HABITAT ASSESSMENT AND MSHCP CONSISTENCY ANALYSIS Tentative Tract Map 37857

(APN 182-190-015, 182-190-016, and 182-190-017) In the

City of Jurupa Valley, County of Riverside
USGS 7.5-minute Riverside West topographic quadrangle map in Section 17 of
Township 2 South, Range 5 West

Prepared By:

25010 Nativity Lane Menifee, CA 92585 (760) 777-1621 www.gonzalesenvironmental.com

Report Date: March 28, 2022

TABLE OF CONTENTS

ACRONYMS AND ABBREVIATIONS	4
SUMMARY	6
I. INTRODUCTION	8
II. REGULATORY SETTING	14
III. SURVEY METHODS	21
IV. EXISTING CONDITIONS	36
V. RESULTS	45
VI. IMPACT ANALYSIS AND MITIGATION MEASURES	51
VII. MSHCP CONSISTENCY DETERMINATION	60
VIII. SUMMARY OF MITIGATION MEASURES AND BMPS	64
IX. BIBLIOGRAPHY AND REFERENCES	67
X. APPENDICES	72

CERTIFICATION: I hereby certify that the statements furnished above and in the attached exhibits present data and information required for this biological evaluation, and that the facts, statements, and information presented are true and correct to the best of my knowledge and belief.

Date: March 28, 2022

Signed:

Jeren Lonzaes.

Jeress Lonzaes.

USFWS Certification: I certify that the information in this survey report and attached exhibits fully and accurately represents my work.

Permit #: TE060175-5

Signed:

A. Date report prepared: March 28, 2022

- **B.** Report Title: HABITAT ASSESSMENT AND MSHCP CONSISTENCY ANALYSIS for Tentative Tract Map 37857 (APN 182-190-015, 182-190-016, and 182-190-017) In the City of Jurupa Valley, County of Riverside
- C. <u>Project site location</u>: USGS 7.5-minute topographic Riverside West Quadrangle Township 2 South, Range 5 West, portions of Section 17

D. Owner/Applicant:

Mr. Robert Beers 8175 Limonite Avenue, Suite E Riverside, CA 92509

E. <u>Principal Investigator(s)</u>: Teresa Gonzales and Paul Gonzales

Address: 358 Crystal Drive San Jacinto, CA 92583 Phone: 760.777-1621

G. Name and phone number of person preparing report and of all persons who performed fieldwork on the site

Name of Person	Role on project
Teresa Gonzales	Prepared report and performed
	fieldwork
Paul Gonzales	Performed fieldwork

This document should be cited as:

Gonzales Environmental Consulting, LLC. 2022. Habitat Assessment Including the Results of MSHCP Consistency Analysis for Tentative Tract Map 378587 (APN 182-190-015, 182-190-016, and 182-190-017) In the City of Jurupa Valley, County of Riverside; USGS 7.5-minute topographic Riverside West Quadrangle Township 2 South, Range 5 West, portions of Section 17. March 28, 2022. Jurupa Valley, California. Prepared for Robert Beers

ACRONYMS AND ABBREVIATIONS

BMPs	best management practices
BUOW	burrowing owl
CDFG	California Department of Fish and Game
CDFW	California Department of Fish and Wildlife
CEQA	California Environmental Quality Act
CFGC	California Fish and Game Code
CNDDB	California Natural Diversity Database
CNPS	California Native Plant Society
CRPR	California Rare Plant Rank
CWA	Clean Water Act
DBESP	Determination of Biologically Equivalent or Superior Preservation
DEIR	Draft Environmental Impact Report
ESA	Endangered Species Act
° F	degrees Fahrenheit
FEIR	Final Environmental Impact Report
Ft ²	square feet
GEC	Gonzales Environmental Consulting, LLC
GIS	Geographic Information System
GPS	Global Positioning System
НСР	Habitat Conservation Plan
НММР	Habitat Mitigation and Monitoring Plan
JD	Jurisdictional Determination
MBTA	Migratory Bird Treaty Act
MSHCP	Western Riverside County Multiple Species Habitat Conservation Plan
Plan	Western Riverside County Multiple Species Habitat Conservation Plan
PQP	Public/Quasi-Public
RCA	Regional Conservation Authority
RCFCD	Riverside County Flood Control District
RWQCB	Regional Water Quality Control Board
SKR	Stephens' kangaroo rat
SWPPP	Stormwater Pollution Prevention Plan
USACE	U.S. Army Corps of Engineers
USGS	U.S. Geological Survey

UWIG	Urban/Wildlands Interface Guidelines
WOS	Waters of the State
WQMP	Water Quality Management Plan
WUS	Waters of the U.S.

In February and March 2020, and again in March 2022, Teresa Gonzales and Paul Gonzales of Gonzales Environmental Consulting, LLC (GEC) conducted biological resources assessment of the project site Tentative Tract Map 37857 [APN 182-190-015 (1.28 acres), 182-190-016 (1.28 acres), and 182-190-017(1.28 acres)] (site). The purpose of our assessment was to characterize biological resources on the site, and to identify any biological constraints to land-use changes.

Western Riverside Multiple Species Habitat Conservation Plan

The site is in within Jurupa Area Plan of the Western Riverside Multiple Species Habitat Conservation Plan (MSHCP). **No Criteria cell, Core and Linkage are located in or around the project area**.

Based on biological resource assessments, the Riverside County Integrated Project Conservation Report Generator, and maps of MSHCP survey areas, it was determined that the no additional studies would be required for the proposed Project's consistency with the MSHCP.

Vegetation

The vegetation communities within the project area are California Annual Grassland Alliance, Tamarisk and ornamental. Previous and current anthropogenic activities and invasion of nonnative plant species have contributed to the disturbed condition of many vegetation communities within the project vicinity.

Endangered, Threatened and Sensitive Species

A few special-status plant and animal species have the potential to occur on site. Delhi sands flower-loving fly, a federal endangered species, appropriate soils are located in the northern portion of the project. Focused surveys were conducted by Powell Environmental Consultants (TE-006559-7) for Delhi sands flower-loving fly. Surveys were negative for Delhi sands flower-loving fly.

Summary of Project Effects

Participation in the MSHCP, seasonal restrictions, compliance with local tree ordinances, implementation of mitigation measures, and compliance with local, state, and federal laws will allow the proposed project to proceed as proposed without significant impacts to biological resources.

The project area supports a low-moderate diversity of wildlife species due to the high level of disturbance and development in the vicinity. Many of the wildlife species observed or detected in the project area are commonly found in the urban interface or in disturbed habitat.

Increases in noise, construction traffic, and human activities during construction activities may temporarily deter movement of wildlife within the project vicinity. However, significant impacts to wildlife corridors or nursery sites are not expected from

construction or operational activities of the proposed project.

During construction, as with any project, there is the possibility that sensitive species, including those Adequately Conserved or those with additional mitigation requirements, could be encountered. In this event, the project proponent will coordinate directly with RCA and resource agencies (if appropriate) to determine any additional processing and mitigation as needed.

The proposed project is consistent with the MSHCP Reserve Assembly goals and project relationship for Criteria Areas/Cells in the Jurupa Area Plan. **No Criteria cell, Core and Linkage are located in or around the project area.** The proposed project would not impede the functions and values or the goals and objectives of the MSHCP.

This report was prepared by Gonzales Environmental Consulting, LLC (GEC) for Robert Beers. The project is located in the City of Jurupa Valley of Riverside County, California.

The report summarizes results of literature review to determine the potential presence or absence of species of concern within the project vicinity and the results of the 2020 general biological survey as well as the 2020 and 2022 field investigations conducted by GEC. In addition, the report provides an assessment of the potential impacts of the project on the biological resources on the project site.

GEC conducted biological surveys of the project site in 2020 and 2022. This report documents the results of the surveys, provides a summary of the technical studies (attached as Technical Appendices), analyzes the effects of the proposed project on the identified biological resources and recommends mitigation measures for identified impacts.

Project Location

The project site (site) discussed in this report is located north of 45th Street, west of Pacific Avenue and east of Opal Street in the City of Jurupa Valley, Riverside County, California. See Figures 1.1 and 1.2.

The site is located within San Bernardino Meridian in a portion of Section 17, Township 2 South, Range 5 West, City of Jurupa Valley, Riverside County, California (Figures 1.1, 1.2 and 1.3). This location is shown on the Riverside West, California 7.5-minute U.S. Geological Survey (USGS) quadrangle (Riverside West Photorevised 1980); page 685 Grid A2, A3, B2 and B3 of the Riverside County Street Guide and Directory (Thomas Brothers Maps Design 2013). The approximate center of the site is located at latitude 33.994381° and longitude -117.427195°.

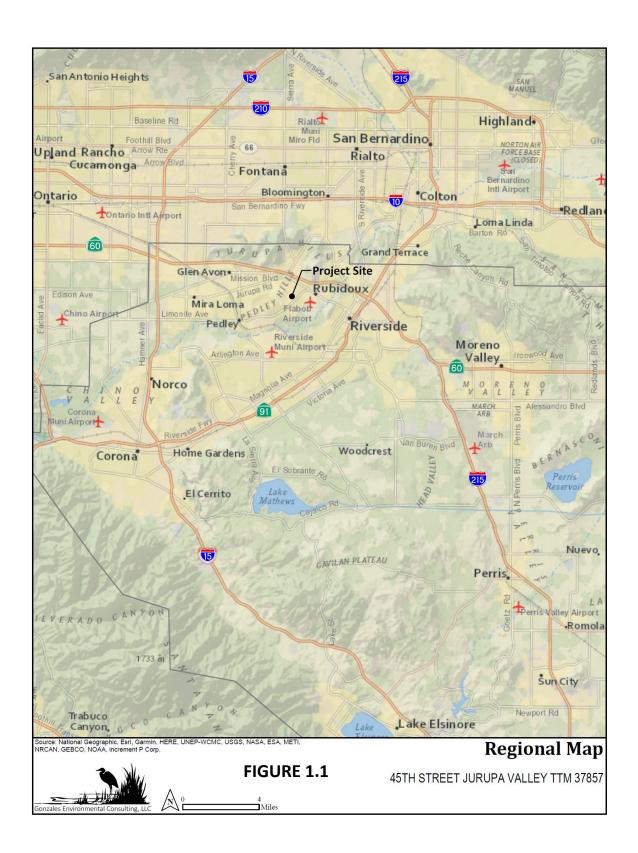
Elevation of the assessment area ranges from a from a low of 830± feet above mean sea level (msl) in the northeastern portion of the assessment area to a high of 849± feet above msl in the southwestern portion of the assessment area. This represents an elevational change across the assessment area of 19± feet. The entire site consists of relatively level land. The project site has been impacted by anthropogenic activities. Land use in the surrounding area varies between semi-rural and single family residential.

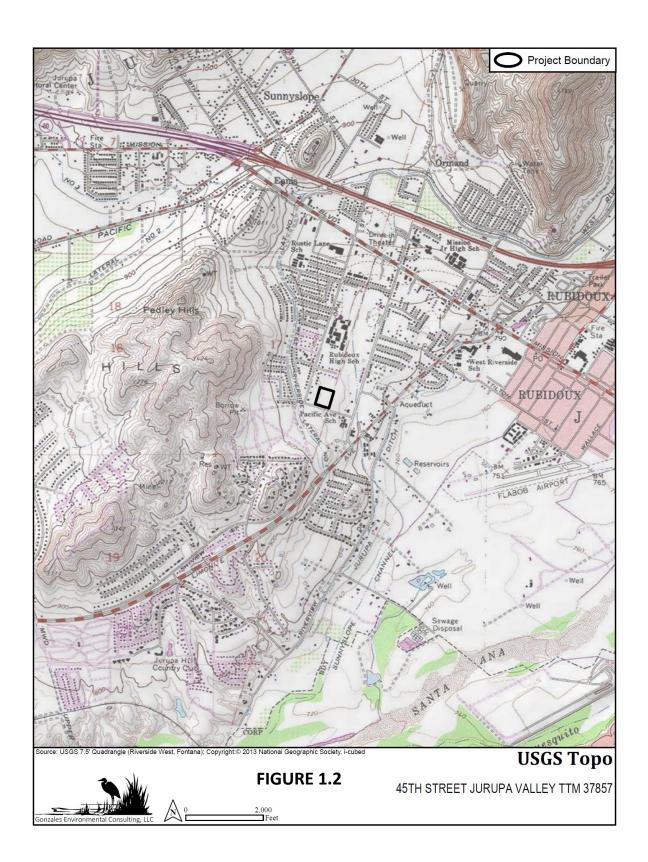
The vegetation communities within the project area are California Annual Grassland Alliance, Tamarisk and ornamental. Previous and current anthropogenic activities and invasion of nonnative plant species have contributed to the disturbed condition of many vegetation communities within the project vicinity.

PROJECT DESCRIPTION

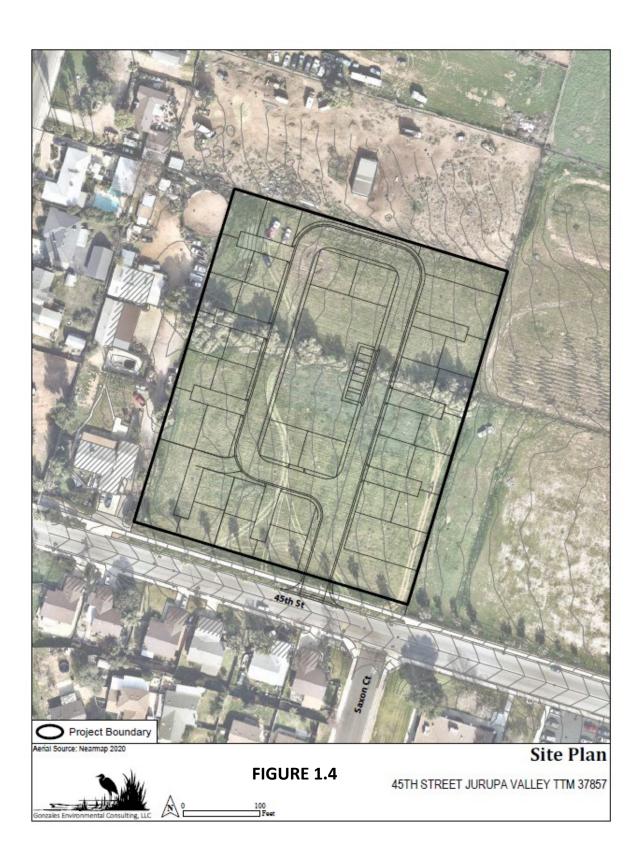
The site is comprised of 3.84 acres of disturbed property situated in the City of Jurupa Valley in Riverside County, California.

Elevation of the assessment area ranges from a from a low of $830\pm$ feet above mean sea level (msl) in the northeastern portion of the assessment area to a high of $849\pm$ feet above msl in the southwestern portion of the assessment area. This represents an elevational change across the assessment area of $19\pm$ feet. The entire site consists of relatively level land.


TR 37857 proposes the subdivision of approximately 3.84 acres of undeveloped land into 35 single family residential numbered lots, four lettered lots, 4 streets and 8 courts. Access to the tract will be taken from 45th Street.


Estimated Duration of Construction:

Estimated duration of construction is 18 months.


Full Avoidance Infeasibility:

The project, as designed proposes to disturb only where required in order to allow for subdivision of the surrounding property. Where avoidance was not possible, mitigation of these impacts is being provided offsite as a part of this project.

The project is subject to state and federal regulations associated with a number of regulatory programs. These programs often overlap and were developed to protect natural resources, including state- and federally listed plants and animals; aquatic resources including rivers and creeks, ephemeral streambeds, wetlands, and areas of riparian habitat; other special-status species which are not listed as threatened or endangered by the state or federal governments; and other special-status vegetation communities.

REGIONAL LAND USE AND CONSERVATION PLANS

Riverside County Multi-Species Habitat Conservation Plan (MSHCP)

The proposed project area occurs in undeveloped lands within the City of Jurupa Valley. It contains a combination of native and disturbed lands.

The proposed project is located within the boundaries of the MSHCP. The MSHCP allows for the Permittees within the Plan area to manage local land-use decisions and maintain a strong economic climate while addressing the requirements of the state and federal Endangered Species Acts (ESAs). Rather than address sensitive species on an individual basis, the MSHCP focuses on the conservation of 146 species, proposing a reserve system of approximately 5,000 acres and a mechanism to fund and implement the reserve system (County of Riverside 2003). Take of Stephen's kangaroo rat (*Dipodomys stephensi*; SKR) will be processed directly through the SKR Habitat Conservation Plan (HCP) leaving the MSHCP to cover incidental take, as needed, for 145 species potentially impacted by the proposed project.

The importance of the Plan to the proposed Project and other projects within its boundaries is that it streamlines the environmental review and permitting processes for projects that affect biological resources. This is accomplished by having established survey and analysis requirements that directly support the identified conservation goals and objectives of the Plan. The goals and objectives of the Plan ultimately result in the development of a comprehensive biological resources reserve system providing long-term conservation of biological resources. The overall benefit to a project proponent is the use of existing state and federal take permits for listed species, with built-in mitigation measures, so that individual applicants need not seek their own permits from the USFWS and CDFW in accordance with the Federal ESA and California ESA take authorizations.

MSHCP RESERVE ASSEMBLY ANALYSIS

Area Plans, Subunits and Criteria Cells

The project area is located in MSHCP Jurupa Area Plan. The Area Plan is further divided into Subunits that contain Criteria Cells that are targeted for conservation. Target conservation acreages have been established along with a description of the planning species, biological issues and considerations, and criteria for each Subunit within the MSHCP. In some areas, Cells that have a common habitat goal are combined forming a Cell Group. The design for conservation involves core areas of habitat, blocks of habitat,

and linkages between the core and block areas. The project area is not in a Subunit or Criteria Cell. The following specific target planning species and conservation goals are included within the biological considerations for Jurupa Area Plan:

Planning Species

- Bell's sage sparrow
- black-crowned night heron
- coastal California gnatcatcher
- Cooper's hawk
- double-crested cormorant
- least Bell's vireo
- loggerhead shrike
- osprey
- peregrine falcon
- Southern California rufous-crowned sparrow
- southwestern willow flycatcher
- tree swallow
- western yellow-billed cuckoo
- white-faced ibis
- white-tailed kite
- arroyo chub
- Santa Ana sucker
- Delhi Sands flower-loving fly
- Bobcat
- Los Angeles pocket mouse
- San Bernardino kangaroo rat
- western pond turtle

Biological Issues and Considerations:

- Conserve existing wetlands in the Jurupa Area Plan portion of the Santa Ana River,
 with a focus on conserving existing Habitats in the river.
- Conserve known populations of least Bell's vireo and southwestern willow flycatcher along the Santa Ana River.
- Maintain a continuous Linkage along the Santa Ana River from the northern boundary of the Area Plan to the western boundary.
- Maintain Core and Linkage Habitat for bobcat in the Santa Ana River.
- Maintain Core Area for western pond turtle. Conserve large intact habitat blocks consisting of coastal sage scrub, chaparral and grasslands to support known locations of coastal California gnatcatcher.
- Conserve grasslands adjacent to sage scrub as foraging Habitat for raptors.
- Determine presence of potential Core Area for bobcat.
- Determine presence of potential small key population for San Bernardino kangaroo rat in Jurupa Hills.

- Determine presence of potential localities for Los Angeles pocket mouse in sandy washes and dune areas.
- Maintain Core and Linkage Habitat for Delhi Sands flower-loving fly.
- Conserve Delhi sands soil series occurring within agricultural lands along the western
 and northeastern boundary of the Jurupa Area Plan to support known locations of
 the Delhi Sands flower-loving fly.
- Determine presence of potential localities for Los Angeles pocket mouse in sandy washes and dune areas.
- Maintain Core and Linkage Habitat for the Delhi Sands flower-loving fly.

Cores and Linkages within Conservation Area

MSHCP Conservation Area is comprised of a variety of existing and proposed cores, extensions of existing cores, linkages, constrained linkages and non-contiguous habitat blocks. These features are generally referenced as cores and linkages. A Core is a block of habitat of appropriate size, configuration, and vegetation characteristics to generally support the life history requirements of one or more Covered Species. Although a more typical definition is population-related and refers to a single species, in the MSHCP this term is habitat-related because of the multi-species nature of the MSHCP Plan. An MSHCP linkage is defined as a connection between Core Areas with adequate size, configuration and vegetation characteristics to generally provide for "live-in" habitat and/or provide for genetic flow for identified planning species. A constrained linkage is a constricted connection expected to provide for movement of identified planning species between Core Areas, where options for assembly of the connection are limited due to existing patterns of use. Areas identified as linkages in MSHCP may provide movement habitat but not live-in habitat for some species, thereby functioning more as movement corridors.

Project site is not in a Criteria Cell. There are no proposed cores or linkages within the project area.

PUBLIC/QUASI PUBLIC CONSERVED LANDS

The project site is outside of PQP lands. There are no Public/Quasi Public (PQP) land(s) within the immediate area.

MSHCP SURVEY REQUIREMENTS

MSHCP survey areas for the proposed project were identified by conducting an initial search of the RCA MSHCP Information Map (RCA 2020). As a result, the study area was identified to be located within the burrowing owl survey area.

TABLE 2.1
MSHCP PROJECT REVIEW CHECKLIST

Checklist	Yes	No
Is the project located in a Criteria Area or Public/Quasi-Public Land?		✓
Is the project located in Criteria Area Plant Survey Area?		✓
Is the project located in Criteria Area Amphibian Survey Area?		✓

Is the project located in Criteria Area Mammal Survey Area?	✓
Is the project located in Narrow Endemic Plant Species Survey Area?	✓
Are riverine/riparian/wetland habitats or vernal pools present?	✓
Is the project located in Burrowing Owl Survey Area?	✓
Is the project located in a Special Linkage Area?	✓

MSHCP SECTION 6

Section 6 of the MSHCP provides provision for MSHCP implementation. Two particular subsections of this section are relevant to the proposed project:

- 6.1.2 Protection of Species Associated with Riparian/Riverine areas and Vernal Pools
- 6.1.3 Protection of Narrow Endemic Plant Species
- 6.1.4 Guidelines Pertaining to the Urban/Wildlands Interface (relevant)
- 6.3.2 Additional Survey Needs (relevant)

The MSHCP covers 146 species, 38 of which require additional surveys if the proposed project occurs in the specific survey area for a species. As noted in Table 4 the proposed project occurs within the burrowing owl survey areas. The project area does not traverse *Riparian/Riverine* and *Vernal Pool* habitats as defined by the MSHCP. Based on biological resource assessments, the RCIP Conservation Report Generator, and maps of MSHCP survey areas, it was determined that surveys for *Riparian/Riverine* habitats, *Vernal Pools*, and associated species are not required pursuant to *Sections 6.1.2, 6.1.3, and 6.3.2* of the MSHCP.

Section 6.1.3 of the MSHCP describes the 14 Narrow Endemic Plant Species and the procedures necessary for surveying, mapping and documenting these species. In addition to the Narrow Endemic Plant Species listed in Section 6.1.3, additional surveys may be needed for certain species listed in Section 6.3.2 in conjunction with Plan implementation in order to achieve coverage for these species. These species are referred to as "Criteria Area Species". Furthermore, per Section 6.1.2 of the MSHCP, if potential Riparian/Riverine, and/or Vernal Pool habitat (as defined by the MSHCP) occurs within the project area, additional surveys are necessary for specific species that have potential to occur within these habitats.

The MSHCP does not supersede existing federal and state regulations covering lakes, streams, vernal pools, and other wetland areas. Thus, projects must comply with existing regulations for these aquatic resources pursuant to Clean Water Act (CWA) and California Fish and Game Code (CFGC). However, pursuant to the MSHCP, an assessment of the potentially significant effects of projects on Riparian/Riverine areas, and Vernal Pools as it relates to habitat functions and values for MSHCP-covered species is required. If an avoidance alternative is not feasible and a more practicable alternative is selected instead, a DBESP would be provided to ensure replacement of any lost functions and values of habitat as it relates to the needs of Covered Species that rely on that habitat.

Section 6.1.2 of the MSHCP defines Riparian/Riverine and Vernal Pool habitats as follows:

Riparian/Riverine Areas: are lands which contain habitat dominated by trees, shrubs, persistent emergents, or emergent mosses and lichens, which occur close to or which depend upon soil moisture from a nearby fresh water source; or unvegetated, ephemerals that transport water supporting downstream resources in the MSHCP Conservation Area.

Vernal Pools: are seasonal wetlands that occur in depression areas that have wetlands indicators of all three parameters (soils, vegetation, and hydrology) during the wetter portion of the growing season, but normally lack wetlands indicators of hydrology and/or vegetation during the drier portion of the growing season. Obligate and facultative wetland plant species are normally dominant during the wetter portion of the growing season, while upland species (annuals) may be dominant during the drier portion of the growing season.

In addition to mapping *Vernal Pools*, the MSHCP requires mapping of stock ponds, ephemeral pools, and other features which may be suitable habitat for Riverside fairy shrimp (*Streptocephalus woottoni*), vernal pool fairy shrimp (*Brachinecta lynchi*), and Santa Rosa fairy shrimp (*Linderiella santarosae*).

The MSHCP describes a strategy of impact avoidance, minimization, and mitigation for these resources and further requires that long-term conservation of these areas is assured, and recommends that indirect impacts be reviewed to provide protection for these areas.

Section 6.1.4 of the MSHCP describes a process to ensure that projects located outside of, but adjacent to, the Conservation Area do not undermine conservation planning objectives of the MSHCP. This process is called the Urban/Wildlands Interface Guidelines (UWIG).

"Future Development in proximity to the MSHCP Conservation Area may result in Edge Effects that will adversely affect biological resources within the MSHCP Conservation Area. To minimize such Edge Effects, the following guidelines shall be implemented in conjunction with review of individual public and private Development projects in proximity to the MSHCP Conservation Area."

Specific elements to be considered in UWIG compliance include:

- Drainage
- Toxics
- Lighting
- Noise
- Invasives
- Barriers
- Grading and land development

As stated in the MSHCP: "Existing local regulations are generally in place that address the issues presented in this section. Specifically, the County of Riverside and the 18 Cities within the MSHCP Plan Area have approved general plans, zoning ordinances and policies that include mechanisms to regulate the development of land. In addition, project review and impact mitigation that are currently provided through the CEQA process address these issues." UWIG compliance, therefore, relies heavily on the application of Standard Best Management Practices (BMPs) during site development and project operation. These BMPs can be found in Appendix C of the MSHCP. Projects must accordingly demonstrate that they will not adversely affect any Conservation Area and must adequately consider the elements listed above per the UWIG.

MSHCP TABLE 9-3 REQUIREMENTS TO BE MET FOR 28 SPECIES PRIOR TO INCLUDING THOSE SPECIES ON THE LIST OF COVERED SPECIES ADEQUATELY CONSERVED

Of the 146 Covered Species addressed in the MSHCP, 118 species are considered to be Adequately Conserved. The remaining 28 Covered Species will be considered to be adequately conserved when certain conservation requirements are met (by RCA) as identified in the species-specific conservation objectives for those species. For 16 of the 28 species, particular species-specific conservation objectives, which are identified in *Table 9-3* of the MSHCP, must be satisfied to shift those particular species to the list of Covered Species Adequately Conserved.

TABLE 2.2
MSHCP SECTION 6 SPECIES LIST

MSHCP Section	Species
	Plants: Brand's phacelia, California orcutt grass, California black walnut, coulter's Matilija poppy, Engelmann oak, fish's milkwort, graceful tarplant, lemon lily, Mojave tarplant, mud nama, ocellated Humboldt lily, orcutt's brodiaea, parish's meadowfoam, prostrate navarretia, San Diego button-celery, San Jacinto Valley crownscale, San Miguel savory, Santa Ana river woolly-star, slender-horned spine flower, smooth tarplant, spreading navarretia, thread-leaved brodiaea, and vernal barley.
Section 6.1.2 Riparian/ Riverine and Vernal Pools	Invertebrates: Riverside fairy shrimp and vernal pool fairy shrimp Fish: Santa Ana sucker
Section 6.1.3 Narrow Endemic Plant Species	Brand's phacelia, California Orcutt grass, Hammitt's clay-cress, Johnston's rockcress, many-stemmed dudleya, Munz's mariposa lily, Munz's onion, San Diego ambrosia, San Jacinto Mountains bedstraw, San Miguel savory (Santa Rosa Plateau, Steele Rock), slender-horned spine flower, spreading navarretia, Wright's trichocoronis, and Yucaipaonion.

Section 6.3.2 Additional Survey Needs and	Plants*: Coulter's goldfields, Davidson's saltscale, heart-leaved pitcher sage, little mud nama, Nevin's barberry, Parish's brittlescale, prostrate navarretia, round-leaved filaree, San Jacinto Valley crownscale, smooth tarplant, thread-leaved, and Vail Lakeceanothus. Amphibians*:arroyo toad, mountain yellow-legged frog, and California red-legged frog
Procedures	Birds: burrowing owl Mammals*: Aguanga kangaroo rat, San Bernardino kangaroo rat, Los Angeles pocket mouse
	3. 1. 3. 1. 3. 1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

^{*}Note: Project does not occur within the plants, amphibian, burrowing owl, fish and mammal species surveyareas.

MSHCP Consistency Analysis has been added as an appendix to this report.

For the development of this document, a systematic approach was taken to identify and characterize biological resources, including vegetation community types, and special status plant and animal species in the project area. The biological resource study area is defined as the area either directly or indirectly impacted by the project. Records of known occurrences were reviewed to identify those plant and wildlife species that may occur in the project area. Those records were then compared with federal or state listed threatened, endangered, or special status species. General biological surveys; vegetation mapping; and surveys for special status wildlife and plant species for the project were conducted. Methods that were used during these surveys are summarized by resource type in the following sections.

Records Search

Preliminary investigations included review of information obtained from the USFWS, and CDFW; literature searches; examination of aerial photographs; and database searches including California Native Plant Society (CNPS), the California Natural Diversity Data Base (CNDDB) records, and sensitive species accounts for Riverside County. Reviewed environmental documents included Environmental Impact Reports prepared for other projects in the vicinity. The following resources were used in background research and during field surveys:

- Topographic maps (USGS 7.5 minute quadrangle)
- Aerial photos
- California Natural Diversity Database (CDFW 2022)
- USFWS sensitive species occurrence database (USFWS 2022)
- California Native Plant Society (CNPS) Inventory of Rare and Endangered Plants of California (CNPS 2022)
- Western Riverside Area, California Soil Survey (U.S. Department of Agriculture [USDA] 1971)
- Volume 1, Parts I and II of the MSHCP (County of Riverside 2003)
- Western Riverside County-Regional Conservation Authority MSHCP Information Map (Viewer) (RCA 2022)
- A list of special status species was compiled, including all species in the project area that were:

Listed as endangered or threatened, proposed for listing, or candidates for listing under the Federal Endangered Species Act (FESA);

Listed as endangered or threatened, or candidates for listing under the California Endangered Species Act (CESA);

Included in one of the CDFW publications on species of special concern;

"Fully protected" by the State of California;

Included in the CNPS compilation; or

Identified as plants meeting the definition of rare or endangered under CEQA.

The information provided by these agencies included both regional and site-specific data on sensitive species. These species are listed in Table 3.2.

Appendix F presents a list of special-status species that were determined to have potential to occur within the project area based on literature and database review, as well as initial habitat assessments.

FIELD SURVEY OVERVIEW

The general biological study area consisted of the proposed project area with some focused surveys out to 500 feet on either side of the proposed project area. A number of biological resources assessments and focused surveys have been performed within the project area to date. General and focused biological surveys and habitat assessments were conducted in order to assess the following:

- General biological characteristics of the project area;
- Presence or potential presence of any listed, special-status, or MSHCP species;
- Vegetation communities;
- Flora and fauna species inventories;
- Habitat suitability for burrowing owls (Athene cunicularia) within MSHCP survey area;
- Presence or potential presence of species not covered by the MSHCP;
- Presence or potential presence of MSHCP defined fairy shrimp, Vernal Pool, and Riparian/Riverine habitats; and
- Presence or potential presence of waters and wetlands under U.S. Army Corps of Engineers (USACE), Regional Water Quality Control Board (RWQCB) and California Department of Fish and Wildlife (CDFW) jurisdiction.

Data was collected in the field by numerous techniques including the use of field notes, hand-held Global Positioning System (GPS) devices, standardized data forms, photographs, and field maps. Field maps with an aerial view of the project area included CNDDB, USFWS, and MSHCP sensitive species data points. Potentially occurring habitats for special-status species were identified prior to field investigations through aerial photo-interpretation. Initial reconnaissance level wildlife and botanical surveys were conducted in conjunction with vegetation mapping. The project area was traversed on foot and by vehicles as needed to gain 100 percent access of the survey area.

Focused surveys were scheduled based on the results of the initial assessments. Lists of all vertebrate wildlife species and all plant species encountered within the entire project area are included in Appendix D. Table 3.1 identifies all field work conducted within the project area in 2020.

Vegetation Methods

Aerial photography and digital vegetation maps were reviewed to determine potential community types within the project area. Preliminary ground-truthing surveys concurred with digital vegetation maps, and additional surveys were performed to accurately define the community types and boundaries.

Wetlands and Aquatic Resources Methods

General wetland and streambed assessments of the proposed project site were conducted in February and March 2020 by GEC, which included general mapping of habitat(s) that may be subject to jurisdiction of CDFW pursuant to sections 1600-12 of the California Fish and Game Code, ACOE and MSHCP Section 6.1.2 if present. Potential MSHCP Section 6.1.2 seasonal watercourses were not found on the project site.

A brief assessment of the wetland/riparian jurisdictional communities encountered (if they were encountered) was also conducted which described the dominant and associate plant species of each community and the presence and/or absence of visual field indicators (e.g., dominance of hydrophytic species, presence of drift lines).

Wildlife Survey and Habitat Assessment Methods

General reconnaissance and habitat assessment surveys were completed to determine habitat suitability for listed species and special status plant, wildlife, and aquatic species. Suitable habitat for listed species and special status species was determined by the presence of specific habitat elements. The surveys coincided with the period during which many wildlife species, including migratory species, would have been most detectable. A faunal inventory of all species observed during the course of the surveys was also prepared.

SPECIAL STATUS SPECIES METHODS

Special Status Rare Plant Species Survey Methods

Information on special status rare plant species within the project area was gathered from several sources including California Native Plant Society (CNPS) Inventory of Rare and Endangered Plants of California (CNPS 2020, 2022), CNDDB (CNDDB 2020, 2022), and CalFlora (CalFlora 2020, 2022). Maps depicting all known sensitive plant species locations within the project area were produced to aid in determining the target species for survey. General reconnaissance and habitat assessment surveys were completed to determine habitat suitability for listed species and special status plants. Suitable habitat for listed species and special status species of specific habitat elements.

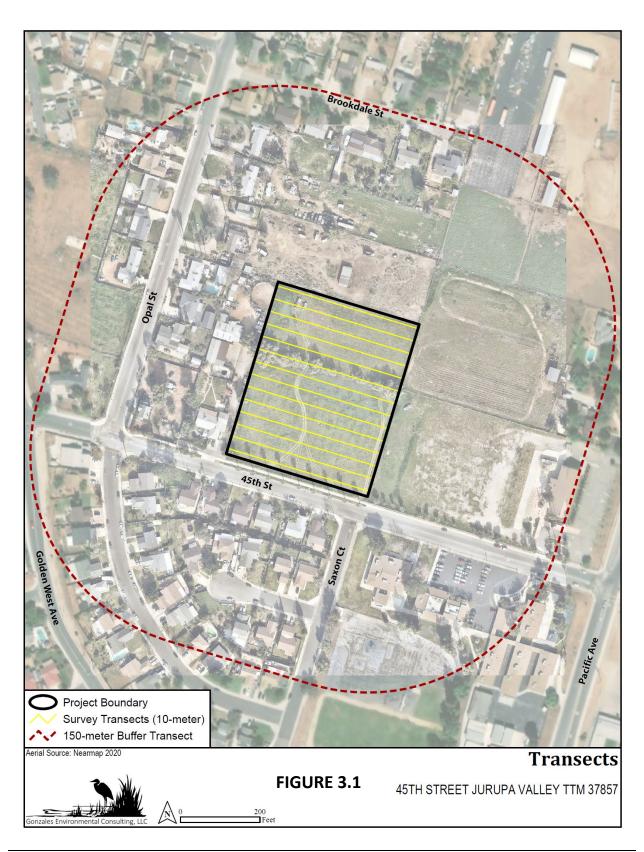
Plant surveys of the project area were conducted in February and March 2020 and again in March 2022. This time period corresponds to the time during which early ephemeral spring annuals and herbaceous perennials in Riverside County would be detectable. No sensitive plant species were located. The likelihood of these species occurrence (expected, high, moderate, low, or not expected) was also assessed. A floral inventory of all species observed during the course of the surveys was also documented.

Special Status Wildlife Species Survey Methods

Prior to conducting habitat assessment surveys, CNDDB and other sources were reviewed for the records of special status wildlife species potentially occurring in the project area. General reconnaissance and habitat assessment surveys were conducted to assess the presence of special status wildlife species habitats within the project area. Maps depicting all known sensitive wildlife species locations within the regional vicinity of the project were produced to aid in determining the target species to survey. All wildlife species encountered during surveys were documented. Any specific areas (e.g., potential nesting, breeding, and foraging habitat) encountered during the surveys that have a high probability for supporting sensitive wildlife were documented. The likelihood of these species occurrence (not expected, low, moderate, high, expected) was also assessed. General habitat assessments and focused protocol-level surveys for other species including, but not limited to, burrowing owl (*Athene cunicularia*), were also conducted. General habitat assessments involved evaluating the specific vegetation communities encountered and their potential to support these sensitive species (expected, high, moderate, low, not expected).

Surveys

A complete floristic survey of the project area, as required in a complete CEQA analysis, was conducted in 2020 and 2022 to determine whether listed or special status plant species or sensitive plant communities occur. All plants encountered were identified to a level necessary to ensure detection of covered or special status species. No special status species surveys were required for the proposed project.


Table 3.1
Survey Locations, Personnel, Dates, and Purpose

Surveyor(s)	Dat	Purpose	
	2020	2022	
TG, PG	February 30, March 9, 15	March 20, 25	General Biological Survey (Plant and Wildlife Habitat Assessments)
TG, PG	February 30, March 9, 15	March 20, 25	MSHCP Habitat Assessment
TG, JP	February 30, March 9, 15	March 20, 25	Vegetation Mapping
TG, JP	February 30, March 9, 15	March 20, 25	Various Assessments, Vegetation Mapping
PEC	July 1, 4, 8, 11, 15, 18, 22, 25, 29, August 1, 5, 8, 12, 15, 19, 22, 26, 29, September 2, 5, 9, 12, 16, 19		Delhi Sands Flower Loving Fly Focused surveys

LEGEND:

TG=Teresa Gonzales, GEC Biologist PG=Paul Gonzales, GEC Biologist JP= Justin Palmer, AJP GIS

PEC=Powell Environmental Consultants , PEC DSFLF Biologist

BURROWING OWL

Burrowing owl habitat assessment and focused surveys were not required for the project site. No burrows or burrowing owl were found on the project site.

JURISDICTIONAL WATERS AND WETLANDS

USACE regulates deposition of fill material into waters of the U.S. (WUS) under Section 404 of the CWA. RWQCB regulates impacts to WUS under Section 401 of the CWA and to waters of the State (WOS) under the Porter Cologne Water Quality Control Act. CDFW regulates impacts to their jurisdiction, which includes lakes and streambeds to the outer extent of the riparian canopy, under Section 1600 of the CFGC.

No federal or state streambed areas were found on the project site.

MSHCP 6.1.2 RIPARIAN/RIVERINE/VERNAL POOLS

An assessment of the potentially significant effects of the proposed project on riparian, riverine and vernal pool areas was conducted. Seasonal watercourses are not present and no evidence of recent surface water was observed on site. No potential MSHCP 6.1.2 areas were found on the project site. There are no Riparian/Riverine associated species on the project site (i.e. least Bell's vireo, southwestern willow flycatcher, blue grosbeak, etc.) as there is no appropriate habitat.

FAIRY SHRIMP

An assessment of the potentially significant effects of the proposed project on fairy shrimp was conducted. Fairy shrimp can occasionally be found in habitats other than vernal pools, such as artificial pools created by roadside ditches, shallow depressions and road ruts. Suitable habitat for fairy shrimp would require features that would be able to hold water long enough to support fairy shrimp. We found no appropriate habitat on the project site for fairy shrimp.

SECTION 6.1.2 RIPARIAN, RIVERINE, AND VERNAL POOL RESOURCES

The lack of appropriate vegetation means that the site is not suitable for riparian bird species including least Bell's vireo (*Vireo bellii pusillus*), southwestern willow flycatcher (*Empidonax trailii extimus*), and yellow-billed cuckoo (*Coccyzus americanus*). No vernal pool plants or appropriate soils were observed on the project site.

Table 3.2

CNDDB Rare, Threatened or Endangered Species and Habitats in Riverside West Quadrangle¹

SCIENTIFIC NAME	OR ENDANGERED SPECIES A	FEDERAL STATUS	CALIF STATUS	CDFW	CNPS LIST
Rana draytonii	California red-legged frog	Threatened	None	SSC	CNP3 LIST
Botaurus lentiginosus	American bittern	None	None	330	
•	American peregrine falcon	Delisted		FP	 -
Falco peregrinus anatum		1	Delisted		_
Artemisiospiza belli belli	Bell's sage sparrow	None	None	WL	-
Nycticorax nycticorax	black-crowned night heron	None	None	-	-
Athene cunicularia	burrowing owl	None	None	SSC	-
Laterallus jamaicensis coturniculus	California black rail	None	Threatened	FP	-
Larus californicus	California gull	None	None	WL	-
Eremophila alpestris actia	California horned lark	None	None	WL	-
	coastal California				
Polioptila californica californica	gnatcatcher	Threatened	None	SSC	-
Accipiter cooperii	Cooper's hawk	None	None	WL	-
Calypte costae	Costa's hummingbird	None	None	-	-
Phalacrocorax auritus	double-crested cormorant	None	None	WL	-
Aquila chrysaetos	golden eagle	None	None	FP;WL	-
Ammodramus savannarum	grasshopper sparrow	None	None	SSC	-
Ardea herodias	great blue heron	None	None	-	-
Ardea alba	great egret	None	None	-	-
Spinus lawrencei	Lawrence's goldfinch	None	None	-	-
Vireo bellii pusillus	least Bell's vireo	Endangered	Endangered	-	<u> </u>
Lanius Iudovicianus	loggerhead shrike	None	None	SSC	-
Asio otus	long-eared owl	None	None	SSC	-
Falco columbarius	merlin	None	None	WL	-
Circus hudsonius	northern harrier	1	1	SSC	-
		None	None		+-
Pandion haliaetus	osprey	None	None	WL	
Selasphorus rufus	rufous hummingbird	None	None	-	-
Accipiter striatus	sharp-shinned hawk	None	None	WL	-
Egretta thula	snowy egret	None	None	-	-
	southern California rufous-				
Aimophila ruficeps canescens	crowned sparrow	None	None	WL	-
	southwestern willow				
Empidonax traillii extimus	flycatcher	Endangered	Endangered	-	-
Buteo swainsoni	Swainson's hawk	None	Threatened	-	-
Agelaius tricolor	tricolored blackbird	None	Threatened	SSC	-
Chaetura vauxi	Vaux's swift	None	None	SSC	-
Coccyzus americanus occidentalis	western yellow-billed cuckoo	Threatened	Endangered	-	-
Plegadis chihi	white-faced ibis	None	None	WL	-
Elanus leucurus	white-tailed kite	None	None	FP	-
Coturnicops noveboracensis	yellow rail	None	None	SSC	-
Setophaga petechia	yellow warbler	None	None	SSC	-
Icteria virens	yellow-breasted chat	None	None	SSC	-
Xanthocephalus xanthocephalus	yellow-headed blackbird	None	None	SSC	-
Gila orcuttii	arroyo chub	None	None	SSC	-
Rhinichthys osculus ssp. 3	Santa Ana speckled dace	None	None	SSC	-
Catostomus santaanae	Santa Ana sucker	Threatened	None	-	-
Oncorhynchus mykiss irideus pop.	steelhead - southern	Tireaterieu	None	+	+
10	California DPS	Endangered	None	1_	_
Carolella busckana	Busck's gallmoth	None	None	-	-
Carolella busckulla	DUSCK 3 KallIIIO(III	NOHE	Candidate	+-	+-
Rombus crotchii	Crotch humble has	None			
Bombus crotchii	Crotch bumble bee	None	Endangered	+	+
Ceratochrysis longimala	Desert cuckoo wasp	None	None	-	-
Euphydryas editha quino	quino checkerspot butterfly	Endangered	None	-	-
Perognathus longimembris		1			
brevinasus	Los Angeles pocket mouse	None	None	SSC	-
	northwestern San Diego	l		1	
Chaetodipus fallax fallax	pocket mouse	None	None	SSC	-
Lynx rufus pallescens	pallid bobcat	None	None	-	-

¹ NDDB 2016

None Endangered None None Endangered None None	None Candidate Endangered None None Threatened None None None None None None None None	SSC SSC	
None None Endangered None None None None None None None None	None None None None None None None None	SSC SSC	
None None Endangered None None None None None None None None	None None Threatened None None None None None None None None	SSC SSC	
None Endangered None None None None None None None None	None Threatened None None None None None None None None	SSC	
None Endangered None None None None None None None None	None Threatened None None None None None None None None	SSC	
Endangered None None None None None None None None	Threatened None None None None None None None None	-	
None None None None None None None None	None None None None None None None None	SSC - SSC SSC SSC SSC SSC - SSC SSC - SSC SSC	
None None None None None None None None	None None None None None None None None	SSC - SSC SSC SSC SSC SSC - SSC SSC - SSC SSC	
None None None None None None None None	None None None None None None None None	-	
None None None None None None None None	None None None None None None None None	SSC SSC SSC WL SSC SSC - SSC SSC SSC SSC	
None None None None None None None None	None None None None None None None None	SSC SSC SSC WL SSC SSC - SSC SSC SSC SSC	
None None None None None None None None	None None None None None None None None	SSC SSC WL SSC SSC - SSC SSC SSC SSC	
None None None None None None None None	None None None None None None None None	SSC WL SSC SSC - SSC SSC SSC	
None None None None None None None None	None None None None None None None	WL SSC SSC - SSC SSC	
None None None None None None None None	None None None None None None	WL SSC SSC - SSC SSC	
None None None None None None None None	None None None None None None	SSC SSC - SSC SSC	
None None None None None	None None None None	SSC - SSC SSC SSC	
None None None None	None None None	- SSC SSC SSC	-
None None None	None None None	SSC SSC	-
None None None	None None	SSC SSC	-
None None	None	SSC	
None None	None	SSC	
None			
	None	330	- -
None	None		
None	None		+
None	None	_	_
		<u> </u>	-
	1	<u> </u>	1B.1
	1		1B.1
			1B.1
	1		4.2
			4.2
None	None	ļ -	4.5
Endangarad	Endangered		1B.1
Endangered	Endangered	-	16.1
None	None		4.2
None	None	<u> </u>	4.2
	None Endangered None None None None None None None None	None None Endangered None Endangered Endangered None None	None None - Endangered None - None None - None None - None None - Endangered Endangered - None None -

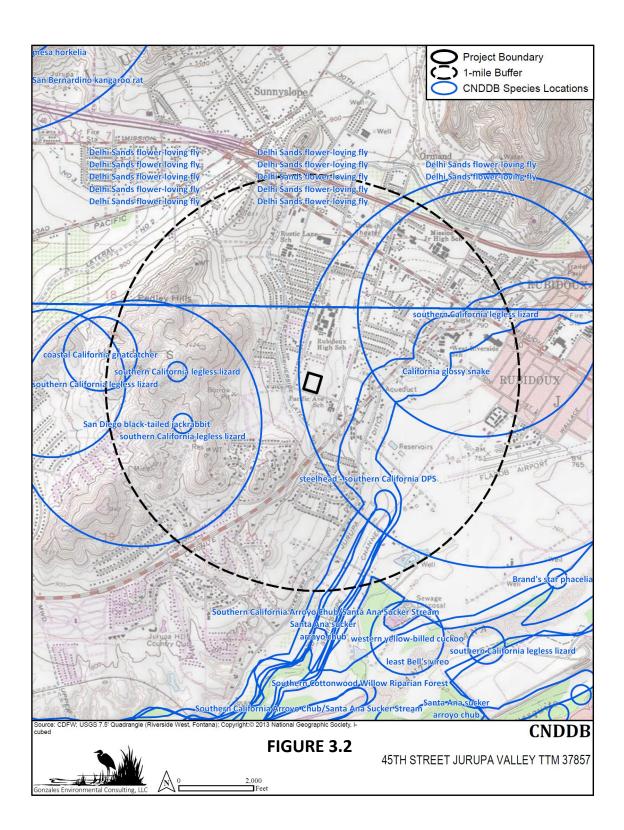


TABLE 3.3
CNDDB RARE, THREATENED OR ENDANGERED SPECIES AND HABITATS IN RIVERSIDE WEST QUADRANGLE
AND SURROUNDING NINE QUADRANGLES

SCIENTIFIC NAME	COMMON NAME	FEDERAL STATUS	CA STATUS	CDFW	CNPS LIS
Anaxyrus californicus	arroyo toad	Endangered	None	SSC	-
Rana draytonii	California red-legged frog	Threatened	None	SSC	-
Taricha torosa	Coast Range newt	None	None	SSC	-
Spea hammondii	western spadefoot	None	None	SSC	-
Botaurus lentiginosus	American bittern	None	None	-	-
Falco peregrinus anatum	American peregrine falcon	Delisted	D	FP	-
Pelecanus erythrorhynchos	American white pelican	None	None	SSC	-
Haliaeetus leucocephalus	bald eagle	Delisted	E	FP	-
Artemisiospiza belli belli	Bell's sage sparrow	None	None	WL	-
Nycticorax nycticorax	black-crowned night heron	None	None	-	-
Polioptila melanura	black-tailed gnatcatcher	None	None	WL	-
Spizella breweri	Brewer's sparrow	None	None	-	-
Athene cunicularia	burrowing owl	None	None	SSC	-
Laterallus jamaicensis coturniculus	California black rail	None	Т	FP	-
Gymnogyps californianus	California condor	Endangered	E	FP	-
Larus californicus	California gull	None	None	WL	-
Eremophila alpestris actia	California horned lark	None	None	WL	-
Hydroprogne caspia	Caspian tern	None	None	-	-
Cistothorus palustris clarkae	Clark's marsh wren	None	None	SSC	-
Polioptila californica californica	coastal California gnatcatcher	Threatened	None	SSC	-
Accipiter cooperii	Cooper's hawk	None	None	WL	-
Calypte costae	Costa's hummingbird	None	None	-	-
Phalacrocorax auritus	double-crested cormorant	None	None	WL	-
Buteo regalis	ferruginous hawk	None	None	WL FP;	-
Aquila chrysaetos	golden eagle	None	None	WL	-
Ammodramus savannarum	grasshopper sparrow	None	None	SSC	-
Ardea herodias	great blue heron	None	None	-	-
Ardea alba	great egret	None	None	-	-
Spinus lawrencei	Lawrence's goldfinch	None	None	-	-
Vireo bellii pusillus	least Bell's vireo	Endangered	E	-	-
Antigone canadensis canadensis	lesser sandhill crane	None	None	SSC	-
Empidonax traillii brewsteri	little willow flycatcher	None	E	-	-
Lanius ludovicianus	loggerhead shrike	None	None	SSC	-
Falco columbarius	merlin	None	None	WL	-
Charadrius montanus	mountain plover	None	None	SSC	-
Accipiter gentilis	northern goshawk	None	None	SSC	-
Circus hudsonius	northern harrier	None	None	SSC	-

SCIENTIFIC NAME	COMMON NAME	FEDERAL STATUS	CA STATUS	CDFW	CNPS LIST
Baeolophus inornatus	oak titmouse	None	None	-	-
Contopus cooperi	olive-sided flycatcher	None	None	SSC	-
Pandion haliaetus	osprey	None	None	WL	-
Falco mexicanus	prairie falcon	None	None	WL	-
Progne subis	purple martin	None	None	SSC	-
Sphyrapicus ruber	red-breasted sapsucker	None	None	-	-
Selasphorus rufus	rufous hummingbird	None	None	-	-
Accipiter striatus	sharp-shinned hawk	None	None	WL	-
Asio flammeus	short-eared owl	None	None	SSC	-
Egretta thula	snowy egret southern California rufous-	None	None	-	-
Aimophila ruficeps canescens	crowned sparrow	None	None	WL	-
Empidonax traillii extimus	southwestern willow flycatcher	Endangered	E	-	-
Buteo swainsoni	Swainson's hawk	None	Т	-	-
Agelaius tricolor	tricolored blackbird	None	T	SSC	-
Chaetura vauxi	Vaux's swift	None	None	SSC	-
Coccyzus americanus occidentalis	western yellow-billed cuckoo	Threatened	E	-	-
Plegadis chihi	white-faced ibis	None	None	WL	-
Elanus leucurus	white-tailed kite	None	None	FP	-
Empidonax traillii	willow flycatcher	None	E	-	-
Coturnicops noveboracensis	yellow rail	None	None	SSC	-
Setophaga petechia	yellow warbler	None	None	SSC	-
Icteria virens	yellow-breasted chat	None	None	SSC	-
Xanthocephalus xanthocephalus	yellow-headed blackbird	None	None	SSC	-
Streptocephalus woottoni	Riverside fairy shrimp	Endangered	None	-	-
Gila orcuttii	arroyo chub	None	None	SSC	-
Rhinichthys osculus ssp. 3	Santa Ana speckled dace	None	None	SSC	-
Catostomus santaanae	Santa Ana sucker steelhead - southern California	Threatened	None	-	-
Oncorhynchus mykiss irideus pop. 10	DPS	Endangered	None	-	-
Carolella busckana	Busck's gallmoth	None	None	-	-
Bombus crotchii	Crotch bumble bee	None	CE	-	-
Rhaphiomidas terminatus abdominalis	Delhi Sands flower-loving fly	Endangered	None	-	-
Ceratochrysis longimala	Desert cuckoo wasp	None	None	-	-
Cicindela tranquebarica viridissima	greenest tiger beetle	None	None	-	-
Euphydryas editha quino	quino checkerspot butterfly	Endangered	None	-	-
Taxidea taxus	American badger	None	None	SSC	-
Dipodomys simulans	Dulzura kangaroo rat	None	None	-	-
Perognathus longimembris brevinasus	Los Angeles pocket mouse northwestern San Diego pocket	None	None	SSC	-
Chaetodipus fallax fallax	mouse	None	None	SSC	-
Perognathus longimembris pacificus	Pacific pocket mouse	Endangered	None	SSC	-
Lynx rufus pallescens	pallid bobcat	None	None	-	-

SCIENTIFIC NAME	COMMON NAME	FEDERAL STATUS	CA STATUS	CDFW	CNPS LIST
Chaetodipus fallax pallidus	pallid San Diego pocket mouse	None	None	SSC	-
Nyctinomops femorosaccus	pocketed free-tailed bat	None	None	SSC	-
Glaucomys oregonensis californicus	San Bernardino flying squirrel	None	None	SSC	-
Dipodomys merriami parvus	San Bernardino kangaroo rat San Diego black-tailed	Endangered	CE	SSC	-
Lepus californicus bennettii	jackrabbit	None	None	SSC	-
Neotoma lepida intermedia	San Diego desert woodrat	None	None	SSC	-
Onychomys torridus ramona	southern grasshopper mouse	None	None	SSC	-
Dipodomys stephensi	Stephens' kangaroo rat	Endangered	T	-	-
Eumops perotis californicus	western mastiff bat	None	None	SSC	-
Lasiurus xanthinus	western yellow bat	None	None	SSC	-
Myotis yumanensis	Yuma myotis	None	None	-	-
Anodonta californiensis	California floater	None	None	-	-
Gonidea angulata	western ridged mussel	None	None	-	-
Arizona elegans occidentalis	California glossy snake	None	None	SSC	-
Phrynosoma blainvillii	coast horned lizard	None	None	SSC	-
Salvadora hexalepis virgultea	coast patch-nosed snake	None	None	SSC	-
Aspidoscelis tigris stejnegeri	coastal whiptail	None	None	SSC	-
Gopherus agassizii	desert tortoise	Threatened	T	-	-
Anniella pulchra	northern California legless lizard	None	None	SSC	-
Aspidoscelis hyperythra	orange-throated whiptail	None	None	WL	-
Crotalus ruber	red-diamond rattlesnake	None	None	SSC	-
Diadophis punctatus modestus	San Bernardino ringneck snake	None	None	-	-
Coleonyx variegatus abbotti	San Diego banded gecko	None	None	SSC	-
Diadophis punctatus similis	San Diego ringneck snake	None	None	-	-
Thamnophis sirtalis pop. 1	south coast gartersnake	None	None	SSC	-
Anniella stebbinsi	southern California legless lizard	None	None	SSC	-
Thamnophis hammondii	two-striped gartersnake	None	None	SSC	-
Emys marmorata	western pond turtle	None	None	SSC	-
Galium californicum ssp. primum	Alvin Meadow bedstraw	None	None	-	1B.2
Muhlenbergia utilis	aparejo grass	None	None	-	2B.2
Phacelia stellaris	Brand's star phacelia	None	None	-	1B.1
Carex comosa	bristly sedge	None	None	-	2B.1
Muhlenbergia californica	California muhly	None	None	-	4.3
Cladium californicum	California saw-grass	None	None	-	2B.2
Calochortus catalinae	Catalina mariposa-lily	None	None	-	4.2
Nolina cismontana	chaparral nolina	None	None	-	1B.2
Senecio aphanactis	chaparral ragwort	None	None	-	2B.2
Abronia villosa var. aurita	chaparral sand-verbena	None	None	-	1B.1
Lasthenia glabrata ssp. coulteri	Coulter's goldfields	None	None	-	1B.1
Romneya coulteri	Coulter's matilija poppy	None	None	-	4.2
•	· · · · ·		-		

SCIENTIFIC NAME	COMMON NAME	FEDERAL STATUS	CA STATUS	CDFW	CNPS	LIST
Quercus engelmannii	Engelmann oak	None	None	-		4.2
Polygala cornuta var. fishiae	Fish's milkwort	None	None	-		4.3
Nasturtium gambelii	Gambel's water cress	Endangered	Threat ened	-	1B.1	
Lepechinia cardiophylla	heart-leaved pitcher sage	None	None	-	1B.2	
Astragalus hornii var. hornii	Horn's milk-vetch	None	None	-	1B.1	
Calochortus weedii var. intermedius	intermediate mariposa-lily	None	None	-	1B.2	
Monardella hypoleuca ssp. intermedia	intermediate monardella	None	None	-	1B.3	
Myosurus minimus ssp. apus	little mousetail	None	None	-		3.1
Chorizanthe polygonoides var. longispina	long-spined spineflower	None	None	-	1B.2	
Helianthus nuttallii ssp. parishii	Los Angeles sunflower	None	None	-	1A	
Dudleya multicaulis	many-stemmed dudleya	None	None	-	1B.2	
Arenaria paludicola	marsh sandwort	Endangered	E	-	1B.1	
Horkelia cuneata var. puberula	mesa horkelia	None	None	-	1B.1	
Allium munzii	Munz's onion	Endangered	Т	-	1B.1	
Berberis nevinii	Nevin's barberry	Endangered	E	-	1B.1	
Lilium humboldtii ssp. ocellatum	ocellated humboldt lily	None	None	-		4.2
Harpagonella palmeri	Palmer's grapplinghook	None	None	-		4.2
Erythranthe diffusa	Palomar monkeyflower	None	None	-		4.3
Deinandra paniculata	paniculate tarplant	None	None	-		4.2
Malacothamnus parishii	Parish's bush-mallow	None	None	-	1A	
Lycium parishii	Parish's desert-thorn	None	None	-	2B.3	
Ribes divaricatum var. parishii	Parish's gooseberry	None	None	-	1A	
Chorizanthe parryi var. parryi	Parry's spineflower	None	None	-	1B.1	
Caulanthus simulans	Payson's jewelflower	None	None	-		4.2
Chorizanthe leptotheca	Peninsular spineflower	None	None	-		4.2
Cuscuta obtusiflora var. glandulosa	Peruvian dodder	None	None	-	2B.2	
Calochortus plummerae	Plummer's mariposa-lily	None	None	-		4.2
Sphenopholis obtusata	prairie wedge grass	None	None	-	2B.2	
Monardella pringlei	Pringle's monardella	None	None	-	1A	
Navarretia prostrata	prostrate vernal pool navarretia	None	None	-	1B.2	
Lepidium virginicum var. robinsonii	Robinson's pepper-grass	None	None	-		4.3
Chloropyron maritimum ssp. maritimum	salt marsh bird's-beak	Endangered	E	-	1B.2	
Sidalcea neomexicana	salt spring checkerbloom	None	None	-	2B.2	
Symphyotrichum defoliatum	San Bernardino aster	None	None	-	1B.2	
Ambrosia pumila	San Diego ambrosia	Endangered	None	-	1B.1	
Eriastrum densifolium ssp. sanctorum	Santa Ana River woollystar	Endangered	E	-	1B.1	
Phacelia keckii	Santiago Peak phacelia	None	None	-	1B.3	
Dodecahema leptoceras	slender-horned spineflower	Endangered	E	-	1B.1	
Microseris douglasii ssp. platycarpha	small-flowered microseris	None	None	-		4.2
Convolvulus simulans	small-flowered morning-glory	None	None	-		4.2
Centromadia pungens ssp. laevis	smooth tarplant	None	None	-	1B.1	

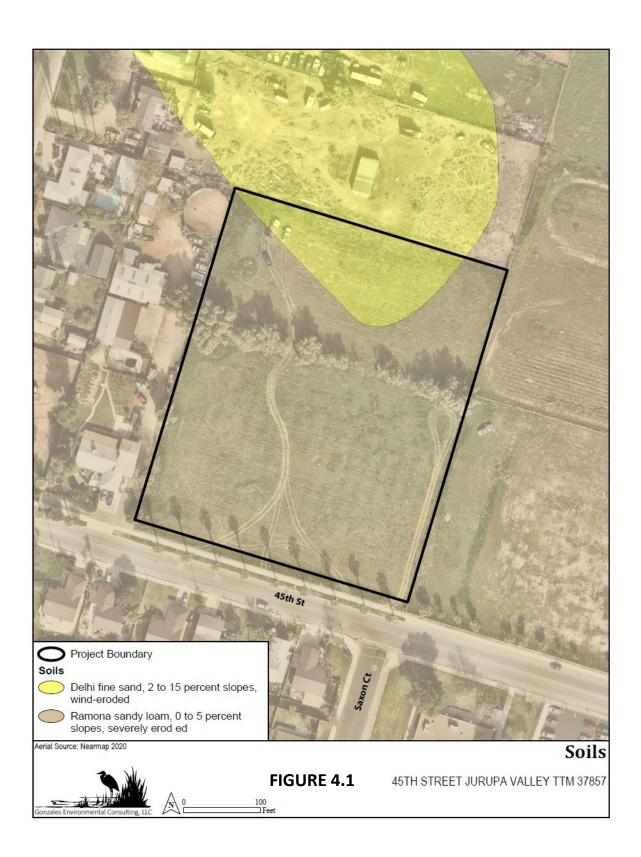
SCIENTIFIC NAME	COMMON NAME	FEDERAL STATUS	CA STATUS	CDFW	CNPS LIST
Juglans californica	southern California black walnut	None	None	-	4.2
Hordeum intercedens	vernal barley	None	None	-	3.2
Asplenium vespertinum	western spleenwort	None	None	-	4.2
Pseudognaphalium leucocephalum	white rabbit-tobacco	None	None	-	2B.2
Texosporium sancti-jacobi	woven-spored lichen	None	None	-	3
Legend: Candidate- Candidate for listing CND08-California Natural Diversity Database CDFW-California Department of Fish and Wildlife FP=Fully Protected SSC=Species of Concern CNP5 List- California Native Plant Society CNP5 1B- Rare or Endangered in California, More Common Elsewhere CNP5 2- Rare or Endangered in California, More Common Elsewhere CNP5 3- Need More Information CNP5 4- Plants of Limited Distribution CNP5 New Threat Code extensions and their meanings: 1 Seriously endangered in California (0ver 80% of occurrences threatened) 3 - Not very endangered in California (<20% of occurrences threatened or	, , ,				

This section provides the existing conditions of the study area, including the general description of the site, hydrological resources, soil types, and vegetation communities.

GENERAL DESCRIPTION OF THE SITE

Elevation of the assessment area ranges from a from a low of 830± feet above mean sea level (msl) in the northeastern portion of the assessment area to a high of 849± feet above msl in the southwestern portion of the assessment area. This represents an elevational change across the assessment area of 19± feet. The entire site consists of relatively level land. The project site has been impacted by anthropogenic activities. Land use in the surrounding area varies between semi-rural and single family residential.

HYDROLOGICAL RESOURCES


There are no hydrological resources on the project site.

SOILS OF THE SITE

The soil associations mapped for the area are Hanford-Tujunga-Greenfield association. Hanford-Tujunga-Greenfield association: Very deep, Well-drained to excessively drained, nearly level to moderately steep soils that have a surface layer of sand to sandy loam; on alluvial fans and flood plains. The soil series mapped for the area are described in Table 4.1. The soils found are similar in texture and color to those mapped, but were highly disturbed from anthropogenic activities. The soils were compacted and unstratified over the majority of the project site. The soils at soil pit locations did not meet the criteria for hydric soils within project boundaries.

TABLE 4.1 SOIL SERIES MAPPED FOR THE AREA

Name	Description
Delhi fine sand 2- 15% slopes, wind-eroded	Soils are somewhat excessively drained soils on dunes and alluvial fans. These soils developed in granitic material that was reworked by wind. Slopes range from 0-15%. Elevations range from 500-1,000 feet. The average annual rainfall ranges from 10-13 inches, the average annual temperature from 62-65 degrees F, and the average frost-free season from 250-310 days. The vegetation is chiefly annual grasses, alfilaria and flattop buckwheat.
Ramona sandy loam, 0-5% slopes, severely eroded	Well-drained soils on alluvial fans and terraces. Slopes range from 0-25%. Those soils developed in alluvium consisting mainly of granitic materials. Elevations range from 500-3,500 feet. The average annual rainfall ranges from 9-18 inches, the average annual temperature from 59-65 degrees F, and the average frost-free season from 220-300 days. The vegetation consists chiefly of annual grasses, forbs, chamise, salvia, and flattop buckwheat.

PLANT COMMUNITIES

Sensitive Vegetation Communities

Sensitive vegetation communities are those that are: considered sensitive pursuant to the State of California NCCP program; are under the jurisdiction of the ACOE pursuant to Section 404 of the CWA; are under the jurisdiction of the CDFW pursuant to Sections 1600 through 1612 of the California Fish and Game Code; are known or believed to be of high priority for inventory in the California Natural Diversity Data Base (CNDDB 2020); are considered regionally rare in southern California; have undergone a large- scale reduction from their Pre-European coverage in southern California due to increased urban and agricultural encroachment; and/or support sensitive plant and animal species.

Sensitive vegetation communities listed for the surrounding project area (9 surrounding quadrangles) are:

Riversidian Alluvial Fan Sage Scrub, Southern California Arroyo Chub/Santa Ana Sucker Stream, Southern Coast Live Oak Riparian Forest, Southern Cottonwood Willow Riparian Forest, Southern Interior Cypress Forest, Southern Riparian Forest, Southern Riparian Scrub, Southern Sycamore Alder Riparian Woodland and Southern Willow Scrub.

Vegetation Communities on the Project Site

The project encompasses three vegetation community types. Vegetation communities currently present are California Annual Grassland Alliance, Tamarisk and ornamental. The existing plant communities are described in more detail below.

California Annual Grassland Alliance

This alliance of non-native annual grasslands and forb lands is composed of coolseason, annual grasses mostly introduced from Europe. They are invasive in disturbed areas throughout much of California. The composition varies widely. Many alien annual species may be present, including *Avena fatua*, *Brassica* spp., *Bromus diandrus*, *Bromus hordeaceus* and *Bromus madritensis*. The composition of this alliance is largely determined by amount of disturbance coupled with fall temperatures and precipitation, light intensity, litter thickness and micro topography. The percentage of exotic alien species is often directly related to disturbance history with heavy disturbance correlating with heavy exotic invasion. Annual grasses are supremely adapted to the Mediterranean climate of California; many species evolved under similar conditions in southern Europe and northern Africa. Plants germinate during winter rains, and complete their life cycles by the beginning of the summer drought. Seeds often remain viable for many years.

Tamarisk

A line of tamarisk (*Tamarix ramosissima*) bisects the project site. This is a nonnative species that appears to have been planted as a windbreak.

Landscape

Landscape species on site are overhanging species from the western property. Species observed include oleander and cactus species.

TABLE 4.2 ACREAGE OF HABITAT TYPES

	Onsite Existing/	
Vegetation	Impacts	Offsite Existing
California Annual Grassland Alliance	3.522	0.013
Developed		0.023
Ornamental	0.032	
Tamarisk	0.288	
TOTAL (acres)	3.842	0.036

This section presents the result of habitat assessments and focused surveys that were conducted within the study area. Regarding how the survey results relate to potential impacts to sensitive biological resources and MSHCP consistency, refer to Section 6 and Section 7, respectively, of this report.

SENSITIVE HABITATS

A list of special status habitats was created based on published literature and literature readily available on the internet and CNDDB records searches. Riversidian Alluvial Fan Sage Scrub, Southern California Arroyo Chub/Santa Ana Sucker Stream, Southern Coast Live Oak Riparian Forest, Southern Cottonwood Willow Riparian Forest, Southern Interior Cypress Forest, Southern Riparian Forest, Southern Riparian Scrub, Southern Sycamore Alder Riparian Woodland and Southern Willow Scrub are sensitive habitats listed for the surrounding area.

MSHCP RIPARIAN/RIVERINE AND VERNAL POOL HABITATS

RIPARIAN/RIVERINE

We found no seasonal watercourses or potential 6.1.2 riverine vegetation and no evidence of recent surface water on the project site.

VERNAL POOLS

An assessment of the potentially significant effects of the proposed project on vernal pools was conducted. Vernal pools, also called vernal ponds or ephemeral pools, are temporary pools of water that provide habitat for distinctive plants and animals. We found none of those features on the project site. There are no clay soils or areas which has compacted soils that would allow water to stand for any length of time No vernal pools are present on the project site.

FAIRY SHRIMP

An assessment of the potentially significant effects of the proposed project on fairy shrimp was conducted. Fairy shrimp can occasionally be found in habitats other than vernal pools, such as artificial pools created by roadside ditches, shallow depressions and road ruts. Suitable habitat for fairy shrimp would require features that would be able to hold water long enough to support fairy shrimp. We found none of those features on the project site. There are no clay soils or areas which has compacted soils that would allow water to stand for any length of time. The site has been anthropogenically impacted and does not have any features necessary to support fairy shrimp in its current condition.

SENSITIVE PLANTS

Several special-status plant and animal species have the potential to occur on site. Table 5.1 documents the special-status plant species that may occur in the Riverside West quadrangle and surrounding nine quadrangles (Rarefind 5-2020).

Table 5.1
Special-Status Plant Species Listed for RIVERSIDE WEST & surrounding Nine Quadrangles

Scientific Name	Common Name	Status Federal/ State	CNPS List	Primary Habitat Associations	Status Onsite or Potential to Occur
Galium californicum ssp. primum	Alvin Meadow bedstraw	None/None	1B.2	Chaparral and yellow pine forests at an elevation 5000 feet	No habitat; No potential
Muhlenbergia utilis	aparejo grass	None/None	2B.2	Wet sites along streams, ponds at an elevation between 2501000 meters. Flowering Time: OctMar	No habitat; No potential
Phacelia stellaris	Brand's star phacelia	None/None	1B.1	Open areas, coastal-sage scrub coastal sage scrub below 400 meters	No habitat; No potential
Carex comosa	bristly sedge	None/None	2B.1	Lake-margins and edges between 0 and 1400 feet	No habitat; No potential
Muhlenbergia californica	California muhly	None/None	4.3	Streambanks, canyons, and moist ditches of California's south coast. Blooming period is May-September	No habitat; No potential
Cladium californicum	California saw-grass	None/None	2B.2	Alkaline marshes, swamps at an elevation of 2150 meters. Blooming period is June-September.	No habitat; No potential
Calochortus catalinae	Catalina mariposa-lily	None/None	4.2	Heavy soil, open grassland or scrub at an elevation less than 700 meters. Blooming period is from March–May.	Habitat present; No potential as no appropriate soils
Nolina cismontana	chaparral nolina	None/None	1B.2	Dry chaparral of coastal mtns at an elevation between 2001300 meters. Blooms from May-July.	No habitat; No potential
Senecio aphanactis	chaparral ragwort	None/None	2B.2	Alkaline flats, dry open rocky areas at an elevation between 10550 meters	No habitat; No potential
Abronia villosa var. aurita	chaparral sand-verbena	None/None	1B.1	Sandy places in coastal-sage scrub, chaparral at less than 1600 meters	No habitat; No potential
Lasthenia glabrata ssp. coulteri	Coulter's goldfields	None/None	1B.1	Alkaline coastal salt marshes, alkali playas, valley and foothill grasslands, and vernal pools	Habitat present; No potential not observed during surveys
Romneya coulteri	Coulter's matilija poppy	None/None	4.2	Sage scrub and chaparral	No habitat; No potential
Quercus engelmannii	Engelmann oak	None/None	4.2	Slopes, foothills, woodland at an elevation less than 1300 meters	No habitat; No potential
Polygala cornuta var. fishiae	Fish's milkwort	None/None	4.3	Alkaline flats, dry open rocky areas at an elevation between 10550 meters. Blooms from February-May.	No habitat; No potential
Nasturtium gambelii	Gambel's water cress	E/T	1B.1	Freshwater marsh, coastal sage scrub and chaparral communities. Habitat includes freshwater-march and brackish marsh	No habitat; No potential
Lepechinia cardiophylla	heart-leaved pitcher sage	None/None	1B.2	Closed-cone coniferous forest, chaparral and cismontane woodland at elevations of 550 to 1,370 meters. Blooming period April-July.	No habitat; No potential
Astragalus hornii var. hornii	Horn's milk-vetch	None/None	1B.1	Salty flats and lakeshores	No habitat; No potential
Calochortus weedii var. intermedius	intermediate mariposa-lily	None/None	1B.2	Dry, rocky, open slopes, often in chaparral, coastal sage scrub, and grasslands at an elevation less than 680 meters. Blooming period is between June and July.	No habitat; No potential
Monardella hypoleuca ssp. intermedia	intermediate monardella	None/None	1B.3	Chaparral, foothill woodlands, yellow pine forests, mixed evergreen forests, and valley grasslands. Blooming period is June-September.	Habitat present; No potential not observed during surveys
Myosurus minimus ssp. apus	little mousetail	None/None	3.1	Vernal Pools	No habitat; No potential
Chorizanthe polygonoides var. longispina	long-spined spineflower	None/None	1B.2	Southern needle grass grassland, and openings in coastal sage scrub and chaparral	No habitat; No potential
Helianthus nuttallii ssp. parishii	Los Angeles sunflower	None/None	1A	Coastal salt marsh	No habitat; No potential
Dudleya multicaulis	many-stemmed dudleya	None/None	1B.2	Rocky outcrops and can be found with Coastal Sage Scrub, Chaparral and Needle Grass.	No habitat; No potential
Arenaria paludicola	marsh sandwort	E/E	1B.1	Freshwater-marsh, Wet meadows, marshes at an elevation less than 300 meters	No habitat; No potential
Horkelia cuneata var. puberula	mesa horkelia	None/None	1B.1	Vernal pools, depressions and ditches in areas that once supported vernal pools below 2000 feet.	No habitat; No potential

Scientific Name	Common Name	Status Federal/ State	CNPS List	Primary Habitat Associations	Status Onsite or Potential to Occur
Allium munzii	Munz's onion	E/T	18.1	Grassy openings in coastal sage scrub, chaparral, juniper woodland, valley and foothill grasslands in clay soils. Found on mesic exposures or seasonally moist microsites	No suitable habitat; No potential
Berberis nevinii	Nevin's barberry	E/E	1B.1	Chaparral, Foothill Woodland, Coastal Sage Scrub habitats, Sandy to gravelly soils, washes, chaparral at an elevation less than 650 meters	No suitable habitat; No potential
Lilium humboldtii ssp. ocellatum	ocellated humboldt lily	None/None	4.2	Oak canyons, chaparral and yellow-pine forest at an elevation below 1800 meters	No suitable habitat; No potential
Harpagonella palmeri	Palmer's grapplinghook	None/None	4.2	Clay slopes and in burned areas at lower elevations	No habitat; No potential
Mimulus diffusus	Palomar monkeyflower	None/None	4.3	Sandy washes, disturbed areas at an elevation less than 2100 meters	No habitat; No potential
Deinandra paniculata	paniculate tarplant	None/None	4.2	Grassland, open chaparral and woodland, disturbed areas, often in sandy soils up to 1320 meter	Habitat present; No potential not observed during surveys
Malacothamnus parishii	Parish's bush-mallow	None/None	1A	Chaparral and coastal sage scrub	No habitat; No potential
Lycium parishii	Parish's desert-thorn	None/None	2B.3	Creosote Brush Scrub and Coastal Sage Scrub habitats; Sandy to rocky slopes, canyons at an elevation less than 1000 meters	No habitat; No potential
Ribes divaricatum var. parishii	Parish's gooseberry	None/None	1A	Moist woodland between 60–310 meters	No habitat; No potential
Chorizanthe parryi var. parryi	Parry's spineflower	None/None	1B.1	Openings of chaparral, sage scrub, alluvial fan sage scrub and Juniper woodland	No habitat; No potential
Caulanthus simulans	Payson's jewelflower	None/None	4.2	Chaparral, Coastal Sage Scrub	No habitat; No potential
Chorizanthe leptotheca	Peninsular spineflower	None/None	4.2	Sand or gravel, between (300)600–1600 meters	No habitat; No potential
Cuscuta obtusiflora var. glandulosa	Peruvian dodder	None/None	2B.2	Found on herbs including Alternanthera, Dalea, Lythrum, Polygonum and Xanthium at an elevation of less than 500 meters	No habitat; No potential
Calochortus plummerae	Plummer's mariposa-lily	None/None	4.2	Dry, rocky slopes, brushy areas and openings in chaparral below 5000 feet	No habitat; No potential
Sphenopholis obtusata	prairie wedge grass	None/None	2B.2	Wet meadows, streambanks, ponds at an elevation between 240–2870 meters	No habitat; No potential
Monardella pringlei	Pringle's monardella	None/None	1A	Interior sand dunes in sandy soils at an elevation between 300–400 meters	No habitat; No potential
Navarretia prostrata	prostrate vernal pool navarretia	None/None	1B.2	Vernal pools, depressions, and ditches in areas that once supported vernal pools below 2,000 feet.	No habitat; No potential
Lepidium virginicum var. robinsonii	Robinson's pepper-grass	None/None	4.3	Coastal sage scrub, chaparral, dry soils up to 1,500 foot elevation	No habitat; No potential
Chloropyron maritimum ssp. maritimum	salt marsh bird's-beak	E/E	1B.2	Coastal Strand and Coastal Salt Marsh and under natural conditions in wetlands at an elevation less than 10 meters	No habitat; No potential
Sidalcea neomexicana	Salt Spring checkerbloom	None/None	2B.2	Creosote Bush Scrub, Chaparral, Yellow Pine Forest, Coastal Sage Scrub and Alkali Sink	No habitat; No potential
Symphyotrichum defoliatum	San Bernardino aster	None/None	1B.2	Cismontane woodlands, coastal sage scrub, lower montane coniferous forests, meadows, seeps, marshes, swamps, valleys and foothill grasslands	Habitat present; No potential not observed during surveys
Ambrosia pumila	San Diego ambrosia	E/None	1B.1	Chaparral, coastal sage scrub, valley and foothill grassland and vernal pools; Disturbed sites; Elevation: 50600 m. Flowering Time is between April-July.	Habitat present; No potential not observed during surveys
Eriastrum densifolium ssp. sanctorum	Santa Ana River woollystar	E/E	1B.1	Washes, floodplains, dry riverbeds at an elevation less than 500 m.	No habitat; No potential
Phacelia keckii	Santiago Peak phacelia	None/None	1B.3	Annual herb found in closed-cone pine forest and chaparral habitats between 2,001 – 5,249 feet. Flowering Time between May-September.	No habitat; No potential
Dodecahema leptoceras	slender-horned spineflower	Endangered/Endangered	1B.1	Alluvial washes. It is usually restricted to old bench habitats in Riversidian alluvial fan sage scrub	No habitat; No potential

Scientific Name	Common Name	Status Federal/ State	CNPS List	Primary Habitat Associations	Status Onsite or Potential to Occur
Microseris douglasii ssp. platycarpha	small-flowered microseris	None/None	4.2	Annual herb found on Clay soils, in grassland habitat, often near vernal pools or serpentine outcrops.	Habitat present; no potential- as no clay soils are present
Convolvulus simulans	small-flowered morning-glory	None/None	4.2	Grassy and rocky places below 1000 feet, in coastal sage scrub, valley grassland. Blooming period is March to May.	Habitat present; no potential was not observed during surveys
Centromadia pungens ssp. laevis	smooth tarplant	None/None	1B.1	Alkaline soils at the edges of marshes and swamps	No habitat; No potential
Juglans californica	southern California black walnut	None/None	4.2	Hillsides and canyons at 30–900 meters	No habitat; No potential
Hordeum intercedens	vernal barley	None/None	3.2	Vernal pools, dry, saline streambeds and alkaline flats at an elevation below 500 meters	No habitat; No potential
Asplenium vespertinum	western spleenwort	None/None	4.2	Moist, shady, rocky places, such as the shadows beneath cliff overhangs	No habitat; No potential
Pseudognaphalium leucocephalum	white rabbit-tobacco	None/None	2B.2	Chaparral, Cismontane woodland, Coastal scrub, and Riparian woodland plant communities	No habitat; No potential
Texosporium sancti-jacobi	woven-spored lichen	None/None	3	Arid to semi-arid shrub-steppe, grassland or savannah communities up to 1,000 meters in elevation	Habitat present; Low potential- was not observed during surveys
gend Federally-listed as endangered SE: State-listed as endangered SE: State-listed as threatened SE: State candidate for listing as endangered SR: State rare SE: SE: State rare SE: SE: State rare SE:					

HABITAT ASSESSMENT AND MSHCP CONSISTENCY ANALYSIS Tentative Tract Map 37857 (APN 182-190-015, 182-190-016, and 182-190-017)

OAK TREES

There are no oak trees on or adjacent to the project site.

FAUNA

The project study area supports a low-moderate diversity of wildlife species due to the level of disturbance and development in the vicinity. Many of the wildlife species observed or detected in the project study area are commonly found in the urban interface or on disturbed habitat. Wildlife is generally specific to disturbed sage scrub habitat. While a few wildlife species are entirely dependent on a single vegetative community, the entire mosaic of the site and adjoining areas constitutes a functional ecosystem for a variety of wildlife species. The habitat on the site provides foraging habitat for year-round residents, seasonal residents, and migrating song birds. In addition, the site encompasses raptor foraging and perching habitat. A list of observed wildlife is attached as Appendix D. Wildlife usage of the project site tends to be focused around the margins of the project site, away from the eastern development. Characteristic avian species detected include mourning dove (*Zenaida macroura*), Anna's hummingbird (*Calypte anna*), American crow (*Corvus brachyrhynchos*), common raven (*Corvus corax*), European starling (*Sturnus vulgaris*), and house finch (*Haemorhous mexicanus*).

SENSITIVE WILDLIFE

No sensitive wildlife was detected within the project study area during wildlife field studies. Additional species are discussed in Appendix F. One (1) species has appropriate soils on a portion of the site. Table 5.2 provides the listing status of the species.

TABLE **5.2**MSHCP ADEQUATELY CONSERVED WILDLIFE SPECIES

Species	Listing Status
Delhi sands flower-loving fly (Rhaphiomidas terminatus	Federal: Endangered
abdominalis)	MSHCP: Covered Species

MSHCP ADEQUATELY CONSERVED SPECIES

Wildlife species that are covered by the MSHCP includes Delhi sands flower-loving fly, however the following is required:

- If Delhi soil types are mapped within the MSHCP baseline data on the proposed project, two (2) years of focused surveys for the Delhi Sands flower-loving fly (DSFLF) are required.
- Surveys are to be conducted according to accepted USFWS protocol (2004); surveys are conducted two times per week from July 1 to September 20 for 2 consecutive years under suitable conditions.

MSHCP SECTION 6.1.2 SPECIES

No MSHCP Section 6.1.2 species (LBV, southwestern Willow flycatcher and other riparian species) were observed on the project site or within the 500 foot buffer.

FAIRY SHRIMP

We found no ponded water areas on the project site.

MSHCP SECTION 6.3.2 CRITERIA AREA SPECIES

Burrowing owl (Athene cunicularia) is a state species of special concern and MSHCP Group 3 species that is found in open, dry grasslands, agricultural and range lands, as well as desert habitats with low-growing vegetation. The BUOW resides in burrows primarily created, then abandoned, by species such as California ground squirrels (Spermophilus beecheyi) and coyotes (Canis latrans). Although several potential debris piles were mapped within the project area during habitat assessments for this species, focused surveys did not identify BUOW or active burrows during surveys on the property or in adjacent areas.

INFORMATION ON OTHER SPECIES

Delhi sands flower-loving fly

The Delhi Sands flower-loving fly (*Rhaphiomidas terminatus abdominalis*) is a 1-inch long insect currently restricted to only 12 known populations in San Bernardino and Riverside counties, California. Delhi fine sandy soils and dunes, scrub and ruderal vegetation in the sand verbena series with <50% cover. Unlike the common house fly, it feeds on nectar and mimics the pollinating behavior of such species as the hummingbird, butterfly, and honey bee (USFWS, 1993). Based on MSHCP requirements and since Delhi soil types are mapped for the site:

- If Delhi soil types are mapped within the MSHCP baseline data on the proposed project, two (2) years of focused surveys for the Delhi Sands flower-loving fly (DSFLF) are required.
- Focused surveys were completed for DSFLF in September, 2020. Results were negative.

VI. IMPACT ANALYSIS AND MITIGATION MEASURES

This section provides an analysis of impacts to biological resources expected to occur from the construction of the proposed project. Both direct and indirect impacts are anticipated as a result of construction activities. Impacts are defined as activities that destroy, damage, alter, or otherwise affect biological resources in a project area. Impacts are described below.

PROJECT EFFECTS

The number of individuals of each sensitive species inhabiting the habitat areas was not determined, for the following reasons: (a) many species are amphibians or reptiles, which are difficult to detect during routine field surveys, (b) intensive population studies of small mammals inhabiting the various habitats were not conducted due to the excessive time required to complete such investigations, and (c) some of the bird species known from habitats immediately adjacent to the project area were not observed during field surveys but, due to their capacity of flight, could inhabit the area any time in the future.

Direct and Indirect Impacts to Wildlife

This section addresses direct, indirect, and cumulative impacts to biological resources that may result from implementation of the proposed project.

Direct impacts generally consist of the loss of habitat and the plant and wildlife species that it contains within the area impacted by the proposed project. For the purposes of this assessment, all biological resources within the grading impact area are considered 100 percent lost.

Indirect Impacts are difficult to quantify but, in some cases, they may be as significant as direct impacts. In general, indirect impacts primarily result from adverse "edge effects," either short-term indirect impacts related to construction or long-term, chronic indirect impacts associated with the location of development in proximity to biological resources within natural open space.

Short-term indirect impacts that may potentially result from any project construction include dust production, which could affect plant growth and insect activity; noise, which could disrupt wildlife communication, including bird breeding behavior; lighting, which could disrupt behavior of nocturnal reptiles, mammals, and raptors; sedimentation, siltation, and erosion, which could affect water quality of onsite streams; and pollutant runoff, including chemicals used during construction and machinery maintenance, which could contaminate soil and water.

Cumulative Impacts refer to incremental individual environmental effects of the proposed project and other past, present, and reasonably foreseeable future projects when combined together. These impacts taken individually may be minor, but collectively may be significant as they occur over a period of time.

THRESHOLDS FOR DETERMINING POTENTIAL SIGNIFICANCE

Guidelines under California Environmental Quality Act (CEQA) provide guidance and interpretation for implementing CEQA statutes. CEQA significance entails any impact to plant and wildlife species listed by federal or state agencies as threatened or endangered, or of regional or local significance. A significant impact to listed or sensitive species could be direct or indirect, with impacts to rare or sensitive habitats also considered significant.

In general, the proposed project could result in a potentially significant impact to the environment if it would:

- Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special species in local or regional plans, policies, or regulations, or by CDFW or USFWS;
- Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by CDFW, USACE, RWQCB, or USFWS.
- Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the CWA (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means;
- Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites;
- Conflict with the provisions of an adopted HCP, NCCP, or other approved local, regional, or state habitat conservation plan.
- Introduce land use within an area immediately adjacent to the MSHCP Conservation Area that would result in substantial edge effects; or
- Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance.
- Mitigation and conservation recommendations to address each impact to biological resources are identified below.

Participation in the MSHCP and implementation of conservation and additional mitigation measures would compensate for impacts that would occur as a result of project implementation.

DIRECT IMPACTS

Direct impacts consist of any ground-disturbing activities (i.e., vegetation removal, grading, paving, building of structures, installing landscaping, etc.). Impacts will occur to all of the habitat on the site. These impacts will occur in the grading for the buildings and roadways by removal of habitat. No state or federal listed plant species will be impacted by the proposed project. The habitat on the project site supports common native wildlife species that would be directly affected by the removal of the habitat.

The more mobile wildlife species, such as birds that utilize the affected area will be displaced during clearing activities to adjacent areas. These animals may move to open adjacent properties. The less mobile species will probably be lost during the habitat

clearing and grading. Construction of the project will probably limit the future use of the area except for common reptile, bird and small mammal species that can be found in urban neighborhoods.

Anticipated impacts to most sensitive wildlife species would be relatively minor, for the following reasons: (a) most of the potentially impacted species are common, and (b) the project area is already disturbed by anthropogenic activities.

Construction Related Land Disturbance

Land disturbance calculations that would result from construction activities (i.e. grading, staging areas etc.) are provided in Table 6.1 below. Implementation of the proposed project would result in the estimated direct permanent loss of approximately 3.8 acres of habitat.

TABLE **6.1**ACREAGE OF HABITAT TYPES RELATED TO LAND DISTURBANCE

	Onsite Existir	ng/
Vegetation	Impacts	Offsite Existing
California Annual Grassland Alliance	3.522	0.013
Developed		0.023
Ornamental	0.032	
Tamarisk	0.288	
TOTAL (acres)	3.842	0.036

Vegetation Communities

Permanent impacts to vegetation communities that occur within the project footprint would result from disturbance associated with permanent roads and structures.

Clearing and grading associated with construction of the project may result in the alteration of soil conditions, including the loss of native seed bank and changes to the topography and drainage of a site such that the capability of the habitat to support current vegetation is impaired. Table 6.1 describes impacts to habitat types.

RIPARIAN, STREAMBED, MSHCP SECTION 6.12 AND WATERS OF THE U.S.

There are no state or federal streambed resources on the project site. MSHCP Section 6.12 riverine resources are not located on the project site.

FAIRY SHRIMP

There are no fairy shrimp on the project site. Fairy shrimp are not located on the project site.

SENSITIVE PLANT SPECIES

There are no sensitive plant species in the project area, and none were observed on the project site.

OAK TREES

There are no oak trees on the project site.

COMMON AND SENSITIVE WILDLIFE SPECIES

Although the intent of the proposed project is to protect biological resources to the maximum extent possible, construction and implementation of the proposed project could potentially impact common wildlife species, species Covered by the MSHCP and associated habitats for these species as identified within the study area. The following avoidance and minimization measures will be incorporated during project implementation for the protection of these species.

COMMON AND MSHCP ADEQUATELY CONSERVED SPECIES

No wildlife species, that are Covered Species and Adequately Conserved by the MSHCP, were detected within the study area during habitat assessment and focused surveys. The following measures will be implemented in order to avoid and/or minimize potential impacts to common and Adequately Conserved MSHCP wildlife species resources.

Construction Minimization Measures (Section 7.5.3 of the MSHCP)

The following construction minimization measures shall be implemented during project construction to minimize impacts on biological resources during construction:

- Timing of construction activities shall consider seasonal requirements for breeding birds and migratory non-resident species covered under the Migratory Bird Treaty Act. Habitat clearing shall be avoided during species active breeding season, defined as February 1 to September 15. The footprint of disturbance shall be minimized to the maximum extent feasible. Access to the project site shall occur on pre-existing access routes to the greatest extent possible.
- Equipment storage, fueling and staging areas shall be sited on non-sensitive upland habitat types with minimal risk of direct discharge into riparian areas or other sensitive habitat types. The limits of disturbance, including the upstream, downstream and lateral extents, shall be clearly defined and marked in the field. Mitigation Monitoring Program personnel shall review the limits of disturbance prior to initiation of construction activities.

- Exotic species removed during construction shall be properly handled to prevent sprouting or regrowth.
- Training of construction personnel shall be provided.
- Ongoing monitoring and reporting shall occur for the duration of the construction activity to ensure implementation of best management practices (BMPs).
- All equipment maintenance, staging, and dispensing of fuel, oil, coolant, or any other toxic substances shall occur only in designated areas within the proposed grading limits of the project site. These designated areas shall be clearly marked and located in such a manner as to contain run-off.
- Waste, dirt, rubble, or trash shall not be deposited in a Conservation Area or on native habitat.

SENSITIVE SPECIES RELATED TO SECTION 6.1.2 OF THE MSHCP

There are no sensitive species related to Section 6.1.2 of the MSHCP on the project site.

FAIRY SHRIMP

There are no fairy shrimp on the project site.

MSHCP SECTION 6.3.2 CRITERIA AREA SPECIES

Burrowing Owl-Focused surveys for BUOW are not required.

Delhi Sands flower-loving fly -Based on MSHCP requirements and since Delhi soil types are mapped for the site:

- Focused DSFLF surveys were conducted and the results were negative.
- No Mitigation was proposed as DSFLF surveys were negative.

NON-MSHCP COVERED WILDLIFE SPECIES

No non-MSHCP covered special status wildlife species were observed on the project site. Impacts to non-MSHCP covered special status wildlife species would not be considered significant with the implementation of minimization and avoidance measures proposed below in conjunction with other nesting and/or migratory bird species.

MIGRATORY BIRD SPECIES

Project construction may temporarily effect the movement of migratory bird species and their breeding success. Their active nests could be directly or indirectly impacted such that nest abandonment resulting in death of eggs or young occurs. Disturbance from construction activities, such as noise, human presence, and habitat alteration due to the trimming of trees and clearing of native vegetation, could affect the nesting habits of the special-status and migratory bird species. However, these impacts would not be considered significant with the implementation of avoidance and minimization measures described above and below:

If construction is to occur during the MBTA nesting cycle (February 1-September 15) than a nesting bird survey should be conducted by a qualified biologist. Disturbance that

causes nest abandonment and/or loss of reproductive effort (e.g., killing or abandonment of eggs or young) may be considered take and is potentially punishable by fines or imprisonment. Active bird nests should be mapped utilizing a hand-held global positioning system (GPS) and a 300' buffer will be flagged around the nest (500' buffer for raptor nests). Construction should not be permitted within the buffer areas while the nest continues to be active (eggs, chicks, etc.). Therefore, based on the described construction activities and implementation of mitigation measures as identified, impacts to migratory birds would not be significant.

WILDLIFE MOVEMENT

Increases in noise, construction traffic, and human activities during construction activities may temporarily deter movement of wildlife within the project vicinity. Impacts to wildlife species are considered significant if they interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites. Indirect, adverse, substantial effects on movement of wildlife or impediments to the use of wildlife corridors or nursery sites are not expected from construction or operational activities of the proposed project. However, implementation of avoidance and minimization measures described above would ensure that wildlife movement would not be significantly impacted by the proposed project.

INDIRECT IMPACTS

It is anticipated that there will be some indirect impacts resulting from the proposed project. Potential indirect impacts include increased noise, human activity, and light levels as described below. For each of the indirect impacts (MSHCP Section 6.1.4 Urban/Wildlands Interface) described below, an action(s) or measure(s) is described to ensure that these potential indirect impacts can be maintained at less than significant levels.

Runoff, Erosion and Siltation

Siltation and erosion resulting from the proposed activities are potentially significant indirect impacts associated with this proposed project because of the proximity of the proposed work area to natural areas. Surface water quality could be diminished as a result of scraping and grading, and material laydown. As such, erosion from these activities can remove topsoil necessary for plant growth both in the graded areas and in lower areas affected by increased runoff. The eroded soil can be deposited as silt and alluvium off of the project site. Siltation from these activities can damage wetlands and aquatic habitats and bury vegetation or topsoil. Implementation of avoidance and minimization measures described above under direct impacts is proposed. These measures include implementation of an effective SWPPP or WQMP that employs appropriate BMPs to avoid or limit runoff, erosion, and siltation. With these measures, project related runoff, erosion, and siltation would not result in significant impacts to any offsite water features or sensitive habitats.

Nonnative Weed Establishment

The loss of topsoil from grading or as a result of overland flow may increase the likelihood of exotic plant establishment in offsite native communities. Nonnatives may out-compete native species, suppress native recruitment, alter community structure, degrade or eliminate habitat for native wildlife, and provide food and cover for undesirable nonnative wildlife. The introduction of nonnative plant species into a community as a result of soil disturbance and erosion can increase the competition for resources such as water, minerals, and nutrients between native and nonnative species as well as alter the hydrology and sedimentation rates. In addition, if the nonnative plants form a continuous ground cover, an increase in the natural fire regime may occur, further eliminating any remaining native vegetation, and causing a type conversion to a disturbed/nonnative habitat type. The establishment of nonnative weeds could affect endangered species associated with offsite habitat and could therefore be considered potentially significant if not mitigated. Implementation of avoidance and minimization measures described under direct impacts will reduce potential impacts from project related impacts due to nonnative species.

Toxic Substances

Toxic substances can kill wildlife and plants or prevent new growth where soils or water are contaminated. Toxic substances can be released into the environment through several scenarios including planned or accidental releases, leaching from stored materials, pesticide or herbicide use, or fires, among others. No intentional releases of toxic substances are planned as part of the proposed project. Accidental releases could occur from several sources such as leaking equipment, or fuel spills during the course of the construction. The implementation of BMPs during construction will reduce the risk of leaks and fuel spills below a level of significance.

A spill contingency plan, written by the construction contractor and approved prior to construction will be in effect during all phases of construction activities. The project would result in the additional use of hazardous materials in limited quantities associated with normal residential use such as cleaning products, solvents, herbicides, and insecticides. However, compliance with regulations will reduce the potential risk of hazardous material exposure to a level that is less than significant. An information pamphlet will be prepared for each homeowner regarding the use of toxics.

Fugitive Dust

Trenching, grading, and vehicle operations associated with the construction of the proposed project may produce fugitive dust. Excessive dust can damage or degrade vegetation by blocking leaf exposure to sunlight. Implementation of dust control measures, as part of BMPs during construction, will reduce fugitive dust emissions to below a level of significance. Dust control measures can include spraying work or driving areas with water and careful operation of equipment.

CUMULATIVE IMPACTS

Construction of the proposed project will alter 3.842 acres of habitat. To determine if this impact is significant on a cumulative basis, it needs to be considered in the context of existing and future surrounding developments within this area of the City of Jurupa Valley. Cumulative impacts could also result from the marginalization of quality of the habitat in close proximity to the future project by increased human activities associated with the development of the proposed project site.

- Riverside County is expected to experience a dramatic increase in residential and commercial development over the next twenty years. Such development will involve many large scale construction projects which may encroach on biological resources, potentially impacting sensitive communities, special status species, and biological diversity.
- For the purpose of this analysis, the geographic scope will comprise the habitat areas directly and indirectly affected by the construction and operation of the project. Urbanization and development in the area impact the ability of certain plant and animal species to forage, breed, and develop in their natural habitat. A cumulative impact would occur if the proposed project substantially contributed to the cumulative degradation of biological resources caused by recent, current, and planned development.
- •The proposed project is located within the coverage area of the MSHCP. This conservation planning effort with the overall goal of maintaining biological diversity in rapidly urbanizing areas provides a Conservation Area for 146 special status species, requiring incidental take permits for projects impacting these species. The proposed project would contribute to significant cumulative impacts to biological resources if it violated a conservation plan such as the MSHCP. The proposed project will comply with all MSHCP regulations, including but not limited to the payment of relevant fees, compliance with acquisition processes, and compliance with policies protecting various plants and animals. In following all the regulations set forth by the MSHCP, the proposed project would not substantially contribute to cumulative impacts to biological resources in violation of conservation plans.
- Construction and operation of the proposed project can potentially result in the permanent loss of or temporary disturbance to habitat through grading, drilling, clearing brush, or other construction activities. To protect sensitive biological resources a biologist will conduct preconstruction surveys and mark sensitive areas so that they might be avoided by construction crews and protected from construction activities. The same measures will be taken to protect special status plant species, special status terrestrial species, and BUOW. Construction activities may also impact avian species by disturbing active nests trimming trees or removing vegetation. Mitigation measures mandates that either construction activities be limited to non-breeding season or a wildlife biologist conduct a preconstruction focused nesting survey. Additionally, construction noise may impact both migratory and nesting birds; mitigation measures regulates ambient noise levels to minimize the impact to birds nesting within or passing through construction areas. With the implementation of mitigation measures, construction of the proposed project would not substantially contribute, either directly or through habitat modification, to adverse cumulative effects on candidate, sensitive, or special status species.

- •Construction of the proposed project will result in permanent and temporary disturbance to natural lands through grading and clearing vegetation, exposing topsoil to weathering, impacting sheetflow, and impeding plant growth. In a rapidly developing area, these impacts would contribute to the cumulative degradation of this habitat. The Applicant will minimize the effects of erosion and the hydrologic impacts through such measures as the installation of sediment control structures and the use of water bars, silt fences, stalked straw bales, and mulching in disturbed areas. By implementing BMP measures, the proposed project will not substantially contribute to the cumulative damage to this habitat.
- •The proposed project falls under the jurisdiction of local policies and ordinances regarding trees. In order to construct the proposed project the removal of vegetation at will permanently and directly damage trees. By complying with the City of Jurupa Valley requirements, the proposed project will not significantly contribute to the cumulative impact on local tree populations.
- Composite development has the potential to interfere with the movement of migratory animals by physically interfering with the migratory corridor. Construction activities, and introduced structures can act as barriers to migration. Construction activities could potentially impact migration patterns but are considered temporary. Given the distribution of the structures and the volume of traffic associated with the proposed project, the project may significantly contribute to cumulative obstacles to migratory wildlife.

The cumulative effects of the proposed project on biological resources are considered insignificant for the following reasons:

The proposed project site totals approximately 3.842 acres, of which all of it will be disturbed.

- 1. The proposed best management practices (BMP's) are part of the requirement for the proposed project by the Santa Ana Regional Water Quality Control Board for protection of surface water quality from sediments in the proposed project runoff.
- 2. The habitat present is contiguous with habitat to the west and east. Preserving the proposed project site would provide biological value because of the nesting target species that already occur on the project site.
- 3. If the proposed project is not constructed, impacts to the existing area would still occur as a result of populater of invasive species and anthropogenic activities.

Anticipated impacts to sensitive wildlife species would be relatively minor, for the following reasons: (a) most of the potentially impacted species are common species and not threatened/endangered, and (b) the project area is already disturbed by the existing anthropogenic activities and surrounding developments. Appendix C-Riverside County Attachment E-4 of this document includes CEQA checklist (impacts to sensitive habitat/riparian habitat, wetlands/jurisdictional features, wildlife movement, and local ordinances).

VII. MSHCP CONSISTENCY OVERVIEW

This section provides an overview of MSHCP consistency of the proposed Project with the MSHCP. Appendix G, attached, provides a stand alone MSHCP Consistency Determination Report. The proposed Project must comply with the following MSHCP requirements:

- Project Consistency with MSHCP Reserve Assembly (MSHCP Section 3.2.3 and Section 3.3)
- Guidelines for facilities within the PQP Lands (MSHCP Section 7.5)
- Species Associated with Riparian/Riverine Areas and Vernal Pool guidelines (MSHCP Section 6.1.2)
- Narrow Endemic Plant Species guidelines (MSHCP Section 6.1.3)
- Additional Survey Needs and Procedures (MSHCP Section 6.3.2)
- Urban Wildlands Interface Guidelines (MSHCP Section 6.1.4)
- Requirements To Be Met For 28 Species Prior To Including Those Species On The List Of Covered Species Adequately Conserved (MSHCP Table 9-3)

PROJECT CONSISTENCY WITH MSHCP AREA PLANS

The project area is located in Jurupa Area Plan. Reserve assembly goals and project relationship for each of these areas are presented in Section 2 of this report.

The project alignment is located within Rough Step 1. Based on the 2018 Annual Report, Rough Step Unit 1 is in "Rough Step." Therefore, the project does not affect the Reserve Assembly goals of the MSHCP.

PROJECT CONSISTENCY WITH CORES AND LINKAGES WITHIN THE CONSERVATION AREA

The MSHCP Conservation Area is comprised of a variety of existing and proposed cores, extensions of existing cores, linkages, constrained linkages and non-contiguous habitat blocks. These features are generally referenced as cores and linkages. There are no proposed cores and linkages located within the project area. There will not be any impacts to key species associated with cores and linkages.

PUBLIC/QUASI-PUBLIC LANDS

There are no public/quasi-public lands adjacent to the project site. There will be no anticipated direct impacts to public/quasi-public lands.

MSHCP SECTION 6.1.2 – PROTECTION OF SPECIES ASSOCIATED WITH RIPARIAN/RIVERINE AND VERNAL POOL RESOURCES

An assessment of the potentially significant effects of the proposed project on riparian, riverine and vernal pool areas was conducted. Seasonal watercourses are present and evidence of recent surface water was observed on site. Potential MSHCP 6.1.2 areas were found on the project site. A Determination of Biologically Equivalent or Superior Preservation (DBESP) Report as required by the MSHCP (Section 6.1.2, pages 6-21 and 6-

22) for impacts to Riparian/Riverine Areas/Vernal Pools may be required to be completed. The proposed project is consistent with MSHCP Section 6.1.2, depending on the seasonal watercourses determination.

MSHCP SECTION 6.1.2 – PROTECTION OF NARROW ENDEMIC PLANT SPECIES

There are no narrow endemic plant species on the project site. The proposed project will have no impact on these resources. As such, the proposed project is consistent with MSHCP Section 6.1.3.

MSHCP SECTION 6.3.2 - ADDITIONAL SURVEY NEEDS AND PROCEDURES

Criteria Area Plant Surveys

No Criteria Area Plant Surveys have been identified within the project area to date. As such, the proposed project will have no impact on the Criteria Area Plant and is consistent with MSHCP Section 6.3.2.

Delhi Sands flower-loving fly -Focused surveys were completed by DSFLF biologist and the results were negative. As such, the proposed project will have no impact on DSFLF and is consistent with MSHCP Section 6.3.2.

MSHCP TABLE 9-3 REQUIREMENTS TO BE MET FOR 28 SPECIES PRIOR TO INCLUDING THOSE SPECIES ON THE LIST OF COVERED SPECIES ADEQUATELY CONSERVED

Table 9-3 of the MSHCP lists goals for 28 species that must be met before they are considered to be Adequately Conserved. GEC found none of the species listed in Table 9-3 on the proposed project site. As such, the proposed project is consistent with MSHCP Table 9-3.

MSHCP SECTION 6.1.4 - URBAN WILDLANDS INTERFACE GUIDELINES

The guidelines presented in *Section 6.1.4* of the MSHCP are intended to address indirect effects associated with development in proximity to the MSHCP Conservation Area (i.e., the portions of the Criteria Cells which will be, or have been, conserved). Below is a summary of the Urban Wildlands Interface Guidelines and their relationship to the proposed project:

Drainage- The proposed project will impact existing runoff conditions. BMPs established in Section 8.0 will be taken to ensure that the quantity and quality of runoff will be comparable to existing conditions.

Toxics- It is not anticipated that this proposed project will use chemicals or generate biproducts that are potentially toxic or may adversely affect wildlife species, habitat or water quality. If a toxic substance is identified during construction, measures such as those employed to address drainage issues, as presented in Section 8.0, will be implemented to avoid potential for adverse impacts. An information pamphlet will be prepared for each business owner regarding the use of toxics.

Lighting- Night lighting shall be directed away from the MSHCP Conservation Area to protect species within the MSHCP Conservation Area from direct night lighting. Shielding shall be incorporated into project designs to ensure ambient lighting in the MSHCP Conservation Area is not increased.

Noise- Proposed noise generating land uses affecting the MSHCP Conservation Area shall incorporate setbacks, berms or walls to minimize the effects of noise on MSHCP Conservation Area resources pursuant to applicable rules, regulations, and guidelines related to land use noise standards.

Invasives- Project related landscaping within or adjacent to the Conservation Area, will comply with not utilizing the invasive nonnative plant species listed in *Table 6-2* of *Section 6.1.4* of the MSHCP. Minimization and avoidance measures as presented in Section 8.0 of this report will be implemented in order to avoid the spread of invasive species within the project area.

Barriers- Proposed land uses adjacent to the MSHCP Conservation Area shall incorporate barriers, where appropriate, in individual project designs to minimize unauthorized public access, domestic animal predation, illegal trespass, or dumping into the MSHCP Conservation Areas.

Grading/Land Development- All manufactured slopes associated with site development will be within the project site.

MIGRATORY BIRD TREATY ACT COMPLIANCE

Pursuant to MSHCP Section 14.13, the Section 10(a) Permit issued for the MSHCP constitutes a Special Purpose Permit under 50 Code of Federal Regulations Section 21.27, for the Take of Covered Species Adequately Conserved listed under Federal ESA and which are also listed under the MBTA of 1918, as amended (16 U.S.C. §§ 703-712), in the amount and/or number specified in the MSHCP, subject to the terms and conditions specified in the Section 10(a) Permit. Any such Take will not be in violation of the MBTA. The MBTA Special Purpose Permit will extend to Covered Species Adequately Conserved listed under Federal ESA and also under the MBTA, valid for a period of three (3) years from its Effective Date, provided the Section 10(a) Permit remains in effect for such period. The Special Purpose Permit shall be renewed pursuant to the requirements of the MBTA if needed valid for a period of three (3) additional years.

The period from approximately 15 February to 15 September covers the breeding season for most birds in the project area, but unseasonal active nests must also be avoided if encountered. Although minimal direct impacts are anticipated in habitats for nesting birds, nesting in adjacent areas may suffer indirect impacts from project activity, such as disturbance related nest abandonment. In these areas, work should be conducted in the non-breeding season when possible. If project activity must be conducted during the breeding season, a qualified biologist should check for nesting birds prior to such activity. Implementation of avoidance/minimization measures presented in Section 8.0 would

ИFN	IT AND MSHCP CONSISTENCY ANALYSIS	Page 63
	project is consistent with the MSHCP.	
	project. As it relates to nesting birds covered under MSHCP Section 14.13	, the proposed
	ensure that migratory and/or nesting bird species would not be impacted b	
	oncure that migratory and/or necting hird enecies would not be impacted by	utho proposed

VIII. SUMMARY OF MITIGATION MEASURES AND BMPS

This section provided a comprehensive list of avoidance, minimization and compensation measures. Implementation of these measures, as proposed, ensures compliance and consistency with the MSHCP.

MSHCP BMPs AND MITIGATION MEASURES

Table 8.1 presents MSHCP BMPs (Appendix C of the MSHCP), Construction Guidelines (Section 7.5.3 of the MSHCP), and species specific mitigation measures that have been incorporated in the MSHCP and will be implemented as part of the project.

Table 8.1
MSHCP BMPs and Species Specific Mitigation Measures

MSHCP BMPS AND SPECIES SPECIFIC MITIGATION MEASURES				
MSHCP BMPs (MSHCP Vol. I, Appendix C)				
	Water pollution and erosion control plans shall be			
	developed and implemented in accordance with			
MSHCP BMP-1	RWQCB requirements.			
MSHCP BMP-2	Equipment storage, fueling, and staging areas shall			
	be located on upland sites with minimal risks of			
	direct drainage into riparian areas or other sensitive			
	habitats. These designated areas shall be located in			
	such a manner as to prevent any runoff from			
	entering sensitive habitat. Necessary precautions			
	shall be taken to prevent the release of cement or			
	other toxic substances into surface waters. Project			
	related spills of hazardous materials shall be			
	reported to appropriate entities including but not			
	limited to applicable jurisdictional city, USFWS, and			
	CDFG, RWQCB and shall be cleaned up immediately			
	and contaminated soils removed to approved			
	disposal areas.			
MSHCP BMP-3	Exotic species that prey upon or displace target			
	species of concern should be permanently removed			
	from the site to the extent feasible.			
	To avoid attracting predators of the species of			
MSHCP BMP-4	concern, the project site shall be kept as clean of			
	debris as possible. All food related trash items shall			
	be enclosed in sealed containers and regularly			
	removed from the site(s).			
	Construction employees shall strictly limit their			
	activities, vehicles, equipment, and construction			
MSHCP BMP-5	materials to the proposed project footprint and			
	designated staging areas and routes of travel. The			
	construction area(s) shall be the minimal area			
	necessary to complete the project and shall be			
	specified in the construction plans. Construction			
	limits will be fenced with orange snow screen.			
	Exclusion fencing should be maintained until the			
	completion of all construction activities. Employees			
	shall be instructed that their activities are restricted			
	to the construction areas.			
MSHCP Construction Guidelines (MSHCP Section 7.5.3)				

	Diene fan weten welligten end enerten een tij 19
	Plans for water pollution and erosion control will
MCHCD CONST 1	be prepared for all Discretionary Projects
MSHCP CONST-1	involving the movement of earth in excess of 50
	cubic yards. The plans will describe sediment and
	hazardous materials control, dewatering or
	diversion structures, fueling and equipment
	management practices, use of plant material for
	erosion control. Plans will be reviewed and
	approved by the City of Lake Elsinore and
	participating jurisdiction prior to construction.
	Timing of construction activities will consider
MSHCP CONST-2	seasonal requirements for breeding birds and
	migratory non- resident species. Habitat clearing
	will be avoided during species active breeding
	season defined as February 15-September 15
MSHCP CONST-3	Sediment and erosion control measures will be
	implemented until such time soils are determined
	to be successfully stabilized.
MSHCP CONST-4	Silt fencing or other sediment trapping materials
	will be installed at the downstream end of
	construction activities to minimize the transport of
	sedimentsoff-site.
	Settling ponds where sediment is collected will
MSHCP CONST-5	be cleaned in a manner that prevents sediment
WISHER CONST-3	·
	re entering the stream
	damaging/disturbing adjacent areas. Sediment
	from settling ponds will be removed to a location
	where sediment cannot re-enter the stream or
	surrounding drainage area. Care will be exercised
	during removal of silt fencing to minimize release of
	debris or sediment into streams.
MSHCP CONST-6	No erodible materials will be deposited into water
	courses. Brush, loose soils, or other debris material
	will not be stockpiled within stream channels or on
	adjacent banks.
MSHCP CONST-7	The footprint of disturbance will be minimized to
	the maximum extent feasible. Access to sites will
	occur on pre-existing access routes to the greatest
	extent possible.
MSHCP CONST-8	Equipment storage, fueling and staging areas will be
	sited on non-sensitive upland Habitat types with
	minimal risk of direct discharge into riparian areas
	or other sensitive Habitat types.
	The limits of disturbance, including the upstream,
MSHCP CONST-9	downstream and lateral extents, will be clearly
	defined and marked in the field. Monitoring
	personnel will review the limits of disturbance prior
	to initiation of construction activities.
MSHCP CONST-10	During construction, the placement of equipment
INISTICE CONST-10	within the stream or on adjacent banks or adjacent
	upland Habitats occupied by Covered Species that
MICHOR CONICT 44	are outside of the project footprint will be avoided.
MSHCP CONST-11	Exotic species removed during construction will be
	properly handled to prevent sprouting or regrowth.
MSHCP CONST-12	Training of construction personnel will be provided.

MSHCP CONST-13	Ongoing monitoring and reporting will occur for the duration of the construction activity to ensure implementation of best management practices.	
MSHCP CONST-14	Active construction areas shall be watered regularly to control dust and minimize impacts to adjacent vegetation.	
MSHCP CONST-15	All equipment maintenance, staging, and dispensing of fuel, oil, coolant, or any other toxic substances shall occur only in designated areas within the proposed grading limits of the project site. These designated areas shall be clearly marked and located in such a manner as to contain run-off.	
MSHCP CONST-16	Waste, dirt, rubble, or trash shall not be deposited in the Conservation Area or on native habitat.	
MSHCP CONST-17	Wildlife Biologist required to be present during construction of the project.	

IX. BIBLIOGRAPHY AND REFERENCES

AOU (American Ornithologists' Union). 1998. Check-List of North American Birds. Seventh Edition (including 53rd supplement). American Ornithologists' Union, Washington, D.C. 829 pp.

Baldwin Bruce G., Douglas Goldman, David J Keil, Robert Patterson, Thomas J. Rosatti. 2012. The Jepson Manual: Vascular Plants of California. Berkeley, University of California Press. 1600 pps.

Beier, P. and S. Low. 1992. A checklist for evaluating impacts to wildlife movement corridors. Wildl. Soc. Bull. 20:434-440.

Biological Conservation. 2004. Keystone effects of the endangered Stephens' kangaroo rat (Dipodomys stephensi) Volume 116, Issue 1, March 2004, Pages 131-139

Burt, W. H. 1986. *A Field Guide to the Mammals in North America North of Mexico*. Houghton-Mifflin Company, Boston, Massachusetts.

Calflora: Information on California plants for education, research and conservation, with data contributed by public and private institutions and individuals, including the Consortium of California Herbaria. [web application]. 2016. Berkeley, California: The Calflora Database [a non-profit organization]. Available: http://www.calflora.org/(Accessed: April 14, 2016).

CalHerps.2022. Available from: http://www.californiaherps.com

[CDFG] California Department of Fish and Game. 2000. The status of rare, threatened, and endangered animals and plants of California. Sacramento (CA): State of California, the Resources Agency, Department of Fish and Game.

California Department of Fish and Game. 2003. The Vegetation and Classification Program. 77pps. Accessed from http://www.dfg.ca.gov.

California Department of Fish and Game. 2006. Vegetation Alliances of Western Riverside County, California. 332 pps.

[CDFW] California Department of Fish and Wildlife. 2014. Habitat Conservation Planning Branch. Assessed from http://www.dfg.ca.gov/hcpb/species/search_species.shtml

[CNDDB] California Natural Diversity Database. 2016. Accessed from http://www.dfg.ca.gov/biogeodata/cnddb/quick_viewer.asp

CNPS, Rare Plant Program. 2015. Inventory of Rare and Endangered Plants (online edition, v8-02). California Native Plant Society, Sacramento, CA. Website http://www.rareplants.cnps.org [accessed 14 April 2016].

Dangermond & Associates and RECON. 2003. Multiple species habitat conservation plan: Riverside County, California.

Eriksen, C. and D. Belk 1999. Fairy Shrimps of California's Puddles, Pools, and Playas. Mad River Press, Inc., Eureka, California.

[ERMUCR] Entomology Research Museum University of Riverside. 2014. Bug Spotlight! Assessed from http://entmuseum.ucr.edu/bug_spotlight/posted%20Images-pages/38.htm

Faber, P.M., E. Keller, A. Sands and B.M. Massey. 1989. The ecology of riparian habitats of the southern California coastal region: A community profile. U.S. Fish and Wildlife Service, Biological Report 85(7.27).

Flora of North America (FNA). 2013. www.eFloras.org. FNA Vol. 26 Page 416, 420, 421.

Garrett, K. and J. Dunn. 1981. Birds of Southern California. Los Angeles Audubon Society. Los Angeles. 408 pp.

Glaser, H. S. R. 1970. The distribution of amphibians and reptiles in Riverside, County, California. Riverside Museum Press, Natural History Series #1. Riverside, Calif.

Grinnell, J. and A.H. Miller. 1944. The Distribution of the Birds of California. Pacific Coast

Hall, E.R. 1981. *The Mammals of North America, Second Edition*, John Wiley and Sons, New York.

Haug, E. A., B. A. Millsap, and M. S. Martell. 1993. Burrowing Owl (*Speotyto cunicularia*). In The Birds of North America, No. 130 (A. Poole and F. Gill, Eds.). Philadelphia: The Academy of Natural Sciences; Washington, D.C.: The American Ornithologists' Union.

Ingles, L. G. 1999. *Mammals of the Pacific States*. Stanford University Press, Stanford, CA. 506 pp.

Jennings, M.R. and M.P. Hayes. 1994. Amphibian and Reptile Species of Special Concern in California. Final Report to California Department of Fish and Game, Rancho Cordova, California. 260 pp.

Knecht, A.A. (Soil Conservation Service). 1971. Soil survey, Western Riverside area, California Washington (DC): United States Department of Agriculture, Soil Conservation Service.

Linzey, A.V. 2008. Perognathus longimembris. The IUCN Red List of Threatened Species. Version 2014.3. www.iucnredlist.org. Downloaded on 14 April 2016.

Munz, P.A. 1974. A Flora of Southern California. University of California Press, Berkeley, California.

NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed: March 9, 2015).

O'Farrell, M.J. and C.E. Uptain. 1989. Assessment of population and habitat status of the Stephens' kangaroo rat (Dipodomys stephensi). California Department of Fish and Game Nongame Bird and Mammal Section, Report 72.

Owlpages. 2015. Accessed at: http://www.owlpages.com

Petranka, J.W. 1998. Salamanders of the United States and Canada. Washington [DC]: Smithsonian Institution Press. 587 pp.

Platnick, N. I. and D. Ubick. 2001. A revision of the North American spiders of the new genusSocalchemmis (Araneae, Tengellidae). American Museum Novitates 3339:1-25.

Powell Environmental Consultants. 2020. 45th Street Project Site (APN Numbers 182-190-015, 182-190-016, and 182-190-017). Focused Survey for the Delhi Sands Flower-Loving Fly. 18 pps.

Rappole, J.H. and Blacklock, G.W. 1995. *A Field Guide to the Birds of Texas*. College Station, Texas: Texas A & M University Press.

Rarefind 5 [computer program]. 2016. Sacramento (CA): State of California, the Resources Agency, Department of Fish and Game. 1 CD Rom. Accompanied by: 1 user's guide. System requirements: 386 or higher series PC, with 560K free DOS memory; 100MB free space on hard disk drive; MS-DOS version 5.0 or higher, Windows 3.1, or Windows 95.

Remsen J.V. 1978. Bird species of special concern in California: an annotated list of declining or vulnerable bird species. Sacramento (CA): State of California, the Resources Agency, Department of Fish and Game. 54 pp.

Resier, Craig H. 1994. Rare Plants of San Diego County. Accessed at: http://sandiego.sierraclub.org/rareplants/

[RCIP] Riverside County Integrated Project. 2003. Multiple Species Habitat Conservation Plan. Accessed at: http://rcip.org/mshcpdocs/Vol2/appendixA/3_3_3.pdf

[RCRCD] Riverside-Corona Resource Conservation District. 2013. Accessed at: http://www.rcrcd.com/coast.htm

Riverside County. 2010. Riverside County Biological impact reports guidelines.

Riverside County Environmental Programs Department. 2006. *Burrowing Owl Survey Instructions for the Western Riverside Multiple Species Habitat Conservation Plan Area*. County of Riverside, CA. 4pp.

[RCTC] Riverside County Transportation Commission. 2003. Bioregions and Generalized Vegetation on Hillshaded Relief in MSHCP Plan Area. Accessed at: http://www.rcip.org/mshcpdocs/Vol2/appendixA/A_Exhibit_02.pdf

Roberts, Jr. Fred M., White, Scott D., Sanders, Andrew C., Bramlet, David E., Boyd, Steve. 2004. The Vascular Plants of Western Riverside County, California. 192 pp.

Robertson, J. M. 1929. Some observations on the feeding habits of the burrowing owl. Condor 31: 38-39.

Ryder, R. A. and D. E. Manry. 1994. White-faced Ibis (Plegadis chihi). In, The Birds of North America, No. 130 (A. Poole and F. Gill, eds.). Philadelphia: The Academy of Natural Sciences; Washington, D. C.: The American Ornithologists' Union.

Shuford, W. D., and Gardali, T., editors. 2008. California Bird Species of Special Concern: A ranked assessment of species, subspecies, and distinct populations of birds of immediate conservation concern in California. Studies of Western Birds 1. Western Field Ornithologists, Camarillo, California, and California Department of Fish and Game, Sacramento.

Small, A. 1994. California Birds: Their Status and Distribution. Ibis Publishing Company: Vista, CA. 342 pp.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/) Riverside County, California, Western Riverside Area, California (CA679) Spatial Data Version 4, Sep 16, 2019 Tabular Data Version 12, Sep 16, 2019

Stebbins, R.C. 2003. Western Amphibians and Reptiles. Boston: Houghton-Mifflin Co. 533 pp.

Thiery, A. and M. Fugate 1994. A new American fairy shrimp, Linderiella santarosae (Crustacea: Anostraca: Linderiellidae), from vernal pools of California. U.S.A. Proceedings of the Biological Society of Washington 107:641-656.

[TPWD] 2008. Accessed from: http://www.tpwd.state.tx.us/huntwild/wild/species/westred/

Texas Parks and Wildlife Department, 4200 Smith School Road, Austin, TX 78744

[UMMOZ]. Kane, E. 1999. "Danaus plexippus" (On-line), Animal Diversity Web. Accessed http://animaldiversity.ummz.umich.edu/site/accounts/information/Danaus_plexippus.html.

[USFS]. Miner, Karen L., Stokes, Drew C. 2005. Bats in the South Coast Ecoregion: Status, Conservation Issues, and Research Needs. USDA Forest Service Gen. Tech. Rep. PSW-GTR-195. 2005. 227 pages

United States Department of Agriculture Soil Conservation Service. 1971. Soil Survey Western Riverside Area California. 157 pps., illus.

[USFWS] U.S. Fish and Wildlife Service. 1993. Endangered and Threatened Wildlife and Plants; Rule to List the Coastal California Gnatcatcher as Threatened; Final Rule. Federal Register 58:16742-16757.

[USFWS] U.S. Fish and Wildlife Service. 1993. Endangered and Threatened Wildlife and Plants; Rule to List the Delhi Sands Flower Loving-Fly. Federal Register 58 FR 49881.

U.S. Fish and Wildlife Service. 1999. Arroyo southwestern toad (*Bufo microscaphus californicus*) recovery plan. U.S. Fish and Wildlife Service, Portland, Oregon. vi + 119 pp.

[USGS] A Field Guide to the Reptiles and Amphibians of Coastal Southern California. Accessed from: http://www.werc.usgs.gov/fieldguide/index.htm.

USGS. 1979. RIVERSIDE WEST 7.5 minute topographic quadrangle.

Western Riverside County MSHCP. 2018. Annual Report (January 1, 2018 through December 31, 2018)

Whatbird. 2020. Accessed from: http://www.whatbird.com/

(WRMSHCP) Riverside County. 2006. Western Riverside Multiple Species Habitat Conservation Plan.

Zeiner D.C., W.F. Laudenslayer Jr., K.E. Mayer, and M. White, editors (California Department of Fish and Game). 1989. California's Wildlife. Volume I, Amphibians and Reptiles. Sacramento (CA): State of California, the Resources Agency, Department of Fish and Game. 272 pp.

Zeiner D.C., W.F. Laudenslayer Jr., K.E. Mayer, and M. White, editors (California Department of Fish and Game). 1990. California's Wildlife. Volume II, Birds. Sacramento (CA): State of California, the Resources Agency, Department of Fish and Game. 732 pp.

Appendix A: Project Site Photos and Photo Location Key

Appendix B: Riverside County Attachment E-3

Appendix C: Riverside County Attachment E-4

Appendix D: Plant and Animal Compendium

Appendix E: List of special-status species that were determined to have potential to occur within the project area

Appendix F: 45th Street Project Site (APN Numbers 182-190-015, 182-190-016, and 182-190-017). Focused Survey for the Delhi Sands Flower-Loving Fly.

Appendix G: Consistency Analysis

Appendix A

Photo key & Photos

Figure 2 Picture 1 View Westward

Figure 3
Picture 2
View North

Figure 4 Picture 3 View South

Figure 5 Picture 4 View West



Figure 6
Picture 5
View East

Figure 7
Picture 6
View South

Figure 8
Picture 7
View East

Riverside County Attachment E-3

BIOLOGICAL REPORT SUMMARY SHEET

(Submit two copies to the County)

Applicant Name: Mr. Robert Beers

Assessor's Parcel Number (APN): <u>182-190-015</u>, <u>182-190-016</u>, and <u>182-190-017</u>

Site Location: Section 17 Township: 2S Range: 5W Riverside West Quadrangle

Site Address: NA

Related Case Number(s): ------ PDB Number:-----

CHECK SPECIES SURVEYED FOR	SPECIESOFENVIRONMENTAL ISSUEOFCONCERN	(Circle Yes, No or N/A regarding species findings on the referenced site)		
<u> </u>		Yes	No	N/A
XXX	MSHCP 6.1.2 riparian/riverine/vernal pools		х	
XXX	Blueline Stream(s)		Х	
XXX	arroyo toad			Х
XXX	California red-legged frog			Х
XXX	Coast Range newt			Х
XXX	western spadefoot			Х
XXX	American bittern			Х
XXX	American peregrine falcon			Х
XXX	American white pelican			Х
XXX	bald eagle			Х
XXX	Bell's sage sparrow			Х
XXX	black-crowned night heron			Х

XXX	black-tailed gnatcatcher		Х
XXX	Brewer's sparrow		Х
XXX	burrowing owl	х	
XXX	California black rail		Х
XXX			Х
XXX	California condor		Х
XXX	California gull		Х
XXX	California horned lark		Х
XXX	Caspian tern		X
XXX	Clark's marsh wren		Х
XXX	coastal California gnatcatcher		Х
XXX	Cooper's hawk		X
XXX	Costa's hummingbird		X
XXX	double-crested cormorant		X
XXX	ferruginous hawk		X
XXX	golden eagle		
XXX	grasshopper sparrow	Х	X
XXX	great blue heron		×
	great egret		^
XXX	Lawrence's goldfinch	Х	
XXX	least Bell's vireo		X
XXX	lesser sandhill crane		X
XXX	little willow flycatcher		X
XXX	loggerhead shrike		Х
XXX	merlin		X
XXX	mountain plover		Х
XXX	northern goshawk		Х

XXX	northern harrier		Х
XXX	oak titmouse		Х
XXX	olive-sided flycatcher		Х
XXX	osprey		Х
XXX	prairie falcon	Х	
XXX	purple martin		Х
XXX	red-breasted sapsucker		Х
XXX	rufous hummingbird		Х
XXX		Х	
XXX	sharp-shinned hawk		Х
XXX	short-eared owl		Х
XXX	snowy egret		Х
XXX	southern California rufous-crowned sparrow		Х
XXX	southwestern willow flycatcher		Х
XXX	Swainson's hawk		Х
XXX	tricolored blackbird		Х
XXX	Vaux's swift		X
XXX	western yellow-billed cuckoo		Х
XXX	white-faced ibis		Х
XXX	white-tailed kite		Х
XXX	willow flycatcher		Х
XXX	yellow rail		Х
XXX	yellow warbler		Х
XXX	yellow-breasted chat		Х
XXX	yellow-headed blackbird		X
XXX	Riverside fairy shrimp		Х
,,,,,	arroyo chub		٨

XXX	Santa Ana speckled dace		х
XXX	Santa Ana sucker		Х
XXX	steelhead - southern California DPS		Х
XXX	Busck's gallmoth		Х
XXX	Crotch bumble bee	Х	
XXX	Delhi Sands flower-loving fly	х	
XXX	Desert cuckoo wasp		Х
XXX	greenest tiger beetle		X
XXX	quino checkerspot butterfly		Х
XXX	American badger		Х
XXX	Dulzura kangaroo rat		Х
XXX	Los Angeles pocket mouse		Х
XXX	northwestern San Diego pocket mouse		Х
XXX	Pacific pocket mouse		Х
XXX	pallid bobcat		Х
XXX	pallid San Diego pocket mouse		Х
XXX	pocketed free-tailed bat		Х
XXX	San Bernardino flying squirrel		Х
XXX	San Bernardino kangaroo rat		Х
XXX	San Diego black-tailed jackrabbit		Х
XXX	San Diego desert woodrat	Х	
XXX	southern grasshopper mouse		Х
XXX	Stephens' kangaroo rat		Х
XXX	western mastiff bat		Х
XXX			Х
XXX	western yellow bat		Х
	Yuma myotis		

XXX	California floater		Х
XXX	western ridged mussel		Х
XXX	California glossy snake		Х
XXX	coast horned lizard		Х
XXX	coast patch-nosed snake		Х
XXX	coastal whiptail		Х
XXX	desert tortoise		Х
XXX			Х
XXX	northern California legless lizard		Х
XXX	orange-throated whiptail		Х
XXX	red-diamond rattlesnake		X
XXX	San Bernardino ringneck snake		Х
XXX	San Diego banded gecko		Х
XXX	San Diego ringneck snake		Х
XXX	south coast gartersnake		X
XXX	southern California legless lizard		Х
XXX	two-striped gartersnake		X
XXX	western pond turtle	X	
XXX	Riversidian Alluvial Fan Sage Scrub Southern California Arroyo Chub/Santa Ana Sucker	X	
XXX	Stream	X	
XXX	Southern Coast Live Oak Riparian Forest	X	
XXX	Southern Cottonwood Willow Riparian Forest	X	
XXX	Southern Interior Cypress Forest	X	
XXX	Southern Riparian Forest	X	
	Southern Riparian Scrub		
XXX	Southern Sycamore Alder Riparian Woodland	X	
XXX	Southern Willow Scrub	Х	

		,	
XXX	Alvin Meadow bedstraw		Х
XXX	aparejo grass		Х
XXX	Brand's star phacelia		Х
XXX	bristly sedge		Х
XXX	California muhly		Х
XXX			Х
XXX	Catalina maninana liku		Х
XXX	Catalina mariposa-lily		Х
XXX	chaparral nolina		Х
XXX	chaparral ragwort		X
XXX	chaparral sand-verbena		X
XXX	Coulter's goldfields		Х
XXX	Coulter's matilija poppy		X
XXX	Engelmann oak		X
XXX	Fish's milkwort		X
	Gambel's water cress		
XXX	heart-leaved pitcher sage		X
XXX	Horn's milk-vetch		Х
XXX	intermediate mariposa-lily		Х
XXX	intermediate monardella		X
XXX	little mousetail		Х
XXX	long-spined spineflower		Х
XXX	Los Angeles sunflower		Х
XXX	many-stemmed dudleya		Х
XXX	marsh sandwort		Х
XXX	mesa horkelia		Х
XXX	Munz's onion		Х
	IVIUITZ 5 UTITOTT		

	· · · · · · · · · · · · · · · · · · ·	1
XXX	Nevin's barberry	Х
XXX	ocellated humboldt lily	Х
XXX	Palmer's grapplinghook	Х
XXX	Palomar monkeyflower	Х
XXX	paniculate tarplant	Х
XXX	Parish's bush-mallow	Х
XXX	Parish's desert-thorn	Х
XXX	Parish's gooseberry	Х
XXX	Parry's spineflower	Х
XXX	Payson's jewelflower	Х
XXX	Peninsular spineflower	Х
XXX	Peruvian dodder	Х
XXX	Plummer's mariposa-lily	Х
XXX	prairie wedge grass	Х
XXX	Pringle's monardella	Х
XXX	prostrate vernal pool navarretia	Х
XXX	Robinson's pepper-grass	Х
XXX	salt marsh bird's-beak	Х
XXX		Х
XXX	salt spring checkerbloom	Х
XXX	San Bernardino aster	Х
XXX	San Diego ambrosia	Х
XXX	Santa Ana River woollystar	X
XXX	Santiago Peak phacelia	X
XXX	slender-horned spineflower	X
XXX	small-flowered microseris	X
XXX	small-flowered morning-glory	Х
XXX	smooth tarplant	Х
XXX	southern California black walnut	Х
XXX	vernal barley	X
XXX	western spleenwort	X
	white rabbit-tobacco	

			Attac	chment E-3
XXX		Х		
	woven-spored lichen			

Species of concern shall be any unique, rare, endangered, or threatened species. It shall include species used to delineate wetlands and riparian corridors. It shall also include any hosts, perching, or food plants used by any animals listed as rare, endangered, threatened or candidate species by either State, or Federal regulations, or for Riverside County as listed by the California Department of Fish and Game Natural Diversity Data Base (NDDB).

I declare under penalty of perjury that the information provided on this summary sheet is in accordance with the information provided in the biological report.

Jeres Longles.

Teresa Gonzales-Gonzales Environmental Consulting LLC

Signature and Company Name 10(a) Permit Number (if applicable) TE060175-5

Report Date March 28, 2022 Permit Expiration Date

	County Use Only	
eived by:		
,	Date:	
В#	Dutc.	
·D#		

Riverside County Attachment E-4

LEVEL OF SIGNIFICANCECHECKLIST

For Biological Resources (Submit Two Copies)

Case Number:	Lot/Parcel No.: APN 182-190-015, 182-190-016, and 182-190-017
EA Number	
Wildlife & Vegetation	

Potentially Significant	Less than Significant with Mitigation	Less than Significant	No
Impact	Incorporated	Impact	Impact

(Check the level of impact the applies to the following questions)

a) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Conservation Community Plan, or other approved local, regional, or state conservation plan?

Potentially Significant	Less than Significant with Mitigation	Less than Significant	No
Impact	Incorporated	Impact	Impact
	x		

With urban interface mitigation the project will have a less than significant impact on open space.

b) Have a substantial adverse effect, either directly or through habitat modifications, on any endangered, or threatened species, as listed in Title 14 of the California Code of Regulations (Sections 670.2 or 670.5) or in Title 50, Code of Federal Regulations (Sections 17.11 or 17.12)?

Potentially Significant	Less than Significant with Mitigation	Less than Significant	No
Impact	Incorporated	Impact	Impact
X*			

^{*2} years of surveys required for Delhi sands flower-loving fly

c) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U. S. Wildlife Service?

Potentially Significant	Less than Significant with Mitigation	Less than Significant	No
Impact	Incorporated	Impact	Impact
		X	

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident migratory wildlife corridors, or impede the use of native wildlife nursery sites?

Potentially Significant	Less than Significant with Mitigation	Less than Significant	No
Impact	Incorporated	Impact	Impact
		X	

e) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U. S. Fish and Wildlife Service?

Potentially Significant	Less than Significant with Mitigation	Less than Significant	No
Impact	Incorporated	Impact	Impact
		x	

f) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

Potentially Significant	Less than Significant with Mitigation	Less than Significant	No
Impact	Incorporated	Impact	Impact
			X

No wetlands are present.

g) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

Potentially Significant	Less than Significant with Mitigation Incorporated	Less than Significant	No
Impact		Impact	Impact
Прасс	incorporated	Пірасс	X

Source: CGP Fig. VI.36-VI.40

<u>Findings of Fact</u>: The number of individuals of each sensitive species inhabiting the habitat areas was not determined, for the following reasons: (a) many species are amphibians or reptiles, which are difficult to detect during routine field surveys, (b) intensive population studies of small mammals inhabiting the various habitats were not conducted due to the excessive time required to complete such investigations, and (c) some of the bird species known from habitats immediately adjacent to the project area were not observed during field surveys but, due to their capacity of flight, could inhabit the area any time in the future.

Direct and Indirect Impacts to Wildlife

This section addresses direct, indirect, and cumulative impacts to biological resources that may result from implementation of the proposed project.

Direct impacts generally consist of the loss of habitat and the plant and wildlife species that it contains within the area impacted by the proposed project. For the purposes of this assessment, all biological resources within the grading impact area are considered 100 percent lost.

Indirect Impacts are difficult to quantify but, in some cases, they may be as significant as direct impacts. In general, indirect impacts primarily result from adverse "edge effects," either short-term indirect impacts related to construction or long-term, chronic indirect impacts associated with the location of development in proximity to biological resources within natural open space.

Short-term indirect impacts that may potentially result from any project construction include dust production, which could affect plant growth and insect activity; noise, which could disrupt wildlife communication, including bird breeding behavior; lighting, which could disrupt behavior of nocturnal reptiles, mammals, and raptors; sedimentation, siltation, and erosion, which could affect water quality of onsite streams; and pollutant runoff, including chemicals used during construction

and machinery maintenance, which could contaminate soil and water.

Cumulative Impacts refer to incremental individual environmental effects of the proposed project and other past, present, and reasonably foreseeable future projects when combined together. These impacts taken individually may be minor, but collectively may be significant as they occur over a period of time.

THRESHOLDS FOR DETERMINING POTENTIAL SIGNIFICANCE

Guidelines under California Environmental Quality Act (CEQA) provide guidance and interpretation for implementing CEQA statutes. CEQA significance entails any impact to plant and wildlife species listed by federal or state agencies as threatened or endangered, or of regional or local significance. A significant impact to listed or sensitive species could be direct or indirect, with impacts to rare or sensitive habitats also considered significant.

In general, the proposed project could result in a potentially significant impact to the environment if it would:

- Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special species in local or regional plans, policies, or regulations, or by CDFW or USFWS;
- Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by CDFW, USACE, RWQCB, or USFWS.
- Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the CWA (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means;
- Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites;
- Conflict with the provisions of an adopted HCP, NCCP, or other approved local, regional, or state habitat conservation plan.
- Introduce land use within an area immediately adjacent to the MSHCP Conservation Area that would result in substantial edge effects; or
- Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance.
- Mitigation and conservation recommendations to address each impact to biological resources are identified below.

Participation in the MSHCP and implementation of conservation and additional mitigation measures would compensate for impacts that would occur as a result of project implementation.

DIRECT IMPACTS

Direct impacts consist of any ground-disturbing activities (i.e., vegetation removal, grading, paving, building of structures, installing landscaping, etc.). Impacts will occur to all of the habitat on the site. These impacts will occur in the grading for the buildings and roadways by removal of habitat. No state or federal listed plant species will be impacted by the proposed project. The habitat on the project site supports common native wildlife species that would be directly affected by the removal of the habitat.

The more mobile wildlife species, such as birds that utilize the affected area will be displaced

during clearing activities to adjacent areas. These animals may move to open adjacent properties. The less mobile species will probably be lost during the habitat clearing and grading. Construction of the project will probably limit the future use of the area except for common reptile, bird and small mammal species that can be found in urban neighborhoods.

Anticipated impacts to most sensitive wildlife species would be relatively minor, for the following reasons: (a) most of the potentially impacted species are common, and (b) the project area is already disturbed by anthropogenic activities.

Construction Related Land Disturbance

Land disturbance calculations that would result from construction activities (i.e. grading, staging areas etc.) are provided in Table 1 below. Implementation of the proposed project would result in the estimated direct permanent loss of approximately 3.8 acres of habitat.

Oneita Friedina/

TABLE 1
ACREAGE OF HABITAT TYPES RELATED TO LAND DISTURBANCE

	Onsite Existin	ig/
Vegetation	Impacts	Offsite Existing
California Annual Grassland Alliance	3.522	0.013
Developed		0.023
Ornamental	0.032	
Tamarisk	0.288	
TOTAL (acres)	3.842	0.036

Vegetation Communities

Permanent impacts to vegetation communities that occur within the project footprint would result from disturbance associated with permanent roads and structures.

Clearing and grading associated with construction of the project may result in the alteration of soil conditions, including the loss of native seed bank and changes to the topography and drainage of a site such that the capability of the habitat to support current vegetation is impaired. Table 6.1 describes impacts to habitat types.

RIPARIAN, STREAMBED, MSHCP SECTION 6.12 AND WATERS OF THE U.S.

There are no state or federal streambed resources on the project site. MSHCP Section 6.12 riverine resources are not located on the project site.

FAIRY SHRIMP

There are no fairy shrimp on the project site. Fairy shrimp are not located on the project site.

SENSITIVE PLANT SPECIES

There are no sensitive plant species in the project area, and none were observed on the project site.

OAK TREES

There are no oak trees on the project site.

COMMON AND SENSITIVE WILDLIFE SPECIES

Although the intent of the proposed project is to protect biological resources to the maximum extent possible, construction and implementation of the proposed project could potentially impact common wildlife species, species Covered by the MSHCP and associated habitats for these species as identified within the study area. The following avoidance and minimization measures will be incorporated during project implementation for the protection of these species.

COMMON AND MSHCP ADEQUATELY CONSERVED SPECIES

No wildlife species, that are Covered Species and Adequately Conserved by the MSHCP, were detected within the study area during habitat assessment and focused surveys. The following measures will be implemented in order to avoid and/or minimize potential impacts to common and Adequately Conserved MSHCP wildlife species resources.

Construction Minimization Measures (Section 7.5.3 of the MSHCP)

The following construction minimization measures shall be implemented during project construction to minimize impacts on biological resources during construction:

- Timing of construction activities shall consider seasonal requirements for breeding birds and
 migratory non-resident species covered under the Migratory Bird Treaty Act. Habitat clearing shall
 be avoided during species active breeding season, defined as February 1 to September 15. The
 footprint of disturbance shall be minimized to the maximum extent feasible. Access to the project
 site shall occur on pre-existing access routes to the greatest extent possible.
- Equipment storage, fueling and staging areas shall be sited on non-sensitive upland habitat types
 with minimal risk of direct discharge into riparian areas or other sensitive habitat types. The limits
 of disturbance, including the upstream, downstream and lateral extents, shall be clearly defined
 and marked in the field. Mitigation Monitoring Program personnel shall review the limits of
 disturbance prior to initiation of construction activities.
- Exotic species removed during construction shall be properly handled to prevent sprouting or regrowth.
- Training of construction personnel shall be provided.
- Ongoing monitoring and reporting shall occur for the duration of the construction activity to ensure implementation of best management practices (BMPs).

- All equipment maintenance, staging, and dispensing of fuel, oil, coolant, or any other toxic substances shall occur only in designated areas within the proposed grading limits of the project site. These designated areas shall be clearly marked and located in such a manner as to contain run-off.
- Waste, dirt, rubble, or trash shall not be deposited in a Conservation Area or on native habitat.

SENSITIVE SPECIES RELATED TO SECTION 6.1.2 OF THE MSHCP

There are no sensitive species related to Section 6.1.2 of the MSHCP on the project site.

FAIRY SHRIMP

There are no fairy shrimp on the project site.

MSHCP SECTION 6.3.2 CRITERIA AREA SPECIES

Burrowing Owl-Focused surveys for BUOW are not required.

Delhi Sands flower-loving fly -Based on MSHCP requirements and since Delhi soil types are mapped for the site:

- Focused DSFLF surveys were conducted and the results were negative.
- No Mitigation was proposed as DSFLF surveys were negative.

NON-MSHCP COVERED WILDLIFE SPECIES

No non-MSHCP covered special status wildlife species were observed on the project site. Impacts to non-MSHCP covered special status wildlife species would not be considered significant with the implementation of minimization and avoidance measures proposed below in conjunction with other nesting and/or migratory bird species.

MIGRATORY BIRD SPECIES

Project construction may temporarily effect the movement of migratory bird species and their breeding success. Their active nests could be directly or indirectly impacted such that nest abandonment resulting in death of eggs or young occurs. Disturbance from construction activities, such as noise, human presence, and habitat alteration due to the trimming of trees and clearing of native vegetation, could affect the nesting habits of the special-status and migratory bird species. However, these impacts would not be considered significant with the implementation of avoidance and minimization measures described above and below:

If construction is to occur during the MBTA nesting cycle (February 1-September 15) than a nesting bird survey should be conducted by a qualified biologist. Disturbance that causes nest abandonment and/or loss of reproductive effort (e.g., killing or abandonment of eggs or young) may be considered take and is potentially punishable by fines or imprisonment. Active bird nests should be mapped utilizing a hand-held global positioning system (GPS) and a 300' buffer will be flagged around the nest (500' buffer for raptor nests). Construction should not be permitted within the buffer areas while the nest continues to be active (eggs, chicks, etc.). Therefore, based on the described construction activities and implementation of mitigation measures as identified, impacts to migratory birds would not be significant.

WILDLIFE MOVEMENT

Increases in noise, construction traffic, and human activities during construction activities may temporarily deter movement of wildlife within the project vicinity. Impacts to wildlife species are considered significant if they interfere substantially with the movement of any native resident or

migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites. Indirect, adverse, substantial effects on movement of wildlife or impediments to the use of wildlife corridors or nursery sites are not expected from construction or operational activities of the proposed project. However, implementation of avoidance and minimization measures described above would ensure that wildlife movement would not be significantly impacted by the proposed project.

INDIRECT IMPACTS

It is anticipated that there will be some indirect impacts resulting from the proposed project. Potential indirect impacts include increased noise, human activity, and light levels as described below. For each of the indirect impacts (MSHCP Section 6.1.4 Urban/Wildlands Interface) described below, an action(s) or measure(s) is described to ensure that these potential indirect impacts can be maintained at less than significant levels.

Runoff, Erosion and Siltation

Siltation and erosion resulting from the proposed activities are potentially significant indirect impacts associated with this proposed project because of the proximity of the proposed work area to natural areas. Surface water quality could be diminished as a result of scraping and grading, and material laydown. As such, erosion from these activities can remove topsoil necessary for plant growth both in the graded areas and in lower areas affected by increased runoff. The eroded soil can be deposited as silt and alluvium off of the project site. Siltation from these activities can damage wetlands and aquatic habitats and bury vegetation or topsoil. Implementation of avoidance and minimization measures described above under direct impacts is proposed. These measures include implementation of an effective SWPPP or WQMP that employs appropriate BMPs to avoid or limit runoff, erosion, and siltation. With these measures, project related runoff, erosion, and siltation would not result in significant impacts to any offsite water features or sensitive habitats.

Nonnative Weed Establishment

The loss of topsoil from grading or as a result of overland flow may increase the likelihood of exotic plant establishment in offsite native communities. Nonnatives may out-compete native species, suppress native recruitment, alter community structure, degrade or eliminate habitat for native wildlife, and provide food and cover for undesirable nonnative wildlife. The introduction of nonnative plant species into a community as a result of soil disturbance and erosion can increase the competition for resources such as water, minerals, and nutrients between native and nonnative species as well as alter the hydrology and sedimentation rates. In addition, if the nonnative plants form a continuous ground cover, an increase in the natural fire regime may occur, further eliminating any remaining native vegetation, and causing a type conversion to a disturbed/nonnative habitat type. The establishment of nonnative weeds could affect endangered species associated with offsite habitat and could therefore be considered potentially significant if not mitigated. Implementation of avoidance and minimization measures described under direct impacts will reduce potential impacts from project related impacts due to nonnative species.

Toxic Substances

Toxic substances can kill wildlife and plants or prevent new growth where soils or water are contaminated. Toxic substances can be released into the environment through several scenarios including planned or accidental releases, leaching from stored materials, pesticide or herbicide

use, or fires, among others. No intentional releases of toxic substances are planned as part of the proposed project. Accidental releases could occur from several sources such as leaking equipment, or fuel spills during the course of the construction. The implementation of BMPs during construction will reduce the risk of leaks and fuel spills below a level of significance.

A spill contingency plan, written by the construction contractor and approved prior to construction will be in effect during all phases of construction activities. The project would result in the additional use of hazardous materials in limited quantities associated with normal residential use such as cleaning products, solvents, herbicides, and insecticides. However, compliance with regulations will reduce the potential risk of hazardous material exposure to a level that is less than significant. An information pamphlet will be prepared for each homeowner regarding the use of toxics.

Fugitive Dust

Trenching, grading, and vehicle operations associated with the construction of the proposed project may produce fugitive dust. Excessive dust can damage or degrade vegetation by blocking leaf exposure to sunlight. Implementation of dust control measures, as part of BMPs during construction, will reduce fugitive dust emissions to below a level of significance. Dust control measures can include spraying work or driving areas with water and careful operation of equipment.

CUMULATIVE IMPACTS

Construction of the proposed project will alter 3.842 acres of habitat. To determine if this impact is significant on a cumulative basis, it needs to be considered in the context of existing and future surrounding developments within this area of the City of Jurupa Valley. Cumulative impacts could also result from the marginalization of quality of the habitat in close proximity to the future project by increased human activities associated with the development of the proposed project site.

- Riverside County is expected to experience a dramatic increase in residential and commercial development over the next twenty years. Such development will involve many large scale construction projects which may encroach on biological resources, potentially impacting sensitive communities, special status species, and biological diversity.
- For the purpose of this analysis, the geographic scope will comprise the habitat areas directly and indirectly affected by the construction and operation of the project. Urbanization and development in the area impact the ability of certain plant and animal species to forage, breed, and develop in their natural habitat. A cumulative impact would occur if the proposed project substantially contributed to the cumulative degradation of biological resources caused by recent, current, and planned development.
- The proposed project is located within the coverage area of the MSHCP. This conservation planning effort with the overall goal of maintaining biological diversity in rapidly urbanizing areas provides a Conservation Area for 146 special status species, requiring incidental take permits for projects impacting these species. The proposed project would contribute to significant cumulative impacts to biological resources if it violated a conservation plan such as the MSHCP. The proposed project will comply with all MSHCP regulations, including but not limited to the payment of relevant fees, compliance with acquisition processes, and compliance with policies protecting various plants and animals. In following all the regulations set forth by the MSHCP, the proposed project would not substantially contribute to cumulative impacts to biological resources in violation of conservation plans.

- Construction and operation of the proposed project can potentially result in the permanent loss of or temporary disturbance to habitat through grading, drilling, clearing brush, or other construction activities. To protect sensitive biological resources a biologist will conduct preconstruction surveys and mark sensitive areas so that they might be avoided by construction crews and protected from construction activities. The same measures will be taken to protect special status plant species, special status terrestrial species, and BUOW. Construction activities may also impact avian species by disturbing active nests trimming trees or removing vegetation. Mitigation measures mandates that either construction activities be limited to non-breeding season or a wildlife biologist conduct a preconstruction focused nesting survey. Additionally, construction noise may impact both migratory and nesting birds; mitigation measures regulates ambient noise levels to minimize the impact to birds nesting within or passing through construction areas. With the implementation of mitigation measures, construction of the proposed project would not substantially contribute, either directly or through habitat modification, to adverse cumulative effects on candidate, sensitive, or special status species.
- •Construction of the proposed project will result in permanent and temporary disturbance to natural lands through grading and clearing vegetation, exposing topsoil to weathering, impacting sheetflow, and impeding plant growth. In a rapidly developing area, these impacts would contribute to the cumulative degradation of this habitat. The Applicant will minimize the effects of erosion and the hydrologic impacts through such measures as the installation of sediment control structures and the use of water bars, silt fences, stalked straw bales, and mulching in disturbed areas. By implementing BMP measures, the proposed project will not substantially contribute to the cumulative damage to this habitat.
- The proposed project falls under the jurisdiction of local policies and ordinances regarding trees. In order to construct the proposed project the removal of vegetation at will permanently and directly damage trees. By complying with the City of Jurupa Valley requirements, the proposed project will not significantly contribute to the cumulative impact on local tree populations.
- Composite development has the potential to interfere with the movement of migratory animals by physically interfering with the migratory corridor. Construction activities, and introduced structures can act as barriers to migration. Construction activities could potentially impact migration patterns but are considered temporary. Given the distribution of the structures and the volume of traffic associated with the proposed project, the project may significantly contribute to cumulative obstacles to migratory wildlife.

The cumulative effects of the proposed project on biological resources are considered insignificant for the following reasons:

The proposed project site totals approximately 3.842 acres, of which all of it will be disturbed.

- 1. The proposed best management practices (BMP's) are part of the requirement for the proposed project by the Santa Ana Regional Water Quality Control Board for protection of surface water quality from sediments in the proposed project runoff.
- 2. The habitat present is contiguous with habitat to the west and east. Preserving the proposed project site would provide biological value because of the nesting target species that already occur on the project site.
- 3. If the proposed project is not constructed, impacts to the existing area would still occur as a result of populater of invasive species and anthropogenic activities.

Anticipated impacts to sensitive wildlife species would be relatively minor, for the following reasons: (a) most of the potentially impacted species are common species and not threatened/endangered, and (b) the project area is already disturbed by the existing anthropogenic activities and surrounding developments. Appendix C-Riverside County Attachment

E-4 of this document includes CEQA checklist (impacts to sensitive habitat/riparian habitat,

wetlands/jurisdictional features, wildlife movement, and local ordinances).

VII. MSHCP CONSISTENCY OVERVIEW

This section provides an overview of MSHCP consistency of the proposed Project with the MSHCP. Appendix G, attached, provides a stand alone MSHCP Consistency Determination Report. The proposed Project must comply with the following MSHCP requirements:

- Project Consistency with MSHCP Reserve Assembly (MSHCP Section 3.2.3 and Section 3.3)
- Guidelines for facilities within the PQP Lands (MSHCP Section 7.5)
- Species Associated with Riparian/Riverine Areas and Vernal Pool guidelines (MSHCP Section 6.1.2)
- Narrow Endemic Plant Species guidelines (MSHCP Section 6.1.3)
- Additional Survey Needs and Procedures (MSHCP Section 6.3.2)
- Urban Wildlands Interface Guidelines (MSHCP Section 6.1.4)
- Requirements To Be Met For 28 Species Prior To Including Those Species On The List Of Covered Species Adequately Conserved (MSHCP Table 9-3)

PROJECT CONSISTENCY WITH MSHCP AREA PLANS

The project area is located in Jurupa Area Plan. Reserve assembly goals and project relationship for each of these areas are presented in Section 2 of this report.

The project alignment is located within Rough Step 1. Based on the 2018 Annual Report, Rough Step Unit 1 is in "Rough Step." Therefore, the project does not affect the Reserve Assembly goals of the MSHCP.

PROJECT CONSISTENCY WITH CORES AND LINKAGES WITHIN THE CONSERVATION AREA

The MSHCP Conservation Area is comprised of a variety of existing and proposed cores, extensions of existing cores, linkages, constrained linkages and non-contiguous habitat blocks. These features are generally referenced as cores and linkages. There are no proposed cores and linkages located within the project area. There will not be any impacts to key species associated with cores and linkages.

PUBLIC/QUASI-PUBLIC LANDS

There are no public/quasi-public lands adjacent to the project site. There will be no anticipated direct impacts to public/quasi-public lands.

MSHCP SECTION 6.1.2 – PROTECTION OF SPECIES ASSOCIATED WITH RIPARIAN/RIVERINE AND VERNAL POOL RESOURCES

An assessment of the potentially significant effects of the proposed project on riparian, riverine and vernal pool areas was conducted. Seasonal watercourses are present and evidence of recent surface water was observed on site. Potential MSHCP 6.1.2 areas were found on the project site. A Determination of Biologically Equivalent or Superior Preservation (DBESP) Report as required by the MSHCP (Section 6.1.2, pages 6-21 and 6-22) for impacts to Riparian/Riverine Areas/Vernal Pools may be required to be completed. The proposed project is consistent with MSHCP Section 6.1.2, depending on the seasonal watercourses determination.

MSHCP SECTION 6.1.2 – PROTECTION OF NARROW ENDEMIC PLANT SPECIES

There are no narrow endemic plant species on the project site. The proposed project will have no impact on these resources. As such, the proposed project is consistent with MSHCP Section 6.1.3.

MSHCP SECTION 6.3.2 - ADDITIONAL SURVEY NEEDS AND PROCEDURES

Criteria Area Plant Surveys

No Criteria Area Plant Surveys have been identified within the project area to date. As such, the proposed project will have no impact on the Criteria Area Plant and is consistent with MSHCP Section 6.3.2.

Delhi Sands flower-loving fly -Focused surveys were completed by DSFLF biologist and the results were negative. As such, the proposed project will have no impact on DSFLF and is consistent with MSHCP Section 6.3.2.

MSHCP TABLE 9-3 REQUIREMENTS TO BE MET FOR 28 SPECIES PRIOR TO INCLUDING THOSE SPECIES ON THE LIST OF COVERED SPECIES ADEQUATELY CONSERVED

Table 9-3 of the MSHCP lists goals for 28 species that must be met before they are considered to be Adequately Conserved. GEC found none of the species listed in Table 9-3 on the proposed project site. As such, the proposed project is consistent with MSHCP Table 9-3.

MSHCP SECTION 6.1.4 - URBAN WILDLANDS INTERFACE GUIDELINES

The guidelines presented in *Section 6.1.4* of the MSHCP are intended to address indirect effects associated with development in proximity to the MSHCP Conservation Area (i.e., the portions of the Criteria Cells which will be, or have been, conserved). Below is a summary of the Urban Wildlands Interface Guidelines and their relationship to the proposed project:

Drainage- The proposed project will impact existing runoff conditions. BMPs established in Section 8.0 will be taken to ensure that the quantity and quality of runoff will be comparable to existing conditions.

Toxics- It is not anticipated that this proposed project will use chemicals or generate bi-products that are potentially toxic or may adversely affect wildlife species, habitat or water quality. If a toxic substance is identified during construction, measures such as those employed to address drainage issues, as presented in Section 8.0, will be implemented to avoid potential for adverse impacts. An information pamphlet will be prepared for each business owner regarding the use of toxics.

Lighting- Night lighting shall be directed away from the MSHCP Conservation Area to protect species within the MSHCP Conservation Area from direct night lighting. Shielding shall be incorporated into project designs to ensure ambient lighting in the MSHCP Conservation Area is not increased.

Noise- Proposed noise generating land uses affecting the MSHCP Conservation Area shall incorporate setbacks, berms or walls to minimize the effects of noise on MSHCP Conservation Area resources pursuant to applicable rules, regulations, and guidelines related to land use noise standards.

Invasives- Project related landscaping within or adjacent to the Conservation Area, will comply

with not utilizing the invasive nonnative plant species listed in *Table 6-2* of *Section 6.1.4* of the MSHCP. Minimization and avoidance measures as presented in Section 8.0 of this report will be implemented in order to avoid the spread of invasive species within the project area.

Barriers- Proposed land uses adjacent to the MSHCP Conservation Area shall incorporate barriers, where appropriate, in individual project designs to minimize unauthorized public access, domestic animal predation, illegal trespass, or dumping into the MSHCP Conservation Areas.

Grading/Land Development- All manufactured slopes associated with site development will be within the project site.

MIGRATORY BIRD TREATY ACT COMPLIANCE

Pursuant to MSHCP Section 14.13, the Section 10(a) Permit issued for the MSHCP constitutes a Special Purpose Permit under 50 Code of Federal Regulations Section 21.27, for the Take of Covered Species Adequately Conserved listed under Federal ESA and which are also listed under the MBTA of 1918, as amended (16 U.S.C. §§ 703-712), in the amount and/or number specified in the MSHCP, subject to the terms and conditions specified in the Section 10(a) Permit. Any such Take will not be in violation of the MBTA. The MBTA Special Purpose Permit will extend to Covered Species Adequately Conserved listed under Federal ESA and also under the MBTA, valid for a period of three (3) years from its Effective Date, provided the Section 10(a) Permit remains in effect for such period. The Special Purpose Permit shall be renewed pursuant to the requirements of the MBTA if needed valid for a period of three (3) additional years.

The period from approximately 15 February to 15 September covers the breeding season for most birds in the project area, but unseasonal active nests must also be avoided if encountered. Although minimal direct impacts are anticipated in habitats for nesting birds, nesting in adjacent areas may suffer indirect impacts from project activity, such as disturbance related nest abandonment. In these areas, work should be conducted in the non-breeding season when possible. If project activity must be conducted during the breeding season, a qualified biologist should check for nesting birds prior to such activity. Implementation of avoidance/minimization measures presented in Section 8.0 would ensure that migratory and/or nesting bird species would not be impacted by the proposed project. As it relates to nesting birds covered under MSHCP Section 14.13, the proposed project is consistent with the MSHCP.

SUMMARY OF MITIGATION MEASURES AND BMPS

This section provided a comprehensive list of avoidance, minimization and compensation measures. Implementation of these measures, as proposed, ensures compliance and consistency with the MSHCP.

MSHCP BMPs AND MITIGATION MEASURES

Table 2 presents MSHCP BMPs (Appendix C of the MSHCP), Construction Guidelines (*Section 7.5.*3 of the MSHCP), and species specific mitigation measures that have been incorporated in the MSHCP and will be implemented as part of the project.

TABLE 2
MSHCP BMPs and Species Specific Mitigation Measures

MSHCP BMPs (MSHCP Vol. I, Appendix C)		
Wisher Birn's (Wishe	Water pollution and erosion control plans shall be	
	developed and implemented in accordance with	
MSHCP BMP-1	RWQCB requirements.	
MSHCP BMP-2	Equipment storage, fueling, and staging areas shall	
MISTIGN SIMIL 2	be located on upland sites with minimal risks of	
	direct drainage into riparian areas or other sensitive	
	habitats. These designated areas shall be located in	
	such a manner as to prevent any runoff from	
	entering sensitive habitat. Necessary precautions	
	shall be taken to prevent the release of cement or	
	other toxic substances into surface waters. Project	
	related spills of hazardous materials shall be	
	reported to appropriate entities including but not	
	limited to applicable jurisdictional city, USFWS, and	
	CDFG, RWQCB and shall be cleaned up immediately	
	and contaminated soils removed to approved	
MCHCD DMD 2	disposal areas.	
MSHCP BMP-3	Exotic species that prey upon or displace target species of concern should be permanently removed	
	from the site to the extent feasible.	
	To avoid attracting predators of the species of	
MSHCP BMP-4	concern, the project site shall be kept as clean of	
	debris as possible. All food related trash items shall	
	be enclosed in sealed containers and regularly	
	removed from the site(s).	
	Construction employees shall strictly limit their	
	activities, vehicles, equipment, and construction	
MSHCP BMP-5	materials to the proposed project footprint and	
	designated staging areas and routes of travel. The	
	construction area(s) shall be the minimal area	
	necessary to complete the project and shall be specified in the construction plans. Construction	
	limits will be fenced with orange snow screen.	
	Exclusion fencing should be maintained until the	
	completion of all construction activities. Employees	
	shall be instructed that their activities are restricted	
	to the construction areas.	
MSHCP Construction Guide	lines (MSHCP Section 7.5.3)	
	Plans for water pollution and erosion control will	
	be prepared for all Discretionary Projects	
MSHCP CONST-1	involving the movement of earth in excess of 50	
	cubic yards. The plans will describe sediment and	
	hazardous materials control, dewatering or	
	diversion structures, fueling and equipment	
	management practices, use of plant material for erosion control. Plans will be reviewed and	
	erosion control. Plans will be reviewed and	

	approved by the City of Lake Elsinore and
	participating jurisdiction prior to construction.
	Timing of construction activities will consider
MSHCP CONST-2	seasonal requirements for breeding birds and
Wisher Coron 2	migratory non- resident species. Habitat clearing
	will be avoided during species active breeding
	season defined as February 15-September 15
MCUCD CONST 2	
MSHCP CONST-3	Sediment and erosion control measures will be
	implemented until such time soils are determined
1,0000	to be successfully stabilized.
MSHCP CONST-4	Silt fencing or other sediment trapping materials
	will be installed at the downstream end of
	construction activities to minimize the transport of
	sedimentsoff-site.
	Settling ponds where sediment is collected will
MSHCP CONST-5	be cleaned in a manner that prevents sediment
	from re-entering the stream or
	damaging/disturbing adjacent areas. Sediment
	from settling ponds will be removed to a location
	where sediment cannot re-enter the stream or
	surrounding drainage area. Care will be exercised
	during removal of silt fencing to minimize release of
	debris or sediment into streams.
MSHCP CONST-6	No erodible materials will be deposited into water
	courses. Brush, loose soils, or other debris material
	will not be stockpiled within stream channels or on
	adjacent banks.
MSHCP CONST-7	The footprint of disturbance will be minimized to
mener sensity	the maximum extent feasible. Access to sites will
	occur on pre-existing access routes to the greatest
	extent possible.
MSHCP CONST-8	Equipment storage, fueling and staging areas will be
WISHEL CONST 6	sited on non-sensitive upland Habitat types with
	minimal risk of direct discharge into riparian areas
	or other sensitive Habitat types.
	The limits of disturbance, including the upstream,
MSHCP CONST-9	downstream and lateral extents, will be clearly
IVISHEP CONST-9	defined and marked in the field. Monitoring
	personnel will review the limits of disturbance prior
1401107 001107 10	to initiation of construction activities.
MSHCP CONST-10	During construction, the placement of equipment
	within the stream or on adjacent banks or adjacent
	upland Habitats occupied by Covered Species that
	are outside of the project footprint will be avoided.
MSHCP CONST-11	Exotic species removed during construction will be
	properly handled to prevent sprouting or regrowth.
MSHCP CONST-12	Training of construction personnel will be provided.
MSHCP CONST-13	Ongoing monitoring and reporting will occur for
	the duration of the construction activity to ensure
	implementation of best management practices.
MSHCP CONST-14	Active construction areas shall be watered regularly
	to control dust and minimize impacts to adjacent
	vegetation.
	All equipment maintenance, staging, and
MSHCP CONST-15	dispensing of fuel, oil, coolant, or any other toxic
	substances shall occur only in designated areas
	within the proposed grading limits of the project
	site. These designated areas shall be clearly marked
	and located in such a manner as to contain run-off.
MSHCP CONST-16	Waste, dirt, rubble, or trash shall not be deposited
WISHER CONSTITU	in the Conservation Area or on native habitat.
	Wildlife Biologist required to be present during
MSHCP CONST-17	

construction of the project.

Appendix D

Plant & Animal Compendium

Non-native	SCIENTIFIC NAMES	COMMON NAMES
	DIVISION ANTHOPHYTA	FLOWERING PLANTS
	Class Dicotyledones	Dicots
	FAMILY ASTERACEAE	SUNFLOWER FAMILY
	Ambrosia acanthicarpa	Annual burweed
	Lasthenia gracilis	Needle goldfields
	FAMILY BORAGINACEAE	BORAGE FAMILY
	Amsinckia intermedia	Common Fiddleneck
	Amsinckia menziesii	Fiddleneck
	Plagiobothrys canescens	Valley popcorn flower
	FAMILY BRASSICACEAE	MUSTARD FAMILY
Х	Brassica nigra	Black Mustard
Х	Brassica tournefortii	Saharan Mustard
Х	Hirschfeldia incana	Short-pod Mustard
	FAMILY TAMARICACEAE	TAMARISK FAMILY
Х	Tamarix ramosissima	Saltcedar
	Class Monocotyledones	Monocots
	FAMILY ARECACEAE	PALM FAMILY
	Washingtonia filifera	California palm tree
	FAMILY POACEAE	GRASS FAMILY
Х	Bromus berteroanus	Chilean chess
Х	Bromus diandrus	Ripgut grass
Х	Bromus hordeaceus	Soft Chess
Х	Bromus madritensis ssp. rubens	Foxtail Chess
Х	Hordeum murinum	Hare Barley
Х	Schismus barbatus	Mediterranean schismus

Legend:

X = Non-native

BIRDS

ACCIPITRIDAE

Buteo jamaicensis

FALCONIDAE

Falco sparverius

COLUMBIDAE

Zenaida macroura

TYTONIDAE

Tyto alba

TROCHILIDAE

Calypte anna

TYRANNIDAE

Sayornis nigricans

Tyrannus verticalis

CORVIDAE

Corvus brachyrhynchos

Corvus corax

MIMIDAE

Mimus polyglottos

STURNIDAE

Sturnus vulgaris*

EMBERIZIDAE

Melospiza melodia

PASSERELLIDAE

Zonotrichia leucophrys

PASSERIDAE

Passer domesticus*

Legend:

*Not protected by MBTA

** Sensitive Species

KITES, HAWKS, AND EAGLES FAMILY

Red-tailed hawk

FALCON FAMILY

American kestrel

PIGEONS AND DOVE FAMILY

Mourning dove

BARN AND BAY OWL FAMILY

Barn owl

HUMMINGBIRD FAMILY

Anna's Hummingbird

TYRANT FLYCATCHER FAMILY

Black Phoebe Western Kingbird

CROWS AND RAVENS FAMILY

American crow

Common raven

MIMIC THRUSH FAMILY

Northern mockingbird

STARLING FAMILY

European Starling

NEW WORLD SPARROW FAMILY

Song Sparrow

OLD WORLD SPARROW

White-crowned sparrow

OLD WORLD SPARROW FAMILY

English sparrow

MAMMALS

FAMILY CANIDAE

Canis lupus familiaris

FAMILY FELIDAE

Felis catus

INVERTEBRATES CLASS INSECTA

FAMILY APIDAEApis mellifera

FAMILY CULICIDAE *Culex quinquefasciatus*

FAMILY FORFICULIDAEForficula auricularia

FAMILY BOMBYLIIDAE *Mallophora fautrix*

FAMILY MUSCIDAE

Musca domestica

CLASS ARACHNIDA
FAMILY CTENIZIDAE

Bothriocyrtum californicum

DOGS, FOXES AND ALLIES

Domestic Dog

CATS

Domestic cat

INSECTS

HONEY BEESHoney Bee

MOSQUITOES Mosquito

EARWIGS

European Earwigs

ROBBER FLIESRobber fly

HOUSE FLY

Common House Fly

SPIDERS, MITES, TICKS AND SCORPIONS TRAP DOOR SPIDER

California Trapdoor Spider

^{*}Indicates non-nativespecies
** Indicates sensitive species

Appendix E

List of special-status species that were determined to have potential to occur within the project area

TABLE 1 SPECIAL-STATUS PLANT SPECIES LISTED FOR RIVERSIDE WEST & SURROUNDING NINE QUADRANGLES

Scientific Name			CNPS List	Primary Habitat Associations	Status Onsite or Potential to Occur	
Texosporium sancti-jacobi	woven-spored lichen	None/None	3	Arid to semi-arid shrub-steppe, grassland or savannah communities up to 1,000 meters in elevation	Habitat present; Low potential- was not observed during surveys	

Legend FE: FT: SCE: Federally-listed as endangered Federally-listed as threatened State candidate for listing as endangered

State-listed as endangered State-listed as threatened State rare

FC: Federal Candidate
CNPS List= California Native Plant Society

- CNPS Lists California Native Plant Society
 CNPS 1Bs Rare or Endangered in California and Elsewhere
 CNPS 2= Rare or Endangered in California, More Common Elsewhere
 CNPS 2= Rare or Endangered in California, More Common Elsewhere
 CNPS 3= Neath More Information
 CNPS 4= Plants of Limited Distribution
 CNPS 4= Plants of Limited Distribution
 CNPS 4= Plants of Limited Distribution
 CNPS New Threat Code extensions and their meanings:
 1 Seriously endangered in California (over 80% of occurrences threatened / high degree and immediacy of threat)
 2 Fairly endangered in California (208% of cocurrences threatened)
 3 Not very endangered in California (<20% of occurrences threatened)

Scientific Name ¹	Common Name	Status ²	Habitat	Potential to Occur in Study Area (High, Moderate, Low)
Birds				
Scientific Name ¹	Common Name	Status ²	Habitat	Potential to Occur in Study Area (High, Moderate, Low)
Ammodramus savannarum	grasshopper sparrow	CSC, MBTA, MSHCP Covered Species	Grasslands with patches of bare ground	Low. Has potential to occur within study area.
Buteo regalis	Ferruginous Hawk	FBCC, CSC (wintering), MBTA, MSHCP Covered Species	Grasslands	Low. Has potential to forage within study area.
Buteo swainsoni	Swainson's hawk	ST, MBTA, MSHCP Covered Species	Forage in adjacent grasslands, suitable grain or alfalfa fields, or in livestock pastures	Low. Has potential to forage within study area.
Circus cyaneus	Northern Harrier	CSC (nesting), MBTA, MSHCP Covered Species (breeding)	Grasslands, marshes, open habitats	Low. Has potential to occur within study area.
Eremophila alpestris actia	California Horned Lark	CSC, MBTA, MSHCP Covered Species	Open habitats, bare dirt	Low. Has potential to occur within study area.
Falco columbarius	merlin	WL, MBTA, MSHCP Covered Species	Open forests, grasslands, and especially coastal areas with flocks of small songbirds or shorebirds	Low. Has potential to occur within study area.
Falco mexicanus	prairie falcon	WL, MBTA, MSHCP Covered Species	Open grassland habitats	Low. Has potential to occur within study area.
Falco peregrinus anatum	American peregrine falcon	FP,MBTA, MSHCP Covered Species	Forage over extensive areas and can be expected to occur almost anywhere in California during the winter	Low. Has potential to occur within study area.

Scientific Name ¹	Common Name	Status ²	Habitat	Potential to Occur in Study Area (High, Moderate, Low)
Lanius ludovicianus	Loggerhead Shrike	FBCC, CSC (nesting), MBTA, MSHCP Covered Species	Open habitats, scrub	Low. Has potential to occur within study area.
Spinus lawrencei	Lawrence's goldfinch	МВТА	Dry grassy slopes with weed patches, chaparral and open woodlands	Low. Has potential to occur within study area.
Mammals				
Taxidea taxus	American badger	csc	Dry, open grasslands, fields, and pastures	Low. Has potential to occur within study area.
Insects				
Rhaphiomidas terminatus abdominalis	Delhi sands flower-loving fly	FE, MSHCP	Delhi soils	Low. Has potential to occur within study area.
Bombus crotchii	Crotch bumble bee	CE	Open grassland and scrub habitats	Low. Has potential to occur within study area.

Federal Status State/CDFG Status

County Status

FE = Federal Endangered

SE = State Endangered

MSHCP Covered Species = Covered species under County of Riverside Multiple Species Habitat Conservation Plan

FT = Federal Threatened ST = State Threatened

FBCC= Federal Birds of Conservation Concern

CFP= California Fully Protected Species

MBTA = Migratory Bird Treaty Act Species

CSC = California Species of Concern

FP=Fully Protected CNDDB = has a California Natural Diversity DataBase ranking

only

CE=Candidate Endangered

Appendix F

45th Street Project Site (APN Numbers 182-190-015, 182-190-016, and 182-190-017). Focused Survey for the Delhi Sands Flower-Loving Fly.

(APN Numbers 182-190-015, 182-190-016, and 182-190-017)

Focused Survey for the Delhi Sands Flower-loving Fly

Roger C. Hobbs RC Hobbs Company 1110E. Chapman Avenue Suite 201 Oranges, CA, 92866 Office: (714) 633-8100 Cell: (714) 914-2500 rch.rchobbs,com

Prepared by:

Powell Environmental Consultants 146 West Broadbent Drive Riverside, CA 92507 Phone/FAX (951) 686-1497 Cellular Phone (951) 440-4235 DAJRPOWELL@msn.com

Dale A. Powell Ph.D. TE-006559-7

September 24, 2020

Focused Survey for the Delhi Sands Flower-loving Fly

September 24, 2020

Introduction

This report presents the results of a focused survey for the Delhi Sands Flower-loving Fly (*Rhaphiomidas terminatus abdominalis*) on an approximately 4.0 -acre site located in the City of Jurupa Valley, San Bernardino County. This property is under consideration for development in the future. The owner asked for focused surveys to be conducted to determine whether this proposed development would impact this federally endangered insect. This survey, the first, conducted by Powell Environmental Consulting, resulted in negative findings.

Site Description

The approximately 4.0-acre site is located in the city of Jurupa Valley, on a portion of the southern area of Section 17, Township 2 South, Range 5 West; San Bernardino Baseline and Meridian; USGS 7.5' Riverside West Quad (See Maps 1 & 2). The site is situated north of 45th Street, and north of Saxon Court, in Rubidoux, CA (APN Numbers 182-190-015, 182-190-016, and 182-190-017). It is rectangular in outline. The site is relatively flat and its elevation is approximately 840 feet above sea level. Immediately to the west and across 45th to the south are residential yards. To the north is a horse and goat paddock. To the east is an open field with primarily non-native, ruderal vegetation growing upon it. The field possesses some native vegetation.

According to a soil map (U.S. Department of Agriculture, Soil Conservation Service, Soil Survey of San Bernardino County Southwestern Part, California, 1980.) the site possesses Delhi Fine Sand (Db) (approximately 12.5% in northern area – the rest possess Ramona sandy loam, 0 to 5 percent slopes, severely eroded). The Delhi fine sands is a "nearly level to strongly sloping soil on alluvial fans that have been reworked by wind action." (U.S. Department of Agriculture, Soil Conservation Service, Soil Survey of San Bernardino County Southwestern Part, California, 1980.). Based upon my field examination I concur with the soil map. Most of the site possessed open areas of exposed soil. Across the center of the site (east to west), dividing the site into two, was a row of tamarisk trees. Less than half of the site was covered with vegetation,

Plants such as shortpod mustard (Hirschfeldia incana), Russian thistle (*Salsola tragus*), puncture vine (Tribulus terrestris), Common sunflower (*Helianthus annuus*), and non-native grasses were found growing upon the site. One of the four DSFLF "indicator plants": annual bursage (*Ambrosia acanthicarpa*) was observed growing upon the site. California buckwheat (*Eriogonum fasciculatum*), California croton (*Croton californicus*), and telegraph weed (*Heterotheca*

grandiflora) were absent from the site. Disturbances observed on the site included the invasion of non-native plant and animal species, and minor trash dumping.

Delhi Sands Flower-loving Fly Background Information

The Delhi Sands Flower-loving Fly (*Rhaphiomidas terminatus abdominalis*) (family Mydidae) was listed as an endangered species under the Endangered Species Act, as amended on September 23, 1993. The California Natural Diversity Data Base lists the DSFLF rank as being: G1T1S1 - Federally listed as being extremely endangered (G1); found only in California (T1); and as being extremely endangered in California (S1).

The Delhi Sands Flower-loving Fly is considered to be endangered primarily because of the loss of its habitat, mainly due to the habitat's conversion to agricultural, residential, and industrial uses. Its historic range has been reduced by over approximately 97% (USFWS, 1993). The fly is known only to inhabit areas where Delhi series soils are located. These soils consist of fine, sandy soils, often forming wholly or partially consolidated dunes, located in an irregular 40 square mile area, in southwestern San Bernardino and northwestern Riverside Counties (Soil Conservation Service, 1980).

Fine unconsolidated soils are required for oviposition. The female fly inserts the end of her abdomen deep into the soil to lay her eggs (Rogers and Mattoni, 1993). The life history of the larval stages are unknown, however, it is presumed, that the larvae develop underground (Greg Ballmer, D. ten weeks from late June through mid-September. The adult is approximately 1 inch long, tan to orange-brown in color, with dark brown bands and spots upon its abdomen. Its wings are hyaline. It has large green eyes and a long slender proboscis, which it has been seen to use to feed upon nectar from California buckwheat and telegraph weed. The adults frequent open areas, usually near unconsolidated soil. The adult males patrol open areas looking for females to mate with. The females are more sedentary and perch upon plants or sit upon the ground for long periods. Adults are most often observed from 9 or 10 AM until 3 or 4 PM.

The DSFLF is frequently associated with certain plants: California buckwheat (*Eriogonum fasciculatum*), California croton (*Croton californicus*), annual bursage (*Ambrosia acanthicarpa*), and telegraph weed (*Heterotheca grandiflora*), are sometimes called "indicator plants". Other native plant species also occur in DSFLF habitat: California evening primrose (*Oenothera californica*), deerweed (*Lotus scoparius*), lessinga (*Lessingia glandulifera*), rancher's fiddleneck (*Amsinckia menziesii*), sapphire woolly-star (*Eriastrum sapphirinum*), and Thurber's buckwheat (*Eriogonum thurberi*).

Delhi Sands Flower-loving Fly Recovery Plan

In 1997 the U.S. Fish and Wildlife Service issued the final recovery plan for the Delhi Sands Flower-loving Fly (USFWS, 1997). The plan establishes three recovery units: the Colton, Jurupa, and Ontario Recovery Units. The Colton Recovery Unit contains the most known habitat, followed by the Jurupa Recovery Unit. Of the three recovery units, the Ontario Recovery Unit contains the least suitable habitat. Most of the Ontario Recovery Unit's habitat has been degraded by long-term agricultural use and much of the remainder of "suitable" habitat is highly

fragmented and is in very close proximity to residential, commercial, or industrial development. While the fly is known to occur in the Ontario Recovery Unit, the possibility of using the Ontario Recovery Unit to protect the Delhi Sands Flower-loving Fly is limited because of its prior history and fragmented nature.

The 45th Street Avenue Project site is located within the Jurupa Recovery Unit.

Methods

This focused survey was initiated on July 1, 2020 and continued with biweekly site surveys until September 19, 2020. All field surveys and activities associated with this study were conducted in accordance with the Interim General Guidelines for the Delhi Sands Flower-loving Fly and conditions set forth in the surveyors 10(a)(1)(A) permits. Surveys were conducted by entomologists Dale Powell and Jun Powell (both authorized under permit TE-006559-7). Survey dates and times, ambient air temperatures, wind speed, general weather conditions, insect families/species detected, and other pertinent field data were recorded on field survey forms and are included in Table 1 and in the Appendices.

Results and Discussion

No Delhi Sands Flower-loving Flies were observed on the project site during the focused survey. No members of the family Mydidae, to which the Delhi Sands Flower-loving Fly belongs to, were observed. Members of the closely related family Asilidae were observed upon the site. These insects are frequently associated with the Delhi Sands Flower-loving Fly and can be considered indicators that the site may have potential as suitable fly habitat, even though the site has been altered by various disturbances. Only one of the four DSFLF "indicator plants": annual bursage (*Ambrosia acanthicarpa*) was observed growing upon the site.

Delhi Sands Flower-loving Fly Survey Results

Table 1. Dates, survey times, person hours, and weather conditions.

Date	Time	Minutes	Weather	Temp	Wind (mph)
		Surveyed	(at start)	(°F)	aver*/max
$7/1/20^3$	10:00-10:25	50	Hazy	70°	1/3
$7/4/20^3$	9:50-10:20	60	Clear	85°	2/4
$7/8/20^2$	9:50-10:20	30	Clear	82°	1/3
$7/11/20^3$	10:00-10:20	50	Clear	91°	2/4
$7/15/20^2$	9:50-10:20	30	Clear	75°	0/1
$7/18/20^3$	10:00-10:20	40	Clear	80°	1/3
$7/22/20^2$	9:45-10:15	30	Clear	73°	0/1
$7/25/20^3$	10:10-10:35	50	Clear	72°	0/0
$7/29/20^2$	9:50-10:20	30	Clear	85°	0/1
8/1/20 ³	10:00-10:20	40	Clear	96°	1/3
8/5/20 ³	10:10-10:35	25	Clear	74°	0/0
8/8/20 ³	10:10-10:35	50	Clear	77°	1/3
$8/12/20^2$	9:50-10:20	30	Clear	85°	0/1
$8/15/20^3$	10:15-10:35	40	20% Clouds	98°	0/0
$8/19/20^2$	9:45-10:15	30	Clear	90°	0/1
8/22/20 ³	10:05-10:30	50	Clear	91°	2/4
$8/26/20^3$	10:00-10:25	50	Clear	85°	2/4
$8/29/20^3$	10:15-10:35	40	Clear	81°	1/3
$9/2/20^3$	12:55-13:15	40	Clear	91°	3/5
9/5/20 ³	10:00-10:20	40	Clear	100°	0/0
9/9/20 ²	9:50-10:20	30	Clear	82°	2/4
9/12/20 ²	10:00-10:30	30	Hazy	80°	0/1
9/16/20 ²	9:50-10:20	30	Hazy	84°	0/1
$9/19/20^2$	9:45-10:15	30	Clear	85°	0/1

Dale PowellJun Powell

^{*} Over a 20 second period.

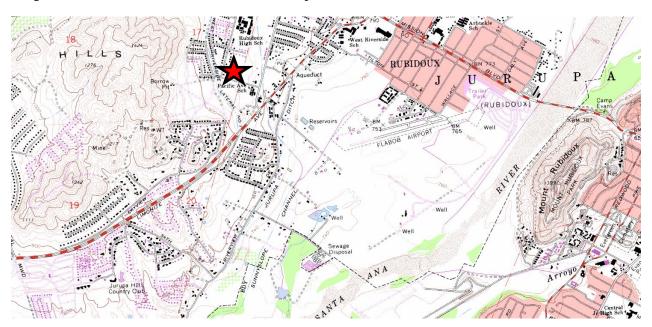
REFERENCES

- Emmel, T.C. and J.F. Emmel. 1973. The Butterflies of Southern California. Natural History Museum of Los Angeles. Science Series 26: 1-148.
- Hickman, J.C. (editor). 1993. The Jepson Manual: Higher Plants of California. University of California Press, Berkeley, California. 1400 pp.
- Rogers, R. and M. Mattoni. 1993. Observations on the natural history and conservation biology of the giant flower loving flies, *Rhaphiomidas* (Diptera: Apioceridae). Dipterological Research 4(1-2): 21-34.
- Scott. S. (editor). 1999. Field Guide to the Birds of North America. Third Edition. National Geographic Society, Washington D.C. 480 pp.
- U.S. Department of Agriculture, Soil Conservation Service, 1971. Soil Survey of Western Riverside Area, California. U.S. Gov. Printing Office, Washington D.C. 188 pp.
- U.S. Department of Agriculture, Soil Conservation Service, 1980. Soil Survey of San Bernardino County Southwestern Part, California. U.S. Gov. Printing Office, Washington D.C.
- U.S. Fish and Wildlife Service. 1997. Final Recovery Plan for the Delhi Sands Flower-loving Fly (*Rhaphiomidas terminatus abdominalis*). U.S. Fish and Wildlife Service, Portland, OR. 51 pp.

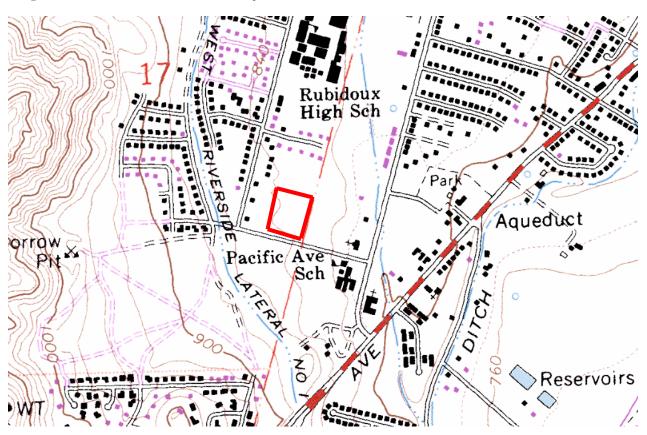
APPENDIX

SUBCONTRACTOR CONCURRENCE

I, Dale A. Powell, having performed focused surveys for the Delhi Sands Flower-loving Fly for the 45th Street Project site, Jurupa Valley, have entirely read and reviewed the final report for the project and concur with the statements and conclusions made.


Holy A Yourll 9/24/2020
SIGNATURE DATE

I, Jun Rong Powell, having performed focused surveys for the Delhi Sands Flower-loving Fly for the 45th Street Project site, Jurupa Valley, have entirely read and reviewed the final report for the project and concur with the statements and conclusions made.


Jun R. Powell 9/24/2020

SIGNATURE DATE

Map 1. General location of the 45th Street Project Site.

Map 2. Location of the 45th Street Project Site.

Picture 1. Overview of the site facing south from the northeast corner.

Picture 2. Overview of the site facing southwest from the northeast corner.

Picture 3. Overview of the site facing west from the northeast corner.

Picture 4. Overview of the site facing west from the southeast corner.

Picture 5. Overview of the site facing northwest from the southeast corner.

Picture 6. Overview of the site facing north from the southeast corner.

FIELD NOTES

Delhi Sands Flower-loving Fly

Dale and Jun Rong Powell

Site: 45th Street

Date		9:00	10:00	11:00	NOON	1:00	2:00	3:00
7/1/20	Temp		700					
Week	Wind		1/3	1				
-	Weath		Over (45T					
7/4	Temp		250					
Week	Wind		2/4					
1	Weath		Clear					
7/8	Temp		820					
Week	Wind		1/3					
2	Weath		MODE					
7/11	Temp		9/10					
Week	Wind		2/4					
2	Weath		cedv					
7/15	Temp		750					Attended
Week	Wind		0/1					
2	Weath		CLEAR					
7/18	Temp		800					
Week	Wind		113					
3	Weath		clear 73°					
7/22	Temp		73°					
Week	Wind		0/1					
7	Weath		clear					
7/25	Temp		720					
Week	Wind		do					
4	Weath		clear !					
7/29	Temp		250	23				
Week	Wind		0/1					
5	Weath		Clear					
8/1	Temp		960					
Week	Wind		1/3					
5	Weath		clear					
8/5	Temp		240					
Week	Wind		0/0			10.7 10.00.00		
6	Weath		elede					
8/8	Temp		77.0					
Week	Wind		1/3					
6	Weath		clear					
9/12	Temp		85					
Week	Wind		0/1					
7	Weath		Clear					

Wind: First number is average (20 seconds) / second number is maximum.

Delhi Sands Flower-loving Fly

Dale and Jun Rong Powell

Site: 45th Street

Date		9:00	10:00	11:00	NOON	1:00	2:00	3:00
8/15/2000	Temp		740					
Week	Wind		0/0					
7	Weath		20% douds					
8/19/20	Temp		90"					
Week	Wind		0/1					
8	Weath		dear					
8/22	Temp		910					
Week	Wind		2/4				,	
8	Weath		clear					
8/26	Temp		820				-	-
Week	Wind		2/4	10.70				
9	Weath		clear					
8/29	Temp	-	810					
Week	Wind		1/3					
9	Weath		eleat					
9/2	Temp				-	910		
Week	Wind					3/5		
10	Weath					clear		
9/5	Temp		1000					
Week	Wind		010					
10	Weath		aleud					
9/9	Temp		820					
Week	Wind		2/4					
11	Weath		Clear					-
9/12	Temp		So"					-
Week	Wind		0/1					ļ
11	Weath		Haze					
9/16	Temp		840					
Week	Wind		0/1					1
12	Weath		Haze 85°					
9119	Temp		85°					-
Week	Wind		0/1					
12	Weath		deav					-
	Temp							
Week	Wind							_
	Weath							-
	Temp					1.		
Week	Wind							
	Weath							

Wind: First number is average (20 seconds) / second number is maximum.

Dale and Jun Rong Powell Delhi Sands Flower-loving Fly 2020 HSTh 7/18 7/22 7/25 8/8 Coleoptera Carabidae Chrysomelidae Coccinellidae V Curculionidae Rhipiphoridae Scarabaeidae Tenebrionidae Dermaptera Diptera Apioceridae Asilidae Bombyliidae 24 Calliphoridae Chironomidae Conopidae Muscidae Mydidae Sarcophagidae Stratiomyidae Syrphidae Tabanidae Tachinidae Hemiptera Anthocoridae Lygaeidae Miridae Nabidae Pentatomidae Reduviidae Scutelleridae Homoptera Aphididae Cercopidae Cicadellidae Cicadidae Membracidae

Dale and Jun Rong Powell Delhi Sands Flower-loving Fly 2020 8/19 2/22 45th 7/18 7/4 7/8 7/1 Hymenoptera Anthophoridae 10 VV Apidae Braconidae Chrysididae V Formicidae Halicitidae Ichneumonidae Mutillidae Pompilidae Scoliidae Sphecidae Vespidae Lepidoptera Danaidae Hesperiidae Lycaenidae Noctuidae Nymphalidae Papilionidae Pieridae Pyralidae Sphingidae Neuroptera Ascalaphidae Chrysopidae Hemerobiidae Myrmeleontidae Odonata Aeshnidae Coenagrionidae V Libellulidae Orthoptera V V Acrididae Gryllacrididae Gryllidae Mantidae Tettigoniidae OTHER

P 3	88	44	中分	70	5	J	3			,					
0/26					9/12	9/16	9/19								
00	1/	NI	1	V	V	V	V								
									12						
V															
- N	VV	V	/	V	V		V		-						
V			-	1		V									
		1													
111	VV	NI	11	1	V	V	V								
				1											
1			1	1	1										
			10.000.0000	1	1				T	1					
+					1										
1															
1	 			1											
+	<u> </u>		 	\vdash						1					
-			1	1		-			1						
-	-	1			+-	1			1						
				-	-	-	-	-	_	-			-	1	+
	5/26	1/26 3/29 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20	1/26 3/29 3/2 1/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	1/26 3/29 8/29/5	1/26 1/29 1/2 9/9 9/9 9/9 9/9 9/9 9/9 9/9 9/9 9/9 9	7/26 3/29 8/2 9/3 9/9 9/12 JUN JUN JUN JUN JUN JUN JUN JUN JUN JUN	7/26 3/29 9/2 9/15 9/9 9/12 9/16 JUN JUN JUN JUN JUN JUN JUN JUN JUN JUN	7/26 3/29 9/2 9/15 9/19 9/16 9/19	7/26 3/29 3/2 3/5 9/9 9/12 9/16 9/19	7/26 3/29 3/2 3/5 9/9 9/12 9/16 9/19 JUV JUV V	7/26 3/29 3/2 3/5 9/9 9/12 9/16 9/19	7/26 3/29 3/2 3/5 9/9 9/12 9/16 9/19	7/26 3/29 3/2 3/5 9/9 9/12 9/16 9/19	7/26 3/29 9/2 9/16 9/19 JUN	7/26 3/29 9/29 9/12 9/16 9/19 JUV JUV V V V V V V V V V V V V V V V V

Homoptera
Aphididae
Cercopidae
Cicadellidae
Cicadidae
Membracidae

2020	The state of the s			Fly		TIP	B	F								
45th	8/26	8/28	7/2	9/5	9/9	9/12	9/16	9/19								
Hymenoptera								-85								
Anthophoridae					7											
Apidae	11	1/	11/	. /	V	V	V	V								
Braconidae																
Chrysididae																
Formicidae	1			j												
Halicitidae	1./	1	1	/	V	V	V	V								
Ichneumonidae	1	P	10	-		1										
Mutillidae	-	-	-													
	-	-	1			-	1									
Pompilidae	+	~			-	-	-		-							
Scoliidae	1,	1	111		11	1	V	1								
Sphecidae	1	1	NJ	-	- V	-	- V	-	-	-						
Vespidae																
Lepidoptera							-		2.2							
Danaidae							1	1		-	-					-
Hesperiidae		,	111					V		-						
Lycaenidae	11	1	11	11		V	V									
Noctuidae																
Nymphalidae																
Papilionidae							1									
Pieridae																
Pyralidae	_															
Sphingidae	1	1	1													
Springiace																
Neuroptera																
Ascalaphidae						-			-	+	-					
Chrysopidae							-	-		-		-	-	-		
Hemerobiidae											-		-			_
Myrmeleontidae							_							-	-	-
												To be a second		10000000000000000000000000000000000000		10000000
Odonata																
Aeshnidae														-		-
Coenagrionidae	1															
Libellulidae								-								
Orthoptera																
Acrididae	+								1				1		I	
	-		+	+	+	+		-		+	1					
Gryllacrididae	+-	+	_	-	-	+	+	-	1	+	1					
Gryllidae	-	-	+	-	+		-	+	-	+-	-	1	1	1		1
Mantidae	-	-	+	+-	+-	-	-	-	-	+	+	1	_	1	 	1
Tettigoniidae										1						
OTHER																

Appendix G

MSHCP Consistency Analysis

CERTIFICATION: I hereby certify that the statements furnished above and in the attached exhibits present data and information required for this biological evaluation, and that the facts, statements, and information presented are true and correct to the best of my knowledge and belief.

Date: 3/28/2022

Contents

1	EXECUTIVE SUMMARY	6
2	INTRODUCTION	8
2.1	Project Area	8
2.2	Project Description	13
Existin	g Conditions	13
2.3 Co	vered Roads	16
2.4 Co	vered Public Access Activities	16
2.5 Ge	neral Setting	16
3	RESERVE ASSEMBLYANALYSIS	17
Со	res and Linkages within Conservation Area	18
MSHC	P SURVEY REQUIREMENTS	20
MSHC	P SECTION 6	20
3.1	Public Quasi-Public Lands	25
3.1.	1 Public Quasi-Public Lands in Reserve Assembly Analysis	25
3.1.	2 Project Impacts to Public Quasi-Public Lands	25
4	VEGETATIONMAPPING	26
	PROTECTION OF SPECIES ASSOCIATED WITH RIPARIAN/RIVERINE AREAS AND VERNAL POOLS (SECTION 6.1.2)	29
	Riparian/Riverine	29
5.2	Vernal Pools	31
5.2	.1 Methods	31
5.2	.2 Existing Conditions and Results	32
5.2.	3 Impacts	32
5.2	.4 Mitigation	32
5.3	Fairy Shrimp	32
5.3	.1 Methods	32
5.3	.2 Existing Conditions and Results	33
5.3	.3 Impacts	34
5.3	.4 Mitigation	34
5.4	Riparian Birds	34
5.4	.1 Methods	34

5.4.2 [Existing Conditions and Results	36
5.4.3 I	mpacts	36
	Mitigation	
6 F	PROTECTION OF NARROW ENDEMIC PLANT SPECIES (SECTION 6.1.3)	37
6.1 Meth	ods	37
6.2 Existii	ng Conditions and Results	37
6.3 Impa	cts	37
6.4 Mitiga	ation	37
7 A	ADDITIONAL SURVEY NEEDS AND PROCEDURES (SECTION 6.3.2)	38
7.1 C	Criteria Area Plant Species	38
7.2 A	mphibians	38
7.2.1 [Methods	38
7.2.2	Existing Conditions and Results	38
7.2.3	Impacts	38
7.2.4	Mitigation	38
7.3 E	Burrowing Owl	38
7.3.1	Methods	38
7.3.2	Existing Conditions and Results	38
7.3.3	Impacts	38
7.3.4	Mitigation	38
7.4 N	/lammals	39
7.4.1	Methods	39
7.4.2	Existing Conditions and Results	39
7.4.3	Impacts	39
7.4.4	Mitigation	39
11 8	NFORMATION ON OTHER SPECIES	39
8.1 C	Pelhi Sands Flower LovingFly	39
8.1.1	Methods	
8.1.2	Existing Conditions and Results	39
8.1.3	Impacts	41
8.1.4	Mitigation	42
8.2 S	Species Not Adequately Conserved	
	GUIDELINES PERTAINING TO THE URBAN/WILDLANDS INTERFACE (SECTION 6.1.4)	
	BEST MANAGEMENT PRACTICES (VOLUME I, APPENDIX C)	
	REFERENCES	
SUPPOR	RTING APPENDICES	50

1 EXECUTIVE SUMMARY

In February and March 2020, and again in March 2022, Teresa Gonzales and Paul Gonzales of Gonzales Environmental Consulting, LLC (GEC) conducted biological resources assessment of the project site Tentative Tract Map 37857 [APN 182-190-015 (1.28 acres), 182-190-016 (1.28 acres), and 182-190-017(1.28 acres)] (site). The purpose of our assessment was to characterize biological resources on the site, and to identify any biological constraints to land-use changes. The site consists of vegetation communities, characterized as California Annual Grassland Alliance, Tamarisk and ornamental. The project site has been subject to anthropogenic disturbances.

Western Riverside Multiple Species Habitat Conservation Plan

The site is in within Jurupa Area Plan of the Western Riverside Multiple Species Habitat Conservation Plan (MSHCP). No Criteria cell, Core and Linkage are located in or around the project area.

Based on biological resource assessments, the Riverside County Integrated Project Conservation Report Generator, and maps of MSHCP survey areas, it was determined that the following additional studies would be required for the proposed Project's consistency with the MSHCP:

Delhi Sands flower-loving fly

No Delhi Sands flower-loving fly were found on the project site.

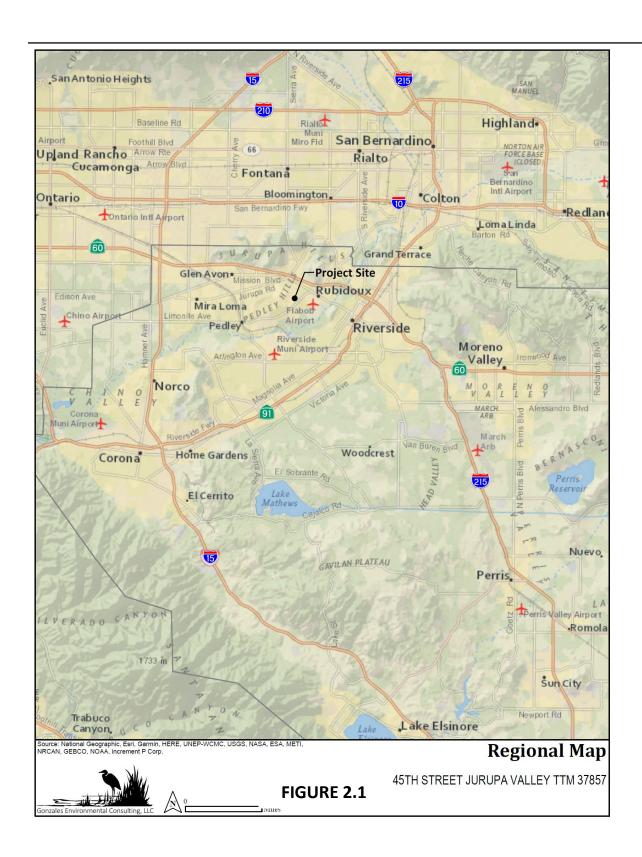
Endangered, Threatened and Sensitive Species

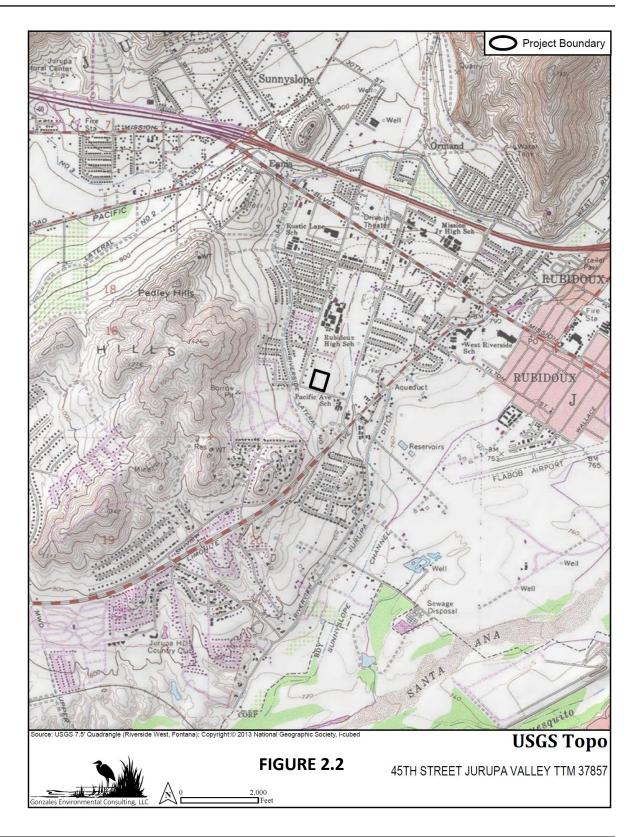
A few special-status plant and animal species have the potential to occur on site. Delhi sands flower-loving fly, a federal endangered species, appropriate soils are located in the northern portion of the project. Focused surveys were conducted by Powell Environmental Consultants (TE-006559-7) for Delhi sands flower-loving fly. Surveys were negative for Delhi sands flower-loving fly. Regardless of the survey results, sensitive species cannot be taken under State and Federal law. The survey report and any mitigation measures included do not constitute authorization for incidental take of any sensitive species.

eambed Resou	rces			
here are no str		urces on site.		

2 INTRODUCTION

The purpose of this Consistency Analysis (Analysis) report is to summarize the biological data for the proposed TTM 37857 and to document project's consistency with the goals and objectives of the Western Riverside County Multiple Species Habitat Conservation Plan. The proposed project consists of the development of [APN 182-190-015 (1.28 acres), 182-190-016 (1.28 acres), and 182-190-017(1.28 acres)] (site). TR 37857 proposes the subdivision of approximately 3.84 acres of undeveloped land into 35 single family residential numbered lots, four lettered lots, 4 streets and 8 courts. Access to the tract will be taken from 45th Street.


2.1 Project Area


The project site (site) discussed in this report is located north of 45th Street, west of Pacific Avenue and east of Opal Street in the City of Jurupa Valley, Riverside County, California. See Figures 1.1 and 1.2.

The site is located within San Bernardino Meridian in a portion of Section 17, Township 2 South, Range 5 West, City of Jurupa Valley, Riverside County, California (Figures 1.1, 1.2 and 1.3). This location is shown on the Riverside West, California 7.5-minute U.S. Geological Survey (USGS) quadrangle (Riverside West Photorevised 1980); page 685 Grid A2, A3, B2 and B3 of the Riverside County Street Guide and Directory (Thomas Brothers Maps Design 2013). The approximate center of the site is located at latitude 33.994381° and longitude -117.427195°.

Elevation of the assessment area ranges from a from a low of 830± feet above mean sea level (msl) in the northeastern portion of the assessment area to a high of 849± feet above msl in the southwestern portion of the assessment area. This represents an elevational change across the assessment area of 19± feet. The entire site consists of relatively level land. The project site has been impacted by anthropogenic activities. Land use in the surrounding area varies between semi-rural and single family residential.

The vegetation communities within the project area are California Annual Grassland Alliance, Tamarisk and ornamental. Previous and current anthropogenic activities and invasion of nonnative plant species have contributed to the disturbed condition of many vegetation communities within the project vicinity.

Tentative Tract Map 37857 (APN 182-190-015, 182-190-016, and 182-190-017) Page | 12 Consistency Analysis Report

2.2 Project Description

The site is comprised of 3.84 acres of disturbed property situated in the City of Jurupa Valley in Riverside County, California.

Elevation of the assessment area ranges from a from a low of 830± feet above mean sea level (msl) in the northeastern portion of the assessment area to a high of 849± feet above msl in the southwestern portion of the assessment area. This represents an elevational change across the assessment area of 19± feet. The entire site consists of relatively level land.

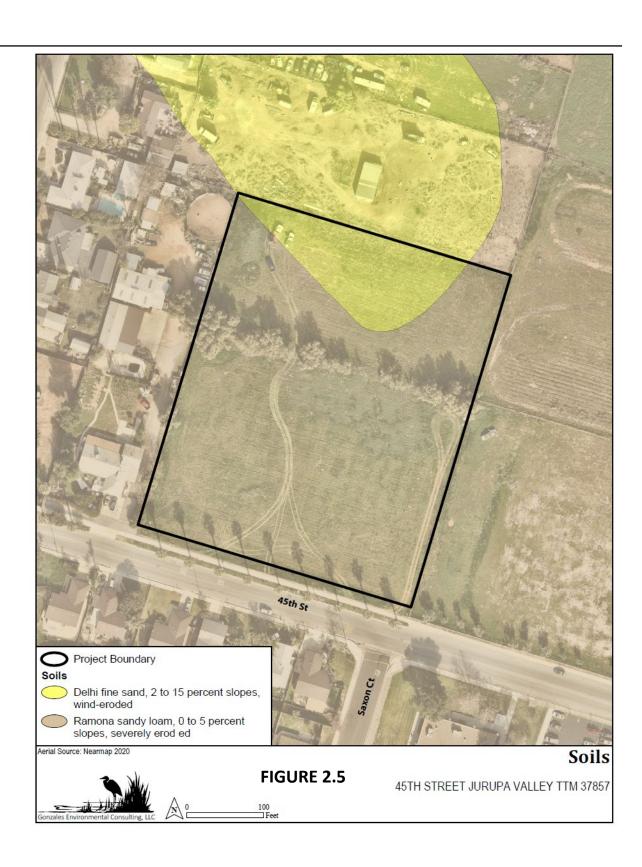
TR 37857 proposes the subdivision of approximately 3.84 acres of undeveloped land into 35 single family residential numbered lots, four lettered lots, 4 streets and 8 courts. Access to the tract will be taken from 45th Street.

Estimated Duration of Construction: Estimated duration of construction is 18 months.

Full Avoidance Infeasibility:

The project, as designed proposes to disturb only where required in order to allow for subdivision of the surrounding property. Where avoidance was not possible, mitigation of these impacts is being provided offsite as a part of this project.

Existing Conditions


Elevation of the assessment area ranges from a from a low of 830± feet above mean sea level (msl) in the northeastern portion of the assessment area to a high of 849± feet above msl in the southwestern portion of the assessment area. This represents an elevational change across the assessment area of 19± feet. The entire site consists of relatively level land. The project site has been impacted by anthropogenic activities. Land use in the surrounding area varies between semi-rural and single family residential.

Soils

The soil associations mapped for the area are Hanford-Tujunga-Greenfield association. Hanford-Tujunga-Greenfield association: Very deep, Well-drained to excessively drained, nearly level to moderately steep soils that have a surface layer of sand to sandy loam; on alluvial fans and flood plains. The soil series mapped for the area are described in Table 4.1. The soils found are similar in texture and color to those mapped, but were highly disturbed from anthropogenic activities. The soils were compacted and unstratified over the majority of the project site. The soils at soil pit locations did not meet the criteria for hydric soils within project boundaries.

TABLE 1.1
SOIL SERIES MAPPED FOR THE AREA

SOIL SERIES MAPPED FOR THE AREA				
Name	Description			
Delhi fine sand 2- 15% slopes, wind- eroded	· · · · · · · · · · · · · · · · · · ·			
Ramona sandy	from 250-310 days. The vegetation is chiefly annual grasses, alfilaria and flat-top buckwheat. Well-drained soils on alluvial fans and terraces. Slopes range from 0-25%. Those soils developed in alluvium consisting			
loam, 0-5% slopes, severely eroded	loam, 0-5% mainly of granitic materials. Elevations range from 500-3,500 feet. The average annual rainfall ranges from 9-18 inches slopes, severely the average annual temperature from 59-65 degrees F, and the average frost-free season from 220-300 days. T			
	-0			

2.3 Covered Roads

This section would only apply if the proposed project entails the construction of, or improvements to, one or more Covered Roads. The proposed project does not include the improvement of any of the Covered Roads.

2.4 Covered Public Access Activities

The proposed project does not include Covered Public Access Activities.

2.5 General Setting

The project site is located northeast, northwest of existing single family development(s). The project is located southeast of rural housing. 45th Street forms the southeastern boundary of the project site. Existing open space is located to the southeast. The project site has been impacted by anthropogenic activities, mowed and disced repeatedly for weed control and fire safety purposes.

3 RESERVE ASSEMBLY ANALYSIS

The project area is located in MSHCP Jurupa Area Plan. The Area Plan is further divided into Subunits that contain Criteria Cells that are targeted for conservation. Target conservation acreages have been established along with a description of the planning species, biological issues and considerations, and criteria for each Subunit within the MSHCP. In some areas, Cells that have a common habitat goal are combined forming a Cell Group. The design for conservation involves core areas of habitat, blocks of habitat, and linkages between the core and block areas. The project area is not in a Subunit or Criteria Cell. The following specific target planning species and conservation goals are included within the biological considerations for Jurupa Area Plan:

Planning Species

- Bell's sage sparrow
- black-crowned night heron
- coastal California gnatcatcher
- Cooper's hawk
- double-crested cormorant
- least Bell's vireo
- loggerhead shrike
- osprey
- peregrine falcon
- Southern California rufous-crowned sparrow
- southwestern willow flycatcher
- tree swallow
- western yellow-billed cuckoo
- white-faced ibis
- white-tailed kite
- arroyo chub
- Santa Ana sucker
- Delhi Sands flower-loving fly
- Bobcat
- Los Angeles pocket mouse
- San Bernardino kangaroo rat
- western pond turtle

Biological Issues and Considerations:

- Conserve existing wetlands in the Jurupa Area Plan portion of the Santa Ana River, with a focus on conserving existing Habitats in the river.
- Conserve known populations of least Bell's vireo and southwestern willow flycatcher along the Santa Ana River.
- Maintain a continuous Linkage along the Santa Ana River from the northern boundary of the Area Plan to the western boundary.
- Maintain Core and Linkage Habitat for bobcat in the Santa Ana River.
- Maintain Core Area for western pond turtle. Conserve large intact habitat blocks consisting of coastal sage scrub, chaparral and grasslands to support known locations of coastal California gnatcatcher.
- Conserve grasslands adjacent to sage scrub as foraging Habitat for raptors.
- Determine presence of potential Core Area for bobcat.
- Determine presence of potential small key population for San Bernardino kangaroo rat in Jurupa Hills.
- Determine presence of potential localities for Los Angeles pocket mouse in sandy washes and dune areas.
- Maintain Core and Linkage Habitat for Delhi Sands flower-loving fly.
- Conserve Delhi sands soil series occurring within agricultural lands along the western and northeastern boundary of the Jurupa Area Plan to support known locations of the Delhi Sands flower-loving fly.
- Determine presence of potential localities for Los Angeles pocket mouse in sandy washes and dune areas.
- Maintain Core and Linkage Habitat for the Delhi Sands flower-loving fly.

Cores and Linkages within Conservation Area

MSHCP Conservation Area is comprised of a variety of existing and proposed cores, extensions of existing cores, linkages, constrained linkages and non-contiguous habitat blocks. These features are generally referenced as cores and linkages. A Core is a block of habitat of appropriate size, configuration, and vegetation characteristics to generally support the life history requirements of one or more Covered Species. Although a more typical definition is

population-related and refers to a single species, in the MSHCP this term is habitat-related because of the multi-species nature of the MSHCP Plan. An MSHCP linkage is defined as a connection between Core Areas with adequate size, configuration and vegetation characteristics to generally provide for "live-in" habitat and/or provide for genetic flow for identified planning species. A constrained linkage is a constricted connection expected to provide for movement of identified planning species between Core Areas, where options for assembly of the connection are limited due to existing patterns of use. Areas identified as linkages in MSHCP may provide movement habitat but not live-in habitat for some species, thereby functioning more as movement corridors.

Project site is not in a Criteria Cell. There are no proposed cores or linkages within the project area.

MSHCP SURVEY REQUIREMENTS

MSHCP survey areas for the proposed project were identified by conducting an initial search of the RCA MSHCP Information Map (RCA 2020). As a result, the study area was identified to be located within the burrowing owl survey area.

TABLE 3.1
MSHCP PROJECT REVIEW CHECKLIST

Checklist	Yes	No
Is the project located in a Criteria Area or Public/Quasi-Public Land?		✓
Is the project located in Criteria Area Plant Survey Area?		✓
Is the project located in Criteria Area Amphibian Survey Area?		✓
Is the project located in Criteria Area Mammal Survey Area?		✓
Is the project located in Narrow Endemic Plant Species Survey Area?		✓
Are riverine/riparian/wetland habitats or vernal pools present?		✓
Is the project located in Burrowing Owl Survey Area?		✓
Is the project located in a Special Linkage Area?		✓

MSHCP SECTION 6

Section 6 of the MSHCP provides provision for MSHCP implementation. Two particular subsections of this section are relevant to the proposed project:

- 6.1.2 Protection of Species Associated with Riparian/Riverine areas and Vernal Pools
- 6.1.3 Protection of Narrow Endemic Plant Species
- 6.1.4 Guidelines Pertaining to the Urban/Wildlands Interface (relevant)
- 6.3.2 Additional Survey Needs (relevant)

The MSHCP covers 146 species, 38 of which require additional surveys if the proposed project occurs in the specific survey area for a species. As noted in Table 4 the proposed project occurs within the burrowing owl survey areas. The project area does not traverse *Riparian/Riverine* and *Vernal Pool* habitats as defined by the MSHCP. Based on biological resource assessments, the RCIP Conservation Report Generator, and maps of MSHCP survey areas, it was determined that surveys for *Riparian/Riverine* habitats, *Vernal Pools*, and associated species are not required pursuant to *Sections 6.1.2, 6.1.3, and 6.3.2* of the MSHCP.

Section 6.1.3 of the MSHCP describes the 14 Narrow Endemic Plant Species and the procedures necessary for surveying, mapping and documenting these species. In addition to the Narrow Endemic Plant Species listed in Section 6.1.3, additional surveys may be needed for certain species

listed in *Section 6.3.2* in conjunction with Plan implementation in order to achieve coverage for these species. These species are referred to as "Criteria Area Species". Furthermore, per *Section 6.1.2* of the MSHCP, if potential *Riparian/Riverine*, and/or *Vernal Pool* habitat (as defined by the MSHCP) occurs within the project area, additional surveys are necessary for specific species that have potential to occur within these habitats.

The MSHCP does not supersede existing federal and state regulations covering lakes, streams, vernal pools, and other wetland areas. Thus, projects must comply with existing regulations for these aquatic resources pursuant to Clean Water Act (CWA) and California Fish and Game Code (CFGC). However, pursuant to the MSHCP, an assessment of the potentially significant effects of projects on Riparian/Riverine areas, and Vernal Pools as it relates to habitat functions and values for MSHCP-covered species is required. If an avoidance alternative is not feasible and a more practicable alternative is selected instead, a DBESP would be provided to ensure replacement of any lost functions and values of habitat as it relates to the needs of Covered Species that rely on that habitat.

Section 6.1.2 of the MSHCP defines Riparian/Riverine and Vernal Pool habitats as follows:

Riparian/Riverine Areas: are lands which contain habitat dominated by trees, shrubs, persistent emergents, or emergent mosses and lichens, which occur close to or which depend upon soil moisture from a nearby fresh water source; or unvegetated, ephemerals that transport water supporting downstream resources in the MSHCP Conservation Area.

Vernal Pools: are seasonal wetlands that occur in depression areas that have wetlands indicators of all three parameters (soils, vegetation, and hydrology) during the wetter portion of the growing season, but normally lack wetlands indicators of hydrology and/or vegetation during the drier portion of the growing season. Obligate and facultative wetland plant species are normally dominant during the wetter portion of the growing season, while upland species (annuals) may be dominant during the drier portion of the growing season.

In addition to mapping *Vernal Pools*, the MSHCP requires mapping of stock ponds, ephemeral pools, and other features which may be suitable habitat for Riverside fairy shrimp (*Streptocephalus woottoni*), vernal pool fairy shrimp (*Brachinecta lynchi*), and Santa Rosa fairy shrimp (*Linderiella santarosae*).

The MSHCP describes a strategy of impact avoidance, minimization, and mitigation for these resources and further requires that long-term conservation of these areas is assured, and recommends that indirect impacts be reviewed to provide protection for these areas.

Section 6.1.4 of the MSHCP describes a process to ensure that projects located outside of, but adjacent to, the Conservation Area do not undermine conservation planning objectives of the MSHCP. This process is called the Urban/Wildlands Interface Guidelines (UWIG).

"Future Development in proximity to the MSHCP Conservation Area may result in Edge Effects that will adversely affect biological resources within the MSHCP Conservation Area. To minimize such Edge Effects, the following guidelines shall be implemented in conjunction with review of individual public and private Development projects in proximity to the MSHCP Conservation Area."

Specific elements to be considered in UWIG compliance include:

- Drainage
- Toxics
- Lighting
- Noise
- Invasives
- Barriers
- Grading and land development

As stated in the MSHCP: "Existing local regulations are generally in place that address the issues presented in this section. Specifically, the County of Riverside and the 18 Cities within the MSHCP Plan Area have approved general plans, zoning ordinances and policies that include mechanisms to regulate the development of land. In addition, project review and impact mitigation that are currently provided through the CEQA process address these issues." UWIG compliance, therefore, relies heavily on the application of Standard Best Management Practices (BMPs) during site development and project operation. These BMPs can be found in Appendix C of the MSHCP. Projects must accordingly demonstrate that they will not adversely affect any Conservation Area and must adequately consider the elements listed above per the UWIG.

MSHCP TABLE 9-3 REQUIREMENTS TO BE MET FOR 28 SPECIES PRIOR TO INCLUDING THOSE SPECIES ON THE LIST OF COVERED SPECIES ADEQUATELY CONSERVED

Of the 146 Covered Species addressed in the MSHCP, 118 species are considered to be Adequately Conserved. The remaining 28 Covered Species will be considered to be adequately conserved when certain conservation requirements are met (by RCA) as identified in the species-specific conservation objectives for those species. For 16 of the 28 species, particular species-specific conservation objectives, which are identified in *Table 9-3* of the MSHCP, must be satisfied to shift those particular species to the list of Covered Species Adequately Conserved.

Tentative Tract Map 37857 (APN 182-190-015, 182-190-016, and 182-190-017)	
Page 23 Consistency Analysis Report	
	Last Revised: April 2019

TABLE 3.2 MSHCP SECTION 6 SPECIES LIST

	MISHCY SECTION O SPECIES LIST
MSHCP Section	Species
	<i>Plants:</i> Brand's phacelia, California orcutt grass, California black walnut, coulter's Matilija poppy, Engelmann oak, fish's milkwort, graceful tarplant, lemon lily, Mojave tarplant, mud nama, ocellated Humboldt lily, orcutt's brodiaea, parish's meadowfoam, prostrate navarretia, San Diego button-celery, San Jacinto Valley crownscale, San Miguel savory, Santa Ana river woolly-star, slender-horned spine flower, smooth tarplant, spreading navarretia, thread-leaved brodiaea, and vernal barley.
Section 6.1.2 Riparian/ Riverine and Vernal Pools	Invertebrates: Riverside fairy shrimp and vernal pool fairy shrimp Fish: Santa Ana sucker
	Brand's phacelia, California Orcutt grass, Hammitt's clay-cress, Johnston's rockcress, many-stemmed dudleya, Munz's mariposa lily, Munz's onion, San Diego ambrosia, San Jacinto Mountains bedstraw, San Miguel savory (Santa Rosa Plateau, Steele Rock), slender-horned spine flower, spreading navarretia, Wright's trichocoronis, and Yucaipa onion.
Section 6.3.2 Additional Survey Needs and Procedures	Plants*: Coulter's goldfields, Davidson's saltscale, heart-leaved pitcher sage, little mud nama, Nevin's barberry, Parish's brittlescale, prostrate navarretia, round-leaved filaree, San Jacinto Valley crownscale, smooth tarplant, thread-leaved, and Vail Lakeceanothus. Amphibians*: arroyo toad, mountain yellow-legged frog, and California red-legged frog Birds: burrowing owl Mammals*: Aguanga kangaroo rat, San Bernardino kangaroo rat, Los Angeles pocket mouse

*Note: Project does not occur within the amphibian, fish and mammal species survey areas.

**Note: Project does not have appropriate habitat for 6.1.2 and 6.1.3 species.

3.1 Public Quasi-Public Lands

3.1.1 Public Quasi-Public Lands in Reserve Assembly Analysis

The project site is outside of PQP lands.

3.1.2 Project Impacts to Public Quasi-Public Lands

There are no impacts to PQP lands.

4 VEGETATION MAPPING

Aerial photography and digital vegetation maps were reviewed to determine potential community types within the project area. Preliminary ground-truthing surveys concurred with digital vegetation maps, and additional surveys were performed to accurately define the community types and boundaries.

The project encompasses three vegetation community types. Vegetation communities currently present are California Annual Grassland Alliance, Tamarisk and ornamental. The existing plant communities are described in more detail below.

California Annual Grassland Alliance

This alliance of non-native annual grasslands and forb lands is composed of cool-season, annual grasses mostly introduced from Europe. They are invasive in disturbed areas throughout much of California. The composition varies widely. Many alien annual species may be present, including *Avena fatua*, *Brassica* spp., *Bromus diandrus*, *Bromus hordeaceus* and *Bromus madritensis*. The composition of this alliance is largely determined by amount of disturbance coupled with fall temperatures and precipitation, light intensity, litter thickness and micro topography. The percentage of exotic alien species is often directly related to disturbance history with heavy disturbance correlating with heavy exotic invasion. Annual grasses are supremely adapted to the Mediterranean climate of California; many species evolved under similar conditions in southern Europe and northern Africa. Plants germinate during winter rains, and complete their life cycles by the beginning of the summer drought. Seeds often remain viable for many years.

Tamarisk

A line of tamarisk (*Tamarix ramosissima*) bisects the project site. This is a nonnative species that appears to have been planted as a windbreak.

Landscape

Landscape species on site are overhanging species from the western property. Species observed include oleander and cactus species.

TABLE 4.1 VEGETATION TYPES MAPPED FOR THE AREA

	Onsite Existing/	ng/
Vegetation	Impacts	Offsite Existing
California Annual Grassland Alliance	3.522	0.013
Developed		0.023
Ornamental	0.032	
Tamarisk	0.288	
TOTAL (acres)	3.842	0.036

5 PROTECTION OF SPECIES ASSOCIATED WITH RIPARIAN/RIVERINE AREAS AND VERNAL POOLS (SECTION 6.1.2)

5.1 Riparian/Riverine

5.1.1 Methods

General wetland and streambed assessments of the proposed project site were conducted in March 2020 by GEC, which included general mapping of habitat(s) that may be subject to jurisdiction of CDFW pursuant to sections 1600-12 of the California Fish and Game Code, ACOE and MSHCP Section 6.1.2. Potential MSHCP Section 6.1.2 seasonal watercourses were not found on the project site.

A brief assessment of the wetland/riparian jurisdictional communities encountered (if they were encountered) was also conducted which described the dominant and associate plant species of each community and the presence and/or absence of visual field indicators (e.g., dominance of hydrophytic species, presence of drift lines).

Streambed/wetland delineation and MSHCP Section 6.1.2 areas were conducted in February 2020. Assessment of riparian/riverine and vernal pools took place on February 7, 2020. Data forms were used, onto which recorded information or otherwise compiled notes regarding the descriptive physical and biological attributes from the area. From a combination of field experience, references, assistance from others, and reconnaissance trips information resources were compiled from which the jurisdictional determinations have been made. Photographs were taken on each visit, some of which are included in this document. Field notes and photographs were arranged by date. Section 6.1.2 riverine and riparian were delineated in the field concurrently with the delineation of federal waters/wetlands and state wetlands/streambed.

Data sources used:

- a. USGS quadrangle maps
- b. Soil Surveys
- c. Aerial photos
- d. State list of hydric soils
- e. National Wetland Plant List 2017
- f. Munsell Soil Charts
- g.6.1.2 information

The following steps were performed:

- 1. Project area was identified and mapped on USGS quadrangle map.
- 2. Vegetation for the project area was summarized and identified utilizing transects and

observation points.

- 3. Area soils were characterized and identified.
- 4. Hydrology data was gathered utilizing field hydrologic indicators and available data.

Prior to conducting field assessments, transects (ranging from 0.15 to 0.5 miles in length) were drawn on a one-meter resolution aerial photograph. During the field assessment, points where these transects intercepted potentially jurisdictional waters were mapped on the aerial photographs or with a Trimble GeoXT GPS unit. Field maps were digitized using GIS technology and the total area of jurisdictional features was calculated.

5.1.2 Existing Conditions and Results

All parts of the project site were closely examined for biological resources. An assessment of the potentially significant effects of the proposed project on riparian, riverine and vernal pool areas was conducted. Seasonal watercourses are present and evidence of recent surface water was observed on site. There are no seasonal watercourses and no evidence of recent surface water was observed on site. No potential MSHCP 6.1.2 areas were found on the project site. There are no Riparian/Riverine associated species on the project site (i.e. least Bell's vireo, southwestern willow flycatcher, blue grosbeak, etc.) as there is no appropriate habitat.

Soils found on the project site are consistent with upland soils and not riparian, riverine and/or vernal pools.

Potential impacts to water quality could occur during construction and operation of the proposed project due to increased erosion and storm water runoff. However, construction BMPs would be implemented during construction of the proposed project to reduce impacts to water quality and beneficial water resource values.

During construction of the current sites existing vegetation will be trimmed and/or removed. Impacts to these features would result in impacts to conservation of habitats and may result in impacts to covered species.

5.1.3 Impacts

GEC found no Section 6.1.2 riparian/riverine/vernal pool areas on the project site.

5.1.4 Mitigation

GEC found no Section 6.1.2 riparian/riverine/vernal pool areas on the project site.

5.2 Vernal Pools

5.2.1 Methods

The starting point for this study was a field trip to the project site in March 2020. Data forms were used, onto which recorded information or otherwise compiled notes regarding the descriptive physical and biological attributes from the area. From a combination of field experience, references, assistance from others, and reconnaissance trips information resources were compiled from which the jurisdictional determinations have been made. Photographs were taken on each visit, some of which are included in this document. Field notes and photographs were arranged by date. Section 6.1.2 vernal pools were delineated in the field concurrently with the delineation of federal waters/wetlands and state wetlands/streambed.

Data sources used:

- a. USGS quadrangle maps
- b. Soil Surveys
- c. Aerial photos
- d. State list of hydric soils
- e. National Wetland Plant List 2017
- f. Munsell Soil Charts
- g. 6.1.2 information

The following steps were performed:

- 1. Project area was identified and mapped on USGS quadrangle map.
- 2. Vegetation for the project area was summarized and identified utilizing transects and observation points.
- 3. Area soils were characterized and identified.
- 4. Hydrology data was gathered utilizing field hydrologic indicators and available data.

Prior to conducting field assessments, transects (ranging from 0.15 to 0.5 miles in length) were drawn on a one-meter resolution aerial photograph. During the field assessment, points where these transects intercepted potentially jurisdictional waters were mapped on the aerial photographs or with a Trimble GeoXT GPS unit. Field maps were digitized using GIS technology and the total area of jurisdictional features was calculated.

Criteria used to determine whether there are vernal pools on the project site included the following: whether there is evidence of a watershed supporting vernal pool hydrology: if the area exhibits upland and wetland characteristics (inundated or not) and length of time if that is the case, evidence of the persistence of wetness using historic information (e.g. aerials),

vegetation, soils, drainage characteristics, uses to which the site has been subjected, and weather and hydrologic records.

5.2.2 Existing Conditions and Results

Vernal Pools are seasonal wetlands that occur in depression areas that have wetlands indicators of all three parameters (soils, vegetation, and hydrology) during the wetter portion of the growing season, but normally lack wetlands indicators of hydrology and/or vegetation during the drier portion of the growing season. Obligate and facultative wetland plant species are normally dominant during the wetter portion of the growing season, while upland species (annuals) may be dominant during the drier portion of the growing season. We conducted our assessment during the wet season (March 2020) when obligate and facultative wetland plant species are normally dominant and found none present on the project site. None of the area exhibited upland and wetland characteristics (inundated or not), evidence of the persistence of wetness (current conditions and using historic information (e.g. aerials)), vegetation, soils, drainage characteristics, uses to which the site has been subjected, and weather and hydrologic records appropriate for vernal pools. There are no vegetation, hydric soils or hydrology present on the project site for vernal pools. No evidence of vernal pools was found on the project site. None of the area exhibited upland and wetland characteristics (inundated or not), evidence of the persistence of wetness (current conditions and using historic information (e.g. aerials)), vegetation, soils, drainage characteristics, uses to which the site has been subjected, and weather and hydrologic records.

5.2.3 Impacts

No impacts to vernal pools will occur on the proposed project.

5.2.4 Mitigation

No mitigation for vernal pools will be necessary as there are no vernal pools on the project site.

5.3 Fairy Shrimp

5.3.1 Methods

The starting point for this study was a field trip to the project site in March 2020. Data forms were used, onto which recorded information or otherwise compiled notes regarding the descriptive physical and biological attributes from the area. From a combination of field experience, references, assistance from others, and reconnaissance trips information resources were compiled from which the jurisdictional determinations have been made. Photographs were taken on each visit, some of which are included in this document. Field notes and photographs were arranged by date. Fairy shrimp resources, if present, were delineated in the field concurrently with the

delineation of federal waters/wetlands and state wetlands/streambed.

Data sources used:

- a. USGS quadrangle maps
- b. Soil Surveys
- c. Aerial photos
- d. State list of hydric soils
- e. National Wetland Plant List 2017
- f. Munsell Soil Charts
- g. fairy shrimp information

The following steps were performed:

- 1. Project area was identified and mapped on USGS quadrangle map.
- 2. Vegetation for the project area was summarized and identified utilizing transects and observation points.
- 3. Area soils were characterized and identified.
- 4. Hydrology data was gathered utilizing field hydrologic indicators and available data.

Prior to conducting field assessments, transects (ranging from 0.15 to 0.5 miles in length) were drawn on a one-meter resolution aerial photograph. During the field assessment, points where these transects intercepted potentially jurisdictional waters were mapped on the aerial photographs or with a Trimble GeoXT GPS unit. Field maps were digitized using GIS technology and the total area of jurisdictional features was calculated.

Criteria used to determine whether there are fairy shrimp on the project site included the following: stock ponds, ephemeral pools, road ruts, human-made depressions, or other depressions that may pond water.

5.3.2 Existing Conditions and Results

We found no stock ponds, ephemeral pools, road ruts, human-made depressions, or other depressions that may pond water on the project site.

5.3.3 Impacts

There are no stock ponds, ephemeral pools, road ruts, human-made depressions, or other depressions that may pond water on the project site so there are no impacts.

5.3.4 Mitigation

No mitigation for fairy shrimp will be necessary as there are no stock ponds, ephemeral pools, road ruts, human-made depressions, or other depressions that may pond water on the project site.

5.4 Riparian Birds

5.4.1 Methods

Preliminary investigations included review of information obtained from the USFWS, and CDFW; literature searches; examination of aerial photographs; and database searches including California Native Plant Society (CNPS), the California Natural Diversity Data Base (CNDDB) records, and sensitive species accounts for Riverside County. Reviewed environmental documents included Environmental Impact Reports prepared for other projects in the vicinity. The following resources were used in background research and during field surveys:

- Topographic maps (USGS 7.5 minute quadrangle)
- Aerial photos
- California Natural Diversity Database (CDFW 2022)
- USFWS sensitive species occurrence database (USFWS 2022)
- California Native Plant Society (CNPS) Inventory of Rare and Endangered Plants of California (CNPS 2022)
- Western Riverside Area, California Soil Survey (U.S. Department of Agriculture [USDA] 1971)
- Volume 1, Parts I and II of the MSHCP (County of Riverside 2003)
- County of Riverside Conservation Summary Report Generator (County of Riverside 2018)

A list of special status species was compiled, including all species in the project area that were:

Listed as endangered or threatened, proposed for listing, or candidates for listing under the Federal Endangered Species Act (FESA);

Listed as endangered or threatened, or candidates for listing under the California Endangered Species Act (CESA);

Included in one of the CDFW publications on species of special concern;

"Fully protected" by the State of California;

Included in the CNPS compilation; or

Identified as plants meeting the definition of rare or endangered under CEQA.

Biological Surveys

Baseline biological studies of the proposed project were conducted in previous years, for the current year surveys began in February 2020. Existing biological data was collected using Personal Computers (PCs) and Geographic Positioning System (GPS). This allowed for data to be collected in real time. Data layers uploaded onto these PCs included recent aerial photography, and topographic contours. Biological data was mapped onto the aerial photograph layers as polygon, line, and point attributes.

Checklists of biological information were uploaded onto the PCs, which allowed us to accurately label all data points, ensure consistency, and keep a running electronic account of all species encountered during the surveys. Finally, these checklists allowed for the inclusion of supplemental field notes, most notably, ranking of the quality of the various habitats including dominant and associate species for each vegetation polygon; assessing habitats for the potential presence of sensitive species not observed during the surveys; and identifying areas that would require protocol-level sensitive species surveys (i.e., USFWS protocol-level surveys for federal threatened and endangered species.

Habitats for specific species of wildlife and plants identified during surveys were classified as: not expected, low, moderate, high, or expected. These classifications were based on the quality of the habitat for each species and the proximity of the habitat to a known occurrence of a species obtained from CNDDB data. The definitions of each of the classifications are as follows:

- Not Expected: Species not previously reported in the vicinity of the site, and suitable habitat very marginal due to disturbances, fragmentation, and/or isolation.
- Low: Species previously reported from the vicinity of the site, but suitable habitat is marginal due to disturbances, fragmentation, and/or isolation.
- Moderate: Species previously reported from the vicinity of the site and large areas of contiguous high-quality habitat present; or species previously reported in the vicinity of the site, but suitable habitat quality is moderate due to disturbances, fragmentation, and/or isolation
- High: Species previously reported from regional vicinity of the site, and large areas of contiguous high-quality habitat are present.
- Expected: Species previously reported from very close vicinity of the site, and large areas of contiguous high-quality habitat are present.

Wildlife Survey and Habitat Assessment Methods General reconnaissance and habitat assessment surveys were completed to determine habitat suitability for listed species and special status plant, wildlife, and aquatic species. Suitable habitat for listed species and special status species was determined by the presence of specific habitat elements. The surveys coincided with the period during which many wildlife species, including migratory species, would have been most detectable. A faunal inventory of all species observed during the course of the surveys was also prepared.

Special Status Species Methods

Special Status Wildlife Species Survey Methods

Prior to conducting habitat assessment surveys, CNDDB and other sources were reviewed for the records of special status wildlife species potentially occurring in the project area. General reconnaissance and habitat assessment surveys were conducted to assess the presence of special status wildlife species habitats within the project area. Maps depicting all known sensitive wildlife species locations within the regional vicinity of the project were produced to aid in determining the target species to survey. All wildlife species encountered during surveys were documented. Any specific areas (e.g., potential nesting, breeding, and foraging habitat) encountered during the surveys that have a high probability for supporting sensitive wildlife were documented. The likelihood of these species occurrence (not expected, low, moderate, high, expected) was also assessed. Least Bell's vireo, southwestern willow flycatcher and yellow-billed cuckoo prefer riparian habitat of dense willow-cottonwood forest, streamside thickets near water; moist woodland, bottomlands, woodland edge, scattered cover and hedgerows in cultivated areas; willow-dominated riparian woodlands; and, open woodland, brush in winter.

5.4.2 Existing Conditions and Results

There is no appropriate habitat on the project site for Least Bell's vireo, southwestern willow flycatcher and yellow-billed cuckoo which prefer riparian habitat of dense willow-cottonwood forest, streamside thickets near water; moist woodland, bottomlands, woodland edge, scattered cover and hedgerows in cultivated areas; willow-dominated riparian woodlands; and, open woodland, brush in winter.

5.4.3 Impacts

No impacts to Least Bell's vireo, southwestern willow flycatcher and yellow-billed cuckoo will occur on the proposed project.

5.4.4 Mitigation

No impacts to Least Bell's vireo, southwestern willow flycatcher and yellow-billed cuckoo will occur on the proposed project, therefore no mitigation is required.

6 PROTECTION OF NARROW ENDEMIC PLANT SPECIES (SECTION 6.1.3)

6.1 Methods

Proposed project does not fall within a mapped survey area for Narrow Endemic plant species.

6.2 Existing Conditions and Results

Proposed project does not fall within a mapped survey area for Narrow Endemic plant species.

6.3 Impacts

Proposed project does not fall within a mapped survey area for Narrow Endemic plant species.

6.4 Mitigation

Proposed project does not fall within a mapped survey area for Narrow Endemic plant species

7 ADDITIONAL SURVEY NEEDS AND PROCEDURES (SECTION 6.3.2)

The proposed project is not located within a Section 6.3.2 survey area.

7.1 Criteria Area Plant Species

Proposed project does not fall within a mapped survey area for Criteria Area plant species.

7.2 Amphibians

Proposed project does not fall within a mapped survey area for Criteria Area amphibian species.

7.2.1 Methods

Proposed project does not fall within a mapped survey area for Criteria Area amphibian species.

7.2.2 Existing Conditions and Results

Proposed project does not fall within a mapped survey area for Criteria Area amphibian species.

7.2.3 Impacts

Proposed project does not fall within a mapped survey area for Criteria Area amphibian species.

7.2.4 Mitigation

Proposed project does not fall within a mapped survey area for Criteria Area amphibian species.

7.3 Burrowing Owl

The proposed project does not fall within the mapped survey area for burrowing owl.

7.3.1 Methods

The proposed project does not fall within the mapped survey area for burrowing owl.

7.3.2 Existing Conditions and Results

The proposed project does not fall within the mapped survey area for burrowing owl.

7.3.3 Impacts

The proposed project does not fall within the mapped survey area for burrowing owl.

7.3.4 Mitigation

The proposed project does not fall within the mapped survey area for burrowing owl.

7.4 Mammals

The proposed project does not fall within a mapped survey area for mammal species.

7.4.1 Methods

Proposed project does not fall within a mapped survey area for Criteria Area for mammals.

7.4.2 Existing Conditions and Results

7.4.3 Impacts

Proposed project does not fall within a mapped survey area for Criteria Area for mammals.

7.4.4 Mitigation

Proposed project does not fall within a mapped survey area for Criteria Area for mammals.

8 INFORMATION ON OTHER SPECIES

8.1 Delhi Sands Flower Loving Fly

The proposed project does fall within an area with Delhi soils mapped within the MSHCP baseline data.

8.1.1 Methods

The focused survey was initiated on July 1, 2020 and continued with biweekly site surveys until September 19, 2020. All field surveys and activities associated with this study were conducted in accordance with the Interim General Guidelines for the Delhi Sands Flower-loving Fly and conditions set forth in the surveyors 10(a)(1)(A) permits. Surveys were conducted by entomologists Dale Powell and Jun Powell (both authorized under permit TE-006559-7). Survey dates and times, ambient air temperatures, wind speed, general weather conditions, insect families/species detected, and other pertinent field data were recorded on field survey forms and are included in the attached report.

8.1.2 Existing Conditions and Results

The approximately 4.0-acre site is located in the city of Jurupa Valley, on a portion of the southern area of Section 17, Township 2 South, Range 5 West; San Bernardino Baseline and Meridian; USGS 7.5' Riverside West Quad (See Maps 1 & 2). The site is situated north of 45th Street, and north of Saxon Court, in Rubidoux, CA (APN Numbers 182-190-015, 182-190-016, and 182-190-017). It is rectangular in outline. The site is relatively flat and its elevation is approximately 840 feet above sea level. Immediately to the west and across 45th to the south are residential yards. To the north is a horse and goat paddock. To the east is an open field with primarily non-native, ruderal

vegetation growing upon it. The field possesses some native vegetation.

According to a soil map (U.S. Department of Agriculture, Soil Conservation Service, Soil Survey of San Bernardino County Southwestern Part, California, 1980.) the site possesses Delhi Fine Sand (Db) (approximately 12.5% in northern area – the rest possess Ramona sandy loam, 0 to 5 percent slopes, severely eroded). The Delhi fine sands is a "nearly level to strongly sloping soil on alluvial fans that have been reworked by wind action." (U.S. Department of Agriculture, Soil Conservation Service, Soil Survey of San Bernardino County Southwestern Part, California, 1980.). Based upon my field examination I concur with the soil map. Most of the site possessed open areas of exposed soil. Across the center of the site (east to west), dividing the site into two, was a row of tamarisk trees. Less than half of the site was covered with vegetation,

Plants such as shortpod mustard (*Hirschfeldia incana*), Russian thistle (*Salsola tragus*), puncture vine (*Tribulus terrestris*), Common sunflower (*Helianthus annuus*), and non-native grasses were found growing upon the site. One of the four DSFLF "indicator plants": annual bursage (*Ambrosia acanthicarpa*) was observed growing upon the site. California buckwheat (*Eriogonum fasciculatum*), California croton (*Croton californicus*), and telegraph weed () were absent from the site. Disturbances observed on the site included the invasion of non-native plant and animal species, and minor trash dumping.

Table 8.1

Dates, survey times, person hours, and weather conditions.

Date	Time	Minutes	Weather	Temp	Wind (mph)
		Surveyed	(at start)	(□ F)	aver*/max
7/1/20 ³	10:00-10:25	50	Hazy	70□	1/3
7/4/20 ³	9:50-10:20	60	Clear	85□	2/4
7/8/20 ²	9:50-10:20	30	Clear	82□	1/3
7/11/20 ³	10:00-10:20	50	Clear	91□	2/4
7/15/20 ²	9:50-10:20	30	Clear	75 0	0/1
7/18/20 ³	10:00-10:20	40	Clear	80□	1/3
7/22/20 ²	9:45-10:15	30	Clear	73□	0/1
7/25/20 ³	10:10-10:35	50	Clear	720	0/0
7/29/20 ²	9:50-10:20	30	Clear	85□	0/1
8/1/20 ³	10:00-10:20	40	Clear	96□	1/3
8/5/20 ³	10:10-10:35	25	Clear	740	0/0
8/8/20 ³	10:10-10:35	50	Clear	770	1/3
8/12/20 ²	9:50-10:20	30	Clear	85□	0/1
8/15/20 ³	10:15-10:35	40	20% Clouds	98□	0/0
8/19/20 ²	9:45-10:15	30	Clear	90□	0/1
8/22/20 ³	10:05-10:30	50	Clear	91□	2/4
8/26/20 ³	10:00-10:25	50	Clear	85□	2/4
8/29/20 ³	10:15-10:35	40	Clear	81□	1/3
9/2/20 ³	12:55-13:15	40	Clear	91□	3/5
9/5/20 ³	10:00-10:20	40	Clear	100□	0/0
9/9/20 ²	9:50-10:20	30	Clear	82□	2/4
9/12/20 ²	10:00-10:30	30	Hazy	80□	0/1
9/16/20 ²	9:50-10:20	30	Hazy	84□	0/1
9/19/20 ²	9:45-10:15	30	Clear	85□	0/1

¹ Dale Powell

8.1.3 Impacts

No DSFLF were located during surveys, and only one associated plant, common burweed, was observed on the project site.

² Jun Powell

^{*} Over a 20 second period.

8.1.4 Mitigation

No mitigation is proposed as DSFLF were not located during surveys, nor are they expected on the project site.

8.2 Species Not Adequately Conserved

No Species Not Adequately Conserved were found on the proposed project site.

9 GUIDELINES PERTAINING TO THE URBAN/WILDLANDS INTERFACE (SECTION 6.1.4)

To preserve the integrity of areas described as existing or future MSHCP Conservation Areas, the guidelines contained in Section 6.1.4 Urban Wildlands Interface Guidelines (UWIG) shall be implemented by the Permittee in their actions relative to the project.

All proposed projects that are located adjacent or have on-site connection to either existing conservation or land described for conservation are required to address how they plan to implement all of the UWIG guidelines:

The entire site has been previously impacted by anthropogenic activities. Thus, there will be relatively few new impacts to any existing or future portions of the Conservation Area, and such impacts will be minor. Mitigation measures and BMPs are located in Section 10 of this document. Nevertheless, below is a summary of the Urban Wildlands Interface Guidelines and their relationship to the proposed project:

Drainage- Siltation and erosion resulting from the proposed activities are potentially significant indirect impacts associated with this proposed project because of the proximity of the proposed work area to natural areas. Surface water quality could be diminished as a result of scraping and grading, and material laydown. As such, erosion from these activities can remove topsoil necessary for plant growth both in the graded areas and in lower areas affected by increased runoff. The eroded soil can be deposited as silt and alluvium off of the project site. Siltation from these activities can damage wetlands and aquatic habitats and bury vegetation or topsoil. Implementation of avoidance and minimization measures described above under direct impacts is proposed. These measures include implementation of an effective SWPPP or WQMP that employs appropriate BMPs to avoid or limit runoff, erosion, and siltation. With these measures, project related runoff, erosion, and siltation would not result in significant impacts to any offsite water features or sensitive habitats.

Toxics- Toxic substances can kill wildlife and plants or prevent new growth where soils or water are contaminated. Toxic substances can be released into the environment through several scenarios including planned or accidental releases, leaching from stored materials, pesticide or herbicide use, or fires, among others. No intentional releases of toxic substances are planned as part of the proposed project. Accidental releases could occur from several sources such as leaking equipment, or fuel spills during the course of the construction. The implementation of BMPs during construction will reduce the risk of leaks and fuel spills below a level of significance.

A spill contingency plan, written by the construction contractor and approved prior to construction will be in effect during all phases of construction activities. The project would result in the

additional use of hazardous materials in limited quantities associated with normal residential use such as cleaning products, solvents, herbicides, and insecticides. However, compliance with regulations will reduce the potential risk of hazardous material exposure to a level that is less than significant. An information pamphlet will be prepared for each homeowner regarding the use of toxics.

Lighting- No nighttime work is anticipated. However, if such work is required in or adjacent to the Conservation Area, lighting would be temporary, shielded, and directed away from the Conservation Area to the extent possible. No permanent lighting will be installed in or near the Conservation Area

Noise- Although some noise will be generated by project activities in or adjacent to open space, it will be of short duration and will be kept as low as possible. Wildlife within open space should not be subject to noise that would exceed residential noise standards. The implementation of avoidance and minimization measures will be implemented in order to minimize impact to species.

Invasives- Project related landscaping within or adjacent to the Conservation Area, will comply with not utilizing the invasive nonnative plant species listed in *Table 6-2* of *Section 6.1.4* of the MSHCP. Minimization and avoidance measures will be implemented in order to avoid the spread of invasive species within the project area.

Barriers- The proposed project may include theme walls along project perimeter streets adjacent to public streets. The project will include walls and/or fencing located where public view and/or important interfaces are of concern. The project will incorporate special edge treatments designed to separate development areas from open space areas. These areas of native landscaping and fencing will serve to minimize unauthorized public access, domestic animals predation, and illegal trespass and dumping.

Grading/Land Development- All manufactured slopes associated with site development will be within the project site. Manufactured slopes will only occur within the portion of the project where impacts are proposed and not within proposed conservation areas.

10 BEST MANAGEMENT PRACTICES (VOLUME I, APPENDIX C)

Table 10.1 presents MSHCP BMPs (Appendix C of the MSHCP), Construction Guidelines (*Section 7.5.*3 of the MSHCP), and species specific mitigation measures that have been incorporated in the MSHCP and will be implemented as part of the project.

TABLE 10.1
MSHCP BMPs and Species Specific Mitigation Measures

MSHCP BMPS AND SPECIES SPECIFIC MITIGATION MEASURES			
MSHCP BMPs (MSHCP Vol. I, Appendix C)			
MSHCP BMP-1	Water pollution and erosion control plans shall be developed and implemented in accordance with RWQCB requirements.		
MSHCP BMP-2	Equipment storage, fueling, and staging areas shall		
	be located on upland sites with minimal risks of		
	direct drainage into riparian areas or other sensitive		
	habitats. These designated areas shall be located in		
	such a manner as to prevent any runoff from		
	entering sensitive habitat. Necessary precautions		
	shall be taken to prevent the release of cement or other toxic substances into surface waters. Project		
	related spills of hazardous materials shall be		
	reported to appropriate entities including but not		
	limited to applicable jurisdictional city, USFWS, and		
	CDFG, RWQCB and shall be cleaned up immediately		
	and contaminated soils removed to approved		
	disposal areas.		
MSHCP BMP-3	Exotic species that prey upon or displace target		
	species of concern should be permanently removed		
	from the site to the extent feasible. To avoid attracting predators of the species of		
MSHCP BMP-4	concern, the project site shall be kept as clean of		
WISHEL BIVIL 4	debris as possible. All food related trash items shall		
	be enclosed in sealed containers and regularly		
	removed from the site(s).		
	Construction employees shall strictly limit their		
	activities, vehicles, equipment, and construction		
MSHCP BMP-5	materials to the proposed project footprint and designated staging areas and routes of travel. The		
	construction area(s) shall be the minimal area		
	necessary to complete the project and shall be		
	specified in the construction plans. Construction		
	limits will be fenced with orange snow screen.		
	Exclusion fencing should be maintained until the		
	completion of all construction activities. Employees		
	shall be instructed that their activities are restricted to the construction areas.		
MSHCP Construction Guide	elines (MSHCP Section 7.5.3)		
Morror Constitution durac	Plans for water pollution and erosion control will		
	be prepared for all Discretionary Projects		
MSHCP CONST-1	involving the movement of earth in excess of 50		
	cubic yards. The plans will describe sediment and		
	hazardous materials control, dewatering or		
	diversion structures, fueling and equipment		
	management practices, use of plant material for		

	T
	erosion control. Plans will be reviewed and approved by the City of Lake Elsinore and
	participating jurisdiction prior to construction. Timing of construction activities will consider
MSHCP CONST-2	seasonal requirements for breeding birds and migratory non- resident species. Habitat clearing will be avoided during species active breeding season defined as February 15-September 15
MSHCP CONST-3	Sediment and erosion control measures will be implemented until such time soils are determined to be successfully stabilized.
MSHCP CONST-4	Silt fencing or other sediment trapping materials will be installed at the downstream end of construction activities to minimize the transport of sedimentsoff-site.
MSHCP CONST-5	Settling ponds where sediment is collected will be cleaned in a manner that prevents sediment from re-entering the stream or damaging/disturbing adjacent areas. Sediment from settling ponds will be removed to a location where sediment cannot re-enter the stream or surrounding drainage area. Care will be exercised during removal of silt fencing to minimize release of debris or sediment into streams.
MSHCP CONST-6	No erodible materials will be deposited into water courses. Brush, loose soils, or other debris material will not be stockpiled within stream channels or on adjacent banks.
MSHCP CONST-7	The footprint of disturbance will be minimized to the maximum extent feasible. Access to sites will occur on pre-existing access routes to the greatest extent possible.
MSHCP CONST-8	Equipment storage, fueling and staging areas will be sited on non-sensitive upland Habitat types with minimal risk of direct discharge into riparian areas or other sensitive Habitat types.
MSHCP CONST-9	The limits of disturbance, including the upstream, downstream and lateral extents, will be clearly defined and marked in the field. Monitoring personnel will review the limits of disturbance prior to initiation of construction activities.
MSHCP CONST-10	During construction, the placement of equipment within the stream or on adjacent banks or adjacent upland Habitats occupied by Covered Species that are outside of the project footprint will be avoided.
MSHCP CONST-11	Exotic species removed during construction will be properly handled to prevent sprouting or regrowth.
MSHCP CONST-12	Training of construction personnel will be provided.
MSHCP CONST-13	Ongoing monitoring and reporting will occur for the duration of the construction activity to ensure implementation of best management practices.
MSHCP CONST-14	Active construction areas shall be watered regularly to control dust and minimize impacts to adjacent vegetation.
	All equipment maintenance, staging, and

MSHCP CONST-15	dispensing of fuel, oil, coolant, or any other toxic substances shall occur only in designated areas within the proposed grading limits of the project site. These designated areas shall be clearly marked and located in such a manner as to contain run-off.
MSHCP CONST-16	Waste, dirt, rubble, or trash shall not be deposited
	in the Conservation Area or on native habitat.
MSHCP CONST-17	Wildlife Biologist required to be present during construction of the project.

11 REFERENCES

- Baldwin Bruce G., Douglas Goldman, David J Keil, Robert Patterson, Thomas J. Rosatti. 2012. The Jepson Manual: Vascular Plants of California. Berkeley, University of California Press. 1600 pps.
- California Department of Fish and Wildlife. 2018. California Natural Diversity Data Base. El Casco and Beaumont, 7.5-minute quadrangles.
- California Department of Fish and Wildlife. 2013. California Fish and Game Code. 553 pps.
- Dudek & Associates. 2003. Final Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP). Prepared for Riverside County Transportation and Land Management Agency. Riverside, Calif. 2003.
- Hall, E.R. 1981. The Mammals of North America. John Wiley and Sons. New York, N.Y. 1981.
- Hayden, P., J.J. Gambino, and R.G. Lindberg.1966. "Laboratory Breeding of the Little Pocket Mouse, Perognathus longimembris." Journal of Mammalogy, volume 47. 1966, pp. 412-423.
- Holland, R.F. 1986. Preliminary descriptions of the terrestrial communities of California. California Department of Fish and Game, Nongame Heritage Program, Sacramento.
- Meserve, P.L. 1976. "Food Relationships of a Rodent Fauna in a California Coastal Sage Scrub Community." Journal of Mammalogy, volume 57. 1976, pp. 300-319.
- Montgomery, S.J. 1994. Trapping and Habitat Assessment Survey for Stephens' Kangaroo Rats, San Bernardino Kangaroo Rats and Los Angeles Pocket Mice, along State Highway 79 between Beaumont and the Area of Gilman Springs Road, Riverside County, California. Prepared for Dames and Moore, Santa Ana, California. 1994.
- Munsell Color. 1975. Munsell Soil Color Charts, Kollmorgan Corporation, Baltimore, Maryland. Soil Conservation Service. 1986. TR-55.
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/) Riverside County, California, Western Riverside Area, California (CA679) Spatial Data Version 4, Sep 16, 2019 Tabular Data Version 12, Sep 16, 2019

United States Department of Agriculture. 1971. Soil Survey of Western Riverside Area, California.

157 pgs. Illus.

- USFWS (United States Fish and Wildlife Service). 2000. *Southwestern Willow Flycatcher Protocol Revision 2000.* Sacramento, California: USFWS. https://www.fws.gov/pacific/ecoservices/endangered/recovery/documents/SWWFlycatcher.2000.protocol.pdf
- USFWS. 2001. Least Bell's Vireo Survey Guidelines. January 19, 2001. Sacramento, California: USFWS. https://www.fws.gov/cno/es/Recovery_Permitting/birds/least_bells_vireo/LeastBellsVireo_SurveyGuidelines_20010119.pdf
- USFWS. 2015. A Natural History Summary and Survey Protocol for the Western Distinct Population Segment of the Yellow-Billed Cuckoo. Prepared by M. Halterman, M.J. Johnson, J.A. Holmes, and S.A. Laymon. Sacramento, California: USFWS. April 2015. https://www.fws.gov/southwest/es/Documents/R2ES/YBCU_SurveyProtocol_FINAL_DR AFT_22Apr2015.pdf
- USGS. 1979. RIVERSIDE WEST 7.5 minute topographic quadrangle.

SUPPORTING APPENDICES

- Gonzales Environmental Consulting, LLC. 2022. HABITAT ASSESSMENT AND MSHCP CONSISTENCY ANALYSIS for Tentative Tract Map 37857 (APN 182-190-015, 182-190-016, and 182-190-017) In the City of Jurupa Valley, County of Riverside. 72 pps
- Powell Environmental Consultants. 2020. 45th Street Project Site (APN Numbers 182-190-015, 182-190-016, and 182-190-017). Focused Survey for the Delhi Sands Flower-Loving Fly.18 pps.