HYDROLOGY REPORT

for

Proposed Commercial Building APN:0132-021-18

> 935 S. Lilac Avenue in the City of Rialto, California

Prepared for: Gevork Martirosian 180 S. Quintana Drive, Anaheim, CA 92807

Prepared by: E&A Engineers 20505 E. Valley Blvd., Ste 110, Walnut, CA 91789

February 15, 2023

PREPARED UNDER THE DIRECT SUPERVISION OF:

_DATE____

GIL EVANGELISTA

TABLE OF CONTENTS

- I. Methodology
- II. Purpose of the Study
- III. Site Description
- IV. Design Parameters
- V. Conclusion

APPENDICES

- A. Vicinity Map
- B. Rational Method
- C. NOAA Atlas Precipitation Frequency
- D. Soils Map
- E. Pre Developed Condition Hydrology MapF. Post Developed Condition Hydrology Map
- G. Pipe Hydraulic Analysis
- H. 25 year 24 hour Runoff Volume Calculations

METHODOLOGY

The proposed drainage area was analyzed by utilizing the County of San Bernardino Public Works Department Flood Control District Hydrology Manual. The site consists of 1 drainage area as demonstrated on the enclosed Hydrology Exhibits. This drainage area was analyzed for acreage, land-use and time of concentration according to the Rational Method.

PURPOSE OF THE STUDY

The study will determine the amount of storm water run-off generated from the project in the existing and post development conditions. The Hydraulic analysis portion of this study will determine the minimum size of pipes used for the site.

SITE DESCRIPTION

The project site in consideration is located at 935 S. Lilac Avenue, in the City of Rialto, California. The entire property has a total area of 1.56 acres. The project currently consist of 2 existing buildings, asphalt driveways and concrete paths/areas. The existing drainage relies on sheet flow over pavement in a southerly to easterly direction.

The project will remove the existing asphalt/concrete pavement and demolish the existing buildings. The proposed development proposes to construct the two office buildings and parking areas. Landscape areas will be constructed at the perimeter of the site.

The project site will have 1 drainage areas. DA 1 has an area of 68079.95 sf / 1.56 ac, runoff from this area is conveyed through sheet flow over pavement towards V-gutters that lead to catchbasins. Runoff drains towards the Cultec underground chambers.

DESIGN PARAMETERS:

- 1. The property is located in the City of Rialto, San Bernardino County rainfall, Valley Region.
- 2. 25 year storm event flood level protection analysis required for pipe conveyance sizing along major street travelways.
- 3. Flow rates calculated based on the County of San Bernardino Hydrology Manual Dated August 1986.
- 4. One hour point rainfall data derived from NOAA Atlas 14 point precipitation frequency estimates.

CONCLUSION

Based upon the results of this study there will an increase in the runoff discharge generated by the proposed condition due to the increase of the impervious areas.

The following tables are provided to summarize the 2 year, 25 year and 100 year predevelopment and post development runoffs:

Pre Development Summary:

DRAINAGE AREA	Control Point	Acre (ac)	Qp, cfs (2 yr)	Qp, cfs (25 yr)	Qp, cfs (100 yr)
DA1	CP#1	1.560	1.46	3.96	5.83

Post Development Summary:

Catchment	Control Point	Acre (ac)	Qp, cfs (2 yr)	Qp, cfs (25 yr)	Qp, cfs (100 yr)
DA 1	CP#1	1.560	3.06	6.03	7.97

25 year Runoff Volume Summary:

	25 Year Runoff Volume
Pre Developed	4,675.21 cf
Post Developed	21,636.43 cf

APPENDIX A

VICINITY MAP

APPENDIX B

PRE DEVELOPED CONDITION

RATIONAL METHOD STUDY FORM

SAN BERNARDINO	COUNTY		STUDY NA	ME: PROPO	DSED COM		UILDING				CALCULAT	TED BY:	RR	DATE:	
HYDROLOGY MANUA		2-year STORM RATIONAL METHOD STUDY						CHECKED BY:		JR	DATE:				
CONCENTRATION POINT	AR. acr Subarea	EA es Total	SOIL TYPE	DEV. TYPE	T _t min	T _c min	l in/hr	Fp in/hr	a _p	Fm in/hr	Q _{TOTAL,} cfs				HYDRAULICS & NOTES
DA1	1.560	А	COM	-	8.00	1.90	1.02	0.841	0.86	1.46				PRE DEVELOPED	

RATIONAL METHOD STUDY FORM

SAN BERNARDINO COUNTY STUDY NAME: PROPOSED COMMERCIAL BUILDING								CALCULAT	ED BY:	RR	DATE:				
HYDROLOGY MANUAL	<u> </u>	-	25-year ST	ORM RATIC	NAL METH	OD STUDY					CHECKED	BY:	JR	DATE:	
CONCENTRATION	es	SOIL	DEV	T,	T _c	1	Fn	a	Fm	QTOTAL				HYDRALILICS &	
POINT	Subarea	Total	TYPE	TYPE	min	min	in/hr	in/hr	αp	in/hr	cfs				NOTES
DA1	1.560	1.560	А	COM	-	8.00	3.60	0.93	0.841	0.78	3.96				PRE DEVELOPED

RATIONAL METHOD STUDY FORM

SAN BERNARDINO	SAN BERNARDINO COUNTY STUDY NAME: PROPOSED COMMERCIAL BUILDING									CALCULAT	TED BY:	RR	DATE:		
HYDROLOGY MANUAL 100-year STORM RATIONAL METHOD STUDY								CHECKED	BY:	JR	DATE:				
CONCENTRATION	acr	es 	SOIL	DEV.	T _t	T _c	1	Fp	a _p	Fm	Q TOTAL,				HYDRAULICS &
POINT	Subarea	IYPE	TYPE	mın	mın	ın/hr	ın/hr		ın/hr	cts				NOTES	
DA1	DA1 1.560 1.560 A COM - 8.00 4.70 0.65 0.841						0.55	5.83				PRE DEVELOPED			

FIGURE D-3

71

FIGURE D-3

	Quality of		<u>Soil (</u>	Grou
Cover Type (3)	Cover (2)	A	В	С
NATURAL COVERS -				
Barren (Reckland, conded and such that)		78	86	91
(Rockland, eroded and graded land)				
Chaparral, Broadleaf	Poor	53	70	80
(Manzonita, ceanothus and scrub oak)	Fair	40	63	75 71
	0000		"	
Chaparral, Narrowleaf	Poor	71	82	88
(Chamise and redshank)	Fair	222	72	81
Grass, Annual or Perennial	Poor	67	78	86
	Fair	29	69	79
	3000	7		[']
Meadows or Cienegas	Poor	63	77	85
principal vegetation is sod forming grass)	Good	30	58	71
Open Brush (Soft wood shrubs - buckwheat, sage, etc.)	Poor	62	76	84
(5011 wood 311 db3 - bdckwhedi, 5466, 6169)	Good	41	63	75
Weedland	Beer	4.0		77
(Coniferous or broadleaf trees predominate.	Fair	36	60	73
Canopy density is at least 50 percent.)	Good	25	55	70
Woodland, Grass	Poor	57	73	82
(Coniferous or broadleaf trees with canopy	Fair	44	65	77
density from 20 to 30 percent)	Good	33	58	72
URBAN COVERS -				
Residential or Commercial Landscaping	Good	32	56	69
(Lawn, shrubs, etc.)				
Turf	Poor	58	74	83
(Irrigated and mowed grass)	Fair	44	65	77
	Good	33	58	72
AGRICULTURAL COVERS -				
Fallow		77	86	91
(Land plowed but not tilled or seeded)			.	

SAN BERNARDINO COUNTY

HYDROLOGY MANUAL

.

.

CURVE NUMBERS FOR PERVIOUS AREAS

4

POST DEVELOPED CONDITION

RATIONAL METHOD STUDY FORM

SAN BERNARDINO	COUNTY		STUDY NA				UILDING					ED BY:	RR	DATE:	
III DHOLOGI MAROA	_		z-year 310			0 31001				1	CHECKED	Ы.	JN	DAIL.	
CONCENTRATION	ARI acr	EA es	SOIL	DEV.	T,	Tc	1	Fp	a _p	Fm	Q TOTAL				HYDRAULICS &
POINT	Subarea	Total	TYPE	TYPE	min	min	in/hr	in/hr		in/hr	cfs				NOTES
DA 1	1.560	А	COM	-	5.50	2.35	1.03	0.163	0.17	3.06				POST DEVELOPED	

RATIONAL METHOD STUDY FORM

SAN BERNARDINO COUNTY STUDY NAME: PROPOSED COMMERCIAL BUILDING								CALCULAT	ED BY:	RR	DATE:				
HYDROLOGY MANUAL	L		25-year ST	ORM RATIC	NAL METH	OD STUDY					CHECKED	BY:	JR	DATE:	
CONCENTRATION	acr	es	SOIL	DEV	Т.	T.	I	Fn	a	Fm	QTOTAL				HYDBAULICS &
POINT	Subarea	TYPE	TYPE	min	min	' in/hr	in/hr	ap	in/hr	cfs				NOTES	
DA 1	1.560	1.560	A	COM	-	5.50	4.45	0.97	0.163	0.16	6.03				POST DEVELOPED

RATIONAL METHOD STUDY FORM

SAN BERNARDINO	SAN BERNARDINO COUNTY STUDY NAME: PROPOSED COMMERCIAL BUILDING								CALCULAT	ED BY:	RR	DATE:			
HYDROLOGY MANUAL 100-year STORM RATIONAL METHOD STUDY						CHECKED	BY:	JR	DATE:						
CONCENTRATION	acr	es	SOIL	DEV	T,	T _c	1	Fn	a	Fm	QTOTAL				HYDBALILICS &
POINT Subarea Total TYPE TYPE min min in/hr in/hr							α _p	in/hr	cfs				NOTES		
DA 1	1.560	1.560	A	COM	-	5.50	5.80	0.74	0.163	0.12	7.97				POST DEVELOPED

Figure D-I

D-8

D-8

D-8

FIGURE D-3

	Quality of		<u>Soil (</u>	Grou
Cover Type (3)	Cover (2)	A	B	С
NATURAL COVERS -				
Barren (Reckland, conded and such that)		78	86	91
(Rockland, eroded and graded land)				
Chaparral, Broadleaf	Poor	53	70	80
(Manzonita, ceanothus and scrub oak)	Fair	40	63	75 71
	0000		"	[^
Chaparral, Narrowleaf	Poor	71	82	88
(Chamise and redshank)	Fair	222	72	81
Grass, Annual or Perennial	Poor	67	78	86
	Fair	29	69	79
	3000	7		[']
Meadows or Cienegas	Poor	63	77	85
principal vegetation is sod forming grass)	Good	30	58	71
Open Brush (Soft wood shrubs - buckwheat, sage, etc.)	Poor	62	76	84
(5011 wood 311 db3 - bdckwhedi, 5466, 6169)	Good	41	63	75
Weedland	Beer	4.0		77
(Coniferous or broadleaf trees predominate.	Fair	36	60	73
Canopy density is at least 50 percent.)	Good	25	55	70
Woodland, Grass	Poor	57	73	82
(Coniferous or broadleaf trees with canopy	Fair	44	65	77
density from 20 to 30 percent)	Good	33	58	72
URBAN COVERS -				
Residential or Commercial Landscaping	Good	32	56	69
(Lawn, shrubs, etc.)				
Turf	Poor	58	74	83
(Irrigated and mowed grass)	Fair	44	65	77
	Good	33	58	72
AGRICULTURAL COVERS -				
Fallow		77	86	91
(Land plowed but not tilled or seeded)			.	

SAN BERNARDINO COUNTY

HYDROLOGY MANUAL

.

.

CURVE NUMBERS FOR PERVIOUS AREAS

4

APPENDIX C

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 6, Version 2 Location name: Rialto, California, USA* Latitude: 34.0844°, Longitude: -117.3785° Elevation: 1143.3 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)													
Duration				Avera	ge recurren	ce interval (years)							
Duration	1	2	5	10	25	50	100	200	500	1000				
5-min	0.118	0.153	0.199	0.237	0.290	0.331	0.374	0.419	0.481	0.531				
	(0.098-0.143)	(0.127-0.185)	(0.165-0.242)	(0.195-0.291)	(0.230-0.369)	(0.258-0.430)	(0.283-0.498)	(0.308-0.574)	(0.340-0.689)	(0.362-0.787)				
10-min	0.169	0.219	0.285	0.340	0.416	0.475	0.536	0.600	0.690	0.761				
	(0.141-0.205)	(0.182-0.266)	(0.236-0.347)	(0.280-0.417)	(0.330-0.528)	(0.369-0.617)	(0.406-0.714)	(0.442-0.823)	(0.487-0.987)	(0.518-1.13)				
15-min	0.204	0.265	0.345	0.411	0.503	0.574	0.648	0.726	0.834	0.920				
	(0.170-0.248)	(0.220-0.321)	(0.286-0.420)	(0.338-0.505)	(0.399-0.639)	(0.447-0.746)	(0.491-0.863)	(0.535-0.995)	(0.589-1.19)	(0.627-1.37)				
30-min	0.303	0.393	0.512	0.610	0.746	0.852	0.962	1.08	1.24	1.37				
	(0.252-0.367)	(0.327-0.477)	(0.424-0.623)	(0.502-0.749)	(0.593-0.948)	(0.663-1.11)	(0.729-1.28)	(0.794-1.48)	(0.873-1.77)	(0.930-2.03)				
60-min	0.437	0.566	0.737	0.879	1.08	1.23	1.39	1.55	1.78	1.97				
	(0.364-0.530)	(0.471-0.687)	(0.612-0.898)	(0.723-1.08)	(0.854-1.37)	(0.955-1.60)	(1.05-1.85)	(1.14-2.13)	(1.26-2.55)	(1.34-2.92)				
2-hr	0.636	0.818	1.06	1.25	1.52	1.73	1.95	2.17	2.48	2.72				
	(0.530-0.772)	(0.681-0.994)	(0.877-1.29)	(1.03-1.54)	(1.21-1.94)	(1.35-2.25)	(1.48-2.59)	(1.60-2.98)	(1.75-3.55)	(1.85-4.03)				
3-hr	0.793	1.02	1.31	1.55	1.88	2.13	2.39	2.66	3.03	3.32				
	(0.661-0.962)	(0.846-1.24)	(1.09-1.60)	(1.27-1.90)	(1.49-2.39)	(1.66-2.77)	(1.81-3.18)	(1.96-3.65)	(2.14-4.33)	(2.26-4.92)				
6-hr	1.12	1.44	1.85	2.18	2.64	2.98	3.34	3.70	4.20	4.59				
	(0.935-1.36)	(1.20-1.75)	(1.53-2.25)	(1.80-2.68)	(2.10-3.35)	(2.32-3.88)	(2.53-4.45)	(2.73-5.08)	(2.96-6.01)	(3.13-6.80)				
12-hr	1.51	1.93	2.49	2.93	3.53	3.99	4.45	4.93	5.57	6.07				
	(1.25-1.83)	(1.61-2.35)	(2.06-3.03)	(2.41-3.60)	(2.81-4.49)	(3.10-5.19)	(3.38-5.93)	(3.63-6.76)	(3.93-7.97)	(4.13-8.99)				
24-hr	2.02	2.61	3.37	3.98	<mark>4.80</mark>	5.43	<mark>6.05</mark>	6.69	7.54	8.20				
	(1.78-2.32)	(2.31-3.01)	(2.97-3.90)	(3.49-4.65)	(4.07-5.79)	(4.50-6.67)	(4.90-7.62)	(5.27-8.66)	(5.71-10.2)	(6.00-11.4)				
2-day	2.45	3.23	4.24	5.06	6.16	7.01	7.87	8.75	9.94	10.9				
	(2.17-2.83)	(2.86-3.73)	(3.74-4.90)	(4.42-5.90)	(5.22-7.43)	(5.82-8.62)	(6.37-9.91)	(6.90-11.3)	(7.52-13.4)	(7.95-15.2)				
3-day	2.61	3.49	4.66	5.62	6.94	7.97	9.02	10.1	11.6	12.8				
	(2.31-3.00)	(3.09-4.03)	(4.11-5.39)	(4.92-6.56)	(5.88-8.37)	(6.61-9.80)	(7.31-11.4)	(7.97-13.1)	(8.79-15.7)	(9.36-17.8)				
4-day	2.79	3.77	5.09	6.17	7.68	8.86	10.1	11.3	13.1	14.5				
	(2.47-3.21)	(3.34-4.36)	(4.49-5.88)	(5.40-7.20)	(6.50-9.25)	(7.35-10.9)	(8.16-12.7)	(8.94-14.7)	(9.92-17.7)	(10.6-20.2)				
7-day	3.17 (2.81-3.66)	4.33 (3.83-5.00)	5.88 (5.18-6.80)	7.16 (6.27-8.35)	8.95 (7.58-10.8)	10.4 (8.59-12.7)	11.8 (9.57-14.9)	13.3 (10.5-17.3)	15.5 (11.7-20.9)	17.2 (12.6-24.0)				
10-day	3.45	4.73	6.44	7.87	9.86	11.4	13.1	14.8	17.2	19.1				
	(3.05-3.97)	(4.18-5.46)	(5.68-7.46)	(6.89-9.18)	(8.35-11.9)	(9.49-14.1)	(10.6-16.5)	(11.7-19.2)	(13.0-23.2)	(14.0-26.7)				
20-day	4.18 (3.70-4.82)	5.79 (5.12-6.68)	7.95 (7.01-9.19)	9.76 (8.54-11.4)	12.3 (10.4-14.8)	14.3 (11.9-17.6)	16.4 (13.3-20.7)	18.7 (14.7-24.2)	21.8 (16.5-29.5)	24.4 (17.8-34.0)				
30-day	4.94 (4.38-5.70)	6.86 (6.06-7.91)	9.44 (8.33-10.9)	11.6 (10.2-13.6)	14.7 (12.4-17.7)	17.1 (14.2-21.1)	19.7 (16.0-24.8)	22.5 (17.7-29.1)	26.4 (20.0-35.6)	29.5 (21.6-41.2)				
45-day	5.88 (5.21-6.78)	8.14 (7.20-9.39)	11.2 (9.88-13.0)	13.8 (12.1-16.1)	17.4 (14.8-21.0)	20.4 (16.9-25.0)	23.5 (19.0-29.5)	26.8 (21.1-34.7)	31.5 (23.8-42.5)	35.4 (25.9-49.4)				
60-day	6.86 (6.07-7.90)	9.43 (8.34-10.9)	12.9 (11.4-15.0)	15.9 (13.9-18.5)	20.1 (17.0-24.2)	23.4 (19.5-28.8)	27.0 (21.9-34.0)	30.9 (24.3-39.9)	36.3 (27.5-49.0)	40.8 (29.9-57.0)				

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

1000

NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Wed Jun 29 08:50:11 2022

Back to Top

Maps & aerials

Small scale terrain

Precipitation Frequency Data Server

Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

PIPE SIZE CALCULATIONS:

On-site storm drainage pipes will be sized for 25 year frequency storm. The Qs are derived from the Rational Method from the San Bernardino Hydrology Manual. Pipes are sized to flow in an open flow condition.

 $Q_{max} = \frac{k'}{n} d^{8/3} s^{1/2}$ per King's Handbook

k'=0.463; d=pipe diameter (ft)

n=0.013 S=0.005

Pipe Diameter	Max Q (cfs)
8"	0.866
12"	2.518
15"	4.566
18"	7.425
24"	15.99
36"	47.15

n=0.013 S=0.010

Pipe Diameter	Max Q (cfs)
8"	1.224
12"	3.561
15"	6.457
18"	10.5
24"	22.61
36"	66.67

APPENDIX H

25 Year Volume Calculation:

Pre-Developed	CN	S	la	Y	Area Fraction	P24(25yr)
DA1 Pervious	38	16.32	3.26	0.028	0.841	4.8
DA1 Impervious	98	0.204	0.041	0.951	0.159	4.8

DA1 Pervious

S=(1000/CN)-10	=(1000/38)-10	=16.32
la=0.2S	=0.2 x 16.32	=3.26

Y=(P24-Ia)²/(P24-Ia+S) x P24

=(4.8-3.26)²/(4.8-3.26+16.32) x 4.8 =0.028

DA1 Impervious

S=(1000/CN)-10	=(1000/98)-10	=0.204
la=0.2S	=0.2 x 0.204	=0.041

Y=(P24-Ia)²/(P24-Ia+S) x P24 =(4.8-0.041)²/(4.8-0.041+0.204) x 4.8 =0.951

 $\bar{\mathbf{Y}}$ =(0.028*0.841)+(0.951*0.159) = 0.175

Volume V=4.8 x 0.175 x 1.56 x 43560 x 1/12 V(pre)=4,675.21 cf

25 Year Volume Calculation:

Post-Developed	CN	S	la	Y	Area Fraction	P24(25yr)
DA1 Pervious	32	21.25	4.25	0.003	0.163	4.8
DA1 Impervious	98	0.204	0.041	0.951	0.837	4.8

DA1 Pervious

S=(1000/CN)-10	=(1000/32)-10	=21.25
la=0.2S	=0.2 x 21.25	=4.25

Y=(P24-Ia)²/(P24-Ia+S) x P24

=(4.8-4.25)²/(4.8-4.25+21.25) x 4.8 =0.003

DA1 Impervious

S=(1000/CN)-10	=(1000/98)-10	=0.204
la=0.2S	=0.2 x 0.204	=0.041

Y=(P24-la)²/(P24-la+S) x P24 =(4.8-0.041)²/(4.8-0.041+0.204) x 4.8 =0.951

 \bar{Y} =(0.003*0.134)+(0.951*0.866) = 0.796

Volume V=4.8 x 0.796 x 1.56 x 43560 x 1/12 V(post)=21,636.43 cf