 0.044742 2	.111943 0	3.629376 0.01926	0 0.000315
Santa Clara	2023 MH	Aggregate Aggregate Diesel	959.1578 9344.849 934	4.849 0	95.91578 4.26	.69554 0	0 0.097907	0 0	0.004 0.015675 0.10	2334 0	0 0.016 0	0.044785 1081.4	35 0	0 0.005704	0	0 0.17038	0 0 0.12	2812 0	0	0 0	0 0.139813	0	0 0	0	0 0.150005 0	410284 0	0 0.010247	0 0
Santa Clara	2023 MHDT	Aggregate Aggregate Gasoline	1418.703 70785.86 707	85.86 0	28385.41 0.56	62864 0.088304	0.453053 0.001386	0 0.000555	0.003 0.015756 0.00	1507 0 0.00	0603 0.012 0	0.045017 1792.4	11 536.9661 4	7.19918 0.018074	0.254589 0.0493	87 0.026381 0.00	07064 0.032566 0.0	9086 1.010025	0.279571 0.0371	87 0.302385 3.0	0.132583	1.473826 0.30	3095 0.037187	0.302385 3.037	923 0.04497 1	909686 15.08517	6.156285 0.01772 C	0.005308 0.000467
Santa Clara	2023 MHDT	Aggregate Aggregate Diesel	10273.55 431550.4 431	1550.4 0	122418.7 1.3	.37342 13.57242	1.624162 0.016518	0.035742 0	0.003 0.015941 0.01	7265 0.037358	0 0.012 0	0.045546 1151.56	62 2263.789	0 0.001721	0.012298	0 0.181429 0.3	56661 0 0.03	17048 0.26478	0	0 0	0 0.042176	0.301431	0 0	0	0 0.209014 0.	132571 7.583386	0 0.010905 0	0.021437 0
Santa Clara	2023 MHDT	Aggregate Aggregate Electricity	4.749835 101.8022	0 101.8022	59.6458	0 0	0 0	0 0	0.003 0.00799	0 0	0 0.012 0	0.022828	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0
Santa Clara	2023 MHDT	Aggregate Aggregate Natural Ga	83.841 4047.874 404	7.874 0	762.81 0.14	.41319 6.52743	0 0.001137	0.017647 0	0.003 0.016002 0.00	1236 0.019193	0 0.012 0	0.045721 989.3	85 5296.533	0 0.740055	17.59163	0 0.201693 1.03	79733 0 0.01	0574 0.25135	0	0 0	0 0.755281	17.95355	0 0	0	0 1.06 2.	992708 33.64344	0 0	0 0
Santa Clara	2023 OBUS	Aggregate Aggregate Gasoline	458.8974 20830.08 208	130.08 0	9181.619 0.55	.53081 0.064991	0.405616 0.000893	0 0.000264	0.003 0.01568 0.00	0 0.00	0.012 0	0.044799 1784.09	92 381.8461 3	1.89445 0.015808	0.194938 0.0362	31 0.026177 0.00	05253 0.030766 0.07	8109 0.745234	0.192301 0.0347	06 0.154035 2.3	766253 0.113977	1.087444 0.21	J546 0.034706	0.154035 2.768	.253 0.044918 1.	743956 5.768375	4.071703 0.017638 0	0.003775 0.000315
Santa Clara	2023 OBUS	Aggregate Aggregate Diesel	870.4209 61645.66 616	45.66 0	8910.755 1.20	.03188 7.410097	1.541404 0.020323	0.008632 0	0.003 0.018018 0.02	1242 0.009022	0 0.012	0.05148 1282.5	38 1552.949	0 0.001991	0.020568	0 0.202064 0.24	44668 0 0.0	4285 0.442828	0	0 0	0 0.048793	0.504126	0 0	0	0 0.215865 0.	153454 7.510858	0 0.012145 0	0.014706 0
Santa Clara	2023 OBUS	Aggregate Aggregate Natural Ga	6.1456 409.5466 409	0.5466 0	54.69584 0.2	.19315 1.549107	0 0.000923	0.00362 0	0.003 0.016148 0.00	1004 0.003937	0 0.012 0	0.046137 1017.40	05 1188.285	0 0.774069	4.381267	0 0.207405 0.3	24224 0 0.0	01105 0.0626	0	0 0	0 0.789994	4.471404	0 0	0	0 1.06 3.	211954 6.724204	0 0	0 0
Santa Clara	2023 SBUS	Aggregate Aggregate Gasoline	166.9867 8309.308 830	19.308 0	667.9468 0.5	.19317 0.925703	0.7051 0.000862	0 0.00056	0.002 0.015721 0.00	0 0.00	0.008 0	0.044917 815.090	09 2602.033 5	8.66947 0.011871	2.46208 0.0749	18 0.027733 0.01	85224 0.064904 0.05	7744 10.62943	0.427061 0.1122	1 0.259299 1.	591441 0.084259	15.51043 0.46	/578 0.112221	0.259299 1.591	.441 0.045 1.	469507 82.16746	10.56434 0.008058 0	0.025724 0.00058
Santa Clara	2023 SBUS	Aggregate Aggregate Diesel	667.1185 15392.68 153	192.68 0	9659.876 4.03	28015 22.39863	0.467155 0.020908	0.02125 0	0.003 0.015721 0.02	1853 0.022211	0 0.012 0	0.044917 1148.5	24 2237.814	0 0.002748	0.008083	0 0.18095 0.3	52568 0 0.05	9161 0.174017	0	0 0	0 0.06735	0.198106	0 0	0	0 0.144154 0.	181489 4.581854	0 0.010876 0	0.021191 0
Santa Clara	2023 SBUS	Aggregate Aggregate Electricity	0.302373 3.510494	0 3.510494	4.378365	0 0	0 0	0 0	0.003 0.00785	0 0	0 0.012 0	0.022459	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0
Santa Clara	2023 SBUS	Aggregate Aggregate Natural Ga	23.50762 595.8705 595	i.8705 0	340.3903 0.51	87321 5.282702	0 0.003378	0.011076 0	0.003 0.015721 0.00	3674 0.012046	0 0.012 0	0.044917 1271.12	27 4058.811	0 3.490611	15.40242	0 0.259128 0.82	27415 0 0.04	9874 0.22007	0	0 0	0 3.562424	15.7193	0 0	0	0 1.06 1.9	90284 20.11199	0 0	0 0
Santa Clara	2023 UBUS	Aggregate Aggregate Gasoline	45.94709 4798.244 479	8.244 0	183.7884 0.02	26807 0	0.443444 0.001143	0 0.000128	0.002 0.03185 0.00	1243 0 0.0	014 0.008	0.091 926.293	24 0 3	6.84613 0.002031	0 0.0417	15 0.004215	0 0.070149 0.00	15614 0	0.147842 0.0381	4 0.09212 0.4	456803 0.008192	0 0.16	1868 0.038144	0.09212 0.456	803 0.045 0.	571128 0	6.073786 0.009157	0 0.000364
Santa Clara	2023 UBUS	Aggregate Aggregate Diesel	436.6681 48829.71 488	129.71 0	1746.672 0.3	86256 0	0 0.007022	0 0	0.0083 0.0385 0.0	0734 0	0 0.0332	0.11 1100.9	65 0	0 0.003215	0	0 0.173457	0 0.06	9208 0	0	0 0	0 0.078788	0	0 0	0	0 0.18785 0.	J79368 0	0 0.010432	0 0
Santa Clara	2023 UBUS	Aggregate Aggregate Electricity	5.046757 199.0027	0 199.0027	20.18703	0 0	0 0	0 0	0.009 0.01925	0 0	0 0.036	0.055	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0 0
Santa Clara	2023 UBUS	Aggregate Aggregate Natural Ga	42.26114 4829.673 482	9.673 0	169.0446 0.0	05878 0	0 0.000282	0 0	0.008182 0.0385 0.00	0295 0	0 0.032727	0.11 1299.13	27 0	0 4.245742	0	0 0.264835	0 0.06	0663 0	0	0 0	0 4.333091	0	0 0	0	0 0.97 45	.04231 0	0 0	0 0

Source: EMFACION (V.O.2.) Emission Rates Ragion Type County Exagence: Santa Cara Calendar Year 2024 Source: Annual White: Calendar Year 2024 County C

Region Cal	endar Y Vehicle Ca	atModel Yea Speed Fuel	Population Total VMT_CVMT	EVMT Tr	.ips NOx_RUNP	AENOX_IDLEXNOX_	STREI PM2.5_RU PM	12.5_IDLPM2.5_STFP	9M2.5_PMPM2	.5_PMPM10_RUM	PM10_IDLEPM10_S	TR PM10_PN	M'PM10_PMICO2	RUNECO2_IDLEXCO	STREACH4_RUNEC	CH4_IDLEX CH4_	_STRED N2O_RUNEN20	_IDLEXN2O_STRE	E'ROG_RUNEROG_IDI	LE) ROG_STRE:ROG	G_HOTSROG_RUNL	LROG_DIUR TOG_RUN	NETOG_IDLEXT	OG_STREITOG_H	OTSTOG_RUNI TO	-G_DIUR NH3_RL	/NECO_RUNEXCO_P	DLEX CO_STREX SOV	_RUNE SOX_IDLE	K SOX_STREX
Santa Clara	2024 HHDT	Aggregate Aggregate Gasoline	2.588708 115.1526 115.1	.526 0 5	51.79487 7.013725	25 0 1.69	J95629 0.003612	0 0.001433	0.005 0.	03384 0.003929	0 0.0015	59 0.00	2 0.096686 216	6.164 0 50	.04419 0.246012	0 0.0	00205 0.192927	0 0.049797	7 1.47824	0 0.001115 0.1	149022 1.34233	10.02547 2.15704	15 0	0.001221 0.1497	022 1.34233 1	0.02547 0.042	.74 52.51903	0 1.60109 0.0	021415	J 0.000495
Santa Clara	2024 HHDT	Aggregate Aggregate Diesel	8486.693 1001095 1001	.095 0 *	124748.4 1.894567	57 62.32042 2.85	398867 0.025674 r	0.03017 0	0.00877 0.0	27454 0.026835	0.031534	0 0.03508	2 0.07844 1	634.1 11997.01	0 0.000777	0.23663	0 0.257453 1.4	890134 0	0.016732 5.0945	84 0	0 0	0 0.01904	8 5.799796	0	0 0	0 0.2150	84 0.082524 74.	.10576 0 0./	015474 0.11360	.5 0
Santa Clara	2024 HHDT	Aggregate Aggregate Electricity	28.33039 2794.261	0 2794.261 ?	378.7946 0	0 0	0 0	0 0	0.008585 0.0	14055 0	0	0 0.03434	1 0.040158	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0	0 0
Santa Clara	2024 HHDT	Aggregate Aggregate Natural G	a 794.401 54591.27 5459	1.27 0 -	7249.717 1.128254	\$4 13,55515	0 0.001724 0	.024776 0	0.009 0.0	47521 0.001875	0.026946	0 0.03	6 0.135775 138	7.534 10583.64	0 2.344742	36.30276	0 0.282858 2.1	157544 0	0.050833 0.5506	96 0	0 0	0 2.41272	8 37.08609	ó	0 0	0 0.85*	84 13.40196 74.	43135 0	0	0 0
Santa Clara	2024 1 04	Apprezate Apprezate Gasoline	600108 2 22290344 22290	1344 0	2786617 0.042281	81 0.027	257993 0.001177	0 0 001931	0.002 0.0	02656 0.00128	0 0.00	21 0.000	8 0.007587 279	9552 0.70	08069 0.002338	0.00	72036 0.004672	0 0.033228	8 0.008937	0 0328953 00	090491 0 230394	1 422636 0 01304	1 0	0.360162 0.090	491 0 230394 1	422636 0.034"	/12 0 737516	0 3 233068 01	102728	0 0.000693
Santa Clara	2024 104	Apprezate Apprezate Diesel	1750.024 51573.48 5157	3.48 0	7442.61 0.213181	81 0	0 0.016747	0 0	0.002 0.0	02206 0.012504	0	0 0.00	8 0.00773 233	3976 0	0 0.001289	0	0 0.036614	0 0	0.027749	0 0	0 0	0 0.0315	9 0	0	0 0	0 0.00	131 0 331109	0 0.0	102202	0 0
Santa Clara	2024 104	Appropriate Appropriate Floritricity	57627.4 2472767	0 2472767	282733 C	0 0	0 0	0 0	0.002 0.0	01533 0	0	0 0.00	8 0.00438	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0	0 0
Santa Clara	2024 LDA	Antropate Appregate Dectricity	# 174571 767050 7 20154	69 7 295400 S	72195 1 0 00226/	61 0 0'	11551 0.000619	0 0.00307	0.002 0.0	01277 0.000672	0 0 0022	5 0.00	0 0.00430	20.00	5 1247 0 000444	0.01	04244 0.000587	0 0 020263	2 0.001412	0 0172795 0.0	041111 0.027202	0.447104 0.0030	6 0	0 199735 0 041	111 0.027202 0	447104 0.0190	-02 0 214952	0 1220202 0	101272	0 0 000544
Santa Clara	2024 LDT1	Appresate Appresate Fragility	52692 27 1206964 1206	PEA 0 .	724702 4 0 179257	4 0 0.1	291204 0.001727	0 0.002679	0.002 0.0	00224 0.001999	0 0.0022	12 0.000	0 0.003333 2	3571 0 96	22424 0.005261	0.01	05265 0.000424	0 0.02950	0.0027741	0 0.520221 0.1	165222 0 472477	2 667158 0 04047	15 0	0.500499 0.165	222 0 472477 1	667159 0.0260	170 1 427621	0 5 353053 0.0	102325	0 0.000954
Canta Clara	2024 LDT1	Aggregate Aggregate Gasonie	32033.37 1700004 1700	304 0 1	CC 44450 4 CC40337		0.001737	0 0.001070	0.002 0.	000004 0.0000000	0 0.002.9	0.00	0 0.0002.50 521	2002 0	0.0012023	0 0.1	0.0005424	0 0.03003	0.027741	0 0.3333322 0.3	0.4/14//	0.033037		0.1001		0.000	13 1.917011	0 3.233033 0.0	000000	0.00000.04
Santa Clara	2024 LDT1	Apprepate Apprepate Diesel	23.40233 343.9308 343.9	0 2002 646 (30.44439 1.051932 004 4246 C	0 0	0 0.2393/3	0 0	0.002 0.0	01520 0.250198	0	0 0.000	8 0.01004 41:	0 0	0 0.015862	0	0 0.065451	0 0	0.230446	0 0	0 0	0 0.55976		0	0 0	0 0.00	0 0	0 00.0	003935	0 0
Santa Clara	2024 LDT1	Antropate Appregate Dectricity	# 67 64579 2164 46 1414	202 1750 159	279 7152 0 002927	22 0 0'	11551 0.000267	0 0 001291	0.002 0.0	01289 0.0004	0 0 0015	12 0.000	0 0.004357	9456 0.65	21709 0 000207	0.00	42210 0.000522	0 0 020556	5 0.001269	0 0172795 0.0	024152 0.020855	0 220628 0 00185	1 0	0 199735 0 024	152 0.020065 0	1220628 0.018	171 0 10247	0 1220202 0	101724	0 0 000595
Santa Clara	2024 LDT1	Aggregate Aggregate Plug-III Hy	01.04378 3104.40 1414.	302 1/30.158 2	1336430 0.002933	3 0 0.1	11551 0.000387	0 0.001381	0.002 0.0	01589 0.0004	0 0.0013	12 0.000	0.003987 124	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.31208 0.000397	0 0.0	92219 0.000522	0 0.020556	5 0.001265	0 0.173285 0.0	024155 0.020965	0.279828 0.00185		0.4200000 0.0004	153 0.020985 0.	279628 0.0187	/1 0.1934/	0 1.539895 0.0	001254	0.000085
Santa Clara	2024 LD12	Aggregate Aggregate Gasoline	285585.4 10322/58 10322	/56 U.	1530438 0.009091	1 0 0.55	34237 0.001227	0 0.001939	0.002 0.0	03127 0.001334	0 0.002	0 0.00	0.008936 340	0 8/	.23427 0.002864	0 0.0	0.0003943	0 0.05/254	* 0.011242	0 0.384216 0.0	081/41 0.21/668	1.308189 0.01640		3.420008 0.0817	J41 0.21/688 1	-309199 0.0363	39 0.842122	0 3.873764 0.0	00304	0.000865
Sanca Ciara	2024 LD12	Aggregate Aggregate Diesel	1015.455 57944.26 57944		+8555.454 0.041515	3 0	0 0.004815	0 0	0.002 0.0	03113 0.005031	0	0 0.000	6 0.008895 304	.1015 0	0 0.000809	0	0 0.048393	0 0	0.013105	0 0	0 0	0 0.01491	.9 0	0	0 0	0 0.00	31 0.129976	0 0 0.0	102911	, ,
Santa Clara	2024 LD12	Aggregate Aggregate Electricity	1597.567 55532.59	0 55532.59 8	3150.927 0	3 0	0 0	0 0	0.002 0.0	01526 0	0	0 0.000	8 0.004359	0 0	0 0	0	0 0	0 0		0 0	0 0	U	0 0	0	0 0	0	0 0	0 0	0	1 0
Santa Clara	2024 LD12	Aggregate Aggregate Plug-in Hy	/C 2116.58 94/5/./1 443/	.61 50381.09 8	3/52.056 0.0030/3	3 0 0.1	11551 0.00046/	0 0.001672	0.002 0.0	01383 0.000508	0 0.0018	19 0.000	8 0.003953 130	L/8// U /5	.60584 0.000416	0.0.0	42233 0.000547	0 0.020565	9 0.001329	0 0.1/3285 0.0	025949 0.023686	0.309385 0.00193	9 0	3.189725 0.0255	349 0.023686 0.	309385 0.0196	35 0.202568	0 1.339893 0.0	301293	1 0.000747
Santa Clara	2024 LHD11	Aggregate Aggregate Gasoline	19314.14 /22529.3 /225.	.9.5 0.7	28//51.9 0.1/3/4	4 0.036221 0.63	.36996 0.001534	0 0.000302	0.002 0	0.0273 0.001668	0 0.0003.	28 0.000	8 0.078 873	.4559 119.0993 25	.78022 0.008358	0.112945 0.0	87881 01008118 01	0.050968	\$ 0.041/18 0.4150	23 0.163611 0.0	04/402 0.263136	2.768514 0.0608/	5 0.605601	0.1/9134 0.04/4	402 0.263136 2	./68514 0.0448	98 1.1422/8 3./5	36209 3.123927 0.0	08615 0.00117	7 0.000255
Santa Clara	2024 LHDT1	Aggregate Aggregate Diesel	10107.74 398004.1 39800	,4.1 0 1	127142.6 1.563015	.5 1.92168	0 0.035058 0.0	.026804 0	0.003 0	0.0273 0.036643	0.028016	0 0.01	2 0.078 63	.4008 131.1503	0 0.008006	0.005098	0 0.099477 0.0	020663 0	0.172364 0.109	76 0	0 0	0 0.19622	5 0.124954	0	0 0	0 0.1727	81 0.473594 0.90	J9745 0 0.0	005983 0.00124	3 0
Santa Clara	2024 LHDT1	Aggregate Aggregate Electricity	70.82836 5110.544	0 5110.544 9	989.4273 0	0 0	0 0	0 0	0.002 0.	01365 0	0	0 0.000	8 0.039	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0	7 0
Santa Clara	2024 LHDT2	Aggregate Aggregate Gasoline	2506.906 91452.57 9145		37349.16 0.16518	.8 0.035604 0.62	.21534 0.00139	0 0.000239	0.002 0.	03185 0.001512	0 0.0002	59 0.000	6 0.091 980	0361 137.5922 25	.51292 0.006183	0.111453 0.0	31983 0.009819 0	.00291 0.049384	4 0.028613 0.408	22 0.157242 0	0.04419 0.238167	2.558385 0.04175	2 0.595674	0.17216 0.044	419 0.238167 2	.558385 0.0449	71 0.899209 3.76	32546 3.129931 0.0	009689 0.0013	5 0.000252
Santa Clara	2024 LHDT2	Aggregate Aggregate Diesel	4663.455 183558.4 18355	,8.4 0	58660.4 1.266102	.2 1.895403	0 0.032055	0.027 0	0.003 0.	03185 0.033504	0.028221	0 0.01	2 0.091 756	8682 209.5618	0 0.007406	0.005098	0 0.119245 0.0	033017 0	0.159439 0.109	76 0	0 0	0 0.1815	1 0.124954	0	0 0	0 0.1841	32 0.411861 0.90	J9745 0 0.0	007172 0.00198	3 0
Santa Clara	2024 LHDT2	Aggregate Aggregate Electricity	18.33259 1253.286	0 1253.286	242.668 0	0 0	0 0	0 0	0.002 0.0	15925 0	0	0 0.000	8 0.0455	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0 1	7 O
Santa Clara	2024 MCY	Aggregate Aggregate Gasoline	28171.51 166022.3 1660	.2.3 0 5	56343.02 0.571344	A 0 0.13	.35477 0.001779	0 0.003248	0.001 0	0.0042 0.001902	0 0.0034	56 0.00	4 0.012 18	7.743 0 48	.37697 0.162609	0 0.1	81972 0.039558	0 0.00802	2 1.062175	0 1.345317 3.5	559276 3.75283	3.900294 1.27695	i1 0	1.462608 3.5597	276 3.75283 3.	.900294 0.0088	J8 12.6697	0 8.002987 0.0	001856	J 0.000478
Santa Clara	2024 MDV	Aggregate Aggregate Gasoline	156642.4 5468054 5468	J54 0 7	726101.1 0.101279	9 0 0.4	.42828 0.001229	0 0.002042	0.002 0.0	03184 0.001336	0 0.0022	21 0.000	8 0.009096 413	.8049 0 10	6.2216 0.003873	0 0.	10186 0.007628	0 0.040967	7 0.01626	0 0.508806 0.0	097051 0.275722	1.677059 0.02371	.5 0	0.557077 0.0970	J51 0.275722 1	.677059 0.0361	79 0.972241	0 4.022964 0.0	004081	J 0.00105
Santa Clara	2024 MDV	Aggregate Aggregate Diesel	2400.615 86292.69 86293		11318.82 0.048844	A 0	0 0.004909	0 0	0.002 0.0	03206 0.005131	0	0 0.000	8 0.009159 409	.6621 0	0 0.00051	0	0 0.063912	0 0	0.010978	0 0	0 0	0 0.01249	18 0	0	0 0	0 0.00	31 0.201538	0 0.0	003844	7 0
Santa Clara	2024 MDV	Aggregate Aggregate Electricity	1678.684 58660.63	0 58660.63 8	3578.496 0	0 0	0 0	0 0	0.002 0.0	01525 0	0	0 0.000	8 0.004358	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0 1	7 O
Santa Clara	2024 MDV	Aggregate Aggregate Plug-in Hy	(c 1250.857 52904.03 2530)	52 27602.51 5	5172.294 0.003138	,8 0 0.1	.11551 0.000561	0 0.001962	0.002 0.0	01382 0.00061	0 0.0021	34 0.000	8 0.003948 133	.5372 0 94	.05379 0.000423	0 0.0	42047 0.000554	0 0.020395	5 0.001357	0 0.173285 0.0	030318 0.026684	0.341695 0.0019	18 0	0.189725 0.0303	318 0.026684 0	.341695 0.0200	87 0.206737	0 1.339893 0	00132	J 0.00093
Santa Clara	2024 MH	Aggregate Aggregate Gasoline	2420.57 22012.3 220	.2.3 0 2	242.1538 0.420938	,8 0 0.41	19963 0.001679	0 0.000404	0.003 0.0	15756 0.001826	0 0.0004	39 0.01	2 0.045017 194	7.501 0 31	.65056 0.015478	0 0.0	37539 0.025731	0 0.04407	7 0.06827	0 0.159123 12	2.21143 0.286769	4.596479 0.0996	i2 0	0.174219 12.215	143 0.286769 4	.596479 0.0448	46 1.682224	0 3.497247 0.0	019253	J 0.000313
Santa Clara	2024 MH	Aggregate Aggregate Diesel	977.3606 9498.302 9498.	302 0 9	97.73606 4.117169	A 0	0 0.091772	0 0	0.004 0.0	15675 0.095921	0	0 0.01	6 0.044785 108	1.931 0	0 0.005558	0	0 0.170459	0 0	0 0.11965	0 0	0 0	0 0.13621	4 0	0	0 0	0 0.1555	39 0.397281	0 0 0.0	010252	J 0
Santa Clara	2024 MHDT	Aggregate Aggregate Gasoline	1414.552 71600.35 71600	J.35 0 2	28302.35 0.470752	2 0.088485 0.44	40963 0.001362	0 0.000533	0.003 0.0	15756 0.001482	0 0.0005	79 0.01	2 0.045017 176	8.687 531.8002 46	.25227 0.015051	0.25808 0.0	47572 0.022913 0	.00727 0.03271	1 0.074951 1.012	71 0.265405 0.0	033945 0.276365	2.798712 0.10936	8 1.477744	0.290585 0.0335	945 0.276365 2	.798712 0.044	98 1.56073 15.5	11634 5.825814 0.0	017485 0.00525	/ 0.000457
Santa Clara	2024 MHDT	Aggregate Aggregate Diesel	10390.53 434043.6 43404	43.6 0	123939 1.232824	24 13.11952 1.64	42732 0.014397 0/	.029902 0	0.003 0.0	15941 0.015048	0.031254	0 0.01	2 0.045546 114	7.309 2248.547	0 0.001507	0.01158	0 0.180759 0	.35426 0	0.032455 0.2493	19 0	0 0	0 0.03694	7 0.283831	0	0 0	0 0.2105	.32 0.120871 7.5"	56027 0 0.0	010864 0.02129	2 0
Santa Clara	2024 MHDT	Aggregate Aggregate Electricity	30.91601 1660.353	0 1660.353 4	407.4536 0	0 0	0 0	0 0	0.003 0.0	07956 0	0	0 0.01	2 0.022732	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0 0	9 O
Santa Clara	2024 MHDT	Aggregate Aggregate Natural G	a 90.59449 4303.581 4303.	.581 0 8	827.6228 0.133415	15 6.499719	0 0.001179 0/	.018131 0	0.003 0.0	16007 0.001282	0.019719	0 0.01	2 0.045734 984	6917 5301.101	0 0.74573	17.31409	0 0.200736 1.0	080664 0	0.010655 0.2473	84 0	0 0	0 0.76107	2 17.6703	0	0 0	0 1	.06 2.995842 34	.7393 0	0	J 0
Santa Clara	2024 OBUS	Aggregate Aggregate Gasoline	443.1467 19894.31 19894	4.31 0	8866.48 0.49672	/2 0.06506 0.40	08547 0.000907	0 0.000252	0.003 0.	01568 0.000987	0 0.0002	74 0.01	2 0.044799 176	4.001 379.4143 31	.61308 0.013757	0.195733 0.1	03606 0.024018 0.0	005304 0.031028	8 0.067076 0.7462	81 0.190964 0.0	033873 0.154922	2.818385 0.09787	7 1.088971	0.209081 0.033/	.873 0.154922 2	.818385 0.0449	.69 1.491576 5.77	74637 4.000641 0.0	017439 0.00375	1 0.000313
Santa Clara	2024 OBUS	Aggregate Aggregate Diesel	893.1376 61949.05 61949	1.05 0 5	9141.625 1.178643	43 7.363387 1.54	43157 0.019849 0.0	.008167 0	0.003 0.0	18015 0.020746	0.008536	0 0.01	2 0.051472 12	73.38 1538.564	0 0.001935	0.020479	0 0.200622 0.2	242401 0	0.04166 0.4409	05 0	0 0	0 0.04742	7 0.501937	0	0 0	0 0.2160	/21 0.150181 7.5/	J0483 0 0.0	012058 0.01456	9 0
Santa Clara	2024 OBUS	Aggregate Aggregate Electricity	1.087481 92.50105	0 92.50105 7	21.75833 0	0 0	0 0	0 0	0.003 0.	00784 0	0	0 0.01	2 0.022399	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0	J 0
Santa Clara	2024 OBUS	Aggregate Aggregate Natural G	a 7.05737 469.3876 469.3	.876 O F	62.81059 0.190585	s 1.537414	0 0.00106 0.0	.003899 0	0.003 0.0	16148 0.001153	0.004241	0 0.01	2 0.046137 100	4.237 1191.581	0 0.789796	4.236895	0 0.20472 0.3	242912 0	0.011285 0.0605	37 0	0 0	0 0.80604	5 4.324062	0	0 0	0 1	.06 3.254325 7.3"	53064 0	0	J 0
Santa Clara	2024 SBUS	Aggregate Aggregate Gasoline	172.6948 8584.866 8584.	.866 0 F	690.7791 0.50288	J8 0.925939 0.71	/16801 0.000864	0 0.000567	0.002 0.0	15721 0.000939	0 0.0006	16 0.000	8 0.044917 810	6064 2589.131 5	8.1367 0.011135	2.464862 0.0	74893 0.027101 0.0	086311 0.065929	9 0.054059 10.632	88 0.426367 0.1	113914 0.274691	1.686167 0.07888	3 15.51547	0.466819 0.113	.914 0.274691 1	.686167 0.0	45 1.38705 82.1	18841 10.36621 0.0	008014 0.02559	6 0.000575
Santa Clara	2024 SBUS	Aggregate Aggregate Diesel	670.5958 15345.26 15345	ء.26 0 ج	9710.228 3.821388	£8 21.87689 0.48	482851 0.019766 0.0	.019703 0	0.003 0.0	15721 0.02066	0.020594	0 0.01	2 0.044917 11	44.18 2229	0 0.002665	0.008001	0 0.180266 0	.35118 0	0.057376 0.1722	57 0	0 0	0 0.06531	8 0.196101	0	0 0	0 0.1480	/25 0.1775 4.6	J7792 0 0.0	010835 0.02110	7 0
Santa Clara	2024 SBUS	Aggregate Aggregate Electricity	2.064666 64.35501	0 64.35501 7	23.64639 0	0 0	0 0	0 0	0.002539 0.	00786 0	0	0 0.01015	7 0.022459	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0	0 0
Santa Clara	2024 SBUS	Aggregate Aggregate Natural G	a 24.3995 612.0941 612.0	.941 0 ?	353.3048 0.567729	29 5.270895	0 0.003378 0.	.011357 0	0.003 0.0	15721 0.003674	0.012352	0 0.01	2 0.044917 126	1.305 4066.736	0 3.436672	15.25665	0 0.257125 0.8	829031 0	0.049103 0.2179	87 0	0 0	0 3.50737	6 15.57053	0	0 0	0 1	.06 11.64901 20."	74693 0	0	0 O
Santa Clara	2024 UBUS	Aggregate Aggregate Gasoline	46.08313 4812.451 4812.	.451 0 *	184.3325 0.027483	33 0 0.45	457232 0.001143	0 0.000128	0.002 0.	03185 0.001243	0 0.000	14 0.000	8 0.091 926	.0836 0 36	.94783 0.002034	0 0.0	43067 0.004288	0 0.071717	7 0.005634	0 0.152979 0.0	038099 0.092116	0.456438 0.00822	1 0	0.167492 0.038/	099 0.092116 0	.456438 0.0	45 0.581148	0 6.130495 0./	009155	0 0.000365
Santa Clara	2024 UBUS	Aggregate Aggregate Diesel	437.4745 48917.61 4891	7.61 0 *	1749.898 0.386257	57 O	0 0.007023	0 0	0.0083 0	0.0385 0.00734	0	0 0.033	2 0.11 11	01.14 0	0 0.003215	0	0 0.173485	0 0	0.069208	0 0	0 0	0 0.07878	8 0	0	0 0	0 0.1879	08 0.079368	0 0.0/	010434	0 0
Santa Clara	2024 UBUS	Aggregate Aggregate Electricity	5.347565 235.0626	0 235.0626 7	21.39026 0	0 0	0 0	0 0	0.00888 0.	01925 0	0	0 0.0355	2 0.055	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0	0 0
Santa Clara	2024 UBUS	Aggregate Aggregate Natural G	a 42.58696 4865.187 4865.	.187 0 '	170.3478 0.058788	38 0	0 0.000282	0 0	0.008183 0	0.0385 0.000295	0	0 0.03273	1 0.11 129	9.206 0	0 4.246059	0	0 0.264852	0 0	0.060668	0 0	0 0	0 4.33341	5 0	0	0 0	0 0	.97 49.04786	0 0	0	0 0

Source: EMFACION (V.O.2.) Emission Rates Region Type Cambry Exemption State Cambry Source: Annual Annual Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Source: Manual Cambridge Cambri

оны, нация кости на стит, прилаго на насе, понт вы лите, допров лисс, на закон вы конскат и сокон на опесат на сокон на										
Sends Fairs 2005 HHIDT Appropriate Appropr										
Sends Tags 2005 HHUT development development development blevel \$692555 (100864, 100864, 0.172871 \$2510, 0.00877, 0.07242) 0.00877, 0.072421 0.00877, 0.072421 0.00075, 0.07544, 0.00075, 0.07564, 0.0016134, 0										
Stratu Tar 2015 HINT development development http://disc.scolume.html/sig.scolume.scolume.scolume.scolume.scolume.html/sig.scolume.scolume.html/sig.scolume.scolum										
Strate Tar. 2015 (101) descent advectore advectore advectore blue/he/le/98 (3198, 4519) (82) (361) 365, 2557,366, 405,755, 0.00388, 0.001834, 0.001834, 0.00184, 0.000184, 0.000184, 0.										
Sends Tax 2015 (17) 2015 (17) 2015 (17) 2015 (10) 2015 (
Sents Tax 2025 1077 A monoto Assessant Assessa										
Setu Tar 2015/1072 devote Assessed assessed assessed feetride 1512/04 736577 0 736577 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Setu Figure 205 (177) 205 (177) 205 (177) 205 (177) 275 (177) 2157) 44 (176) 78 (177) 275 (177) 45 (176) 78 (177) 275 (177) 45 (177) 275 (177) 215										
Sends Tax 2055 (HIGT) 400000 (Southing 1942)245 728247 728247 0 2893458 0.011212 0.035141 0.014934 0.000025 0.00025 0.000224 0.01169 0.000025 0.000224 0.01161 0.000024 0.010051 0.000024 0.010051 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.000024 0.01161 0.000024 0.01161 0.000024 0.000025 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.01161 0.000024 0.0000024 0.000024 0.0000000000										
Sends Tax: 2005 HINTL Addressed Addressed Tax 2005 HINTL Addressed Tax										
Sets Tar 2025 HihTT Mediate Assessment Assessment Fertificity 196 402 130796 6 0 130796 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Strate Target St										
Sends Tarz 2005 HIRTS 400 000 00 115(162) 010076 0 0 0 0 015(162) 010076 0 01076 0.015(162) 010705 0 0.01 12015(10) 00076 0 0.015(162) 010705 0 0 0 0.015(162) 010705 0 0 0 0.015(162) 010705 0 0 0 0.015(162) 010705 0 0 0.015(162) 010705 0 0 0 0.015(162) 010705 0 0.0000 0000 0000 0000 0000 0000 0										
Sente Tara 2075 HIRT2 Addressed Addressed Febricicity \$1,4570 3193,751 0,3193,751 0,3193,751 0,3193,751 0,3193,751 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,										
Santa Carr 2025 MCY Astronauta As										
Santa Carry 2025 MUV Agreesate Agree										
Sinta Carr 2025 MOV Approate A										
Santa Carry 2025 MOV Aversate Exercicity 2274547 77934.96 0 77834.96 11571.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Santa Carry 2025 MUV Agreesate Agree										
Santa Chara 2005 MH Aggregate Aggregate Gazoline 2337.875 (2506.19 12506.19 12506.19 12506.19 12506.19 12506.19 0.233.8812 0.37652 0 0.425905 0.001512 0 0.000342 0.012 0.045001 1547.057 0 3.14529 0.013772 0 0.036945 0.023864 0 0.045303 0.059455 0 0.154277 11.38549 0.268831 4.357209 0.00479 1.245914 11.38549 0.268831 4.357209 0.04679 1.245914 11.38549 0.268831 4.357209 0.045757 0 0.1562914 11.38549 0.268831 4.357209 0.046479 1.245914 11.38549 0.268831 4.357209 0.04679 1.245914 11.38549 0.268831 4.357209 0.04679 1.245914 11.38549 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831 4.357209 0.268831										
Santa Chara 2005 MH Aggregate Aggregate Deckel 994.5437 9603.893 0 994.5437 9603.893 0 994.5437 3576372 0 0 0.0064 0.015675 0.08999 0 0 0.016/635 0.385118 0 0 0.0010256 0 F										
Santa Clarz 2025 MHOT Aggregate Aggregate Aggregate Sacoline 14122-83 72039 87 70299 87 0 28256.55 0.394798 0.00513 0.001347 0 0.000513 0.001376 0.001455 0 0.000513 0.001356 0.001258 0.019988 0.001721 0.0000449 1.015127 0.032588 0.250472 2.558011 0.044991 1.276099 15.1444 5.531626 0.01727 0.005207 0.000044										
Santa Clarz 2025 MMIOT Aggregate Aggregate Segregate Segregate Secret 10548.06 435100.6 43510										
Santa Clara 2025 MMIOT Aggregate Executicity 90.00851 4838.906 0 4838.906 1182.343 0 0 0 0 0 0.003 0.007951 0 0 0 0.012 0.022718 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Santa Clarz 2025 MHOT Aggregate Aggregate Aggregate Aggregate Natural Ga 98.96068 4590.307 0 911.9208 0.12435 6.45266 0 0.001236 0.01260 0.001333 0.020223 0 0.012 0.045741 979.0142 5280.545 0 0.751438 16.97255 0 0.199578 1.078512 0 0.010737 0.442504 0 0 0 0 0.766888 17.32175 0 0 0 0 1.06 2.966166 35.80775 0 0 0 0 1.06 2.966166 35.80775 0 0 0 0 1.06 2.966166 35.80775 0 0 0 0 0.01226 0.012894 0 0.003 0.016009 0.001333 0.020223 0 0.012 2 5280.545 0 0.751438 16.97255 0 0.199578 1.078512 0 0.010737 0.442504 0 0 0 0 0.0766888 17.32175 0 0 0 0 1.06 2.966166 35.80775 0 0 0 0 1.06 2.966166 35.80775 0 0 0 0 0.0129578 1.078512 0 0.010737 0.442504 0 0 0 0 0.0766888 17.32175 0 0 0 0 1.06 2.966166 35.80775 0 0 0 0 0.01226 0.012894 0 0.003 0.016009 0.001333 0.020223 0 0.0122 0.045741 979.0142 5280.545 0 0.751438 16.97255 0 0.0199578 1.078512 0 0.010737 0.442504 0 0 0 0 0.0766888 17.32175 0 0 0 0 1.06 2.966166 35.80775 0 0 0 0 0.01226 0.012894 0 0.003 0.016009 0.001333 0.020223 0 0.0122 0.045741 979.0142 5280.545 0 0.751438 16.97255 0 0.0199578 1.078512 0 0.010737 0.442504 0 0 0 0 0.0766888 17.32175 0 0 0 0 1.06 2.966166 35.80775 0 0 0 0 0.01226 0.012894 0 0.003 0.016009 0.00133 0.020223 0 0.0122 0.045741 979.0142 5280.545 0 0.751438 16.97255 0 0.0199578 1.078512 0 0.010737 0.442504 0 0 0 0 0.00000000000000000000000000										
Santa Clarz 2025 C8015 Aggregate Aggregate Sacoline 430.7023 18962.49 18962.49 18962.49 18962.49 0 0.000255 0.0033827 0.15843 2.881145 0.04969 0.335827 0.15843 2.881145 0.04969 0.035827 0.15843 2.881145 0.04969 0.035827 0.15843 2.881145 0.04969 0.035827 0.15843 2.881145 0.04969 0.035827 0.15843 2.881145 0.04969 0.035827 0.15843 2.881145 0.04969 0.035827 0.15843 2.881145 0.04969 0.035827 0.15843 2.881145 0.04969 0.035827 0.15843 2.881145 0.04969 0.0										
Santa Clarz 2025 0805 Aggregate Aggregate Desei 9214116 62304.89 0 9451527 1.133246 7.151668 1.532674 0.019939 0 0.01927 0.009793 0 0.01924 0.2051478 1.259.126 1.532.11 0 0.001844 0.020685 0 0.198376 0.241385 0 0.039711 0.445333 0 0 0 0 0.0045208 0.506978 0 0 0 0.215212 0.14449 7.587325 0 0.011923 0.014508 f										
Santa Clara 2025 OBUS Aggregate Aggregate Executicity 2572031 221.771 0 221.771 5 246159 0 0 0 0 0.003 0.00784 0 0 0 0.012 0.022399 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Santa Chara 2025 OBUS Aggregate Aggr										
Santa Chara 2025 58U5 Aggregate Aggregate Aggregate Gascaline 1782436 8812.851 0 712.9742 0.487257 0.005564 0.000573 0.002 0.015721 0.000942 0 0.000573 0.002 0.015721 0.000942 0 0.000573 0.00245 0.000573 0.002455 0.000573 0.002415 0.000545 0.000573 0.000573 0.00057										
Santa Chara 2025 58US Aggregate Aggregate Aggregate Dennel 6732048 15283.75 10 9748.005 3.614242 21.25646 0.496308 0.018770 0.019235 0 0.0032 0.015721 0.019521 0.019059 0 0.012 0.04917 1139.829 2219.616 0 0.002583 0.007936 0 0.179581 0.3497082 0 0 0 0 0.065280 0.194514 0 0 0 0.151888 0.17348 4.777291 0 0.010794 0.021018										
Santa Chara 2015 SBUS Aggregate Aggregate Electricity 4481148 145.0761 0 145.										
Santa Clara 2015 S8US Aggregate Aggregate Natural Ga 15:28439 627:386 0 366:118 0.5494 5.260001 0 0.003378 0.011617 0 0.0033 0.015721 0.003674 0.012635 0 0.012 0.04917 1252.115 4074.049 0 3.386209 15.12215 0 0.255252 0 0.048382 0.216666 0 0 0 0 3.455875 15.43276 0 0 0 1.06 11.41153 21.33281 0 0 0 (
Santa Chara 2025 UBUS Aggregate Aggregate Aggregate Gascaline 45.21918 4826.6558 4826.6558 0 184.8767 0.027276 0 0.449893 0.000128 0.002 0.03185 0.001243 0 0.000014 0.009 125.8876 0 36.64281 0.001993 0 0.043606 0.092112 0.471505 0.04366 0.092112 0.471505 0.0456 0.092112 0.471505 0.0456 0.092112 0.471505 0.0456 0.092112 0.471505 0.0456 0.092112 0.471505 0.0456										
Santa Clara 2015 UBU5 Aggregate Aggregate Discel 4053675 4498737 0 1621.47 0382968 0 0 0.006962 0 0 0.008238 0.007277 0 0 0.032951 0.11 1121.875 0 0 0.003193 0 0 0.176752 0 0 0.06875 0 0 0 0 0 0.078266 0 0 0 0 0 0.22 0.0787 0 0 0.01063 0 f										
Santa Chara 2015 UBUS Aggregate Aggregate Electricity 23.31202 2427.54 0 2427.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Santa Chara 2025 UBUS Aggregate Aggregate Natural Ga \$8.15247 6762.418 6762										

	CalEEMod EMFAC2021 Fleet Mix Input											Year	2025
FleetMixLandUseSubType	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.528224	0.040364	0.230108	0.128589	0.023276	0.00574	0.009425	0.00744	0.001057	0.000413	0.022096	0.000684	0.002585
Enclosed Parking with													
Elevator	0.528224	0.040364	0.230108	0.128589	0.023276	0.00574	0.009425	0.00744	0.001057	0.000413	0.022096	0.000684	0.002585
Regional Shopping													
Center	0.528224	0.040364	0.230108	0.128589	0.023276	0.00574	0.009425	0.00744	0.001057	0.000413	0.022096	0.000684	0.002585

CalEEMod EMFAC2021 Emission Factors Input Year 2025										2025				
Season	EmissionType	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
А	CH4_IDLEX	0	0	0	0	0.005194	0.003023	0.013842	0.229861003	0.007514	0	0	0.076044	0
А	CH4_RUNEX	0.001841	0.005577	0.002592	0.003307	0.007222	0.006455	0.009536	0.117132109	0.009593	0.497756349	0.158292	0.090769	0.011159
А	CH4_STREX	0.060617	0.097956	0.077312	0.090898	0.021636	0.011648	0.008314	7.74759E-08	0.016852	0.003733046	0.177199	0.004898	0.025922
А	CO_IDLEX	0	0	0	0	0.195049	0.141036	0.668176	5.176290252	0.524506	0	0	1.692209	0
А	CO_RUNEX	0.606604	1.307107	0.781421	0.865797	0.821777	0.532869	0.296939	0.756535609	0.44406	5.878094388	12.31202	0.85843	1.105311
А	CO_STREX	2.711494	4.855262	3.417927	3.621729	2.164208	1.195973	1.000247	0.000684691	1.872658	0.515229574	7.965438	0.66885	2.373596
А	CO2_NBIO_IDLEX	0	0	0	0	8.602925	13.6884	158.593	813.9732577	87.04447	0	0	189.0522	0
А	CO2_NBIO_RUNEX	237.6743	319.1813	327.6236	394.2305	764.972	810.9955	1213.655	1586.833625	1366.1	1082.148951	187.2679	1017.838	1680.132
А	CO2_NBIO_STREX	61.73081	84.00027	84.00689	100.2571	17.59535	9.640849	8.205073	0.017114195	14.85767	3.177121883	47.30784	3.779827	22.06858
А	NOX_IDLEX	0	0	0	0	0.046413	0.089605	0.847928	3.965211308	0.364367	0	0	1.342517	0
А	NOX_RUNEX	0.033383	0.114688	0.061427	0.085138	0.585978	0.806102	1.006394	1.774057666	0.968278	0.301158242	0.557882	2.407715	1.487818
А	NOX_STREX	0.218516	0.357478	0.309231	0.377914	0.420652	0.228874	1.403485	2.751173324	0.987981	0.039008099	0.129146	0.492123	0.298831
А	PM10_IDLEX	0	0	0	0	0.000685	0.001389	0.001762	0.002096665	0.000404	0	0	0.001209	0
А	PM10_PMBW	0.007137	0.009219	0.00886	0.008972	0.077556	0.090487	0.04526	0.081222471	0.04982	0.123663808	0.012	0.044786	0.044946
А	PM10_PMTW	0.008	0.008	0.008	0.008	0.00942	0.010665	0.012	0.035128275	0.012	0.042521858	0.004	0.010572	0.013235
А	PM10_RUNEX	0.00112	0.001813	0.001292	0.00131	0.01302	0.021567	0.011186	0.025031341	0.015263	0.005684616	0.001925	0.012423	0.028992
А	PM10_STREX	0.001849	0.00275	0.002061	0.002069	0.000206	9.12E-05	0.000101	5.20395E-07	0.000131	1.2108E-05	0.003464	4.08E-05	0.000296
А	PM25_IDLEX	0	0	0	0	0.000656	0.001329	0.001685	0.001999711	0.000387	0	0	0.001155	0
А	PM25_PMBW	0.002498	0.003227	0.003101	0.00314	0.027145	0.03167	0.015841	0.028427865	0.017437	0.043282333	0.0042	0.015675	0.015731
А	PM25_PMTW	0.002	0.002	0.002	0.002	0.002355	0.002666	0.003	0.008782069	0.003	0.010630465	0.001	0.002643	0.003309
А	PM25_RUNEX	0.001031	0.001669	0.001189	0.001207	0.012419	0.020616	0.010694	0.023944936	0.014593	0.005434911	0.001799	0.01187	0.027693
А	PM25_STREX	0.0017	0.002528	0.001895	0.001902	0.000189	8.39E-05	9.28E-05	4.78484E-07	0.000121	1.11329E-05	0.003253	3.76E-05	0.000272
А	ROG_DIURN	0.264632	0.562584	0.283569	0.336782	0.120201	0.063181	0.023118	0.000161301	0.068202	0.010220489	3.860886	0.029457	30.55965
А	ROG_HTSK	0.077597	0.155938	0.078131	0.089235	0.030304	0.015991	0.005603	4.7964E-05	0.016021	0.003785535	3.558651	0.007775	7.988502
А	ROG_IDLEX	0	0	0	0	0.021187	0.015503	0.025251	0.32711902	0.04025	0	0	0.185349	0
А	ROG_RESTL	0	0	0	0	0	0	0	0	0	0	0	0	0
А	ROG_RUNEX	0.006942	0.024558	0.010089	0.013778	0.079612	0.109106	0.032483	0.017799596	0.044456	0.059943987	1.024683	0.053481	0.077128
А	ROG_RUNLS	0.197921	0.439329	0.211003	0.255197	0.16959	0.087065	0.045291	0.000432041	0.075038	0.007986552	3.760078	0.019152	0.188623
А	ROG_STREX	0.273326	0.495732	0.354505	0.447416	0.106693	0.056928	0.045776	4.20633E-07	0.089311	0.013239776	1.305157	0.027862	0.108247
А	SO2_IDLEX	0	0	0	0	8.37E-05	0.000131	0.001472	0.007098942	0.000823	0	0	0.001718	0
А	SO2_RUNEX	0.002349	0.003155	0.003238	0.003895	0.007471	0.007812	0.011512	0.014348163	0.013043	0.00885381	0.001851	0.009458	0.016473
А	SO2_STREX	0.00061	0.00083	0.00083	0.000991	0.000174	9.53E-05	8.11E-05	1.69191E-07	0.000147	3.14091E-05	0.000468	3.74E-05	0.000218
А	TOG_DIURN	0.264632	0.562584	0.283569	0.336782	0.120201	0.063181	0.023118	0.000161301	0.068202	0.010220489	0.08531	0.029457	30.55965
А	TOG_HTSK	0.077597	0.155938	0.078131	0.089235	0.030304	0.015991	0.005603	4.7964E-05	0.016021	0.003785535	3.558651	0.007775	7.988502
А	TOG_IDLEX	0	0	0	0	0.03005	0.020889	0.042478	0.588143126	0.05333	0	0	0.302207	0
А	TOG_RESTL	0	0	0	0	0	0	0	0	0	0	0	0	0
А	TOG_RUNEX	0.010114	0.035818	0.014707	0.020053	0.097862	0.126808	0.046457	0.137213337	0.060464	0.565677917	1.236542	0.152507	0.100988
А	TOG_RUNLS	0.197921	0.439329	0.211003	0.255197	0.16959	0.087065	0.045291	0.000432041	0.075038	0.007986552	3.760078	0.019152	0.188623
А	TOG_STREX	0.299257	0.542764	0.388138	0.489864	0.116815	0.062329	0.050119	4.6054E-07	0.097784	0.014495888	1.419098	0.030505	0.118517
А	N2O_IDLEX	0	0	0	0	0.000637	0.00168	0.024457	0.131219379	0.012456	0	0	0.024955	0
А	N2O_RUNEX	0.003885	0.008627	0.005647	0.007583	0.040583	0.081593	0.156018	0.253304032	0.157183	0.165902975	0.038984	0.126174	0.069141
А	N2O_STREX	0.028873	0.037292	0.035503	0.037751	0.034174	0.018376	0.005858	1.42154E-05	0.01459	0.006142466	0.007691	0.004354	0.031786

Attachment 4: Project Construction Emissions and Health Risk Calculations

1520 W. San Carlos Street Mixed-Use, San Jose, CA

DPM Construction Emiss	ions and Modelin	Emission Rates
-------------------------------	------------------	----------------

I									Emissions
	Construction		DPM	Source	No.	D	PM Emissi	ons	per Point Source
	Year	Activity	(ton/year)	Туре	Sources	(lb/yr)	(lb/hr)	(g/s)	(g/s)
ſ	2023	Construction	0.0552	Point	179	110.4	0.03858	4.86E-03	2.72E-05
I	2024	Construction	0.0726	Point	179	145.3	0.05080	6.40E-03	3.58E-05
I	Total		0.1278			255.6	0.0894	0.0113	

Emissions assumed to be evenly distributed over each construction areas

hr/day =	11	(7am - 6pm)
days/yr=	260	
hours/year =	2860	

1520 W. San Carlos Street Mixed-Use, San Jose, CA

PM2.5 Fugitive Dust Construction Emissions for Model	ing
--	-----

								DPM
							Modeled	Emission
Construction		Area		PM2.5	Emissions		Area	Rate
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m ²)	g/s/m ²
2023	Construction	CON_FUG	0.1144	228.8	0.08001	1.01E-02	6479.9	1.56E-06
2024	Construction	CON_FUG	0.0012	2.4	0.00082	1.04E-04	6479.9	1.60E-08
Total			0.1156	231.2	0.0808	0.0102		

Emissions assumed to be evenly distributed over each construction areas

 $hr/day = 11 \quad (7am - 6pm)$ days/yr = 260hours/year = 2860

								Emissions
Construction		DPM	Source	No.	D	PM Emissi	ons	per Point Source
Year	Activity	(ton/year)	Туре	Sources	(lb/yr)	(lb/hr)	(g/s)	(g/s)
2023	Construction	0.0056	Point	179	11.1	0.00388	4.90E-04	2.73E-06
2024	Construction	0.0104	Point	179	20.9	0.00729	9.19E-04	5.13E-06
Total		0.0160			32.0	0.0112	0.0014	

DPM Construction Emissions and Modeling Emission Rates - With Mitigation

Emissions assumed to be evenly distributed over each construction areas

$$hr/day = 11 \quad (7am - 6pm)$$

$$days/yr = 260$$

$$hours/year = 2860$$

PM2.5 Fugitive Dust Construction Emissions for Modeling - With Mitigation

								DPM
							Modeled	Emission
Construction		Area		PM2.5	Area	Rate		
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m ²)	g/s/m ²
2023	Construction	CON_FUG	0.0230	46.0	0.01609	2.03E-03	6479.9	3.13E-07
2024	Construction	CON_FUG	0.0012	2.4	0.00082	1.04E-04	6479.9	1.60E-08
Total			0.0242	48.4	0.0169	0.0021		

Emissions assumed to be evenly distributed over each construction areas

hr/day =	11	(7am - 6pm)
days/yr=	260	
hours/year =	2860	

	Unmitigated	DPM	Unmitigated	Unmi	itigated	Fug PM2.5	Unmitigated
Year	DPM	EMFAC2021	Emissions	Fug	PM2.5	EMFAC2021	Emissions
2023	0.0542	0.0010	0.0552	0.	1135	0.0009	0.1144
2024	0.0714	0.0012	0.0726	0.0	0000	0.0012	0.0012
	Mitigated	DPM	Mitigated	Miti	igated	Fug PM2.5	Mitigated
Year	DPM	EMFAC2021	Emissions	Fug	PM2.5	EMFAC2021	Emissions
2023	0.0046	0.0010	0.0056	0.0	0221	0.0009	0.0230
2024	0.0092	0.0012	0.0104	0.0	0000	0.0012	0.0012

1520 W. San Carlos Street Mixed-Use, San Jose, CA

Maximum Impacts at MEI Residential Location - Without Mitigation Maximum **Maximum Concentrations** Exhaust Fugitive Cancer Risk* Hazard Annual PM2.5 PM10/DPM Index **Concentration*** Emissions PM2.5 (per million) $(\mu g/m^3)$ $(\mu g/m^3)$ Infant/Child $(\mu g/m^3)$ Year Adult (-) 0.9911 2023 0.1557 27.68 0.45 0.03 1.08 2024 0.2049 0.0102 33.66 0.59 0.04 0.17 Total 61.34 1.04 _ --0.2049 0.9911 Maximum 0.04 1.08 --

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Construction Health Impact Summary

* Maximum cancer risk and maximum PM2.5 concentration occur at different receptors.

Maximum Imp	acts at MEI R	esidential l	Location - Wi	th Mitiga	tion	
	Maximum Con	centrations	Concert	• 1- ↓	Harand	Maximum
Emissions	PM10/DPM	PM2.5	(per mill	lion)	Index	Annual PNI2.5 Concentration*
Year	$(\mu g/m^3)$	(μg/m ³)	Infant/Child	Adult	(-)	(μg/m ³)
2023	0.0157	0.1989	2.79	0.04	0.003	0.21
2024	0.0294	0.0102	4.83	0.08	0.01	0.03
Total	-	-	7.62	0.13	-	-

-

0.01

0.21

* Maximum cancer risk and maximum PM2.5 concentration occur at different receptors.

0.1989

- Tier 4 Interim Engines and Enhanced BMPs Mitigation

0.0294

Maximum

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Construction Health Impact Modeling Source Parameters for Point Sources Used in Construction Modeling

	Stack	Stack	Exhaust	Volume	.	.
	Height	Diam	Temp	Flow	Velocity	Velocity
Source	(ft)	(in)	(F)	(acfm)	(ft/min)	(ft/sec)
Construction Equipment	9.0	2.5	918	632	18540	309.0
	Stack	Stack	Exhaust			
	Height	Diam	Temp			Velocity
Source	(m)	(m)	(K)			(ft/sec)
Construction Equipment	2.74	0.064	765.37			94.2
		-	-	-	-	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height (1st Floor Level)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)Inhalation Dose = Cair x DBR x A x (EF/365) x 10⁻⁶

Where: $C_{air} = \text{concentration in air} (\mu g/m^3)$

Cair = concentration in air (μ g m) DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I		Adult	
Age>	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Expos ure 1	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure				Age	Cancer	Model	ed	Age	Cancer	1	Maximum	
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.1192	10	1.62	2023	0.1192	-	-			
1	1	0 - 1	2023	0.1192	10	19.58	2023	0.1192	1	0.34	0.02	0.99	1.08
2	1	1 - 2	2024	0.1569	10	25.77	2024	0.1569	1	0.45	0.03	0.01	0.17
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer F	tisk				46.97				0.79			

* Third trimester of pregnancy

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height (2nd Floor Level)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = \text{concentration in air } (\mu g/m^3)$

Car – concentration in all (μ s) in) DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

			Adult	
Age>	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Expos ure l	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure				Age	Cancer	Model	ed	Age	Cancer	1	Maximum	1
Expos ure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.1557	10	2.12	2023	0.1557	-	-			
1	1	0 - 1	2023	0.1557	10	25.56	2023	0.1557	1	0.45	0.03	0.63	0.79
2	1	1 - 2	2024	0.2049	10	33.66	2024	0.2049	1	0.59	0.04	0.01	0.21
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	tisk				61.34				1.04			

* Third trimester of pregnancy

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height (1st Floor Level)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factorEF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

			Adult	
Age>	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Expos ure l	Information	Infant/Child	Adult - Exp	os ure Infor	mation	Adult			
	Exposure				Age	Cancer	Model	ed	Age	Cancer	1	Maximum	l
Expos ur e	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.0120	10	0.16	2023	0.0120	-	-			
1	1	0 - 1	2023	0.0120	10	1.97	2023	0.0120	1	0.03	0.002	0.20	0.21
2	1	1 - 2	2024	0.0225	10	3.70	2024	0.0225	1	0.06	0.005	0.01	0.03
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	lisk				5.83				0.10			

Third trimester of pregnancy

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height (2nd Floor Level)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factorEF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

			Adult		
Age>	3rd Trimester	0 - 2	0 - 2 2 - 16		
Parameter					
ASF =	10	10	3	1	
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00	
DBR* =	361	1090	572	261	
A =	1	1	1	1	
EF =	350	350	350	350	
AT =	70	70	70	70	
FAH =	1.00	1.00	1.00	0.73	

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Expos ure l	Information	Infant/Child	Adult - Exp	os ure Infor	mation	Adult			
	Exposure				Age	Cancer	Model	ed	Age	Cancer	1	Maximum	l
Expos ure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.0157	10	0.21	2023	0.0157	-	-			
1	1	0 - 1	2023	0.0157	10	2.57	2023	0.0157	1	0.04	0.003	0.13	0.14
2	1	1 - 2	2024	0.0294	10	4.83	2024	0.0294	1	0.08	0.01	0.01	0.04
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	lisk				7.62				0.13			

Third trimester of pregnancy

Attachment 5: Community Risk Modeling Information and Calculations

File Name: CT-EMFAC2017 Version: Run Date: Area: Analysis Year: Season:	1520 WSC 1.0.2.2740 9/28/2 Santa Clar 2023 Annual	- Santa Clara 11 2022 13:52 ra (SF)	(SF) - 2023 -	Annual.EF
Vehicle Category Truck 1 Truck 2	VMT Fraction Across Category 0.015 0.02	Diesel VMT Fraction Within Category 0.487 0.938	Gas VMT Fraction Within Category 0.513	
Non-Truck	0.965	0.014	0.958	
Road Type: Silt Loading Factor: Precipitation Correction:	Major/Col CAR CAR	B B	0.032 g/m2 P = 64 days	N = 365 days

Fleet Average Running Exhaust Emission Factors (grams/veh-mile)

 Pollutant Name
 <= 5 mpl</th>
 10 mph
 15 mph
 20 mph
 25 mph
 30 mph
 35 mph
 40 mph
 45 mph
 50 mph
 55 mph
 60 mph
 65 mph
 70 mph
 75 mph

 PM2.5
 0.00929
 0.005981
 0.004054
 0.002896
 0.002194
 0.001765
 0.001375
 0.001329
 0.001452
 0.001684
 0.00197
 0.00197

 TOG
 0.195764
 0.127928
 0.086105
 0.046181
 0.036838
 0.030861
 0.027137
 0.2024575
 0.026385
 0.029566
 0.032118

 Diesel PM
 0.000904
 0.000732
 0.000536
 0.000358
 0.000355
 0.000376
 0.000766
 0.000766
 0.000766

Fleet Average Running Loss Emission Factors (grams/veh-hour)

Pollutant Name	Emission Facto	r
TOG	1.35761	
Fleet Average Tire Wea	r Factors (grams/v	/eh-mile)

Pollutant Name	Emission Factor
PM2.5	0.002108

Pollutant Name Emission Factor PM2.5 0.016808

Pollutant Name	Emission Factor	
PM2.5	0.014855	
======================================		
1520 W. San Carlos Street Mixed-Use, San Jose, CA - Offsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
	W. San Carlos Street									
DPM_EB_WSC	Eastbound	EB	2	683.1	0.42	13.3	43.7	3.4	30	8,624
DPM_WB_WSC	W. San Carlos Street Westbound	WB	2	680.8	0.42	13.3	43.7	3.4	30	8,624
									Total	17,248

Emission Factors - DPM

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.00035			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and DPM Emissions - DPM_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	3.91%	337	1.40E-05	9	6.50%	561	2.33E-05	17	5.58%	481	2.00E-05
2	2.59%	223	9.30E-06	10	7.36%	635	2.64E-05	18	3.28%	283	1.18E-05
3	2.88%	248	1.03E-05	11	6.33%	546	2.27E-05	19	2.36%	204	8.47E-06
4	3.34%	288	1.20E-05	12	6.84%	590	2.46E-05	20	0.92%	79	3.30E-06
5	2.19%	189	7.86E-06	13	6.15%	530	2.21E-05	21	2.99%	258	1.07E-05
6	3.39%	292	1.22E-05	14	6.15%	530	2.21E-05	22	4.14%	357	1.49E-05
7	5.98%	516	2.15E-05	15	5.23%	451	1.88E-05	23	2.47%	213	8.87E-06
8	4.66%	402	1.67E-05	16	3.91%	337	1.40E-05	24	0.86%	74	3.09E-06
								Total		8,625	

2023 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	3.91%	337	1.40E-05	9	6.50%	561	2.33E-05	17	5.58%	481	2.00E-05
2	2.59%	223	9.27E-06	10	7.36%	635	2.63E-05	18	3.28%	283	1.17E-05
3	2.88%	248	1.03E-05	11	6.33%	546	2.26E-05	19	2.36%	204	8.44E-06
4	3.34%	288	1.19E-05	12	6.84%	590	2.45E-05	20	0.92%	79	3.29E-06
5	2.19%	189	7.83E-06	13	6.15%	530	2.20E-05	21	2.99%	258	1.07E-05
6	3.39%	292	1.21E-05	14	6.15%	530	2.20E-05	22	4.14%	357	1.48E-05
7	5.98%	516	2.14E-05	15	5.23%	451	1.87E-05	23	2.47%	213	8.84E-06
8	4.66%	402	1.67E-05	16	3.91%	337	1.40E-05	24	0.86%	74	3.08E-06
								Total		8,625	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Offsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
PM25_EB_WSC	W. San Carlos Street Eastbound	EB	2	683.1	0.42	13.3	44	1.3	30	8,624
PM25_WB_WSC	W. San Carlos Street Westbound	WB	2	680.8	0.42	13.3	44	1.3	30 Total	8,624

Emission Factors - PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.001765			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and PM2.5 Emissions - PM25_EB_WSC

					% Per				% Per		
Hour	% Per Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	99	2.06E-05	9	7.11%	613	1.28E-04	17	7.38%	636	1.32E-04
2	0.42%	36	7.54E-06	10	4.39%	379	7.88E-05	18	8.17%	705	1.47E-04
3	0.41%	35	7.36E-06	11	4.66%	402	8.36E-05	19	5.70%	492	1.02E-04
4	0.26%	22	4.67E-06	12	5.89%	508	1.06E-04	20	4.27%	368	7.66E-05
5	0.50%	43	8.97E-06	13	6.15%	530	1.10E-04	21	3.26%	281	5.85E-05
6	0.90%	78	1.62E-05	14	6.04%	521	1.08E-04	22	3.30%	285	5.92E-05
7	3.79%	327	6.80E-05	15	7.01%	605	1.26E-04	23	2.46%	212	4.41E-05
8	7.76%	669	1.39E-04	16	7.14%	616	1.28E-04	24	1.86%	160	3.34E-05
								Total		8,622	

2023 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM25_WB_WSC

					% Per				% Per		
Hour	% Per Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	99	2.06E-05	9	7.11%	613	1.27E-04	17	7.38%	636	1.32E-04
2	0.42%	36	7.51E-06	10	4.39%	379	7.85E-05	18	8.17%	705	1.46E-04
3	0.41%	35	7.33E-06	11	4.66%	402	8.34E-05	19	5.70%	492	1.02E-04
4	0.26%	22	4.65E-06	12	5.89%	508	1.05E-04	20	4.27%	368	7.64E-05
5	0.50%	43	8.94E-06	13	6.15%	530	1.10E-04	21	3.26%	281	5.83E-05
6	0.90%	78	1.61E-05	14	6.04%	521	1.08E-04	22	3.30%	285	5.90E-05
7	3.79%	327	6.78E-05	15	7.01%	605	1.25E-04	23	2.46%	212	4.40E-05
8	7.76%	669	1.39E-04	16	7.14%	616	1.28E-04	24	1.86%	160	3.33E-05
								Total		8,622	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Offsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions 2023

Year =

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
TEXH_EB_WSC	W. San Carlos Street Eastbound	EB	2	683.1	0.42	13.3	44	1.3	30	8,624
TEXH_WB_WSC	W. San Carlos Street Westbound	WB	2	680.8	0.42	13.3	44	1.3	30	8,624
									Total	17,248

Emission Factors - TOG Exhaust

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.03684			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	99	4.31E-04	9	7.11%	613	2.66E-03	17	7.38%	636	2.76E-03
2	0.42%	36	1.57E-04	10	4.39%	379	1.64E-03	18	8.17%	705	3.06E-03
3	0.41%	35	1.54E-04	11	4.66%	402	1.75E-03	19	5.70%	492	2.14E-03
4	0.26%	22	9.74E-05	12	5.89%	508	2.21E-03	20	4.27%	368	1.60E-03
5	0.50%	43	1.87E-04	13	6.15%	530	2.30E-03	21	3.26%	281	1.22E-03
6	0.90%	78	3.37E-04	14	6.04%	521	2.26E-03	22	3.30%	285	1.24E-03
7	3.79%	327	1.42E-03	15	7.01%	605	2.63E-03	23	2.46%	212	9.21E-04
8	7.76%	669	2.91E-03	16	7.14%	616	2.67E-03	24	1.86%	160	6.97E-04
								Total		8,622	

2023 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	99	4.29E-04	9	7.11%	613	2.65E-03	17	7.38%	636	2.76E-03
2	0.42%	36	1.57E-04	10	4.39%	379	1.64E-03	18	8.17%	705	3.05E-03
3	0.41%	35	1.53E-04	11	4.66%	402	1.74E-03	19	5.70%	492	2.13E-03
4	0.26%	22	9.71E-05	12	5.89%	508	2.20E-03	20	4.27%	368	1.59E-03
5	0.50%	43	1.87E-04	13	6.15%	530	2.30E-03	21	3.26%	281	1.22E-03
6	0.90%	78	3.36E-04	14	6.04%	521	2.25E-03	22	3.30%	285	1.23E-03
7	3.79%	327	1.41E-03	15	7.01%	605	2.62E-03	23	2.46%	212	9.18E-04
8	7.76%	669	2.90E-03	16	7.14%	616	2.67E-03	24	1.86%	160	6.94E-04
								Total		8,622	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Offsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions

Year =

							-			
Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
	W. San Carlos Street									
TEVAP_EB_WSC	Eastbound	EB	2	683.1	0.42	13.3	44	1.3	30	8,624
	W. San Carlos Street									
TEVAP_WB_WSC	Westbound	WB	2	680.8	0.42	13.3	44	1.3	30	8,624
									Total	17,248

Emission Factors - PM2.5 - Evaporative TOG

2023

	Speed Category	1	2	3	4
	Travel Speed (mph)	30			
Emissions per	Vehicle per Hour (g/hour)	1.35761			
Emissions per	Vehicle per Mile (g/VMT)	0.04525			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	99	5.29E-04	9	7.11%	613	3.27E-03	17	7.38%	636	3.40E-03
2	0.42%	36	1.93E-04	10	4.39%	379	2.02E-03	18	8.17%	705	3.76E-03
3	0.41%	35	1.89E-04	11	4.66%	402	2.14E-03	19	5.70%	492	2.62E-03
4	0.26%	22	1.20E-04	12	5.89%	508	2.71E-03	20	4.27%	368	1.96E-03
5	0.50%	43	2.30E-04	13	6.15%	530	2.83E-03	21	3.26%	281	1.50E-03
6	0.90%	78	4.14E-04	14	6.04%	521	2.78E-03	22	3.30%	285	1.52E-03
7	3.79%	327	1.74E-03	15	7.01%	605	3.23E-03	23	2.46%	212	1.13E-03
8	7.76%	669	3.57E-03	16	7.14%	616	3.29E-03	24	1.86%	160	8.56E-04
								Total		8,622	

2023 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	99	5.27E-04	9	7.11%	613	3.26E-03	17	7.38%	636	3.38E-03
2	0.42%	36	1.93E-04	10	4.39%	379	2.01E-03	18	8.17%	705	3.75E-03
3	0.41%	35	1.88E-04	11	4.66%	402	2.14E-03	19	5.70%	492	2.61E-03
4	0.26%	22	1.19E-04	12	5.89%	508	2.70E-03	20	4.27%	368	1.96E-03
5	0.50%	43	2.29E-04	13	6.15%	530	2.82E-03	21	3.26%	281	1.50E-03
6	0.90%	78	4.13E-04	14	6.04%	521	2.77E-03	22	3.30%	285	1.51E-03
7	3.79%	327	1.74E-03	15	7.01%	605	3.21E-03	23	2.46%	212	1.13E-03
8	7.76%	669	3.56E-03	16	7.14%	616	3.27E-03	24	1.86%	160	8.53E-04
								Total		8,622	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Offsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
	W. San Carlos Street									
FUG_EB_WSC	Eastbound	EB	2	683.1	0.42	13.3	44	1.3	30	8,624
FUG_WB_WSC	W. San Carlos Street Westbound	WB	2	680.8	0.42	13.3	44	1.3	30	8,624
									Total	17,248

Emission Factors - Fugitive PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Tire Wear - Emissions per Vehicle (g/VMT)	0.00211			
Brake Wear - Emissions per Vehicle (g/VMT)	0.01681			
Road Dust - Emissions per Vehicle (g/VMT)	0.01486			
Total Fugitive PM2.5 - Emissions per Vehicle (g/VMT)	0.03377			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	99	3.95E-04	9	7.11%	613	2.44E-03	17	7.38%	636	2.53E-03
2	0.42%	36	1.44E-04	10	4.39%	379	1.51E-03	18	8.17%	705	2.81E-03
3	0.41%	35	1.41E-04	11	4.66%	402	1.60E-03	19	5.70%	492	1.96E-03
4	0.26%	22	8.93E-05	12	5.89%	508	2.02E-03	20	4.27%	368	1.47E-03
5	0.50%	43	1.72E-04	13	6.15%	530	2.11E-03	21	3.26%	281	1.12E-03
6	0.90%	78	3.09E-04	14	6.04%	521	2.07E-03	22	3.30%	285	1.13E-03
7	3.79%	327	1.30E-03	15	7.01%	605	2.41E-03	23	2.46%	212	8.45E-04
8	7.76%	669	2.66E-03	16	7.14%	616	2.45E-03	24	1.86%	160	6.39E-04
								Total		8,622	

2023 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	99	3.94E-04	9	7.11%	613	2.43E-03	17	7.38%	636	2.53E-03
2	0.42%	36	1.44E-04	10	4.39%	379	1.50E-03	18	8.17%	705	2.80E-03
3	0.41%	35	1.40E-04	11	4.66%	402	1.59E-03	19	5.70%	492	1.95E-03
4	0.26%	22	8.90E-05	12	5.89%	508	2.02E-03	20	4.27%	368	1.46E-03
5	0.50%	43	1.71E-04	13	6.15%	530	2.10E-03	21	3.26%	281	1.12E-03
6	0.90%	78	3.08E-04	14	6.04%	521	2.07E-03	22	3.30%	285	1.13E-03
7	3.79%	327	1.30E-03	15	7.01%	605	2.40E-03	23	2.46%	212	8.42E-04
8	7.76%	669	2.66E-03	16	7.14%	616	2.44E-03	24	1.86%	160	6.37E-04
								Total		8,622	

File Name:	1520 WSC	- Santa C	lara	(SF) - 2025 -	Annual.EF			
CT-EMFAC2017 Version:	1.0.2.2740	1						
Run Date:	9/28/2	2022 13:52	2					
Area:	Santa Clar	a (SF)						
Analysis Year:	2025							
Season:	Annual							
			====					
	VMT Diesel		VMT Gas VMT					
Vehicle Category	Fraction	Fraction		Fraction				
	Across	Within		Within				
	Category	Category	/	Category				
Truck 1	0.015	0	.502	0.498				
Truck 2	0.02	0	.936	0.048				
Non-Truck	0.965	0	.015	0.951				
Road Type:	Major/Co	llector						
Silt Loading Factor:	CAR	В		0.032 g/m2				
Precipitation Correction:	CAR	В		P = 64 days	N = 365 days			

Fleet Average Running Exhaust Emission Factors (grams/veh-mile)

 Pollutant Name
 <= 5 mpl</th>
 10 mph
 15 mph
 20 mph
 25 mph
 30 mph
 35 mph
 40 mph
 45 mph
 50 mph
 55 mph
 60 mph
 65 mph
 70 mph
 75 mph

 PM2.5
 0.008489
 0.005501
 0.00373
 0.002665
 0.00202
 0.001628
 0.001277
 0.00124
 0.001271
 0.001366
 0.001527
 0.001762
 0.001762
 0.001858
 0.001858

 TOG
 0.172619
 0.113109
 0.076066
 0.0539
 0.040836
 0.02738
 0.02411
 0.022258
 0.021553
 0.0219
 0.023386
 0.028322
 0.028322
 0.028322
 0.028322
 0.028323
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753
 0.000753

Fleet Average Running Loss Emission Factors (grams/veh-hour)

Pollutant Name	Emission Factor
TOG	1.255395

Fleet Average Tire Wear Factors (grams/veh-mile)

Pollutant Name	Emission Factor	
PM2.5	0.002108	

Pollutant Name	Emission Factor	
PM2.5	0.016801	

Fleet Average Road Dust Factors (grams/veh-mile)

Pollutant Name	Emission Factor	
PM2.5	0.014826	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Onsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2025

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
	W. San Carlos Street									
DPM_EB_WSC	Eastbound	EB	2	683.1	0.42	13.3	43.7	3.4	30	8,793
DPM WB WSC	W. San Carlos Street Westbound	WB	2	680.8	0.42	13.3	43.7	3.4	30	8,793
									Total	17,586

Emission Factors - DPM

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.00033			

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and DPM Emissions - DPM_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	3.93%	346	1.33E-05	9	6.41%	564	2.17E-05	17	5.55%	488	1.88E-05
2	2.62%	230	8.86E-06	10	7.36%	647	2.49E-05	18	3.16%	278	1.07E-05
3	2.85%	251	9.63E-06	11	6.34%	557	2.14E-05	19	2.36%	208	7.98E-06
4	3.31%	291	1.12E-05	12	6.92%	608	2.34E-05	20	0.87%	77	2.94E-06
5	2.17%	191	7.33E-06	13	6.29%	553	2.13E-05	21	3.09%	272	1.04E-05
6	3.36%	295	1.14E-05	14	6.23%	548	2.11E-05	22	4.12%	362	1.39E-05
7	6.00%	528	2.03E-05	15	5.15%	453	1.74E-05	23	2.58%	227	8.72E-06
8	4.58%	403	1.55E-05	16	3.84%	338	1.30E-05	24	0.92%	81	3.11E-06
								Total		8,794	

2025 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	3.93%	346	1.32E-05	9	6.41%	564	2.16E-05	17	5.55%	488	1.87E-05
2	2.62%	230	8.83E-06	10	7.36%	647	2.48E-05	18	3.16%	278	1.06E-05
3	2.85%	251	9.60E-06	11	6.34%	557	2.14E-05	19	2.36%	208	7.95E-06
4	3.31%	291	1.11E-05	12	6.92%	608	2.33E-05	20	0.87%	77	2.93E-06
5	2.17%	191	7.31E-06	13	6.29%	553	2.12E-05	21	3.09%	272	1.04E-05
6	3.36%	295	1.13E-05	14	6.23%	548	2.10E-05	22	4.12%	362	1.39E-05
7	6.00%	528	2.02E-05	15	5.15%	453	1.73E-05	23	2.58%	227	8.69E-06
8	4.58%	403	1.54E-05	16	3.84%	338	1.29E-05	24	0.92%	81	3.10E-06
		-						Total		8,794	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Onsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2025

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
PM25_EB_WSC	W. San Carlos Street Eastbound	EB	2	683.1	0.42	13.3	44	1.3	30	8,793
PM25_WB_WSC	W. San Carlos Street Westbound	WB	2	680.8	0.42	13.3	44	1.3	30 Total	8,793 17.586

Emission Factors - PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.001628			

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and PM2.5 Emissions - PM25_EB_WSC

					% Per				% Per		
Hour	% Per Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	101	1.94E-05	9	7.11%	625	1.20E-04	17	7.39%	650	1.25E-04
2	0.42%	37	7.09E-06	10	4.39%	386	7.41E-05	18	8.18%	719	1.38E-04
3	0.41%	36	6.92E-06	11	4.66%	410	7.87E-05	19	5.69%	500	9.60E-05
4	0.26%	23	4.39E-06	12	5.89%	518	9.94E-05	20	4.28%	376	7.22E-05
5	0.50%	44	8.44E-06	13	6.15%	541	1.04E-04	21	3.25%	286	5.49E-05
6	0.91%	80	1.54E-05	14	6.04%	531	1.02E-04	22	3.30%	290	5.57E-05
7	3.79%	333	6.40E-05	15	7.01%	616	1.18E-04	23	2.46%	216	4.15E-05
8	7.77%	683	1.31E-04	16	7.14%	628	1.21E-04	24	1.86%	164	3.14E-05
								Total		8,794	

2025 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM25_WB_WSC

					% Per				% Per		
Hour	% Per Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	101	1.93E-05	9	7.11%	625	1.20E-04	17	7.39%	650	1.24E-04
2	0.42%	37	7.07E-06	10	4.39%	386	7.38E-05	18	8.18%	719	1.38E-04
3	0.41%	36	6.90E-06	11	4.66%	410	7.84E-05	19	5.69%	500	9.57E-05
4	0.26%	23	4.37E-06	12	5.89%	518	9.91E-05	20	4.28%	376	7.20E-05
5	0.50%	44	8.41E-06	13	6.15%	541	1.03E-04	21	3.25%	286	5.47E-05
6	0.91%	80	1.53E-05	14	6.04%	531	1.02E-04	22	3.30%	290	5.55E-05
7	3.79%	333	6.38E-05	15	7.01%	616	1.18E-04	23	2.46%	216	4.14E-05
8	7.77%	683	1.31E-04	16	7.14%	628	1.20E-04	24	1.86%	164	3.13E-05
								Total		8,794	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Onsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions 2025

Year =

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
TEXH_EB_WSC	W. San Carlos Street Eastbound	EB	2	683.1	0.42	13.3	44	1.3	30	8,793
TEXH_WB_WSC	W. San Carlos Street Westbound	WB	2	680.8	0.42	13.3	44	1.3	30	8,793
									Total	17,586

Emission Factors - TOG Exhaust

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.03264			

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	101	3.89E-04	9	7.11%	625	2.41E-03	17	7.39%	650	2.50E-03
2	0.42%	37	1.42E-04	10	4.39%	386	1.49E-03	18	8.18%	719	2.77E-03
3	0.41%	36	1.39E-04	11	4.66%	410	1.58E-03	19	5.69%	500	1.93E-03
4	0.26%	23	8.80E-05	12	5.89%	518	1.99E-03	20	4.28%	376	1.45E-03
5	0.50%	44	1.69E-04	13	6.15%	541	2.08E-03	21	3.25%	286	1.10E-03
6	0.91%	80	3.08E-04	14	6.04%	531	2.04E-03	22	3.30%	290	1.12E-03
7	3.79%	333	1.28E-03	15	7.01%	616	2.37E-03	23	2.46%	216	8.32E-04
8	7.77%	683	2.63E-03	16	7.14%	628	2.42E-03	24	1.86%	164	6.29E-04
								Total		8,794	

2025 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	101	3.88E-04	9	7.11%	625	2.40E-03	17	7.39%	650	2.49E-03
2	0.42%	37	1.42E-04	10	4.39%	386	1.48E-03	18	8.18%	719	2.76E-03
3	0.41%	36	1.38E-04	11	4.66%	410	1.57E-03	19	5.69%	500	1.92E-03
4	0.26%	23	8.77E-05	12	5.89%	518	1.99E-03	20	4.28%	376	1.44E-03
5	0.50%	44	1.69E-04	13	6.15%	541	2.07E-03	21	3.25%	286	1.10E-03
6	0.91%	80	3.07E-04	14	6.04%	531	2.04E-03	22	3.30%	290	1.11E-03
7	3.79%	333	1.28E-03	15	7.01%	616	2.36E-03	23	2.46%	216	8.30E-04
8	7.77%	683	2.62E-03	16	7.14%	628	2.41E-03	24	1.86%	164	6.27E-04
								Total		8,794	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Onsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions

Year = 2025

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
	W. San Carlos Street									
TEVAP_EB_WSC	Eastbound	EB	2	683.1	0.42	13.3	44	1.3	30	8,793
	W. San Carlos Street									
TEVAP_WB_WSC	Westbound	WB	2	680.8	0.42	13.3	44	1.3	30	8,793
									Total	17,586

Emission Factors - PM2.5 - Evaporative TOG

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle per Hour (g/hour)	1.25540			
Emissions per Vehicle per Mile (g/VMT)	0.04185			

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	101	4.99E-04	9	7.11%	625	3.08E-03	17	7.39%	650	3.21E-03
2	0.42%	37	1.82E-04	10	4.39%	386	1.90E-03	18	8.18%	719	3.55E-03
3	0.41%	36	1.78E-04	11	4.66%	410	2.02E-03	19	5.69%	500	2.47E-03
4	0.26%	23	1.13E-04	12	5.89%	518	2.56E-03	20	4.28%	376	1.86E-03
5	0.50%	44	2.17E-04	13	6.15%	541	2.67E-03	21	3.25%	286	1.41E-03
6	0.91%	80	3.95E-04	14	6.04%	531	2.62E-03	22	3.30%	290	1.43E-03
7	3.79%	333	1.64E-03	15	7.01%	616	3.04E-03	23	2.46%	216	1.07E-03
8	7.77%	683	3.37E-03	16	7.14%	628	3.10E-03	24	1.86%	164	8.07E-04
								Total		8,794	

2025 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	101	4.97E-04	9	7.11%	625	3.07E-03	17	7.39%	650	3.20E-03
2	0.42%	37	1.82E-04	10	4.39%	386	1.90E-03	18	8.18%	719	3.54E-03
3	0.41%	36	1.77E-04	11	4.66%	410	2.01E-03	19	5.69%	500	2.46E-03
4	0.26%	23	1.12E-04	12	5.89%	518	2.55E-03	20	4.28%	376	1.85E-03
5	0.50%	44	2.16E-04	13	6.15%	541	2.66E-03	21	3.25%	286	1.41E-03
6	0.91%	80	3.93E-04	14	6.04%	531	2.61E-03	22	3.30%	290	1.43E-03
7	3.79%	333	1.64E-03	15	7.01%	616	3.03E-03	23	2.46%	216	1.06E-03
8	7.77%	683	3.36E-03	16	7.14%	628	3.09E-03	24	1.86%	164	8.04E-04
								Total		8,794	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - Onsite Residential Roadway Modeling Cumulative Operation - W. San Carlos Street Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions Year = 2025

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
	W. San Carlos Street									
FUG_EB_WSC	Eastbound	EB	2	683.1	0.42	13.3	44	1.3	30	8,793
FUG_WB_WSC	W. San Carlos Street Westbound	WB	2	680.8	0.42	13.3	44	1.3	30	8,793
									Total	17,586

Emission Factors - Fugitive PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Tire Wear - Emissions per Vehicle (g/VMT)	0.00211			
Brake Wear - Emissions per Vehicle (g/VMT)	0.01680			
Road Dust - Emissions per Vehicle (g/VMT)	0.01483			
Total Fugitive PM2.5 - Emissions per Vehicle (g/VMT)	0.03374			

Emisson Factors from CT-EMFAC2017

2025 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	101	4.02E-04	9	7.11%	625	2.49E-03	17	7.39%	650	2.58E-03
2	0.42%	37	1.47E-04	10	4.39%	386	1.54E-03	18	8.18%	719	2.86E-03
3	0.41%	36	1.43E-04	11	4.66%	410	1.63E-03	19	5.69%	500	1.99E-03
4	0.26%	23	9.09E-05	12	5.89%	518	2.06E-03	20	4.28%	376	1.50E-03
5	0.50%	44	1.75E-04	13	6.15%	541	2.15E-03	21	3.25%	286	1.14E-03
6	0.91%	80	3.18E-04	14	6.04%	531	2.11E-03	22	3.30%	290	1.15E-03
7	3.79%	333	1.33E-03	15	7.01%	616	2.45E-03	23	2.46%	216	8.60E-04
8	7.77%	683	2.72E-03	16	7.14%	628	2.50E-03	24	1.86%	164	6.51E-04
								Total		8,794	

2025 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	101	4.01E-04	9	7.11%	625	2.48E-03	17	7.39%	650	2.58E-03
2	0.42%	37	1.46E-04	10	4.39%	386	1.53E-03	18	8.18%	719	2.85E-03
3	0.41%	36	1.43E-04	11	4.66%	410	1.62E-03	19	5.69%	500	1.98E-03
4	0.26%	23	9.06E-05	12	5.89%	518	2.05E-03	20	4.28%	376	1.49E-03
5	0.50%	44	1.74E-04	13	6.15%	541	2.14E-03	21	3.25%	286	1.13E-03
6	0.91%	80	3.17E-04	14	6.04%	531	2.11E-03	22	3.30%	290	1.15E-03
7	3.79%	333	1.32E-03	15	7.01%	616	2.44E-03	23	2.46%	216	8.57E-04
8	7.77%	683	2.71E-03	16	7.14%	628	2.49E-03	24	1.86%	164	6.48E-04
								Total		8,794	

1520 W. San Carlos Street Mixed-Use, San Jose, CA - W. San Carlos Street Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations at Construction MEI Receptors, PM2.5 1.5m, Cancer Risk 4.5m receptor heights

Emission Year	2023
Receptor Information	Construction MEI receptors
Number of Receptors	2
Receptor Height	PM2.5 1.5m, Cancer Risk 4.5m
Receptor Distances	At Construction MEI locations
Meteorological Conditions	
BAQMD San Jose Airport Met Data	2013-2017
Land Use Classification	Urban

Wind Direction Variable

Wind Speed

Construction Cancer Risk MEI Cancer Risk Maximum Concentrations

Variable

I	Meteorological		Concentration (µ	ıg/m3)
	Data Years	DPM	Exhaust TOG	Evaporative TOG
ĺ	2013-2017	0.0007	0.0718	0.0881

Construction PM2.5 MEI PM2.5 Maximum Concentrations

Meteorological	PM	2.5 Concentratio	n (µg/m3)
Data Years	Total PM2.5	Fugitive PM2.5	Vehicle PM2.5
2013-2017	0.0664	0.0631	0.0033

1520 W. San Carlos Street Mixed-Use, San Jose, CA - W. San Carlos Street Cancer Risk & PM2.5 Impacts at Construction MEIs - PM2.5 1.5m, Cancer Risk 4.5m receptor heights 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$
 - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

 - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$
- Where: $C_{air} = concentration in air (\mu g/m^3)$
 - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor
 - EF = Exposure frequency (days/year)
 - $10^{-6} =$ Conversion factor

Cancer Potency Factors (mg/kg-day) ⁻¹							
TAC	CPF						
DPM	1.10E+00						
Vehicle TOG Exhaust	6.28E-03						
Vahicle TOG Evaporative	3 70E 04						

Values

	Inf		Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16-30	
Parameter					
ASF =	10	10	3	1	
DBR* =	361	1090	572	261	
A =	1	1	1	1	
EF =	350	350	350	350	
AT =	70	70	70	70	
FAH=	1.00	1.00	1.00	0.73	
* 95th perce	ntile breathing rate	s for infants a	and 80th perc	entile for childr	en and adu

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Ma	ximum - Exposu	e Information		Conc	entration (ug	g/m3)	Canc	er Risk (per	Cancer Risk (per million)				
	Exposure													
				Age		Exhaust	Evaporative				TOTAL			
Exposure	Duration			Sensitivity	DPM	TOG	TOG	DPM	Exhaust	Evaporative				
Year	(years)	Age	Year	Factor					TOG	TOG			Maximum	
												Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2023	10	0.0007	0.0718	0.0881	0.009	0.006	0.0004	0.01	Index	PM2.5	PM2.
1	1	0 - 1	2023	10	0.0007	0.0718	0.0881	0.108	0.067	0.0049	0.18	0.0001	0.06	0.07
2	1	1 - 2	2024	10	0.0007	0.0718	0.0881	0.108	0.067	0.0049	0.18			
3	1	2 - 3	2025	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
4	1	3 - 4	2026	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
5	1	4 - 5	2027	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
6	1	5 - 6	2028	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
7	1	6 - 7	2029	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
8	1	7 - 8	2030	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
9	1	8 - 9	2031	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
10	1	9 - 10	2032	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
11	1	10 - 11	2033	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
12	1	11 - 12	2034	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
13	1	12 - 13	2035	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
14	1	13 - 14	2036	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
15	1	14 - 15	2037	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
16	1	15 - 16	2038	3	0.0007	0.0718	0.0881	0.017	0.011	0.0008	0.03			
17	1	16-17	2039	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
18	1	17-18	2040	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
19	1	18-19	2041	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
20	1	19-20	2042	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
21	1	20-21	2043	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
22	1	21-22	2044	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
23	1	22-23	2045	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
24	1	23-24	2046	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
25	1	24-25	2047	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
26	1	25-26	2048	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
27	1	26-27	2049	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
28	1	27-28	2050	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
29	1	28-29	2051	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
30	1	29-30	2052	1	0.0007	0.0718	0.0881	0.002	0.001	0.0001	0.00			
Total Inanoac	od Concor D	Sel.					1	0.40	0.205	0.022	0.02			

1520 W. San Carlos Street Mixed-Use, San Jose, CA - W. San Carlos Street Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations On-Site 1st (1.5m), 2nd (6.1m), & 3rd (9.1m) Floor Receptors Heights

Emission Year	2025
Receptor Information	Maximum On-Site Receptor
Number of Receptors	179
Receptor Height	1st (1.5m), 2nd (6.1m), & 3rd (9.1m) Floors
Receptor Distances	6 meter grid spacing in residential areas
Meteorological Conditions	
BAQMD San Jose Airport Met Data	2013-2017
Land Use Classification	Urban

Variable

Variable

On-Site Cancer Risk Maximum Concentrations

Wind Speed

Wind Direction

Meteorological		Concentration (µg/m3)						
Data Years	DPM	Exhaust TOG	Evaporative TOG	I				
2013-2017	0.0008	0.0839	0.1074	1st Floor				
2013-2017	0.0010	0.1004	0.1286	2nd Floor				
2013-2017	0.0009	0.0631	0.0808	3rd Floor				

On-Site PM2.5 Maximum Concentrations

Meteorological	PM	PM2.5 Concentration (µg/m3)							
Data Years	Total PM2.5	Fugitive PM2.5	Vehicle PM2.5]					
2013-2017	0.0907	0.0866	0.0042	1st Floor					
2013-2017	0.1087	0.1037	0.0050	2nd Floo					
2013-2017	0.0683	0.0651	0.0031	3rd Floor					

1520 W. San Carlos Street Mixed-Use, San Jose, CA - W. San Carlos Street Cancer Risk & PM2.5 Impacts at On-Site 1st Floor Receptors - 1.5m receptor heights 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$
 - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

 - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$
- Where: $C_{air} = concentration in air (\mu g/m^3)$
 - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor
 - EF = Exposure frequency (days/year)
 - $10^{-6} =$ Conversion factor

Cancer Potency Factors (m	g/kg-day)			
TAC	CPF			
DPM	1.10E+00			
Vehicle TOG Exhaust	6.28E-03			
Vehicle TOG Evaporative	3 70E-04			

Values

	Inf		Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16-30	
Parameter					
ASF =	10	10	3	1	
DBR* =	361	1090	572	261	
A =	1	1	1	1	
EF =	350	350	350	350	
AT =	70	70	70	70	
FAH=	1.00	1.00	1.00	0.73	
* 95th perce	ntile breathing rate	s for infants a	and 80th perc	entile for childr	en and adu

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Ma	ximum - Exposu	e Information		Concentration (ug/m3)		Canc	Cancer Risk (per million)						
	Expos ure													
	_			Age		Exhaust	Evaporative				TOTAL			
Exposure	Duration			Sensitivity	DPM	TOG	TOG	DPM	Exhaust	Evaporative				
Year	(years)	Age	Year	Factor					TOG	TOG			Maximum	
												Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2025	10	0.0008	0.0839	0.1074	0.010	0.007	0.0005	0.02	Index	PM2.5	PM2.5
1	1	0 - 1	2025	10	0.0008	0.0839	0.1074	0.126	0.079	0.0059	0.21	0.0002	0.09	0.09
2	1	1 - 2	2026	10	0.0008	0.0839	0.1074	0.126	0.079	0.0059	0.21			
3	1	2 - 3	2027	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
4	1	3 - 4	2028	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
5	1	4 - 5	2029	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
6	1	5 - 6	2030	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
7	1	6 - 7	2031	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
8	1	7 - 8	2032	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
9	1	8 - 9	2033	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
10	1	9 - 10	2034	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
11	1	10 - 11	2035	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
12	1	11 - 12	2036	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
13	1	12 - 13	2037	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
14	1	13 - 14	2038	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
15	1	14 - 15	2039	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
16	1	15 - 16	2040	3	0.0008	0.0839	0.1074	0.020	0.012	0.0009	0.03			
17	1	16-17	2041	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
18	1	17-18	2042	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
19	1	18-19	2043	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
20	1	19-20	2044	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
21	1	20-21	2045	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
22	1	21-22	2046	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
23	1	22-23	2047	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
24	1	23-24	2048	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
25	1	24-25	2049	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
26	1	25-26	2050	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
27	1	26-27	2051	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
28	1	27-28	2052	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
29	1	28-29	2053	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
30	1	29-30	2054	1	0.0008	0.0839	0.1074	0.002	0.001	0.0001	0.00			
Total Inavoas	od Concor D	Beli		•		1	1	0.57	0.256	0.027	0.06	1		

1520 W. San Carlos Street Mixed-Use, San Jose, CA - W. San Carlos Street Cancer Risk & PM2.5 Impacts at On-Site 2nd Floor Receptors - 6.1m receptor heights 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$
 - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

 - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$
- Where: $C_{air} = concentration in air (\mu g/m^3)$
 - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor
 - EF = Exposure frequency (days/year)
 - $10^{-6} =$ Conversion factor

Cancer Potency Factors (mg/kg-day) ⁻¹								
TAC	CPF							
DPM	1.10E+00							
Vehicle TOG Exhaust	6.28E-03							
Vehicle TOG Evaporative	3.70E-04							

Values

	Inf	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	1.00	1.00	1.00	0.73
* 95th perce	ntile breathing rate	s for infants a	nd 80th perc	entile for childr

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Ma	ximum - Exposu	e Information		Concentration (ug/m3)		Cancer Risk (per million)							
	Exposure													
	-			Age		Exhaust	Evaporative				TOTAL			
Exposure	Duration			Sensitivity	DPM	TOG	TOG	DPM	Exhaust	Evaporative				
Year	(years)	Age	Year	Factor					TOG	TOG			Maximum	
												Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2025	10	0.0010	0.1004	0.1286	0.013	0.008	0.0006	0.02	Index	PM2.5	PM2.5
1	1	0 - 1	2025	10	0.0010	0.1004	0.1286	0.161	0.094	0.0071	0.26	0.0002	0.10	0.11
2	1	1 - 2	2026	10	0.0010	0.1004	0.1286	0.161	0.094	0.0071	0.26			
3	1	2 - 3	2027	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
4	1	3 - 4	2028	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
5	1	4 - 5	2029	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
6	1	5 - 6	2030	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
7	1	6 - 7	2031	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
8	1	7 - 8	2032	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
9	1	8 - 9	2033	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
10	1	9 - 10	2034	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
11	1	10 - 11	2035	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
12	1	11 - 12	2036	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
13	1	12 - 13	2037	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
14	1	13 - 14	2038	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
15	1	14 - 15	2039	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
16	1	15 - 16	2040	3	0.0010	0.1004	0.1286	0.025	0.015	0.0011	0.04			
17	1	16-17	2041	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
18	1	17-18	2042	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
19	1	18-19	2043	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
20	1	19-20	2044	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
21	1	20-21	2045	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
22	1	21-22	2046	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
23	1	22-23	2047	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
24	1	23-24	2048	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
25	1	24-25	2049	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
26	1	25-26	2050	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
27	1	26-27	2051	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
28	1	27-28	2052	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
29	1	28-29	2053	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
30	1	29-30	2054	1	0.0010	0.1004	0.1286	0.003	0.002	0.0001	0.00			
Total Inavoas	od Concor E	No le	-					0.72	0.427	0.022	1 10			

1520 W. San Carlos Street Mixed-Use, San Jose, CA - W. San Carlos Street Cancer Risk & PM2.5 Impacts at On-Site 3rd Floor Receptors - 9.1m receptor heights 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$
 - ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

 - FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$
- Where: $C_{air} = concentration in air (\mu g/m^3)$
 - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor
 - EF = Exposure frequency (days/year) $10^{-6} =$ Conversion factor

Cancer Potency Factors (mg/kg-day)					
TAC	CPF				
DPM	1.10E+00				
Vehicle TOG Exhaust	6.28E-03				
Vehicle TOG Evanorative	3 70E-04				

Values

	Inf	Adult							
Age>	3rd Trimester	0 - 2	2 - 16	16-30					
Parameter									
ASF =	10	10	3	1					
DBR* =	361	1090	572	261					
A =	1	1	1	1					
EF =	350	350	350	350					
AT =	70	70	70	70					
FAH=	1.00	1.00	1.00	0.73					
* 95th perce	95th percentile breathing rates for infants and 80th percentile for children and adults								

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Ma	ximum - Exposu	re Information		Concentration (ug/m3)		Cancer Risk (per million)							
	Exposure													
	-			Age		Exhaust	Evaporative				TOTAL			
Exposure	Duration			Sensitivity	DPM	TOG	TOG	DPM	Exhaust	Evaporative				
Year	(years)	Age	Year	Factor					TOG	TOG			Maximum	
												Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2025	10	0.0009	0.0631	0.0808	0.012	0.005	0.0004	0.02	Index	PM2.5	PM2.5
1	1	0 - 1	2025	10	0.0009	0.0631	0.0808	0.145	0.059	0.0045	0.21	0.0002	0.07	0.07
2	1	1 - 2	2026	10	0.0009	0.0631	0.0808	0.145	0.059	0.0045	0.21			
3	1	2 - 3	2027	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
4	1	3 - 4	2028	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
5	1	4 - 5	2029	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
6	1	5 - 6	2030	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
7	1	6 - 7	2031	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
8	1	7 - 8	2032	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
9	1	8 - 9	2033	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
10	1	9 - 10	2034	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
11	1	10 - 11	2035	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
12	1	11 - 12	2036	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
13	1	12 - 13	2037	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
14	1	13 - 14	2038	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
15	1	14 - 15	2039	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
16	1	15 - 16	2040	3	0.0009	0.0631	0.0808	0.023	0.009	0.0007	0.03			
17	1	16-17	2041	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
18	1	17-18	2042	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
19	1	18-19	2043	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
20	1	19-20	2044	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
21	1	20-21	2045	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
22	1	21-22	2046	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
23	1	22-23	2047	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
24	1	23-24	2048	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
25	1	24-25	2049	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
26	1	25-26	2050	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
27	1	26-27	2051	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
28	1	27-28	2052	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
29	1	28-29	2053	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
30	1	29-30	2054	1	0.0009	0.0631	0.0808	0.003	0.001	0.0001	0.00			
Total Inavoas	od Concor E	No le	•	•		1	1	0.65	0.269	0.020	0.04			

Risk & Hazard Stationary Source Inquiry Form

This form is required when users request stationary source data from BAAQMD

This form is to be used with the BAAQMD's Google Earth stationary source screening tables.

Click here for guidance on coducting risk & hazard screening, including roadways & freeways, refer to the District's Risk & Hazard Analysis flow chart.

Click here for District's Recommended Methods for Screening and Modeling Local Risks and Hazards document.

8/30/2022
Zachary Palm
Illingworth & Rodkin, Inc.
707-794-0400 x117
zpalm@illingworthrodkin.com
1520 W San Carlos
1520 W San Carlos
San Jose
Santa Clara
Residential
256 du

For Air District assistance, the following steps must be completed:

1. Complete all the contact and project information requested in

Table A normalete forms will not be processed. Please include a project site map.

2. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's website, http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx. The small points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc. Click on a point to view the source's Information Table, including the name, location, and preliminary estimated cancer risk, hazard index, and PM2.5 concentration.

3. Find the project site in Google Earth by inputting the site's address in the Google Earth search box.

4. Identify stationary sources within at least a 1000ft radius of project site. Verify that the location of the source on the map matches with the source's address in the Information Table, by using the Google Easter address search box to confirm the source's address location. Please report any mapping errors to the District. Table B

5. List the stationary source information in _____lue section only.

6. Note that a small percentage of the stationary sources have Health Risk Screening Assessment (HRSA) data INSTEAD of screening level data. These sources will be noted by an asterisk next to the Plant Name (Map B on right). If HRSA values are presented, these values have already been modeled and cannot be adjusted further.

7. Email this completed form to District staff. District staff will provide the most recent risk, hazard, and PM2.5 data that are available for the source(s). If this information or data are not available, source emissions data will be provided. Staff will respond to inquiries within three weeks.

Note that a public records request received for the same stationary source information will cancel the processing of your SSIF request.

Submit forms, maps, and questions to Areana Flores at 415-749-4616, or aflores@baaqmd.gov

Table B: Google Earth data								Construc	tion MEIs					
Distance from	n										Distance	Adjusted	Adjusted	
Receptor (feet)) or										Adjustment	Cancer Risk	Hazard	Adjusted
MEI ¹	Plant No.	Facility Name	Address	Cancer R	isk ² Hazard F	isk ² PM _{2.5} ²	Source No. ³	Type of Source ⁴	Fuel Code ⁵	Status/Comments	Multiplier	Estimate	Risk	PM2.5
535	19794	San Jose Water Company	420 Buena Vista Ave	25.12	0.01	0.03		Generator		2020 Dataset	0.10	2.51	0.001	0.00

Footnotes:

1. Maximally exposed individual

2. These Cancer Risk, Hazard Index, and PM2.5 columns represent the values in the Google Earth Plant Information Table.

3. Each plant may have multiple permits and sources.

4. Permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc.

5. Fuel codes: 98 = diesel, 189 = Natural Gas.

6. If a Health Risk Screening Assessment (HRSA) was completed for the source, the application number will be listed here.

7. The date that the HRSA was completed.

8. Engineer who completed the HRSA. For District purposes only.

9. All HRSA completed before 1/5/2010 need to be multiplied by an age sensitivity factor of 1.7.

10. The HRSA "Chronic Health" number represents the Hazard Index.

11. Further information about common sources:

a. Sources that only include diesel internal combustion engines can be adjusted using the BAAQMD's Diesel Multiplier worksheet.

b. The risk from natural gas boilers used for space heating when <25 MM BTU/hr would have an estimated cancer risk of one in a million or less, and a chronic hazard index of

c. BAAQMD Reg 11 Rule 16 required that all co-residential (sharing a wall, floor, ceiling or is in the same building as a residential unit) dry cleaners cease use of perc on July 1, 2010.

Therefore, there is no cancer risk, hazard or PM2.5 concentrations from co-residential dry cleaning businesses in the BAAQMD.

d. Non co-residential dry cleaners must phase out use of perc by Jan. 1, 2023. Therefore, the risk from these dry cleaners does not need to be factored in over a 70-year period, but instead should

e. Gas stations can be adjusted using BAAQMD's Gas Station Distance Mulitplier worksheet.

f. Unless otherwise noted, exempt sources are considered insignificant. See BAAQMD Reg 2 Rule 1 for a list of exempt sources.

g. This spray booth is considered to be insignificant.

Date last updated:

03/13/2018

Project Site

Distance from		Distance	Adjusted	Adjusted	
Receptor (feet)		Adjustment	Cancer Risk	Hazard	Adjusted
or MEI	FACID (Plant No.)	Multiplier	Estimate	Risk	PM2.5
490	19794	0.14	3.52	0.001	0.004

Area of Interest (AOI) Information

Area : 4,337,261.19 ft²

Aug 30 2022 10:32:42 Pacific Daylight Time

Permitted Stationary Sources

1:9,028 0 0.05 0.1 0.2 mi 1 0.05 0.1 0.2 mi 0 0.07 0.15 0.3 km

Map data @ OpenStreetMap contributors, CC-BY-SA

Summary

Name Count		Area(ft²)	Length(ft)		
Permitted Stationary Sources	1	N/A	N/A		

Permitted Stationary Sources

#	FacID	FacName	Address	City	Street	
1	19794	San Jose Water Company	420 Buena Vista Ave	San Jose	СА	
#	Zip	County	Latitude Longitude		Details	
1	95,126.00	Santa Clara	37.32	-121.92	Generator	
#	NAICS	Sector	Sub_Sector	Industry	ChronicHI	
1	221,310.00	Utilities Utilities Water Suppl Irrigation Sy		Water Supply and Irrigation Systems	0.0067488	
#	PM2_5	Cancer Risk {expression/expr0}	Chronic Hazard Index {expression/expr1}	PM2.5 {expression/expr2}	Count	
1	0.0316180	25.115	0.007	0.032	1	

NOTE: A larger buffer than 1000 feet may be warranted depending on proximity to significant sources.