Hydrology Study
 New Light Industrial Building/Retail Facility

Located in the City of Jurupa Valley
County of Riverside, Ca

Prepared For:

INDUSTRIAL OUTDOOR VENTURES
ATTN: ROB CHASE
10 N. MARTINGALE ROAD \#560
SCHAUMBURG, IL 60173
TEL (224) 369-4341
FAX (260)760-1221

Prepared by:

6879 Airport Drive
Riverside, CA 92504
Tel. (951) 688-0241
Fax (951) 688-0599

Job No. 10288
February 21, 2023

Table of Contents

1. Purpose 1
2. Project Description 1
A. Vicinity Map 1
3. Existing Hydrology 1
4. Proposed Hydrology 2
5. Method of Analysis 2
6. Conclusion 2
Hydrology Appendices
Existing Hydrology (Rational Method) 10 \& 100 Year / Map Section 1
Proposed Hydrology (Rational Method) 10 \& 100 Year / Map Section 2
Existing Unit Hydrology (Unit Hydrograph) 2 Year 24 Hour Section 3
Proposed Unit Hydrology (Unit Hydrograph) 2 Year 24 Hour / Map / Basin Routing Calculations Section 4
Riverside County Plates / Reference Section 5

1. Purpose

The purpose of this study is to substantiate the hydrology design for a New Light Industrial Building/Retail Center in Jurupa Valley for Commercial Development as not to negatively impact the surrounding areas.

2. Project Description

The site is located in the City of Jurupa Valley, County of Riverside, North of Riverside Drive between Interstate 15 and Wineville Road South of Highway 60 . The site will be used for construction equipment rentals, sales of new and used equipment, and maintenance services. The 6.88 acre property will have a $35,000 \mathrm{sq} . \mathrm{ft}$. main facility with surrounding parking lot and a large paved area for equipment to be parked. Runoff from the site will be pretreated prior to leaving the site.

A. Vicinity Map

THOMAS BROS. GUIDE PAGE 643, GRID F-6(2004)

SEC. 6 T.2.S. R.6.W

3. Existing Hydrology

The site is vacant land with annual grass and some vegetation and trees. The entire site slopes towards the southeast corner of the site towards an existing 48" concrete pipe under Riverside Drive (R.C.F.C \&W.C.D Drawing No. 1-0598). This pipe is part of the Day Creek Master Drainage Plan Line D-3. Offsite runoff from the north comes from a 6×4 concrete box culvert under Highway 60 (Caltrans Right of Way Map 204/768). Flows from the box culvert flow towards the southeast corner of the site towards the existing $48^{\prime \prime}$ concrete pipe under Riverside Drive. The total existing runoff entering the pipe is 115.00 cfs .. The project is located within the WRCMSHCP, but is
located outside any criteria cell, PQP land, or conservation areas. The project site is located within the WRCMSHCP Species Survey Area for Burrowing Owl and Narrow Endemic Plant Species. See Western Riverside County Multiple species habitat conservation plan consistency analysis and biology resources assessment report in Section 5 of the report.

4. Proposed Hydrology

Per the HCOC Applicability Map the western portion of the site is not applicable and will only treat VBMP runoff with an infiltration trench before leaving the site. The east side of the site is applicable per the HCOC Applicability Map and will require to treat the 2 year 24 hour storm event. The runoff flows will be pretreated with an infiltration trench, then the flows will enter an infiltration basin to mitigate the 2 year 24 hour storm event. A portion of the east of the site will be left untouched to allow the northern offsite flows to naturally flow towards the existing $48^{\prime \prime}$ concrete pipe under Riverside Drive.

5. Method of Analysis

The site hydrology was based upon Riverside County Flood Control and Water Conversation District Hydrology Manual, from which pertinent soil and rainfall information was obtained.

Storm flows were determined by the "RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM", Riverside County Flood Control \& Water Conservation District 1978 Hydrology Manual, produced by Bondamin Engineering.

The site was also analyzed by the "SYNTHETIC UNIT HYDROLOGY METHOD COMPUTER PROGRAM", Riverside County Flood Control \& Water Conservation District 1978 Hydrology Manual, produced by Bondamin Engineering.

6. Conclusion

The hydrologic calculations provided herein substantiate the design of the proposed project and indicate the following:

- The proposed facilities demonstrate the ability to convey the 10 and 100 year storm events as required by the City of Jurupa Valley Conditions of Approval
- The post development impacts created by the additional impervious surface will be mitigated by the project Site Design and Structural BMP's for the 2 year 24 hr storm event all other storm event will bypass the infiltration basin.

Storm Event	Existing		Proposed		Routed		
	Volume (cu.ft)	cfs	Volume (cu.ft)	cfs	Volume (cu.ft)	cfs	Depth
2 yr 24 hr	0.0806	0.133	0.6611	1.088	0.5240	0.121	2.30

Therefore, it is our conclusion this project does not negatively impact the local community or watershed goals. All flows from the site ultimately drain towards a Riverside County Flood Control Facility.

Section 1 - Existing Hydrology (Rational Method) 10 \& 100 Year

 Rational Hydrology Study Date: 07/03/19 File:ex10.out********* Hydrology Study Control Information **********
English (in-1b) Units used in input data file

Program License Serial Number 5006

```
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation = 0.500(In.)
100 year, 1 hour precipitation = 1.300(In.)
Storm event year = 10.0
Calculated rainfa11 intensity data:
1 hour intensity = 0.829(In/Hr)
Slope of intensity duration curve = 0.5500
```

+++
Process from Point/Station 1.000 to Point/Station
**** INITIAL AREA EVALUATION ****
Initial area flow distance $=$. $535.000(F t$.
Top (of initial area) elevation $=820.000$ (Ft.)
Bottom (of initial area) elevation $=798.900$ (Ft.)
Difference in elevation $=\quad 21.100(F t$.
Slope $=0.03944 \quad$ s(percent) $=\quad 10$ (Ft.) 3.94
$\mathrm{TC}=\mathrm{k}(0.530) *[($ length $\wedge 3) /(\mathrm{e}$ levation change $)] \wedge 0.2$
Initial area time of concentration $=12.486 \mathrm{~min}$.
Rainfall intensity $=\quad 1.966(\mathrm{In} / \mathrm{Hr})$ for a 10.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient $=0.675$
Decimal fraction soi 1 group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soi 1 group $D=0.000$
RI index for soil(AMC 2) $=67.00$
Pervious area fraction $=1.000$; Impervious fraction $=0.000$
Initial subarea runoff $=\quad 1.751$ (CFS)
Total initial stream area $=1.320$ (Ac.)
Pervious area fraction $=1.000$
+++
Process from Point/Station $\quad 2.000$ to Point/Station $\quad 3.000$
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****

| Top of natura1 channe1 elevation $=$ | $798.900(\mathrm{Ft})$. |
| :--- | :--- | :--- |
| End of natural channe1 elevation $=$ | $797.000(\mathrm{Ft})$. |

Length of natural channe1 $=412.000$ (Ft.)
Estimated mean flow rate at midpoint of channe $=\quad 4.688$ (CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity $(\mathrm{ft} / \mathrm{s})=(7+8(q($ English Units) $\wedge .352)(\mathrm{slope} \mathrm{\wedge 0.5)}$
velocity using mean channe1 flow $=1.41(\mathrm{Ft} / \mathrm{s})$
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channe7 slope $=0.0046$
Corrected/adjusted channe1 slope $=0.0046$
Travel time $=\quad 4.87 \mathrm{~min} . \quad \xrightarrow{=}=\begin{aligned} & 17.35 \mathrm{~min} .\end{aligned}$
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient $=0.643$
Decimal fraction soi 1 group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$

```
Decimal fraction soil group \(\mathrm{D}=0.000\)
RI index for soil(AMC 2) \(=67.00\)
Pervious area fraction \(=1.000\); Impervious fraction \(=0.000\)
Rainfall intensity \(=\quad 1.640(\) In \(/ \mathrm{Hr}\) ) for a 10.0 year storm
Subarea runoff \(=\) 4.671(CFS) for \(4.430(A C\).\() 5.750(Ac\)
```

Process from Point/Station $\quad 3.000$ to Point/Station
Pr+++4
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION $\% * * *$
$\begin{array}{ll}\text { Top of natural channe1 elevation }= & 797.000(\mathrm{Ft} .) \\ \text { End of natural channe1 elevation }= & 789.000(\mathrm{Ft} \text {.) }\end{array}$
Length of natural channe1 = 662.000(Ft.)
Estimated mean flow rate at midpoint of channe1 = 8.337(CFS)
Natural valley channe1 type used
L.A. County flood control district formula for channel velocity:
Velocity $(\mathrm{ft} / \mathrm{s})=(7+8(q(E n g 1 i s h$ Units)^.352) (slope^0.5)
velocity using mean channe1 flow $=2.62(\mathrm{Ft} / \mathrm{s})$
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope $=0.0121$
Corrected/adjusted channe1 slope $=0.0121$
Trave 1 time $=4.20 \mathrm{~min} . \quad \mathrm{TC}=21.56 \mathrm{~min}$
Adding area flow to channe1
UNDEVELOPED (poor cover) subarea
Runoff Coefficient $=0.620$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=67.00$
Pervious area fraction $=1.000$; Impervious fraction $=0.000$
Rainfall intensity $=\quad 1.456$ ($\mathrm{In} / \mathrm{Hr}$) for a 10.0 year storm
Subarea runoff $=3.097(C F S)$ for $3.430(A C$.
Total runoff $=\quad 9.519$ (CFS) \quad Total area $=\quad 9.180(\mathrm{Ac}$.
End of computations, total study area $=$ area $=9.18$ (AC.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) $=1.000$
Area averaged RI index number $=67.0$ Rational Hydrology Study Date: 07/03/19 File:ex.out
********* Hydrology Study Control Information $\% * * * * * * * * *$
********* Hydrology Study Control Information $\% * * * * * * * * *$
English (in-1b) Units used in input data file

Program License Serial Number 5006

```
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
```

Storm event (year) $=100.00$ Antecedent Moisture Condition $=2$
2 year, 1 hour precipitation $=0.500$ (In.)
100 year, 1 hour precipitation $=1.300$ (In.)
Storm event year $=100.0$
Calculated rainfall intensity data:
1 hour intensity $=1.300(\mathrm{In} / \mathrm{Hr})$
slope of intensity duration curve $=0.5500$
+++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance $=$ 535.000(Ft.)
Top (of initial area) elevation $=820.000$ (Ft.)
Bottom (of initial area) elevation $=798.900$ (Ft.)
Difference in elevation $=21.100$ (Ft.)
Slope $=0.03944 \quad \mathrm{~s}($ percent $)=\quad 10$ (Ft. 3.94
$\mathrm{TC}=\mathrm{k}(0.530) *[($ length $\wedge 3) /(\mathrm{elevation}$ change $)] \wedge 0.2$
Initial area time of concentration $=12.486 \mathrm{~min}$.
Rainfall intensity $=\quad 3.082(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient $=0.742$
Decimal fraction soi 1 group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soi 1 group $C=0.000$
Decimal fraction soi 1 group $D=0.000$
RI index for soil(AMC 2) $=67.00$
Pervious area fraction $=1.000$; Impervious fraction $=0.000$
Initial subarea runoff $=\quad 3.019$ (CFS)
Total initial stream area $=1.320$ (Ac.)
Pervious area fraction $=1.000$

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
```

| Top of natura1 channe1 elevation $=$ | $798.900(\mathrm{Ft})$. |
| :--- | :--- | :--- |
| End of natural channe1 elevation $=$ | $797.000(\mathrm{Ft})$. |

Length of natural channe1 $=412.000$ (Ft.)
Estimated mean flow rate at midpoint of channe1 $=8.084$ (CFS)
Natural valley channe1 type used
L.A. County flood control district formula for channel velocity:
Velocity $(\mathrm{ft} / \mathrm{s})=(7+8(q($ English Units) 1.352$)(\mathrm{slope} \mathrm{\wedge 0.5)}$
Velocity using mean channel flow $=1.61(\mathrm{Ft} / \mathrm{s})$
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channe7 slope $=0.0046$
Corrected/adjusted channel slope $=0.0046$
Travel time $=\quad 4.27 \mathrm{~min} . \quad \mathrm{TC}=\begin{aligned} & 16.75 \mathrm{~min} . \\ & \end{aligned}$
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient $=0.720$
Decimal fraction soi 1 group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$

```
Decimal fraction soil group \(\mathrm{D}=0.000\)
RI index for soil(AMC 2) \(=67.00\)
Pervious area fraction \(=1.000\); Impervious fraction \(=0.000\)
Rainfall intensity \(=\quad 2.622(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Subarea runoff \(=118.361\) (CFS) for \(4.430(A C\).\() . 750(A C\).
Tota1 runoff \(=11.380(\) CFS \() \quad\) Total area \(=\quad 5.750(\mathrm{Ac}\).
```


Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope $=0.0121$
Corrected/adjusted channe1 slope $=0.0121$
Trave1 time = $3.63 \mathrm{~min} . \quad$ TC $=20.38 \mathrm{~min}$.
Adding area flow to channe1
UNDEVELOPED (poor cover) subarea
Runoff Coefficient $=0.704$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $\mathrm{D}=0.000$
RI index for soil (AMC 2) $=67.00$
Pervious area fraction = 1.000; Impervious fraction $=0.000$
Rainfall intensity $=\quad 2.354$ (In/Hr) for a 100.0 year storm
Subarea runoff $=\quad 5.682(C F S)$ for $3.430(A C$.
Tota1 runoff $=17.061$ (CFS) \quad Total area $=18$ 9.180(Ac.)
End of computations, total study area $=\quad 9.18$ (AC.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) $=1.000$
Area averaged RI index number $=67.0$

Section 2 - Proposed Hydrology (Rational Method) 10 \& 100 Year

English (in-1b) Units used in input data file

Program License Serial Number 5006

```
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation = 0.500(In.)
100 year, 1 hour precipitation = 1.300(In.)
Storm event year = 10.0
Calculated rainfal1 intensity data:
1 hour intensity = 0.829(In/Hr)
Slope of intensity duration curve = 0.5500
```

+++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance $=$ 535.000(Ft.)
Top (of initial area) elevation $=820.000$ (Ft.)
Bottom (of initial area) elevation $=798.900$ (Ft.)
Difference in elevation $=21.100(F t$.
Slope $=0.03944 \quad \mathrm{~s}$ (percent) $=\quad 10$ (Ft. 9.94
$\mathrm{TC}=\mathrm{k}(0.530) *[($ length $\wedge 3) /(\mathrm{ele}$ evation change $)] \wedge 0.2$
Initial area time of concentration $=12.486 \mathrm{~min}$.
Rainfall intensity $=\quad 1.966(\mathrm{In} / \mathrm{Hr}$) for a 10.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient $=0.675$
Decimal fraction soi 1 group $A=1.000$
Decimal fraction soi 1 group $B=0.000$
Decimal fraction soi 1 group $C=0.000$
Decimal fraction soi 1 group $D=0.000$
RI index for soil(AMC 2) $=67.00$
Pervious area fraction $=1.000$; Impervious fraction $=0.000$
Initial subarea runoff $=\quad 1.844(C F S)$
Total initial stream area $=1.390$ (Ac.)
Pervious area fraction $=1.000$

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
```

| Top of natura1 channe1 elevation $=$ | $798.900(F t)$. |
| :--- | :--- | :--- |
| End of natural channe1 elevation $=$ | $794.500(F t)$. |

Length of natural channe1 $=600.000$ (Ft.)
Estimated mean flow rate at midpoint of channe1 = 2.420(CFS)
Natural valley channe1 type used
L.A. County flood control district formula for channel velocity:
Velocity $(\mathrm{ft} / \mathrm{s})=(7+8(q($ English Units)^.352) $(\mathrm{slope} \mathrm{\wedge 0.5)}$
Velocity using mean channel flow $=1.53(\mathrm{Ft} / \mathrm{s})$
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope $=0.0073$
Corrected/adjusted channel slope $=0.0073$
Travel time $=6.52 \mathrm{~min} . \quad \mathrm{TC}=\begin{array}{r}19.00 \mathrm{~min} .\end{array}$
Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient $=0.842$
Decimal fraction soi 1 group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soi 1 group $C=0.000$

++ $\quad 3.000$ to Point/Station
Process from Point/Station
$* \% \% \%$ STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION $\% \% \%$

Top of street segment elevation $=794.500$ (Ft.)
End of street segment elevation $=792.300$ (Ft.)
Length of street segment $=771.000$ (Ft.)
Height of curb above gutter flowline $=6.0$ (In.)
width of half street (curb to crown) $=30.000$ (Ft.)
Distance from crown to crossfal1 grade break $=28.000(F t$.
Slope from gutter to grade break $(\mathrm{v} / \mathrm{hz})=0.020$
Slope from grade break to crown $(\mathrm{v} / \mathrm{hz})=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=10.000$ (Ft.)
slope from curb to property line $(\mathrm{v} / \mathrm{hz})=0.020$
Gutter width $=2.000(\mathrm{Ft}$.
Gutter hike from flowline $=2.000($ In.)
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0150$
Manning's N from grade break to crown $=0.0150$
Estimated mean flow rate at midpoint of street $=\quad 7.168$ (CFS)
Depth of flow $=0.525(\mathrm{Ft}$.$) , Average velocity =1.746(\mathrm{Ft} / \mathrm{s})$
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property $=1.24$ (Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=19.907$ (Ft.)
Flow velocity $=1.75(\mathrm{Ft} / \mathrm{s})$
Trave1 time $=7.36 \mathrm{~min} . \quad \mathrm{TC}=24.57 \mathrm{~min}$
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient $=0.839$
Decimal fraction soi 1 group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Rainfall intensity $=\quad 1.355(\mathrm{In} / \mathrm{Hr})$ for a 10.0 year storm
Subarea runoff $=0.750$ (CFS) for 0.660 (Ac.)
Total runoff $=\quad 7.503$ (CFS) \quad Total area $=\quad 5.560$ (AC.)
Street flow at end of street $=7.503$ (CFS)
Half street flow at end of street $=$ 7.503(CFS)
Depth of flow $=0.533(\mathrm{Ft}$.$) , Average velocity =1.752(\mathrm{Ft} / \mathrm{s})$
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property $=1.65(\mathrm{Ft}$.
Flow width (from curb towards crown) = 20.319(Ft.)
+++
Process from Point/Station
*** CONFLUENCE OF MINOR STREAMS $\% * *$
Along Main Stream number: 1 in normal stream number 1
Stream flow area $=$
Runoff from this stream $=560(A C$.
Time of concentration $=$
24.57 min . (CFS)

Total of 2 streams to confluence:
Flow rates before confluence point:
$8.168 \quad 0.574$
Area of streams before confluence:

$$
6.140 \quad 0.280
$$

Results of confluence:
Total flow rate $=8.506(C F S)$
Time of concentration $=24.575 \mathrm{~min}$.
Effective stream area after confluence $=$ 6.420(Ac.)

Upstream point/station elevation $=790.000(F t$. Downstream point/station elevation $=781.500(\mathrm{Ft}$.) Pipe length $=17.00(F t$.$) \quad Manning's \mathrm{N}=0.013$				

++
Process from Point/Station 11.000 to Point/Station
$* * \% \%$ CONFLUENCE OF MAIN STREAMS $* * * *$

The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area $=\quad 6.420$ (AC.)
Runoff from this stream $=8.506$ (CFS)
Time of concentration $=24.58 \mathrm{~min}$.
Rainfal1 intensity $=\quad 1.354(\mathrm{In} / \mathrm{Hr})$
Program is now starting with Main Stream No. 2

User specified values are as follows:
$\mathrm{TC}=10.00 \mathrm{~min} . \quad$ Rain intensity $=\quad 2.22(\mathrm{In} / \mathrm{Hr})$
Total area $=\quad 0.00(\mathrm{AC}$.$) \quad Total runoff =115.00(\mathrm{CFS})$
+++
Process from Point/Station 12.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=787.000$ (Ft.)
Downstream point/station elevation $=781.500$ (Ft.)
Pipe length $=32.00$ (Ft.) Manning's $N=0.013$
No. of pipes $=1$ Required pipe flow $=115.000$ (CFS)
Nearest computed pipe diameter $=$ 27.00(In.)
Calculated individual pipe flow $=115.000$ (CFS)
Normal flow depth in pipe $=19.95$ (In.)
Flow top width inside pipe $=23.72$ (In.)
Critical depth could not be calculated.
Pipe flow velocity $=\quad 36.52(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.01 \mathrm{~min}$.
Time of concentration $(T C)=10.01 \mathrm{~min}$.
++
Process from Point/Station 11.000 to Point/Station 11.000
$* * *$ CONFLUENCE OF MAIN STREAMS $\% * * *$

The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area $=\quad 0.000$ (Ac.)
Runoff from this stream $=115.000$ (CFS)
Time of concentration $=10.01 \mathrm{~min}$.
Rainfall intensity $=\quad 2.220(\mathrm{In} / \mathrm{Hr})$
Program is now starting with Main Stream No. 3
+++
Process from Point/Station
$* * * *$ INITIAL AREA EVALUATION $\% * * *$

Initial area flow distance $=$ 890.000(Ft.)
Top (of initial area) elevation $=799.000$ (Ft.)
Bottom (of initial area) elevation $=789.500$ (Ft.)
Difference in elevation $=\quad 9.500(F t$.
slope $=0.01067 \quad \mathrm{~s}($ percent $)=\quad . \quad 1.07$
$\mathrm{TC}=\mathrm{k}(0.300) *[(1$ ength^3)$/(\mathrm{elevation}$ change $)] \wedge 0.2$
Initial area time of concentration $=11.252 \mathrm{~min}$.
Rainfall intensity $=\quad 2.082(\mathrm{In} / \mathrm{Hr})$ for a 10.0 year storm
COMMERCIAL subarea type

```
Runoff Coefficient = 0.848
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 1.854(CFS)
Total initial stream area = 1.050(Ac.)
Pervious area fraction = 0.100
```

++
Process from Point/Station 13.000 to Point/Station 14.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION $* * * *$

Top of natural channe1 elevation $=$
End of natural channe1 elevation
$=$

Length of natural channe1 $=151.000$ (Ft.)
Estimated mean flow rate at midpoint of channe1 = 2.507(CFS)
Natural valley channe1 type used
L.A. County flood control district formula for channel velocity:
velocity $(\mathrm{ft} / \mathrm{s})=(7+8(\mathrm{q}($ English Units) $\wedge .352)(\mathrm{slope} \mathrm{\wedge 0.5)}$
velocity using mean channe1 flow $=1.04(\mathrm{Ft} / \mathrm{s})$
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope $=0.0033$
Corrected/adjusted channe1 slope $=0.0033$
Trave1 time $=2.42 \mathrm{~min} . \quad$ TC $=13.67 \mathrm{~min}$.
Adding area flow to channel
UNDEVELOPED (good cover) subarea
Runoff Coefficient $=0.416$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $\mathrm{D}=0.000$
RI index for soil(AMC 2) $=38.00$
Pervious area fraction $=1.000 ;$ Impervious fraction $=0.000$
Rainfall intensity $=1.870$ (In $/ \mathrm{Hr}$) for a 10.0 year storm
Subarea runoff $=0.576(C F S)$ for $0.740(A C) \quad .1.790(A c$)
$++$
Process from Point/Station 14.000 to Point/Station 14.000
\%*** CONFLUENCE OF MINOR STREAMS $\% * \dot{*}$

```
Along Main Stream number: 3 in normal stream number 1
Stream flow area = 1.790(Ac.)
Runoff from this stream = 2.430(CFS)
Time of concentration = 13.67 min.
Rainfa11 intensity = 1.870(In/Hr)
```

++
Process from Point/Station 15.000 to Point/Station
Process from Point/Station

```
Initial area flow distance \(=631.000(F t\).
Top (of initial area) elevation \(=799.000\) (Ft.)
Bottom (of initial area) elevation \(=790.000\) (Ft.)
Difference in elevation \(=\quad 9.000\) (Ft.)
slope \(=0.01426 \mathrm{~s}\) (percent) \(=1.43\)
TC \(=\mathrm{k}(0.300) *[(1\) ength \(\wedge 3) /(\mathrm{e} 1\) evation change) \(] \wedge 0.2\)
Initial area time of concentration \(=9.253 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.318(\) In/Hr) for a \(\quad 10.0\) year storm
COMMERCIAL subarea type
Runoff Coefficient \(=0.850\)
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(\mathrm{D}=0.000\)
RI index for soil(AMC 2) \(=32.00\)
Pervious area fraction \(=0.100\); Impervious fraction \(=0.900\)
Initial subarea runoff \(=\quad\) 4.101(CFS)
Total initial stream area \(=\quad\) 2.080(Ac.)
Pervious area fraction \(=0.100\)
```

$++$
Process from Point/Station 16.000 to Point/Station 17.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

```
Upstream point/station elevation = 790.000(Ft.)
Downstream point/station elevation = 789.500(Ft.)
Pipe length = 94.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 4.101(CFS)
Nearest computed pipe diameter = 15.00(In.)
calculated individual pipe flow = 4.101(CFS)
Normal flow depth in pipe = 10.83(In.)
Flow top width inside pipe = 13.44(In.)
Critical Depth = 9.83(In.)
Pipe flow velocity = 4.33(Ft/s)
Trave1 time through pipe = 0.36 min
Time of concentration (TC) = 9.62 min.
```


Correction to map slope used on extremely rugged channels with
drops and waterfa11s (Plate D-6.2)
Normal channel slope $=0.0038$
Corrected/adjusted channel slope $=0.0038$
Travel time $=1.77 \mathrm{~min} . \quad \mathrm{TC}=11.39 \mathrm{~min}$.
Adding area flow to channel
UNDEVELOPED (good cover) subarea
Runoff Coefficient $=0.439$
Decimal fraction soil group $A=1.000$
Decimal fraction soi 1 group $B=0.000$
Decimal fraction soi 1 group $C=0.000$
Decimal fraction soi 1 group $D=0.000$
RI index for soil(AMC 2) $=38.00$
Pervious area fraction $=1.000$; Impervious fraction $=0.000$
Rainfall intensity $=\quad 2.068$ (In/Hr) for a 10.0 year storm
Subarea runoff $=\quad 0.000(C F S)$ for $0.000(A C$.
Total runoff $=\quad 4.101(C F S) \quad$ Total area $=\quad 2.080(A C$.
++
Process from Point/Station 14.000 to Point/Station
$* * *$ CONFLUENCE OF MINOR STREAMS ***


```
Upstream point/station elevation = 789.000(Ft.)
Downstream point/station elevation = 781.500(Ft.)
Pipe length = 104.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 6.125(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 6.125(CFS)
Norma1 flow depth in pipe = 6.98(In.)
Flow top width inside pipe = 11.84(In.)
Critical depth could not be calculated.
Pipe flow velocity = 12.92(Ft/s)
Trave1 time through pipe = 0.13 min.
Time of concentration (TC) = 11.52 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 11.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 3.870(Ac.)
Runoff from this stream = 6.125(CFS)
Time of concentration = 11.52 min.
Rainfal1 intensity = 2.055(In/Hr)
Summary of stream data:
\begin{tabular}{ccc} 
Stream & Flow rate & TC \\
No. & (CFS) & (min)
\end{tabular}
\begin{tabular}{rrrr}
1 & 8.506 & 24.58 & 1.354 \\
2 & 115.000 & 10.01 & 2.220 \\
3 & 6.125 & 11.52 & 2.055
\end{tabular}
Largest stream flow has longer or shorter time of concentration
Qp = 115.000 + sum of
        Qa %.506 * Tb/Ta 
        Tb/Ta
        5.323
Qp = 123.788
Total of 3 main streams to confluence:
Flow rates before confluence point:
    8.506 115.000 6.125
Area of streams before confluence:
    6.420 0.000 3.870
Results of confluence:
Total flow rate = 123.788(CFS)
Time of concentration = 10.015 min.
Effective stream area after confluence = 10.290(AC.)
End of computations, total study area = 10.29 (AC.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.286
Area averaged RI index number = 37.2
``` Rational Hydrology Study Date: 02/20/23 File:pro.out
********* Hydrology Study Control Information **********
English (in-1b) Units used in input data file

Program License Serial Number 5006
```

Rational Method Hydrology Program based on
Riverside County Flood Control \& Water Conservation District
1978 hydrology manual

```
Storm event (year) \(=100.00\) Antecedent Moisture Condition \(=2\)
2 year, 1 hour precipitation \(=0.500\) (In.)
100 year, 1 hour precipitation \(=1.300\) (In.)
Storm event year \(=100.0\)
Calculated rainfal1 intensity data:
1 hour intensity \(=1.300(\mathrm{In} / \mathrm{Hr})\)
Slope of intensity duration curve \(=0.5500\)
+++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance \(=\) 535.000(Ft.)
Top (of initial area) elevation \(=820.000\) (Ft.)
Bottom (of initial area) elevation \(=798.900\) (Ft.)
Difference in elevation \(=21.100(F t\).
Slope \(=0.03944 \quad \mathrm{~s}(\) percent \()=\quad 3.94\)
\(\mathrm{TC}=\mathrm{k}(0.530) *[(\) length \(\wedge 3) /(\mathrm{elevation}\) change \()] \wedge 0.2\)
Initial area time of concentration \(=12.486 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.082(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient \(=0.742\)
Decimal fraction soi 1 group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soi 1 group \(C=0.000\)
Decimal fraction soi 1 group \(D=0.000\)
RI index for soil(AMC 2) \(=67.00\)
Pervious area fraction \(=1.000\); Impervious fraction \(=0.000\)
Initial subarea runoff \(=\) 3.179(CFS)
Total initial stream area \(=1.390\) (Ac.)
Pervious area fraction \(=1.000\)
```

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****

```
\begin{tabular}{ll}
\hline Top of natura1 channe1 elevation \(=\) & \(798.900(\mathrm{Ft})\). \\
End of natural channe1 elevation \(=\) & \(794.500(\mathrm{Ft})\).
\end{tabular}
Length of natura 1 channe \(1=600.000(\mathrm{Ft}\).
Estimated mean flow rate at midpoint of channe1 = 4.174(CFS)
Natural valley channe1 type used
L.A. County flood control district formula for channel velocity:
Velocity \((\mathrm{ft} / \mathrm{s})=(7+8(q(\) English Units)^.352) (slope^0.5)
Velocity using mean channel flow \(=1.73(\mathrm{Ft} / \mathrm{s})\)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
 Normal channel slope \(=0.0073\)
Corrected/adjusted channel slope \(=0.0073\)
Travel time \(=\quad 5.77 \mathrm{~min} . \quad \mathrm{TC}=\begin{aligned} & 18.26 \mathrm{~min} . \\ & \\ & =\end{aligned}\)
Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient \(=0.852\)
Decimal fraction soi 1 group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)

Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope \(=0.0029\)
Corrected/adjusted channe1 slope \(=0.0029\)
Trave 1 time \(=3.96 \mathrm{~min} . \quad\) TC \(=16.77 \mathrm{~min}\).

Adding area flow to channe1
COMMERCIAL subarea type
Runoff Coefficient \(=0.853\)
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(\mathrm{C}=0.000\)
Decimal fraction soil group \(\mathrm{D}=0.000\)
RI index for soil (AMC 2) \(=32.00\)
Pervious area fraction \(=0.100\); Impervious fraction \(=0.900\) Rainfall intensity \(=\quad 2.621\) (\(\mathrm{In} / \mathrm{Hr}\)) for a 100.0 year storm

\(++\) Process from Point/Station 3.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area \(=\)
Runoff from this stream \(=640\) (AC.) 6.458 (CFS)

++ \(\quad 3.000\) to Point/Station
Process from Point/Station
\(* * \% \%\) STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION \(\% \% \% \%\)

Top of street segment elevation \(=794.500\) (Ft.)
End of street segment elevation \(=792.300(F t\).
Length of street segment \(=771.000\) (Ft.)
Height of curb above gutter flowline \(=6.0\) (In.)
width of half street (curb to crown) \(=30.000\) (Ft.)
Distance from crown to crossfal1 grade break \(=28.000(F t\).
Slope from gutter to grade break \((\mathrm{v} / \mathrm{hz})=0.020\)
slope from grade break to crown (v/hz) \(=0.020\)
Street flow is on [1] side(s) of the street
Distance from curb to property line \(=10.000\) (Ft.)
slope from curb to property line \((\mathrm{v} / \mathrm{hz})=0.020\)
Gutter width \(=2.000(\mathrm{Ft}\).
Gutter hike from flowline \(=2.000\) (In.)
 Manning's N in gutter \(=0.0150\)
 Manning's N from gutter to grade break \(=0.0150\)
 Manning's N from grade break to crown \(=0.0150\)
Estimated mean flow rate at midpoint of street \(=11.722\) (CFS)
Depth of flow \(=0.611(\mathrm{Ft}\).\() , Average velocity =1.858(\mathrm{Ft} / \mathrm{s})\)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property \(=5.56(\mathrm{Ft}\).
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width \(=24.230(\mathrm{Ft}\).)
Flow velocity \(=1.86(\mathrm{Ft} / \mathrm{s})\)
Trave1 time \(=6.91 \mathrm{~min} . \quad \mathrm{TC}=23.68 \mathrm{~min}\)
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient \(=0.849\)
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=0.000\)
RI index for soil(AMC 2) \(=32.00\)
Pervious area fraction \(=0.100\); Impervious fraction \(=0.900\)
Rainfall intensity \(=\quad 2.168(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Subarea runoff \(=\quad 1.215(C F S)\) for \(0.660(A C\).
Total runoff \(=12.294(\) CFS \() \quad\) Total area \(=1.560(A C\).
Street flow at end of street \(=12.294\) (CFS)
Half street flow at end of street \(=\quad 12.294\) (CFS)
Depth of flow \(=0.620(\mathrm{Ft}\).\() , Average velocity =1.874(\mathrm{Ft} / \mathrm{s})\)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property \(=\) 5.99(Ft.)
Flow width (from curb towards crown)= 24.652(Ft.)
++
Process from Point/Station
*** CONFLUENCE OF MINOR STREAMS \(\% * *\)
Along Main Stream number: 1 in normal stream number 1
Stream flow area \(=\quad 5.560\) (AC.)
Runoff from this stream \(=\quad 12.294\) (CFS)
Time of concentration \(=23.68 \mathrm{~min}\).
Rainfal1 intensity \(=\quad 2.168(\mathrm{In} / \mathrm{Hr})\)

```

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
**** INITIAL AREA EVALUATION ****
Initial area flow distance =. 240.000(Ft.)
Top (of initial area) elevation = 792.000(Ft.)
Bottom (of initial area) elevation = 791.300(Ft.)
Difference in elevation = 0.700(Ft.)
Slope = 0.00292 s(percent)= 0.29
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.634 min.
Rainfal1 intensity = 3.776(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.861
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 0.911(CFS)
Total initial stream area = 0.280(Ac.)
Pervious area fraction = 0.100
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 8.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 791.300(Ft.)
Downstream point/station elevation = 790.000(Ft.)
Pipe length = 148.00(Ft.) Manning's N = 0.013
No. of pipes =1 Required pipe flow = 0.911(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 0.911(CFS)
Normal flow depth in pipe = 4.96(In.)
Flow top width inside pipe = 8.95(In.)
Critical Depth = 5.24(In.)
Pipe flow velocity = 3.65(Ft/s)
Trave1 time through pipe = 0.68 min.
Time of concentration (TC) = 9.31 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
$* * * *$ CONFLUENCE OF MINOR STREAMS $\% * * *$
Along Main Stream number: 1 in norma1 stream number 2
Stream flow area = 0.280(Ac.)
Runoff from this stream = 0.911(CFS)
Time of concentration = 9.31 min.
Rainfall intensity = 3.622(In/Hr)
Summary of stream data:

Stream	Flow rate	TC	Rainfall Intensity
No.	(CFS)	(min)	(In/Hr)


1	13.371	23.68	2.168
2	0.911	9.31	3.622

Largest stream flow has longer time of concentration
Qp = 13.371 + sum of
Qb Ia/Ib
0.911* 0.598 = 0.545
Qp = 13.916

```

Total of 2 streams to confluence:
Flow rates before confluence point:

Area of streams before confluence
\[
6.140
\]

Results of confluence:
Total flow rate \(=13.916\) (CFS)
Time of concentration \(=23.684 \mathrm{~min}\).
Effective stream area after confluence \(=\) 6.420(Ac.)

++
Process from Point/Station 11.000 to Point/Station \(\quad 11.000\)
\(* * \% \%\) CONFLUENCE OF MAIN STREAMS \(* \% \% \%\)

The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area \(=\quad 6.420\) (Ac.)
Runoff from this stream \(=13.916\) (CFS)
Time of concentration \(=23.69 \mathrm{~min}\).
Rainfall intensity \(=\quad\) 2.167(In/Hr)
Program is now starting with Main Stream No. 2

Upstream point/station elevation \(=787.000\) (Ft.)
Downstream point/station elevation \(=781.500\) (Ft.)
Pipe length \(=32.00(F t\).\() Manning's N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=115.000\) (CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow \(=115.000\) (CFS)
Normal flow depth in pipe \(=19.95\) (In.)
Flow top width inside pipe \(=23.72\) (In.)
Critical depth could not be calculated.
Pipe flow velocity \(=\quad 36.52(\mathrm{Ft} / \mathrm{s})\).
Travel time through pipe \(=0.01 \mathrm{~min}\).
Time of concentration \((T C)=10.01 \mathrm{~min}\).
++
Process from Point/Station 11.000 to Point/Station 11.000
\(* * *\) CONFLUENCE OF MAIN STREAMS \(\% * * *\)

The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area \(=\quad 0.000\) (Ac.)
Runoff from this stream \(=10.015 .000\) (CFS)
Time of concentration \(=10.01 \mathrm{~min}\).
Rainfall intensity \(=\quad 3.480(\mathrm{In} / \mathrm{Hr})\)
Program is now starting with Main Stream No. 3
+++
Process from Point/Station
\(* * * *\) INITIAL AREA EVALUATION \(\% * * *\)
```

Initial area flow distance = 890.000(Ft.)
Top (of initial area) elevation = 799.000(Ft.)
Bottom (of initial area) elevation = 789.500(Ft.)
Difference in elevation = 9.500(Ft.)
Slope = 0.01067 s(percent)=, i.00(%)
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 11.252 min.
Rainfal1 intensity = 3.264(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type

```
```

Runoff Coefficient = 0.858
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 2.941(CFS)
Total initial stream area = 1.050(Ac.)
Pervious area fraction = 0.100

```
++
Process from Point/Station 13.000 to Point/Station 14.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channe1 elevation \(=\quad 789.500\) (Ft.)
End of natural channe1 elevation \(=189.000\) (Ft.)
Length of natural channe1 \(=151.000\) (Ft.)

\subsection*{3.978(CFS)}

Natural valley channel type used
L.A. County flood control district formula for channel velocity:

velocity using mean channe1 flow \(=1.15(\mathrm{Ft} / \mathrm{s})\)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channe1 slope \(=0.0033\)
Corrected/adjusted channe1 slope \(=0.0033\)
Trave1 time \(=2.19 \mathrm{~min} . \quad\) TC \(=13.44 \mathrm{~min}\).

Adding area flow to channel
UNDEVELOPED (good cover) subarea
Runoff Coefficient \(=0.519\)
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(\mathrm{B}=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(\mathrm{D}=0.000\)
RI index for soil(AMC 2) \(=38.00\)
Pervious area fraction \(=1.000\); Impervious fraction \(=0.000\) Rainfall intensity \(=12.960(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm Subarea runoff \(=\quad 1.136(C F S)\) for \(\quad 0.740(A C\).
Total runoff \(=4.078(\) CFS \() \quad\) Total area \(=\quad 1.790(\mathrm{Ac}\).
+++
Process from Point/Station 14.000 to Point/Station 14.000
**** CONFLUENCE OF MINOR STREAMS ****
```

Along Main Stream number: 3 in normal stream number 1
Stream flow area = 1.790(AC.)
Runoff from this stream = 4.078(CFS)
Time of concentration = 13.44 min.
Rainfa11 intensity = 2.960(In/Hr)

```
+++
Process from Point/Station 15.000 to Point/Station 16.000
**** INITIAL AREA EVALUATION ****
```

Initial area flow distance $=631.000(F t$.
Top (of initial area) elevation $=799.000$ (Ft.)
Bottom (of initial area) elevation $=790.000$ (Ft.)
Difference in elevation $=\quad 9.000$ (Ft.)
slope $=0.01426 \quad \mathrm{~s}$ (percent) $=0 \quad 1.43$
TC $=\mathrm{k}(0.300) *[($ length $\wedge 3) /(\mathrm{el}$ evation change $)] \wedge 0.2$
Initial area time of concentration $=9.253 \mathrm{~min}$.
Rainfall intensity $=3.635($ In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient $=0.861$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group D $=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Initial subarea runoff $=\quad 6.506$ (CFS)
Total initial stream area $=\quad 2.080(A C$.
Pervious area fraction $=0.100$

```
+++
Process from Point/Station 16.000 to Point/Station 17.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) \(* * * *\)

\(++\)
Process from Point/Station 17.000 to Point/Station
 14.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION \(* * * *\)
Top of natural channe1 elevation \(=789.500(\mathrm{Ft}\).
End of natural channe1 elevation \(=789.000(\mathrm{Ft}\).)
Length of natural channe1 \(=132.000(\mathrm{Ft}\).
Estimated mean flow rate at midpoint of channe1 =
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity \((\mathrm{ft} / \mathrm{s})=(7+8(\mathrm{q}(\) English Units)^.352) (slope^0.5)
velocity using mean channe 1 flow \(=1.38(\mathrm{Ft} / \mathrm{s})\)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
 Normal channel slope \(=0.0038\)
Corrected/adjusted channe 1 slope \(=0.0038\)
Travel time = \(1.59 \mathrm{~min} . \quad \mathrm{TC}=11.17 \mathrm{~min}\).
Adding area flow to channel
UNDEVELOPED (good cover) subarea
Runoff Coefficient \(=0.541\)
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=0.000\)
RI index for soil(AMC 2) \(=38.00\)
Pervious area fraction \(=1.000\); Impervious fraction \(=0.000\)
Rainfall intensity \(=\quad 3.278\) (In/Hr) for a 100.0 year storm
\(\begin{array}{ll}\text { Subarea runoff }= & 0.000(\mathrm{CFS}) \\ \text { Total runoff }= & 0.000(\mathrm{AC.}) \\ 6.506(\mathrm{CFS})\end{array} \quad 2.080(\mathrm{Ac}\) (\()\)
\(++\)
Process from Point/Station 14.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Along Main Stream number: 3 in normal stream number 2} \\
\hline Stream flow area = & 2.080 (AC.) \\
\hline Runoff from this stream & \(=6.506(C F S)\) \\
\hline Time of concentration \(=\) & \(11.17 \mathrm{min}\). \\
\hline Rainfal 1 intensity = & 3.278 (In/Hr) \\
\hline Summary of stream data: & \\
\hline
\end{tabular}
\begin{tabular}{ccc}
Stream & Flow rate & TC \\
No. & (CFS) & (min)
\end{tabular}\(\quad\) Rainfal1 Intensity

Largest stream flow has longer or shorter time of concentration
\(\mathrm{Qp}=\quad 6.506+\) sum of
 Qa Tb/Ta
 \(4.078 * \quad 0.831=3.388\)
\(\mathrm{Qp}=\quad 9.895\)
Total of 2 streams to confluence:
Flow rates before confluence point:
 4.078
 6.506
Area of streams before confluence:
 \(1.790 \quad 2.080\)
Results of confluence:
Total flow rate \(=\quad 9.895(C F S)\)
Time of concentration \(=\quad 11.166 \mathrm{~min}\).
Effective stream area after confluence \(=3.870(A c\).
\begin{tabular}{ll}
\(++~\) \\
Process from Point/Station 14.000 to Point/Station & 11.000
\end{tabular}
```

Upstream point/station elevation = 789.000(Ft.)
Downstream point/station elevation = 781.500(Ft.)
Pipe length = 104.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 9.895(CFS)
Nearest computed pipe diameter = 15.00(In.)
Calculated individual pipe flow = 9.895(CFS)
Norma1 flow depth in pipe = 8.12(In.)
Flow top width inside pipe = 14.95(In.)
Critical Depth = 14.17(In.)
Pipe flow velocity = 14.60(Ft/s)
Travel time through pipe = 0.12 min.
Time of concentration (TC) = 11.28 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 11.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 3.870(Ac.)
Runoff from this stream = 9.895(CFS)
Time of concentration = 11.28 min.
Rainfal1 intensity = 3.259(In/Hr)
Summary of stream data:

Stream	Flow rate	TC
No.	(CFS)	(min)

```

```

Total of 3 main streams to confluence:
Flow rates before confluence point:
13.916 115.000 9.895
Area of streams before confluence:
6.420 0.000
3.870
Results of confluence:
Total flow rate = 129.663(CFS)
Time of concentration = 10.015 min.
Effective stream area after confluence = 10.290(Ac.)
End of computations, total study area = 10.29 (AC.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.286
Area averaged RI index number = 37.2

```


\section*{Section 3 - Existing Unit Hydrograph (Unit Hydrograph Method)}

2 year 24 hour
```

U n i t H y droograph A n a 1 y s i s

```
Copyright (c) CIVILCADD/CIVILDESIGN, 1989-2008, Version 8.1
 Study date 02/20/23 File: EX242.out

Riverside County Synthetic Unit Hydrology Method RCFC \& WCD Manual date - Apri1 1978

Program License Serial Number 5006

English (in-1b) Input Units Used
English Rainfall Data (Inches) Input values used
English Units used in output format

100 YEAR Area rainfal1 data:

STORM EVENT (YEAR) = 2.00
Area Averaged 2-Year Rainfal1 \(=2.500\) (In)
Area Averaged 100-Year Rainfal \(1=\quad 6.000\) (In)
Point rain (area averaged) \(=2.500\) (In)
Areal adjustment factor \(=100.00 \%\)
Adjusted average point rain \(=2.500\) (In)
\begin{tabular}{ll}
Sub-Area Data: & \\
Area(AC.) & \\
3.870 & Runoff Index \\
& Impervious \% \\
& 0.00
\end{tabular}

Unithydrograph
VALLEY S-Curve

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Unit & Time & Pattern & Storm Rain & \multicolumn{2}{|l|}{Loss rate(In./Hr)} & Effective \\
\hline & (Hr.\()\) & Percent & (In/Hr) & Max & Lo & (In/Hr) \\
\hline 1 & 0.08 & 0.07 & 0.020 & 1.331) & 0.018 & 0.002 \\
\hline 2 & 0.17 & 0.07 & 0.020 & 1.326) & 0.018 & 0.002 \\
\hline 3 & 0.25 & 0.07 & 0.020 & 1.321) & 0.018 & 0.002 \\
\hline 4 & 0.33 & 0.10 & 0.030 & 1.316) & 0.027 & 0.003 \\
\hline 5 & 0.42 & 0.10 & 0.030 & (1.311) & 0.027 & 0.003 \\
\hline 6 & 0.50 & 0.10 & 0.030 & 1.306) & 0.027 & 0.003 \\
\hline 7 & 0.58 & 0.10 & 0.030 & 1.301) & 0.027 & 0.003 \\
\hline 8 & 0.67 & 0.10 & 0.030 & (1.295) & 0.027 & 0.003 \\
\hline 9 & 0.75 & 0.10 & 0.030 & 1.290) & 0.027 & 0.003 \\
\hline 10 & 0.83 & 0.13 & 0.040 & 1.285) & 0.036 & 0.004 \\
\hline 11 & 0.92 & 0.13 & 0.040 & 1.280) & 0.036 & 0.004 \\
\hline 12 & 1.00 & 0.13 & 0.040 & 1.275) & 0.036 & 0.004 \\
\hline 13 & 1.08 & 0.10 & 0.030 & 1.270) & 0.027 & 0.003 \\
\hline 14 & 1.17 & 0.10 & 0.030 & 1.265) & 0.027 & 0.003 \\
\hline 15 & 1.25 & 0.10 & 0.030 & 1.260) & 0.027 & 0.003 \\
\hline 16 & 1.33 & 0.10 & 0.030 & 1.255) & 0.027 & 0.003 \\
\hline 17 & 1.42 & 0.10 & 0.030 & 1.250) & 0.027 & 0.003 \\
\hline 18 & 1.50 & 0.10 & 0.030 & 1.245) & 0.027 & 0.003 \\
\hline 19 & 1.58 & 0.10 & 0.030 & 1.240) & 0.027 & 0.003 \\
\hline 20 & 1.67 & 0.10 & 0.030 & 1.235) & 0.027 & 0.003 \\
\hline 21 & 1.75 & 0.10 & 0.030 & 1.230) & 0.027 & 0.003 \\
\hline 22 & 1.83 & 0.13 & 0.040 & 1.225) & 0.036 & 0.004 \\
\hline 23 & 1.92 & 0.13 & 0.040 & 1.220) & 0.036 & 0.004 \\
\hline 24 & 2.00 & 0.13 & 0.040 & (1.215) & 0.036 & 0.004 \\
\hline 25 & 2.08 & 0.13 & 0.040 & (1.211) & 0.036 & 0.004 \\
\hline 26 & 2.17 & 0.13 & 0.040 & (1.206) & 0.036 & 0.004 \\
\hline 27 & 2.25 & 0.13 & 0.040 & (1.201) & 0.036 & 0.004 \\
\hline 28 & 2.33 & 0.13 & 0.040 & 1.196) & 0.036 & 0.004 \\
\hline 29 & 2.42 & 0.13 & 0.040 & 1.191) & 0.036 & 0.004 \\
\hline 30 & 2.50 & 0.13 & 0.040 & (1.186) & 0.036 & 0.004 \\
\hline 31 & 2.58 & 0.17 & 0.050 & (1.181) & 0.045 & 0.005 \\
\hline 32 & 2.67 & 0.17 & 0.050 & 1.176) & 0.045 & 0.005 \\
\hline 33 & 2.75 & 0.17 & 0.050 & (1.172) & 0.045 & 0.005 \\
\hline 34 & 2.83 & 0.17 & 0.050 & (1.167) & 0.045 & 0.005 \\
\hline 35 & 2.92 & 0.17 & 0.050 & (1.162) & 0.045 & 0.005 \\
\hline 36 & 3.00 & 0.17 & 0.050 & (1.157) & 0.045 & 0.005 \\
\hline 37 & 3.08 & 0.17 & 0.050 & (1.152) & 0.045 & 0.005 \\
\hline 38 & 3.17 & 0.17 & 0.050 & (1.148) & 0.045 & 0.005 \\
\hline 39 & 3.25 & 0.17 & 0.050 & 1.143) & 0.045 & 0.005 \\
\hline 40 & 3.33 & 0.17 & 0.050 & 1.138) & 0.045 & 0.005 \\
\hline 41 & 3.42 & 0.17 & 0.050 & (1.133) & 0.045 & 0.005 \\
\hline 42 & 3.50 & 0.17 & 0.050 & 1.129) & 0.045 & 0.005 \\
\hline 43 & 3.58 & 0.17 & 0.050 & (1.124) & 0.045 & 0.005 \\
\hline 44 & 3.67 & 0.17 & 0.050 & (1.119) & 0.045 & 0.005 \\
\hline 45 & 3.75 & 0.17 & 0.050 & 1.114) & 0.045 & 0.005 \\
\hline 46 & 3.83 & 0.20 & 0.060 & 1.110) & 0.054 & 0.006 \\
\hline 47 & 3.92 & 0.20 & 0.060 & 1.105) & 0.054 & 0.006 \\
\hline 48 & 4.00 & 0.20 & 0.060 & \(1.100)\) & 0.054 & 0.006 \\
\hline 49 & 4.08 & 0.20 & 0.060 & 1.096) & 0.054 & 0.006 \\
\hline 50 & 4.17 & 0.20 & 0.060 & 1.091) & 0.054 & 0.006 \\
\hline 51 & 4.25 & 0.20 & 0.060 & 1.086) & 0.054 & 0.006 \\
\hline 52 & 4.33 & 0.23 & 0.070 & 1.082) & 0.063 & 0.007 \\
\hline 53 & 4.42 & 0.23 & 0.070 & 1.077) & 0.063 & 0.007 \\
\hline 54 & 4.50 & 0.23 & 0.070 & 1.072) & 0.063 & 0.007 \\
\hline 55 & 4.58 & 0.23 & 0.070 & 1.068) & 0.063 & 0.007 \\
\hline 56 & 4.67 & 0.23 & 0.070 & 1.063) & 0.063 & 0.007 \\
\hline 57 & 4.75 & 0.23 & 0.070 & 1.059) & 0.063 & 0.007 \\
\hline 58 & 4.83 & 0.27 & 0.080 & 1.054) & 0.072 & 0.008 \\
\hline 59 & 4.92 & 0.27 & 0.080 & (1.050) & 0.072 & 0.008 \\
\hline 60 & 5.00 & 0.27 & 0.080 & (1.045) & 0.072 & 0.008 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 142 & 11.83 & 0.60 & 0.180 & \(0.712)\) & 0.162 & 0.018 \\
\hline 143 & 11.92 & 0.60 & 0.180 & \(0.708)\) & 0.162 & 0.018 \\
\hline 144 & 12.00 & 0.60 & 0.180 & \(0.705)\) & 0.162 & 0.018 \\
\hline 145 & 12.08 & 0.83 & 0.250 & \(0.701)\) & 0.225 & 0.025 \\
\hline 146 & 12.17 & 0.83 & 0.250 & \(0.698)\) & 0.225 & 0.025 \\
\hline 147 & 12.25 & 0.83 & 0.250 & \(0.694)\) & 0.225 & 0.025 \\
\hline 148 & 12.33 & 0.87 & 0.260 & \(0.691)\) & 0.234 & 0.026 \\
\hline 149 & 12.42 & 0.87 & 0.260 & \(0.687)\) & 0.234 & 0.026 \\
\hline 150 & 12.50 & 0.87 & 0.260 & \(0.684)\) & 0.234 & 0.026 \\
\hline 151 & 12.58 & 0.93 & 0.280 & \(0.680)\) & 0.252 & 0.028 \\
\hline 152 & 12.67 & 0.93 & 0.280 & \(0.677)\) & 0.252 & 0.028 \\
\hline 153 & 12.75 & 0.93 & 0.280 & \(0.673)\) & 0.252 & 0.028 \\
\hline 154 & 12.83 & 0.97 & 0.290 & \(0.670)\) & 0.261 & 0.029 \\
\hline 155 & 12.92 & 0.97 & 0.290 & \(0.667)\) & 0.261 & 0.029 \\
\hline 156 & 13.00 & 0.97 & 0.290 & \(0.663)\) & 0.261 & 0.029 \\
\hline 157 & 13.08 & 1.13 & 0.340 & \(0.660)\) & 0.306 & 0.034 \\
\hline 158 & 13.17 & 1.13 & 0.340 & \(0.656)\) & 0.306 & 0.034 \\
\hline 159 & 13.25 & 1.13 & 0.340 & \(0.653)\) & 0.306 & 0.034 \\
\hline 160 & 13.33 & 1.13 & 0.340 & \(0.650)\) & 0.306 & 0.034 \\
\hline 161 & 13.42 & 1.13 & 0.340 & \(0.647)\) & 0.306 & 0.034 \\
\hline 162 & 13.50 & 1.13 & 0.340 & \(0.643)\) & 0.306 & 0.034 \\
\hline 163 & 13.58 & 0.77 & 0.230 & \(0.640)\) & 0.207 & 0.023 \\
\hline 164 & 13.67 & 0.77 & 0.230 & \(0.637)\) & 0.207 & 0.023 \\
\hline 165 & 13.75 & 0.77 & 0.230 & \(0.633)\) & 0.207 & 0.023 \\
\hline 166 & 13.83 & 0.77 & 0.230 & \(0.630)\) & 0.207 & 0.023 \\
\hline 167 & 13.92 & 0.77 & 0.230 & \(0.627)\) & 0.207 & 0.023 \\
\hline 168 & 14.00 & 0.77 & 0.230 & \(0.624)\) & 0.207 & 0.023 \\
\hline 169 & 14.08 & 0.90 & 0.270 & 0.621) & 0.243 & 0.027 \\
\hline 170 & 14.17 & 0.90 & 0.270 & \(0.617)\) & 0.243 & 0.027 \\
\hline 171 & 14.25 & 0.90 & 0.270 & \(0.614)\) & 0.243 & 0.027 \\
\hline 172 & 14.33 & 0.87 & 0.260 & \(0.611)\) & 0.234 & 0.026 \\
\hline 173 & 14.42 & 0.87 & 0.260 & \(0.608)\) & 0.234 & 0.026 \\
\hline 174 & 14.50 & 0.87 & 0.260 & \(0.605)\) & 0.234 & 0.026 \\
\hline 175 & 14.58 & 0.87 & 0.260 & \(0.602)\) & 0.234 & 0.026 \\
\hline 176 & 14.67 & 0.87 & 0.260 & \(0.599)\) & 0.234 & 0.026 \\
\hline 177 & 14.75 & 0.87 & 0.260 & \(0.596)\) & 0.234 & 0.026 \\
\hline 178 & 14.83 & 0.83 & 0.250 & \(0.593)\) & 0.225 & 0.025 \\
\hline 179 & 14.92 & 0.83 & 0.250 & \(0.590)\) & 0.225 & 0.025 \\
\hline 180 & 15.00 & 0.83 & 0.250 & \(0.587)\) & 0.225 & 0.025 \\
\hline 181 & 15.08 & 0.80 & 0.240 & \(0.584)\) & 0.216 & 0.024 \\
\hline 182 & 15.17 & 0.80 & 0.240 & \(0.581)\) & 0.216 & 0.024 \\
\hline 183 & 15.25 & 0.80 & 0.240 & \(0.578)\) & 0.216 & 0.024 \\
\hline 184 & 15.33 & 0.77 & 0.230 & \(0.575)\) & 0.207 & 0.023 \\
\hline 185 & 15.42 & 0.77 & 0.230 & \(0.572)\) & 0.207 & 0.023 \\
\hline 186 & 15.50 & 0.77 & 0.230 & 0.569) & 0.207 & 0.023 \\
\hline 187 & 15.58 & 0.63 & 0.190 & \(0.566)\) & 0.171 & 0.019 \\
\hline 188 & 15.67 & 0.63 & 0.190 & \(0.563)\) & 0.171 & 0.019 \\
\hline 189 & 15.75 & 0.63 & 0.190 & \(0.560)\) & 0.171 & 0.019 \\
\hline 190 & 15.83 & 0.63 & 0.190 & \(0.557)\) & 0.171 & 0.019 \\
\hline 191 & 15.92 & 0.63 & 0.190 & \(0.554)\) & 0.171 & 0.019 \\
\hline 192 & 16.00 & 0.63 & 0.190 & \(0.551)\) & 0.171 & 0.019 \\
\hline 193 & 16.08 & 0.13 & 0.040 & \(0.549)\) & 0.036 & 0.004 \\
\hline 194 & 16.17 & 0.13 & 0.040 & \(0.546)\) & 0.036 & 0.004 \\
\hline 195 & 16.25 & 0.13 & 0.040 & \(0.543)\) & 0.036 & 0.004 \\
\hline 196 & 16.33 & 0.13 & 0.040 & \(0.540)\) & 0.036 & 0.004 \\
\hline 197 & 16.42 & 0.13 & 0.040 & \(0.538)\) & 0.036 & 0.004 \\
\hline 198 & 16.50 & 0.13 & 0.040 & \(0.535)\) & 0.036 & 0.004 \\
\hline 199 & 16.58 & 0.10 & 0.030 & \(0.532)\) & 0.027 & 0.003 \\
\hline 200 & 16.67 & 0.10 & 0.030 & \(0.529)\) & 0.027 & 0.003 \\
\hline 201 & 16.75 & 0.10 & 0.030 & \(0.527)\) & 0.027 & 0.003 \\
\hline 202 & 16.83 & 0.10 & 0.030 & \(0.524)\) & 0.027 & 0.003 \\
\hline 203 & 16.92 & 0.10 & 0.030 & \(0.521)\) & 0.027 & 0.003 \\
\hline 204 & 17.00 & 0.10 & 0.030 & \(0.519)\) & 0.027 & 0.003 \\
\hline 205 & 17.08 & 0.17 & 0.050 & \(0.516)\) & 0.045 & 0.005 \\
\hline 206 & 17.17 & 0.17 & 0.050 & \(0.514)\) & 0.045 & 0.005 \\
\hline 207 & 17.25 & 0.17 & 0.050 & \(0.511)\) & 0.045 & 0.005 \\
\hline 208 & 17.33 & 0.17 & 0.050 & \(0.508)\) & 0.045 & 0.005 \\
\hline 209 & 17.42 & 0.17 & 0.050 & \(0.506)\) & 0.045 & 0.005 \\
\hline 210 & 17.50 & 0.17 & 0.050 & \(0.503)\) & 0.045 & 0.005 \\
\hline 211 & 17.58 & 0.17 & 0.050 & \(0.501)\) & 0.045 & 0.005 \\
\hline 212 & 17.67 & 0.17 & 0.050 & \(0.498)\) & 0.045 & 0.005 \\
\hline 213 & 17.75 & 0.17 & 0.050 & \(0.496)\) & 0.045 & 0.005 \\
\hline 214 & 17.83 & 0.13 & 0.040 & \(0.493)\) & 0.036 & 0.004 \\
\hline 215 & 17.92 & 0.13 & 0.040 & \(0.491)\) & 0.036 & 0.004 \\
\hline 216 & 18.00 & 0.13 & 0.040 & \(0.488)\) & 0.036 & 0.004 \\
\hline 217 & 18.08 & 0.13 & 0.040 & \(0.486)\) & 0.036 & 0.004 \\
\hline 218 & 18.17 & 0.13 & 0.040 & \(0.484)\) & 0.036 & 0.004 \\
\hline 219 & 18.25 & 0.13 & 0.040 & \(0.481)\) & 0.036 & 0.004 \\
\hline 220 & 18.33 & 0.13 & 0.040 & \(0.479)\) & 0.036 & 0.004 \\
\hline 221 & 18.42 & 0.13 & 0.040 & \(0.477)\) & 0.036 & 0.004 \\
\hline 222 & 18.50 & 0.13 & 0.040 & 0.474) & 0.036 & 0.004 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 223 & 18.58 & 0.10 & 0.030 & \(0.472)\) & 0.027 & 0.003 \\
\hline 224 & 18.67 & 0.10 & 0.030 & \(0.470)\) & 0.027 & 0.003 \\
\hline 225 & 18.75 & 0.10 & 0.030 & 0.467) & 0.027 & 0.003 \\
\hline 226 & 18.83 & 0.07 & 0.020 & \(0.465)\) & 0.018 & 0.002 \\
\hline 227 & 18.92 & 0.07 & 0.020 & \(0.463)\) & 0.018 & 0.002 \\
\hline 228 & 19.00 & 0.07 & 0.020 & \(0.461)\) & 0.018 & 0.002 \\
\hline 229 & 19.08 & 0.10 & 0.030 & \(0.459)\) & 0.027 & 0.003 \\
\hline 230 & 19.17 & 0.10 & 0.030 & \(0.457)\) & 0.027 & 0.003 \\
\hline 231 & 19.25 & 0.10 & 0.030 & \(0.454)\) & 0.027 & 0.003 \\
\hline 232 & 19.33 & 0.13 & 0.040 & \(0.452)\) & 0.036 & 0.004 \\
\hline 233 & 19.42 & 0.13 & 0.040 & 0.450) & 0.036 & 0.004 \\
\hline 234 & 19.50 & 0.13 & 0.040 & \(0.448)\) & 0.036 & 0.004 \\
\hline 235 & 19.58 & 0.10 & 0.030 & \(0.446)\) & 0.027 & 0.003 \\
\hline 236 & 19.67 & 0.10 & 0.030 & \(0.444)\) & 0.027 & 0.003 \\
\hline 237 & 19.75 & 0.10 & 0.030 & \(0.442)\) & 0.027 & 0.003 \\
\hline 238 & 19.83 & 0.07 & 0.020 & \(0.440)\) & 0.018 & 0.002 \\
\hline 239 & 19.92 & 0.07 & 0.020 & \(0.438)\) & 0.018 & 0.002 \\
\hline 240 & 20.00 & 0.07 & 0.020 & \(0.436)\) & 0.018 & 0.002 \\
\hline 241 & 20.08 & 0.10 & 0.030 & \(0.434)\) & 0.027 & 0.003 \\
\hline 242 & 20.17 & 0.10 & 0.030 & \(0.432)\) & 0.027 & 0.003 \\
\hline 243 & 20.25 & 0.10 & 0.030 & \(0.430)\) & 0.027 & 0.003 \\
\hline 244 & 20.33 & 0.10 & 0.030 & 0.429) & 0.027 & 0.003 \\
\hline 245 & 20.42 & 0.10 & 0.030 & \(0.427)\) & 0.027 & 0.003 \\
\hline 246 & 20.50 & 0.10 & 0.030 & \(0.425)\) & 0.027 & 0.003 \\
\hline 247 & 20.58 & 0.10 & 0.030 & \(0.423)\) & 0.027 & 0.003 \\
\hline 248 & 20.67 & 0.10 & 0.030 & \(0.421)\) & 0.027 & 0.003 \\
\hline 249 & 20.75 & 0.10 & 0.030 & \(0.420)\) & 0.027 & 0.003 \\
\hline 250 & 20.83 & 0.07 & 0.020 & \(0.418)\) & 0.018 & 0.002 \\
\hline 251 & 20.92 & 0.07 & 0.020 & \(0.416)\) & 0.018 & 0.002 \\
\hline 252 & 21.00 & 0.07 & 0.020 & \(0.414)\) & 0.018 & 0.002 \\
\hline 253 & 21.08 & 0.10 & 0.030 & \(0.413)\) & 0.027 & 0.003 \\
\hline 254 & 21.17 & 0.10 & 0.030 & \(0.411)\) & 0.027 & 0.003 \\
\hline 255 & 21.25 & 0.10 & 0.030 & \(0.410)\) & 0.027 & 0.003 \\
\hline 256 & 21.33 & 0.07 & 0.020 & \(0.408)\) & 0.018 & 0.002 \\
\hline 257 & 21.42 & 0.07 & 0.020 & \(0.407)\) & 0.018 & 0.002 \\
\hline 258 & 21.50 & 0.07 & 0.020 & \(0.405)\) & 0.018 & 0.002 \\
\hline 259 & 21.58 & 0.10 & 0.030 & \(0.404)\) & 0.027 & 0.003 \\
\hline 260 & 21.67 & 0.10 & 0.030 & \(0.402)\) & 0.027 & 0.003 \\
\hline 261 & 21.75 & 0.10 & 0.030 & \(0.401)\) & 0.027 & 0.003 \\
\hline 262 & 21.83 & 0.07 & 0.020 & \(0.399)\) & 0.018 & 0.002 \\
\hline 263 & 21.92 & 0.07 & 0.020 & \(0.398)\) & 0.018 & 0.002 \\
\hline 264 & 22.00 & 0.07 & 0.020 & \(0.397)\) & 0.018 & 0.002 \\
\hline 265 & 22.08 & 0.10 & 0.030 & \(0.395)\) & 0.027 & 0.003 \\
\hline 266 & 22.17 & 0.10 & 0.030 & \(0.394)\) & 0.027 & 0.003 \\
\hline 267 & 22.25 & 0.10 & 0.030 & \(0.393)\) & 0.027 & 0.003 \\
\hline 268 & 22.33 & 0.07 & 0.020 & \(0.391)\) & 0.018 & 0.002 \\
\hline 269 & 22.42 & 0.07 & 0.020 & \(0.390)\) & 0.018 & 0.002 \\
\hline 270 & 22.50 & 0.07 & 0.020 & \(0.389)\) & 0.018 & 0.002 \\
\hline 271 & 22.58 & 0.07 & 0.020 & \(0.388)\) & 0.018 & 0.002 \\
\hline 272 & 22.67 & 0.07 & 0.020 & \(0.387)\) & 0.018 & 0.002 \\
\hline 273 & 22.75 & 0.07 & 0.020 & \(0.386)\) & 0.018 & 0.002 \\
\hline 274 & 22.83 & 0.07 & 0.020 & \(0.385)\) & 0.018 & 0.002 \\
\hline 275 & 22.92 & 0.07 & 0.020 & \(0.384)\) & 0.018 & 0.002 \\
\hline 276 & 23.00 & 0.07 & 0.020 & \(0.383)\) & 0.018 & 0.002 \\
\hline 277 & 23.08 & 0.07 & 0.020 & \(0.382)\) & 0.018 & 0.002 \\
\hline 278 & 23.17 & 0.07 & 0.020 & \(0.381)\) & 0.018 & 0.002 \\
\hline 279 & 23.25 & 0.07 & 0.020 & \(0.380)\) & 0.018 & 0.002 \\
\hline 280 & 23.33 & 0.07 & 0.020 & 0.380) & 0.018 & 0.002 \\
\hline 281 & 23.42 & 0.07 & 0.020 & \(0.379)\) & 0.018 & 0.002 \\
\hline 282 & 23.50 & 0.07 & 0.020 & \(0.378)\) & 0.018 & 0.002 \\
\hline 283 & 23.58 & 0.07 & 0.020 & \(0.378)\) & 0.018 & 0.002 \\
\hline 284 & 23.67 & 0.07 & 0.020 & \(0.377)\) & 0.018 & 0.002 \\
\hline 285 & 23.75 & 0.07 & 0.020 & \(0.377)\) & 0.018 & 0.002 \\
\hline 286 & 23.83 & 0.07 & 0.020 & \(0.376)\) & 0.018 & 0.002 \\
\hline 287 & 23.92 & 0.07 & 0.020 & \(0.376)\) & 0.018 & 0.002 \\
\hline 288 & 24.00 & 0.07 & 0.020 & \(0.376)\) & 0.018 & 0.002 \\
\hline & & & Not U & & & \\
\hline & \[
\begin{aligned}
& \text { Sum }={ }_{\text {Flood }}=
\end{aligned}
\] & \[
\begin{gathered}
100.0 \\
\text { volume }
\end{gathered}
\] & ective & & \[
\text { Sum }=
\] & 3.0 \\
\hline & time & area & 3.9 (Ac & (Ft.)] & 0.1 (& \\
\hline & Total & soil 10 & 2 & & & \\
\hline & Total & soil 10 & & & & \\
\hline & Total & rainfal & & & & \\
\hline & Flood & volume & & c Feet & & \\
\hline & Total & soil 10 & & ubic Fe & & \\
\hline & \multicolumn{6}{|l|}{Peak flow rate of this hydrograph \(=0.133\) (CFS)} \\
\hline & \multicolumn{6}{|l|}{} \\
\hline
\end{tabular}

\section*{Section 4 - Proposed Unit Hydrograph (Unit Hydrograph Method)}

2 year 24 hour / Map / Basin Routing Calculations

Unit Hydrograph Analysis
Copyright (c) CIVILCADD/CIVILDESIGN, 1989-2008, Version 8.1 Study date 02/20/23 File: pro242.out
+++

Riverside County Synthetic Unit Hydrology Method
RCFC \& WCD Manual date - Apri 11978

Program License Serial Number 5006
English (in-1b) Input Units Used
English Rainfal1 Data (Inches) Input Values Used
English Units used in output format

100 YEAR Area rainfal1 data:

Unit Hydrograph
VALLEY S-Curve
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Unit Hydrograph Data} \\
\hline Unit time period (hrs) & Time \% of 1ag & Distribution Graph \% & Unit Hydrograph (CFS) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 0.083 & 163.701 & 36.334 & & 1.417 \\
\hline 2 & 0.167 & 327.402 & 45.989 & & 1.794 \\
\hline 3 & 0.250 & 491.103 & 10.445 & & 0.407 \\
\hline 4 & 0.333 & 654.804 & 4.464 & & 0.174 \\
\hline 5 & 0.417 & 818.505 & 2.768 & & 0.108 \\
\hline & & & Sum \(=100.000\) & Sum= & 3.900 \\
\hline
\end{tabular}

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Unit & Time & Pattern & Storm Rain & \multicolumn{2}{|l|}{Loss rate(In./Hr)} & Effective \\
\hline & (Hr.) & Percent & (In/Hr) & Max & Low & (In/Hr) \\
\hline 1 & 0.08 & 0.07 & 0.020 & \(0.293)\) & 0.004 & 0.016 \\
\hline 2 & 0.17 & 0.07 & 0.020 & \(0.292)\) & 0.004 & 0.016 \\
\hline 3 & 0.25 & 0.07 & 0.020 & (0.291) & 0.004 & 0.016 \\
\hline 4 & 0.33 & 0.10 & 0.030 & \(0.290)\) & 0.005 & 0.025 \\
\hline 5 & 0.42 & 0.10 & 0.030 & 0.289) & 0.005 & 0.025 \\
\hline 6 & 0.50 & 0.10 & 0.030 & (0.288) & 0.005 & 0.025 \\
\hline 7 & 0.58 & 0.10 & 0.030 & (0.286) & 0.005 & 0.025 \\
\hline 8 & 0.67 & 0.10 & 0.030 & (0.285) & 0.005 & 0.025 \\
\hline 9 & 0.75 & 0.10 & 0.030 & \(0.284)\) & 0.005 & 0.025 \\
\hline 10 & 0.83 & 0.13 & 0.040 & \(0.283)\) & 0.007 & 0.033 \\
\hline 11 & 0.92 & 0.13 & 0.040 & (0.282) & 0.007 & 0.033 \\
\hline 12 & 1.00 & 0.13 & 0.040 & (0.281) & 0.007 & 0.033 \\
\hline 13 & 1.08 & 0.10 & 0.030 & (0.280) & 0.005 & 0.025 \\
\hline 14 & 1.17 & 0.10 & 0.030 & (0.279) & 0.005 & 0.025 \\
\hline 15 & 1.25 & 0.10 & 0.030 & (0.277) & 0.005 & 0.025 \\
\hline 16 & 1.33 & 0.10 & 0.030 & (0.276) & 0.005 & 0.025 \\
\hline 17 & 1.42 & 0.10 & 0.030 & (0.275) & 0.005 & 0.025 \\
\hline 18 & 1.50 & 0.10 & 0.030 & (0.274) & 0.005 & 0.025 \\
\hline 19 & 1.58 & 0.10 & 0.030 & (0.273) & 0.005 & 0.025 \\
\hline 20 & 1.67 & 0.10 & 0.030 & (0.272) & 0.005 & 0.025 \\
\hline 21 & 1.75 & 0.10 & 0.030 & (0.271) & 0.005 & 0.025 \\
\hline 22 & 1.83 & 0.13 & 0.040 & (0.270) & 0.007 & 0.033 \\
\hline 23 & 1.92 & 0.13 & 0.040 & (0.269) & 0.007 & 0.033 \\
\hline 24 & 2.00 & 0.13 & 0.040 & (0.268) & 0.007 & 0.033 \\
\hline 25 & 2.08 & 0.13 & 0.040 & \(0.267)\) & 0.007 & 0.033 \\
\hline 26 & 2.17 & 0.13 & 0.040 & (0.265) & 0.007 & 0.033 \\
\hline 27 & 2.25 & 0.13 & 0.040 & (0.264) & 0.007 & 0.033 \\
\hline 28 & 2.33 & 0.13 & 0.040 & (0.263) & 0.007 & 0.033 \\
\hline 29 & 2.42 & 0.13 & 0.040 & (0.262) & 0.007 & 0.033 \\
\hline 30 & 2.50 & 0.13 & 0.040 & 0.261) & 0.007 & 0.033 \\
\hline 31 & 2.58 & 0.17 & 0.050 & \(0.260)\) & 0.009 & 0.041 \\
\hline 32 & 2.67 & 0.17 & 0.050 & (0.259) & 0.009 & 0.041 \\
\hline 33 & 2.75 & 0.17 & 0.050 & 0.258) & 0.009 & 0.041 \\
\hline 34 & 2.83 & 0.17 & 0.050 & \(0.257)\) & 0.009 & 0.041 \\
\hline 35 & 2.92 & 0.17 & 0.050 & (0.256) & 0.009 & 0.041 \\
\hline 36 & 3.00 & 0.17 & 0.050 & \(0.255)\) & 0.009 & 0.041 \\
\hline 37 & 3.08 & 0.17 & 0.050 & (0.254) & 0.009 & 0.041 \\
\hline 38 & 3.17 & 0.17 & 0.050 & (0.253) & 0.009 & 0.041 \\
\hline 39 & 3.25 & 0.17 & 0.050 & (0.252) & 0.009 & 0.041 \\
\hline 40 & 3.33 & 0.17 & 0.050 & (0.251) & 0.009 & 0.041 \\
\hline 41 & 3.42 & 0.17 & 0.050 & (0.250) & 0.009 & 0.041 \\
\hline 42 & 3.50 & 0.17 & 0.050 & (0.249) & 0.009 & 0.041 \\
\hline 43 & 3.58 & 0.17 & 0.050 & (0.247) & 0.009 & 0.041 \\
\hline 44 & 3.67 & 0.17 & 0.050 & (0.246) & 0.009 & 0.041 \\
\hline 45 & 3.75 & 0.17 & 0.050 & \(0.245)\) & 0.009 & 0.041 \\
\hline 46 & 3.83 & 0.20 & 0.060 & (0.244) & 0.011 & 0.049 \\
\hline 47 & 3.92 & 0.20 & 0.060 & (0.243) & 0.011 & 0.049 \\
\hline 48 & 4.00 & 0.20 & 0.060 & (0.242) & 0.011 & 0.049 \\
\hline 49 & 4.08 & 0.20 & 0.060 & (0.241) & 0.011 & 0.049 \\
\hline 50 & 4.17 & 0.20 & 0.060 & (0.240) & 0.011 & 0.049 \\
\hline 51 & 4.25 & 0.20 & 0.060 & (0.239) & 0.011 & 0.049 \\
\hline 52 & 4.33 & 0.23 & 0.070 & (0.238) & 0.013 & 0.057 \\
\hline 53 & 4.42 & 0.23 & 0.070 & (0.237) & 0.013 & 0.057 \\
\hline 54 & 4.50 & 0.23 & 0.070 & \(0.236)\) & 0.013 & 0.057 \\
\hline 55 & 4.58 & 0.23 & 0.070 & \(0.235)\) & 0.013 & 0.057 \\
\hline 56 & 4.67 & 0.23 & 0.070 & \(0.234)\) & 0.013 & 0.057 \\
\hline 57 & 4.75 & 0.23 & 0.070 & \(0.233)\) & 0.013 & 0.057 \\
\hline 58 & 4.83 & 0.27 & 0.080 & (0.232) & 0.014 & 0.066 \\
\hline 59 & 4.92 & 0.27 & 0.080 & \(0.231)\) & 0.014 & 0.066 \\
\hline 60 & 5.00 & 0.27 & 0.080 & \(0.230)\) & 0.014 & 0.066 \\
\hline 61 & 5.08 & 0.20 & 0.060 & (0.229) & 0.011 & 0.049 \\
\hline 62 & 5.17 & 0.20 & 0.060 & \(0.228)\) & 0.011 & 0.049 \\
\hline 63 & 5.25 & 0.20 & 0.060 & \(0.227)\) & 0.011 & 0.049 \\
\hline 64 & 5.33 & 0.23 & 0.070 & (0.226) & 0.013 & 0.057 \\
\hline 65 & 5.42 & 0.23 & 0.070 & (0.225) & 0.013 & 0.057 \\
\hline 66 & 5.50 & 0.23 & 0.070 & \(0.224)\) & 0.013 & 0.057 \\
\hline 67 & 5.58 & 0.27 & 0.080 & (0.223) & 0.014 & 0.066 \\
\hline 68 & 5.67 & 0.27 & 0.080 & \(0.222)\) & 0.014 & 0.066 \\
\hline 69 & 5.75 & 0.27 & 0.080 & \(0.221)\) & 0.014 & 0.066 \\
\hline 70 & 5.83 & 0.27 & 0.080 & (0.220) & 0.014 & 0.066 \\
\hline 71 & 5.92 & 0.27 & 0.080 & \(0.219)\) & 0.014 & 0.066 \\
\hline
\end{tabular}

Pro2yr24hr
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 72 & 6.00 & 0.27 & 0.080 & 0.218) & 0.014 & 0.066 \\
\hline 73 & 6.08 & 0.30 & 0.090 & \(0.217)\) & 0.016 & 0.074 \\
\hline 74 & 6.17 & 0.30 & 0.090 & 0.216) & 0.016 & 0.074 \\
\hline 75 & 6.25 & 0.30 & 0.090 & \(0.215)\) & 0.016 & 0.074 \\
\hline 76 & 6.33 & 0.30 & 0.090 & \(0.214)\) & 0.016 & 0.074 \\
\hline 77 & 6.42 & 0.30 & 0.090 & \(0.213)\) & 0.016 & 0.074 \\
\hline 78 & 6.50 & 0.30 & 0.090 & \(0.213)\) & 0.016 & 0.074 \\
\hline 79 & 6.58 & 0.33 & 0.100 & (0.212) & 0.018 & 0.082 \\
\hline 80 & 6.67 & 0.33 & 0.100 & \(0.211)\) & 0.018 & 0.082 \\
\hline 81 & 6.75 & 0.33 & 0.100 & (0.210) & 0.018 & 0.082 \\
\hline 82 & 6.83 & 0.33 & 0.100 & (0.209) & 0.018 & 0.082 \\
\hline 83 & 6.92 & 0.33 & 0.100 & \(0.208)\) & 0.018 & 0.082 \\
\hline 84 & 7.00 & 0.33 & 0.100 & \(0.207)\) & 0.018 & 0.082 \\
\hline 85 & 7.08 & 0.33 & 0.100 & \(0.206)\) & 0.018 & 0.082 \\
\hline 86 & 7.17 & 0.33 & 0.100 & \(0.205)\) & 0.018 & 0.082 \\
\hline 87 & 7.25 & 0.33 & 0.100 & \(0.204)\) & 0.018 & 0.082 \\
\hline 88 & 7.33 & 0.37 & 0.110 & \(0.203)\) & 0.020 & 0.090 \\
\hline 89 & 7.42 & 0.37 & 0.110 & \(0.202)\) & 0.020 & 0.090 \\
\hline 90 & 7.50 & 0.37 & 0.110 & \(0.201)\) & 0.020 & 0.090 \\
\hline 91 & 7.58 & 0.40 & 0.120 & \(0.200)\) & 0.022 & 0.098 \\
\hline 92 & 7.67 & 0.40 & 0.120 & \(0.199)\) & 0.022 & 0.098 \\
\hline 93 & 7.75 & 0.40 & 0.120 & \(0.198)\) & 0.022 & 0.098 \\
\hline 94 & 7.83 & 0.43 & 0.130 & (0.198) & 0.023 & 0.107 \\
\hline 95 & 7.92 & 0.43 & 0.130 & \(0.197)\) & 0.023 & 0.107 \\
\hline 96 & 8.00 & 0.43 & 0.130 & \(0.196)\) & 0.023 & 0.107 \\
\hline 97 & 8.08 & 0.50 & 0.150 & \(0.195)\) & 0.027 & 0.123 \\
\hline 98 & 8.17 & 0.50 & 0.150 & \(0.194)\) & 0.027 & 0.123 \\
\hline 99 & 8.25 & 0.50 & 0.150 & \(0.193)\) & 0.027 & 0.123 \\
\hline 100 & 8.33 & 0.50 & 0.150 & \(0.192)\) & 0.027 & 0.123 \\
\hline 101 & 8.42 & 0.50 & 0.150 & (0.191) & 0.027 & 0.123 \\
\hline 102 & 8.50 & 0.50 & 0.150 & (0.190) & 0.027 & 0.123 \\
\hline 103 & 8.58 & 0.53 & 0.160 & \(0.189)\) & 0.029 & 0.131 \\
\hline 104 & 8.67 & 0.53 & 0.160 & \(0.189)\) & 0.029 & 0.131 \\
\hline 105 & 8.75 & 0.53 & 0.160 & (0.188) & 0.029 & 0.131 \\
\hline 106 & 8.83 & 0.57 & 0.170 & \(0.187)\) & 0.031 & 0.139 \\
\hline 107 & 8.92 & 0.57 & 0.170 & \(0.186)\) & 0.031 & 0.139 \\
\hline 108 & 9.00 & 0.57 & 0.170 & (0.185) & 0.031 & 0.139 \\
\hline 109 & 9.08 & 0.63 & 0.190 & (0.184) & 0.034 & 0.156 \\
\hline 110 & 9.17 & 0.63 & 0.190 & \(0.183)\) & 0.034 & 0.156 \\
\hline 111 & 9.25 & 0.63 & 0.190 & (0.182) & 0.034 & 0.156 \\
\hline 112 & 9.33 & 0.67 & 0.200 & \(0.181)\) & 0.036 & 0.164 \\
\hline 113 & 9.42 & 0.67 & 0.200 & \(0.181)\) & 0.036 & 0.164 \\
\hline 114 & 9.50 & 0.67 & 0.200 & (0.180) & 0.036 & 0.164 \\
\hline 115 & 9.58 & 0.70 & 0.210 & \(0.179)\) & 0.038 & 0.172 \\
\hline 116 & 9.67 & 0.70 & 0.210 & (0.178) & 0.038 & 0.172 \\
\hline 117 & 9.75 & 0.70 & 0.210 & (0.177) & 0.038 & 0.172 \\
\hline 118 & 9.83 & 0.73 & 0.220 & (0.176) & 0.040 & 0.180 \\
\hline 119 & 9.92 & 0.73 & 0.220 & \(0.175)\) & 0.040 & 0.180 \\
\hline 120 & 10.00 & 0.73 & 0.220 & (0.175) & 0.040 & 0.180 \\
\hline 121 & 10.08 & 0.50 & 0.150 & (0.174) & 0.027 & 0.123 \\
\hline 122 & 10.17 & 0.50 & 0.150 & (0.173) & 0.027 & 0.123 \\
\hline 123 & 10.25 & 0.50 & 0.150 & (0.172) & 0.027 & 0.123 \\
\hline 124 & 10.33 & 0.50 & 0.150 & (0.171) & 0.027 & 0.123 \\
\hline 125 & 10.42 & 0.50 & 0.150 & (0.170) & 0.027 & 0.123 \\
\hline 126 & 10.50 & 0.50 & 0.150 & (0.170) & 0.027 & 0.123 \\
\hline 127 & 10.58 & 0.67 & 0.200 & (0.169) & 0.036 & 0.164 \\
\hline 128 & 10.67 & 0.67 & 0.200 & (0.168) & 0.036 & 0.164 \\
\hline 129 & 10.75 & 0.67 & 0.200 & (0.167) & 0.036 & 0.164 \\
\hline 130 & 10.83 & 0.67 & 0.200 & (0.166) & 0.036 & 0.164 \\
\hline 131 & 10.92 & 0.67 & 0.200 & (0.166) & 0.036 & 0.164 \\
\hline 132 & 11.00 & 0.67 & 0.200 & (0.165) & 0.036 & 0.164 \\
\hline 133 & 11.08 & 0.63 & 0.190 & \(0.164)\) & 0.034 & 0.156 \\
\hline 134 & 11.17 & 0.63 & 0.190 & (0.163) & 0.034 & 0.156 \\
\hline 135 & 11.25 & 0.63 & 0.190 & (0.162) & 0.034 & 0.156 \\
\hline 136 & 11.33 & 0.63 & 0.190 & \(0.161)\) & 0.034 & 0.156 \\
\hline 137 & 11.42 & 0.63 & 0.190 & (0.161) & 0.034 & 0.156 \\
\hline 138 & 11.50 & 0.63 & 0.190 & (0.160) & 0.034 & 0.156 \\
\hline 139 & 11.58 & 0.57 & 0.170 & \(0.159)\) & 0.031 & 0.139 \\
\hline 140 & 11.67 & 0.57 & 0.170 & (0.158) & 0.031 & 0.139 \\
\hline 141 & 11.75 & 0.57 & 0.170 & (0.157) & 0.031 & 0.139 \\
\hline 142 & 11.83 & 0.60 & 0.180 & \(0.157)\) & 0.032 & 0.148 \\
\hline 143 & 11.92 & 0.60 & 0.180 & (0.156) & 0.032 & 0.148 \\
\hline 144 & 12.00 & 0.60 & 0.180 & (0.155) & 0.032 & 0.148 \\
\hline 145 & 12.08 & 0.83 & 0.250 & \(0.154)\) & 0.045 & 0.205 \\
\hline 146 & 12.17 & 0.83 & 0.250 & (0.154) & 0.045 & 0.205 \\
\hline 147 & 12.25 & 0.83 & 0.250 & (0.153) & 0.045 & 0.205 \\
\hline 148 & 12.33 & 0.87 & 0.260 & \(0.152)\) & 0.047 & 0.213 \\
\hline 149 & 12.42 & 0.87 & 0.260 & \(0.151)\) & 0.047 & 0.213 \\
\hline 150 & 12.50 & 0.87 & 0.260 & (0.151) & 0.047 & 0.213 \\
\hline 151 & 12.58 & 0.93 & 0.280 & \(0.150)\) & 0.050 & 0.230 \\
\hline 152 & 12.67 & 0.93 & 0.280 & \(0.149)\) & 0.050 & 0.230 \\
\hline 153 & 12.75 & 0.93 & 0.280 & (0.148) & 0.050 & 0.230 \\
\hline 154 & 12.83 & 0.97 & 0.290 & (0.148) & 0.052 & 0.238 \\
\hline 155 & 12.92 & 0.97 & 0.290 & (0.147) & 0.052 & 0.238 \\
\hline 156 & 13.00 & 0.97 & 0.290 & (0.146) & 0.052 & 0.238 \\
\hline 157 & 13.08 & 1.13 & 0.340 & (0.145) & 0.061 & 0.279 \\
\hline
\end{tabular}

Pro2yr24hr
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 158 & 13.17 & 1.13 & 0.340 & (0.145) & 0.061 & 0.279 \\
\hline 159 & 13.25 & 1.13 & 0.340 & \(0.144)\) & 0.061 & 0.279 \\
\hline 160 & 13.33 & 1.13 & 0.340 & \(0.143)\) & 0.061 & 0.279 \\
\hline 161 & 13.42 & 1.13 & 0.340 & \(0.142)\) & 0.061 & 0.279 \\
\hline 162 & 13.50 & 1.13 & 0.340 & \(0.142)\) & 0.061 & 0.279 \\
\hline 163 & 13.58 & 0.77 & 0.230 & \(0.141)\) & 0.041 & 0.189 \\
\hline 164 & 13.67 & 0.77 & 0.230 & \(0.140)\) & 0.041 & 0.189 \\
\hline 165 & 13.75 & 0.77 & 0.230 & \(0.139)\) & 0.041 & 0.189 \\
\hline 166 & 13.83 & 0.77 & 0.230 & \(0.139)\) & 0.041 & 0.189 \\
\hline 167 & 13.92 & 0.77 & 0.230 & (0.138) & 0.041 & 0.189 \\
\hline 168 & 14.00 & 0.77 & 0.230 & \(0.137)\) & 0.041 & 0.189 \\
\hline 169 & 14.08 & 0.90 & 0.270 & \(0.137)\) & 0.049 & 0.221 \\
\hline 170 & 14.17 & 0.90 & 0.270 & (0.136) & 0.049 & 0.221 \\
\hline 171 & 14.25 & 0.90 & 0.270 & (0.135) & 0.049 & 0.221 \\
\hline 172 & 14.33 & 0.87 & 0.260 & \(0.135)\) & 0.047 & 0.213 \\
\hline 173 & 14.42 & 0.87 & 0.260 & (0.134) & 0.047 & 0.213 \\
\hline 174 & 14.50 & 0.87 & 0.260 & (0.133) & 0.047 & 0.213 \\
\hline 175 & 14.58 & 0.87 & 0.260 & (0.133) & 0.047 & 0.213 \\
\hline 176 & 14.67 & 0.87 & 0.260 & (0.132) & 0.047 & 0.213 \\
\hline 177 & 14.75 & 0.87 & 0.260 & (0.131) & 0.047 & 0.213 \\
\hline 178 & 14.83 & 0.83 & 0.250 & (0.130) & 0.045 & 0.205 \\
\hline 179 & 14.92 & 0.83 & 0.250 & (0.130) & 0.045 & 0.205 \\
\hline 180 & 15.00 & 0.83 & 0.250 & (0.129) & 0.045 & 0.205 \\
\hline 181 & 15.08 & 0.80 & 0.240 & \(0.129)\) & 0.043 & 0.197 \\
\hline 182 & 15.17 & 0.80 & 0.240 & \(0.128)\) & 0.043 & 0.197 \\
\hline 183 & 15.25 & 0.80 & 0.240 & (0.127) & 0.043 & 0.197 \\
\hline 184 & 15.33 & 0.77 & 0.230 & (0.127) & 0.041 & 0.189 \\
\hline 185 & 15.42 & 0.77 & 0.230 & (0.126) & 0.041 & 0.189 \\
\hline 186 & 15.50 & 0.77 & 0.230 & (0.125) & 0.041 & 0.189 \\
\hline 187 & 15.58 & 0.63 & 0.190 & \(0.125)\) & 0.034 & 0.156 \\
\hline 188 & 15.67 & 0.63 & 0.190 & \(0.124)\) & 0.034 & 0.156 \\
\hline 189 & 15.75 & 0.63 & 0.190 & \(0.123)\) & 0.034 & 0.156 \\
\hline 190 & 15.83 & 0.63 & 0.190 & \(0.123)\) & 0.034 & 0.156 \\
\hline 191 & 15.92 & 0.63 & 0.190 & (0.122) & 0.034 & 0.156 \\
\hline 192 & 16.00 & 0.63 & 0.190 & (0.121) & 0.034 & 0.156 \\
\hline 193 & 16.08 & 0.13 & 0.040 & (0.121) & 0.007 & 0.033 \\
\hline 194 & 16.17 & 0.13 & 0.040 & (0.120) & 0.007 & 0.033 \\
\hline 195 & 16.25 & 0.13 & 0.040 & (0.120) & 0.007 & 0.033 \\
\hline 196 & 16.33 & 0.13 & 0.040 & (0.119) & 0.007 & 0.033 \\
\hline 197 & 16.42 & 0.13 & 0.040 & (0.118) & 0.007 & 0.033 \\
\hline 198 & 16.50 & 0.13 & 0.040 & (0.118) & 0.007 & 0.033 \\
\hline 199 & 16.58 & 0.10 & 0.030 & (0.117) & 0.005 & 0.025 \\
\hline 200 & 16.67 & 0.10 & 0.030 & (0.117) & 0.005 & 0.025 \\
\hline 201 & 16.75 & 0.10 & 0.030 & (0.116) & 0.005 & 0.025 \\
\hline 202 & 16.83 & 0.10 & 0.030 & (0.115) & 0.005 & 0.025 \\
\hline 203 & 16.92 & 0.10 & 0.030 & (0.115) & 0.005 & 0.025 \\
\hline 204 & 17.00 & 0.10 & 0.030 & (0.114) & 0.005 & 0.025 \\
\hline 205 & 17.08 & 0.17 & 0.050 & (0.114) & 0.009 & 0.041 \\
\hline 206 & 17.17 & 0.17 & 0.050 & (0.113) & 0.009 & 0.041 \\
\hline 207 & 17.25 & 0.17 & 0.050 & (0.113) & 0.009 & 0.041 \\
\hline 208 & 17.33 & 0.17 & 0.050 & \(0.112)\) & 0.009 & 0.041 \\
\hline 209 & 17.42 & 0.17 & 0.050 & \(0.111)\) & 0.009 & 0.041 \\
\hline 210 & 17.50 & 0.17 & 0.050 & (0.111) & 0.009 & 0.041 \\
\hline 211 & 17.58 & 0.17 & 0.050 & \(0.110)\) & 0.009 & 0.041 \\
\hline 212 & 17.67 & 0.17 & 0.050 & (0.110) & 0.009 & 0.041 \\
\hline 213 & 17.75 & 0.17 & 0.050 & (0.109) & 0.009 & 0.041 \\
\hline 214 & 17.83 & 0.13 & 0.040 & \(0.109)\) & 0.007 & 0.033 \\
\hline 215 & 17.92 & 0.13 & 0.040 & \(0.108)\) & 0.007 & 0.033 \\
\hline 216 & 18.00 & 0.13 & 0.040 & (0.108) & 0.007 & 0.033 \\
\hline 217 & 18.08 & 0.13 & 0.040 & \(0.107)\) & 0.007 & 0.033 \\
\hline 218 & 18.17 & 0.13 & 0.040 & (0.107) & 0.007 & 0.033 \\
\hline 219 & 18.25 & 0.13 & 0.040 & (0.106) & 0.007 & 0.033 \\
\hline 220 & 18.33 & 0.13 & 0.040 & (0.105) & 0.007 & 0.033 \\
\hline 221 & 18.42 & 0.13 & 0.040 & (0.105) & 0.007 & 0.033 \\
\hline 222 & 18.50 & 0.13 & 0.040 & (0.104) & 0.007 & 0.033 \\
\hline 223 & 18.58 & 0.10 & 0.030 & (0.104) & 0.005 & 0.025 \\
\hline 224 & 18.67 & 0.10 & 0.030 & (0.103) & 0.005 & 0.025 \\
\hline 225 & 18.75 & 0.10 & 0.030 & \(0.103)\) & 0.005 & 0.025 \\
\hline 226 & 18.83 & 0.07 & 0.020 & \(0.102)\) & 0.004 & 0.016 \\
\hline 227 & 18.92 & 0.07 & 0.020 & (0.102) & 0.004 & 0.016 \\
\hline 228 & 19.00 & 0.07 & 0.020 & (0.101) & 0.004 & 0.016 \\
\hline 229 & 19.08 & 0.10 & 0.030 & \(0.101)\) & 0.005 & 0.025 \\
\hline 230 & 19.17 & 0.10 & 0.030 & \(0.101)\) & 0.005 & 0.025 \\
\hline 231 & 19.25 & 0.10 & 0.030 & \(0.100)\) & 0.005 & 0.025 \\
\hline 232 & 19.33 & 0.13 & 0.040 & \(0.100)\) & 0.007 & 0.033 \\
\hline 233 & 19.42 & 0.13 & 0.040 & \(0.099)\) & 0.007 & 0.033 \\
\hline 234 & 19.50 & 0.13 & 0.040 & \(0.099)\) & 0.007 & 0.033 \\
\hline 235 & 19.58 & 0.10 & 0.030 & \(0.098)\) & 0.005 & 0.025 \\
\hline 236 & 19.67 & 0.10 & 0.030 & \(0.098)\) & 0.005 & 0.025 \\
\hline 237 & 19.75 & 0.10 & 0.030 & \(0.097)\) & 0.005 & 0.025 \\
\hline 238 & 19.83 & 0.07 & 0.020 & \(0.097)\) & 0.004 & 0.016 \\
\hline 239 & 19.92 & 0.07 & 0.020 & (0.096) & 0.004 & 0.016 \\
\hline 240 & 20.00 & 0.07 & 0.020 & (0.096) & 0.004 & 0.016 \\
\hline 241 & 20.08 & 0.10 & 0.030 & (0.096) & 0.005 & 0.025 \\
\hline 242 & 20.17 & 0.10 & 0.030 & (0.095) & 0.005 & 0.025 \\
\hline 243 & 20.25 & 0.10 & 0.030 & (0.095) & 0.005 & 0.025 \\
\hline
\end{tabular}

Pro2yr24hr

Pro2yr24hr

Pro2yr24hr

Pro2yr24hr

Pro2yr24hr
\begin{tabular}{|c|c|c|c|c|}
\hline 23+15 & 0.6568 & 0.06 & Q & V \\
\hline \(23+20\) & 0.6572 & 0.06 & Q & V1 \\
\hline \(23+25\) & 0.6576 & 0.06 & Q & V \\
\hline 23+30 & 0.6581 & 0.06 & Q & V \\
\hline \(23+35\) & 0.6585 & 0.06 & Q & V \\
\hline \(23+40\) & 0.6590 & 0.06 & Q & V \\
\hline \(23+45\) & 0.6594 & 0.06 & Q & V \\
\hline \(23+50\) & 0.6598 & 0.06 & Q & V \\
\hline \(23+55\) & 0.6603 & 0.06 & Q & V \\
\hline 24+ 0 & 0.6607 & 0.06 & Q & V \\
\hline 24+ 5 & 0.6610 & 0.04 & Q & V \\
\hline 24+10 & 0.6611 & 0.01 & Q & V1 \\
\hline 24+15 & 0.6611 & 0.00 & Q & V| \\
\hline \(24+20\) & 0.6611 & 0.00 & Q & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Basin Size and Flow Calculations}

\begin{tabular}{|l|r|l|}
\hline \multicolumn{3}{|c|}{ Q100 Elevation Weir Calc } \\
\hline \multicolumn{3}{|c|}{ Basin Weir Calc } \\
\hline Crest Wier Elev. & 791.50 & \\
\hline Q100 & 9.89 & cfs \\
\hline Weir Length & 12 & \\
\hline Weir Coeff. & 3.33 & \\
\hline H Weir & 0.3942 & \\
\hline Q100 Elevation & \(\mathbf{7 9 1 . 8 9}\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|r|l|}
\hline \multicolumn{3}{|c|}{ Q100 Elevation Weir Calc } \\
\hline \multicolumn{3}{|c|}{ SPILLWAY Weir Calc } \\
\hline Crest Wier Elev. & 791.90 & \\
\hline Q100 & 9.89 & cfs \\
\hline Weir Length & 25 & \\
\hline Weir Coeff. & 3.33 & \\
\hline H Weir & 0.24166 & \\
\hline Q100 Elevation & \(\mathbf{7 9 2 . 1 4}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STORM & \multicolumn{2}{|c|}{ EXISTING CONDITION } & \multicolumn{2}{|c|}{ PROPOSED CONDITION } & \multicolumn{3}{|c|}{ BASIN ROUTING } \\
\cline { 2 - 8 } EVENT & VOLUME ac.ft. & CFS & VOLUME ac.ft. & CFS & VOLUME ac.ft. & CFS \\
\hline 2YR24HR & 0.0806 & 0.133 & 0.6611 & 1.088 & 0.5240 & 0.121 \\
\hline
\end{tabular}

FLOOD HYDROGRAPH ROUTING PROGRAM
Copyright (c) CIVILCADD/CIVILDESIGN, 1989-2004
Study date: 02/21/23

Program License Serial Number 5006

++
Process from Point/Station \(\quad 1.000\) to Point/Station \(\quad 2.000\)
\(* * * *\) RETARDING BASIN ROUTING \(* * * *\)

Graph values: 'I'= unit inflow; 'O'=outflow at time shown
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Time & Inflow & Outflow & Storage & & & & & Depth \\
\hline (Hours) & (CFS) & (CFS) & (AC.Ft) & . 0 & 0.3 & 0.54 & 0.82 & 1.09 (Ft.) \\
\hline 0.083 & 0.02 & 0.00 & 0.000 & 0 & & & & 0.00 \\
\hline 0.167 & 0.05 & 0.00 & 0.000 & OI & & & & 0.00 \\
\hline 0.250 & 0.06 & 0.00 & 0.001 & OI & & & & 0.00 \\
\hline 0.333 & 0.07 & 0.00 & 0.001 & 0 I & & & & 0.01 \\
\hline 0.417 & 0.09 & 0.00 & 0.002 & 0 I & & & & 0.01 \\
\hline 0.500 & 0.09 & 0.00 & 0.002 & 0 I & & & & 0.01 \\
\hline 0.583 & 0.10 & 0.00 & 0.003 & 0 I & & & & 0.02 \\
\hline 0.667 & 0.10 & 0.00 & 0.004 & 0 I & & & & 0.02 \\
\hline 0.750 & 0.10 & 0.00 & 0.004 & 0 I & & & & 0.02 \\
\hline 0.833 & 0.11 & 0.00 & 0.005 & 0 I & & & & 0.03 \\
\hline 0.917 & 0.12 & 0.00 & 0.006 & 0 I & & & & 0.03 \\
\hline 1.000 & 0.13 & 0.00 & 0.007 & 0 I & & & & 0.03 \\
\hline 1.083 & 0.12 & 0.00 & 0.007 & 0 I & & & & 0.04 \\
\hline 1.167 & 0.10 & 0.00 & 0.008 & 0 I & & & & 0.04 \\
\hline 1.250 & 0.10 & 0.00 & 0.009 & 0 I & & & & 0.05 \\
\hline 1.333 & 0.10 & 0.00 & 0.009 & 0 I & & & & 0.05 \\
\hline 1.417 & 0.10 & 0.00 & 0.010 & 0 I & & & & 0.05 \\
\hline 1.500 & 0.10 & 0.01 & 0.011 & 0 I & & & & 0.06 \\
\hline
\end{tabular}

\section*{Section 5 - Riverside County Plates / Reference}

\section*{ACTUAL IMPERVIOUS COVER}
\(\left.\begin{array}{|c|c|c|}\hline \text { Land Use (1) } & \begin{array}{c}\text { Recommended Value } \\ \text { For Average }\end{array} \\ \text { Natural or Agriculture } & 0-10 & 0 \\ \text { Conditions-Percent(2 }\end{array}\right\}\)

Notes:
1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions.
2. Recommended values are based on average conditions which may not apply to a particular study area. The perventage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscaje practices should also be considered as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where availuble may assist in estimating the percentage of impervious cover in developed areas.
3. For typical horse ranch subdivisions incrense impervious area 5 percent over the values recommended in the table above.

\title{
WESTERN RIVERSIDE COUNTY MULTIPLE SPECIES HABITAT CONSERVATION PLAN CONSISTENCY ANALYSIS AND BIOLOGY RESOURCES ASSESSMENT REPORT
}

\section*{INDUSTRIAL OUTDOOR VENTURES}

Prepared for:
MIG
1650 Spruce Street, Suite 106
Riverside, California 92507

Prepared by:
LSA Associates, Inc.
1500 Iowa Avenue, Suite 200
Riverside, California 92507
(951) 781-9310

LSA Project No. MIG2201

\section*{LSA}

\section*{TABLE OF CONTENTS}
TABLE OF CONTENTS
LIST OF ABBREVIATIONS AND ACRONYMS iii
1.0 EXECUTIVE SUMMARY 1-1
2.0 INTRODUCTION 2-1
2.1 Project Area 2-1
2.2 Project Description 2-1
2.3 General Setting. 2-1
3.0 RESERVE ASSEMBLY ANALYSIS 3-1
3.1 Cell and Criteria Analysis 3-1
3.2 Public/Quasi-Public Lands Analysis 3-1
4.0 VEGETATION 4-1
5.0 PROTECTION OF SPECIES ASSOCIATED WITH RIPARIAN/RIVERINE AREAS AND VERNAL POOLS (WRCMSHCP SECTION 6.1.2) 5-1
5.1 Riparian/Riverine 5-1
5.1.1 Methods 5-1
5.1.2 Existing Conditions and Results 5-2
5.1.3 Impacts and Mitigation 5-2
5.2 Vernal Pools 5-2
5.2.1 Methods 5-2
5.2.2 Existing Conditions and Results 5-2
5.3 Fairy Shrimp 5-2
5.3.1 Methods 5-2
5.3.2 Existing Conditions and Results 5-3
5.4 Riparian Birds 5-3
5.4.1 Methods 5-3
5.4.2 Existing Conditions and Results 5-3
6.0 PROTECTION OF NARROW ENDEMIC PLANT SPECIES (WRCMSHCP SECTION 6.1.3) 6-1
7.0 ADDITIONAL SURVEY NEEDS AND PROCEDURES (WRCMSHCP SECTION 6.3.2) 7-1
7.1 Criteria Area Plant Species 7-1
7.2 Amphibians 7-1
7.3 Burrowing Owl 7-1
7.3.1 Methods 7-1
7.3.2 Existing Conditions and Results 7-1
7.3.3 Impacts and Mitigation 7-2
7.4 Mammals 7-2
8.0 INFORMATION ON OTHER SPECIES 8-1
8.1 Delhi Sands Flower-Loving Fly 8-1
8.2 Species Not Adequately Conserved under WRCMSHCP 8-1
8.2.1 Methods 8-1
8.2.2 Results 8-1
9.0 GUIDELINES PERTAINING TO THE URBAN/WILDLANDS INTERFACE (WRCMSHCP SECTION 6.1.4) 9-1
10.0 POTENTIAL JURISDICTIONAL WATERS AND STREAMBEDS 10-1
11.0 NESTING BIRDS 11-1
12.0 CEQA COMPLIANCE 12-1
12.1 Adopted Habitat Conservation Plans 12-1
12.2 Threatened and Endangered Species 12-1
12.3 Other Special-Status Species 12-1
12.4 Wildlife Movement, Corridors, and Nursery Sites 12-2
12.5 Natural Communities of Interest 12-2
12.6 Wetlands 12-2
12.7 Local Policies and Ordinances Protecting Biological Resources 12-2
12.8 Indirect Effects 12-7
12.9 Cumulative Effects 12-7
13.0 REFERENCES 13-1
14.0 CERTIFICATION STATEMENT 14-1
TABLES
Table 4.A: Impacts to Vegetation 4-1
Table 6.A: Narrow Endemic Plant Species Occurrence Probability on the Project Site 6-1
Table 7.A: Burrowing Owl Breeding Season Survey Details 7-2
Table 12.A: Special-Status Species Potentially Occurring in the Project Vicinity That are Not Adequately Covered by the WRCMshcp. 12-3

\section*{APPENDICES}

A: FIGURES
B: PLANT AND ANIMAL SPECIES OBSERVED
C: DELHI SANDS FLOWER-LOVING FLY FOCUSED 2017 AND 2018 SURVEYS

\title{
LIST OF ABBREVIATIONS AND ACRONYMS
}
\begin{tabular}{ll}
ac & acre/acres \\
APN & Assessor's Parcel Number \\
CASSA & Criteria Area Species Survey Area \\
CDFW & California Department of Fish and Wildlife \\
CEQA & California Environmental Quality Act \\
CNPS & California Native Plant Society \\
CWA & Clean Water Act \\
DSF & Delhi sands flower-loving fly \\
ESA & Environmentally Sensitive Area \\
ft & foot/feet \\
HCP & Habitat Conservation Plan \\
I-15 & Interstate 15 \\
NRCS & Natural Resources Conservation Service \\
OHWM & ordinary high water mark \\
PQP lands & Public/Quasi-Public lands \\
project & Industrial Outdoor Ventures Project \\
RWQCB & Regional Water Quality Control Board \\
SR-60 & State Route 60 \\
USACE & United States Army Corps of Engineers \\
UWFWS & United States Fish and Wildlife Service \\
WRCMSHCP & Western Riverside County Multiple Species Habitat Conservation Plan
\end{tabular}

\subsection*{1.0 EXECUTIVE SUMMARY}

LSA was retained by MIG to conduct a Western Riverside County Multiple Species Habitat Conservation Plan (WRCMSHCP) consistency analysis and general biological assessment of the approximately 6.88-acre (ac) Industrial Outdoor Ventures Project (project) site located on the north side of Riverside Drive west of Wineville Avenue in Jurupa Valley, Riverside County, California. The study was conducted to address compliance with the WRCMSHCP and the California Environmental Quality Act (CEQA), and for the identification of potential jurisdictional waters. Results of the WRCMSHCP consistency analysis and general biological assessment are summarized below. The project site is not within a WRCMSHCP Criteria Area or any Public/Quasi-Public lands (PQP lands).

One drainage feature occurs on the project site that is considered WRCMSHCP riverine and is potentially subject to jurisdiction by the California Department of Fish and Wildlife (CDFW), United States Army Corps of Engineers (USACE), and Regional Water Quality Control Board (RWQCB). This feature receives flows from two separate off-site features. The project has been designed to avoid this potential drainage feature by the placement of an Environmentally Sensitive Area (ESA) fence. No other ponded areas or riparian habitat potentially subject to jurisdiction by the CDFW, USACE, or RWQCB were found within the project site.

The site does not contain riparian areas or vernal pools as defined in the WRCMSHCP and does not contain any fairy shrimp habitat. Therefore, focused surveys will not be required for special-status riparian bird or fairy shrimp species.

The project site is within the WRCMSHCP survey area for western burrowing owl (Athene cunicularia hypugaea), and suitable habitat for this species is present on site. A focused western burrowing owl breeding season survey was conducted, and western burrowing owl was determined to be absent from the project site. However, due to the presence of suitable habitat, a preconstruction survey will be required within 30 days prior to ground disturbance.

The project site is within WRCMSHCP Survey Area Number 7 for narrow endemic plant species; however, no suitable habitat is present. Therefore, no surveys or further analysis for these species will be required.

The project site is not located within a WRCMSHCP-designated survey area for any other species. This site does contain Delhi series soils, which may provide suitable habitat for the Delhi sands flower-loving fly (DSF; Rhaphiomidas terminatus abdominalis). However, 4 consecutive years of survey results were negative, and DSF is determined to be absent from the project site. No surveys for other species will be required.

The project will not be subject to WRCMSHCP Urban/Wildlands interface requirements because the site is not within or adjacent to an identified Conservation Area.

The project is within the Stephens' Kangaroo Rat Habitat Conservation Plan area, and payment of a fee is required.

\subsection*{2.0 INTRODUCTION}

LSA was retained by MIG to conduct a WRCMSHCP consistency analysis and general biological resources assessment of the approximately 6.88 ac Industrial Outdoor Ventures Project (project) located on the north side of Riverside Drive west of Wineville Avenue in Jurupa Valley, Riverside County, California (Figure 1; all figures are provided in Appendix A).

The study was conducted to document biological resources within the study area, including those protected under the WRCMSHCP and CEQA, and include a focused breeding season burrowing owl survey and assessment of potential jurisdictional waters. These studies were conducted on July 29 and August 12, 19, and 26, 2022 (July/August) by LSA Biologist Denise Woodard.

\subsection*{2.1 PROJECT AREA}

The project area is 6.88 ac in size and consists of Assessor's Parcel Numbers (APNs) 156-030-016, 156-030-017, and 156-030-042. The majority of the site will be developed. The eastern portion of the site is designated to not be disturbed in order to avoid any potential impacts to drainages that have the potential to meet the definition of a riverine area under the WRCMSHCP, waters of the United States under the federal Clean Water Act (CWA), streambed under Fish and Game Code Section 1600, or waters of the State pursuant to the Porter-Cologne Water Quality Control Act. An ESA fence will be placed along the eastern limits of the project construction area to avoid impacts to the potential jurisdictional feature (Figure 2). The project is located within the WRCMSHCP, but is located outside any criteria cell, PQP land, or conservation areas. The project site is located within the WRCMSHCP Species Survey Area for Burrowing Owl and Narrow Endemic Plant Species.

\subsection*{2.2 PROJECT DESCRIPTION}

Project activities include the development of a 25,000 -square-foot warehouse/retail office building, uncovered outdoor sales area, parking spaces, electric vehicle charging station, a water quality basin, and other infrastructure improvements (Figure 2).

\subsection*{2.3 GENERAL SETTING}

The project site (Figure 3) is undeveloped and bordered to the north and west by Interstate 15 (I-15)/State-Route 60 (SR-60) interchange ramps, to the east by industrial development, and to the south by Riverside Drive and industrial development. The site is relatively flat, and elevations range from approximately 790 to 800 feet (ft) above mean sea level. The soils in the study area, as mapped by the Natural Resources Conservation Service (NRCS) Online Web Soil Survey (n.d.), are Delhi fine sand, 2 to 15 percent slopes, wind-eroded (DaD2), and Gorgonio loamy sand, deep, 2 to 8 percent slopes (GIC) as shown on Figure 4. The soils in the study are regularly disced for weed abatement but appear consistent with the mapping.

\subsection*{3.0 RESERVE ASSEMBLY ANALYSIS}

\subsection*{3.1 CELL AND CRITERIA ANALYSIS}

The WRCMSHCP provides for the assembly of a Conservation Area consisting of Core Areas and Linkages for the conservation of covered species. The Conservation Area is to be assembled from portions of the WRCMSHCP Criteria Area, which consists of quarter-section (i.e., approximately 160 ac) Criteria Cells, each with specific criteria for the species conservation within that cell.

The project site is within the Jurupa Area Plan of the WRCMSHCP, but it is not located a within a Criteria Area or adjacent to a Criteria Area or Conservation Area. Therefore, no Cell or Criteria Analysis is required. The closest Criteria Cell (Number 35) is located immediately east of the I-15/SR-60 interchange. Development has already occurred in that cell. Criteria Cell Number 35 is within Cell Group A of the Jurupa Area Plan, Subunit 3, Delhi Sands Area, which is within Proposed Noncontiguous Habitat Block 1. Conservation objectives of this area pertain to conservation of occupied DSF lands, which is not applicable to this site.

\subsection*{3.2 PUBLIC/QUASI-PUBLIC LANDS ANALYSIS}

The project site is not within or adjacent to PQP lands. The closest PQP lands comprise Noncontiguous Habitat Block 2 in the Jurupa Mountains, over 2 miles northeast of the project site. The project will not have any direct or indirect impacts to PQP lands.

\subsection*{4.0 VEGETATION}

The vegetation on site consists of nonnative grassland/ruderal as a result of regularly discing for weed abatement and surrounding development. A row of large eucalyptus (Eucalyptus sp.) trees is located along Riverside Drive. Dominant species on site include annual bur-sage (Ambrosia acanthacarpa), golden crownbeard (Verbesina encelioides), Russian thistle (Salsola tragus), ripgut brome (Bromus diandrus), mouse barley (Hordeum murinum), and shortpod mustard (Hirschfeldia incana). Table 4.A provides the impact acreages to vegetation, and a complete list of plant species observed on the site is included in Appendix \(B\).

Table 4.A: Impacts to Vegetation
\begin{tabular}{|c|c|c|c|}
\hline Land Cover Type & \begin{tabular}{c}
Permanent \\
Impacts (acres)
\end{tabular} & \begin{tabular}{c}
Temporary \\
Impacts (acres)
\end{tabular} & \begin{tabular}{c}
No Impacts/ \\
No Disturbance (acres)
\end{tabular} \\
\hline Ruderal/Nonnative Grassland & 6.35 & \(0^{1}\) & 0.53 \\
\hline Total Impacts & \(\mathbf{6 . 3 5}\) & \(\mathbf{0}\) & \(\mathbf{0 . 5 3}\) \\
\hline
\end{tabular}

Source: Compiled by LSA (2022).
1 All impacts considered permanent.

\subsection*{5.0 PROTECTION OF SPECIES ASSOCIATED WITH RIPARIAN/RIVERINE AREAS AND VERNAL POOLS (WRCMSHCP SECTION 6.1.2)}

Section 6.1.2 of the WRCMSHCP requires assessment of impacts to riparian habitats, riverine areas, and vernal pools, including focused surveys for sensitive riparian bird and fairy shrimp species when suitable habitat is present. The intent of the assessment requirement is to provide for the protection of resources used by WRCMSHCP-covered species, as well as existing and future downstream conservation areas. Riverine/riparian areas and vernal pools are defined in Section 6.1.2 of the WRCMSHCP as follows:

Riparian/Riverine Areas are lands which contain Habitat dominated by trees, shrubs, persistent emergents, or emergent mosses and lichens, which occur close to or which depend upon soil moisture from a nearby fresh water source; or areas with fresh water flow during all or a portion of the year.

Vernal pools are seasonal wetlands that occur in depression areas that have wetlands indicators of all three parameters (soils, vegetation and hydrology) during the wetter portion of the growing season but normally lack wetlands indicators of hydrology and/or vegetation during the drier portion of the growing season. Obligate hydrophytes and facultative wetlands plant species are normally dominant during the wetter portion of the growing season, while upland species (annuals) may be dominant during the drier portion of the growing season. The determination that an area exhibits vernal pool characteristics, and the definition of the watershed supporting vernal pool hydrology, must be made on a case-bycase basis. Such determinations should consider the length of the time the area exhibits upland and wetland characteristics and the manner in which the area fits into the overall ecological system as a wetland. Evidence concerning the persistence of an area's wetness can be obtained from its history, vegetation, soils, and drainage characteristics, uses to which it has been subjected, and weather and hydrologic records.

Fairy Shrimp. For Riverside, vernal pool and Santa Rosa fairy shrimp, mapping of stock ponds, ephemeral pools and other features shall also be undertaken as determined appropriate by a qualified biologist.

With the exception of wetlands created for the purpose of providing wetlands Habitat or resulting from human actions to create open waters or from the alteration of natural stream courses, areas demonstrating characteristics as described above which are artificially created are not included in these definitions.

\subsection*{5.1 RIPARIAN/RIVERINE}

\subsection*{5.1.1 Methods}

LSA conducted a review of current and historical aerial photography to preliminarily identify if there were any drainage features flowing into or out of the project site or signature patterns on the aerial photographs that would indicate that riparian vegetation was evident and whether there were any drainages. In addition, a previous study (LSA 2019) conducted for the project was reviewed. The project site was assessed for riparian/riverine areas at the time of the July 29 and August 12, 19, and 26, 2022 (July/August) site visits. The assessment included identification and mapping of plant
communities on the site as well as any drainage features on site or flowing into or out of the project site.

\subsection*{5.1.2 Existing Conditions and Results}

There is no riparian vegetation on the project site; therefore, there are no areas that would meet the WRCMSHCP definition of riparian areas or that would require surveys for riparian species. There is one drainage feature that meets the WRCMSHCP definition of riverine.

There is a drainage feature fed by a trapezoidal concrete ditch that conveys flows into the northeastern corner of the site. Flows originate from Wineville Road to the east. On-site flows from this drainage feature are conveyed into the storm drain system through a 48-inch-diameter culvert at Riverside Drive. This feature also appears to receive sheet flows that are fed by a culvert under SR-60, north of the project site.

\subsection*{5.1.3 Impacts and Mitigation}

The project will avoid effects to the drainage feature and sheet flow from SR-60. The project has been designed to avoid placing fill material or having any other ground disturbance to the riverine areas by the design of the project detention basin, located at least 10 ft from the riverine feature, and the placement of an ESA fence east of the detention basin and project work limits. Because the project will avoid impacts to the on-site drainage features, no mitigation is required.

\subsection*{5.2 VERNAL POOLS}

\subsection*{5.2.1 Methods}

The project site was assessed for vernal pools at the time of the July/August 2022 site visits. The assessment included a search for depressions, indicators of wetland hydrology, suitable soils, and hydrophytic vegetation. The assessment also included a review of seasonally appropriate aerial photographs from 10/2003, 12/2003, 12/2005, 1/2006, 1/2007, 11/2009, 3/2011, 1/2013, 3/2013. 11/2013, 4/2014, 2/2016, 10/2016, 2/2018, 12/2018, 12/2020 and \(2 / 2022\) that were acquired via Google Earth Pro in July 2022.

\subsection*{5.2.2 Existing Conditions and Results}

The only drainage feature on site has an outlet and drains to a culvert downstream at Riverside Drive. No ponded areas or features resembling vernal pools were observed on site. The soils mapped and observed on site are loamy sand and fine sand, which are not suitable to support ponding sufficient for vernal pool formation. There are no areas of hydrophytic vegetation on the site. Therefore, there are no vernal pools.

\subsection*{5.3 FAIRY SHRIMP}

\subsection*{5.3.1 Methods}

The project site was assessed for fairy shrimp habitat at the same time, and using the same methods, as the assessment for vernal pools. The WRCMSHCP calls for habitat assessments for three sensitive species of fairy shrimp: Santa Rosa Plateau fairy shrimp (Linderiella santarosae), Riverside
fairy shrimp (Streptocephalus woottoni), and vernal pool fairy shrimp (Branchinecta lynchi). Santa Rosa Plateau fairy shrimp occur only on the Santa Rosa Plateau of extreme southwest Riverside County. A fourth sensitive species of Southern California (i.e., San Diego fairy shrimp [Branchinecta sandiegonensis]) is found primarily in the coastal areas of Orange and San Diego Counties. San Diego fairy shrimp has been found as far inland as the Wildomar area of southwest Riverside County but is not expected in the project area. These sensitive fairy shrimp species inhabit vernal pools as well as stock ponds, large road ruts, or other similar habitats that pond water long enough to allow growth and reproduction. To provide fairy shrimp habitat, a feature must regularly pond water for at least 18 days for vernal pool fairy shrimp (Eriksen and Belk 1999) and 2 months for Riverside fairy shrimp (USFWS 2012). Fairy shrimp do not inhabit flowing waters.

\subsection*{5.3.2 Existing Conditions and Results}

As noted above, there are no vernal pools or similar non-flowing aquatic habitats on the project site suitable for fairy shrimp. The site does not have habitat suitable for sensitive fairy shrimp species; therefore, no surveys will be required.

\subsection*{5.4 RIPARIAN BIRDS}

\subsection*{5.4.1 Methods}

Habitat suitability for riparian birds, including least Bell's vireo (Vireo bellii pusillus), southwestern willow flycatcher (Empidonax traillii extimus), and yellow-billed cuckoo (Coccyzus americanus), was assessed in conjunction with the assessment for riverine/riparian areas.

\subsection*{5.4.2 Existing Conditions and Results}

There are no riparian/riverine areas or any habitat suitable for riparian birds on the project site; therefore, no surveys for riparian birds will be required.

\subsection*{6.0 PROTECTION OF NARROW ENDEMIC PLANT SPECIES (WRCMSHCP SECTION 6.1.3)}

Section 6.1.3 of the WRCMSHCP requires focused surveys for specified sensitive plant species if the project is located within a survey area for narrow endemic plant species and suitable habitat is present. The project site is located within a survey area for the three narrow endemic plant species summarized in Table 6.A; however, there is no suitable habitat for these species. Therefore, no surveys for narrow endemic plants will be required.

Table 6.A: Narrow Endemic Plant Species Occurrence Probability on the Project Site
\begin{tabular}{|l|l|c|l|}
\hline \multicolumn{1}{|c|}{ Species } & \multicolumn{1}{c|}{ MSHCP Habitat } & \begin{tabular}{c}
Growth Form \& \\
Blooming Period
\end{tabular} & \multicolumn{1}{c|}{ Occurrence Probability } \\
\hline \begin{tabular}{l}
San Diego ambrosia \\
Ambrosia pumila
\end{tabular} & \begin{tabular}{l}
Open floodplain terraces on Garretson gravelly fine sandy \\
loams, or in the watershed margins of vernal pools or alkali \\
playas on Las Posas loam in close proximity to Willow silty \\
alkaline soils. Occurs in sparse annual vegetation.
\end{tabular} & \begin{tabular}{l}
Perennial; \\
Generally non- \\
flowering
\end{tabular} & \begin{tabular}{l}
Absent. No Garretson or Las \\
Posas soils or vernal pools/ \\
alkali playas on site.
\end{tabular} \\
\hline \begin{tabular}{l}
Brand's star phacelia \\
Phacelia stellaris
\end{tabular} & \begin{tabular}{l}
Sandy soils of washes or benches in alluvial floodplains. This \\
species is generally dependent on periodic flooding and \\
sediment transport. The WRCMSHCP account for this species \\
states that "within western Riverside County, Brand's \\
phacelia is restricted to sandy benches along the Santa Ana \\
River."
\end{tabular} & \begin{tabular}{c}
Annual; \\
March-June
\end{tabular} & \begin{tabular}{l}
Absent. No alluvial \\
floodplains on site.
\end{tabular} \\
\hline \begin{tabular}{l}
San Miguel savory \\
Satureja chandleri
\end{tabular} & \begin{tabular}{l}
Rocky, gabbroic, and metavolcanic substrates in chaparral or \\
oak woodland.
\end{tabular} & \begin{tabular}{c}
Perennial; \\
March-May
\end{tabular} & \begin{tabular}{l}
Absent. No chaparral or \\
woodlands on site.
\end{tabular} \\
\hline
\end{tabular}

Source: Compiled by LSA (2022).

\subsection*{7.0 ADDITIONAL SURVEY NEEDS AND PROCEDURES (WRCMSHCP SECTION 6.3.2)}

WRCMSHCP Section 6.3.2 requires surveys for additional plants, amphibians, small mammals, and burrowing owl for projects located within mapped survey areas.

\subsection*{7.1 CRITERIA AREA PLANT SPECIES}

The project is not within a mapped survey area for Criteria Area Species Survey Area (CASSA) plant species.

\subsection*{7.2 AMPHIBIANS}

The project is not within a mapped survey area for amphibian species.

\subsection*{7.3 BURROWING OWL}

The project site is within the WRCMSHCP burrowing owl survey area. Burrowing owls are found in open and dry grasslands, agricultural and range lands, and desert habitats often associated with burrowing animals. They can also inhabit grass, forb, and shrub stages of pinyon and ponderosa pine habitats. They nest in abandoned burrows of ground squirrels or other animals, in pipes, under piles of rock or debris, and in other similar features.

\subsection*{7.3.1 Methods}

A burrowing owl habitat assessment and focused burrow survey were conducted by LSA biologist Denise Woodard in accordance with Step I and Step II, Part A of the Burrowing Owl Survey Instructions for the Western Riverside County Multiple Species Habitat Conservation Plan Area (County of Riverside 2006). The habitat assessment and focused survey for burrowing owl burrows were conducted July 29, 2022. The assessment included an evaluation of soil texture, vegetative cover, topography, and the presence of mammal burrows, rock/debris piles, or other areas suitable for nest construction. The burrow surveys were conducted by walking throughout suitable habitat areas and pausing occasionally to scan the surrounding areas through binoculars. Transects were spaced at no more than 80 ft , which allowed for 100 percent visual coverage of suitable habitat. Burrows and other nesting features with potential to be occupied by the burrowing owl encountered during the survey were examined for owl sign (e.g., feathers, pellets, whitewash, and prey remnants). Survey dates, times, and weather conditions are summarized in Table 7.A.

\subsection*{7.3.2 Existing Conditions and Results}

The site has low vegetative cover, is mostly devoid of trees, and has concrete debris piles and ground squirrel burrows. These conditions indicate potential habitat for burrowing owl. The entire site is suitable, except for the southern edge where tall trees provide roosting spots for hawks, ravens, and large owls that could prey upon burrowing owl. Several burrows with an opening of at least 4 inches in diameter were found throughout the project site. Potential burrowing owl burrow locations and survey transect lines are shown on Figure 5.

\title{
Table 7.A: Burrowing Owl Breeding Season Survey Details
}
\begin{tabular}{|c|c|c|}
\hline Date & Type of Survey (Times) & Weather Conditions \\
\hline July 29, 2022 & Evening (5:45 PM-7:15 PM) & \(86-84^{\circ} \mathrm{F}\) clear skies, wind 5-8 mph \\
\hline August 12, 2022 & Dawn (6:10 AM-7:30 AM) & \(70-72^{\circ} \mathrm{F}\), partly cloudy (10\%), wind 1-3 mph \\
\hline August 19, 2022 & Dawn (6:30 AM -8:00 AM) & \(67-70^{\circ} \mathrm{F}\), partly cloudy (5\%), wind 1-3 mph \\
\hline August 26, 2022 & Dawn (6:35 AM-8:00 AM) & \(69-70^{\circ} \mathrm{F}\), clear, 0 mph \\
\hline \multicolumn{3}{|l|}{Source: Compiled by LSA (2022). \({ }^{\circ} \mathrm{F}=\) degrees Fahrenheit \(\mathrm{mph}=\) miles per hour} \\
\hline
\end{tabular}

\subsection*{7.3.3 Impacts and Mitigation}

Although no burrowing owl was found, due to the presence of potentially suitable habitat, a WRC MSHCP 30-day preconstruction survey for burrowing owl is required prior to project grounddisturbing activities (e.g., vegetation clearing and grubbing, and tree removal) to ensure that no burrowing owls have colonized the site in the days or weeks preceding the ground-disturbing activities. If burrowing owls are found during the preconstruction survey, the project proponent will need to inform the CDFW and United States Fish and Wildlife Service (USFWS) and prepare a Burrowing Owl Protection and Relocation Plan for approval by these agencies prior to initiating ground disturbance.

\subsection*{7.4 MAMMALS}

The project is not within a mapped survey area for mammals.

\subsection*{8.0 INFORMATION ON OTHER SPECIES}

\subsection*{8.1 DELHI SANDS FLOWER-LOVING FLY}

The WRCMSHCP requires surveys for DSF in most areas of mapped Delhi series soils where suitable habitat exists (WRCMSHCP Section 9). The DSF was listed as an endangered species by the USFWS on September 23, 1993.

The southwestern portion of the project site is located within an area of mapped Delhi soils and (as noted in Chapter 2.0) soil observed throughout the site is sand and loamy sandy, which is consistent with Delhi soils. The site was surveyed for DSF over four consecutive field seasons in 2015, 2016, 2017, and 2018 with negative results (Osborne 2015, 2016, 2017, and 2018). Appendix C provides the 2017 and 2018 survey results. Therefore, this species is considered absent, and no additional survey is required.

\subsection*{8.2 SPECIES NOT ADEQUATELY CONSERVED UNDER WRCMSHCP}

Some species that will eventually have full coverage under the WRCMSHCP are not considered adequately conserved until requirements indicated in Table 9-3 of WRCMSHCP Section 9 are met.

\subsection*{8.2.1 Methods}

A literature review was conducted to investigate the potential occurrence of special-status species on the project site or in the vicinity. Database records for the Guasti, Fontana, Ontario, Corona North, and Riverside West, California USGS 7.5-minute quadrangles were searched on July 21, 2022, using Rarefind 5 (CDFW 2022). LSA also reviewed the WRCMSHCP Table 9-3 species. No species noted from Table 9-3 or other special-status species were observed during the site visit.

\subsection*{8.2.2 Results}

None of the species listed in WRCMSHCP Table 9-3 and lacking full coverage have been reported from the project site or within 3 miles of the project site, and none were observed during the biological resources assessment conducted on site. Given the habitat quality and small project footprint, none of these species are expected to occur; therefore, the proposed project is not anticipated to affect these species.

\subsection*{9.0 GUIDELINES PERTAINING TO THE URBAN/WILDLANDS INTERFACE (WRCMSHCP SECTION 6.1.4)}

To preserve the integrity of areas described as existing or future WRCMSHCP Conservation Areas, the guidelines contained in WRCMSHCP Section 6.1.4 (Urban Wildlands Interface Guidelines) are to be implemented for projects that are located adjacent to either existing conservation or land described for conservation in the WRCMSHCP Criteria Area.

The project site is not located adjacent to conserved lands or lands in the Criteria Area that are described for conservation; therefore, the Urban Wildlands Interface Guidelines do not apply to this project.

\subsection*{10.0 POTENTIAL JURISDICTIONAL WATERS AND STREAMBEDS}

The USACE, under Section 404 of the federal CWA, regulates discharges of dredged or fill material into "waters of the United States." These waters include wetlands and non-wetland bodies of water that meet specific criteria, including a connection to interstate commerce. This connection may be direct (through a tributary system linking a stream channel with traditional navigable waters used in interstate or foreign commerce), or it may be indirect (through a connection identified in USACE regulations). The USACE typically regulates as non-wetland waters of the United States any body of water displaying an "ordinary high water mark" (OHWM). In order to be considered a "jurisdictional wetland" under Section 404, an area must possess hydrophytic vegetation, hydric soils, and wetland hydrology.

The CDFW, under Sections 1600 et seq. of the California Fish and Game Code, regulates alterations to lakes, rivers, and streams. A stream is defined by the presence of a channel bed and banks and at least an occasional flow of water.

The RWQCB is responsible for the administration of Section 401 of the CWA through water quality certification of any activity that may result in a discharge to jurisdictional waters of the United States. The RWQCB may also regulate discharges to "waters of the State," including wetlands, under the California Porter-Cologne Water Quality Control Act.

No drainage features, ponded areas, or riparian habitat potentially subject to jurisdiction by the CDFW, USACE, or RWQCB were observed within the impact area of the project. There is a drainage feature fed by a trapezoidal concrete ditch that conveys flows into the northeastern corner of the site. Flows from this drainage feature are conveyed into the storm drain system through a 48-inchdiameter culvert at Riverside Drive. This feature also appears to receive sheet flows from a swale that is fed by a culvert under SR-60, north of the project site. The project has been designed to avoid placing fill material or having any other ground disturbance at the potentially jurisdictional feature/ riverine area by the design of the culvert outlet/riprap from the detention basin located at least 10 ft from this feature and the placement of an ESA fence east of the detention basin and project work limits. Due to the project design of avoidance, no further assessment or permits are required.

The findings and conclusions presented in this report, including the location and extent of wetlands and other waters subject to regulatory jurisdiction, represent the professional opinion of LSA. These findings and conclusions should be considered preliminary until verified by the RWQCB, USACE, and CDFW.

\subsection*{11.0 NESTING BIRDS}

During the bird breeding season (typically February 1 through August 31), large trees on or adjacent to the study area may be used by hawks, ravens, or other large birds for nesting. Trees, shrubs, and other vegetation may provide nest sites for smaller birds, and western burrowing owls may nest in ground squirrel burrows, pipes, or similar features.

Most birds and their active nests are protected from "take" (meaning destruction, pursuit, possession, etc.) under the Migratory Bird Treaty Act and/or Sections 3503-3801 of California Fish and Game Code. Activities that cause destruction of active nests, or that cause nest abandonment and subsequent death of eggs or young, may constitute violations of one or both of these laws.

To avoid potential effects during the breeding season to fully protected raptors, special-status bird species, and other nesting birds protected by the California Fish and Game Code, and for compliance with WRCMSHCP Incidental Take Permit Condition 5, the following measures will be implemented:
- A nesting bird preconstruction survey will be conducted by a qualified biologist within 3 days prior to ground-disturbing and vegetation removal activities that occur during the nesting season (February 1 through August 31). Should nesting birds be found, an exclusionary buffer will be established by the qualified biologist. The buffer may be up to 500 ft in diameter, depending on the species of nesting bird found. This buffer will be clearly marked in the field by construction personnel under guidance of the qualified biologist, and construction or clearing will not be conducted within this zone until the qualified biologist determines that the young have fledged or the nest is no longer active. Nesting bird habitat within the study area will be resurveyed during bird breeding season if there is a lapse in construction activities longer than 7 days.

\subsection*{12.0 CEQA COMPLIANCE}

\subsection*{12.1 ADOPTED HABITAT CONSERVATION PLANS}

Section 10(a)(2)(A) of the 1973 Federal Endangered Species Act requires the preparation of a Habitat Conservation Plan (HCP) for incidental take of threatened or endangered species when there is no federal agency involvement in a project. Continuing land development may cause incidental take of listed species and, therefore, HCPs have been prepared for areas within western Riverside County. The WRCMSHCP and the Stephens' Kangaroo Rat HCP are the principal HCPs in western Riverside County. The USFWS regional office maintains a current list of HCPs for the Southern California region.

The project site is within the WRCMSHCP area and is the subject of this report. The project site is also within the Stephens' Kangaroo Rat HCP fee area. Focused surveys for Stephens' kangaroo rat will not be required for this project, but a fee will be assessed.

\subsection*{12.2 THREATENED AND ENDANGERED SPECIES}

The USFWS and CDFW may list species as threatened or endangered under the Federal and State Endangered Species Acts. The USFWS can designate critical habitat that identifies specific areas, either occupied or unoccupied, that are essential to the conservation of a listed species. Critical habitat areas may require special management considerations or protections. The USFWS and CDFW have issued permits for the take of most threatened and endangered species within the WRCMSHCP Plan Area. The WRCMSHCP covers impacts to these species. However, if a project has the involvement of a federal agency, that agency is required to address impacts to listed species and critical habitat by consulting with the USFWS. The USFWS has indicated in the permit issued for the WRCMSHCP that, in such cases, the consultation will be expedited and that no restrictions will be imposed on the project beyond those specified in the WRCMSHCP.

Delhi soils are present on the project site for the DSF. The site was surveyed for DSF over four consecutive field seasons in 2015, 2016, 2017, and 2018 with negative results (Osborne 2015, 2016, 2017, and 2018). Appendix C provides the 2017 and 2018 survey results. Therefore, this species is considered absent, and no additional survey is required. No other threatened or endangered species are expected to occur on the project site.

\subsection*{12.3 OTHER SPECIAL-STATUS SPECIES}

Other special-status species may occur on the proposed project site. The CDFW, USFWS, local agencies, and special interest groups, such as the California Native Plant Society (CNPS), maintain lists of species that they consider to be in need of monitoring. Legal protection for special-status species varies widely.

The special-status species listed in Table 12.A may be expected to occur in the general project vicinity but are not covered under the WRCMSHCP or are not adequately conserved by the WRCMSHCP at this time. Some of these species have a low potential of occurring on the project site. However, none of these species that may be present are listed as threatened or endangered under State or federal law, and the site does not contain high-quality habitat for any of these species. Therefore, any impacts to these species by the project would not be substantial. Neither additional surveys nor additional conservation measures will be required for this project for these species.

\subsection*{12.4 WILDLIFE MOVEMENT, CORRIDORS, AND NURSERY SITES}

Wildlife movement includes seasonal migration along corridors as well as daily movements for foraging. Migration corridors may include areas of unobstructed movement of deer, riparian corridors providing cover for migrating birds, routes between breeding waters and upland habitat for amphibians, and between roosting and feeding areas for birds.

The project site is located adjacent to the I-15/SR-60 interchange, a major road, and existing development that already restrict wildlife movement in the project vicinity. The project site is not within a WRCMSHCP-designated wildlife corridor or linkage. The proposed project would not substantially limit wildlife movement.

\subsection*{12.5 NATURAL COMMUNITIES OF INTEREST}

Riparian habitats, oak woodlands, and vernal pools are among the natural communities of interest to the CDFW. There are no riparian communities, vernal pools, or other sensitive plant communities on the project site.

\subsection*{12.6 WETLANDS}

A formal jurisdictional delineation has not been conducted on site. There is a drainage feature on the site that flows to a culvert beneath Riverside Drive. The drainage did not contain hydrophytic vegetation associated with wetlands at the time of the July/August field surveys. The project plans have been designed to avoid the potential jurisdictional areas, including any potential wetlands, by the placement of an ESA fence as previously discussed in Chapter 10.0. Therefore, there will be no impacts to any wetlands on the project site.

\subsection*{12.7 LOCAL POLICIES AND ORDINANCES PROTECTING BIOLOGICAL RESOURCES}

City and County General Plans and development ordinances may include regulations or policies governing biological resources. For example, policies may include tree preservation, locally designated species survey areas, local species of interest, and significant ecological areas.

The project will not be in conflict with local policies or ordinances applicable to biological resources.

Table 12.A: Special-Status Species Potentially Occurring in the Project Vicinity That are Not Adequately Covered by the WRCMshcp
\begin{tabular}{|c|c|c|c|c|}
\hline Species & Status & Description & Activity Period & Occurrence Probability \\
\hline \multicolumn{5}{|l|}{Plants} \\
\hline Chaparral sand-verbena Abronia villosa var. aurita & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: 1B }
\end{aligned}
\] & Sandy areas (generally flats and benches along washes) in chaparral and coastal sage scrub, and improbably in desert dunes or other sandy areas, below 5,300 feet in elevation. In California, reported from Riverside, San Diego, Imperial, Los Angeles, and Ventura Counties. Believed extirpated from Orange County. Also reported from Arizona and Mexico (Baja California). Plants reported from desert communities are likely misidentified. & Blooms mostly March through August (annual or perennial herb) & Absent. No suitable habitat (sandy areas in chaparral or coastal sage scrub). \\
\hline Marsh sandwort Arenaria paludicola & \[
\begin{aligned}
& \text { US: FE } \\
& \text { CA: SE/1B }
\end{aligned}
\] & Boggy areas in freshwater marshes and swamps below 560 feet in elevation. Known to presently occur only in San Luis Obispo County (at Oso Flaco Lake and Morro Bay). Believed extirpated from Los Angeles, San Francisco, Santa Cruz, Riverside, and San Bernardino Counties, and from the State of Washington. The last known record of this species in Riverside, San Bernardino, or Los Angeles Counties is from 1900. & Blooms May through August (perennial herb) & Absent. No marshes on site. \\
\hline Lucky morning-glory Calystegia felix & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: } 3
\end{aligned}
\] & Wetland and marshy areas, sometimes alkaline, sometimes artificially watered, from 100 to 700 feet in elevation. All of the known extant occurrences are associated with wellwatered landscaping on recently completed industrial, commercial, and residential developments in Chino within a historical area of artesian springs. Older collections are from areas that are now heavily urbanized areas (including one from South Los Angeles and another from Pico Rivera in Los Angeles County). Known to occur only in western San Bernardino County. Presumed extirpated from Riverside and Los Angeles Counties. & Blooms March through September (annual or perennial rhizomatous herb) & Absent. No marshes or wetlands on site. \\
\hline Salt marsh bird's-beak Chloropyron maritimum spp. maritimum & \[
\begin{aligned}
& \text { US: FE } \\
& \text { CA: SE/1B }
\end{aligned}
\] & Coastal dunes and salt marshes. In California, known from Los Angeles, Orange, Santa Barbara, San Bernardino, San Diego, San Luis Obispo, and Ventura Counties. Historical collections referred to this taxon from alkaline meadow in the vicinity of San Bernardino Valley and from interior San Diego County are intermediate to C. maritimus ssp. canescens. Also occurs in Mexico. & Blooms May through October (annual herb) & Absent. No coastal dunes or marshes on site. \\
\hline California saw-grass Cladium californicum & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: } 2 \mathrm{~B}
\end{aligned}
\] & Marshes and seeps below 2,000 feet in elevation. In California, known from Inyo, Riverside, Santa Barbara, San Bernardino, and San Luis Obispo Counties. Believed to be extirpated from Los Angeles and perhaps San Bernardino Counties. Also occurs in Arizona, New Mexico, Nevada, Texas, Utah, and Mexico. & Blooms June through September & Absent. No wet areas on site. \\
\hline
\end{tabular}

Table 12.A: Special-Status Species Potentially Occurring in the Project Vicinity That are Not Adequately Covered by the WRCMshcp
\begin{tabular}{|c|c|c|c|c|}
\hline Species & Status & Description & Activity Period & Occurrence Probability \\
\hline Mesa horkelia Horkelia cuneata ssp. puberula & |US: - & Sandy or gravelly soils in chaparral, or rarely in cismontane woodland or coastal scrub at 200 to 2,700 feet in elevation. Known only from San Luis Obispo, Santa Barbara, Ventura, Los Angeles, Orange, and San Bernardino Counties, California. Believed extirpated from Riverside and San Diego Counties. & Blooms February through July, sometimes to September (perennial herb) & Absent. No chaparral, cismontane woodland, or coastal scrub on site. Believed extirpated from area. \\
\hline Parish's desert-thorn Lycium parishii & \begin{tabular}{l}
US: - \\
CA: 2B
\end{tabular} & Coastal scrub and Sonoran desert scrub at 440 to 3,300 feet in elevation. In California, known from Imperial and San Diego Counties. Report from Riverside County is based on a misidentification. Known only historically from San Bernardino County (benches and/or foothills north of San Bernardino). & Blooms March through April (deciduous shrub) & Absent. No coastal scrub or Sonoran desert scrub on site. \\
\hline Parish's bush mallow Malacothamnus parishii & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: } 1 \mathrm{~A}
\end{aligned}
\] & Known only from one occurrence in 1895, in chaparral and coastal sage scrub at 1,600 feet in elevation in the vicinity of San Bernardino. Presumed extinct. & Blooms June through July (deciduous shrub) & Absent. Presumed extinct. Only a historical record from the site vicinity. \\
\hline Pringle's monardella Monardella pringlei & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: 1A }
\end{aligned}
\] & Sandy hills in coastal sage scrub at 980 to 1,300 feet in elevation. Known only from two occurrences west of Colton. Last seen in 1941. Habitat lost to urbanization. Presumed extinct. & Blooms May through June & Absent. No coastal sage scrub on site. \\
\hline White rabbit-tobacco Pseudognaphalium leucocephalum & \[
\begin{array}{|l|}
\text { US: - } \\
\text { CA: } 2 \mathrm{~B}
\end{array}
\] & Sand and gravel at the edges of washes or mouths of steep canyons at 0 to 7,000 feet in elevation. In California, known from Los Angeles, Orange, Riverside, Santa Barbara, San Diego, San Luis Obispo, and Ventura Counties. Also occurs in Arizona, New Mexico, Texas, and Mexico. & Blooms usually August through November (perennial herb) & Absent. No edges of washes or mouths of steep canyons on site. \\
\hline Chaparral ragwort Senecio aphanactis & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: } 2 \mathrm{~B}
\end{aligned}
\] & Openings (especially alkaline flats) in cismontane woodland, coastal sage scrub, and chaparral at 50 to 2,600 feet in elevation. Known in California from Alameda, Contra Costa, Fresno, Los Angeles, Merced, Monterey, Orange, Riverside, Santa Barbara, Santa Clara, San Diego, San Luis Obispo, Solano, and Ventura Counties. Also occurs in Baja California. & Blooms January through April (annual herb) & Absent. No woodland, scrub or chaparral on site. \\
\hline Salt Spring checkerbloom Sidalcea neomexicana & \begin{tabular}{l}
US: - \\
CA: 2B
\end{tabular} & Alkaline springs and brackish marshes below 5,000 feet in elevation. In California, known only from Kern, Orange, Riverside, San Bernardino, San Diego, and Ventura Counties. Believed extirpated from Los Angeles County. Also known from Arizona, New Mexico, Nevada, Utah, and Mexico. & Blooms March through June (perennial herb) & Absent. No alkaline or brackish habitats on site. \\
\hline Prairie wedge grass Sphenopholis obtusata & US: - & Wet meadows, stream banks, and ponds at 1,000 to 6,600 feet in elevation. Widely distributed. In Southern California, known only from San Bernardino, Riverside (Santa Ana River), and perhaps San Diego Counties. & Blooms April through July (perennial herb) & Absent. No wet areas on site. \\
\hline
\end{tabular}

Table 12.A: Special-Status Species Potentially Occurring in the Project Vicinity That are Not Adequately Covered by the WRCMshcp
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Species } & \multicolumn{1}{c|}{ Status } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c|}{ Activity Period } & Occurrence Probability \\
\hline \begin{tabular}{l}
San Bernardino aster \\
Symphyotrichum \\
defoliatum
\end{tabular} & \begin{tabular}{l}
US: - \\
CA: 1B
\end{tabular} & \begin{tabular}{l}
Vernally wet sites (e.g., ditches, streams, and \\
springs) in many plant communities below \\
6,700 feet in) elevation. In California, known \\
from Ventura, Kern, San Bernardino, Los \\
Angeles, Orange, Riverside, and San Diego \\
Counties. May also occur in San Luis Obispo \\
County. In the western Riverside County area, \\
this species is scarce, and documented only \\
from Temescal and San Timoteo Canyons (The \\
Vascular Plants of Western Riverside County, \\
California. F.M. Roberts Jr. et al., 2004).
\end{tabular} & \begin{tabular}{l}
Blomber \\
(perennial herb)
\end{tabular} & \begin{tabular}{l}
Absent. No suitable wet \\
areas on site.
\end{tabular} \\
\hline
\end{tabular}

Table 12.A: Special-Status Species Potentially Occurring in the Project Vicinity That are Not Adequately Covered by the WRCMshcp
\begin{tabular}{|c|c|c|c|c|}
\hline Species & Status & Description & Activity Period & Occurrence Probability \\
\hline \multicolumn{5}{|l|}{Mammals} \\
\hline \begin{tabular}{l}
Pallid bat \\
Antrozous pallidus
\end{tabular} & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: SSC }
\end{aligned}
\] & Most common in open, dry habitats with rocky areas for roosting. Day roosts in caves, crevices, rocky outcrops, tree hollows or crevices, mines and occasionally buildings, culverts, and bridges. Night roosts may be more open sites, such as porches and open buildings. Grasslands, shrublands, woodlands, and forest in western North America. & Year-round, nocturnal & Low. No rocky areas nearby. \\
\hline Western mastiff bat Eumops perotis californicus & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: SSC }
\end{aligned}
\] & Occurs in many open, semi-arid to arid habitats, including conifer and deciduous woodlands, coastal scrub, grasslands, chaparral, etc. Roosts in crevices in vertical cliff faces, high buildings, and tunnels, and travels widely when foraging. & Year-round, nocturnal & Low. No roosting habitat but may forage on site. \\
\hline Western yellow bat Lasiurus xanthinus & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: SSC }
\end{aligned}
\] & Found mostly in desert and desert riparian areas of the southwestern United States, but also expanding its range with the increased usage of native and nonnative ornamental palms in landscaping. Individuals typically roost amid dead fronds of palms in desert oases but have also been documented roosting in cottonwood trees. Forage over many habitats. & Year-round, nocturnal & Absent. Site is not in a desert area, and no palm plantings in vicinity. \\
\hline Pocketed free-tailed bat Nyctinomops femorosaccus & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: SSC }
\end{aligned}
\] & Usually associated with cliffs, rock outcrops, or slopes. May roost in buildings (including roof tiles) or caves. Rare in California, where it is found in Riverside, San Diego, Imperial, and possibly Los Angeles Counties. More common in Mexico. & Year-round, nocturnal & Absent. No nesting or foraging habitat on site. \\
\hline Big free-tailed bat Nyctinomops macrotis & \[
\begin{aligned}
& \text { US: - } \\
& \text { CA: SSC }
\end{aligned}
\] & Inhabits rugged, rocky canyon country in southwestern United States. Found from northern South America and the Caribbean Islands northward to the western United States. In the southwestern United States, populations appear to be scattered. & Probably year-round & Absent. No nesting or foraging habitat on site. \\
\hline
\end{tabular}

Source: Compiled by LSA (2022).

\section*{US: Federal Classification}

FE = Listed as Endangered.

\section*{CA: State Classifications}

SE = State-listed as Endangered.
ST = State-listed as Threatened.
CFP = California Fully Protected. Refers to animals protected
from take under Fish and Game Code Sections 3511, 4700,
5050, and 5515.
SSC = Species of Special Concern. Refers to animals with
vulnerable or seriously declining populations.
SA = Special Animal. Refers to any other animal monitored by
the Natural Diversity Data Base, regardless of its legal or
protection status
ac \(=\) acres
WRCMSHCP = Western Riverside County Multiple Species Habitat Conservation Plan

\subsection*{12.8 INDIRECT EFFECTS}

Indirect impacts to surrounding areas as a result of the project may include, but are not limited to, increased dust, noise, lighting, traffic, and storm water runoff. Because of the small scale of the project and its location within a landscape that is already highly disturbed or developed, substantial indirect impacts to sensitive biological resources are not anticipated.

\subsection*{12.9 CUMULATIVE EFFECTS}

Project construction will contribute to the incremental loss of nonnative grassland in the region, including potential habitat for some special-status species. Cumulative impacts potentially include habitat fragmentation, increased edge effects, reduced habitat quality, and increased wildlife mortality. The WRCMSHCP provides a comprehensive approach to the regional conservation of these habitats and, as a regional plan, serves to provide mitigation for cumulative impacts to covered species. Project compliance and consistency with the WRCMSHCP ensures that any cumulative impacts to covered species are effectively mitigated. Special-status species that are not covered by the WRCMSHCP also benefit from the surveys, conservation, and other measures of the WRCMSHCP because they occupy many of the same habitats.

\subsection*{13.0 REFERENCES}

California Department of Fish and Wildlife (CDFW). 2022. California Natural Diversity Database. RareFind 5 (version 5.2.14). Website: https://wildlife.ca.gov/Data/CNDDB (accessed July 2022).

County of Riverside. 2006. Burrowing Owl Survey Instructions for the Western Riverside Multiple Species Habitat Conservation Plan Area. March 29.

Eriksen, C., and D. Belk. 1999. Fairy Shrimps of California's Puddles, Pools, and Playas. Mad River Press, Inc., Eureka, California.

Google Earth Pro. 2022. Aerial photographs from 10/2003, 12/2003, 12/2005, 1/2006, 1/2007, 11/2009, 3/2011, 1/2013, 3/2013. 11/2013, 4/2014, 2/2016, 10/2016, 2/2018, 12/2018, 12/2020 and 2/2022 acquired in July 2022.

LSA. 2019. Western Riverside County Multiple Species Habitat Conservation Plan Consistency Analysis and Biological Report. Prepared for Adkan Engineers.

Natural Resources Conservation Service (NRCS). n.d. Online Web Soil Survey. Website: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed July 2022).

Osborne, K.H. 2015. First year focused survey for Delhi Sands flower-loving fly (Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California.

Osborne, K.H. 2016. Second year focused survey for Delhi Sands flower-loving fly (Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California.

Osborne, K.H. 2017. Third year focused survey for Delhi Sands flower-loving fly (Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California.

Osborne, K.H. 2018. Fourth year focused survey for Delhi Sands flower-loving fly (Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California.

Roberts Jr., F.M., Scott D. White, Andrew C. Sanders, David E. Bramlet, and Steve Boyd. 2004. The Vascular Plants of Western Riverside County, California. F.M. Roberts Publishing; 1st edition. 192 pages.

United States Fish and Wildlife Service (USFWS). 2012. Endangered and Threatened Wildlife and Plants; Revised Critical Habitat for the Riverside Fairy Shrimp; Final Rule. Federal Register 77: 72070-72140 (December 4, 2012).

\subsection*{14.0 CERTIFICATION STATEMENT}

I hereby certify that the statements furnished in this report present the data and information required for this biological evaluation and the facts, statements, and information presented are true and correct to the best of my knowledge and belief.

Date: October 5, 2022
Signature:

\section*{APPENDIX A}

\section*{FIGURES}

Figure 1: Regional and Project Location
Figure 2: Biological Resources, Site Plan, ESA Fence, and Photograph Locations
Figure 3: Site Photographs
Figure 4: Soils Within Biological Study Area
Figure 5: Burrowing Owl Survey

Industrial Outdoor Ventures

1. View facing northeast. Photograph taken August 12, 2022.

3. View facing south. Photograph taken August 12, 2022.

2. View facing east. Photograph taken August 12, 2022.

4. View facing east. Photograph taken August 12, 2022.

5. View facing west of drainage feature. Photograph taken August 26, 2022.

6. View facing south of culvert at Riverside Avenue. Photograph taken August 12, 2022.

\(\frac{\text { I. }}{\text { :AAHR19011GISIMXD }}\)

\section*{APPENDIX B}

\section*{PLANT AND ANIMAL SPECIES OBSERVED}
* \(=\) Nonnative species

\section*{MAGNOLIID FLOWERING PLANTS}

\section*{Amaranthaceae}

Amaranthus albus
Asteraceae
Ambrosia acanthicarpa
Centaurea melitensis*
Erigeron canadensis
Helianthus annuus
Heterotheca grandiflora
Oncosiphon pilulifer*
Verbesina encelioides*
Boraginaceae
Amsinckia sp.
Brassicaceae
Hirschfeldia incana*
Sisymbrium irio*
Chenopodiaceae
Salsola tragus*
Fabaceae
Acmispon americanus
Lamiaceae
Marrubium vulgare*
Polygonaceae
Eriogonum fasciculatum
Solanaceae
Nicotiana glauca*
MONOCOTS FLOWERING PLANTS
Poaceae
Bromus diandrus*
Bromus rubens
Hordeum murinum*
Schismus barbatus*

\section*{Amaranth Family}

White amaranth

\section*{Sunflower Family}

Annual bur-sage
Maltese star-thistle
Canadian horseweed
Common sunflower
Telegraph weed
Stinknet
Golden crownbeard
Borage Family
Fiddleneck
Mustard Family
Shortpod mustard
London rocket

\section*{Saltbush Family}

Russian thistle
Pea Family
Spanish clover
Mint Family
Horehound
Buckwheat Family
California buckwheat
Nightshade Family
Tree tobacco

\section*{Grass Family}

Ripgut brome
Red brome
Mouse barley
Common Mediterranean grass

\section*{REPTILES}

Phrynosomatidae
Uta stansburiana

\section*{BIRDS}

Columbidae
Columba livia*
Zenaida macroura
Trochilidae
Calypte anna
Accipitridae
Buteo jamaicensis
Tyrannidae
Sayornis nigricans
Corvidae
Corvus brachyrhynchos
Hirundinidae
Petrochelidon pyrrhonota
Mimidae
Mimus polyglottos
Sturnidae
Sturnus vulgaris*
Passeridae
Passer domesticus*
Fringillidae
Haemorhous mexicanus
Spinus psaltria
MAMMALS
Sciuridae
Spermophilus beecheyi
Geomyidae
Thomomys bottae
Leporidae
Sylvilagus audubonii

\section*{Phrynosomatid Lizards}

Common side-blotched lizard

\section*{Pigeons and Doves}

Rock pigeon
Mourning dove

\section*{Hummingbirds}

Anna's hummingbird

\section*{Kites, Hawks, and Eagles}

Red-tailed hawk

\section*{Tyrant Flycatchers}

Black phoebe
Crows and Ravens
American crow
Swallows
Cliff swallow
Mockingbirds and Thrashers
Northern mockingbird

\section*{Starlings}

European starling

\section*{Old World Sparrows}

House sparrow
Finches
House finch
Lesser goldfinch

\section*{Squirrels}

California ground squirrel
Pocket Gophers
Botta's pocket gopher
Rabbits and Hares
Desert cottontail

\section*{APPENDIX C}

\section*{DELHI SANDS FLOWER-LOVING FLY FOCUSED 2017 AND 2018 SURVEYS}

\title{
THIRD YEAR FOCUSED SURVEY FOR DELHI SANDS FLOWER-LOVING FLY \\ (Rhaphiomidas terminatus abdominalis) ON A 7-acre SITE IN MIRA LOMA, RIVERSIDE COUNTY, CALIFORNIA
}

\section*{Prepared for:}

Mr. Keith A. Wade, J. D.
Economic Development Project Manager
Ahern Rentals, Inc.
8350 Eastgate Road
Henderson, NV 891015

Prepared by:

Kendall H. Osborne
Osborne Biological Consulting
6675 Avenue Juan Diaz
Riverside, CA 92509

October 10, 2017

\section*{TABLE OF CONTENTS}
Section Page
SUMMARY 1
INTRODUCTION 1.0 1
NATURAL HISTORY OF THE DSF 2.0 1
DSF Habitat Characteristics 2.1 3
METHODOLOGY 3.0 4
DSF Survey Guidelines 3.1 4
Habitat Assessment Methods 3.2 4
Focused Surveys Methods 3.3 6
RESULTS 4.0 7
Habitat Assessment Results 4.1 7
Survey Results 4.2 7
Existing Environment and Community 4.3 7
Adjacent Lands 4.3.1 7
Topography 4.3.2 7
Soils 4.3.3 7
Vegetation 4.3.4 7
Insect Community 4.3.5 7
CONCLUSIONS 5.0 8
REFERENCES 6.0 8
FIGURES 7.0 9
APPENDIX 8.0 15
Appendix A: plant and insect species 15
Table A1. Plant species 15
Table A2. Insect species 16
Appendix B: Correspondence with USFWS 18
Field notes

\title{
THIRD YEAR FOCUSED SURVEY FOR DELHI SANDS FLOWER-LOVING FLY \\ (Rhaphiomidas terminatus abdominalis) ON A 7-acre SITE IN MIRA LOMA, RIVERSIDE COUNTY, CALIFORNIA
}

Prepared for

\author{
Mr. Keith A. Wade, J. D. \\ Economic Development Project Manager \\ Ahern Rentals, Inc. \\ 8350 Eastgate Road \\ Henderson, NV 891015
}

Prepared by
Kendall H. Osborne
Osborne Biological Consulting
6675 Avenue Juan Diaz
Riverside, CA 92509
The undersigned certify this report to be a complete and accurate account of the findings and conclusions of a third year, 2017 focused survey for Delhi Sands Flower-loving Fly
(Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California.

Ken H. Osborne 6675 Avenue Juan Diaz Riverside, CA 92509

Jeremiah George
\(8691^{\text {th }}\) Street
Manhattan Beach, CA 90266

Rick Rogers
8614 Foothill Blvd.
Apt. 201
Sunland, CA 91040

David K. Faulkner
2321 Gladwick St.
Rancho Dominguez, CA 90220

October 10, 2017

\section*{SUMMARY}

Mr.Keith Wade, on behalf Ahern Rentals, Inc., has requested a third year focused survey to assess the presence or absence of Delhi Sands Flower-Loving Fly (DSF, Rhaphiomidas terminatus abdominalis) on a 7 -acre site in Mira Loma, Riverside County, California. To assess this site for potential as habitat for the federally endangered DSF, and to determine presence or absence of DSF on the site, a habitat evaluation and focused survey for DSF were undertaken in 2015 and 2016 with negative results for DSF, and for a third season in 2017, a series of 24 field visits, totaling 13.60 hours, were conducted on the site from July 11 to September 20, 2017 again with negative results for DSF.

The site has soils mapped as Delhi sands, and consists of open, vacant parcels. Habitat conditions on the site are uniform sand supporting annual grassland and forb vegetation, representing Moderate Quality to High Quality habitat potential for the DSF.

Delhi Sands Flower-Loving Fly was not observed on the site during the course of this third year, 2017 field season. The subject site does not support a population of the Delhi Sands FlowerLoving Fly. No special status plant or animal species (species of concern) were encountered in the course of this survey.

\subsection*{1.0 INTRODUCTION}

This report presents the methods and results of a Delhi Sands Flower-Loving Fly (DSF, Rhaphiomidas terminatus abdominalis) focused survey for a 7-acre site, in Mira Loma, Riverside County. The site has been surveyed for DSF over three consecutive field seasons in 2015, 2016 and 2017 with negative results. The DSF was listed as an endangered species by the U.S. Fish and Wildlife Service on September 23, 1993 (USFWS 1993).

The survey site is located on the Guaste, California USGS 7.5-minute quadrangle map, Township 2 South, Range 6 West, in the southeast corner of Section 6. Latitude ranges from approximately \(34^{\circ} 01^{\prime} 7.4^{\prime \prime}\) to \(34^{\circ} 01^{\prime} 10.8^{\prime \prime} \mathrm{N}\) and Longitude from \(117^{\circ} 32^{\prime} 36.5^{\prime \prime}\) to \(117^{\circ} 23^{\prime} 54.3^{\prime \prime} \mathrm{W}\). Figure 1 shows the general vicinity of the survey site at \(50 \%\) scale on the Guaste, California USGS 7.5minute quadrangle map. Figure 2 displays the survey site at \(200 \%\) scale on this USGS quadrangle. This site is located on the north side of E. Riverside Drive (between E. Riverside Drive and Highway 60), immediately west of Wineville Rd., in Mira Loma, Riverside County, CA.

The DSF was not found on the subject site during the course of surveys for either years 2015, 2016 (Osborne 2015, 2016) or 2017. We conclude that the subject site does not support a population of the Delhi Sands Flower-Loving Fly.

\subsection*{2.0 NATURAL HISTORY OF THE DELHI SANDS FLOWERLOVING FLY}

Delhi Sands Flower-loving fly belongs to a genus (Rhaphiomidas) of flies that have long been known as "giant flower loving flies". There are more than 30 species of these flies, distributed across the southwestern United States and northern Mexico. These flies are huge by the
standards set by most flies - with size among the species ranging from approximately 1.5 centimeters up to 3 , and even 4 centimeters, usually gray, tan, rust or yellow in color. All species of Rhaphiomidas are associated with rather arid, sandy habitats, with most species living on dune systems of inland desert valleys, rivers, deltas, and beach strands. A few species are found in sandy washes, alluvial benches and remnant glacial moraines. Many species of these flies often hover before flowers in the manner of hummingbirds, using a long, thin, tubular proboscis (mouth-part), with which the flies probe for nectar - hence a traditional name "giant flower-loving flies". Smaller flies of the family Apioceridae, once considered very closely related to Rhaphiomidas were formerly called "flower-loving flies".

The DSF is only known to occur in association with Delhi sand deposits, presumably occupied the once extensive dune system of the upper Santa Ana River Valley, including portions of what is now the City of Colton, west through portions of the City of Mira Loma, and south to the Santa Ana River. Today, DSF exists on only a few disjunct sites (USFWS 1997) within a radius of about eight miles in southwestern San Bernardino and northwestern Riverside Counties (Colton, Rialto, Fontana, and Mira Loma). More than 95 percent of known DSF habitat was considered eliminated by development, agriculture and other land management practices by 1993 (Smith 1993, USFWS 1996 in Kingsley 1996), however, this proportion is now nearer 98 to \(99 \%\) due to these ongoing processes. Many of the last remaining fragments of DSF habitat are currently under pressure by land management efforts such as heavy disking, irrigation, manure dumping, and gravel dumping. There is presently an estimated 1,200 acres of habitat that can support this species (USFWS 1997), but this estimate likely includes lands needing extensive habitat restoration.

Adult DSF flight period is typically August and September, when individual adults emerge, reproduce and die. The adult life span of an individual DSF lasts for a few days and adults do not live beyond the flight period (Kiyani 1995). Adult DSF are highly mobile, agile fliers. Male DSF are frequently seen flying low through habitat, using apparently random, circuitous paths around and between shrubs in search of females. Such "cruising" behavior often covers areas on the scale of 1000 square meters in the time span of a minute. Alternatively, male DSF are often seen flying about an open patch of ground (ca 100 square meters) such as along a dirt path or dune blow-out area. Here, males may repetitively land and rest on one or another object (such as small dried plants) in the area, and such rests are interrupted by periods of patrolling flight (apparently territorial) about the spot. When alarmed, these insects tend to fly rapidly in more or less a straight line - often covering distances of 100 meters in less than 6 seconds. Adult DSF are known to nectar at flowers of California buckwheat and California croton.

DSF, like other Rhaphiomidas species, appears to have, at minimum, an annual life cycle (because of the annual flight). However, it has been widely believed that the underground larval/pupal stage may persist for additional years, depending upon various environmental factors such as annual rainfall, food availability and weather conditions during the flight season (many desert Rhaphiomidas species do not appear after a drought year and often, substantial flights occur only sporadically over the years). Though it has long been known that Rhaphiomidas larvae develop underground, until recently the specific biology (larval biology, habits and food requirements) were not known for any Rhaphiomidas species. In 2003, an extensive excavation in known habitat of Rhaphiomidas trochilus (Osborne and Ballmer 2014)
recovered very large and strange looking fly larvae - we inferred as Rhaphiomidas and which were later confirmed to be those of \(R\). trochilus based on DNA analysis. The biology of \(R\). trochilus is likely informative of Rhaphiomidas species in general and DSF in particular. Based on observations of captive R. trochilus larvae (Osborne and Ballmer 2014) it is reasonable to conclude that they are mobile opportunistic predators of soft-bodied, sand-inhabiting insects. Larvae from Sand Ridge, Kern County, CA were maintained in captivity for several months, during which they burrowed actively through sand maintained with slight moisture content (similar to the damp sand where they were found). They fed on larvae of a scarab beetle (Scarabaeidae) and an unidentified bee fly (Diptera: Bombyliidae), which were also recovered from Sand Ridge, and larvae of paper wasps (Polistes sp.) which were removed from their nests and buried in the sand. Captive larvae grew and molted after feeding; but, when not fed for extended periods of time, they molted again - losing weight and size in the process. Some larvae were observed to repeat the growth and "shrinkage" cycle multiple times. One larva survived about 17 months in captivity; because it was captured nine months after the most recent flight season, it was at least two years old at time of death. This larva molted four times while undergoing five cycles of growth and shrinkage driven by variable food availability. Its final dry weight was slightly smaller than the typical dry weight of an adult male \(R\). trochilus. The ability of \(R\). trochilus larvae to molt down during times of scarce food resources could allow an extended and indeterminate larval growth period, but with maturation and appearance of adults always during summer months. This may also explain the common observations that populations of various Rhaphiomidas species apparently exhibit little or no adult emergence in some years (especially years of below normal precipitation).

The brief adult life span and active, random search mate-locating behavior of DSF males (typical of all Rhaphiomidas species) indicates that relatively high population density and/or nearly synchronous adult emergence are likely crucial to survival of populations. Protracted Rhaphiomidas larval biology and staggered (across years) adult emergence must enhance population momentum and cross generational gene flow, and the requirement of abundant and diverse insect prey on which larvae develop - all explain why DSF populations appear as longterm entities (persisting for decades) associated with ecologically intact dune habitats; and why some populations, even though small numbers of adults emerge during flight seasons, eventually fail. These doomed "ghost populations" dwindle down to extinction after overall ecological health of habitat is compromised by various forms of ecological diminishment - ever increasing portions of habitat developed, agricultural use, incessant recreational vehicle use, annual disking of the vegetation community and upper soil column, encroachment of exotic plants, etc.

\subsection*{2.1 DSF Habitat Characteristics}

DSF is typically found in areas of unconsolidated sandy soils (Delhi series) supporting an open community of native and exotic plant species. Dominant plants are typically California buckwheat (Eriogonum fasciculatum), California croton (Croton californicus), telegraph weed (Heterotheca grandiflora), and deerweed (Acmespon scoparius) but many exotic species often dominate on DSF habitat as well. DSF have been found in habitats that do not support these dominant plant species, and plant species composition may not be directly relevant to larval development (due to likely predatory or parasitic habit of DSF larvae). Adult DSF are anecdotally believed to nectar at
flowers of California buckwheat and California croton, though such a habitat is rare at best and not yet documented. Many other plant species are common, including Thurber's eriogonum (Eriogonum thurberi), autumn vinegar weed (Lessingia glandulifera), and sapphire eriastrum (Eriastrum sapphirinum). Non native plant species also occur in DSF habitat (and incidentally, virtually everywhere). DSF habitat also supports other associated insects such as flies and wasps considered as indicator species - Apiocera convergens, Apiocera chrysolasia, Ligyra gozophylax, Campsomeris tolteca, Trielis alcione, and Nemomydas pantherinus. Over 350 insect species have been found on one DSF site, and DSF habitat is typically marked by high abundance and diversity of predatory and parasitic insect groups including many highly specialized families of flies, wasps, bees, beetles, and antlions. The Delhi Sands community is one of California's unique natural communities containing an array of native plants and animals, some of which are found nowhere else. One plant species, Pringle's monardella, (Monardella pringlei) is already presumed extinct, as no living individuals have been observed in many years. Several species of insects and some vertebrates, which inhabit the Delhi Sands dunes system, are as endangered as the DSF, but no one has yet petitioned to have them officially declared Endangered. These include the convergent flower-loving fly Apiocera convergens, a newly discovered species of Jerusalem cricket, (Stenopelmatus sp.), a new species of camel cricket (Ceuthophilus sp.) and an endemic subspecies of butterfly Apodemia mormo nigrescens (Emmel and Emmel 1998). The other apiocerid fly (Apiocera chrysolasia), although known from approximately six general localities, is only common within the Delhi sands.

\subsection*{3.0 METHODOLOGY}

\subsection*{3.1 DSF Survey Guidelines}

Interim General Survey Guidelines for the DSF have been suggested by the USFWS (1996). By following these guidelines, DSF presence or absence survey results may be deemed acceptable to the USFWS (rejection of survey results may result where the guidelines are not followed). The guidelines indicate that focused DSF surveys should be conducted wherever Delhi sands are present within the presumed range of DSF, twice weekly (two days per week) during the single annual flight period (usually from July 1 to September 20). Recent early season DSF discoveries lead the USFWS to recommend a survey season from July 15 to September 20 for 2003 and a survey season from July 1 to September 20 from the year 2004. Weather conditions must be suitable for DSF activity at the times survey work is pursued. The DSF is generally active when daytime temperatures exceed 80 degrees Fahrenheit (\({ }^{\circ} \mathrm{F}\)), but may fly with slightly cooler temperatures in bright sunlight.

\subsection*{3.2 Habitat Assessment Methods}

Osborne examined the subject site to rate its potential to support DSF (Osborne 2015). Photographs were taken of the site from various perspectives. Habitat suitability for DSF was evaluated using indicators of potential DSF habitat including: presence and abundance of loose, unconsolidated Delhi sands with low organic contamination; degree of habitat disturbance indicated by plant species composition and disposition of soil surface, presence and abundance of native sand associated plants such as Croton californicus, Heterotheca grandiflora, Eriogonum thurberi and Eriogonum fasciculatum. These plants are actually more an indication of relative
disturbance regimen - conditions with lesser disturbance being of higher quality for DSF. Presence and abundance of Delhi sands associated insects such as Apiocera convergens, Apiocera chrysolasia and (to a lesser extent) Nemomydas pantherinus, noted throughout the course of focused surveys, serve as further indicators of DSF habitat quality. Potential DSF habitat has been further evaluated on the basis of overall insect diversity and abundance, particularly with respect to sand associated predators and parasitoids.

In the course of previous work Osborne (2003, Osborne et al. 2003) developed a means of rating habitat on site for potential to support DSF, rating areas within any site based on a scale of 1 to 5 , with 5 being the best quality and most suitable habitat based on the following scheme:
1. Developed areas, non-Delhi sands soils with high clay, silt, and/or gravel content. Delhi sands extensively and deeply covered by dumping of exotic soils, rubble, trash, manure, or organic debris. Unsuitable.
2. Delhi sands are present but the soil characteristics include a predominance of exotic soils such as alluvial materials, or predominance of other foreign contamination as gravels, manure, or organic debris. Severe and frequent disturbance (such as a maintenance yard or high use roadbed). Very Low Quality.
3. Moderately contaminated Delhi sands. Delhi sands with moderate to high disturbance (such as annual disking). Sufficient Delhi Sands are present to prevent soil compaction (related to contamination by foreign soils). Some sandy soils exposed on the surface due to fossorial animal activity. Low Quality.
4. Abundant clean Delhi Sands with little or no foreign soils (such as alluvial material) present. Moderate abundance of exposed sands on the soil surface. Low vegetative cover. Evidence of moderate degree of fossorial animal activity by vertebrates and invertebrates. May represent high quality habitat with mild or superficial disturbance. Moderate Quality
5. Sand dune habitat with clean Delhi Sands. High abundance of exposed sands on the soil surface. Low vegetative cover. Evidence (soil surface often gives under foot) of high degree of fossorial animal activity by vertebrates and invertebrates. Sand associated plant and arthropod species may be abundant. High Quality

It should be noted that habitat qualities often vary spatially within a site so that conditions on a site fall within a range of qualities. Further, overall habitat quality is affected by the overall habitat area on a site, such that very small areas diminish the overall habitat value of a site. It is also important to note that suitable habitats, even rated as high quality for DSF, are very rarely actually occupied by DSF. These ratings are more informative on mitigation and conservation measures in the event that DSF is found on any particular site. Use of this habitat rating system is somewhat subjective and best undertaken by a biologist who has extensive experience with Rhaphiomidas species. While investigating the subject site, Osborne subjected the site to an analysis of this kind so as to give a general estimate of overall habitat conditions relevant to DSF potential.

\subsection*{3.3 Focused Survey Methods}

Following the USFWS Interim General Survey Guidelines, we surveyed all portions of the subject site at least twice a week, between the hours of 1000 and 1400 (Table 1). In the case of this survey, site acreage indicated a minimum of 34 minutes per visit, with site visits twice a week. A minimal survey effort thus would require 13.6 hours over the 12 -week season. The client realized the implications of a skipped year of survey, and by July 11, 2017, requested the continued survey. Missed survey dates for the first week of survey were compensated with additional survey efforts in succeeding weeks. For the 2017 field season, the subject site was surveyed on 24 dates, totaling at least 13.6 field hours, with site visits made from July 11, to September 20, 2017. Focused DSF surveys were conducted by Kendall H. Osborne, Permit \# TE-837760-10, Dr. Jeremiah George (under Osborne's permit), Rick Rogers \# TE-844465-1, David K. Faulkner \# TE-838743-6, and Eric S. Renfro \# TE-142436-2, a team which incidentally boasts a combined 243 years of entomological experience. The survey protocol, as set forth in the Interim General Guidelines for the Delhi Sands flower-loving fly survey, is designed to maximize the validity of a presence/absence determination.

Osborne photographed the property from several perspectives to document existing conditions. Notes were taken on vegetative cover and plant species composition, abundance and diversity and species composition of insects and other animals, soil types, degree and nature of disturbance, surface cover, organic content, compaction, current land management practices, existing development, and conditions of surrounding vicinity and proximity of other DSF populations.

Table 1. Dates, personnel, times and conditions for focused DSF survey work (2017).
\begin{tabular}{|c|c|c|c|}
\hline Date & Biologist & Hours & Weather Conditions \\
\hline 7/11/2017 & R. Rogers & 1000-1034 & clear, winds 0-3 mph, \(89-95^{\circ} \mathrm{F}\) \\
\hline 7/14/2017 & K. Osborne & 1325-1400 & clear, winds 5-7 mph, \(94^{\circ} \mathrm{F}\) \\
\hline 7/16/2017 & K. Osborne & 1251-1326 & \(20 \%\) clouds, overcast, winds 2-9 mph, \(92^{\circ} \mathrm{F}\), humid \\
\hline 7/18/2017 & E. Renfro & 1242-1317 & clear, winds 3-6 mph, 91-92 \({ }^{\circ} \mathrm{F}\) \\
\hline 7/21/2017 & D. Faulkner & 1000-1035 & haze/clear, winds 0-1 mph, \(87-88^{\circ} \mathrm{F}\) \\
\hline 7/23/2017 & E. Renfro & 1255-1329 & clear, winds 2-3 mph, \(92-93^{\circ} \mathrm{F}\) \\
\hline 7/25/2017 & K. Osborne & 1310-1344 & 10-25\% clouds, patchy, winds 0-5 mph, \(89^{\circ} \mathrm{F}\) \\
\hline 7/27/2017 & K. Osborne & 1209-1243 & clear, winds \(3-6 \mathrm{mph}, 90^{\circ} \mathrm{F}\) \\
\hline 7/30/2017 & R. Rogers & 1000-1034 & clear, winds 0-4 mph, \(85-86^{\circ} \mathrm{F}\) \\
\hline 8/2/2017 & D. Faulkner & 1000-1034 & 90-95\% clouds, overcast, winds 0-1 mph, \(84-85^{\circ} \mathrm{F}\) \\
\hline 8/5/2017 & E. Renfro & 1255-1325 & clear, winds 1-2 mph, \(91-92^{\circ} \mathrm{F}\) \\
\hline 8/8/2017 & R. Rogers & 1030-1104 & clear, winds 1-4 mph, \(88-90^{\circ} \mathrm{F}\) \\
\hline 8/12/2017 & D. Faulkner & 1000-1034 & clear, haze, winds 1-2 mph, \(80-81^{\circ} \mathrm{F}\) \\
\hline 8/16/2017 & K. Osborne & 1305-1339 & clear, winds 0-4 mph, \(83-84^{\circ} \mathrm{F}\) \\
\hline 8/20/2017 & D. Faulkner & 1000-1034 & \(50 \%\) clouds, haze, patchy, clear, winds 0-1 mph, \(74-76^{\circ} \mathrm{F}\) \\
\hline 8/25/2017 & J. George & 1250-1324 & clear, winds \(10 \mathrm{mph}, 86-88^{\circ} \mathrm{F}\) \\
\hline 8/30/2017 & K. Osborne & 1259-1333 & clear, winds 0-7 mph, \(108^{\circ} \mathrm{F}\) \\
\hline 9/1/2017 & D. Faulkner & 1000-1034 & clear, haze, winds 1-3 mph, \(93-95^{\circ} \mathrm{F}\) \\
\hline 9/4/2017 & R. Rogers & 1010-1044 & \(5 \%\) patchy clouds, winds 0-4 mph, \(89-94^{\circ} \mathrm{F}\) \\
\hline 9/8/2017 & D. Faulkner & 1000-1034 & clear, haze, winds 1-2 mph, \(80-81^{\circ} \mathrm{F}\) \\
\hline 9/10/2017 & K. Osborne & 1000-1034 & clear, calm, 85-89 \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{||c|c|c|l||}
\hline \(9 / 13 / 2017\) & R. Rogers & \(1040-1114\) & clear, winds \(1-5 \mathrm{mph}, 88^{\circ} \mathrm{F}\) \\
\hline \(9 / 16 / 2017\) & K. Osborne & \(1006-1040\) & \(100 \%\) overcast, winds \(3-5 \mathrm{mph}, 73-75^{\circ} \mathrm{F}\) \\
\hline \(9 / 20 / 2017\) & R. Rogers & \(1040-1115\) & \(100 \%\) overcast, winds \(1-3 \mathrm{mph}, 80-82^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}

\subsection*{4.0 RESULTS}

\subsection*{4.1 Survey Results}

Delhi Sands Flower-Loving Fly (DSF, Rhaphiomidas terminatus abdominalis) was not observed on the subject site during the course of this year 2017 survey season. Lists of plants and insects observed during the course of all surveys for 2015 through 2017 are given in the appendix.

\subsection*{4.3 Existing Environment and Community}

\subsection*{4.3.1 Adjacent lands}

The survey area is bounded on the south, E. Riverside Drive, and commercial development beyond. A freeway interchange, Hwy 15 and Hwy 60 is west and north of the site. Municipal Water district facilities are on the eastern boundary of the site.

\subsection*{4.3.2 Topography}

The site is generally flat throughout all portions. Elevation on the site is approximately 800 feet.

\subsection*{4.3.3 Soils}

Knecht (1971) indicated the site to consist of Delhi fine sands. These sands are evident throughout the site.

\subsection*{4.3.4 Vegetation}

The survey area is generally characterized as highly disturbed due to a history of annual disking, and supports low vegetative diversity of an early successional type. Dominant plants are golden crownbeard (Verbesina encelioides), Russian thistle (Salsola tragus) and summer mustard (Hirschfeldia incana). A stand of Eucalyptus lines portions the southern site boundary along E. Riverside Rd. Figures 3-7 present representative views of the survey site and habitats. Figure 8 provides a key as to where on the site these photographs were taken. Table 1 (Appendix A) provides a list of plant species encountered on the survey site. No special status plant species (species of concern) were encountered in the course of this survey. Field conditions on the site did not substantially vary between the 2015, 2016 and 2017 field seasons.

\subsection*{4.3.5 Insect Community}

At least 90 insect species were observed over the course of the 2015, 2016, and 2017 field seasons. A list of most insect species observed is presented in the appendix (Table 2, Appendix A). The
insect community encountered on the subject site was relatively species depauparate as compared to undisturbed ecological communities occurring on Delhi sands, but included Apioceridae, Asilidae, Scoliidae, Mymerliontidae, Crabronidae and Sphecidae. Indicators of potential high quality of DSF habitat found on the subject site during the course of the current survey include Apiocera convergens and Campsomeris tolteca.

\subsection*{5.0 CONCLUSIONS}

Delhi Sands Flower-loving fly is absent from the site. Finding of the presence of Delhi sands on the survey site, and the observations of Mydidae (Nemomydas pantherinus), Apioceridae (A. convergens), and Asilidae, along with the overall habitat ratings made for the site and the historic presence of DSF nearby to the northwest, have suggested some degree of habitat suitability and potential for DSF. After the course of three field seasons of DSF survey with negative results, we conclude that the project site does not support a population of DSF.

\subsection*{6.0 REFERENCES}

Cazier, M. A. 1985. A revision of the North American flies belonging to the genus Rhaphiomidas (Diptera:Apioceridae). Bulletin of the American Museum of Natural History 182(2):181-263.

Hickman, J.C. (ed.). 1993. The Jepson manual: Higher plants of California. University of California Press. Berkeley, California.

Knecht, A.A. 1971. Soil survey of western Riverside area, California. U.S. Department of Agriculture, Soil Conservation Service.

Kingsley, Kenneth J. 1996. Behavior of the Delhi Sands Flower-Loving Fly (Diptera: Mydidae), a Little Known Endangered Species. Ann. Entomol. Soc. Am. 89(6): 883-891.

Kiyani Environmental Consultants. 1995. Principal Investigator's Annual Report, Delhi Sands Flower-loving fly (Rhaphiomidas terminatus abdominalis) Studies at Colton, California. Prepared for San Bernardino County and U.S. Fish and Wildlife Service, Carlsbad, CA. 25+ pp.

Munz, P.A. 1974. A flora of southern California. University of California Press, Berkeley, California.

Osborne, K. H. 2003. Delhi Sands Flower-loving fly Habitat Assessment for the Hermosa Cemetery, Colton. Prepared for Inland Memorial Cremations and Burial. Submitted to the U.S. Fish and Wildlife Service, CA.

Osborne, K. H. 2015. First year focused survey for Delhi Sands Flower-loving Fly (Rhaphiomidas terminatus abdominalis) on a 7 -acre site, Mira Loma, Riverside County, California. Submitted to the U.S. Fish and Wildlife Service, CA. October 2015.

Osborne, K. H. 2016. Second year focused survey for Delhi Sands Flower-loving Fly (Rhaphiomidas terminatus abdominalis) on a 7 -acre site, Mira Loma, Riverside County, California. Submitted to the U.S. Fish and Wildlife Service, CA. October 2016.

Osborne, K. H., G. R. Ballmer, and T. McGill. 2003. DSF Habitat Assessment for the Proposed Mary Vagle Conservation Area. Prepared for the City of Fontana. Submitted to the U.S. Fish and Wildlife Service, CA.

Osborne, K. H. and G. R. Ballmer. 2014. A Petition to the United States Department of the Interior, Fish and Wildlife Service, for emergency action to list an endangered species pursuant to the conditions and regulations of the Federal Endangered Species Act: For the San Joaquin Valley Giant Flower-loving Fly (Rhaphiomidas trochilus). Submitted June, 2014.

Rogers, R. and M. Mattoni. 1993. Observations on the natural history and conservation biology of the giant flower-loving flies, Rhaphiomidas (Diptera:Apioceridae). Dipterologial Research 4(1-2):21-34.
U.S. Fish and Wildlife Service. 1993. Endangered and Threatened Wildlife and Plants: Determination of Endangered Status for the Delhi Sands Flower-loving Fly. U.S. Department of Interior. Federal Register, 58 (183): 49881-49887.
U.S. Fish and Wildlife Service. 1996. Delhi Sands Flower-loving Fly Draft Presence/Absence Survey Guidelines. December 30.
U.S. Fish and Wildlife Service. 1997. Delhi sands Flower-loving Fly (Rhaphiomidas terminatus abdominalis) Recovery Plan. U.S. Fish and Wildlife Service, Portland, OR. 51 pp .

\subsection*{7.0 FIGURES}

\(=1\) mile

Figure 1. General vicinity of survey site, Guaste, California USGS 7.5" quadrangle at \(50 \%\). 7 -acre site is outlined in blue and highlighted in yellow (arrow).

Figure 2. Survey site, Guaste, California USGS 7.5" quadrangle at 200\%. 7 -acre site is outlined in blue and highlighted in yellow.

Figure 3. Photograph (2016) of the eastern boundary of the survey site (wall at left), looking to the north from the side of E. Riverside Dr.

Figure 4. Photograph (2017) of eastern portions of the survey site.. View looks west northwest from the southern edge of the site near its eastern end (along E. Riverside Dr.). Eucalyptus stands which line the roadside are seen at right. Part of the Hwy 15-Hwy 60 interchange is seen in the background off site.

Figure 5. Photograph (2016) of central portions of the survey site. View looks north from the central, southern edge of the site (along E. Riverside Dr.). Part of the Hwy 15-Hwy 60 interchange is seen in the background off site. The fence at left is not a site boundary, but merely crosses the site, separating parcels.

Figure 6 Photograph (2016) of the western portion of the site looking to the east from the southwestern corner of the site. Eucalyptus stands along E. Riverside Dr. are seen at left.

Figure 7. Photograph (2017) of central portions of the survey site. View looks east from the central, southern edge of the site (along E. Riverside Rd.).

Figure 8. Approximate locations around survey site from which photographs were taken (base of arrows). Arrow indicates the direction a photograph was taken. Numbers next to the arrows indicate figure numbers (Figures 3-7).

\subsection*{8.0 APPENDIX}

\section*{Appendix A}

Table A1. Plant species encountered on the survey site (2015, 2016 and 2017).

\section*{FAMILY \\ ASTERACEAE}

Western ragweed
thistle
horseweed
sunflower
telegraphweed
prickly lettus
golden crownbeard
BORAGINACEAE
ranchers fiddleneck
BRASSICACEAE
shortpod mustard
London rocket
CHENOPODIACEAE
lamb's quarters
Russian thistle
EUPHORBIACEAE
California croton
FABACEAE
Spanish clover
alfalfa
MYRTACEAE
Eucalyptus
POLYGONACEAE
Cal buckwheat Eriogonum fasciculatum
ZYGOPHYLLACEAE
Puncture vine

\section*{POACEAE}
slender oat
Foxtail chess/red brome
Shismus

Tribulus terrestris
Species

Ambrosia acanthicarpa
Ciricium
Conyza canadensis
Helianthus annua
Heterotheca grandiflora
Lactuca serriola
Verbesina encelioides

Amsinkia intermedia
Hirschfeldia incana
Sisymbrium irio
Chenopodium album
Salsola tragus
Croton californicus
Lotus purshianus
Medicago alba
Eucalyptus

Avena barbata
Bromus madritensis
Schismus barbatus

Table A2. Insects encountered on the survey site (2015, 2016 and 2017).
\begin{tabular}{|c|c|c|}
\hline ORDER & FAMILY & Species \\
\hline \multirow[t]{24}{*}{Diptera} & Mydidae & Nemomydas pantherinus \\
\hline & Apioceridae & Apiocera convergens \\
\hline & Asilidae & Efferia albibarbis \\
\hline & & Mallophora fautrix \\
\hline & & Stenopogon brevisculus \\
\hline & & Stenopogon lomae \\
\hline & Bombyliidae & Geron sp. \\
\hline & & Neodiplocampta mira \\
\hline & & Poecilognathus \\
\hline & & Poecilognathus sulphura \\
\hline & & Thyridanthrax atrata \\
\hline & & Villa molitor \\
\hline & Syrphidae & Baccha clavata \\
\hline & & Copestylum mexicana \\
\hline & & Eristalis aenea \\
\hline & & Paragus tibialis \\
\hline & & Pseudodoros clavatus \\
\hline & & Syritta pipiens \\
\hline & Muscidae & Musca domestica \\
\hline & Sarcophagidae & Sarcophaga sp \\
\hline & Tachinidae & Archytas sp. \\
\hline & & Trichopoda pennipes \\
\hline & Tephritidae & unidentified \\
\hline & Dolichopodidae & Condylostylus pilicornis \\
\hline \multirow[t]{18}{*}{Hymenoptera} & Crabionidae & Gastrosericina sp. \\
\hline & & Tachytes distinctus \\
\hline & & Bembix comatus \\
\hline & & Philanthus multimaculatus \\
\hline & Sphecidae & Ammophila azteca \\
\hline & & Haplomelinus albitomentosus \\
\hline & & Prionyx parkeri \\
\hline & & Prionyx thomae \\
\hline & & Sceliphron caementarium \\
\hline & Scoliidae & Campsomeris tolteca \\
\hline & Vespidae & Polistes apachus \\
\hline & Andrenidae & Perdita \\
\hline & Apidae & Melissodes sp. \\
\hline & & Svastra texana \\
\hline & & Anthophora \\
\hline & & Apis mellifera \\
\hline & & Diadasia \\
\hline & Halictidae & Agapostemon \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Hymenoptera} & Halictidae & Lasioglossum \\
\hline & Megachilidae & unidentified \\
\hline & Formicidae & Pogonomyrmex californicus \\
\hline \multirow[t]{6}{*}{Coleoptera} & Chrysomelidae & Coscinoptera aeneipennis Chrysophtharta \\
\hline & Coccinellidae & Coccinella septempunctata Hippodamia convergens \\
\hline & Curculionidae & Apleurus albitomentosa \\
\hline & Meloidae & Nemognatha lurida \\
\hline & Scarabaeidae & Cotinus mutabilis \\
\hline & Tenebrionidae & Eleodes gracilis \\
\hline \multirow[t]{2}{*}{Neuroptera} & \multirow[t]{2}{*}{Mymerliontidae} & Brachynemurus \\
\hline & & Brachynemurus \\
\hline \multirow[t]{14}{*}{Lepidoptera} & Danaidae & Danaus plexippus \\
\hline & \multirow[t]{3}{*}{Nymphalidae} & Junonia coenia \\
\hline & & Vanessa cardui \\
\hline & & Vanessa virginiensis \\
\hline & \multirow[t]{3}{*}{Pieridae} & Colias eurytheme \\
\hline & & Pieris rapae \\
\hline & & Pontia protodice \\
\hline & \multirow[t]{3}{*}{Lycaenidae} & Brephidium exilis \\
\hline & & Leptotes marina \\
\hline & & Strymon melinus \\
\hline & \multirow[t]{3}{*}{Hesperiidae} & Hylephila phyleus \\
\hline & & Lerodia eufala \\
\hline & & Pyrgus albescens \\
\hline & Arctiidae & Estigmene acrea \\
\hline \multirow[t]{8}{*}{Heteroptera (Hemiptera)} & Largidae & Largus sp. \\
\hline & \multirow[t]{4}{*}{Pentatomidae} & Bagrada hilaris \\
\hline & & Chlorochroa sayi \\
\hline & & Chlorochroa uhleri \\
\hline & & Trichopepla aurorae \\
\hline & Reduviidae & Sinea diadema \\
\hline & Reduviidae & Zelus renardii \\
\hline & Scutelleridae & Euptychodera corrugata \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Heteroptera \\
(Auchenorrhyncha)
\end{tabular}} & & \\
\hline & Cicadellidae & Homolodisca lacerta \\
\hline & Membracidae & unidentified \\
\hline \multirow[t]{4}{*}{Orthoptera} & \multirow[t]{4}{*}{Acrididae} & Psoloessa thamnogaea \\
\hline & & Schistocerca nitens \\
\hline & & Trimerotropis californica \\
\hline & & Trimerotropis pallidipennis \\
\hline Mantodea & Mantidae & Iris oratoria \\
\hline \multirow[t]{2}{*}{Odonata} & Aeshnidae & Anax junius \\
\hline & & Aeshna multicolor \\
\hline
\end{tabular}

\section*{Appendix B}

\section*{Correspondence with USFWS}

Field Notes

 If you have any questions or comments regarding this survey, please feel free to
contact me.
The site may be located on the Guasti, California USGS 7.5-minute quadrangle map,
Township 2 South, Range 6 West, on the southeastern corner of Section 6 . The attached
map shows the site on a portion of this map at \(200 \%\) scale.
This site is located on the north side of Riverside Avenue and south of the southeastern
quadrant of the Hwy I-15/Hwy 60 interchange (the site being sandwiched between Riverside
Ave., and the freeway interchange). these surveys. In response, Mr. Wade, representing Ahern Rentals, Inc., has requested we
continue the surveys for this season. missed season of DSF survey and USFWS policy regarding maintenance of current status of

for the missed survey dates from the first week of July
additional dates of survey during the second and third weeks of July in order to compensate

 I write to notify you of intent to conduct the third year of protocol survey for Delhi Sands
Giant Flower-loving fly (Rhaphiomidas terminatus abdminalis) on an approximately 7 -acre Dear Ms. Love,
RE: Intent to conduct the third year protocol survey for Delhi Sands Giant Flower-loving fly
on a 7 -acre site in Mira Loma, Riverside County. Request for protocol deviation.
Carlsbad, CA 92008 Fish and Wildife Service
2177 Salk Avenue, Ste 250 USFWS Carlsbad Field Office
Fish and Wildlife Service Attn: Ms. Stacey Love.
USFWS Carlsbad Field LIOZ 'I I K [n]
Riverside, CA 92509
(951) 360-6461 6675 Avenue Juan Diaz Osborne Biological Consulting
Ken H. Osborne (permit \#TE837760-10)

General vicinity of survey site, Guasti, California USGS 7.5" quadrangle at \(200 \%\). Approximately 7-acre site is highlighted in yellow.

Re: Notification for third year of fly surveys for 7-acre Mira Loma site; and request deviation from protocol.

HG
Hund, Geary
Fri 7/14, 9:22 PM
You;
Karin Cleary-Rose (karin_cleary-rose@fws.gov);
stacey love (stacey_love@fws.gov);
Keith Wade (KEITHAW@ahern.com)

Dear Ken,
Disregard my request for the details of your make-up surveys. I found them in you attached notification letter. Your proposal is acceptable.

Geary

On Fri, Jul 14, 2017 at 2:18 PM, Hund, Geary <geary hund@fws.gov> wrote:

Dear Mr. Osborne,

Thank you for the notification. Please consider this email our approval for you to deviate from the survey guidelines for the Delhi Sands flower-loving fly as requested in your email dated July 11, 2017:
"I also request permission to deviate from protocol in order to perform make-up surveys to compensate for the lost first week of July. "

Please provide me with the details of your proposal for make-up surveys.
Thank you,

Geary

On Tue, Jul 11, 2017 at 8:18 AM, Ken Osborne <euproserpinus@msn.com> wrote:

Good morning Ms. Love,

Please find attached my notification of intent to conduct a third year of surveys for the Delhi Sands Flower-loving fly on the 7 -acre site in Mira Loma we have investigated over the previous two years, on behalf of Ahern Rentals, Inc. I also request permission to deviate from protocol in order to perform make-up surveys to compensate for the lost first week of July. Recently seeing this site not developed after two consecutive years of fly surveys, and the dire implications for my client's project after a missed season of survey !

Thank you,

Ken

Ken H. Osborne
Osborne Biological Consulting
6675 Avenue Juan Diaz
Riverside, CA 92509
(951) 360-6461

Delhi sands flower-loving fly - General Field Form
Datafulyll, 2017 Overall Time 34 min .
Surveyor Rick Rogerss Survey Partner(s) \(\qquad\)
Mileage 44467
Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note Bembix comate Lu sio glossmu sp. Cotinvs Liris sp. (smi). Pievis pito olice, Nemoqnat ina sp. Motestovies spa (sm, brown): 'Strymon melinve, Largivs spo, Atmolodizica
\(\qquad\) -
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)

Comments:
entire cevea plowed!

\section*{Delhi sands flower-loving fly - General Field Form}
\[
\text { Date } V \text { lyle, } 20 / 6 \text { Overall Time } 34 \min \quad \text { Job DFA/k(Coolerp) }
\]

Surveyor Rick Rogers
Survey Partner (s)
0
Mileage 180882
Weather:

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .
\(\qquad\)
Other arthropods (general) Bombyliids \(\square\) Asilids \(\square\)
Mydids Apiocerids

Sphecids Pompillids Scoliids Chrysidids Other insects of note Efferia albiberbis, Aplouros albitariuntose, Sine sp., Cilia molitor, Brachymyrmex ap (If. Antlion)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
-

\section*{Comments:}
\(\qquad\) .
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date \(7 / 14 / 17\) Overall Time \(1^{25}-2\) er
vob Ahovn Ranke.
Surveyor Survey Partner(s) \(\qquad\)
Mileage 5229 on ssto.
Weather:

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids
\(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysi/dids \(\qquad\)
Other insects of note \(\qquad\)
Mallphyy, Baguady, Bembix. Eacdrptus Chorysone 1.-d Meloid.' Tp.
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
blourly disked.

Delhi sands flower-loving fly - General Field Form
Date \(7 / 16 / 17\) Overall Time \(1251-126\) Job A hern
Surveyor ONO

Survey Partner (s) \(\theta\)

Mileage
8296
Weather:

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .
Other arthropods (general) Bombyliids ___ Asilids \(\qquad\) Mydids Apiocerids Sphecids \(\qquad\) Pompillids Scoliids Chrysidids Other insects of note Dago Musca,
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: Mo RNDO

\section*{Comments:}
\(\qquad\) -
\(\qquad\)

Delhi sands flower-loving fly - General Form

\section*{(20 mm)}

Date \(7 / 18 / 2017\) Overall Time \(12: 42 \sim 1: 17\)
Surveyor Eric Ronvio Survey Partners) N/ N
Overall Mileage \(\qquad\)
Weather:

Site\#

Biological elements:
Rhaphiomidas terminatus?
 sex \(\qquad\) numbers \(\qquad\) -

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids \(\qquad\) Apiocerids \(\qquad\)
Pompillids Solids Sphecids \(\qquad\)
Other insects of note \(\qquad\) Chrysidids \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
Vertebrates:

\section*{Delhi sands flower-loving fly - General Field Form}

Date 21juy2017 Overall Time 35minutes Job hern
Surveyor David k. FAULKNER \(\qquad\) Survey Partner (s) \(\qquad\)
Mileage \(\qquad\) (194238) 63 mi from RB.

Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \% Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start 1000 & \$haze & Clear patchy overcast drizzle shower & \(0-1\) & \(87^{\circ}\) \\
\hline & & clear patchy overcast drizzle shower & & \\
\hline & & clear patchy overcast drizzle shower & & \\
\hline Stop 1035 & \(\Phi\) haze & clear patchy overcast drizzle shower & \(0-1\) & \(88^{\circ}\) \\
\hline
\end{tabular}

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids \(\qquad\) Apiocerids Sphecids
Pompillids Scoliids ids Chrysidids \(\qquad\)
Other insects of note Bembix, Pagonomyerex, As:1: \& \& (brawn) longhand Bees on \(\frac{\text { Bon }}{\text { cosines. }}\)
\(\qquad\)
\(\qquad\)
Plants: Croton \(\checkmark\) Telegraph weed Eriogonum fasciculatum \(\qquad\)
Eriogonum thurberi \(\qquad\) other Eriogonum \(\qquad\) Oenothera \(\qquad\)
Camissonia \(\qquad\) Eriastrum \(\qquad\)
Others: Tumbleweed, ven posies

Vertebrates: Lizards
\(\qquad\)
\(\square\)
Comments:
\[
\text { Disked mbitat. }>25 \text { croton }
\] \(-\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

Mileage \(\qquad\)
Weather:

\section*{Biological elements:}

Rhaphiomidas terminatus ?
 sex \(\qquad\) .
Other arthropods (general) BombyliidsAsilids\(\checkmark\)MydidsApiocerids
\(\qquad\) Sphecids \(\qquad\) Pompillids
\(\qquad\)
Plants: Crorm Telegraph weed Eriogonum favciculatum
Eriosghum tharbery \(\qquad\) other Eriogonum \(\qquad\) Oenothera
(Cumssontia Eriatram \(\qquad\)
Others: numbers :

Vertebrates: \(\qquad\)
\(\qquad\)

\section*{Comments}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \(-\quad-\quad\) ———.

\section*{Delhi sands flower-loving fly - General Field Form}
Date \(7 / 25 / 12\) Overall Time \(1^{10} \sim 1^{44}\) Job Ahern Surveyor K Survey Partners) or erne Mileage \(\quad 9846\)

\section*{Weather:}

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids Apiocerids Sphecids
Pompillids Scoliids \(\qquad\) Chrysidids \(\qquad\) Other insects of note
\(\qquad\)

Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Comments:}
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids
 Mydids Apiocerids Scoliids Sphecids Pompillids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note

Vertebrates: Copowtanl

\section*{Comments:}
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date Juk 30,2017 Overall Time \(3 / 4\) пй
\(\qquad\) RickRegurs Survey Partner(s) \(\qquad\)
Surveyor
\(\qquad\) 11480
Mileage
Weather:

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .
\(\qquad\)
\(\qquad\)

Other arthropods (general)
Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insects of note Pieris protoikfe, Cotinus, Newognatha (urida
Meleciates sp. (shi.brown), Dia dasia 1 y A qapostemon texana
Aschnaa inu tíeolor' cocinoplura dupropeunis (Chimsomelidas) Ammoplita azteca, Pavaqus tibiotiss, Pantatia flavescens
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)

Comments:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form}
Date 2 Aug zit Overall Time Job (5S.TES) PlHERN

Surveyor David K. FAULKNER Survey Partner (s) \(\phi\)

Mileage \(\qquad\) (195542) (64 miles)

Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \(\%\) Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start 1000 & \(90 \%\) & clear patchy overcast) drizzle shower & \(\varnothing\) & \(84^{\circ}\) \\
\hline & & clear patchy overcast drizzle shower & & \\
\hline & & clear patchy overcast drizzle shower & & \\
\hline Stop 1034 & \(95 \%\) & clear patchy overcast drizzle shower & \(0-1\) & \(85^{\circ}\) \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids Mydids Apiocerids \(\qquad\) Sphecids Pompillids \(\qquad\) Scoliids
\(\qquad\)
Other insects of note MATtid (imenatire), long.hom baa. Bembix, Fephritid fruitily
\(\qquad\)
\(\qquad\)
Plants: Croton _ Telegraph weed __ Eriogonum fasciculatum \(\qquad\) Eriogonum thurberi \(\qquad\) other Eriogonum \(\qquad\) Oenothera \(\qquad\)
Camissonia \(\qquad\) Eriastrum \(\qquad\)
Others: \(\qquad\)
- \(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\) -
\(\qquad\) \(\longrightarrow\).
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \(\longrightarrow\).

Delhi sands flower-loving fly - General Field Form
Date \(7 / 5 / 2017\) Overall Time \(12: 55-1: 25\) Job there

Surveyor \(\qquad\) Survey Partners) N/A

Mileage \(\qquad\)
Weather:

\section*{Biological elements:}

Rhaphiomidas terminatus?

\(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids Asilids Mydids Apiocerids \(\checkmark\) Sphecids
Pompillids as Apiocers Megachilide clap Sp) Other insects of note Apiocera convergent
\(\qquad\)
\(\qquad\)
Plants Telegraph weed Eriogomum fasciculatum
Eriogonum thurheri \(\qquad\) other Eriogonumi Oenothera
Camissonia \(\qquad\) Eriastrum
Others: \(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\square\)

\section*{Comments:}
\(\qquad\) \(\rightarrow\)
\(\qquad\) -
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form}
Date \(\operatorname{Aog} 8,2017\) Overall Time 34 min.
Job \(\qquad\) Alvern
surveyor Rick Rogers survey Partner(s) \(\qquad\)
Mileage 46489

Weather:

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) -
\(\qquad\)

Other arthropods (general) Bombyliids \(\qquad\) Asilids
Mydids Apiocerids Scoliids Sphecids Pompillids ids Chrysidids
Other insects of note Leptodes marina, Pieciss peotodigu Nemognatha lurida,
Homolodiscu Lauqus sp., Peneite.cp., Puradus tibidis. Homelodiscu Lauqus spi, pereite cpi, Pualdus tibindis, mullophore flutrix, Lim's'spylwis teratorie (nycuph),
\(\qquad\) --
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\) -

\section*{Comments:}
\(\qquad\) .
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form}
Date 12Aug2017 Overall Time Job AHERN

Surveyor David K. FAULKNER Survey Partner (s) \(\phi\)

Mileage \(\qquad\) (196883)

Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \% Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start 1000 & \(\varnothing\) HAZE & Clear patchy overcast drizzle shower & \(1-2\) & \(80^{\circ}\) \\
\hline & & clear patchy overcast drizzle shower & & \\
\hline & & clear patchy overcast drizzle shower & & \\
\hline Stop 1034 & Ø HAZE & clear patchy overcast drizzle shower & \(1-2\) & \(81^{\circ}\) \\
\hline
\end{tabular}

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .
Other arthropods (general) Bombyliids Asilids Mydids
 Apiocerids
 Sphecids
 \(\qquad\)
 Pompillids
 \(\qquad\)
 Scoliids
 Chrysidids

Other insects of note Bembir, Pogomymey, melliedes bees, Vespids.
\(\qquad\)
\(\qquad\)
Plants: Croton \(\sim\) Telegraph weed __ Eriogonum fasciculatum \(\qquad\)
Eriogonum thurberi \(\qquad\) other Eriogonum \(\qquad\) Oenothera \(\qquad\)
\(\qquad\)
Others: \(\qquad\)
\(\square\)
\(\qquad\)
Vertebrates: Red-TAL Hawk, ground spume

\section*{Comments:}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date \(8 / 16 / 17\) Overall Time \(105-139\)
Surveyor \(\qquad\)
LAOS Survey Partners) \(\qquad\)
Mileage \(\qquad\) 1672

Weather:
\begin{tabular}{|l|c|c|c|c|c|}
\hline Time (24 hr) & \% Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start \(/ 05\) & \(\propto\) & clear patchy & overcast drizzle shower & 0 & \(8 \&\) \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline Stop \(/ 39\) & 0 & Clear patchy & overcast drizzle shower & \(2-4\) & 83 \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insects of note \(\qquad\) xylacepes, VEG.
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
Generally very few insects an this dishol.e.E.
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Date 20 Augze17 Overall Time} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Survey Partner(s) \(\chi^{\text {Job }}\)}} \\
\hline \multicolumn{4}{|l|}{Surveyor DAvidk. FAULKNGR} & & & \\
\hline \multicolumn{4}{|l|}{Mileage} & \multicolumn{3}{|c|}{(198093)} \\
\hline \multicolumn{7}{|l|}{Weather:} \\
\hline Time (24 hr) & \% Cloud & & Sky & & Winds (mph) & Temp (F) \\
\hline Start 1000 & 50\% & clear 『atchy & overcast & drizzle shower & \(0-1\) & \(74^{\circ}\) \\
\hline 1015 & \(\varnothing\) Haze & (clear) patchy & overcast & drizzle shower & \(0-1\) & \(74^{\circ}\) \\
\hline & & clear patchy & overcast & drizzle shower & & \\
\hline Stop 1034 & \(\phi\) & Clear patchy & overcast & drizzle shower & \(0-1\) & \(76^{\circ}\) \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .
\(\qquad\)

Other arthropods (general) Bombyliids \(\checkmark\) Asilids \(\qquad\) Mydids __ Apiocerids \(\qquad\) Sphecids
Pompillids Scoliids Chrysidids \(\qquad\)
Other insects of note Membacids, MierobombyZiids, Zembirf \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Vertebrates:}
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Comments:}
\(\qquad\) -
\(\qquad\) -
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date \(8 / 25 / 2017\) Overall Time \(\qquad\) Job AHERN

Surveyor Jeremiah a George Survey Partners) \(\qquad\)
Mileage \(\qquad\)
Weather:

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .
\(\qquad\)
\(\qquad\)
Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note ienplaio of., perdith on croton, large neurop-agu Dave, Barber, \(\qquad\)
\(\qquad\)
\(\qquad\)
Plants: Croton \(\checkmark\) Telegraph weed _ Eriogonum fasciculatum \(\checkmark\) - Adjacent on cuctrans Eriogonum thurberi \(\qquad\) other Eriogonum \(\qquad\) Oenothera \(\qquad\) PROM.
Camissonia \(\qquad\) Eriastrum \(\qquad\)
Others: \(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\) \(M_{1}\)
Kor Dissed.

Comments:

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date \(8 / 30 / 2017\) Overall Time \(12.59-133\)
Job Ahern
Surveyor \(\qquad\) CHOShorue Survey Partners) \(\qquad\)
Mileage \(\qquad\) 3286

Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \(\%\) Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start \(/ 2 \mathbf{3 9}\) & 2 & Clear patchy & overcast drizzle shower & \(6-5\) & 108 \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline Stop 133 & 0 & Clear & patchy & overcast drizzle shower & \(4-7\) \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids \(\qquad\) Other insects of note \(\qquad\) Pselocar
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: ROMO. Data,
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\) -
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

Date \(\qquad\) JOb AHERN

Surveyor \(\qquad\) DAvid K. FAULKAER Survey Partner (s) \(\qquad\)
Mileage \(\qquad\) (200048)

Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \% Cloud & \multicolumn{3}{|c|}{ Sky } & Winds (mph) \\
\hline Start 1000 & \(\varnothing\) & HazE & Clear & patchy & overcast \\
\hline & & drizzle & shower & \(1-2\) & \(93^{\circ}\) \\
\hline & & clear & patchy & overcast & drizzle \\
\hline & shower & & \\
\hline Stop 1034 & \(\varnothing\) Haze & clear & patchy & overcast & drizzle \\
shower & & & \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insects of note \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Plants: Croton \(_\)Telegraph weed \(\qquad\) Eriogonum fasciculatum \(\qquad\)
Eriogonum thurberi \(\qquad\) other Eriogonum \(\qquad\) Oenothera \(\qquad\)
Camissonia \(\qquad\) Eriastrum
Others: only plants are 720 croton, Sunflowers moste, along force.
\(\qquad\)
\(\qquad\)
Vertebrates: Red-tail HAwK, Small Lizards
\(\qquad\)
\(\qquad\)
Comments:
FEW insects - Ven Limited vegetation

Delhi sands flower-loving fly - General Field Form
Date Sept 4,2017 Overall Time 34 min. Job Ahern

Surveyor Rick Rogers
Survey Partner(s) \(\qquad\)
Mileage 49944

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\downarrow\) Asilids \(\qquad\) Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids Pompillids Scoliids Chrysidids Other insects of note Melessodes gy. (smi, brown), Aqapostenon texana, Pantalla hymeana, pantalla flavercens, Gexon Sp, Puadosia sp. H.phyloewn, Eristalinus aeneus, (ris oratasia (mymph)

Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Comments:}
\(\qquad\) .
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) .

\section*{Delhi sands flower-loving fly - General Field Form}

Date 8 Sepizur 7 Overall Time \(\qquad\) JOb AHERN
Surveyor \(\qquad\)
\(\qquad\) Survey Partner (s) \(\qquad\)
Mileage \(\qquad\) (200357)

Weather:

\section*{Biological elements:}

Rhaphiomidas terminatus ? time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids Apiocerids Sphecids Pompillids Apiocerids Scoliids
\(\qquad\) Other insects of note Berbiy, M. domestic, Small bes. Chrysidids
\(\qquad\) Others:

Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
Very lithe = croton still in flower -
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form}
\[
\begin{aligned}
& \text { Date ?/10/2017 Overall Time } 10^{\omega}-10^{34} \quad \text { Job } 1 \rightarrow 400 \mathrm{~m} \\
& \text { Surveyor } \quad \text { Survey Partner (s) }
\end{aligned}
\]

Mileage \(\qquad\)
Weather:

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids Apiocerids Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids Chrysidids \(\qquad\)
Other insects of note \(\qquad\) Musca, Sercephega
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\square\)

\section*{Comments:}
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date Sent. 3,2017 Overall Time 34 min .
surveyor Rick Rogers Survey Partners) \(\qquad\)
mileage \(5 / 205\)
Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids
Scoliids \(\qquad\)
Chrysidids
Other insect of note Me e le spodes sp. (smbrown), Homolociisca sp. pantalla fluvescens, Aqapos yemen texans, Cynthia cardie, Enstalinus anne ers
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form}

Date \(8 / 16 / 20.7\) Overall Time \(/ 0^{\circ 6} 10^{40}\) Job Ahern

Surveyor \(\qquad\) Survey Partner (s)

Mileage \(\qquad\) 4283 am sit.

Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids
Mydids
Apiocerids
 Sphecids Pompillids Scoliids Chrysidids \(\qquad\)
Other insects of note Musca, leis, Maficeles. Lavgid, Bract Cher somelid Bqubix \(\sqrt{ }\) lotenlis
\(\qquad\)
Plants: Croton__ Telegraph weed other Eriogonum Oenothera
Camissonia Eriastrum
Others:
\(\qquad\)
Vertebrates: \(\qquad\)

\section*{Comments:}

Delhi sands flower-loving fly - General Field Form
DateSept 20,2017 Overall Time 34 min .
Surveyor R2ck Rogery Survey Partner(s) \(\qquad\)
Mileage 52332
Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insegts of note Melessodes sp. (smibrown), Trachigidle. Ssm, grus), Agaportemen texana Aqapostemontexana,
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)
.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\title{
FOURTH YEAR FOCUSED SURVEY FOR DELHI SANDS FLOWER-LOVING FLY (Rhaphiomidas terminatus abdominalis) ON A 7-acre SITE IN MIRA LOMA, RIVERSIDE COUNTY, CALIFORNIA
}

Prepared for:
Mr. Keith A. Wade, J. D.
Economic Development Project Manager
Ahern Rentals, Inc.
8350 Eastgate Road
Henderson, NV 891015

Prepared by:
Kendall H. Osborne
Osborne Biological Consulting
6675 Avenue Juan Diaz
Riverside, CA 92509

October 19, 2018

\section*{TABLE OF CONTENTS}
\begin{tabular}{|c|c|c|}
\hline & Section & Page \\
\hline SUMMARY & & 1 \\
\hline INTRODUCTION & 1.0 & 1 \\
\hline NATURAL HISTORY OF THE DSF & 2.0 & 1 \\
\hline DSF Habitat Characteristics & 2.1 & 3 \\
\hline METHODOLOGY & 3.0 & 4 \\
\hline DSF Survey Guidelines & 3.1 & 4 \\
\hline Habitat Assessment Methods & 3.2 & 4 \\
\hline Focused Surveys Methods & 3.3 & 6 \\
\hline RESULTS & 4.0 & 7 \\
\hline Habitat Assessment Results & 4.1 & 7 \\
\hline Survey Results & 4.2 & 7 \\
\hline Existing Environment and Community & 4.3 & 7 \\
\hline Adjacent Lands & 4.3.1 & 7 \\
\hline Topography & 4.3.2 & 7 \\
\hline Soils & 4.3.3 & 7 \\
\hline Vegetation & 4.3.4 & 7 \\
\hline Insect Community & 4.3.5 & 7 \\
\hline CONCLUSIONS & 5.0 & 8 \\
\hline REFERENCES & 6.0 & 8 \\
\hline FIGURES & 7.0 & 9 \\
\hline APPENDIX & 8.0 & 15 \\
\hline \multicolumn{2}{|l|}{Appendix A: plant and insect species} & 15 \\
\hline Table A1. Plant species & & 15 \\
\hline Table A2. Insect species & & 16 \\
\hline \multicolumn{2}{|l|}{Appendix B: Correspondence with USFWS Field notes} & 18 \\
\hline
\end{tabular}

\title{
FOURTH YEAR FOCUSED SURVEY FOR DELHI SANDS FLOWER-LOVING FLY (Rhaphiomidas terminatus abdominalis) ON A 7-acre SITE IN MIRA LOMA, RIVERSIDE COUNTY, CALIFORNIA
}

Prepared for

\author{
Mr. Keith A. Wade, J. D. \\ Economic Development Project Manager \\ Ahern Rentals, Inc. \\ 8350 Eastgate Road \\ Henderson, NV 891015
}

Prepared by
Kendall H. Osborne
Osborne Biological Consulting
6675 Avenue Juan Diaz
Riverside, CA 92509
The undersigned certify this report to be a complete and accurate account of the findings and conclusions of a fourth year, 2018 focused survey for Delhi Sands Flower-loving Fly (Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California.

Ken H. Osborne
6675 Avenue Juan Diaz
Riverside, CA 92509

David K. Faulkner 2321 Gladwick St.
Rancho Dominguez, CA 90220

Eric Renfro 22909 Pennsylvania Ave. Torrance, CA 90501

October 19, 2018

\section*{SUMMARY}

Mr.Keith Wade, on behalf Ahern Rentals, Inc., has requested a fourth year focused survey to assess the presence or absence of Delhi Sands Flower-Loving Fly (DSF, Rhaphiomidas terminatus abdominalis) on a 7 -acre site in Mira Loma, Riverside County, California. To assess this site for potential as habitat for the federally endangered DSF, and to determine presence or absence of DSF on the site, a habitat evaluation and focused survey for DSF were undertaken in 2015, 2016, and 2017 with negative results for DSF, and for a fourth season in 2018, a series of 24 field visits, totaling 13.60 hours, were conducted on the site from July 3 to September 20, 2018 again with negative results for DSF.

The site has soils mapped as Delhi sands, and consists of open, vacant parcels. Habitat conditions on the site are uniform sand supporting annual grassland and forb vegetation, representing Moderate Quality to High Quality habitat potential for the DSF.

Delhi Sands Flower-Loving Fly was not observed on the site during the course of this fourth year, 2017 field season. The subject site does not support a population of the Delhi Sands FlowerLoving Fly. No special status plant or animal species (species of concern) were encountered in the course of this survey.

\subsection*{1.0 INTRODUCTION}

This report presents the methods and results of a Delhi Sands Flower-Loving Fly (DSF, Rhaphiomidas terminatus abdominalis) focused survey for a 7-acre site, in Mira Loma, Riverside County. The site has been surveyed for DSF over four consecutive field seasons in 2015, 2016, 2017, and 2018 with negative results. The DSF was listed as an endangered species by the U.S. Fish and Wildlife Service on September 23, 1993 (USFWS 1993).

The survey site is located on the Guaste, California USGS 7.5-minute quadrangle map, Township 2 South, Range 6 West, in the southeast corner of Section 6. Latitude ranges from approximately \(34^{\circ} 01^{\prime} 7.4^{\prime \prime}\) to \(34^{\circ} 01^{\prime} 10.8^{\prime \prime} \mathrm{N}\) and Longitude from \(117^{\circ} 32^{\prime} 36.5^{\prime \prime}\) to \(117^{\circ} 23^{\prime} 54.3^{\prime \prime} \mathrm{W}\). Figure 1 shows the general vicinity of the survey site at \(50 \%\) scale on the Guaste, California USGS 7.5minute quadrangle map. Figure 2 displays the survey site at \(200 \%\) scale on this USGS quadrangle. This site is located on the north side of E. Riverside Drive (between E. Riverside Drive and Highway 60), immediately west of Wineville Rd., in Mira Loma, Riverside County, CA.

The DSF was not found on the subject site during the course of surveys for any of the years 2015 through 2018 (Osborne 2015, 2016, 2017). We again conclude that the subject site does not support a population of the Delhi Sands Flower-Loving Fly.

\subsection*{2.0 NATURAL HISTORY OF THE DELHI SANDS FLOWERLOVING FLY}

Delhi Sands Flower-loving fly belongs to a genus (Rhaphiomidas) of flies that have long been known as "giant flower loving flies". There are more than 30 species of these flies, distributed across the southwestern United States and northern Mexico. These flies are huge by the
standards set by most flies - with size among the species ranging from approximately 1.5 centimeters up to 3 , and even 4 centimeters, usually gray, tan, rust or yellow in color. All species of Rhaphiomidas are associated with rather arid, sandy habitats, with most species living on dune systems of inland desert valleys, rivers, deltas, and beach strands. A few species are found in sandy washes, alluvial benches and remnant glacial moraines. Many species of these flies often hover before flowers in the manner of hummingbirds, using a long, thin, tubular proboscis (mouth-part), with which the flies probe for nectar - hence a traditional name "giant flower-loving flies". Smaller flies of the family Apioceridae, once considered very closely related to Rhaphiomidas were formerly called "flower-loving flies".

The DSF is only known to occur in association with Delhi sand deposits, presumably occupied the once extensive dune system of the upper Santa Ana River Valley, including portions of what is now the City of Colton, west through portions of the City of Mira Loma, and south to the Santa Ana River. Today, DSF exists on only a few disjunct sites (USFWS 1997) within a radius of about eight miles in southwestern San Bernardino and northwestern Riverside Counties (Colton, Rialto, Fontana, and Mira Loma). More than 95 percent of known DSF habitat was considered eliminated by development, agriculture and other land management practices by 1993 (Smith 1993, USFWS 1996 in Kingsley 1996), however, this proportion is now nearer 98 to \(99 \%\) due to these ongoing processes. Many of the last remaining fragments of DSF habitat are currently under pressure by land management efforts such as heavy disking, irrigation, manure dumping, and gravel dumping. There is presently an estimated 1,200 acres of habitat that can support this species (USFWS 1997), but this estimate likely includes lands needing extensive habitat restoration.

Adult DSF flight period is typically August and September, when individual adults emerge, reproduce and die. The adult life span of an individual DSF lasts for a few days and adults do not live beyond the flight period (Kiyani 1995). Adult DSF are highly mobile, agile fliers. Male DSF are frequently seen flying low through habitat, using apparently random, circuitous paths around and between shrubs in search of females. Such "cruising" behavior often covers areas on the scale of 1000 square meters in the time span of a minute. Alternatively, male DSF are often seen flying about an open patch of ground (ca 100 square meters) such as along a dirt path or dune blow-out area. Here, males may repetitively land and rest on one or another object (such as small dried plants) in the area, and such rests are interrupted by periods of patrolling flight (apparently territorial) about the spot. When alarmed, these insects tend to fly rapidly in more or less a straight line - often covering distances of 100 meters in less than 6 seconds. Adult DSF are known to nectar at flowers of California buckwheat and California croton.

DSF, like other Rhaphiomidas species, appears to have, at minimum, an annual life cycle (because of the annual flight). However, it has been widely believed that the underground larval/pupal stage may persist for additional years, depending upon various environmental factors such as annual rainfall, food availability and weather conditions during the flight season (many desert Rhaphiomidas species do not appear after a drought year and often, substantial flights occur only sporadically over the years). Though it has long been known that Rhaphiomidas larvae develop underground, until recently the specific biology (larval biology, habits and food requirements) were not known for any Rhaphiomidas species. In 2003, an extensive excavation in known habitat of Rhaphiomidas trochilus (Osborne and Ballmer 2014)
recovered very large and strange looking fly larvae - we inferred as Rhaphiomidas and which were later confirmed to be those of \(R\). trochilus based on DNA analysis. The biology of \(R\). trochilus is likely informative of Rhaphiomidas species in general and DSF in particular. Based on observations of captive R. trochilus larvae (Osborne and Ballmer 2014) it is reasonable to conclude that they are mobile opportunistic predators of soft-bodied, sand-inhabiting insects. Larvae from Sand Ridge, Kern County, CA were maintained in captivity for several months, during which they burrowed actively through sand maintained with slight moisture content (similar to the damp sand where they were found). They fed on larvae of a scarab beetle (Scarabaeidae) and an unidentified bee fly (Diptera: Bombyliidae), which were also recovered from Sand Ridge, and larvae of paper wasps (Polistes sp.) which were removed from their nests and buried in the sand. Captive larvae grew and molted after feeding; but, when not fed for extended periods of time, they molted again - losing weight and size in the process. Some larvae were observed to repeat the growth and "shrinkage" cycle multiple times. One larva survived about 17 months in captivity; because it was captured nine months after the most recent flight season, it was at least two years old at time of death. This larva molted four times while undergoing five cycles of growth and shrinkage driven by variable food availability. Its final dry weight was slightly smaller than the typical dry weight of an adult male R. trochilus. The ability of \(R\). trochilus larvae to molt down during times of scarce food resources could allow an extended and indeterminate larval growth period, but with maturation and appearance of adults always during summer months. This may also explain the common observations that populations of various Rhaphiomidas species apparently exhibit little or no adult emergence in some years (especially years of below normal precipitation).

The brief adult life span and active, random search mate-locating behavior of DSF males (typical of all Rhaphiomidas species) indicates that relatively high population density and/or nearly synchronous adult emergence are likely crucial to survival of populations. Protracted Rhaphiomidas larval biology and staggered (across years) adult emergence must enhance population momentum and cross generational gene flow, and the requirement of abundant and diverse insect prey on which larvae develop - all explain why DSF populations appear as longterm entities (persisting for decades) associated with ecologically intact dune habitats; and why some populations, even though small numbers of adults emerge during flight seasons, eventually fail. These doomed "ghost populations" dwindle down to extinction after overall ecological health of habitat is compromised by various forms of ecological diminishment - ever increasing portions of habitat developed, agricultural use, incessant recreational vehicle use, annual disking of the vegetation community and upper soil column, encroachment of exotic plants, etc.

\subsection*{2.1 DSF Habitat Characteristics}

DSF is typically found in areas of unconsolidated sandy soils (Delhi series) supporting an open community of native and exotic plant species. Dominant plants are typically California buckwheat (Eriogonum fasciculatum), California croton (Croton californicus), telegraph weed (Heterotheca grandiflora), and deerweed (Acmespon scoparius) but many exotic species often dominate on DSF habitat as well. DSF have been found in habitats that do not support these dominant plant species, and plant species composition may not be directly relevant to larval development (due to likely predatory or parasitic habit of DSF larvae). Adult DSF are anecdotally believed to nectar at
flowers of California buckwheat and California croton, though such a habitat is rare at best and not yet documented. Many other plant species are common, including Thurber's eriogonum (Eriogonum thurberi), autumn vinegar weed (Lessingia glandulifera), and sapphire eriastrum (Eriastrum sapphirinum). Non native plant species also occur in DSF habitat (and incidentally, virtually everywhere). DSF habitat also supports other associated insects such as flies and wasps considered as indicator species - Apiocera convergens, Apiocera chrysolasia, Ligyra gozophylax, Campsomeris tolteca, Trielis alcione, and Nemomydas pantherinus. Over 350 insect species have been found on one DSF site, and DSF habitat is typically marked by high abundance and diversity of predatory and parasitic insect groups including many highly specialized families of flies, wasps, bees, beetles, and antlions. The Delhi Sands community is one of California's unique natural communities containing an array of native plants and animals, some of which are found nowhere else. One plant species, Pringle's monardella, (Monardella pringlei) is already presumed extinct, as no living individuals have been observed in many years. Several species of insects and some vertebrates, which inhabit the Delhi Sands dunes system, are as endangered as the DSF, but no one has yet petitioned to have them officially declared Endangered. These include the convergent flower-loving fly Apiocera convergens, a newly discovered species of Jerusalem cricket, (Stenopelmatus sp.), a new species of camel cricket (Ceuthophilus sp.) and an endemic subspecies of butterfly Apodemia mormo nigrescens (Emmel and Emmel 1998). The other apiocerid fly (Apiocera chrysolasia), although known from approximately six general localities, is only common within the Delhi sands.

\subsection*{3.0 METHODOLOGY}

\subsection*{3.1 DSF Survey Guidelines}

Interim General Survey Guidelines for the DSF have been suggested by the USFWS (1996). By following these guidelines, DSF presence or absence survey results may be deemed acceptable to the USFWS (rejection of survey results may result where the guidelines are not followed). The guidelines indicate that focused DSF surveys should be conducted wherever Delhi sands are present within the presumed range of DSF, twice weekly (two days per week) during the single annual flight period (usually from July 1 to September 20). Recent early season DSF discoveries lead the USFWS to recommend a survey season from July 15 to September 20 for 2003 and a survey season from July 1 to September 20 from the year 2004. Weather conditions must be suitable for DSF activity at the times survey work is pursued. The DSF is generally active when daytime temperatures exceed 80 degrees Fahrenheit \(\left({ }^{\circ} \mathrm{F}\right)\), but may fly with slightly cooler temperatures in bright sunlight.

\subsection*{3.2 Habitat Assessment Methods}

Osborne examined the subject site to rate its potential to support DSF (Osborne 2015). Photographs were taken of the site from various perspectives. Habitat suitability for DSF was evaluated using indicators of potential DSF habitat including: presence and abundance of loose, unconsolidated Delhi sands with low organic contamination; degree of habitat disturbance indicated by plant species composition and disposition of soil surface, presence and abundance of native sand associated plants such as Croton californicus, Heterotheca grandiflora, Eriogonum thurberi and Eriogonum fasciculatum. These plants are actually more an indication of relative
disturbance regimen - conditions with lesser disturbance being of higher quality for DSF. Presence and abundance of Delhi sands associated insects such as Apiocera convergens, Apiocera chrysolasia and (to a lesser extent) Nemomydas pantherinus, noted throughout the course of focused surveys, serve as further indicators of DSF habitat quality. Potential DSF habitat has been further evaluated on the basis of overall insect diversity and abundance, particularly with respect to sand associated predators and parasitoids.

In the course of previous work Osborne (2003, Osborne et al. 2003) developed a means of rating habitat on site for potential to support DSF, rating areas within any site based on a scale of 1 to 5 , with 5 being the best quality and most suitable habitat based on the following scheme:
1. Developed areas, non-Delhi sands soils with high clay, silt, and/or gravel content. Delhi sands extensively and deeply covered by dumping of exotic soils, rubble, trash, manure, or organic debris. Unsuitable.
2. Delhi sands are present but the soil characteristics include a predominance of exotic soils such as alluvial materials, or predominance of other foreign contamination as gravels, manure, or organic debris. Severe and frequent disturbance (such as a maintenance yard or high use roadbed). Very Low Quality.
3. Moderately contaminated Delhi sands. Delhi sands with moderate to high disturbance (such as annual disking). Sufficient Delhi Sands are present to prevent soil compaction (related to contamination by foreign soils). Some sandy soils exposed on the surface due to fossorial animal activity. Low Quality.
4. Abundant clean Delhi Sands with little or no foreign soils (such as alluvial material) present. Moderate abundance of exposed sands on the soil surface. Low vegetative cover. Evidence of moderate degree of fossorial animal activity by vertebrates and invertebrates. May represent high quality habitat with mild or superficial disturbance. Moderate Quality
5. Sand dune habitat with clean Delhi Sands. High abundance of exposed sands on the soil surface. Low vegetative cover. Evidence (soil surface often gives under foot) of high degree of fossorial animal activity by vertebrates and invertebrates. Sand associated plant and arthropod species may be abundant. High Quality

It should be noted that habitat qualities often vary spatially within a site so that conditions on a site fall within a range of qualities. Further, overall habitat quality is affected by the overall habitat area on a site, such that very small areas diminish the overall habitat value of a site. It is also important to note that suitable habitats, even rated as high quality for DSF, are very rarely actually occupied by DSF. These ratings are more informative on mitigation and conservation measures in the event that DSF is found on any particular site. Use of this habitat rating system is somewhat subjective and best undertaken by a biologist who has extensive experience with Rhaphiomidas species. While investigating the subject site, Osborne subjected the site to an analysis of this kind so as to give a general estimate of overall habitat conditions relevant to DSF potential.

\subsection*{3.3 Focused Survey Methods}

Following the USFWS Interim General Survey Guidelines, we surveyed all portions of the subject site at least twice a week, between the hours of 1000 and 1400 (Table 1). In the case of this survey, site acreage indicated a minimum of 34 minutes per visit, with site visits twice a week. A minimal survey effort thus would require 13.6 hours over the 12-week season. For the 2018 field season, the subject site was surveyed on 24 dates, totaling at least 13.6 field hours, with site visits made from July 3, to September 20, 2017. Focused DSF surveys were conducted by Kendall H. Osborne, Permit \# TE-837760-10, David K. Faulkner \# TE-838743-6, and Eric S. Renfro \# TE-142436-2. The survey protocol, as set forth in the Interim General Guidelines for the Delhi Sands flower-loving fly survey, is designed to maximize the validity of a presence/absence determination.

Osborne photographed the property from several perspectives to document existing conditions. Notes were taken on vegetative cover and plant species composition, abundance and diversity and species composition of insects and other animals, soil types, degree and nature of disturbance, surface cover, organic content, compaction, current land management practices, existing development, and conditions of surrounding vicinity and proximity of other DSF populations.

Table 1. Dates, personnel, times and conditions for focused DSF survey work (2018).
\begin{tabular}{|c|c|c|c|}
\hline Date & Biologist & Hours & Weather Conditions \\
\hline 3-Jul & K. Osborne & 1000-1034 & \(10 \%\) clouds to clear, calm, \(75-78^{\circ} \mathrm{F}\). \\
\hline 7-Jul & E. Renfro & 1000-1034 & clear, winds \(1 \mathrm{mph}, 105-107^{\circ} \mathrm{F}\). \\
\hline 9-Jul & K. Osborne & 1000-1034 & \(80-90 \%\) overcast, winds 4-6 mph, 99-100 \({ }^{\circ} \mathrm{F}\). \\
\hline 12-Jul & E. Renfro & 1000-1034 & clear, winds \(1 \mathrm{mph}, 84-86^{\circ} \mathrm{F}\). \\
\hline 17-Jul & E. Renfro & 1000-1034 & clear, winds \(1 \mathrm{mph}, 81-83^{\circ} \mathrm{F}\). \\
\hline 19-Jul & K. Osborne & 1000-1034 & clear, winds 0-4 mph, \(85-87^{\circ} \mathrm{F}\). \\
\hline 22-Jul & E. Renfro & 1000-1034 & clear, winds 1-2 mph, \(85^{\circ} \mathrm{F}\). \\
\hline 26-Jul & E. Renfro & 1000-1034 & clear, winds \(2 \mathrm{mph}, 88-89^{\circ} \mathrm{F}\). \\
\hline 31-Jul & E. Renfro & 1000-1034 & \(30-15 \%\) patchy clouds, winds \(1 \mathrm{mph}, 87-88^{\circ} \mathrm{F}\). \\
\hline 3-Aug & D. Faulkner & 1000-1034 & clear, winds 1-2 mph, \(84-88^{\circ} \mathrm{F}\). \\
\hline 6-Aug & E. Renfro & 1000-1034 & clear, winds \(2 \mathrm{mph}, 86-91^{\circ} \mathrm{F}\). \\
\hline 9-Aug & E. Renfro & 1000-1034 & clear, winds \(1 \mathrm{mph}, 91-93^{\circ} \mathrm{F}\). \\
\hline 12-Aug & K. Osborne & 1255-1329 & \(5 \%\) patchy clouds, winds \(0-2 \mathrm{mph}, 92^{\circ} \mathrm{F}\). \\
\hline 14-Aug & D. Faulkner & 1000-1034 & clear, winds 0-1 mph, \(80-82^{\circ} \mathrm{F}\). \\
\hline 19-Aug & K. Osborne & 1255-1329 & clear, winds 0-2 mph, \(94-95^{\circ} \mathrm{F}\). \\
\hline 23-Aug & K. Osborne & 1000-1034 & clear, calm, 79-83 \({ }^{\circ} \mathrm{F}\). \\
\hline 26-Aug & K. Osborne & 1306-1340 & clear, winds 0-5 mph, \(83-85^{\circ} \mathrm{F}\). \\
\hline 29-Aug & K. Osborne & 1325-1359 & clear, winds 0-5 mph, \(92-93^{\circ} \mathrm{F}\). \\
\hline 3-Sep & K. Osborne & 1000-1034 & \(20 \%\) patchy clouds, clearing, humid, winds \(0-1 \mathrm{mph}, 75\) \(78^{\circ} \mathrm{F}\). \\
\hline 6-Sep & D. Faulkner & 1000-1034 & clear, winds 1-2 mph, \(78-80^{\circ} \mathrm{F}\). \\
\hline 9-Sep & E. Renfro & 1000-1034 & clear, winds \(1 \mathrm{mph}, 87-89^{\circ} \mathrm{F}\). \\
\hline 12-Sep & K. Osborne & 1000-1034 & clear, calm, \(74^{\circ} \mathrm{F}\). \\
\hline 16-Sep & K. Osborne & 1000-1034 & clear, winds 0-2 mph, \(78-82^{\circ} \mathrm{F}\). \\
\hline 20-Sep & K. Osborne & 1322-1356 & clear, winds 2-5 mph, \(90-91^{\circ} \mathrm{F}\). \\
\hline
\end{tabular}

\subsection*{4.0 RESULTS}

\subsection*{4.1 Survey Results}

Delhi Sands Flower-Loving Fly (DSF, Rhaphiomidas terminatus abdominalis) was not observed on the subject site during the course of this year 2017 survey season. Lists of plants and insects observed during the course of all surveys for 2015 through 2018 are given in the appendix.

\subsection*{4.3 Existing Environment and Community}

\subsection*{4.3.1 Adjacent lands}

The survey area is bounded on the south, E. Riverside Drive, and commercial development beyond. A freeway interchange, Hwy 15 and Hwy 60 is west and north of the site. Municipal Water district facilities are on the eastern boundary of the site.

\subsection*{4.3.2 Topography}

The site is generally flat throughout all portions. Elevation on the site is approximately 800 feet.

\subsection*{4.3.3 Soils}

Knecht (1971) indicated the site to consist of Delhi fine sands. These sands are evident throughout the site.

\subsection*{4.3.4 Vegetation}

The survey area is generally characterized as highly disturbed due to a history of annual disking, and supports low vegetative diversity of an early successional type. Dominant plants are golden crownbeard (Verbesina encelioides), Russian thistle (Salsola tragus) and summer mustard (Hirschfeldia incana). A stand of Eucalyptus lines portions the southern site boundary along E. Riverside Rd. Figures 3-7 present representative views of the survey site and habitats. Figure 8 provides a key as to where on the site these photographs were taken. Table 1 (Appendix A) provides a list of plant species encountered on the survey site. No special status plant species (species of concern) were encountered in the course of this survey. Field conditions on the site did not substantially vary between the 2015, 2016, 2017, and 2018 field seasons.

\subsection*{4.3.5 Insect Community}

At least 99 insect species were observed over the course of the 2015, 2016, 2017, and 2018 field seasons. A list of most insect species observed is presented in the appendix (Table 2, Appendix A). The insect community encountered on the subject site was relatively species depauparate as compared to undisturbed ecological communities occurring on Delhi sands, but included Apioceridae, Asilidae, Scoliidae, Mymerliontidae, Crabronidae and Sphecidae. Indicators of
potential high quality of DSF habitat found on the subject site during the course of the current survey include Apiocera convergens and Campsomeris tolteca.

\subsection*{5.0 CONCLUSIONS}

Delhi Sands Flower-loving fly is absent from the site. Finding of the presence of Delhi sands on the survey site, and the observations of Mydidae (Nemomydas pantherinus), Apioceridae (A. convergens), and Asilidae, along with the overall habitat ratings made for the site and the historic presence of DSF nearby to the northwest and continued DSF presence only 1.5 km north of our study site (J. George pers com 2018), have suggested some degree of habitat suitability and potential for DSF. After the course of four field seasons of DSF survey with negative results, we conclude that the project site does not support a population of DSF.

\subsection*{6.0 REFERENCES}

Cazier, M. A. 1985. A revision of the North American flies belonging to the genus Rhaphiomidas (Diptera:Apioceridae). Bulletin of the American Museum of Natural History 182(2):181-263.

Hickman, J.C. (ed.). 1993. The Jepson manual: Higher plants of California. University of California Press. Berkeley, California.

Knecht, A.A. 1971. Soil survey of western Riverside area, California. U.S. Department of Agriculture, Soil Conservation Service.

Kingsley, Kenneth J. 1996. Behavior of the Delhi Sands Flower-Loving Fly (Diptera: Mydidae), a Little Known Endangered Species. Ann. Entomol. Soc. Am. 89(6): 883-891.

Kiyani Environmental Consultants. 1995. Principal Investigator's Annual Report, Delhi Sands Flower-loving fly (Rhaphiomidas terminatus abdominalis) Studies at Colton, California. Prepared for San Bernardino County and U.S. Fish and Wildlife Service, Carlsbad, CA. 25+ pp.

Munz, P.A. 1974. A flora of southern California. University of California Press, Berkeley, California.

Osborne, K. H. 2003. Delhi Sands Flower-loving fly Habitat Assessment for the Hermosa Cemetery, Colton. Prepared for Inland Memorial Cremations and Burial. Submitted to the U.S. Fish and Wildlife Service, CA.

Osborne, K. H. 2015. First year focused survey for Delhi Sands Flower-loving Fly (Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California. Submitted to the U.S. Fish and Wildlife Service, CA. October 2015.

Osborne, K. H. 2016. Second year focused survey for Delhi Sands Flower-loving Fly (Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California. Submitted to the U.S. Fish and Wildlife Service, CA. October 2016.

Osborne, K. H. 2017. Third year focused survey for Delhi Sands Flower-loving Fly (Rhaphiomidas terminatus abdominalis) on a 7-acre site, Mira Loma, Riverside County, California. Submitted to the U.S. Fish and Wildlife Service, CA. October 2017.

Osborne, K. H., G. R. Ballmer, and T. McGill. 2003. DSF Habitat Assessment for the Proposed Mary Vagle Conservation Area. Prepared for the City of Fontana. Submitted to the U.S. Fish and Wildlife Service, CA.

Osborne, K. H. and G. R. Ballmer. 2014. A Petition to the United States Department of the Interior, Fish and Wildlife Service, for emergency action to list an endangered species pursuant to the conditions and regulations of the Federal Endangered Species Act: For the San Joaquin Valley Giant Flower-loving Fly (Rhaphiomidas trochilus). Submitted June, 2014.

Rogers, R. and M. Mattoni. 1993. Observations on the natural history and conservation biology of the giant flower-loving flies, Rhaphiomidas (Diptera:Apioceridae). Dipterologial Research 4(1-2):21-34.
U.S. Fish and Wildlife Service. 1993. Endangered and Threatened Wildlife and Plants: Determination of Endangered Status for the Delhi Sands Flower-loving Fly. U.S. Department of Interior. Federal Register, 58 (183): 49881-49887.
U.S. Fish and Wildlife Service. 1996. Delhi Sands Flower-loving Fly Draft Presence/Absence Survey Guidelines. December 30.
U.S. Fish and Wildlife Service. 1997. Delhi sands Flower-loving Fly (Rhaphiomidas terminatus abdominalis) Recovery Plan. U.S. Fish and Wildlife Service, Portland, OR. 51 pp .

\subsection*{7.0 FIGURES}

Figure 1. General vicinity of survey site, Guaste, California USGS 7.5" quadrangle at \(50 \%\). 7-acre site is outlined in blue and highlighted in yellow (arrow).

\title{
\(\uparrow\) \\ __ \(=100\) meters N
}

Figure 2. Survey site, Guaste, California USGS 7.5" quadrangle at 200\%. 7-acre site is outlined in blue and highlighted in yellow.

Figure 3. Photograph (2016) of the eastern boundary of the survey site (wall at left), looking to the north from the side of E. Riverside Dr.

Figure 4. Photograph (2017) of eastern portions of the survey site.. View looks west northwest from the southern edge of the site near its eastern end (along E. Riverside Dr.). Eucalyptus stands which line the roadside are seen at right. Part of the Hwy 15-Hwy 60 interchange is seen in the background off site.

Figure 5. Photograph (2018) of central portions of the survey site. View looks south from the central, northern edge of the site. The fence at left is not a site boundary, but merely crosses the site, separating parcels.

Figure 6 Photograph (2016) of the western portion of the site looking to the east from the southwestern corner of the site. Eucalyptus stands along E. Riverside Dr. are seen at left.

Figure 7. Photograph (2018) of central portions of the survey site. View looks northeast from the central, southern edge of the site (along E. Riverside Rd.).

Figure 8. Approximate locations around survey site from which photographs were taken (base of arrows). Arrow indicates the direction a photograph was taken. Numbers next to the arrows indicate figure numbers (Figures 3-7).

\subsection*{8.0 APPENDIX}

\section*{Appendix A}

Table A1. Plant species encountered on the survey site (2015 through 2018).

FAMILY
ASTERACEAE
Western ragweed
thistle
horseweed
sunflower
telegraphweed
prickly lettus
golden crownbeard
BORAGINACEAE
ranchers fiddleneck
BRASSICACEAE
shortpod mustard
London rocket
CHENOPODIACEAE
lamb's quarters
Russian thistle
EUPHORBIACEAE
California croton
FABACEAE
Spanish clover
alfalfa
MYRTACEAE
Eucalyptus
POLYGONACEAE
Cal buckwheat
ZYGOPHYLLACEAE
Puncture vine
POACEAE
slender oat
Foxtail chess/red brome
Shismus

\section*{Species}

Ambrosia acanthicarpa
Ciricium
Conyza canadensis
Helianthus annua
Heterotheca grandiflora
Lactuca serriola
Verbesina encelioides

Amsinkia intermedia

Hirschfeldia incana
Sisymbrium irio

Chenopodium album
Salsola tragus

Croton californicus

Lotus purshianus
Medicago alba

Eucalyptus
Eriogonum fasciculatum

Tribulus terrestris

Avena barbata
Bromus madritensis
Schismus barbatus

Table A2. Insects encountered on the survey site (2015 through 2018).
\begin{tabular}{|c|c|c|}
\hline ORDER & FAMILY & Species \\
\hline \multirow[t]{24}{*}{Diptera} & Mydidae & Nemomydas pantherinus \\
\hline & Apioceridae & Apiocera convergens \\
\hline & Asilidae & Efferia albibarbis \\
\hline & & Mallophora fautrix \\
\hline & & Stenopogon brevisculus \\
\hline & & Stenopogon lomae \\
\hline & Bombyliidae & Geron sp. \\
\hline & & Neodiplocampta mira \\
\hline & & Poecilognathus \\
\hline & & Poecilognathus sulphura \\
\hline & & Thyridanthrax atrata \\
\hline & & Villa molitor \\
\hline & Syrphidae & Baccha clavata \\
\hline & & Copestylum mexicana \\
\hline & & Eristalis aenea \\
\hline & & Paragus tibialis \\
\hline & & Pseudodoros clavatus \\
\hline & & Syritta pipiens \\
\hline & Muscidae & Musca domestica \\
\hline & Sarcophagidae & Sarcophaga sp \\
\hline & Tachinidae & Archytas sp. \\
\hline & & Trichopoda pennipes \\
\hline & Tephritidae & unidentified \\
\hline & Dolichopodidae & Condylostylus pilicornis \\
\hline \multirow[t]{18}{*}{Hymenoptera} & \multirow[t]{6}{*}{Crabionidae} & Gastrosericina sp. \\
\hline & & Cerceris \\
\hline & & Bembix comatus \\
\hline & & Oxybellus \\
\hline & & Philanthus multimaculatus \\
\hline & & Tachytes distinctus \\
\hline & \multirow[t]{5}{*}{Sphecidae} & Ammophila azteca \\
\hline & & Haplomelinus albitomentosus \\
\hline & & Prionyx parkeri \\
\hline & & Prionyx thomae \\
\hline & & Sceliphron caementarium \\
\hline & Scoliidae & Campsomeris tolteca \\
\hline & Vespidae & Polistes apachus \\
\hline & Andrenidae & Perdita \\
\hline & Apidae & Melissodes sp. \\
\hline & & Svastra texana \\
\hline & & Anthophora \\
\hline & & Apis mellifera \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Hymenoptera} & Apidae & Diadasia \\
\hline & Halictidae & Agapostemon \\
\hline \multirow[t]{3}{*}{Hymenoptera} & Halictidae & Lasioglossum \\
\hline & Megachilidae & unidentified \\
\hline & Formicidae & Pogonomyrmex californicus \\
\hline \multirow[t]{7}{*}{Coleoptera} & Chrysomelidae & Coscinoptera aeneipennis Chrysophtharta \\
\hline & & Saxinis \\
\hline & Coccinellidae & Coccinella septempunctata Hippodamia convergens \\
\hline & Curculionidae & Apleurus albitomentosa \\
\hline & Meloidae & Nemognatha lurida \\
\hline & Scarabaeidae & Cotinus mutabilis \\
\hline & Tenebrionidae & Eleodes gracilis \\
\hline \multirow[t]{2}{*}{Neuroptera} & \multirow[t]{2}{*}{Mymerliontidae} & Brachynemurus \\
\hline & & Brachynemurus \\
\hline \multirow[t]{16}{*}{Lepidoptera} & Danaidae & Danaus plexippus \\
\hline & \multirow[t]{3}{*}{Nymphalidae} & Junonia coenia \\
\hline & & Vanessa cardui \\
\hline & & Vanessa virginiensis \\
\hline & \multirow[t]{3}{*}{Pieridae} & Colias eurytheme \\
\hline & & Pieris rapae \\
\hline & & Pontia protodice \\
\hline & \multirow[t]{5}{*}{Lycaenidae} & Brephidium exilis \\
\hline & & Hemiargus ceraunus \\
\hline & & Leptotes marina \\
\hline & & Plebejus acmon \\
\hline & & Strymon melinus \\
\hline & \multirow[t]{3}{*}{Hesperiidae} & Hylephila phyleus \\
\hline & & Lerodia eufala \\
\hline & & Pyrgus albescens \\
\hline & Arctiidae & Estigmene acrea \\
\hline \multirow[t]{9}{*}{Heteroptera (Hemiptera)} & Largidae & Largus sp. \\
\hline & \multirow[t]{4}{*}{Pentatomidae} & Bagrada hilaris \\
\hline & & Chlorochroa sayi \\
\hline & & Chlorochroa uhleri \\
\hline & & Trichopepla aurorae \\
\hline & Reduviidae & Sinea diadema \\
\hline & Reduviidae & Zelus renardii \\
\hline & Scutelleridae & Euptychodera corrugata \\
\hline & Tingidae & \\
\hline \multicolumn{3}{|l|}{Heteroptera} \\
\hline \multirow[t]{2}{*}{(Auchenorrhyncha)} & Cicadellidae & Homolodisca lacerta \\
\hline & Membracidae & unidentified \\
\hline Orthoptera & Acrididae & Psoloessa thamnogaea \\
\hline
\end{tabular}
\begin{tabular}{lll}
Orthoptera & Acrididae & \begin{tabular}{l}
Schistocerca nitens \\
Trimerotropis californica \\
Trimerotropis pallidipennis
\end{tabular} \\
Mantodea & Mantidae & \begin{tabular}{l}
Iris oratoria \\
Anax junius \\
Odonata
\end{tabular} \\
Aeshnidae & \begin{tabular}{l}
Aeshna multicolor \\
Pantala flavescens \\
Pantala hymenaea
\end{tabular} \\
& Libellulidae & \begin{tabular}{l}
Tramea onusta \\
Pachydiplax longipennis \\
Parithemis intensa
\end{tabular} \\
& & \begin{tabular}{l}
Sympetrum corruptum \\
Enallagma
\end{tabular}
\end{tabular}

\section*{Appendix B}

\section*{Correspondence with USFWS}

\section*{Field Notes}

If you have any questions or comments regarding this survey, please feel free to
contact me.
The site may be located on the Guasti, California USGS 7.5-minute quadrangle map,
Township 2 South, Range 6 West, on the southeastern corner of Section 6. The attached
map shows the site on a portion of this map at \(200 \%\) scale. between Riverside Ave., and the freeway interchange).
southeastern quadrant of the Hwy I-15/Hwy 60 interchange (the site being sandwiched Mr. Wade, representing Ahern Rentals, Inc., has requested we continue the surveys for this
season. This site is located on the north side of Riverside Avenue and south of the
enting Ahem Rentals, Inc
Giant Flower-loving fly (Rhaphiomidas terminatus abdminalis) on an approximately 7 -acre
site in Mira Loma, Riverside County.
I write to notify you of intent to conduct the fourth year of protocol survey for Delhi Sands
Dear Ms. Love,
fly on a 7 -acre site in Mira Loma, Riverside County
RE: Intent to conduct the fourth year protocol survey for Delhi Sands Giant Flower-loving
Carlsbad, CA 92008
2177 Salk Avenue, Ste 250 USFWS Carlsbad Field Office
Fish and Wildlife Service
Attn: Ms. Stacey Love.
USFWS Carlsbad Field Office

\section*{July 19, 2018} (951) 360-6461 Riverside, CA 92509 Osborne Biological Consulting
6675 Avenue Juan Diaz Ken H. Osborne (permit \#TE837760)
Osborne Biological Consulting

General vicinity of survey site, Guasti, California USGS 7.5" quadrangle at \(200 \%\). Approximately 7-acre site is highlighted in yellow.

Delhi sands flower-loving fly - General Field Form

Mileage \(3 / 23\)
Weather:

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids Apiocerids Sphecids Pompillids Scoliids \(\qquad\) Chrysidids Other insects of note
\(\qquad\)
\(\qquad\)
\(\qquad\)

Vertebrates: Mos CLEw iAta Se burgher

\section*{Comments:}
\(\qquad\) \(\stackrel{\rightharpoonup}{*}\)
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date \(7 / 7 / 2018\) Overall Time 34 min .
Surveyor ER Rent vo \(142436-2\) Survey Partners) \(\qquad\)
mileage Beg. 190905
Weather:

Biological elements:
Rhaphiomidas terminatus?
mbyliids \(\qquad\) Asilids \(\qquad\)
Other arthropods (general)
Bombyliids
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids
Other insects of note \(\qquad\) Megachile cpl. Chrysidids
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
:
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids __ Apiocerids __ Sphecids
Pompillids Scoliids Chrysidids
Other insects of note \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Comments:}
\(\qquad\) *
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date \(7 / 12 / 2018\) Overall Time 34 min
Surveyor \(142436-2\) (Rentro) Survey Partners) \(\qquad\)
Mileage \(\qquad\)
Weather:

Biological elements:
Rhaphiomidas terminatus
1
 numbers \(\qquad\)

Other arthropods (general) Bombyliids \(\qquad\) Asilids
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note Sceliphron caementarinm mequathile
Dolictids *(hreyomelidae (black color A Pi miglitera)
\(\qquad\)
* Saxini" pp
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments: \(\qquad\)

Delhi sands flower-loving fly - General Field Form

Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time

 numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note Megachachilid ae Agaposkempr melliventris,
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date \(7 / 19 / 18\) Overall Time /00 _ 1034
Surveyor K Survey Partner(s) \(\qquad\)
Mileage 3805
Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers
\(\qquad\)
\(\qquad\)
Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insects of note \(\qquad\)
Tocalifurme Begrade Larp pryked, Cotionn,
Steyman, Ffferi: Sarcoptrosa
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\) CAKI

Comments:
Amsinkia Siirio, Avone, Bromus dinnollen, Burubono,
Brasian toudnderithi Frow hoginnis of seascu i clay oile duryad alez. roadrix.

Delhi sands flower-loving fly - General Field Form
Date 7/22/2018 Overall Time 34 min
Job Ahern
Surveyor \(142436-2\) Survey Partners) N/A
\(\qquad\)
Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \(\%\) Cloud & & Sky & Winds (mph) & Temp (F) \\
\hline Start \(10: 00\) & 0 & clear & patchy & overcast & drizzle \\
\hline & & clear shower & patchy & overcast & drizzle \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) tin) \(/ \mathrm{sec}\) \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids

Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Chrysidids
Other insects of note
Scoliids \(\qquad\) Meyuchilidae sp. \(\qquad\) species.
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date 7/26/2018 overall Time 34 minutes Job Ahern
Surveyor \(142436-2\) Rertvosurvey Partners) N/A
Mileage \(\qquad\)
Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\)

Other arthropods (general) Bombyliids \(\qquad\) Asilids
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids
\(\qquad\)
Pompillids
Other insects of note Solids \(\qquad\) Chrysidids \(\qquad\) 1 fr
Other insects of note Bembix comata Apis mellitera Megachil. xyhellus sp. Cerceris'sp!
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\) .
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

Mileage \(\qquad\) 193032

Weather:
\begin{tabular}{|l|l|l|l|c|c|}
\hline Time (24 hr) & \(\%\) Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F\()\) \\
\hline Start \(10: 00\) & 30 & clear patchy \()\) overcast drizzle shower & 1 & 87 \\
\hline & & clear patent & overcast drizzle shower & & \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline Stop \(/ 0: 34\) & \(15-20\) & clear (patchy) & overcast drizzle shower & 1 & 88 \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids Chrysidids
Other insects of note Meyachiliclae Nalictids, Bembix
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)
-
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

Date 3 Aug \(2018 \quad\) Overall Time 34 minutes
Surveyor Davio K. FAuLKNER Survey Partners) \(\qquad\)
Mileage \((243750)\) (64 mi from sim)
Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \(\%\) Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start 1000 & \(\varnothing\) & clear & patchy & overcast drizzle shower & \(1-2\) \\
\hline & & clear & patchy & overcast drizzle shower & \\
\hline \(4^{\circ}\) \\
\hline & & clear & patchy & overcast drizzle shower & \\
\hline Stop 1034 & & Clear & patchy & overcast drizzle shower & \(1-2\) \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus? No time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insects of note Fiery skipper, Mellisodes bee, Pogoryomay, chinch bugs, Mirids, Tephritid fruit flies, A. mellifua, Meguchile sp., Bagads bumps Andrinid bee, Ayopostomen lee, Arctic Tune, A chon blue Tachmid thy.

Vertebrates: Doves, lizmds

Comments:
Clear with haze - more vegetation than last year. limited Filing: croton, composites, Tumbleweed

Delhi sands flower-loving fly - General Field Form
Date \(8 / 6 / 2018\) Overall Time \(34 \mathrm{~min} . \quad\) Job Ahern
Surveyor \(142436-2\) (Ren tro) Survey Partner(s) N/A
\(\qquad\) 193362

Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\)
 numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\)
Other insectsof ngte Tramea onuyta, Copesxytum mexicana
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\) -
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date \(8 / 9 / 2018\) overall Time 34 minutes \(\quad\) Job there
Surveyor \(142486-2\) Rentro Survey Partners) N/A
Mileage \(\qquad\)
Weather:
\begin{tabular}{|l|c|c|c|c|c|}
\hline Time (24 hr) & \% Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start \(/ D: 00\) & 0 & clear) patchy & overcast drizzle shower & \(/\) & \(9 /\) \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline & & clear & patchy & overcast drizzle shower & \\
\hline Stop \(/ 0: 34\) & 0 & clear \()\) patchy & overcast drizzle shower & 1 & \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insects of note \(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\) .
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \(\%\) Cloud & \multicolumn{2}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start \(/ 25 \mathbf{5}\) & 5 & clear, patchy & overcast drizzle shower & \(6-2\) & 92 \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline Stop \(/ 29\) & 5 & Rear patchy & overcast drizzle shower & 0 & 92 \\
\hline
\end{tabular}

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note \(\qquad\)
coptoter stryy-n Tackier (Iarse,bibah)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates:
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\) .
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form}

\section*{Biological elements:}

Rhaphiomidas terminatus? No time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids Apiocerids Pompillids \(\qquad\) Scoliids Sphecids \(\qquad\) Chrysidids \(\qquad\) Other insects of note A.mellifere, Asilid (\(\in f f\) finia \(\ddagger\)), Muddamber, Colits sp. (yellow) Bomby lied (smali), Halicid beas, 3.4xilis, grasshappers, cotimus (most in Enculeyptur), Arctiid lawie common

Vertebrates: \(\qquad\)
\(\qquad\)
\(\square\)

\section*{Comments:}

Cleor with HAZe - Scartened clonds over Moutains

Delhi sands flower-loving fly - General Field Form
Date 8/19/18 Overall Time \(12^{55}-1^{29} \quad\) Job Ahern Surveyor \(1<4\) Survey Partner (s)
 Mileage \(\qquad\)
Weather:

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids ___ Apiocerids \(\qquad\) Sphecids \(\qquad\) Pompillids Scoliids Chrysidids \(\qquad\)
Other insects of note

Vertebrates: MOMO

\section*{Comments:}
\(\qquad\) . . . -.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form \\ / /}
Job \(\qquad\) Ahern Surveyor toto Survey Partner (s) \(\infty\)

Mileage \(\qquad\)
Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \% Cloud & \multicolumn{3}{|c|}{ Sky } & Winds (mph) \\
\hline Start \(/ 0\) Temp (F) \\
\hline & \(a\) & Clear & patchy & overcast drizzle shower & 0 \\
\hline 9 \\
\hline & & clear patchy & overcast drizzle shower & & 79 \\
\hline Stop \(/ 034\) & 0 & clear patchy & overcast drizzle shower & & \\
\hline
\end{tabular}

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids _ Apiocerids \(\qquad\) Sphecids \(\qquad\) Pompillids Scoliids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note \(\qquad\)
mysiaras 4625
\(\qquad\) . sex
```

Nemiargus C., Strymen, P.remon. Citinw, Musca

```

Vertebrates: \(\qquad\)
\(\square\)

\section*{Comments:}
\(\qquad\) -

Delhi sands flower-loving fly - General Field Form
Date \(8 / 26 / 2018\) Overall Time \(106-140\)
Job Athern
Surveyor \(\qquad\) Survey Partners) \(\qquad\) \&

Mileage \(\qquad\) \(4 フ 93\)

Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids
Pompillids \(\qquad\) Solids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note \(\qquad\) Paubllo f. Stryn-n, Cotimus, Nelisole, Tinged, It ackon Asapertorem. Pontia,
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

Mileage \(\qquad\)
Weather:

Biological elements:
Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insects of note \(\qquad\) A.conrergens, Cotinus, \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

\section*{Biological elements:}

Rhaphiomidas terminatus ?
time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids
 Asilids \(\qquad\) Mydids Apiocerids Sphecids
Pompillids Scoliids Chrysidids
Other insects of note Cation Strymen virepuidry, Piatia, Eolians.
 Mexican Amherwing it Muser

\section*{Vertebrates:}
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Comments:}
\(\qquad\)

Delhi sands flower-loving fly - General Field Form
Date 6 Sept 2018 Overall Time 34 kine. Job AHERN STTE

Surveyor DANIOK. FAULKNER
Mileage (246339)

Survey Partner (s) \(\varnothing\)
(64 mi from sher)

Weather:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \(\%\) Cloud & \multicolumn{3}{|c|}{ Sky } & Winds (mph) \\
\hline Start 1000 & \(\varnothing\) & clear patchy overcast drizzle shower & \(1-2\) & Temp (F) \\
\hline & & clear patchy overcast drizzle shower & & \(78^{\circ}\) \\
\hline & & clear patchy overcast drizzle shower & & \\
\hline Stop 1034 & \(\varnothing\) & cleat patchy overcast drizzle shower & \(1-2\) & \(80^{\circ}\) \\
\hline
\end{tabular}

\section*{Biological elements:}

Rhaphiomidas terminatus? No. time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids Apiocerids \(\qquad\) Sphecids \(\qquad\) \(\checkmark\) Pompillids Scoliids \(\qquad\) Chrysidids \(\qquad\)
Other insects of note \(\qquad\)
Ammophila, Efferin sp, - Nothing else not ahaody noted.
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: Ground squirrels, Crows.

\section*{Comments:}
\(\qquad\) .
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) (

Delhi sands flower-loving fly - General Field Form
Date \(9 / 9 / 2018 \quad\) Overall Time 34 min
Surveyor 142436-2 (Rentro) survey Partners) \(\qquad\)
Job Ahern

Mileage \(\qquad\) 194644

Weather:

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time
 numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\)
Mydids \(\qquad\) Apiocerids \(\qquad\) Sphecids \(\qquad\)
Pompillids \(\qquad\) Solids \(\qquad\)
\(\qquad\)
Other insects of note. Prienyx parkeri, Villa molitor Iris, oratorian
\(\qquad\) Copesfyam mexiegna Cuiculonidae, Meguchilesp.,
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form}

Surveyor \(\qquad\) Survey Partners) 0

Mileage \(\qquad\)
Weather:
\begin{tabular}{|c|c|c|c|c|}
\hline Time (24 hr) & \% Cloud & \multicolumn{1}{|c|}{ Sky } & Winds (mph) & Temp (F) \\
\hline Start \(\sim\) c & 0 & clear patchy overcast drizzle shower & 0 & \(\checkmark 4\) \\
\hline & & clear patchy & overcast drizzle shower & \\
\hline & & clear patchy & & \\
\hline Stop overcast drizzle shower & & \\
\hline
\end{tabular}

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .
\(\qquad\)

Other arthropods (general) Bombyliids Asilids \(\qquad\) Mydids __ Apiocerids \(\qquad\) Sphecids Pompillids \(\qquad\) Scoliids \(\qquad\) Chrysidids
Other insects of note \(\qquad\) -
\[
\text { A. convergent } n>20 \text { Brquidian, } P \text { C., } 1 \text {, bphila }
\]

Vertebrates: \(\qquad\)
\(\square\)
\(\qquad\)

\section*{Comments:}
\(\qquad\)

\section*{Delhi sands flower-loving fly - General Field Form}
Date \(9 / 16 / 18\) Overall Time \(10^{\text {as er }} 10^{34}\) Job A hern

Surveyor \(\qquad\) \(K A O 5\) borne Survey Partner (s) \(\qquad\) -

Mileage \(\quad 5676\)

\section*{Weather:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (24 hr) & \% Cloud & \multicolumn{3}{|c|}{ Sky } & Winds (mph) \\
\hline Start \(/ 0 \mathbf{0}\) & 0 & Tear & patchy (F) & overcast & drizzle shower \\
\hline & & clear & \(0-1\) & 78 \\
\hline & & clear patchy & overcast drizzle shower & & \\
\hline Stop \(10^{34}\) & 0 & overcast drizzle shower & & \\
\hline
\end{tabular}

\section*{Biological elements:}

Rhaphiomidas terminatus ? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids \(\qquad\) Asilids \(\qquad\) Mydids Apiocerids \(\qquad\) Sphecids Pompillids Scoliids Chrysidids
Other insects of note Us molitar, Sherman, Brepphidim, Ho lephila, Cower, Leptotes, Melisudes, Timeoritoyis c. Andy, Spmpoteu-, \(\vec{T}=\) Sid

Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)
Comments:
\(\qquad\)

Delhi sands flower-loving fly - General Field Form

Biological elements:
Rhaphiomidas terminatus? \(\qquad\) time \(\qquad\) sex \(\qquad\) numbers \(\qquad\) .

Other arthropods (general) Bombyliids Asilids \(\qquad\) Mydids _ Apiocerids \(\qquad\) Pompillids Scoliids Sphecids \(\qquad\)
Other insects of note \(\qquad\) is faeptalen, Chrysidids

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Vertebrates: \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Comments:}
\(\qquad\)
-
\(\qquad\) -
\(\qquad\)
\(\qquad\)```

