PRELIMINARY DRAINAGE STUDY
 100 W Sinclair St
 APN \# 3030-800-13, 15
 Perris, Riverside County, California September 19, 2022

Prepared for:

First Industrial Realty Trust Inc.
890 N. Sepulveda Blvd., Suite 175
El Segundo, CA 90245
310-606-1634 ph.

Report Prepared By:
! M C ENGINERSINC.
29995 Technology Drive, Suite 306
Murrieta, CA 92563

Engineer of Work/ Contact Person:
Francisco Martinez Jr., PE, QSD

This report has been prepared by or under the direction of the following registered civil engineer who attests to the technical information contained herein. The registered civil engineer has also judged the qualifications of any technical specialists providing engineering data upon which recommendations, conclusions, and decisions are based.

TABLE OF CONTENTS

I.
Purpose and Scope 6
II.
Project Site and Drainage Area Overview 6
III.Hydrology8
IV
Hydraulics 9
V.
Water Quality and Increased Runoff Mitigation. 10-11
VI.
Findings 12
VII.
REFERENCES 12
FIGURES
FIGURE 1: VICINITY MAP
FIGURE 2: EXISTING CONDITION HYDROLOGY MAP
FIGURE 3: PROPOSED CONDITION HYDROLOGY MAP
FIGURE 4: ONSITE HYDROLOGICAL SOIL UNIT EXHIBIT
FIGURE 5: HYDROLOGICAL SOIL UNIT EXHIBIT (DRAINAGE AREA)
FIGURE 6: CONCEPTUAL GRADING
FIGURE 7: OUTLET CONTROL STRUCTURE

APPENDICES

APPENDIX A: Pre-Project Condition Rational Method Hydrology
A.1: Pre-Project Condition Rational Method Analysis, Area "A", 100 Year Analysis
A.2: Pre-Project Condition Rational Method Analysis, Area "A", 10 Year Analysis

APPENDIX B: Post-Project Condition Rational Method Hydrology B.1: Post-Project Condition Rational Method Analysis, Area "A", , 100 Year Analysis
B.2: Post-Project Condition Rational Method Analysis, Area "A", 10 Year Analysis

APPENDIX C: Post-Project Condition Unit Hydrograph Hydrology C.1: Unit Hydrograph Analysis, 100-Year, 1-Hour Storm Duration, Area "A"
C.2: Unit Hydrograph Analysis, 100-Year, 3-Hour Storm Duration, Area "A"
C.3: Unit Hydrograph Analysis, 100-Year, 6-Hour Storm Duration, Area "A"
C.4: Unit Hydrograph Analysis, 100-Year, 24-Hour Storm Duration, Area "A"

APPENDIX D: Hydraulic Calculations

D.1: Pipe Hydraulic Calculations

- SD PIPE \#1
- SD PIPE \#2
- SD PIPE \#3
- SD PIPE \#4
- SD PIPE \#5
- SD PIPE \#6
- SD PIPE \#7
- SD PIPE \#8
- SD PIPE \#9
- SD Pipe \#10
- Outlet Pipe - WSPG Analysis

D.2: Street Capacity Calculations

- Section D-D
- Section E-E
- Section G-G
- Section H-H
- Section I-I

D.3: InLet Calculations

- InLet \#1
- InLet \#2
- InLET \#3
- InLET \#4
- InLET \#5
- InLET \#6
- InLet \#7
- InLet \#8
- InLET \#9 - CB110
- INLET \#10-CB110

APPENDIX E: REFERENCE DATA

E1: Hydrologic Solls Data
E2: Rainfall Plates
E3: INFILTRATION REPORT (EXCERPT)
E4: CONTECH UNDERGROUND INFILTRATION VOLUMES
E5: BMP DCV CALCULATIONS
E6: NATIONAL RV PRECISE GRADING (SHEET $4 \& 5$)

I. PURPOSE ANDSCOPE

The purpose of this study is to determine the necessary drainage and increased runoff mitigation improvements required for the proposed industrial development project referred as First Industrial Sinclair, located at 100 W. Sinclair Street, Perris CA.

The scope of the preliminary study includes the following:

1. Determination of points of flow concentration and watershed subareas for onsite and offsite areas.
2. Determination of the onsite 100-year peak storm flows based upon the post-project onsite and existing condition offsite areas utilizing the Rational Method as outlined in the Riverside County Flood Control \& Conservation District Manual (ref 1).
3. Determine the onsite 100-year peak storm flows based upon the post-project condition for the $1,3,6, \& 24$-hour storm duration utilizing the Unit Hydrograph Method as outlined in the Riverside County Flood Control \& Water Conservation District Hydrology Manual.
4. Determine the required facilities to mitigate the onsite 100-year peak storm flows to levels that are equal or less than the existing condition flow rates and levels that do not exceed the hydraulic capacity of the existing storm drainpipe outlet (30 "x 19 " arch RCP).
5. Determine the required storm drain infrastructure to flood protect the project site for the 100year storm event.
6. Preparation of a hydrology report, which consist of hydrological and analytical results and exhibits.

II. PROJECT SITE AND DRAINAGE AREA OVERVIEW

The proposed development project is comprised of two parcels with a total of 19.56 acres that currently contain two separate buildings and improvements with commercial and light industrial uses. The property will be demolished, and a parcel merger will be processed for the new development proposed as an industrial/distribution warehouse facility comprised of a single building with 427,224 square feet, 70 trailer docks, as well as trailer and auto parking, landscaped areas, storm drain infrastructure that which include dual subsurface chamber system and two bioretention basins.

The parcels are bounded by Sinclair St to the south, a vacant parcel and Perris Ave to the east, and to the north a vacant parcel and Morgan St , to the west there is an existing warehouse facility (see Figure 1). The property at 100 W. Sinclair Street is 13.66 acres (Parcel 1) with an existing 150,000 square-feet light industrial building, concrete and asphalt pavements, and minor landscaped areas. The property at 200 Sinclair Street is 5.9 acres (Parcel 2) currently operating as recycling facility with approximately 48,000 square feet building with asphalt pavement throughout and minor landscaped areas.

The existing topography for the two parcels is relatively flat and generally drains towards the east via surface improvements. In parcel 1 there are no visible onsite storm drain improvements except for an existing headwall with a single 30 "x 19 " arch pipe that serves as an outlet to both parcels 1 and 2.

Per City record drawings, the arch pipe was designed to convey a 100-year frequency storm event flow rate of 21-cfs, and using the parking lot to pond a maximum depth of 3-feet, which is to the top of the existing headwall of the outlet arch pipe. The outlet pipe is located near the mid-section of the easterly property line. It extends to the east across the adjoining vacant parcel for approximately 280 feet; and constructed as part of the Precise Grading plan improvements on record per City of Perris DPR no. 99-0174 and file no. P-190 (See Appendix E).

There are two drainage patterns on Parcel 2 under the existing developed conditions. The sub area to the north of approximately 2.3 acres drains on the surface in a north and east direction. Storm flows are intercepted by curb and gutter improvements along the north and east of the property and directed to a sump drop inlet and into a dual Maxwell IV drywell system located on the northeast corner within the auto parking stalls. It appears that the sump inlets and drywells are intended for water quality mitigation, therefore when storm flows exceed the capacity of the inlets, ponding would occur but eventually storm water will overtop the sump and flows would "run-on" into Parcel 1 across the parking lot towards the headwall and outlet pipe located at the low point.

The sub area to the south drains via the surface to south and to the east; roughly 2 acres drains to a trench drain at the easterly driveway, where they are directed to a second set of Maxwell IV drywell system, also assumed to be used for water quality mitigation and any excess flow (beyond the capacity of the trench drain) will be picked up and conveyed easterly by Sinclair Street (Private) via curb, and gutter improvements. Storm water developed from a small area to the west parking lot drains directly to the south towards Sinclair and appears that it is without any water quality mitigation; once on Sinclair storm flows travel east via curb and gutter improvements, and enter Parcel 1, where flows continue east until it reaches a midblock cross gutter, then they are directed to the north through Parcel 1's parking lot and to the outlet pipe located at the low point.

Therefore, for the purposes of this study, it is assumed that the existing developed design flows (e.g., 100-year) from Parcel 2 are not contained and is tributary to the existing single 30 "x19" outlet arch pipe. The storm water flows developed from the existing parcels are released into an open depressed concrete apron and collected by an existing headwall with a battery of (5) 28 " $\times 18$ " Corrugated Metal Pipe Arch (CMPA) that cross under Perris Boulevard as shown in the storm drain Line D improvement plans, sheet 9 of 10 with city file No. P8-1027. Storm flows continue easterly and discharged to Riverside County Flood Control District's (RCFCD) Perris Valley Master Drainage Plan (MDP) Lateral "G-2"; which connects to the San Jacinto River and ultimately to Lake Elsinore Basin.

In the new proposed developed conditions, mitigated storm flows will be directed to the existing outlet pipe, mimicking the current conditions and mitigate runoff for the 100-year event to levels that are "at or below" the current conditions; and that it does not exceed the design flow rate of the existing outlet pipe.

III. HYDROLOGY

The Riverside County Flood Control and Water Conservation District Hydrology Manual (Reference 1) was used to develop the hydrological parameters for the hydrology analyses. The rational method was used for the analyses and the computations were performed using the computer program developed by Civil CADD/Civil Design.

The intensity (in/hour) for the 10-year and 100-year storm frequency and the 10 -minute and 60minute duration was obtained using Plates D-4.3-4 and E-5.1-6 of the Hydrology Manual and summarized in the table below; a copy of the district's table is included in this report in Appendix E.

Rainfall Intensity Table:

Storm Event \& Duration	Rainfall (inches)
2-Year, 1-Hour	0.47
100-Year, 1-Hour	1.23
2-Year, 3-Hour	0.80
100-Year, 3-Hour	1.88
2-Year, 6-Hour	1.03
100-Year, 6-Hour	2.50
2-Year, 24-Hour	1.70
100-Year, 24-Hour	4.38

The project site is underlain by A and C type soils, as show in the Onsite Hydrologic Soil Unit Exhibit (Figure 4); this GIS exhibit is based on the U.S. Department of Agriculture Natural Resources Conservation Service Web Soil Survey. A Web Soil map was generated for the project site and included in Appendix E.

For all storm events, Antecedent Moisture Condition (AMC) II shall be utilized.
The hydrology utilized the following land use covers:

Land Use Cover	Runoff Index Number (Soil "A")	Pervious Ratio
Commercial	32	0.1

The existing and proposed project condition analyzed the watershed areas as commercial. The rational method analysis used a single watershed area designated as "A" with numerical subdesignations.

Rational Method Analyses

The existing and proposed project rational method hydrology calculations have been included in Appendix A and B. The existing project rational method hydrology map has been included as Figure 2, the proposed project rational method hydrology map as Figure 3.

Here below is a summary flow rate table between existing and proposed conditions:

TABLE 2. RATIONAL METHOD - ONSITE $\left(\mathrm{Q}_{10}\right.$ YEAR, 1-HOUR)			
WATERSHED	EXISTING Q_{10} (cfs)	PROPOSED Q_{10} (cfs)	DELTA Q_{10}
A	27.4	28.3	0.9

TABLE 1. RATIONAL METHOD - ONSITE $\left(\mathrm{Q}_{100}\right.$ YEAR, 1-HOUR)			
WATERSHED	EXISTING Q_{100} (cfs)	PROPOSED Q_{100} (cfs)	DELTA Q_{100}
A	43.8	45.3	1.5

Unit Hydrograph Analyses

To determine the increased runoff mitigation required for the project, a Unit Hydrograph calculation was performed using a lag time that was calculated using the longest water course, the upstream length of the longest water course to the centroid and the difference in elevation between the highest and lowest point on the proposed hydrology map.

The post project condition was calculated perviousness was calculated using a unit area method to determine the average perviousness for each sub area.

The following tables summarize the unit hydrograph calculations:

TABLE 3. UNIT HYDROGRAPH ANALYSIS			
WATERSHED	STORM EVENT	PROPOSED PEAK Q (cfs)	PROPOSED TOTAL VOLUME (Acres)
	100 YEAR, 1 HR	50.11	1.79
	100 YEAR, 3 HR	28.48	2.60
	100 YEAR, 6 HR	23.88	3.41
	100 YEAR, 24 HR	9.54	5.85

IV. HYDRAULICS

The project will utilize a combination of inlets, subsurface storm drain system, above ground retention basins, underground retention and detention chambers, and storm water lift station to collect, convey, mitigate water quality and the design peak flows, including draining the detention chambers and safely discharging storm water flows from the project site without exceeding the existing conditions.

All onsite storm water will be collected via a combination of on an onsite storm drain system and two (2) above ground bio filtration basins. Flows that are collected by the storm drainpipe system will be directed to an underground bio-retention chamber system that will be used for water quality mitigation. A CDS unit will be installed upstream of the underground bio-retention chambers and serve for pretreatment, but also to help by-pass larger storm events that will be directed to a separate underground detention chamber system. This detention chamber system will be sized to help mitigate the increase storm water runoff for the 100 -year event to levels that are "at or below" the current conditions; and that it does not exceed the design flow rate of the existing outlet pipe. Lastly, due to physical constraints and the depth of the underground chambers the project will
require the use of a storm water lift station to be able to drain the underground detention chambers. The pump will be sized such that the underground detention chambers are drained within 48-hours but no more than 72 -hours. It is currently anticipated that this flow rate will not exceed 1-cfs (450 gpm).

The two (2) above ground bio-filtration basins will collect and treat surface flows. They are designed with a maximum 6 -inch ponding depth, and excess flows above the pond depth will enter the outlet structure and directed to the underground detention chamber system. Two separate underground pipe chamber systems are proposed; one system is a retention chamber for water quality mitigation and second system is a retention chamber for stormwater mitigation.

Both chamber systems are connected with a pipe and a manhole/weir structure. The weir in the vault structure is set to meet the elevation of the required water quality design capture volume (DCV); and once water rises beyond the DCV elevation it will overtop the weir and flow into the detention chamber. The DCV elevation in the retention chamber is 1451.87. The underground detention basin chambers are connected to a storm water lift station that will pump flows to a 6inch force drain line; this line will extend and connect to an onsite manhole and a 24 -inch gravity storm drain line that connects to the existing outlet arch pipe.

A WSPG analysis was done for the outlet pipe and determined that the max flow rate that the existing arch RCP outlet pipe can convey is 21.5-cfs. Onsite street capacity calculations (See Appendix D) were also provided for sections D-D, E-E, F-F, G-G, H-H and I-I. These sections can be found on the conceptual grading plans (Figure 6). The assumption made was when the system failed the emergency overflow will be Sinclair St.

V. WATER QUALITY \& INCREASED RUNOFF MITIGATION

As described under the Hydraulics section, to mitigate for water quality the project proposes to use two (2) above ground bio-filtration basins and one (1) underground bio-retention chamber system. A CDS unit will be installed upstream of the underground bio-retention chambers and serve for pretreatment. The above ground bio-filtration basins will collect and treat surface flows. They are designed with a maximum 6 -inch ponding depth; excess flows above the pond depth will enter the outlet structure and directed to the underground detention chamber system.

The water quality calculations and discussion have been provided in the Water Quality Management Plan. The required water quality volume (DCV) for the project site is $\mathbf{1 8 5 , 1 3 0} \mathbf{f t}^{\mathbf{3}}$ ($\mathbf{0 . 8 4}$ acre-ft). The bio-filtration basins are providing $\mathbf{0 . 2 4}$ acre-ft of storage, and $\mathbf{0 . 6 0}$ acre-feet will be provided in the underground bio-retention chamber system. The calculation for the Design Capture Volume (DCV) has been included in Appendix E.

Infiltration testing was performed within the proposed basin location. The area in the proposed detention system provides a rate of approximately $\mathbf{3 . 1} \mathbf{~ i n} / \mathbf{h r}$, which an average based on the recommendations from the geotechnical report, and after applying a safety factor in accordance with the technical guidance manual, the design infiltration rate is calculated to be $\mathbf{1 . 0 3} \mathbf{~ i n} / \mathbf{h r}$, this rate was utilized in the design of the chamber system.

For increase storm water mitigation, the project will use an underground detention chamber system sized to mitigate the increase storm water runoff for the 100-year event for the 1,3,6 and 24-hour
storm duration to levels that are "at or below" the current conditions; and that it does not exceed the design flow rate of the existing outlet arch pipe, whichever is lower. In this case, the design flow rate for the existing conditions is the lower flow rate at 21-cfs. However, a WSPG analysis was performed for the existing arch pipe and results show that the arch pipe can convey a maximum of 21.5 cfs (vs. 21-cfs) and it is being referred in this report as the maximum allowable flow rate.

However, a storm water lift station will be required to drain the detention system due to the existing outlet pipe being at a shallow depth compared to the onsite storm drain system. The pump will be sized such that the underground detention chambers are drained within 48 -hours but no more than 72-hours. It is currently anticipated that this flow rate will not exceed 1 -cfs (450 gpm), and below the maximum allowable flow rate.

Furthermore, to assure that there is enough storage to mitigate the 100-year frequency storm event, we used the results from the Unit Hydrograph analysis for each of the storm durations and compared them to determine which storm events had flow rates above the 21.5-cfs (maximum allowable) but with larger storm volume demand. In this case, the 100-year 6-hour storm is the critical storm that was selected.

From the recess limb of the proposed condition 100-year, 6-hour storm event, the flow rate that is equal or less than the "maximum allowable discharge" of 21.5 -cfs is 14.54 cfs and producing a storm water volume for this flow rate of $3.21 \mathrm{ac}-\mathrm{ft}$ and a total storm volume of $3.41 \mathrm{ac}-\mathrm{ft}$. The volume of the underground detention chamber is $3.46 \mathrm{ac}-\mathrm{ft}$ and will capture 100% of the total storm thus a conservative approach, knowing that increase flow mitigation will be provided.

Stormwater mitigation information for watershed "A" can be seen in the table 4 provided below:

Table 4. UNIT HYDROGRAPH VOLUME ANALYSIS									
WATERSHED AREA	$\begin{gathered} \hline 100 \text { YEAR } \\ \text { STORM } \\ \text { DURATION } \\ \text { (hrs) } \\ \hline \end{gathered}$	PROPOSED PEAK Q (cfs)	PROPOSED TOTAL STORM VOLUME (AF)	*MAXIMUM ALLOWABLE DISCHARGE (cfs)	MINIMUM REQUIRED DETENTION (AF)	$\begin{aligned} & \text { MAXIMUM } \\ & \text { ALLOWABLE } \\ & \text { DISCHARGE } \\ & \text { (cfs) } \\ & \hline \end{aligned}$	**PROPSOED LIFT STATION DISCHARGE (cfs)	U/G RETENETION VOLUME (AF)	STORM CAPTURE
A	1	50.11	1.79	18.10	1.62	21.50	1.00	3.46	100\%
	3	28.48	2.60	14.26	2.39				100\%
	6	23.88	3.41	14.87	3.21				100\%
	24	9.54	5.85	-	-				59\%

For the 100-year, 24-hour storm, the peak flow rate is 9.54 cfs and less than the maximum allowable of $21.5-\mathrm{cfs}$, therefore flow mitigation is not required. However, the storm volume produced at the peak flow rate is $3.79 \mathrm{ac}-\mathrm{ft}$ and total storm volume is $5.85 \mathrm{ac}-\mathrm{ft}$ which both exceed the volume provided by the underground detention chamber.

The maximum pond depth in the parking lot at the lowest point is 1.5 -feet (18 "), the elevation is 1659.46 ' and located at the mid-section of the southwest bio-filtration basin. The volume provided in the trailer parking lot based is $0.29 \mathrm{ac}-\mathrm{ft}$, the combined total volume between parking lot and underground detention chamber is $3.75 \mathrm{ac}-\mathrm{ft}$, and less than total storm volume produced of 5.85 ac-ft.

This will result in storm water bubbling out of the drop inlet structures at a peak flow rate of 9.54 cfs, ponding in the trailer parking lot up to a depth of 1460.99', this is the high point on Sinclair private drive, then storm water will overtop and flow easterly using Sinclair Street as an emergency overflow and ultimately flowing towards Perris Boulevard.

VI. FINDINGS

The hydrology analyses evaluated the proposed development to determine the necessary drainage improvements required to mitigate flows for increased runoff. It has been concluded that:

1. Storm water attenuation/mitigation is provided.
2. The proposed bio-filtration basins and bio-retention "infiltration type" subsurface system will adequately mitigate for water quality.
3. The proposed drainage facilities will adequately convey the 100 -year flows and provide flood protection to the project site.

VII. REFERENCES

1. Riverside County Rational Method from RCFC \& WCD Hydrology Manual, dated April 1978
2. CIVILDESIGN Engineering Software, 1989-2014; Riverside County Rational Method Module, version 9.0.

FIGURE 1: VICINITY MAP

VICINITY MAP

NOT TO SCALE

FIGURE 2:

EXISTING CONDITION HYDROLOGY MAP

FIGURE 3: PROPOSED CONDITION HYDROLOGY MAP

FIGURE 4:
ONSITE HYDROLOGICAL SOIL UNIT EXHIBIT

Planning Application No.
APPLICANT / LANDOWNER:
FIRST INDUSTRIAL REALTY TRUST, INC.
ONE NORTH WACKER DRIVE, SUITE 4200, CHICAGO ILLINOIS 60606
(312) 344-4300

HYDROLOGIC SOIL GROUP

FIGURE 5:
HYDROLOGICAL SOIL UNIT EXHIBIT (DRAINAGE AREA)

Planning Application No.
APPLICANT / LANDOWNER:
FIRST INDUSTRIAL REALTY TRUST, INC.
ONE NORTH WACKER DRIVE, SUITE 4200, CHICAGO ILLINOIS 60606
(312) 344-4300

HYDROLOGIC SOIL GROUP
\square

FIGURE 6:
CONCEPTUAL GRADING

SECTION B-B

SECTION J-J - SINCLAR STREET

SECTION H-H

SECTION I-1

	CITY OF PERRIS		
	$100 \mathrm{~W} . \operatorname{SINCLAIR~STREET}$SITE PLAN CONCEPUAL GRADING TYPICAL SECTIONS		
		FMCIVIUL	2

SECTION B-B

SECTION J-J - SINCLAR STREET

SECTION H-H

SECTION I-1

	CITY OF PERRIS		
	$100 \mathrm{~W} . \operatorname{SINCLAIR~STREET}$SITE PLAN CONCEPUAL GRADING TYPICAL SECTIONS		
		FMCIVIUL	2

FIGURE 7:

OUTLET CONTROL STRUCTURE

APPENDIX A

EXISTING CONDITION RATIONAL METHOD HYDROLOGY (ONSITE AND OFFSITE)
A.1: EXISITNG CONDITION-100 YR
A.2: EXISITNG CONDITION-10 YR

100 W SINCLAIR ST
EXISTING CONDITION

```
100-YEAR STORM ANALYSIS
```

Program License Serial Number 6405

Rational Method Hydrology Program based on Riverside County Flood Control \& Water Conservation District 1978 hydrology manual

Storm event (year) $=100.00$ Antecedent Moisture Condition $=2$
2 year, 1 hour precipitation $=0.500($ In. $)$
100 year, 1 hour precipitation $=1.300($ In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity $=1.300(\mathrm{In} / \mathrm{Hr})$
Slope of intensity duration curve $=0.5000$

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 495.000(Ft.)
Top (of initial area) elevation = 1463.700(Ft.)
Bottom (of initial area) elevation = 1459.900(Ft.)
Difference in elevation = 3.800(Ft.)
Slope = 0.00768 s(percent)= 0.77
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.504 min.
Rainfall intensity = 3.266(In/Hr) for a 100.0 year storm
```

COMMERCIAL subarea type
Runoff Coefficient $=0.858$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
$R I$ index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Initial subarea runoff $=\quad 1.654(\mathrm{CFS})$
Total initial stream area $=0.590$ (Ac.)
Pervious area fraction $=0.100$

$+++{ }^{+}$
Process from Point/Station 11.000 to Point/Station 12.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

```
Top of street segment elevation = 1459.900(Ft.)
End of street segment elevation = 1459.100(Ft.)
Length of street segment = 191.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
    Manning's N in gutter = 0.0150
    Manning's N from gutter to grade break = 0.0150
    Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 9.531(CFS)
Depth of flow = 0.437(Ft.), Average velocity = 1.880(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15.518(Ft.)
Flow velocity = 1.88(Ft/s)
Travel time = 1.69 min. TC = 11.20 min.
```

```
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.856
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 3.009(In/Hr) for a 100.0 year storm
Subarea runoff = 0.773(CFS) for 0.300(Ac.)
Total runoff = 9.883(CFS) Total area = 3.550(Ac.)
Street flow at end of street = 9.883(CFS)
Half street flow at end of street = 4.942(CFS)
Depth of flow = 0.442(Ft.), Average velocity = 1.897(Ft/s)
Flow width (from curb towards crown)= 15.745(Ft.)
```

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 17.000
**** IMPROVED CHANNEL TRAVEL TIME ****
```

```
Upstream point elevation = 1459.100(Ft.)
Downstream point elevation = 1455.200(Ft.)
Channel length thru subarea = 637.000(Ft.)
Channel base width = 100.000(Ft.)
Slope or 'Z' of left channel bank = 0.020
Slope or 'Z' of right channel bank = 1.000
Estimated mean flow rate at midpoint of channel = 11.743(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 3.000(Ft.)
Flow(q) thru subarea = 11.743(CFS)
Depth of flow = 0.081(Ft.), Average velocity = 1.449(Ft/s)
Channel flow top width = 100.083(Ft.)
Flow Velocity = 1.45(Ft/s)
Travel time = 7.32 min.
Time of concentration = 18.52 min.
Sub-Channel No. 1 Critical depth = 0.075(Ft.)
' \(\quad\) ' \(\quad\) ' \(\quad\) Critical flow top width \(=\quad 100.077(\mathrm{Ft}\).
                                    Critical flow area = 7.522(Sq.Ft)
```

Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient $=0.852$
Decimal fraction soil group $A=0.976$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.024$
RI index for soil(AMC 2) $=33.03$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Rainfall intensity $=\quad 2.340($ In/Hr) for a 100.0 year storm
Subarea runoff $=3.627(C F S)$ for 1.820 (Ac.)
Total runoff $=\quad 13.510(\mathrm{CFS}) \quad$ Total area $=\quad 5.370(\mathrm{Ac}$.
Depth of flow $=0.088(\mathrm{Ft}$.$) , Average velocity =1.533(\mathrm{Ft} / \mathrm{s})$


```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 17.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5.370(Ac.)
Runoff from this stream = 13.510(CFS)
Time of concentration = 18.52 min.
Rainfall intensity = 2.340(In/Hr)
Program is now starting with Main Stream No. 2
```

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 14.000
**** INITIAL AREA EVALUATION ****
```

Initial area flow distance $=779.000(F t$.
Top (of initial area) elevation $=1464.300(F t$.
Bottom (of initial area) elevation = 1458.400(Ft.)
Difference in elevation = 5.900(Ft.)
Slope $=0.00757 \mathrm{~s}($ percent $)=0.76$
$T C=k(0.300) *[(l e n g t h \wedge 3) /(e l e v a t i o n ~ c h a n g e)] \wedge 0.2$
Initial area time of concentration $=11.425 \mathrm{~min}$.
Rainfall intensity $=\quad 2.979($ In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient $=0.856$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Initial subarea runoff $=10.457(C F S)$
Total initial stream area $=4.100$ (Ac.)
Pervious area fraction $=0.100$
++
Process from Point/Station 14.000 to Point/Station 14.000
$\star * * *$ SUBAREA FLOW ADDITION $* * * *$
COMMERCIAL subarea type
Runoff Coefficient $=0.856$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group C = 0.000
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$

```
Time of concentration = 11.43 min.
Rainfall intensity = 2.979(In/Hr) for a 100.0 year storm
Subarea runoff = 6.096(CFS) for 2.390(Ac.)
Total runoff = 16.553(CFS) Total area = 6.490(Ac.)
```

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 17.000
```

**** IMPROVED CHANNEL TRAVEL TIME ****

```
Upstream point elevation = 1458.400(Ft.)
Downstream point elevation = 1455.200(Ft.)
Channel length thru subarea = 402.000(Ft.)
Channel base width = 100.000(Ft.)
Slope or 'Z' of left channel bank = 0.020
Slope or 'Z' of right channel bank = 0.020
Estimated mean flow rate at midpoint of channel = 18.429(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 3.000(Ft.)
Flow(q) thru subarea = 18.429(CFS)
Depth of flow = 0.098(Ft.), Average velocity = 1.878(Ft/s)
Channel flow top width = 100.004(Ft.)
Flow Velocity = 1.88(Ft/s)
Travel time = 3.57 min.
Time of concentration = 14.99 min.
Sub-Channel No. 1 Critical depth = 0.102(Ft.)
                                    Critical flow top width = 100.004(Ft.)
                                    Critical flow velocity= 1.815(Ft/s)
                                    Critical flow area = 10.156(Sq.Ft)
```

Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient $=0.853$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Rainfall intensity $=\quad 2.601($ In/Hr) for a 100.0 year storm
Subarea runoff $=3.683(C F S)$ for $1.660(A c$.
Total runoff $=\quad 20.235(C F S) \quad$ Total area $=\quad 8.150($ Ac.)
Depth of flow $=0.104(\mathrm{Ft}$.$) , Average velocity =1.949(\mathrm{Ft} / \mathrm{s})$


```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 17.000
**** CONFLUENCE OF MAIN STREAMS ****
```

The following data inside Main Stream is listed:

In Main Stream number: 2
Stream flow area $=8.150$ (Ac.)
Runoff from this stream $=20.235$ (CFS)
Time of concentration $=14.99 \mathrm{~min}$.
Rainfall intensity $=\quad 2.601(\mathrm{In} / \mathrm{Hr})$
Program is now starting with Main Stream No. 3

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 16.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 392.000(Ft.)
Top (of initial area) elevation = 1464.300(Ft.)
Bottom (of initial area) elevation = 1460.200(Ft.)
Difference in elevation = 4.100(Ft.)
Slope = 0.01046 s(percent)= 1.05
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.138 min.
Rainfall intensity = 3.530(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.860
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 3.916(CFS)
Total initial stream area = 1.290(Ac.)
Pervious area fraction = 0.100
```

$++$
Process from Point/Station 16.000 to Point/Station 17.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

```
Top of street segment elevation = 1460.200(Ft.)
End of street segment elevation = 1455.200(Ft.)
Length of street segment = 1048.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 25.000(Ft.)
Distance from crown to crossfall grade break = 24.990(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 0.010(Ft.)
Gutter hike from flowline = 2.000(In.)
    Manning's N in gutter = 0.0150
    Manning's N from gutter to grade break = 0.0150
    Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 8.914(CFS)
Depth of flow = 0.570(Ft.), Average velocity = 2.120(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 3.52(Ft.)
```

```
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.199(Ft.)
Flow velocity = 2.12(Ft/s)
Travel time = 8.24 min. TC = 16.38 min.
    Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.852
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 2.488(In/Hr) for a 100.0 year storm
Subarea runoff = 9.923(CFS) for 4.680(Ac.)
Total runoff = 13.838(CFS) Total area = 5.970(Ac.)
Street flow at end of street = 13.838(CFS)
Half street flow at end of street = 13.838(CFS)
Depth of flow = 0.638(Ft.), Average velocity = 2.292(Ft/s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 6.90(Ft.)
Flow width (from curb towards crown)= 23.580(Ft.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 16.000 to Point/Station 17.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 5.970(Ac.)
Runoff from this stream = 13.838(CFS)
Time of concentration = 16.38 min.
Rainfall intensity = 2.488(In/Hr)
Summary of stream data:
Stream Flow rate Rainfall Intensity
    No. (CFS) (min) (In/Hr)
```



```
Results of confluence:
Total flow rate = 43.840(CFS)
Time of concentration = 14.993 min.
Effective stream area after confluence = 19.490(Ac.)
End of computations, total study area =
    19.49 (Ас.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.1
```

```
        Riverside County Rational Hydrology Program
    CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2014 Version 9.0
        Rational Hydrology Study Date: 09/05/22 File:x10.out
    ********* Hydrology Study Control Information **********
    English (in-lb) Units used in input data file
```

$-$
-
100 W SINCLAIR ST
EXISTING CONDITION
10-YEAR STORM ANALYSIS

Program License Serial Number 6405

Rational Method Hydrology Program based on Riverside County Flood Control \& Water Conservation District 1978 hydrology manual

Storm event (year) = 10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation $=0.500($ In. $)$
100 year, 1 hour precipitation $=1.300($ In.)

Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity $=0.829(\mathrm{In} / \mathrm{Hr})$
Slope of intensity duration curve $=0.5000$

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 495.000(Ft.)
Top (of initial area) elevation = 1463.700(Ft.)
Bottom (of initial area) elevation = 1459.900(Ft.)
Difference in elevation = 3.800(Ft.)
Slope = 0.00768 s(percent)= 0.77
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.504 min.
Rainfall intensity = 2.083(In/Hr) for a 10.0 year storm
```

COMMERCIAL subarea type
Runoff Coefficient $=0.848$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
$R I$ index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Initial subarea runoff $=\quad 1.042(C F S)$
Total initial stream area $=0.590$ (Ac.)
Pervious area fraction $=0.100$

$+++{ }^{+}$
Process from Point/Station 11.000 to Point/Station 12.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

```
Top of street segment elevation = 1459.900(Ft.)
End of street segment elevation = 1459.100(Ft.)
Length of street segment = 191.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
    Manning's N in gutter = 0.0150
    Manning's N from gutter to grade break = 0.0150
    Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 6.007(CFS)
Depth of flow = 0.384(Ft.), Average velocity = 1.683(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 12.876(Ft.)
Flow velocity = 1.68(Ft/s)
Travel time = 1.89 min. TC = 11.40 min.
```

```
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.846
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 1.902(In/Hr) for a 10.0 year storm
Subarea runoff = 0.483(CFS) for 0.300(Ac.)
Total runoff = 6.225(CFS) Total area = 3.550(Ac.)
Street flow at end of street = 6.225(CFS)
Half street flow at end of street = 3.113(CFS)
Depth of flow = 0.388(Ft.), Average velocity = 1.697(Ft/s)
Flow width (from curb towards crown)= 13.066(Ft.)
```

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 17.000
**** IMPROVED CHANNEL TRAVEL TIME ****
```

```
Upstream point elevation = 1459.100(Ft.)
Downstream point elevation = 1455.200(Ft.)
Channel length thru subarea = 637.000(Ft.)
Channel base width = 100.000(Ft.)
Slope or 'Z' of left channel bank = 0.020
Slope or 'Z' of right channel bank = 1.000
Estimated mean flow rate at midpoint of channel = 7.351(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 3.000(Ft.)
Flow(q) thru subarea = 7.351(CFS)
Depth of flow = 0.061(Ft.), Average velocity = 1.202(Ft/s)
Channel flow top width = 100.062(Ft.)
Flow Velocity = 1.20(Ft/s)
Travel time = 8.83 min.
Time of concentration = 20.23 min.
Sub-Channel No. 1 Critical depth = 0.055(Ft.)
    ' ' ' Critical flow top width = 100.056(Ft.)
    Critical flow velocity= 1.332(Ft/s)
    Critical flow area = 5.519(Sq.Ft)
```

Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient $=0.841$
Decimal fraction soil group $A=0.976$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.024$
RI index for soil(AMC 2) $=33.03$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Rainfall intensity $=\quad 1.428($ In/Hr) for a 10.0 year storm
Subarea runoff $=\quad 2.186(C F S)$ for 1.820 (Ac.)
Total runoff $=\quad 8.411(\mathrm{CFS}) \quad$ Total area $=\quad 5.370(\mathrm{Ac}$.
Depth of flow $=0.066(\mathrm{Ft}$.$) , Average velocity =1.269(\mathrm{Ft} / \mathrm{s})$


```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 17.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5.370(Ac.)
Runoff from this stream = 8.411(CFS)
Time of concentration = 20.23 min.
Rainfall intensity = 1.428(In/Hr)
Program is now starting with Main Stream No. 2
```

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 14.000
**** INITIAL AREA EVALUATION ****
```

Initial area flow distance $=779.000(F t$.
Top (of initial area) elevation $=1464.300(F t$.
Bottom (of initial area) elevation = 1458.400(Ft.)
Difference in elevation = 5.900(Ft.)
Slope $=0.00757 \mathrm{~s}($ percent $)=0.76$
$T C=k(0.300) *[(l e n g t h \wedge 3) /(e l e v a t i o n ~ c h a n g e)] \wedge 0.2$
Initial area time of concentration $=11.425 \mathrm{~min}$.
Rainfall intensity $=\quad 1.900($ In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient $=0.846$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Initial subarea runoff $=\quad 6.591(C F S)$
Total initial stream area $=4.100$ (Ac.)
Pervious area fraction $=0.100$
++
Process from Point/Station 14.000 to Point/Station 14.000
$\star * * *$ SUBAREA FLOW ADDITION $* * * *$
COMMERCIAL subarea type
Runoff Coefficient $=0.846$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group C = 0.000
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$

Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient $=0.843$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Rainfall intensity $=1.620($ In/Hr) for a 10.0 year storm
Subarea runoff $=\quad 2.266(C F S)$ for $1.660(A c$.
Total runoff $=\quad 12.700(\mathrm{CFS}) \quad$ Total area $=\quad 8.150(\mathrm{Ac}$.
Depth of flow $=0.078($ Ft.), Average velocity $=1.618(\mathrm{Ft} / \mathrm{s})$


```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 17.000
**** CONFLUENCE OF MAIN STREAMS ****
```

The following data inside Main Stream is listed:

In Main Stream number: 2

```
Stream flow area = 8.150(Ac.)
Runoff from this stream = 12.700(CFS)
Time of concentration = 15.72 min.
Rainfall intensity = 1.620(In/Hr)
Program is now starting with Main Stream No. 3
```

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 16.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 392.000(Ft.)
Top (of initial area) elevation = 1464.300(Ft.)
Bottom (of initial area) elevation = 1460.200(Ft.)
Difference in elevation = 4.100(Ft.)
Slope = 0.01046 s(percent)= 1.05
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.138 min.
Rainfall intensity = 2.251(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.850
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 2.468(CFS)
Total initial stream area = 1.290(Ac.)
Pervious area fraction = 0.100
```

$++$
Process from Point/Station 16.000 to Point/Station 17.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation $=1460.200(F t$.
End of street segment elevation $=1455.200$ (Ft.)
Length of street segment $=1048.000$ (Ft.)
Height of curb above gutter flowline $=6.0(I n$.
Width of half street (curb to crown) $=25.000$ (Ft.)
Distance from crown to crossfall grade break = 24.990(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line $=10.000(\mathrm{Ft}$.
Slope from curb to property line (v/hz) = 0.020
Gutter width $=0.010(\mathrm{Ft}$.
Gutter hike from flowline $=2.000($ In. $)$
Manning's N in gutter $=0.0150$
Manning's N from gutter to grade break $=0.0150$
Manning's N from grade break to crown $=0.0150$
Estimated mean flow rate at midpoint of street $=\quad 5.602(\mathrm{CFS})$
Depth of flow $=0.500(\mathrm{Ft}$.$) , Average velocity =2.019(\mathrm{Ft} / \mathrm{s})$
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=16.655(F t$.

Results of confluence:

```
Total flow rate = 27.329(CFS)
Time of concentration = 15.719 min.
Effective stream area after confluence = 19.490(Ac.)
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.1
```


APPENDIX B

PROPOSED CONDITION RATIONAL METHOD HYDROLOGY (ONSITE AND OFFSITE)

B.1: PROPOSED CONDITION-100 YR
B.2: PROPOSED CONDITION-10 YR

```
        Riverside County Rational Hydrology Program
    CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2014 Version 9.0
        Rational Hydrology Study Date: 09/12/22 File:1.out

100 W SINCLAIR ST
PROPOSED CONDITION
100-YEAR STORM ANALYSIS

Program License Serial Number 6405
\(\qquad\)

Rational Method Hydrology Program based on
Riverside County Flood Control \& Water Conservation District 1978 hydrology manual

Storm event (year) \(=100.00\) Antecedent Moisture Condition \(=2\)
2 year, 1 hour precipitation \(=0.500(\) In. \()\)
100 year, 1 hour precipitation \(=1.300(\) In.)
Storm event year \(=100.0\)
Calculated rainfall intensity data:
1 hour intensity \(=1.300(\mathrm{In} / \mathrm{Hr})\)
Slope of intensity duration curve \(=0.5000\)
```

++
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 654.000(Ft.)
Top (of initial area) elevation = 1465.400(Ft.)
Bottom (of initial area) elevation = 1461.500(Ft.)
Difference in elevation = 3.900(Ft.)
Slope = 0.00596 s(percent)= 0.60
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 11.175 min.
Rainfall intensity = 3.012(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type

```
```

Runoff Coefficient = 0.856

```
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=0.000\)
RI index for soil(AMC 2) \(=32.00\)
Pervious area fraction \(=0.100\); Impervious fraction \(=0.900\)
Initial subarea runoff \(=\quad 8.900(C F S)\)
Total initial stream area \(=3.450\) (Ac.)
Pervious area fraction \(=0.100\)
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 11.000 to Point/Station 12.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=1457.500\) (Ft.)
Downstream point/station elevation \(=1456.400\) (Ft.)
Pipe length \(=209.00\) (Ft.) Manning's \(N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=8.900(\mathrm{CFS})\)
Nearest computed pipe diameter \(=21.00(I n\).
Calculated individual pipe flow = 8.900(CFS)
Normal flow depth in pipe \(=13.88\) (In.)
Flow top width inside pipe \(=19.89(\) In. \()\)
Critical Depth \(=13.31(\) In. \()\)
Pipe flow velocity \(=\quad 5.28(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.66 \mathrm{~min}\).
Time of concentration \((T C)=11.84 \mathrm{~min}\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 12.000 to Point/Station 12.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient \(=0.856\)
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=0.000\)
RI index for soil(AMC 2) \(=32.00\)
Pervious area fraction \(=0.100\); Impervious fraction \(=0.900\)
Time of concentration \(=11.84 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.927(\mathrm{In} / \mathrm{Hr})\) for a 100.0 year storm
Subarea runoff \(=\quad 4.083(C F S)\) for 1.630 (Ac.)
Total runoff \(=\quad 12.982(\mathrm{CFS}) \quad\) Total area \(=\quad 5.080(\mathrm{Ac}\).
```

+++
Process from Point/Station 12.000 to Point/Station 13.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

```
Upstream point/station elevation \(=1456.400(F t\).
Downstream point/station elevation \(=1455.400\) (Ft.)
Pipe length \(=208.00(F t\).\() \quad Manning's N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=12.982(\mathrm{CFS})\)
Nearest computed pipe diameter = 24.00(In.)
```

Calculated individual pipe flow = 12.982(CFS)
Normal flow depth in pipe = 16.66(In.)
Flow top width inside pipe = 22.11(In.)
Critical Depth = 15.54(In.)
Pipe flow velocity = 5.58(Ft/s)
Travel time through pipe = 0.62 min.
Time of concentration (TC) = 12.46 min.

```
```

+++
Process from Point/Station 13.000 to Point/Station 13.000
**** SUBAREA FLOW ADDITION ****

```
COMMERCIAL subarea type
Runoff Coefficient \(=0.855\)
Decimal fraction soil group A = 1.000
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=0.000\)
RI index for soil(AMC 2) \(=32.00\)
Pervious area fraction \(=0.100\); Impervious fraction \(=0.900\)
Time of concentration \(=12.46 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.853(I n / H r)\) for a 100.0 year storm
Subarea runoff \(=\quad 5.221\) (CFS) for \(2.140(A c\).
Total runoff \(=18.204(\mathrm{CFS}) \quad\) Total area \(=\quad 7.220(\mathrm{Ac}\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 13.000 to Point/Station
14.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
```

Upstream point/station elevation = 1455.400(Ft.)
Downstream point/station elevation = 1453.500(Ft.)
Pipe length = 342.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 18.204(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 18.204(CFS)
Normal flow depth in pipe = 18.07(In.)
Flow top width inside pipe = 25.41(In.)
Critical Depth = 17.91(In.)
Pipe flow velocity = 6.43(Ft/s)
Travel time through pipe = 0.89 min.
Time of concentration (TC) = 13.34 min.

```
```

+++
Process from Point/Station 13.000 to Point/Station 14.000
**** CONFLUENCE OF MAIN STREAMS ****

```
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area \(=7.220\) (Ac.)
Runoff from this stream \(=18.204\) (CFS)
Time of concentration \(=13.34 \mathrm{~min}\).
Rainfall intensity \(=2.757(\) In/Hr)
Program is now starting with Main Stream No. 2
```

++
Process from Point/Station 13.100 to Point/Station 13.200
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 268.000(Ft.)
Top (of initial area) elevation = 1462.000(Ft.)
Bottom (of initial area) elevation = 1460.700(Ft.)
Difference in elevation = 1.300(Ft.)
Slope = 0.00485 s(percent)= 0.49
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.151 min.
Rainfall intensity = 3.527(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.860
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 2.699(CFS)
Total initial stream area = 0.890(Ac.)
Pervious area fraction = 0.100

```
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 13.200 to Point/Station 14.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=1457.200(\mathrm{Ft}\).
Downstream point/station elevation \(=1453.500\) (Ft.)
Pipe length \(=19.00(F t\).\() \quad Manning's N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=\) 2.699(CFS)
Nearest computed pipe diameter \(=9.00(\) In. \()\)
Calculated individual pipe flow = 2.699(CFS)
Normal flow depth in pipe \(=3.79\) (In.)
Flow top width inside pipe \(=8.89(\) In. \()\)
Critical Depth \(=8.47\) (In.)
Pipe flow velocity \(=15.28(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.02 \mathrm{~min}\).
Time of concentration \((T C)=8.17 \mathrm{~min}\).
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.200 to Point/Station
\(* * * *\) CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area \(=0.890\) (Ac.)
Runoff from this stream \(=\quad 2.699(\mathrm{CFS})\)
Time of concentration \(=8.17 \mathrm{~min}\).
Rainfall intensity \(=3.523(\) In \(/ \mathrm{Hr})\)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
```

1 18.204 13.34 2.757
2 2.699 8.17 3.523
Largest stream flow has longer time of concentration
Qp = 18.204 + sum of
Qb Ia/Ib
2.699 * 0.783 = 2.112
Qp = 20.316
Total of 2 main streams to confluence:
Flow rates before confluence point:
18.204 2.699
Area of streams before confluence:
7.220 0.890
Results of confluence:
Total flow rate = 20.316(CFS)
Time of concentration = 13.343 min.
Effective stream area after confluence = 8.110(Ac.)

```
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 14.000 to Point/Station 15.000
\(\star \star \star *\) PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=1453.500(\mathrm{Ft}\).
Downstream point/station elevation \(=1452.000\) (Ft.)
Pipe length \(=325.00\) (Ft.) Manning's \(N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=20.316(\mathrm{CFS})\)
Nearest computed pipe diameter \(=27.00\) (In.)
Calculated individual pipe flow \(=20.316(\mathrm{CFS})\)
Normal flow depth in pipe \(=21.33\) (In.)
Flow top width inside pipe \(=22.00\) (In.)
Critical Depth \(=18.92\) (In.)
Pipe flow velocity \(=\quad 6.03(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.90 \mathrm{~min}\).
Time of concentration \((T C)=14.24\) min.
\(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 14.000 to Point/Station 15.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area \(=8.110\) (Ac.)
Runoff from this stream \(=\) 20.316(CFS)
Time of concentration \(=14.24 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.668(\mathrm{In} / \mathrm{Hr})\)
Program is now starting with Main Stream No. 2
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 14.100 to Point/Station 14.200
```

**** INITIAL AREA EVALUATION ****

```
```

Initial area flow distance = 207.000(Ft.)
Top (of initial area) elevation = 1462.600(Ft.)
Bottom (of initial area) elevation = 1460.600(Ft.)
Difference in elevation = 2.000(Ft.)
Slope = 0.00966 s(percent)= 0.97
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.405 min.
Rainfall intensity = 3.979(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.866
Decimal fraction soil group A = 0.910
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.090
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 35.33
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 1.757(CFS)
Total initial stream area = 0.510(Ac.)
Pervious area fraction = 0.100

```
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 14.200 to Point/Station 15.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=1452.100\) (Ft.)
Downstream point/station elevation \(=1452.000\) (Ft.)
Pipe length \(=19.00(\mathrm{Ft}\).\() \quad Manning's \mathrm{N}=0.013\)
No. of pipes \(=1\) Required pipe flow \(=1.757(\mathrm{CFS})\)
Nearest computed pipe diameter \(=12.00(\) In. \()\)
Calculated individual pipe flow \(=1.757\) (CFS)
Normal flow depth in pipe \(=7.25\) (In.)
Flow top width inside pipe \(=11.74\) (In.)
Critical Depth \(=6.76(\) In. \()\)
Pipe flow velocity \(=3.54(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.09 \mathrm{~min}\).
Time of concentration \((T C)=6.49 \mathrm{~min}\).
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 14.200 to Point/Station 15.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area \(=0.510(\) Ac. \()\)
Runoff from this stream \(=1.757\) (CFS)
Time of concentration \(=6.49 \mathrm{~min}\).
Rainfall intensity \(=3.951(\mathrm{In} / \mathrm{Hr})\)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
    No.
    (CFS)
    (min)
    ( \(\mathrm{In} / \mathrm{Hr}\) )


COMMERCIAL subarea type
Runoff Coefficient \(=0.853\)
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group D \(=0.000\)
RI index for soil(AMC 2) \(=32.00\)
Pervious area fraction \(=0.100\); Impervious fraction \(=0.900\)
Time of concentration \(=15.11 \mathrm{~min}\).
Rainfall intensity \(=\quad 2.590(\) In/Hr) for a 100.0 year storm
Subarea runoff \(=\quad 4.419(C F S)\) for \(2.000(\) Ac. \()\)
Total runoff \(=\quad 25.922(\mathrm{CFS}) \quad\) Total area \(=\quad 10.620(\mathrm{Ac}\).
```

+++
Process from Point/Station 16.000 to Point/Station
17.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

```
```

Upstream point/station elevation = 1450.400(Ft.)
Downstream point/station elevation = 1450.000(Ft.)
Pipe length = 92.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 25.922(CFS)
Nearest computed pipe diameter = 30.00(In.)
Calculated individual pipe flow = 25.922(CFS)
Normal flow depth in pipe = 23.53(In.)
Flow top width inside pipe = 24.68(In.)
Critical Depth = 20.84(In.)
Pipe flow velocity = 6.27(Ft/s)
Travel time through pipe = 0.24 min.
Time of concentration (TC) = 15.35 min.

```
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 16.000 to Point/Station 17.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area \(=10.620\) (Ac.)
Runoff from this stream \(=\) 25.922(CFS)
Time of concentration \(=15.35\) min.
Rainfall intensity \(=\quad 2.570(I n / H r)\)
Program is now starting with Main Stream No. 2
```

++
Process from Point/Station 16.100 to Point/Station 16.200
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 307.000(Ft.)
Top (of initial area) elevation = 1464.700(Ft.)
Bottom (of initial area) elevation = 1458.500(Ft.)
Difference in elevation = 6.200(Ft.)
Slope = 0.02020 s(percent)= 2.02
TC = k(0.323)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.966 min.
Rainfall intensity = 3.815(In/Hr) for a 100.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.823
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff = 1.162(CFS)
Total initial stream area = 0.370(Ac.)
Pervious area fraction = 0.200

```
```

Process from Point/Station 16.200 to Point/Station
17.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1450.500(Ft.)
Downstream point/station elevation = 1450.000(Ft.)
Pipe length = 105.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 1.162(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 1.162(CFS)
Normal flow depth in pipe = 5.81(In.)
Flow top width inside pipe = 11.99(In.)
Critical Depth = 5.45(In.)
Pipe flow velocity = 3.09(Ft/s)
Travel time through pipe = 0.57 min.
Time of concentration (TC) = 7.53 min.
lol
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.370(Ac.)
Runoff from this stream = 1.162(CFS)
Time of concentration = 7.53 min.
Rainfall intensity = 3.669(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 rrrer (r.922 15.35 2.570
Largest stream flow has longer time of concentration
Qp = 25.922 + sum of
Q.b Ia/Ib
1.162 * 0.700 = 0.814
Qp= 26.736
Total of 2 main streams to confluence:
Flow rates before confluence point:
25.922 1.162
Area of streams before confluence:
10.620 0.370
Results of confluence:
Total flow rate = 26.736(CFS)
Time of concentration = 15.355 min.
Effective stream area after confluence = 10.990(Ac.)
++

```
Upstream point/station elevation = 1450.000(Ft.)
Downstream point/station elevation = 1448.900(Ft.)
Pipe length = 227.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 26.736(CFS)
Nearest computed pipe diameter = 30.00(In.)
Calculated individual pipe flow = 26.736(CFS)
Normal flow depth in pipe = 23.02(In.)
Flow top width inside pipe = 25.36(In.)
Critical Depth = 21.16(In.)
Pipe flow velocity = 6.61(Ft/s)
Travel time through pipe = 0.57 min.
Time of concentration (TC) = 15.93 min.
```

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station 18.000
**** SUBAREA FLOW ADDITION ****
```

COMMERCIAL subarea type
Runoff Coefficient $=0.852$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Time of concentration $=15.93 \mathrm{~min}$.
Rainfall intensity $=\quad 2.523(\operatorname{In} / \mathrm{Hr})$ for a 100.0 year storm
Subarea runoff $=\quad 6.151(C F S)$ for $2.860(A c$.
Total runoff $=\quad 32.887(\mathrm{CFS}) \quad$ Total area $=\quad 13.850(\mathrm{Ac}$.
++
Process from Point/Station 18.000 to Point/Station $\quad 18.000$
$\star \star * *$ CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area $=13.850($ Ac. $)$
Runoff from this stream $=32.887$ (CFS)
Time of concentration $=15.93 \mathrm{~min}$.
Rainfall intensity $=$ 2.523(In/Hr)
Program is now starting with Main Stream No. 2

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 17.100
**** INITIAL AREA EVALUATION ****
```

Initial area flow distance $=834.000$ (Ft.)
Top (of initial area) elevation $=1465.400$ (Ft.)
Bottom (of initial area) elevation $=1457.800$ (Ft.)
Difference in elevation $=7.600$ (Ft.)
Slope $=0.00911 \quad$ s (percent) $=0.91$
$T C=k(0.300) \star\left[(\text { length^3)/(elevation change) }]^{\wedge} 0.2\right.$
Initial area time of concentration $=11.315 \mathrm{~min}$.

```
Rainfall intensity = 2.994(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.856
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 14.636(CFS)
Total initial stream area = 5.710(Ac.)
Pervious area fraction = 0.100
```

$++$
Process from Point/Station 17.100 to Point/Station 18.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=1457.800$ (Ft.)
Downstream point/station elevation $=1448.900$ (Ft.)
Pipe length $=25.00(F t$.$) \quad Manning's N=0.013$
No. of pipes $=1$ Required pipe flow $=14.636(C F S)$
Nearest computed pipe diameter $=12.00($ In.)
Calculated individual pipe flow = 14.636(CFS)
Normal flow depth in pipe $=7.31$ (In.)
Flow top width inside pipe $=11.71($ In.)
Critical depth could not be calculated.
Pipe flow velocity $=\quad 29.18(F t / s)$
Travel time through pipe $=0.01 \mathrm{~min}$.
Time of concentration $(T C)=11.33 \mathrm{~min}$.

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station
18.000
**** CONFLUENCE OF MAIN STREAMS ****
```

The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area $=5.710$ (Ac.)
Runoff from this stream $=14.636(\mathrm{CFS})$
Time of concentration $=11.33 \mathrm{~min}$.
Rainfall intensity $=2.992($ In/Hr)
Summary of stream data:

Stream	Flow rate	TC	Rainfall Intensity
No.	(CFS)	(min)	(In/Hr)

1	32.887	15.93	2.523
2	14.636	11.33	2.992

Largest stream flow has longer time of concentration
Qp $=32.887+$ sum of
Qb Ia/Ib
14.636 * $0.843=12.344$
Qp = 45.231

Total of 2 main streams to confluence:

```
Flow rates before confluence point:
    32.887 14.636
Area of streams before confluence:
    13.850 5.710
Results of confluence:
Total flow rate = 45.231(CFS)
Time of concentration = 15.927 min.
Effective stream area after confluence = 19.560(Ac.)
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.102
Area averaged RI index number = 32.1
```

```
        Riverside County Rational Hydrology Program
    CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2014 Version 9.0
        Rational Hydrology Study Date: 09/12/22 File:10.out
    ********* Hydrology Study Control Information **********
    English (in-lb) Units used in input data file
```

-
- 100 W SINCLAIR ST
PROPOSED CONDITION
10-YEAR STORM ANALYSIS

Program License Serial Number 6405

Rational Method Hydrology Program based on Riverside County Flood Control \& Water Conservation District 1978 hydrology manual

Storm event (year) = 10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation $=0.500($ In. $)$
100 year, 1 hour precipitation $=1.300($ In.)

Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity $=0.829(\mathrm{In} / \mathrm{Hr})$
Slope of intensity duration curve $=0.5000$

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 654.000(Ft.)
Top (of initial area) elevation = 1465.400(Ft.)
Bottom (of initial area) elevation = 1461.500(Ft.)
Difference in elevation = 3.900(Ft.)
Slope = 0.00596 s(percent)= 0.60
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 11.175 min.
Rainfall intensity = 1.921(In/Hr) for a 10.0 year storm
```

COMMERCIAL subarea type
Runoff Coefficient $=0.846$
Decimal fraction soil group $A=1.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
$R I$ index for soil(AMC 2) $=32.00$
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Initial subarea runoff $=\quad 5.610(C F S)$
Total initial stream area $=3.450$ (Ac.)
Pervious area fraction $=0.100$

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
```

Upstream point/station elevation $=1457.500(\mathrm{Ft}$.
Downstream point/station elevation $=1456.400$ (Ft.)
Pipe length $=209.00$ (Ft.) Manning's $N=0.013$
No. of pipes $=1$ Required pipe flow $=5.610(\mathrm{CFS})$
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 5.610(CFS)
Normal flow depth in pipe $=11.48$ (In.)
Flow top width inside pipe $=17.30($ In. $)$
Critical Depth $=10.95($ In. $)$
Pipe flow velocity $=\quad 4.72(F t / s)$
Travel time through pipe $=0.74 \mathrm{~min}$.
Time of concentration $(T C)=11.91 \mathrm{~min}$.
$++$
Process from Point/Station 12.000 to Point/Station
12.000
**** SUBAREA FLOW ADDITION ****

```
COMMERCIAL subarea type
Runoff Coefficient = 0.846
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 11.91 min.
Rainfall intensity = 1.861(In/Hr) for a 10.0 year storm
Subarea runoff = 2.565(CFS) for 1.630(Ac.)
Total runoff = 8.175(CFS) Total area = 5.080(Ac.)
```

++
Process from Point/Station $\quad 12.000$ to Point/Station
$* * * *$ PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=1456.400(F t$.
Downstream point/station elevation $=1455.400$ (Ft.)
Pipe length $=208.00(\mathrm{Ft}$.$) \quad Manning's N=0.013$
No. of pipes $=1$ Required pipe flow $=8.175(\mathrm{CFS})$

```
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 8.175(CFS)
Normal flow depth in pipe = 13.50(In.)
Flow top width inside pipe = 20.12(In.)
Critical Depth = 12.73(In.)
Pipe flow velocity = 5.01(Ft/s)
Travel time through pipe = 0.69 min.
Time of concentration (TC) = 12.61 min.
```

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station
13.000
**** SUBAREA FLOW ADDITION ****
```

COMMERCIAL subarea type
Runoff Coefficient = 0.845
Decimal fraction soil group A = 1.000
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=0.000$
Decimal fraction soil group $D=0.000$
RI index for soil(AMC 2) = 32.00
Pervious area fraction $=0.100$; Impervious fraction $=0.900$
Time of concentration $=12.61 \mathrm{~min}$.
Rainfall intensity $=\quad 1.809(\mathrm{In} / \mathrm{Hr})$ for a $\quad 10.0$ year storm
Subarea runoff $=3.271(C F S)$ for $2.140($ Ac. $)$
Total runoff $=11.446(\mathrm{CFS}) \quad$ Total area $=\quad 7.220(\mathrm{Ac}$.

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 14.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
```

Upstream point/station elevation $=1455.400(\mathrm{Ft}$.
Downstream point/station elevation $=1453.500$ (Ft.)
Pipe length $=342.00(\mathrm{Ft}$.$) \quad Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow = 11.446(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 11.446(CFS)
Normal flow depth in pipe $=16.64$ (In.)
Flow top width inside pipe $=$ 17.03(In.)
Critical Depth $=15.14($ In.)
Pipe flow velocity $=\quad 5.59(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=\quad 1.02 \mathrm{~min}$.
Time of concentration $(T C)=13.63 \mathrm{~min}$.
$++$
Process from Point/Station 13.000 to Point/Station 14.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area $=7.220$ (Ac.)
Runoff from this stream $=11.446(C F S)$
Time of concentration $=13.63 \mathrm{~min}$.
Rainfall intensity $=1.740(\mathrm{In} / \mathrm{Hr})$
Program is now starting with Main Stream No. 2

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.100 to Point/Station 13.200
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 268.000(Ft.)
Top (of initial area) elevation = 1462.000(Ft.)
Bottom (of initial area) elevation = 1460.700(Ft.)
Difference in elevation = 1.300(Ft.)
Slope = 0.00485 s(percent)= 0.49
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.151 min.
Rainfall intensity = 2.250(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.850
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 1.701(CFS)
Total initial stream area = 0.890(Ac.)
Pervious area fraction = 0.100
```

$++$
Process from Point/Station $\quad 13.200$ to Point/Station
14.000
$\star \star \star *$ PIPEFLOW TRAVEL TIME (Program estimated size) $\star \star \star *$
Upstream point/station elevation $=1457.200$ (Ft.)
Downstream point/station elevation $=1453.500$ (Ft.)
Pipe length $=19.00$ (Ft.) Manning's $N=0.013$
No. of pipes $=1$ Required pipe flow $=1.701$ (CFS)
Nearest computed pipe diameter $=$ 6.00(In.)
Calculated individual pipe flow $=1.701$ (CFS)
Normal flow depth in pipe $=3.65$ (In.)
Flow top width inside pipe $=5.86$ (In.)
Critical depth could not be calculated.
Pipe flow velocity $=13.59(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.02 \mathrm{~min}$.
Time of concentration $(T C)=8.17 \mathrm{~min}$.

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.200 to Point/Station 14.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.890(Ac.)
Runoff from this stream = 1.701(CFS)
Time of concentration = 8.17 min.
Rainfall intensity = 2.246(In/Hr)
Summary of stream data:
```



```
Process from Point/Station 14.100 to Point/Station
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 207.000(Ft.)
Top (of initial area) elevation = 1462.600(Ft.)
Bottom (of initial area) elevation = 1460.600(Ft.)
Difference in elevation = 2.000(Ft.)
Slope = 0.00966 s(percent)= 0.97
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.405 min.
Rainfall intensity = 2.538(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.856
Decimal fraction soil group A = 0.910
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.090
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 35.33
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 1.108(CFS)
Total initial stream area = 0.510(Ac.)
Pervious area fraction = 0.100
```

14.200
$++$
Process from Point/Station 14.200 to Point/Station 15.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation $=1452.100(F t$.
Downstream point/station elevation $=1452.000$ (Ft.)
Pipe length $=19.00(F t$.$) \quad Manning's N=0.013$
No. of pipes $=1$ Required pipe flow $=1.108(\mathrm{CFS})$
Nearest computed pipe diameter $=9.00($ In. $)$
Calculated individual pipe flow = 1.108(CFS)
Normal flow depth in pipe $=6.82$ (In.)
Flow top width inside pipe $=7.71$ (In.)
Critical Depth $=5.80($ In. $)$
Pipe flow velocity $=3.08(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.10 \mathrm{~min}$.
Time of concentration $(T C)=6.51 \mathrm{~min}$.
++
Process from Point/Station 14.200 to Point/Station 15.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area $=0.510$ (Ac.)
Runoff from this stream $=1.108$ (CFS)
Time of concentration $=6.51 \mathrm{~min}$.
Rainfall intensity $=2.518($ In/Hr)
Summary of stream data:

Stream	Flow rate	TC	Rainfall Intensity
No.	(CFS)	(min)	$($ In Hr$)$

```
\begin{tabular}{rrrr}
1 & 12.764 & 14.62 & 1.680 \\
2 & 1.108 & 6.51 & 2.518
\end{tabular}
Largest stream flow has longer time of concentration
Qp = 12.764 + sum of
    Qb Ia/Ib
        1.108 * 0.667 = 0.739
Qp = 13.503
Total of 2 main streams to confluence:
Flow rates before confluence point:
    12.764 1.108
Area of streams before confluence:
    8.110 0.510
Results of confluence:
Total flow rate = 13.503(CFS)
Time of concentration = 14.616 min.
Effective stream area after confluence = 8.620(Ac.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 15.000 to Point/Station 16.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1452.000(Ft.)
Downstream point/station elevation = 1450.400(Ft.)
Pipe length = 325.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 13.503(CFS)
Nearest computed pipe diameter = 24.00(In.)
Calculated individual pipe flow = 13.503(CFS)
Normal flow depth in pipe = 17.02(In.)
Flow top width inside pipe = 21.80(In.)
Critical Depth = 15.88(In.)
Pipe flow velocity = 5.67(Ft/s)
Travel time through pipe = 0.95 min.
Time of concentration (TC) = 15.57 min.
```

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```

++
Process from Point/Station 16.000 to Point/Station 16.000
Process from Point/Station 16.000 to Point/Station 16.000
**** SUBAREA FLOW ADDITION ****
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.843
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 15.57 min.
Rainfall intensity = 1.628(In/Hr) for a 10.0 year storm
Subarea runoff = 2.744(CFS) for 2.000(Ac.)
Total runoff = 16.246(CFS) Total area = 10.620(Ac.)

```
```

+++
Process from Point/Station 16.000 to Point/Station 17.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1450.400(Ft.)
Downstream point/station elevation = 1450.000(Ft.)
Pipe length = 92.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 16.246(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 16.246(CFS)
Normal flow depth in pipe = 18.19(In.)
Flow top width inside pipe = 25.32(In.)
Critical Depth = 16.88(In.)
Pipe flow velocity = 5.70(Ft/s)
Travel time through pipe = 0.27 min.
Time of concentration (TC) = 15.84 min.

```
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 16.000 to Point/Station 17.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area \(=10.620(\mathrm{Ac}\).
Runoff from this stream \(=16.246\) (CFS)
Time of concentration \(=15.84 \mathrm{~min}\).
Rainfall intensity \(=1.614(\mathrm{In} / \mathrm{Hr})\)
Program is now starting with Main Stream No. 2
```

++
Process from Point/Station 16.100 to Point/Station
16.200
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 307.000(Ft.)
Top (of initial area) elevation = 1464.700(Ft.)
Bottom (of initial area) elevation = 1458.500(Ft.)
Difference in elevation = 6.200(Ft.)
Slope = 0.02020 s(percent)= 2.02
TC = k(0.323)*[(length^3)/(elevation change)]^0. 2
Initial area time of concentration = 6.966 min.
Rainfall intensity = 2.433(In/Hr) for a 10.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.803
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff = 0.723(CFS)
Total initial stream area = 0.370(Ac.)
Pervious area fraction = 0.200

```
```

++
Process from Point/Station 16.200 to Point/Station 17.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1450.500(Ft.)
Downstream point/station elevation = 1450.000(Ft.)
Pipe length = 105.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.723(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 0.723(CFS)
Normal flow depth in pipe = 5.20(In.)
Flow top width inside pipe = 8.89(In.)
Critical Depth = 4.65(In.)
Pipe flow velocity = 2.74(Ft/s)
Travel time through pipe = 0.64 min.
Time of concentration (TC) = 7.61 min.
l+++
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.370(Ac.)
Runoff from this stream = 0.723(CFS)
Time of concentration = 7.61 min.
Rainfall intensity = 2.329(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)

1	16.246	15.84	1.614
2	0.723	7.61	2.329

Largest stream flow has longer time of concentration
Qp = 16.246 + sum of
Qb Ia/Ib
0.723 * 0.693 = 0.501
Qp = 16.747
Total of 2 main streams to confluence:
Flow rates before confluence point:
16.246 0.723
Area of streams before confluence:
10.620 0.370
Results of confluence:
Total flow rate = 16.747(CFS)
Time of concentration = 15.840 min.
Effective stream area after confluence = 10.990(Ac.)
l+++

```
```

**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

```
```

Upstream point/station elevation = 1450.000(Ft.)
Downstream point/station elevation = 1448.900(Ft.)
Pipe length = 227.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 16.747(CFS)
Nearest computed pipe diameter = 27.00(In.)
Calculated individual pipe flow = 16.747(CFS)
Normal flow depth in pipe = 17.88(In.)
Flow top width inside pipe = 25.54(In.)
Critical Depth = 17.15(In.)
Pipe flow velocity = 5.99(Ft/s)
Travel time through pipe = 0.63 min.
Time of concentration (TC) = 16.47 min.

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station 18.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient \(=0.842\)
Decimal fraction soil group \(A=1.000\)
Decimal fraction soil group \(B=0.000\)
Decimal fraction soil group \(C=0.000\)
Decimal fraction soil group \(D=0.000\)
RI index for soil(AMC 2) \(=32.00\)
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration \(=16.47 \mathrm{~min}\).
Rainfall intensity \(=\quad 1.582(\mathrm{In} / \mathrm{Hr})\) for a \(\quad 10.0\) year storm
Subarea runoff \(=3.812(C F S)\) for \(2.860(A c\).
Total runoff \(=\quad 20.559(C F S) \quad\) Total area \(=13.850(\mathrm{Ac}\).
```

+++
Process from Point/Station 18.000 to Point/Station 18.000
**** CONFLUENCE OF MAIN STREAMS ****

```
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area \(=13.850\) (Ac.)
Runoff from this stream \(=\) 20.559(CFS)
Time of concentration \(=16.47 \mathrm{~min}\).
Rainfall intensity \(=1.582(\) In \(/ \mathrm{Hr})\)
Program is now starting with Main Stream No. 2
```

+++
Process from Point/Station 10.000 to Point/Station 17.100
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 834.000(Ft.)
Top (of initial area) elevation = 1465.400(Ft.)
Bottom (of initial area) elevation = 1457.800(Ft.)
Difference in elevation = 7.600(Ft.)
Slope = 0.00911 s(percent)= 0.91
TC = k(0.300)*[(length^3)/(elevation change)]^0.2

```
```

Initial area time of concentration = 11.315 min.
Rainfall intensity = 1.909(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.846
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 9.226(CFS)
Total initial stream area = 5.710(Ac.)
Pervious area fraction = 0.100

```
\(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
Process from Point/Station 17.100 to Point/Station 18.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation \(=1457.800\) (Ft.)
Downstream point/station elevation = 1448.900(Ft.)
Pipe length \(=25.00(F t\).\() \quad Manning's N=0.013\)
No. of pipes \(=1\) Required pipe flow \(=\) 9.226(CFS)
Nearest computed pipe diameter \(=9.00(\) In.)
Calculated individual pipe flow = 9.226(CFS)
Normal flow depth in pipe \(=6.90\) (In.)
Flow top width inside pipe \(=7.61\) (In.)
Critical depth could not be calculated.
Pipe flow velocity \(=\quad 25.39(\mathrm{Ft} / \mathrm{s})\)
Travel time through pipe \(=0.02 \mathrm{~min}\).
Time of concentration \((T C)=11.33 \mathrm{~min}\).
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station \(\quad 18.000\)
\(* * * *\) CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area \(=5.710\) (Ac.)
Runoff from this stream \(=\quad 9.226\) (CFS)
Time of concentration \(=11.33 \mathrm{~min}\).
Rainfall intensity \(=1.908(\) In/Hr)
Summary of stream data:
\begin{tabular}{cccc} 
Stream & Flow rate & TC & Rainfall Intensity \\
No. & (CFS) & (min) & (In/Hr)
\end{tabular}
\begin{tabular}{rrrr}
1 & 20.559 & 16.47 & 1.582 \\
2 & 9.226 & 11.33 & 1.908
\end{tabular}
Largest stream flow has longer time of concentration
Qp \(=20.559+\) sum of
    Qb Ia/Ib
    \(9.226 * 0.829=7.652\)
\(Q p=28.211\)
```

Total of 2 main streams to confluence:
Flow rates before confluence point:
20.559
9.226
Area of streams before confluence:
13.850 5.710
Results of confluence:
Total flow rate = 28.211(CFS)
Time of concentration = 16.471 min.
Effective stream area after confluence = 19.560(Ac.)
End of computations, total study area =
19.56 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.102
Area averaged RI index number = 32.1

```

\section*{APPENDIX C}

Hydraulic Calculations
C.1: UNIT HYDROGRAPH ANALYSIS, 100 YEAR, 1 HOUR STORM DURATION, AREA "A"
C.2: UNIT HYDROGRAPH ANALYSIS, 100 YEAR, 3 HOUR STORM DURATION, AREA "A
C.3: UNIT HYDROGRAPH ANALYSIS, 100 YEAR, 6 HOUR STORM DURATION, AREA "A
C.4: UNIT HYDROGRAPH ANALYSIS, 100 YEAR, 24 HOUR STORM DURATION, AREA "A
```

U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0 Study date 09/09/22 File: 21100.out

```
```

++
+

```

```

 Riverside County Synthetic Unit Hydrology Method
 RCFC \& WCD Manual date - April 1978
Program License Serial Number 6405
100 W SINCLAIR ST
ONSITE PROPOSED CONDITION
100-YEAR, 1-HOUR STORM EVENT ANALYSIS
English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format

```
```

```
---------------------------------------------------------------------------
Drainage Area = 19.56(Ac.) = 0.031 Sq. Mi.
Drainage Area = 19.56(Ac.) = 0.031 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 19.56(Ac.) =
Drainage Area for Depth-Area Areal Adjustment = 19.56(Ac.) =
0.031 Sq. Mi.
Length along longest watercourse = 2845.00(Ft.)
Length along longest watercourse = 2845.00(Ft.)
Length along longest watercourse measured to centroid = 1734.00(Ft.)
Length along longest watercourse measured to centroid = 1734.00(Ft.)
Length along longest watercourse = 0.539 Mi.
Length along longest watercourse = 0.539 Mi.
Length along longest watercourse measured to centroid = 0.328 Mi.
Length along longest watercourse measured to centroid = 0.328 Mi.
Difference in elevation = 16.50(Ft.)
Difference in elevation = 16.50(Ft.)
Slope along watercourse = 30.6221 Ft./Mi.
Slope along watercourse = 30.6221 Ft./Mi.
Average Manning's 'N' = 0.015
Average Manning's 'N' = 0.015
Lag time = 0.097 Hr.
Lag time = 0.097 Hr.
Lag time = 5.84 Min.
Lag time = 5.84 Min.
25% of lag time = 1.46 Min.
25% of lag time = 1.46 Min.
40% of lag time = 2.34 Min.
40% of lag time = 2.34 Min.
Unit time = 5.00 Min.
Unit time = 5.00 Min.
Duration of storm = 1 Hour(s)
Duration of storm = 1 Hour(s)
User Entered Base Flow = 0.00(CFS)
User Entered Base Flow = 0.00(CFS)
2 ~ Y E A R ~ A r e a ~ r a i n f a l l ~ d a t a :
2 ~ Y E A R ~ A r e a ~ r a i n f a l l ~ d a t a :
Area(Ac.) [1]
    Rainfall(In)[2]
    Weighting[1*2]
        19.56
                        0.47
                            9.19
```

```
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
    19.56 1.23 24.06
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 0.470(In)
Area Averaged 100-Year Rainfall = 1.230(In)
Point rain (area averaged) = 1.230(In)
Areal adjustment factor = 99.98%
Adjusted average point rain = 1.230(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
    19.560 32.10 0.898
    Total Area Entered = 19.56(Ac.)
```

RI	RI	Infil. Rate	Impervious	Adj. Infil. Rate Area\%	F	
AMC2	AMC-2	$($ In $/ \mathrm{Hr})$	$($ Dec. $\%$)	$($ In/Hr)	(Dec.)	(In/Hr)
32.1	32.1	0.741	0.898	0.142	1.000	0.142

Sum (F) = 0.142
Area averaged mean soil loss (F) (In/Hr) = 0.142
Minimum soil loss rate ((In/Hr)) = 0.071
(for 24 hour storm duration)
Soil low loss rate (decimal) $=0.182$
Slope of intensity-duration curve for a 1 hour storm $=0.5000$

U n i t H y d r o g r a ph
VALLEY S-Curve

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value

Hydrograph in 5 Minute intervals ((CFS))

Time ($\mathrm{h}+\mathrm{m}$)	Volume Ac.Ft	Q (CFS)	0		15.0		30.0	45.0			60.0
$0+5$	0.0103	1.49	Q		\|		\|	\|			\|
$0+10$	0.0526	6.14	IV	Q	\|		\|	\|			\|
$0+15$	0.1100	8.34	\| V		\|		\|	\|			
$0+20$	0.1785	9.94		V Q	\|		\|	\|			\|
$0+25$	0.2546	11.06	,	V Q	I		\|	\|			
$0+30$	0.3428	12.80	,	VQ	-		\|	\|			\|
$0+35$	0.4448	14.82	,		Q I		\|	\|			
$0+40$	0.5639	17.28	\|		I QV		\|	\|			\|
$0+45$	0.7111	21.37			\|	QV	1	\|			
$0+50$	0.9503	34.73	,		1		IV Q	\|			
$0+55$	1.2954	50.11	\|		\|		\|	V 1	Q		\|
$1+0$	1.4993	29.61	\|		\|		Q I	1	V		I
$1+5$	1.6239	18.10	\|		\| Q		\|	\|		V	\|
1+10	1.6879	9.29	।	Q	\|		\|	\|		V	
$1+15$	1.7251	5.40	1	2	\|		\|	\|			
$1+20$	1.7495	3.54	1 Q		\|		I	\|			
$1+25$	1.7653	2.29	12		I		\|	\|			
$1+30$	1.7754	1.47	Q		\|		\|	\|			
$1+35$	1.7817	0.91	Q		,		,	\|			
$1+40$	1.7833	0.23	Q		,		\|	\|			
$1+45$	1.7838	0.09	Q		\|		\|	\|			V

```
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
    Study date 09/09/22 File: 23100.out
```

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
```



```
    Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6405
100 W SINCLAIR ST
ONSITE PROPOSED CONDITION
100-YEAR, 3-HOUR STORM EVENT ANALYSIS
English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
    English Units used in output format
```

```
---------------------------------------------------------------------------
```

Drainage Area = 19.56(Ac.) = 0.031 Sq. Mi.
Drainage Area = 19.56(Ac.) = 0.031 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 19.56(Ac.) =
Drainage Area for Depth-Area Areal Adjustment = 19.56(Ac.) =
0.031 Sq. Mi.
Length along longest watercourse = 2845.00(Ft.)
Length along longest watercourse = 2845.00(Ft.)
Length along longest watercourse measured to centroid = 1734.00(Ft.)
Length along longest watercourse measured to centroid = 1734.00(Ft.)
Length along longest watercourse = 0.539 Mi.
Length along longest watercourse = 0.539 Mi.
Length along longest watercourse measured to centroid = 0.328 Mi.
Length along longest watercourse measured to centroid = 0.328 Mi.
Difference in elevation = 16.50(Ft.)
Difference in elevation = 16.50(Ft.)
Slope along watercourse = 30.6221 Ft./Mi.
Slope along watercourse = 30.6221 Ft./Mi.
Average Manning's 'N' = 0.015
Average Manning's 'N' = 0.015
Lag time = 0.097 Hr.
Lag time = 0.097 Hr.
Lag time = 5.84 Min.
Lag time = 5.84 Min.
25% of lag time = 1.46 Min.
25% of lag time = 1.46 Min.
40% of lag time = 2.34 Min.
40% of lag time = 2.34 Min.
Unit time = 5.00 Min.
Unit time = 5.00 Min.
Duration of storm = 3 Hour(s)
Duration of storm = 3 Hour(s)
User Entered Base Flow = 0.00(CFS)
User Entered Base Flow = 0.00(CFS)
2 ~ Y E A R ~ A r e a ~ r a i n f a l l ~ d a t a :
2 ~ Y E A R ~ A r e a ~ r a i n f a l l ~ d a t a :
Area(Ac.) [1]
Rainfall(In)[2] Weighting[1*2]
19.56
0.80
15.65

```
```

Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 0.800(In)
Area Averaged 100-Year Rainfall = 1.880(In)
Point rain (area averaged) = 1.880(In)
Areal adjustment factor = 99.99%
Adjusted average point rain = 1.880(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
19.560 32.10 0.898
Total Area Entered = 19.56(Ac.)

```
\begin{tabular}{lcrcccc} 
RI & RI & Infil. Rate & Impervious & Adj. Infil. Rate Area\% & F \\
AMC2 & AMC-2 & \((\) In \(/ \mathrm{Hr})\) & \((\) Dec. \(\%\) ) & \((\) In/Hr) & (Dec.) & (In/Hr) \\
32.1 & 32.1 & 0.741 & 0.898 & 0.142 & 1.000 & 0.142
\end{tabular}
Minimum soil loss rate ((In/Hr)) = 0.071
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.182
    U n i t \(H\) y drograph
                VALLEY S-Curve
----------------------------------------------------------------------------
Unit Hydrograph Data


The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value


```

U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
Study date 09/09/22 File: 26100.out

```
```

++
+

```

```

 Riverside County Synthetic Unit Hydrology Method
 RCFC \& WCD Manual date - April 1978
Program License Serial Number 6405
100 W SINCLAIR ST
ONSITE PROPOSED CONDITION
100-YEAR, 6-HOUR STORM EVENT ANALYSIS
English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format

```
```

```
---------------------------------------------------------------------------
Drainage Area = 19.56(Ac.) = 0.031 Sq. Mi.
Drainage Area = 19.56(Ac.) = 0.031 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 19.56(Ac.) =
Drainage Area for Depth-Area Areal Adjustment = 19.56(Ac.) =
0.031 Sq. Mi.
Length along longest watercourse = 2845.00(Ft.)
Length along longest watercourse = 2845.00(Ft.)
Length along longest watercourse measured to centroid = 1734.00(Ft.)
Length along longest watercourse measured to centroid = 1734.00(Ft.)
Length along longest watercourse = 0.539 Mi.
Length along longest watercourse = 0.539 Mi.
Length along longest watercourse measured to centroid = 0.328 Mi.
Length along longest watercourse measured to centroid = 0.328 Mi.
Difference in elevation = 16.50(Ft.)
Difference in elevation = 16.50(Ft.)
Slope along watercourse = 30.6221 Ft./Mi.
Slope along watercourse = 30.6221 Ft./Mi.
Average Manning's 'N' = 0.015
Average Manning's 'N' = 0.015
Lag time = 0.097 Hr.
Lag time = 0.097 Hr.
Lag time = 5.84 Min.
Lag time = 5.84 Min.
25% of lag time = 1.46 Min.
25% of lag time = 1.46 Min.
40% of lag time = 2.34 Min.
40% of lag time = 2.34 Min.
Unit time = 5.00 Min.
Unit time = 5.00 Min.
Duration of storm = 6 Hour(s)
Duration of storm = 6 Hour(s)
User Entered Base Flow = 0.00(CFS)
User Entered Base Flow = 0.00(CFS)
2 ~ Y E A R ~ A r e a ~ r a i n f a l l ~ d a t a :
2 ~ Y E A R ~ A r e a ~ r a i n f a l l ~ d a t a :
Area(Ac.) [1]
Rainfall(In)[2]
Weighting[1*2]
    19.56
    1.03
                                    20.15
```

```
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
    19.56 2.50 48.90
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 1.030(In)
Area Averaged 100-Year Rainfall = 2.500(In)
Point rain (area averaged) = 2.500(In)
Areal adjustment factor = 99.99%
Adjusted average point rain = 2.500(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
    19.560 32.10 0.898
    Total Area Entered = 19.56(Ac.)
```

RI	RI	Infil. Rate	Impervious	Adj. Infil. Rate Area\%	F	
AMC2	AMC-2	$($ In $/ \mathrm{Hr})$	$($ Dec. $\%$)	$($ In/Hr)	(Dec.)	(In/Hr)
32.1	32.1	0.741	0.898	0.142	1.000	0.142

Minimum soil loss rate ((In/Hr)) = 0.071
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.182
U n i t H y drograph
VALLEY S-Curve
--
Unit Hydrograph Data

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value

	(Hr.$)$	Percent	($\mathrm{In} / \mathrm{Hr}$)	Max	Low	($\mathrm{In} / \mathrm{Hr}$)
1	0.08	0.50	0.150	(0.142)	0.027	0.123
2	0.17	0.60	0.180	(0.142)	0.033	0.147
3	0.25	0.60	0.180	(0.142)	0.033	0.147
4	0.33	0.60	0.180	(0.142)	0.033	0.147
5	0.42	0.60	0.180	(0.142)	0.033	0.147
6	0.50	0.70	0.210	(0.142)	0.038	0.172
7	0.58	0.70	0.210	(0.142)	0.038	0.172
8	0.67	0.70	0.210	(0.142)	0.038	0.172
9	0.75	0.70	0.210	(0.142)	0.038	0.172
10	0.83	0.70	0.210	(0.142)	0.038	0.172
11	0.92	0.70	0.210	(0.142)	0.038	0.172
12	1.00	0.80	0.240	(0.142)	0.044	0.196
13	1.08	0.80	0.240	(0.142)	0.044	0.196
14	1.17	0.80	0.240	(0.142)	0.044	0.196
15	1.25	0.80	0.240	(0.142)	0.044	0.196
16	1.33	0.80	0.240	(0.142)	0.044	0.196
17	1.42	0.80	0.240	(0.142)	0.044	0.196
18	1.50	0.80	0.240	(0.142)	0.044	0.196
19	1.58	0.80	0.240	(0.142)	0.044	0.196
20	1.67	0.80	0.240	(0.142)	0.044	0.196
21	1.75	0.80	0.240	(0.142)	0.044	0.196
22	1.83	0.80	0.240	(0.142)	0.044	0.196
23	1.92	0.80	0.240	(0.142)	0.044	0.196
24	2.00	0.90	0.270	(0.142)	0.049	0.221
25	2.08	0.80	0.240	(0.142)	0.044	0.196
26	2.17	0.90	0.270	(0.142)	0.049	0.221
27	2.25	0.90	0.270	(0.142)	0.049	0.221
28	2.33	0.90	0.270	(0.142)	0.049	0.221
29	2.42	0.90	0.270	(0.142)	0.049	0.221
30	2.50	0.90	0.270	(0.142)	0.049	0.221
31	2.58	0.90	0.270	(0.142)	0.049	0.221
32	2.67	0.90	0.270	(0.142)	0.049	0.221
33	2.75	1.00	0.300	(0.142)	0.054	0.246
34	2.83	1.00	0.300	(0.142)	0.054	0.246
35	2.92	1.00	0.300	(0.142)	0.054	0.246
36	3.00	1.00	0.300	(0.142)	0.054	0.246
37	3.08	1.00	0.300	(0.142)	0.054	0.246
38	3.17	1.10	0.330	(0.142)	0.060	0.270
39	3.25	1.10	0.330	(0.142)	0.060	0.270
40	3.33	1.10	0.330	(0.142)	0.060	0.270
41	3.42	1.20	0.360	(0.142)	0.065	0.295
42	3.50	1.30	0.390	(0.142)	0.071	0.319
43	3.58	1.40	0.420	(0.142)	0.076	0.344
44	3.67	1.40	0.420	(0.142)	0.076	0.344
45	3.75	1.50	0.450	(0.142)	0.082	0.368
46	3.83	1.50	0.450	(0.142)	0.082	0.368
47	3.92	1.60	0.480	(0.142)	0.087	0.393
48	4.00	1.60	0.480	(0.142)	0.087	0.393
49	4.08	1.70	0.510	(0.142)	0.093	0.417
50	4.17	1.80	0.540	(0.142)	0.098	0.442
51	4.25	1.90	0.570	(0.142)	0.104	0.466
52	4.33	2.00	0.600	(0.142)	0.109	0.491
53	4.42	2.10	0.630	(0.142)	0.114	0.516
54	4.50	2.10	0.630	(0.142)	0.114	0.516
55	4.58	2.20	0.660	(0.142)	0.120	0.540
56	4.67	2.30	0.690	(0.142)	0.125	0.565

Peak flow rate of this hydrograph $=\quad 23.878(\mathrm{CFS})$

Hydrograph in 5 Minute intervals ((CFS))

Time ($\mathrm{h}+\mathrm{m}$)	Volume Ac.Ft	Q (CFS)	0	7.5	15.0	22.5	30.0	
$0+5$	0.0025	0.36	Q	\|	\|	\|	\|	
$0+10$	0.0132	1.55	V 2	\|	,	,	\|	
$0+15$	0.0284	2.22	V Q		\|	,	\|	
$0+20$	0.0456	2.50	V Q		\|	\|	\|	
$0+25$	0.0639	2.65	V Q		\|	,	\|	
$0+30$	0.0833	2.82	V Q	\|	\|	,	\|	
$0+35$	0.1047	3.10	IV Q	\|	\|	\|	\|	
$0+40$	0.1269	3.24	IV Q	\|	\|	\|	\|	
$0+45$	0.1497	3.30	IV Q	,	\|	\|	,	
$0+50$	0.1727	3.35	\\| V Q		\|	\|	\|	
$0+55$	0.1959	3.36	\\| V Q	\|	\|	\|	,	
$1+0$	0.2197	3.45	\\| V 2	\|	\|	\|	\|	
$1+5$	0.2450	3.68	1 V Q	\|	\|	\|	,	
1+10	0.2709	3.77	\\| V Q	\|	\|	\|	\|	
$1+15$	0.2972	3.81	\\| V Q	\|	\|	\|	\|	
$1+20$	0.3236	3.83	\\| V Q	,	\|	\|	\|	
$1+25$	0.3501	3.85	\\| VQ	,	।	\|	।	
$1+30$	0.3767	3.86	I VQ	\|	\|	\|	\|	
$1+35$	0.4033	3.87	I VQ	\|	,	,	\|	
$1+40$	0.4300	3.87	Q	\|	।	\|	\|	

$6+30$	3.4042	0.08	Q			VI
$6+35$	3.4045	0.04	Q	\|	\|	VI
$6+40$	3.4046	0.02	Q		\|	VI
$6+45$	3.4046	0.01	Q			V

```
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2014, Version 9.0
    Study date 09/09/22 File: 224100.out
```

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
```



```
    Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 6405
100 W SINCLAIR ST
ONSITE PROPOSED CONDITION
100-YEAR, 24-HOUR STORM EVENT ANALYSIS
English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
```

```
Drainage Area = 19.56(Ac.) = 0.031 Sq. Mi.
```

Drainage Area = 19.56(Ac.) = 0.031 Sq. Mi.
Drainage Area for Depth-Area Areal Adjustment = 19.56(Ac.) =
Drainage Area for Depth-Area Areal Adjustment = 19.56(Ac.) =
0.031 Sq. Mi.
Length along longest watercourse = 2845.00(Ft.)
Length along longest watercourse = 2845.00(Ft.)
Length along longest watercourse measured to centroid = 1734.00(Ft.)
Length along longest watercourse measured to centroid = 1734.00(Ft.)
Length along longest watercourse = 0.539 Mi.
Length along longest watercourse = 0.539 Mi.
Length along longest watercourse measured to centroid = 0.328 Mi.
Length along longest watercourse measured to centroid = 0.328 Mi.
Difference in elevation = 16.50(Ft.)
Difference in elevation = 16.50(Ft.)
Slope along watercourse = 30.6221 Ft./Mi.
Slope along watercourse = 30.6221 Ft./Mi.
Average Manning's 'N' = 0.015
Average Manning's 'N' = 0.015
Lag time = 0.097 Hr.
Lag time = 0.097 Hr.
Lag time = 5.84 Min.
Lag time = 5.84 Min.
25% of lag time = 1.46 Min.
25% of lag time = 1.46 Min.
40% of lag time = 2.34 Min.
40% of lag time = 2.34 Min.
Unit time = 5.00 Min.
Unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
User Entered Base Flow = 0.00(CFS)
2 ~ Y E A R ~ A r e a ~ r a i n f a l l ~ d a t a : ~
2 ~ Y E A R ~ A r e a ~ r a i n f a l l ~ d a t a : ~
Area(Ac.) [1]
Rainfall(In)[2]
Weighting[1*2]
19.56
1.70
33.25

```
```

Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
19.56 4.38 85.67
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 1.700(In)
Area Averaged 100-Year Rainfall = 4.380(In)
Point rain (area averaged) = 4.380(In)
Areal adjustment factor = 100.00%
Adjusted average point rain = 4.380(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious %
19.560 32.10 0.898
Total Area Entered = 19.56(Ac.)

```
\begin{tabular}{lcrcccc} 
RI & RI & Infil. Rate & Impervious & Adj. Infil. Rate Area\% & F \\
AMC2 & AMC-2 & \((\) In \(/ \mathrm{Hr})\) & \((\) Dec. \(\%\) ) & \((\) In/Hr) & (Dec.) & (In/Hr) \\
32.1 & 32.1 & 0.741 & 0.898 & 0.142 & 1.000 & 0.142
\end{tabular}
Minimum soil loss rate ((In/Hr)) = 0.071
(for 24 hour storm duration)
Soil low loss rate (decimal) \(=0.182\)
    U n i t \(H\) y drograph
                VALLEY S-Curve
----------------------------------------------------------------------------
Unit Hydrograph Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Unit time period } \\
\text { (hrs) }
\end{gathered}
\]} & Time \% of & & Distribut Graph \% & & Unit Hydrograph (CFS) \\
\hline 1 & 0.083 & 85.640 & & 14.902 & & 2.938 \\
\hline 2 & 0.167 & 171.279 & & 46.109 & & 9.089 \\
\hline 3 & 0.250 & 256.919 & & 18.421 & & 3.631 \\
\hline 4 & 0.333 & 342.559 & & 7.891 & & 1.555 \\
\hline 5 & 0.417 & 428.198 & & 4.672 & & 0.921 \\
\hline 6 & 0.500 & 513.838 & & 2.920 & & 0.576 \\
\hline 7 & 0.583 & 599.478 & & 2.073 & & 0.409 \\
\hline 8 & 0.667 & 685.117 & & 1.374 & & 0.271 \\
\hline 9 & 0.750 & 770.757 & & 0.916 & & 0.181 \\
\hline 10 & 0.833 & 856.396 & & 0.721 & & 0.142 \\
\hline & & & Sum & \(=100.000\) & Sum= & = 19.713 \\
\hline
\end{tabular}

The following loss rate calculations reflect use of the minimum calculated loss rate subtracted from the Storm Rain to produce the maximum Effective Rain value
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & ( Hr.\()\) & Percent & ( \(\mathrm{In} / \mathrm{Hr}\) ) & Max & Low & ( \(\mathrm{In} / \mathrm{Hr}\) ) \\
\hline 1 & 0.08 & 0.07 & 0.035 & \(0.252)\) & 0.006 & 0.029 \\
\hline 2 & 0.17 & 0.07 & 0.035 & \(0.251)\) & 0.006 & 0.029 \\
\hline 3 & 0.25 & 0.07 & 0.035 & (0.250) & 0.006 & 0.029 \\
\hline 4 & 0.33 & 0.10 & 0.053 & (0.249) & 0.010 & 0.043 \\
\hline 5 & 0.42 & 0.10 & 0.053 & ( 0.248) & 0.010 & 0.043 \\
\hline 6 & 0.50 & 0.10 & 0.053 & ( 0.247) & 0.010 & 0.043 \\
\hline 7 & 0.58 & 0.10 & 0.053 & (0.246) & 0.010 & 0.043 \\
\hline 8 & 0.67 & 0.10 & 0.053 & (0.245) & 0.010 & 0.043 \\
\hline 9 & 0.75 & 0.10 & 0.053 & (0.244) & 0.010 & 0.043 \\
\hline 10 & 0.83 & 0.13 & 0.070 & (0.243) & 0.013 & 0.057 \\
\hline 11 & 0.92 & 0.13 & 0.070 & ( 0.242) & 0.013 & 0.057 \\
\hline 12 & 1.00 & 0.13 & 0.070 & (0.241) & 0.013 & 0.057 \\
\hline 13 & 1.08 & 0.10 & 0.053 & (0.240) & 0.010 & 0.043 \\
\hline 14 & 1.17 & 0.10 & 0.053 & (0.239) & 0.010 & 0.043 \\
\hline 15 & 1.25 & 0.10 & 0.053 & (0.239) & 0.010 & 0.043 \\
\hline 16 & 1.33 & 0.10 & 0.053 & ( 0.238) & 0.010 & 0.043 \\
\hline 17 & 1.42 & 0.10 & 0.053 & ( 0.237) & 0.010 & 0.043 \\
\hline 18 & 1.50 & 0.10 & 0.053 & ( 0.236) & 0.010 & 0.043 \\
\hline 19 & 1.58 & 0.10 & 0.053 & (0.235) & 0.010 & 0.043 \\
\hline 20 & 1.67 & 0.10 & 0.053 & ( 0.234) & 0.010 & 0.043 \\
\hline 21 & 1.75 & 0.10 & 0.053 & ( 0.233) & 0.010 & 0.043 \\
\hline 22 & 1.83 & 0.13 & 0.070 & ( 0.232) & 0.013 & 0.057 \\
\hline 23 & 1.92 & 0.13 & 0.070 & ( 0.231) & 0.013 & 0.057 \\
\hline 24 & 2.00 & 0.13 & 0.070 & ( 0.230) & 0.013 & 0.057 \\
\hline 25 & 2.08 & 0.13 & 0.070 & ( 0.229) & 0.013 & 0.057 \\
\hline 26 & 2.17 & 0.13 & 0.070 & ( 0.228) & 0.013 & 0.057 \\
\hline 27 & 2.25 & 0.13 & 0.070 & ( 0.227) & 0.013 & 0.057 \\
\hline 28 & 2.33 & 0.13 & 0.070 & (0.226) & 0.013 & 0.057 \\
\hline 29 & 2.42 & 0.13 & 0.070 & ( 0.225) & 0.013 & 0.057 \\
\hline 30 & 2.50 & 0.13 & 0.070 & ( 0.224) & 0.013 & 0.057 \\
\hline 31 & 2.58 & 0.17 & 0.088 & ( 0.224) & 0.016 & 0.072 \\
\hline 32 & 2.67 & 0.17 & 0.088 & ( 0.223) & 0.016 & 0.072 \\
\hline 33 & 2.75 & 0.17 & 0.088 & ( 0.222) & 0.016 & 0.072 \\
\hline 34 & 2.83 & 0.17 & 0.088 & ( 0.221) & 0.016 & 0.072 \\
\hline 35 & 2.92 & 0.17 & 0.088 & ( 0.220) & 0.016 & 0.072 \\
\hline 36 & 3.00 & 0.17 & 0.088 & ( 0.219) & 0.016 & 0.072 \\
\hline 37 & 3.08 & 0.17 & 0.088 & ( 0.218) & 0.016 & 0.072 \\
\hline 38 & 3.17 & 0.17 & 0.088 & ( 0.217) & 0.016 & 0.072 \\
\hline 39 & 3.25 & 0.17 & 0.088 & (0.216) & 0.016 & 0.072 \\
\hline 40 & 3.33 & 0.17 & 0.088 & ( 0.215) & 0.016 & 0.072 \\
\hline 41 & 3.42 & 0.17 & 0.088 & ( 0.214) & 0.016 & 0.072 \\
\hline 42 & 3.50 & 0.17 & 0.088 & ( 0.214) & 0.016 & 0.072 \\
\hline 43 & 3.58 & 0.17 & 0.088 & ( 0.213) & 0.016 & 0.072 \\
\hline 44 & 3.67 & 0.17 & 0.088 & (0.212) & 0.016 & 0.072 \\
\hline 45 & 3.75 & 0.17 & 0.088 & ( 0.211) & 0.016 & 0.072 \\
\hline 46 & 3.83 & 0.20 & 0.105 & ( 0.210) & 0.019 & 0.086 \\
\hline 47 & 3.92 & 0.20 & 0.105 & ( 0.209) & 0.019 & 0.086 \\
\hline 48 & 4.00 & 0.20 & 0.105 & ( 0.208) & 0.019 & 0.086 \\
\hline 49 & 4.08 & 0.20 & 0.105 & ( 0.207) & 0.019 & 0.086 \\
\hline 50 & 4.17 & 0.20 & 0.105 & ( 0.206) & 0.019 & 0.086 \\
\hline 51 & 4.25 & 0.20 & 0.105 & ( 0.206) & 0.019 & 0.086 \\
\hline 52 & 4.33 & 0.23 & 0.123 & ( 0.205) & 0.022 & 0.100 \\
\hline 53 & 4.42 & 0.23 & 0.123 & ( 0.204) & 0.022 & 0.100 \\
\hline 54 & 4.50 & 0.23 & 0.123 & ( 0.203) & 0.022 & 0.100 \\
\hline 55 & 4.58 & 0.23 & 0.123 & ( 0.202) & 0.022 & 0.100 \\
\hline 56 & 4.67 & 0.23 & 0.123 & ( 0.201) & 0.022 & 0.100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 57 & 4.75 & 0.23 & 0.123 & \((\) & \(0.200)\) & 0.022 & 0.100 \\
\hline 58 & 4.83 & 0.27 & 0.140 & ( & \(0.200)\) & 0.025 & 0.115 \\
\hline 59 & 4.92 & 0.27 & 0.140 & \((\) & \(0.199)\) & 0.025 & 0.115 \\
\hline 60 & 5.00 & 0.27 & 0.140 & ( & 0.198) & 0.025 & 0.115 \\
\hline 61 & 5.08 & 0.20 & 0.105 & \((\) & \(0.197)\) & 0.019 & 0.086 \\
\hline 62 & 5.17 & 0.20 & 0.105 & ( & \(0.196)\) & 0.019 & 0.086 \\
\hline 63 & 5.25 & 0.20 & 0.105 & ( & \(0.195)\) & 0.019 & 0.086 \\
\hline 64 & 5.33 & 0.23 & 0.123 & ( & \(0.194)\) & 0.022 & 0.100 \\
\hline 65 & 5.42 & 0.23 & 0.123 & ( & \(0.194)\) & 0.022 & 0.100 \\
\hline 66 & 5.50 & 0.23 & 0.123 & ( & \(0.193)\) & 0.022 & 0.100 \\
\hline 67 & 5.58 & 0.27 & 0.140 & \((\) & \(0.192)\) & 0.025 & 0.115 \\
\hline 68 & 5.67 & 0.27 & 0.140 & ( & \(0.191)\) & 0.025 & 0.115 \\
\hline 69 & 5.75 & 0.27 & 0.140 & ( & \(0.190)\) & 0.025 & 0.115 \\
\hline 70 & 5.83 & 0.27 & 0.140 & ( & 0.189) & 0.025 & 0.115 \\
\hline 71 & 5.92 & 0.27 & 0.140 & ( & 0.188) & 0.025 & 0.115 \\
\hline 72 & 6.00 & 0.27 & 0.140 & \((\) & 0.188) & 0.025 & 0.115 \\
\hline 73 & 6.08 & 0.30 & 0.158 & \((\) & \(0.187)\) & 0.029 & 0.129 \\
\hline 74 & 6.17 & 0.30 & 0.158 & \((\) & \(0.186)\) & 0.029 & 0.129 \\
\hline 75 & 6.25 & 0.30 & 0.158 & ( & \(0.185)\) & 0.029 & 0.129 \\
\hline 76 & 6.33 & 0.30 & 0.158 & \((\) & \(0.184)\) & 0.029 & 0.129 \\
\hline 77 & 6.42 & 0.30 & 0.158 & \((\) & 0.183) & 0.029 & 0.129 \\
\hline 78 & 6.50 & 0.30 & 0.158 & ( & \(0.183)\) & 0.029 & 0.129 \\
\hline 79 & 6.58 & 0.33 & 0.175 & \((\) & \(0.182)\) & 0.032 & 0.143 \\
\hline 80 & 6.67 & 0.33 & 0.175 & ( & \(0.181)\) & 0.032 & 0.143 \\
\hline 81 & 6.75 & 0.33 & 0.175 & ( & \(0.180)\) & 0.032 & 0.143 \\
\hline 82 & 6.83 & 0.33 & 0.175 & \((\) & \(0.179)\) & 0.032 & 0.143 \\
\hline 83 & 6.92 & 0.33 & 0.175 & ( & \(0.179)\) & 0.032 & 0.143 \\
\hline 84 & 7.00 & 0.33 & 0.175 & ( & \(0.178)\) & 0.032 & 0.143 \\
\hline 85 & 7.08 & 0.33 & 0.175 & \((\) & \(0.177)\) & 0.032 & 0.143 \\
\hline 86 & 7.17 & 0.33 & 0.175 & \((\) & \(0.176)\) & 0.032 & 0.143 \\
\hline 87 & 7.25 & 0.33 & 0.175 & \((\) & \(0.175)\) & 0.032 & 0.143 \\
\hline 88 & 7.33 & 0.37 & 0.193 & \((\) & \(0.175)\) & 0.035 & 0.158 \\
\hline 89 & 7.42 & 0.37 & 0.193 & \((\) & \(0.174)\) & 0.035 & 0.158 \\
\hline 90 & 7.50 & 0.37 & 0.193 & ( & \(0.173)\) & 0.035 & 0.158 \\
\hline 91 & 7.58 & 0.40 & 0.210 & \((\) & \(0.172)\) & 0.038 & 0.172 \\
\hline 92 & 7.67 & 0.40 & 0.210 & \((\) & \(0.171)\) & 0.038 & 0.172 \\
\hline 93 & 7.75 & 0.40 & 0.210 & ( & \(0.171)\) & 0.038 & 0.172 \\
\hline 94 & 7.83 & 0.43 & 0.228 & ( & \(0.170)\) & 0.041 & 0.186 \\
\hline 95 & 7.92 & 0.43 & 0.228 & \((\) & 0.169) & 0.041 & 0.186 \\
\hline 96 & 8.00 & 0.43 & 0.228 & \((\) & 0.168) & 0.041 & 0.186 \\
\hline 97 & 8.08 & 0.50 & 0.263 & \((\) & \(0.167)\) & 0.048 & 0.215 \\
\hline 98 & 8.17 & 0.50 & 0.263 & ( & \(0.167)\) & 0.048 & 0.215 \\
\hline 99 & 8.25 & 0.50 & 0.263 & \((\) & \(0.166)\) & 0.048 & 0.215 \\
\hline 100 & 8.33 & 0.50 & 0.263 & \((\) & \(0.165)\) & 0.048 & 0.215 \\
\hline 101 & 8.42 & 0.50 & 0.263 & \((\) & \(0.164)\) & 0.048 & 0.215 \\
\hline 102 & 8.50 & 0.50 & 0.263 & \((\) & \(0.164)\) & 0.048 & 0.215 \\
\hline 103 & 8.58 & 0.53 & 0.280 & \((\) & \(0.163)\) & 0.051 & 0.229 \\
\hline 104 & 8.67 & 0.53 & 0.280 & \((\) & \(0.162)\) & 0.051 & 0.229 \\
\hline 105 & 8.75 & 0.53 & 0.280 & \((\) & \(0.161)\) & 0.051 & 0.229 \\
\hline 106 & 8.83 & 0.57 & 0.298 & \((\) & \(0.161)\) & 0.054 & 0.244 \\
\hline 107 & 8.92 & 0.57 & 0.298 & \((\) & \(0.160)\) & 0.054 & 0.244 \\
\hline 108 & 9.00 & 0.57 & 0.298 & \((\) & \(0.159)\) & 0.054 & 0.244 \\
\hline 109 & 9.08 & 0.63 & 0.333 & \((\) & 0.158) & 0.060 & 0.272 \\
\hline 110 & 9.17 & 0.63 & 0.333 & \((\) & \(0.157)\) & 0.060 & 0.272 \\
\hline 111 & 9.25 & 0.63 & 0.333 & \((\) & \(0.157)\) & 0.060 & 0.272 \\
\hline 112 & 9.33 & 0.67 & 0.350 & \((\) & \(0.156)\) & 0.064 & 0.287 \\
\hline 113 & 9.42 & 0.67 & 0.350 & ( & \(0.155)\) & 0.064 & 0.287 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 114 & 9.50 & 0.67 & 0.350 & ( & \(0.155)\) & 0.064 & 0.287 \\
\hline 115 & 9.58 & 0.70 & 0.368 & ( & \(0.154)\) & 0.067 & 0.301 \\
\hline 116 & 9.67 & 0.70 & 0.368 & ( & 0.153) & 0.067 & 0.301 \\
\hline 117 & 9.75 & 0.70 & 0.368 & ( & \(0.152)\) & 0.067 & 0.301 \\
\hline 118 & 9.83 & 0.73 & 0.385 & ( & \(0.152)\) & 0.070 & 0.315 \\
\hline 119 & 9.92 & 0.73 & 0.385 & ( & 0.151) & 0.070 & 0.315 \\
\hline 120 & 10.00 & 0.73 & 0.385 & \((\) & 0.150) & 0.070 & 0.315 \\
\hline 121 & 10.08 & 0.50 & 0.263 & ( & 0.149) & 0.048 & 0.215 \\
\hline 122 & 10.17 & 0.50 & 0.263 & ( & 0.149) & 0.048 & 0.215 \\
\hline 123 & 10.25 & 0.50 & 0.263 & ( & 0.148) & 0.048 & 0.215 \\
\hline 124 & 10.33 & 0.50 & 0.263 & ( & \(0.147)\) & 0.048 & 0.215 \\
\hline 125 & 10.42 & 0.50 & 0.263 & ( & \(0.146)\) & 0.048 & 0.215 \\
\hline 126 & 10.50 & 0.50 & 0.263 & ( & \(0.146)\) & 0.048 & 0.215 \\
\hline 127 & 10.58 & 0.67 & 0.350 & \((\) & \(0.145)\) & 0.064 & 0.287 \\
\hline 128 & 10.67 & 0.67 & 0.350 & ( & \(0.144)\) & 0.064 & 0.287 \\
\hline 129 & 10.75 & 0.67 & 0.350 & 1 & \(0.144)\) & 0.064 & 0.287 \\
\hline 130 & 10.83 & 0.67 & 0.350 & \((\) & 0.143) & 0.064 & 0.287 \\
\hline 131 & 10.92 & 0.67 & 0.350 & \((\) & \(0.142)\) & 0.064 & 0.287 \\
\hline 132 & 11.00 & 0.67 & 0.350 & ( & \(0.142)\) & 0.064 & 0.287 \\
\hline 133 & 11.08 & 0.63 & 0.333 & \((\) & 0.141) & 0.060 & 0.272 \\
\hline 134 & 11.17 & 0.63 & 0.333 & \((\) & 0.140) & 0.060 & 0.272 \\
\hline 135 & 11.25 & 0.63 & 0.333 & \((\) & 0.139) & 0.060 & 0.272 \\
\hline 136 & 11.33 & 0.63 & 0.333 & \((\) & 0.139) & 0.060 & 0.272 \\
\hline 137 & 11.42 & 0.63 & 0.333 & ( & 0.138) & 0.060 & 0.272 \\
\hline 138 & 11.50 & 0.63 & 0.333 & \((\) & 0.137) & 0.060 & 0.272 \\
\hline 139 & 11.58 & 0.57 & 0.298 & \((\) & \(0.137)\) & 0.054 & 0.244 \\
\hline 140 & 11.67 & 0.57 & 0.298 & \((\) & \(0.136)\) & 0.054 & 0.244 \\
\hline 141 & 11.75 & 0.57 & 0.298 & ( & \(0.135)\) & 0.054 & 0.244 \\
\hline 142 & 11.83 & 0.60 & 0.315 & 1 & 0.135) & 0.057 & 0.258 \\
\hline 143 & 11.92 & 0.60 & 0.315 & \((\) & 0.134) & 0.057 & 0.258 \\
\hline 144 & 12.00 & 0.60 & 0.315 & ( & 0.133) & 0.057 & 0.258 \\
\hline 145 & 12.08 & 0.83 & 0.438 & \((\) & 0.133) & 0.080 & 0.358 \\
\hline 146 & 12.17 & 0.83 & 0.438 & \((\) & 0.132) & 0.080 & 0.358 \\
\hline 147 & 12.25 & 0.83 & 0.438 & \((\) & 0.131) & 0.080 & 0.358 \\
\hline 148 & 12.33 & 0.87 & 0.456 & ( & 0.131) & 0.083 & 0.373 \\
\hline 149 & 12.42 & 0.87 & 0.456 & ( & 0.130) & 0.083 & 0.373 \\
\hline 150 & 12.50 & 0.87 & 0.456 & ( & 0.129) & 0.083 & 0.373 \\
\hline 151 & 12.58 & 0.93 & 0.491 & \((\) & 0.129) & 0.089 & 0.401 \\
\hline 152 & 12.67 & 0.93 & 0.491 & ( & 0.128) & 0.089 & 0.401 \\
\hline 153 & 12.75 & 0.93 & 0.491 & ( & 0.127) & 0.089 & 0.401 \\
\hline 154 & 12.83 & 0.97 & 0.508 & ( & 0.127) & 0.092 & 0.416 \\
\hline 155 & 12.92 & 0.97 & 0.508 & \((\) & \(0.126)\) & 0.092 & 0.416 \\
\hline 156 & 13.00 & 0.97 & 0.508 & \((\) & \(0.126)\) & 0.092 & 0.416 \\
\hline 157 & 13.08 & 1.13 & 0.596 & ( & \(0.125)\) & 0.108 & 0.487 \\
\hline 158 & 13.17 & 1.13 & 0.596 & ( & \(0.124)\) & 0.108 & 0.487 \\
\hline 159 & 13.25 & 1.13 & 0.596 & ( & \(0.124)\) & 0.108 & 0.487 \\
\hline 160 & 13.33 & 1.13 & 0.596 & 1 & 0.123) & 0.108 & 0.487 \\
\hline 161 & 13.42 & 1.13 & 0.596 & \((\) & 0.122) & 0.108 & 0.487 \\
\hline 162 & 13.50 & 1.13 & 0.596 & ( & 0.122) & 0.108 & 0.487 \\
\hline 163 & 13.58 & 0.77 & 0.403 & \((\) & 0.121) & 0.073 & 0.330 \\
\hline 164 & 13.67 & 0.77 & 0.403 & 1 & 0.121) & 0.073 & 0.330 \\
\hline 165 & 13.75 & 0.77 & 0.403 & 1 & 0.120) & 0.073 & 0.330 \\
\hline 166 & 13.83 & 0.77 & 0.403 & \((\) & 0.119) & 0.073 & 0.330 \\
\hline 167 & 13.92 & 0.77 & 0.403 & ( & 0.119) & 0.073 & 0.330 \\
\hline 168 & 14.00 & 0.77 & 0.403 & ( & 0.118) & 0.073 & 0.330 \\
\hline 169 & 14.08 & 0.90 & 0.473 & 1 & 0.117) & 0.086 & 0.387 \\
\hline 170 & 14.17 & 0.90 & 0.473 & \((\) & 0.117) & 0.086 & 0.387 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 171 & 14.25 & 0.90 & 0.473 & ( & 0.116) & 0.086 & 0.387 \\
\hline 172 & 14.33 & 0.87 & 0.456 & ( & 0.116) & 0.083 & 0.373 \\
\hline 173 & 14.42 & 0.87 & 0.456 & ( & 0.115) & 0.083 & 0.373 \\
\hline 174 & 14.50 & 0.87 & 0.456 & ( & 0.114) & 0.083 & 0.373 \\
\hline 175 & 14.58 & 0.87 & 0.456 & \((\) & 0.114) & 0.083 & 0.373 \\
\hline 176 & 14.67 & 0.87 & 0.456 & ( & 0.113) & 0.083 & 0.373 \\
\hline 177 & 14.75 & 0.87 & 0.456 & ( & 0.113) & 0.083 & 0.373 \\
\hline 178 & 14.83 & 0.83 & 0.438 & ( & 0.112) & 0.080 & 0.358 \\
\hline 179 & 14.92 & 0.83 & 0.438 & ( & 0.112) & 0.080 & 0.358 \\
\hline 180 & 15.00 & 0.83 & 0.438 & ( & 0.111) & 0.080 & 0.358 \\
\hline 181 & 15.08 & 0.80 & 0.420 & ( & 0.110) & 0.076 & 0.344 \\
\hline 182 & 15.17 & 0.80 & 0.420 & ( & 0.110) & 0.076 & 0.344 \\
\hline 183 & 15.25 & 0.80 & 0.420 & ( & 0.109) & 0.076 & 0.344 \\
\hline 184 & 15.33 & 0.77 & 0.403 & ( & 0.109) & 0.073 & 0.330 \\
\hline 185 & 15.42 & 0.77 & 0.403 & ( & 0.108) & 0.073 & 0.330 \\
\hline 186 & 15.50 & 0.77 & 0.403 & ( & 0.108) & 0.073 & 0.330 \\
\hline 187 & 15.58 & 0.63 & 0.333 & ( & 0.107) & 0.060 & 0.272 \\
\hline 188 & 15.67 & 0.63 & 0.333 & ( & 0.107) & 0.060 & 0.272 \\
\hline 189 & 15.75 & 0.63 & 0.333 & ( & \(0.106)\) & 0.060 & 0.272 \\
\hline 190 & 15.83 & 0.63 & 0.333 & ( & 0.105) & 0.060 & 0.272 \\
\hline 191 & 15.92 & 0.63 & 0.333 & ( & 0.105) & 0.060 & 0.272 \\
\hline 192 & 16.00 & 0.63 & 0.333 & ( & 0.104) & 0.060 & 0.272 \\
\hline 193 & 16.08 & 0.13 & 0.070 & ( & 0.104) & 0.013 & 0.057 \\
\hline 194 & 16.17 & 0.13 & 0.070 & ( & 0.103) & 0.013 & 0.057 \\
\hline 195 & 16.25 & 0.13 & 0.070 & ( & 0.103) & 0.013 & 0.057 \\
\hline 196 & 16.33 & 0.13 & 0.070 & ( & 0.102) & 0.013 & 0.057 \\
\hline 197 & 16.42 & 0.13 & 0.070 & \((\) & 0.102) & 0.013 & 0.057 \\
\hline 198 & 16.50 & 0.13 & 0.070 & ( & 0.101) & 0.013 & 0.057 \\
\hline 199 & 16.58 & 0.10 & 0.053 & ( & 0.101) & 0.010 & 0.043 \\
\hline 200 & 16.67 & 0.10 & 0.053 & ( & 0.100) & 0.010 & 0.043 \\
\hline 201 & 16.75 & 0.10 & 0.053 & ( & 0.100) & 0.010 & 0.043 \\
\hline 202 & 16.83 & 0.10 & 0.053 & \((\) & 0.099) & 0.010 & 0.043 \\
\hline 203 & 16.92 & 0.10 & 0.053 & ( & 0.099) & 0.010 & 0.043 \\
\hline 204 & 17.00 & 0.10 & 0.053 & ( & 0.098) & 0.010 & 0.043 \\
\hline 205 & 17.08 & 0.17 & 0.088 & \((\) & 0.098) & 0.016 & 0.072 \\
\hline 206 & 17.17 & 0.17 & 0.088 & ( & 0.097) & 0.016 & 0.072 \\
\hline 207 & 17.25 & 0.17 & 0.088 & ( & \(0.097)\) & 0.016 & 0.072 \\
\hline 208 & 17.33 & 0.17 & 0.088 & ( & \(0.096)\) & 0.016 & 0.072 \\
\hline 209 & 17.42 & 0.17 & 0.088 & ( & \(0.096)\) & 0.016 & 0.072 \\
\hline 210 & 17.50 & 0.17 & 0.088 & ( & 0.095) & 0.016 & 0.072 \\
\hline 211 & 17.58 & 0.17 & 0.088 & ( & 0.095) & 0.016 & 0.072 \\
\hline 212 & 17.67 & 0.17 & 0.088 & ( & \(0.094)\) & 0.016 & 0.072 \\
\hline 213 & 17.75 & 0.17 & 0.088 & \((\) & \(0.094)\) & 0.016 & 0.072 \\
\hline 214 & 17.83 & 0.13 & 0.070 & \((\) & 0.093) & 0.013 & 0.057 \\
\hline 215 & 17.92 & 0.13 & 0.070 & ( & 0.093) & 0.013 & 0.057 \\
\hline 216 & 18.00 & 0.13 & 0.070 & ( & 0.092) & 0.013 & 0.057 \\
\hline 217 & 18.08 & 0.13 & 0.070 & ( & 0.092) & 0.013 & 0.057 \\
\hline 218 & 18.17 & 0.13 & 0.070 & ( & 0.092) & 0.013 & 0.057 \\
\hline 219 & 18.25 & 0.13 & 0.070 & ( & 0.091) & 0.013 & 0.057 \\
\hline 220 & 18.33 & 0.13 & 0.070 & ( & 0.091) & 0.013 & 0.057 \\
\hline 221 & 18.42 & 0.13 & 0.070 & \((\) & 0.090) & 0.013 & 0.057 \\
\hline 222 & 18.50 & 0.13 & 0.070 & ( & 0.090) & 0.013 & 0.057 \\
\hline 223 & 18.58 & 0.10 & 0.053 & ( & 0.089) & 0.010 & 0.043 \\
\hline 224 & 18.67 & 0.10 & 0.053 & \((\) & 0.089) & 0.010 & 0.043 \\
\hline 225 & 18.75 & 0.10 & 0.053 & \((\) & 0.088) & 0.010 & 0.043 \\
\hline 226 & 18.83 & 0.07 & 0.035 & \((\) & 0.088) & 0.006 & 0.029 \\
\hline 227 & 18.92 & 0.07 & 0.035 & ( & 0.088) & 0.006 & 0.029 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 228 & 19.00 & 0.07 & 0.035 & ( 0.087) & 0.006 & 0.029 \\
\hline 229 & 19.08 & 0.10 & 0.053 & ( 0.087) & 0.010 & 0.043 \\
\hline 230 & 19.17 & 0.10 & 0.053 & ( 0.086) & 0.010 & 0.043 \\
\hline 231 & 19.25 & 0.10 & 0.053 & ( 0.086) & 0.010 & 0.043 \\
\hline 232 & 19.33 & 0.13 & 0.070 & ( 0.086) & 0.013 & 0.057 \\
\hline 233 & 19.42 & 0.13 & 0.070 & ( 0.085) & 0.013 & 0.057 \\
\hline 234 & 19.50 & 0.13 & 0.070 & ( 0.085) & 0.013 & 0.057 \\
\hline 235 & 19.58 & 0.10 & 0.053 & ( 0.084) & 0.010 & 0.043 \\
\hline 236 & 19.67 & 0.10 & 0.053 & ( 0.084) & 0.010 & 0.043 \\
\hline 237 & 19.75 & 0.10 & 0.053 & ( 0.084) & 0.010 & 0.043 \\
\hline 238 & 19.83 & 0.07 & 0.035 & ( 0.083) & 0.006 & 0.029 \\
\hline 239 & 19.92 & 0.07 & 0.035 & ( 0.083) & 0.006 & 0.029 \\
\hline 240 & 20.00 & 0.07 & 0.035 & ( 0.083) & 0.006 & 0.029 \\
\hline 241 & 20.08 & 0.10 & 0.053 & ( 0.082) & 0.010 & 0.043 \\
\hline 242 & 20.17 & 0.10 & 0.053 & ( 0.082) & 0.010 & 0.043 \\
\hline 243 & 20.25 & 0.10 & 0.053 & ( 0.081) & 0.010 & 0.043 \\
\hline 244 & 20.33 & 0.10 & 0.053 & ( 0.081) & 0.010 & 0.043 \\
\hline 245 & 20.42 & 0.10 & 0.053 & ( 0.081) & 0.010 & 0.043 \\
\hline 246 & 20.50 & 0.10 & 0.053 & ( 0.080) & 0.010 & 0.043 \\
\hline 247 & 20.58 & 0.10 & 0.053 & ( 0.080) & 0.010 & 0.043 \\
\hline 248 & 20.67 & 0.10 & 0.053 & ( 0.080) & 0.010 & 0.043 \\
\hline 249 & 20.75 & 0.10 & 0.053 & ( 0.079) & 0.010 & 0.043 \\
\hline 250 & 20.83 & 0.07 & 0.035 & ( 0.079) & 0.006 & 0.029 \\
\hline 251 & 20.92 & 0.07 & 0.035 & ( 0.079) & 0.006 & 0.029 \\
\hline 252 & 21.00 & 0.07 & 0.035 & ( 0.078) & 0.006 & 0.029 \\
\hline 253 & 21.08 & 0.10 & 0.053 & ( 0.078) & 0.010 & 0.043 \\
\hline 254 & 21.17 & 0.10 & 0.053 & ( 0.078) & 0.010 & 0.043 \\
\hline 255 & 21.25 & 0.10 & 0.053 & ( 0.078) & 0.010 & 0.043 \\
\hline 256 & 21.33 & 0.07 & 0.035 & ( 0.077) & 0.006 & 0.029 \\
\hline 257 & 21.42 & 0.07 & 0.035 & ( 0.077) & 0.006 & 0.029 \\
\hline 258 & 21.50 & 0.07 & 0.035 & ( 0.077) & 0.006 & 0.029 \\
\hline 259 & 21.58 & 0.10 & 0.053 & ( 0.076) & 0.010 & 0.043 \\
\hline 260 & 21.67 & 0.10 & 0.053 & ( 0.076) & 0.010 & 0.043 \\
\hline 261 & 21.75 & 0.10 & 0.053 & ( 0.076) & 0.010 & 0.043 \\
\hline 262 & 21.83 & 0.07 & 0.035 & \((0.076)\) & 0.006 & 0.029 \\
\hline 263 & 21.92 & 0.07 & 0.035 & ( 0.075) & 0.006 & 0.029 \\
\hline 264 & 22.00 & 0.07 & 0.035 & ( 0.075) & 0.006 & 0.029 \\
\hline 265 & 22.08 & 0.10 & 0.053 & ( 0.075) & 0.010 & 0.043 \\
\hline 266 & 22.17 & 0.10 & 0.053 & ( 0.075) & 0.010 & 0.043 \\
\hline 267 & 22.25 & 0.10 & 0.053 & ( 0.074) & 0.010 & 0.043 \\
\hline 268 & 22.33 & 0.07 & 0.035 & ( 0.074) & 0.006 & 0.029 \\
\hline 269 & 22.42 & 0.07 & 0.035 & ( 0.074) & 0.006 & 0.029 \\
\hline 270 & 22.50 & 0.07 & 0.035 & ( 0.074) & 0.006 & 0.029 \\
\hline 271 & 22.58 & 0.07 & 0.035 & ( 0.073) & 0.006 & 0.029 \\
\hline 272 & 22.67 & 0.07 & 0.035 & ( 0.073) & 0.006 & 0.029 \\
\hline 273 & 22.75 & 0.07 & 0.035 & ( 0.073) & 0.006 & 0.029 \\
\hline 274 & 22.83 & 0.07 & 0.035 & ( 0.073) & 0.006 & 0.029 \\
\hline 275 & 22.92 & 0.07 & 0.035 & ( 0.073) & 0.006 & 0.029 \\
\hline 276 & 23.00 & 0.07 & 0.035 & ( 0.072) & 0.006 & 0.029 \\
\hline 277 & 23.08 & 0.07 & 0.035 & ( 0.072) & 0.006 & 0.029 \\
\hline 278 & 23.17 & 0.07 & 0.035 & ( 0.072) & 0.006 & 0.029 \\
\hline 279 & 23.25 & 0.07 & 0.035 & ( 0.072) & 0.006 & 0.029 \\
\hline 280 & 23.33 & 0.07 & 0.035 & ( 0.072) & 0.006 & 0.029 \\
\hline 281 & 23.42 & 0.07 & 0.035 & ( 0.072) & 0.006 & 0.029 \\
\hline 282 & 23.50 & 0.07 & 0.035 & ( 0.072) & 0.006 & 0.029 \\
\hline 283 & 23.58 & 0.07 & 0.035 & ( 0.071) & 0.006 & 0.029 \\
\hline 284 & 23.67 & 0.07 & 0.035 & ( 0.071) & 0.006 & 0.029 \\
\hline
\end{tabular}


Hydrograph in 5 Minute intervals ((CFS))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Time (h+m) & Volume Ac.Ft & Q (CFS) & 0 & & 2.5 & 5.0 & 7.5 & 10.0 \\
\hline \(0+5\) & 0.0006 & 0.08 & Q & & | & | & & | \\
\hline \(0+10\) & 0.0030 & 0.35 & VQ & & | & | & | & 1 \\
\hline \(0+15\) & 0.0061 & 0.45 & VQ & & | & | & | & | \\
\hline \(0+20\) & 0.0097 & 0.54 & V Q & & | & | & | & | \\
\hline \(0+25\) & 0.0145 & 0.69 & V 2 & & | & | & | & | \\
\hline \(0+30\) & 0.0198 & 0.76 & V & Q & | & | & | & | \\
\hline \(0+35\) & 0.0252 & 0.80 & V & Q & | & | & | & | \\
\hline \(0+40\) & 0.0309 & 0.82 & V & Q & | & | & | & , \\
\hline \(0+45\) & 0.0366 & 0.83 & V & Q & | & | & | & I \\
\hline \(0+50\) & 0.0426 & 0.88 & V & Q & | & | & | & , \\
\hline \(0+55\) & 0.0496 & 1.02 & V & Q & | & | & | & | \\
\hline \(1+0\) & 0.0570 & 1.07 & V & Q & I & | & | & | \\
\hline \(1+5\) & 0.0643 & 1.05 & V & Q & | & | & | & | \\
\hline 1+10 & 0.0707 & 0.94 & V & Q & | & | & | & | \\
\hline \(1+15\) & 0.0769 & 0.89 & V & Q & | & , & | & | \\
\hline \(1+20\) & 0.0829 & 0.88 & V & Q & | & , & | & 1 \\
\hline \(1+25\) & 0.0889 & 0.87 & V & Q & | & | & | & | \\
\hline \(1+30\) & 0.0948 & 0.86 & V & Q & | & , & | & | \\
\hline \(1+35\) & 0.1007 & 0.86 & V & Q & | & | & | & | \\
\hline \(1+40\) & 0.1066 & 0.85 & V & Q & | & I & | & | \\
\hline \(1+45\) & 0.1124 & 0.85 & V & Q & | & | & | & | \\
\hline \(1+50\) & 0.1186 & 0.89 & V & Q & | & , & | & | \\
\hline \(1+55\) & 0.1256 & 1.02 & V & Q & | & , & | & | \\
\hline \(2+0\) & 0.1330 & 1.07 & V & Q & | & , & | & | \\
\hline \(2+5\) & 0.1405 & 1.10 & V & Q & | & | & | & | \\
\hline \(2+10\) & 0.1482 & 1.11 & | V & Q & | & | & | & | \\
\hline \(2+15\) & 0.1558 & 1.12 & | V & Q & I & I & | & | \\
\hline \(2+20\) & 0.1636 & 1.12 & | V & Q & | & | & | & | \\
\hline \(2+25\) & 0.1713 & 1.13 & | V & Q & I & | & | & , \\
\hline \(2+30\) & 0.1791 & 1.13 & | V & Q & | & | & | & | \\
\hline \(2+35\) & 0.1872 & 1.17 & | V & Q & | & | & | & | \\
\hline \(2+40\) & 0.1962 & 1.30 & | V & Q & | & | & | & , \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(2+45\) & 0.2055 & 1.36 & IV & Q & | & | & | \\
\hline \(2+50\) & 0.2150 & 1.38 & IV & Q & I & | & | \\
\hline \(2+55\) & 0.2246 & 1.39 & IV & Q & | & | & | \\
\hline \(3+0\) & 0.2342 & 1.40 & IV & Q & | & | & | \\
\hline \(3+5\) & 0.2439 & 1.41 & IV & Q & | & | & | \\
\hline \(3+10\) & 0.2536 & 1.41 & IV & Q & | & | & | \\
\hline \(3+15\) & 0.2633 & 1.41 & IV & Q & | & | & | \\
\hline 3+20 & 0.2731 & 1.41 & IV & Q & | & | & | \\
\hline \(3+25\) & 0.2828 & 1.41 & IV & Q & | & | & | \\
\hline \(3+30\) & 0.2925 & 1.41 & \| V & Q & | & | & | \\
\hline \(3+35\) & 0.3023 & 1.41 & \| V & Q & | & | & | \\
\hline \(3+40\) & 0.3120 & 1.41 & \| V & Q & I & | & I \\
\hline \(3+45\) & 0.3218 & 1.41 & | V & Q & | & | & | \\
\hline \(3+50\) & 0.3318 & 1.46 & \| V & Q & , & | & | \\
\hline \(3+55\) & 0.3427 & 1.59 & \| V & Q & | & | & | \\
\hline \(4+0\) & 0.3540 & 1.64 & \| V & Q & | & | & | \\
\hline 4+ 5 & 0.3654 & 1.66 & \| V & Q & | & | & | \\
\hline 4+10 & 0.3770 & 1.67 & \| V & Q & | & | & | \\
\hline \(4+15\) & 0.3885 & 1.68 & \| V & Q & I & | & | \\
\hline 4+20 & 0.4005 & 1.73 & \| V & Q & | & | & | \\
\hline \(4+25\) & 0.4133 & 1.86 & \| V & Q & | & | & I \\
\hline \(4+30\) & 0.4265 & 1.92 & \| V & Q & | & | & | \\
\hline \(4+35\) & 0.4399 & 1.94 & \| V & Q & | & | & | \\
\hline \(4+40\) & 0.4534 & 1.96 & I V & Q & | & | & | \\
\hline \(4+45\) & 0.4669 & 1.97 & I V & Q & I & | & | \\
\hline \(4+50\) & 0.4808 & 2.01 & I V & Q & , & | & | \\
\hline \(4+55\) & 0.4956 & 2.15 & I V & Q & I & | & I \\
\hline \(5+0\) & 0.5107 & 2.20 & \| V & Q & I & | & | \\
\hline \(5+5\) & 0.5255 & 2.14 & I V & Q & | & | & | \\
\hline \(5+10\) & 0.5385 & 1.89 & I V & Q & , & | & | \\
\hline \(5+15\) & 0.5509 & 1.80 & I V & Q & | & | & | \\
\hline \(5+20\) & 0.5633 & 1.80 & I V & Q & | & | & | \\
\hline \(5+25\) & 0.5765 & 1.91 & \| V & Q & | & | & | \\
\hline \(5+30\) & 0.5899 & 1.95 & I V & Q & , & | & | \\
\hline \(5+35\) & 0.6037 & 2.00 & V & V Q & , & | & | \\
\hline \(5+40\) & 0.6184 & 2.14 & V & - Q & I & | & | \\
\hline \(5+45\) & 0.6335 & 2.19 & V & \(\checkmark\) Q & & | & | \\
\hline 5+50 & 0.6488 & 2.22 & V & \(\checkmark\) Q & I & | & | \\
\hline \(5+55\) & 0.6642 & 2.24 & V & V Q & , & | & | \\
\hline \(6+0\) & 0.6797 & 2.25 & V & V Q & & | & | \\
\hline \(6+5\) & 0.6955 & 2.30 & V & & & | & | \\
\hline \(6+10\) & 0.7122 & 2.43 & V & & & | & | \\
\hline \(6+15\) & 0.7293 & 2.48 & V & & & | & | \\
\hline \(6+20\) & 0.7466 & 2.51 & I V & V & Q & | & | \\
\hline \(6+25\) & 0.7640 & 2.52 & I V & V & 2 & | & | \\
\hline \(6+30\) & 0.7814 & 2.53 & I V & V & Q & | & | \\
\hline \(6+35\) & 0.7992 & 2.58 & 1 & V & Q & | & | \\
\hline \(6+40\) & 0.8179 & 2.71 & 1 & V & Q & | & | \\
\hline \(6+45\) & 0.8369 & 2.77 & I V & V & 12 & | & | \\
\hline 6+50 & 0.8562 & 2.79 & 1 & V & 12 & | & | \\
\hline 6+55 & 0.8755 & 2.81 & 1 & V & 12 & | & | \\
\hline \(7+0\) & 0.8949 & 2.81 & I & V & 12 & । & | \\
\hline \(7+5\) & 0.9143 & 2.82 & | & V & 12 & । & | \\
\hline \(7+10\) & 0.9337 & 2.82 & | & V & 12 & | & | \\
\hline \(7+15\) & 0.9532 & 2.83 & | & V & 12 & | & | \\
\hline \(7+20\) & 0.9729 & 2.87 & | & V & 12 & | & | \\
\hline \(7+25\) & 0.9936 & 3.00 & 1 & V & | Q & | & | \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(17+0\) & 5.3532 & 0.86 & Q & | & | & | & V \\
\hline \(17+5\) & 5.3597 & 0.94 & Q & | & | & | & V \\
\hline \(17+10\) & 5.3679 & 1.20 & Q & | & | & | & V \\
\hline \(17+15\) & 5.3769 & 1.30 & Q & | & | & | & V \\
\hline \(17+20\) & 5.3861 & 1.34 & Q & | & | & | & V \\
\hline \(17+25\) & 5.3955 & 1.37 & Q & | & | & | & V \\
\hline \(17+30\) & 5.4051 & 1.39 & Q & | & | & | & V \\
\hline \(17+35\) & 5.4147 & 1.40 & Q & | & | & | & V \\
\hline \(17+40\) & 5.4244 & 1.40 & Q & , & | & | & V \\
\hline \(17+45\) & 5.4341 & 1.41 & Q & | & | & | & V \\
\hline \(17+50\) & 5.4435 & 1.37 & Q & | & | & | & V \\
\hline \(17+55\) & 5.4521 & 1.24 & Q & | & | & | & V \\
\hline \(18+0\) & 5.4603 & 1.19 & Q & । & , & | & V \\
\hline \(18+5\) & 5.4683 & 1.17 & Q & | & | & | & V \\
\hline \(18+10\) & 5.4763 & 1.15 & Q & | & , & | & V \\
\hline \(18+15\) & 5.4841 & 1.15 & Q & | & | & | & V \\
\hline \(18+20\) & 5.4920 & 1.14 & Q & । & | & | & V \\
\hline \(18+25\) & 5.4998 & 1.14 & Q & | & । & । & V \\
\hline \(18+30\) & 5.5076 & 1.13 & Q & | & | & | & V \\
\hline \(18+35\) & 5.5151 & 1.09 & Q & | & , & | & V \\
\hline \(18+40\) & 5.5217 & 0.96 & Q & | & \| & | & V \\
\hline \(18+45\) & 5.5280 & 0.91 & Q & । & । & । & V \\
\hline \(18+50\) & 5.5338 & 0.84 & Q & | & , & | & V \\
\hline \(18+55\) & 5.5386 & 0.70 & Q & | & | & | & V \\
\hline \(19+0\) & 5.5430 & 0.64 & Q & | & | & | & V \\
\hline 19+ 5 & 5.5475 & 0.65 & Q & | & | & । & V \\
\hline \(19+10\) & 5.5527 & 0.77 & Q & | & | & | & V \\
\hline \(19+15\) & 5.5583 & 0.81 & Q & | & | & , & V \\
\hline \(19+20\) & 5.5642 & 0.86 & Q & | & | & , & V \\
\hline \(19+25\) & 5.5711 & 1.00 & Q & | & | & । & V \\
\hline \(19+30\) & 5.5784 & 1.06 & Q & | & , & | & V \\
\hline \(19+35\) & 5.5856 & 1.04 & Q & \| & | & | & V \\
\hline \(19+40\) & 5.5921 & 0.93 & Q & \| & \| & | & V \\
\hline \(19+45\) & 5.5982 & 0.89 & Q & | & | & | & V \\
\hline \(19+50\) & 5.6039 & 0.83 & Q & | & | & | & V \\
\hline \(19+55\) & 5.6087 & 0.69 & Q & । & | & | & V \\
\hline \(20+0\) & 5.6131 & 0.64 & Q & I & । & । & V \\
\hline \(20+5\) & 5.6176 & 0.65 & Q & । & , & | & V \\
\hline \(20+10\) & 5.6228 & 0.77 & Q & । & । & , & V \\
\hline \(20+15\) & 5.6284 & 0.81 & Q & | & | & । & V \\
\hline \(20+20\) & 5.6341 & 0.82 & Q & | & | & \| & V \\
\hline \(20+25\) & 5.6398 & 0.83 & Q & | & । & | & V \\
\hline \(20+30\) & 5.6455 & 0.84 & Q & | & | & | & V \\
\hline \(20+35\) & 5.6513 & 0.84 & Q & | & | & | & V \\
\hline \(20+40\) & 5.6571 & 0.84 & Q & | & | & । & V \\
\hline \(20+45\) & 5.6630 & 0.85 & Q & | & | & | & V \\
\hline \(20+50\) & 5.6685 & 0.81 & Q & । & \| & | & V \\
\hline \(20+55\) & 5.6732 & 0.68 & Q & 1 & । & । & V \\
\hline \(21+0\) & 5.6775 & 0.62 & Q & 1 & | & | & V \\
\hline \(21+5\) & 5.6819 & 0.64 & Q & I & । & | & V \\
\hline \(21+10\) & 5.6871 & 0.76 & Q & | & \| & , & V \\
\hline \(21+15\) & 5.6927 & 0.80 & Q & 1 & । & | & V \\
\hline \(21+20\) & 5.6980 & 0.78 & Q & | & । & | & V \\
\hline \(21+25\) & 5.7026 & 0.66 & Q & | & | & । & V \\
\hline \(21+30\) & 5.7068 & 0.61 & Q & 1 & | & | & V \\
\hline \(21+35\) & 5.7111 & 0.64 & Q & | & | & | & VI \\
\hline \(21+40\) & 5.7164 & 0.76 & Q & & & | & V \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(21+45\) & 5.7219 & 0.80 & 1 Q & | & | & | & VI \\
\hline \(21+50\) & 5.7272 & 0.78 & 1 Q & | & | & | & VI \\
\hline \(21+55\) & 5.7318 & 0.66 & | Q & I & | & | & V I \\
\hline \(22+0\) & 5.7360 & 0.61 & | Q & | & | & | & V I \\
\hline \(22+5\) & 5.7404 & 0.64 & 1 Q & | & | & | & V \\
\hline 22+10 & 5.7456 & 0.76 & 1 Q & | & | & | & VI \\
\hline \(22+15\) & 5.7511 & 0.80 & 1 Q & | & | & | & V I \\
\hline 22+20 & 5.7565 & 0.78 & 1 Q & | & | & | & V \\
\hline \(22+25\) & 5.7610 & 0.66 & \| Q & | & | & | & V \\
\hline \(22+30\) & 5.7652 & 0.61 & \| Q & | & | & | & V I \\
\hline \(22+35\) & 5.7693 & 0.59 & । Q & , & | & | & V 1 \\
\hline \(22+40\) & 5.7733 & 0.58 & | Q & | & | & | & V \\
\hline \(22+45\) & 5.7773 & 0.58 & 1 Q & I & | & | & VI \\
\hline 22+50 & 5.7812 & 0.57 & । 2 & । & | & | & V I \\
\hline \(22+55\) & 5.7852 & 0.57 & \| Q & | & | & | & VI \\
\hline \(23+0\) & 5.7891 & 0.57 & | Q & | & | & | & VI \\
\hline 23+5 & 5.7930 & 0.57 & | Q & | & | & | & V I \\
\hline 23+10 & 5.7969 & 0.57 & \| Q & | & | & | & V 1 \\
\hline 23+15 & 5.8008 & 0.57 & \| 2 & | & | & | & VI \\
\hline \(23+20\) & 5.8047 & 0.57 & \| Q & | & | & | & V I \\
\hline \(23+25\) & 5.8085 & 0.57 & 1 Q & | & | & | & V I \\
\hline 23+30 & 5.8124 & 0.57 & 1 Q & | & | & | & VI \\
\hline \(23+35\) & 5.8163 & 0.57 & 1 Q & | & | & | & VI \\
\hline \(23+40\) & 5.8202 & 0.57 & । Q & | & | & | & V 1 \\
\hline \(23+45\) & 5.8241 & 0.57 & \| Q & I & | & | & V I \\
\hline \(23+50\) & 5.8280 & 0.57 & । Q & | & | & | & VI \\
\hline \(23+55\) & 5.8319 & 0.57 & 1 Q & | & | & | & VI \\
\hline \(24+0\) & 5.8358 & 0.57 & 12 & | & | & | & VI \\
\hline 24+5 & 5.8391 & 0.48 & 12 & | & | & | & VI \\
\hline \(24+10\) & 5.8406 & 0.22 & Q & | & | & | & VI \\
\hline \(24+15\) & 5.8414 & 0.12 & Q & , & | & | & VI \\
\hline 24+20 & 5.8419 & 0.07 & Q & , & | & | & VI \\
\hline \(24+25\) & 5.8423 & 0.05 & Q & | & | & | & V I \\
\hline \(24+30\) & 5.8425 & 0.03 & Q & | & | & | & VI \\
\hline \(24+35\) & 5.8426 & 0.02 & Q & | & | & | & V 1 \\
\hline \(24+40\) & 5.8426 & 0.01 & Q & | & I & | & V I \\
\hline \(24+45\) & 5.8427 & 0.00 & Q & , & - & I & V \\
\hline
\end{tabular}

\section*{APPENDIX D}

Hydraulic Calculations
D.1: PIPE HYDRAULICS CALCULATIONS
D.2: STREET CAPACITY CALCULATIONS
D.3: INLET CALCULATIONS
D.4: OUTLET CONTROL - WEIR CALCULATIONS

\section*{Hydraulic Analysis Report}

\section*{Project Data}

Project Title: 100 W Sinclair St
Designer: DJV
Project Date: Monday, September 12, 2022
Project Units: U.S. Customary Units
Notes:

\section*{Channel Analysis: SD PIPE \#1}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 2.0000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 13.0000 cfs

\section*{Result Parameters}

Depth: 1.5375 ft
Area of Flow: 2.5915 ft ^2
Wetted Perimeter: 4.2766 ft
Hydraulic Radius: 0.6060 ft
Average Velocity: \(5.0163 \mathrm{ft} / \mathrm{s}\)
Top Width: 1.6865 ft
Froude Number: 0.7131
Critical Depth: 1.2969 ft
Critical Velocity: \(6.0305 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0077 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 1.91 ft
Calculated Max Shear Stress: \(0.4797 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.1891 \mathrm{lb} / \mathrm{t}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#2}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 2.5000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 26.8000 cfs

\section*{Result Parameters}

Depth: 2.2520 ft
Area of Flow: \(4.6563 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 6.2520 ft
Hydraulic Radius: 0.7448 ft
Average Velocity: \(5.7557 \mathrm{ft} / \mathrm{s}\)
Top Width: 1.4946 ft
Froude Number: 0.5747
Critical Depth: 1.7651 ft
Critical Velocity: \(7.2339 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0079 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 2.28 ft
Calculated Max Shear Stress: \(0.7026 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.2324 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#3}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 3.0000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 32.9000 cfs

\section*{Result Parameters}

Depth: 2.0389 ft
Area of Flow: \(5.1154 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 5.8148 ft
Hydraulic Radius: 0.8797 ft
Average Velocity: \(6.4315 \mathrm{ft} / \mathrm{s}\)
Top Width: 2.7997 ft
Froude Number: 0.8385
Critical Depth: 1.8618 ft
Critical Velocity: \(7.1380 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0065 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 2.91 ft
Calculated Max Shear Stress: \(0.6361 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.2745 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#4}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 4.1000 cfs

\section*{Result Parameters}

Depth: 0.8695 ft
Area of Flow: \(1.0621 \mathrm{ft}{ }^{\wedge} 2\)
Wetted Perimeter: 2.5963 ft
Hydraulic Radius: 0.4091 ft
Average Velocity: \(3.8603 \mathrm{ft} / \mathrm{s}\)
Top Width: 1.4808 ft
Froude Number: 0.8033
Critical Depth: 0.7756 ft
Critical Velocity: \(4.4468 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0072 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 1.50 ft
Calculated Max Shear Stress: \(0.2713 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.1276 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#5}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 5.2200 cfs

\section*{Result Parameters}

Depth: 1.0250 ft
Area of Flow: \(1.2867 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 2.9194 ft
Hydraulic Radius: 0.4407 ft
Average Velocity: \(4.0570 \mathrm{ft} / \mathrm{s}\)
Top Width: 1.3955 ft
Froude Number: 0.7446
Critical Depth: 0.8796 ft
Critical Velocity: \(4.8465 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0078 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 1.48 ft
Calculated Max Shear Stress: \(0.3198 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.1375 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#6}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 2.7000 cfs

\section*{Result Parameters}

Depth: 0.6777 ft
Area of Flow: \(0.7753 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 2.2113 ft
Hydraulic Radius: 0.3506 ft
Average Velocity: \(3.4827 \mathrm{ft} / \mathrm{s}\)
Top Width: 1.4930 ft
Froude Number: 0.8517
Critical Depth: 0.6233 ft
Critical Velocity: \(3.8882 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0067 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 1.48 ft
Calculated Max Shear Stress: \(0.2114 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.1094 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#7}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 1.0000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 1.8000 cfs

\section*{Result Parameters}

Depth: 0.6919 ft
Area of Flow: \(0.5797 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 1.9646 ft
Hydraulic Radius: 0.2951 ft
Average Velocity: \(3.1048 \mathrm{ft} / \mathrm{s}\)
Top Width: 0.9235 ft
Froude Number: 0.6906
Critical Depth: 0.5713 ft
Critical Velocity: \(3.8814 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0088 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 0.99 ft
Calculated Max Shear Stress: \(0.2159 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.0921 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#8}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 4.4000 cfs

\section*{Result Parameters}

Depth: 0.9103 ft
Area of Flow: \(1.1221 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 2.6792 ft
Hydraulic Radius: 0.4188 ft
Average Velocity: \(3.9212 \mathrm{ft} / \mathrm{s}\)
Top Width: 1.4654 ft
Froude Number: 0.7897
Critical Depth: 0.8042 ft
Critical Velocity: \(4.5605 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0074 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 1.50 ft
Calculated Max Shear Stress: \(0.2840 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.1307 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#9}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 1.0000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 1.2000 cfs

\section*{Result Parameters}

Depth: 0.5290 ft
Area of Flow: \(0.4217 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 1.6289 ft
Hydraulic Radius: 0.2589 ft
Average Velocity: \(2.8456 \mathrm{ft} / \mathrm{s}\)
Top Width: 0.9983 ft
Froude Number: 0.7716
Critical Depth: 0.4619 ft
Critical Velocity: \(3.3836 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0079 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 1.00 ft
Calculated Max Shear Stress: \(0.1651 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.0808 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#10}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 6.2000 cfs

\section*{Result Parameters}

Depth: 1.1825 ft
Area of Flow: 1.4943 ft ^2
Wetted Perimeter: 3.2781 ft
Hydraulic Radius: 0.4558 ft
Average Velocity: \(4.1492 \mathrm{ft} / \mathrm{s}\)
Top Width: 1.2255 ft
Froude Number: 0.6622
Critical Depth: 0.9624 ft
Critical Velocity: \(5.1759 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0084 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 1.44 ft
Calculated Max Shear Stress: \(0.3689 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.1422 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)

\section*{Channel Analysis: SD PIPE \#11}

Notes:

\section*{Input Parameters}

Channel Type: Circular
Pipe Diameter: 2.0000 ft
Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Manning's n: 0.0150
Flow: 14.7000 cfs

\section*{Result Parameters}

Depth: 1.7795 ft
Area of Flow: \(2.9530 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 4.9295 ft
Hydraulic Radius: 0.5991 ft
Average Velocity: \(4.9780 \mathrm{ft} / \mathrm{s}\)
Top Width: 1.2527 ft
Froude Number: 0.5714
Critical Depth: 1.3818 ft
Critical Velocity: \(6.3486 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0083 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 1.85 ft
Calculated Max Shear Stress: \(0.5552 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.1869 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)



\section*{Hydraulic Analysis Report}

\section*{Project Data}

Project Title: 100 W Sinclair St
Designer: DJV
Project Date: Monday, September 12, 2022
Project Units: U.S. Customary Units
Notes:

\section*{Channel Analysis: Section D}

Notes: See Figure 6 for Section Lines

\section*{Input Parameters}

Channel Type: Custom Cross Section

Cross Section Data
\begin{tabular}{|c|l|c|}
\hline Elevation (ft) & Elevation (ft) & Manning's n \\
\hline 0.00 & 63.10 & 0.0150 \\
\hline 5.53 & 63.02 & 0.0150 \\
\hline 6.03 & 62.52 & 0.0150 \\
\hline 46.03 & 62.12 & 0.0150 \\
\hline 46.53 & 62.62 & 0.0150 \\
\hline 58.42 & 62.93 & ---- \\
\hline
\end{tabular}

Cross Section


Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Flow: 14.6000 cfs

\section*{Result Parameters}

Depth: 0.3602 ft
Area of Flow: \(6.5530 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 36.5339 ft
Hydraulic Radius: 0.1794 ft
Average Velocity: \(2.2280 \mathrm{ft} / \mathrm{s}\)
Top Width: 36.3829 ft
Froude Number: 0.9251
Critical Depth: 0.3492 ft
Critical Velocity: \(2.3711 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0059 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 35.27 ft
Calculated Max Shear Stress: \(0.1124 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.0560 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)
Composite Manning's \(n\) Equation: Lotter method
Manning's n : 0.0150

\title{
Hydraulic Analysis Report
}

\section*{Project Data}

Project Title: 100 W Sinclair St
Designer: DJV
Project Date: Monday, September 12, 2022
Project Units: U.S. Customary Units
Notes:

\section*{Channel Analysis: Section E}

Notes:

\section*{Input Parameters}

Channel Type: Custom Cross Section

\section*{Cross Section Data}
\begin{tabular}{|c|l|c|}
\hline Elevation (ft) & Elevation (ft) & Manning's n \\
\hline 0.00 & 65.40 & 0.0150 \\
\hline 12.03 & 65.16 & 0.0150 \\
\hline 12.53 & 64.66 & 0.0150 \\
\hline 52.53 & 65.06 & 0.0150 \\
\hline 53.03 & 65.56 & 0.0150 \\
\hline 58.53 & 65.90 & ---- \\
\hline
\end{tabular}

\section*{Cross Section}


Longitudinal Slope: \(0.0050 \mathrm{ft} / \mathrm{ft}\)
Flow: 14.6000 cfs

\section*{Result Parameters}

Depth: 0.3602 ft
Area of Flow: \(6.5530 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 36.5339 ft
Hydraulic Radius: 0.1794 ft
Average Velocity: \(2.2280 \mathrm{ft} / \mathrm{s}\)
Top Width: 36.3829 ft
Froude Number: 0.9251
Critical Depth: 0.3491 ft
Critical Velocity: \(2.3726 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0059 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 35.26 ft
Calculated Max Shear Stress: \(0.1124 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.0560 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)
Composite Manning's \(n\) Equation: Lotter method
Manning's n : 0.0150

\title{
Hydraulic Analysis Report
}

\section*{Project Data}

Project Title: 100 W Sinclair St
Designer: DJV
Project Date: Monday, September 12, 2022
Project Units: U.S. Customary Units
Notes:

\section*{Channel Analysis: Section G}

Notes:

\section*{Input Parameters}

Channel Type: Custom Cross Section

\section*{Cross Section Data}
\begin{tabular}{|c|l|c|}
\hline Elevation (ft) & Elevation (ft) & Manning's n \\
\hline 0.00 & 63.50 & 0.0150 \\
\hline 15.76 & 62.72 & 0.0150 \\
\hline 16.26 & 62.22 & 0.0150 \\
\hline 65.00 & 61.74 & 0.0150 \\
\hline 74.76 & 61.93 & 0.0150 \\
\hline 74.77 & 62.43 & ---- \\
\hline
\end{tabular}

\section*{Cross Section}


Longitudinal Slope: \(0.0040 \mathrm{ft} / \mathrm{ft}\)
Flow: 17.3000 cfs

\section*{Result Parameters}

Depth: 0.3435 ft
Area of Flow: \(8.4170 \mathrm{ft}^{\wedge} 2\)
Wetted Perimeter: 44.7986 ft
Hydraulic Radius: 0.1879 ft
Average Velocity: \(2.0554 \mathrm{ft} / \mathrm{s}\)
Top Width: 44.6446 ft
Froude Number: 0.8342
Critical Depth: 0.3180 ft
Critical Velocity: \(2.3661 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0059 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 42.05 ft
Calculated Max Shear Stress: \(0.0857 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.0469 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)
Composite Manning's \(n\) Equation: Lotter method
Manning's n: 0.0150

\title{
Hydraulic Analysis Report
}

\section*{Project Data}

Project Title: 100 W Sinclair St
Designer: DJV
Project Date: Monday, September 12, 2022
Project Units: U.S. Customary Units
Notes:

\section*{Channel Analysis: Section H}

Notes:

\section*{Input Parameters}

Channel Type: Custom Cross Section

\section*{Cross Section Data}
\begin{tabular}{|c|l|c|}
\hline Elevation (ft) & Elevation (ft) & Manning's n \\
\hline 0.00 & 63.15 & 0.0150 \\
\hline 60.00 & 62.55 & 0.0150 \\
\hline 125.00 & 61.82 & 0.0150 \\
\hline 134.84 & 62.01 & 0.0150 \\
\hline 134.90 & 62.51 & ---- \\
\hline
\end{tabular}

\section*{Cross Section}


Longitudinal Slope: \(0.0040 \mathrm{ft} / \mathrm{ft}\)
Flow: 13.0000 cfs

\section*{Result Parameters}

Depth: 0.3168 ft
Area of Flow: \(6.6515 \mathrm{ft}^{\wedge} 2\)
Wetted Perimeter: 38.1793 ft
Hydraulic Radius: 0.1742 ft
Average Velocity: \(1.9544 \mathrm{ft} / \mathrm{s}\)
Top Width: 38.0632 ft
Froude Number: 0.8239
Critical Depth: 0.2918 ft
Critical Velocity: \(2.2702 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0061 \mathrm{ft} / \mathrm{tt}\)
Critical Top Width: 35.83 ft
Calculated Max Shear Stress: \(0.0791 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.0435 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)
Composite Manning's \(n\) Equation: Lotter method
Manning's n : 0.0150

\title{
Hydraulic Analysis Report
}

\section*{Project Data}

Project Title: 100 W Sinclair St
Designer: DJV
Project Date: Monday, September 12, 2022
Project Units: U.S. Customary Units
Notes:

\section*{Channel Analysis: Section I}

Notes:

\section*{Input Parameters}

Channel Type: Custom Cross Section

Cross Section Data
\begin{tabular}{|c|l|c|}
\hline Elevation (ft) & Elevation (ft) & Manning's n \\
\hline 0.00 & 62.60 & 0.0150 \\
\hline 5.42 & 62.34 & 0.0150 \\
\hline 5.92 & 61.84 & 0.0150 \\
\hline 24.92 & 61.65 & 0.0150 \\
\hline 64.92 & 61.25 & 0.0150 \\
\hline 65.42 & 61.75 & 0.0150 \\
\hline 67.54 & 61.85 & 0.0150 \\
\hline 67.55 & 62.35 & ---- \\
\hline
\end{tabular}

\section*{Cross Section}


Longitudinal Slope: \(0.0040 \mathrm{ft} / \mathrm{ft}\)
Flow: 21.5000 cfs

\section*{Result Parameters}

Depth: 0.4343 ft
Area of Flow: \(9.5246 \mathrm{ft} \wedge 2\)
Wetted Perimeter: 44.0452 ft
Hydraulic Radius: 0.2162 ft
Average Velocity: \(2.2573 \mathrm{ft} / \mathrm{s}\)
Top Width: 43.8631 ft
Froude Number: 0.8537
Critical Depth: 0.4077 ft
Critical Velocity: \(2.5619 \mathrm{ft} / \mathrm{s}\)
Critical Slope: \(0.0056 \mathrm{ft} / \mathrm{ft}\)
Critical Top Width: 41.17 ft
Calculated Max Shear Stress: \(0.1084 \mathrm{lb} / \mathrm{ft}^{\wedge} 2\)
Calculated Avg Shear Stress: \(0.0540 \mathrm{lb} / \mathrm{tt}^{\wedge} 2\)
Composite Manning's \(n\) Equation: Lotter method
Manning's \(\mathrm{n}: ~ 0.0150\)

Nyloplast 2' x 3' Road \& Highway Grate Inlet Capacity Chart


INLET \#1 = 8.9 cfs

Nyloplast 2' x 2' Curb Inlet Diagonal Grate Inlet Capacity Chart


Nyloplast 2' x 2' Road \& Highway Grate Inlet Capacity Chart


\section*{Hydraulic Analysis Report}

\section*{Project Data}

Project Title: 100 W Sinclair St
Designer: DJV
Project Date: Monday, September 12, 2022
Project Units: U.S. Customary Units
Notes:

\section*{Weir Analysis: CB110 INLET \#9}

Notes: 9' Opening

\section*{Input Parameters}

Weir Type: Rectangular
Coefficient: 3.1000
Length: 6.0000 ft
Flow: 6.2000 cfs

\section*{Result Parameters}

Head: 0.4807 ft

\section*{Weir Analysis: CB110 INLET \#10}

Notes: 24' Opening

\section*{Input Parameters}

Weir Type: Rectangular
Coefficient: 3.1000
Length: 16.0000 ft
Flow: 14.7000 cfs

\section*{Result Parameters}

Head: 0.4445 ft

\section*{Hydraulic Analysis Report}

\section*{Project Data}

Project Title: 100 W Sinclair St
Designer: DJV
Project Date: Wednesday, September 14, 2022
Project Units: U.S. Customary Units
Notes:

\section*{Weir Analysis: Outlet Control Structure - Weir Analysis}

Notes:

\section*{Input Parameters}

Weir Type: Rectangular
Coefficient: 3.2000
Length: 7.0000 ft
Flow: 33.0000 cfs

\section*{Result Parameters}

Head: 1.2947 ft

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

\section*{Custom Soil Resource Report for \\ Western Riverside Area, California}


\section*{Preface}

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

\section*{Contents}
Preface ..... 2
How Soil Surveys Are Made ..... 5
Soil Map ..... 8
Soil Map. ..... 9
Legend ..... 10
Map Unit Legend ..... 11
Map Unit Descriptions. ..... 11
Western Riverside Area, California ..... 13
EnA-Exeter sandy loam, 0 to 2 percent slopes ..... 13
GyA—Greenfield sandy loam, 0 to 2 percent slopes ..... 14
Soil Information for All Uses ..... 16
Soil Properties and Qualities ..... 16
Soil Qualities and Features. ..... 16
Hydrologic Soil Group ..... 16
References ..... 21

\section*{How Soil Surveys Are Made}

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

\section*{Custom Soil Resource Report}
identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

\section*{Soil Map}

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.


\section*{MAP LEGEND}
\begin{tabular}{ll}
\multicolumn{2}{c}{ Area of Interest (AOI) } \\
\(\square\) & Area of Interest (AOI) \\
Soils \\
\(\square\) & Soil Map Unit Polygons \\
\(\square\) & Soil Map Unit Lines \\
\(\square\) & Soil Map Unit Points
\end{tabular}

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
\(\diamond\) Closed Depression
Gravel Pit
\(\therefore \quad\) Gravelly Spot
(4) Landfill
A. Lava Flow

Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water
- Perennial Water
- Rock Outcrop
+ Saline Spot
\(\because \quad\) Sandy Spot
을 Severely Eroded Spot
- Sinkhole
3) Slide or Slip
(6) Sodic Spot

\section*{MAP INFORMATION}

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Western Riverside Area, California Survey Area Data: Version 14, Sep 13, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 14, 2022—Mar 17, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

\title{
Map Unit Legend
}
\begin{tabular}{|l|l|r|r|}
\hline \multicolumn{1}{|c|}{ Map Unit Symbol } & \multicolumn{1}{c|}{ Map Unit Name } & Acres in AOI & Percent of AOI \\
\hline EnA & \begin{tabular}{c} 
Exeter sandy loam, 0 to 2 \\
percent slopes
\end{tabular} & 0.0 & \\
\hline GyA & \begin{tabular}{l} 
Greenfield sandy loam, 0 to 2 \\
percent slopes
\end{tabular} & 19.4 & \\
\hline Totals for Area of Interest & & \(\mathbf{1 9 . 5}\) & \(\mathbf{9 9 . 8 \%}\) \\
\hline
\end{tabular}

\section*{Map Unit Descriptions}

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

\section*{Western Riverside Area, California}

\section*{EnA—Exeter sandy loam, 0 to 2 percent slopes}

\section*{Map Unit Setting}

National map unit symbol: hctg
Elevation: 20 to 700 feet
Mean annual precipitation: 7 to 20 inches
Mean annual air temperature: 61 to 64 degrees \(F\)
Frost-free period: 250 to 300 days
Farmland classification: Farmland of statewide importance

\section*{Map Unit Composition}

Exeter and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

\section*{Description of Exeter}

\section*{Setting}

Landform: Alluvial fans
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from granite

\section*{Typical profile}

H1-0 to 16 inches: sandy loam
H2-16 to 37 inches: sandy clay loam
H3-37 to 50 inches: indurated
H4-50 to 60 inches: stratified sandy loam to silt loam

\section*{Properties and qualities}

Slope: 0 to 2 percent
Depth to restrictive feature: 20 to 40 inches to duripan
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Very low ( 0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline ( 0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 5.3 inches)

\section*{Interpretive groups}

Land capability classification (irrigated): 3s
Land capability classification (nonirrigated): 3s
Hydrologic Soil Group: C
Ecological site: R019XD029CA - LOAMY
Hydric soil rating: No

\section*{Minor Components}

\section*{Ramona}

Percent of map unit: 4 percent
Hydric soil rating: No

\section*{Monserate}

Percent of map unit: 4 percent
Hydric soil rating: No

\section*{Greenfield}

Percent of map unit: 4 percent
Hydric soil rating: No

\section*{Unnamed}

Percent of map unit: 3 percent
Hydric soil rating: No

\section*{GyA—Greenfield sandy loam, 0 to 2 percent slopes}

\section*{Map Unit Setting}

National map unit symbol: hcvv
Elevation: 100 to 3,500 feet
Mean annual precipitation: 9 to 20 inches
Mean annual air temperature: 63 degrees F
Frost-free period: 200 to 300 days
Farmland classification: Prime farmland if irrigated

\section*{Map Unit Composition}

Greenfield and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

\section*{Description of Greenfield}

\section*{Setting}

Landform: Terraces, alluvial fans
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from granite

\section*{Typical profile}

H1-0 to 26 inches: sandy loam
H2-26 to 43 inches: fine sandy loam
H3-43 to 60 inches: loam
H4-60 to 72 inches: stratified loamy sand to sandy loam
Properties and qualities
Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches

Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high ( 0.57 to \(1.98 \mathrm{in} / \mathrm{hr}\) )
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline ( 0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

\section*{Interpretive groups}

Land capability classification (irrigated): 1
Land capability classification (nonirrigated): 3c
Hydrologic Soil Group: A
Ecological site: R019XD029CA - LOAMY
Hydric soil rating: No

\section*{Minor Components}

\section*{Hanford}

Percent of map unit: 10 percent
Hydric soil rating: No

\section*{Arlington}

Percent of map unit: 2 percent
Hydric soil rating: No

\section*{Pachappa}

Percent of map unit: 2 percent
Hydric soil rating: No

\section*{Unnamed}

Percent of map unit: 1 percent
Hydric soil rating: No

\section*{Soil Information for All Uses}

\section*{Soil Properties and Qualities}

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

\section*{Soil Qualities and Features}

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

\section*{Hydrologic Soil Group}

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


\section*{MAP LEGEND}
Area of Interest (AOI)

\section*{MAP INFORMATION}

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Western Riverside Area, California Survey Area Data: Version 14, Sep 13, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Mar 14, 2022—Mar 17, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Map unit symbol } & \multicolumn{1}{c|}{ Map unit name } & Rating & Acres in AOI & Percent of AOI \\
\hline EnA & \begin{tabular}{l} 
Exeter sandy loam, 0 to \\
2 percent slopes
\end{tabular} & C & 0.0 & \(0.2 \%\) \\
\hline GyA & \begin{tabular}{l} 
Greenfield sandy loam, 0 \\
to 2 percent slopes
\end{tabular} & A & 19.4 & \(99.8 \%\) \\
\hline Totals for Area of Interest & & \(\mathbf{1 9 . 5}\) & \\
\hline
\end{tabular}

\section*{Rating Options-Hydrologic Soil Group}

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

\section*{References}

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf









First Industrial Realty Trust, Inc.
898 North Pacific Coast Highway, Suite 175
El Segundo, California 90245
\(\begin{array}{ll}\text { Attention: } & \begin{array}{l}\text { Mr. Michael Goodwin } \\ \text { Director of Development }\end{array}\end{array}\)
Project No.: 21G122-2
Subject: Results of Infiltration Testing
First Sinclair Logistics Center
100 West Sinclair Street
Perris, California
Reference: Geotechnical Investigation, First Sinclair Logistics Center, 100 West Sinclair Street, Perris, California, prepared for First Industrial Realty Trust, Inc., by Southern California Geotechnical, Inc. (SCG), SCG Project No. 22G122-1, dated March 4, 2022.

Mr. Goodwin:

In accordance with your request, we have conducted infiltration testing at the subject site. We are pleased to present this report summarizing the results of the infiltration testing and our design recommendations.

\section*{Scope of Services}

The scope of services performed for this project was in general accordance with our Proposal No. 22P120, dated January 20, 2022. The scope of services included site reconnaissance, subsurface exploration, field testing, and engineering analysis to determine the infiltration rates of the onsite soils. The infiltration testing was performed in general accordance with the guidelines published in Riverside County - Low Impact Development BMP Design Handbook - Section 2.3 of Appendix A, prepared for the Riverside County Department of Environmental Health (RCDEH), dated December, 2013.

\section*{Site and Project Description}

The site is located at 100 West Sinclair Street in Perris, California. The site is bounded to the north and east by vacant parcels and to the west by Barrett Avenue. An existing building is located on the southerly adjacent property. The general location of the site is illustrated on the Site Location Map, included as Plate 1 of this report.

The site consists of an L-shaped parcel, \(13.85 \pm\) acres in size. The site is presently developed with one (1) warehouse building, \(161,000 \pm \mathrm{ft}^{2}\) in size, located in the north-central area of the site. The building is surrounded by Portland cement concrete pavements in the loading dock areas and asphaltic concrete (AC) pavements in the eastern parking area. The asphaltic concrete pavements were in fair to poor condition with moderate cracking throughout. Ground surface cover in the
remaining areas of the site consists of open-graded gravel in the northwestern area and exposed soil in the southwestern area of the site. Concrete flatwork and landscape planters are present throughout the western parking area and along the west, north and east property lines. The planters include medium to large trees and exposed soil.

Detailed topographic information was not available at the time of this report. Based on elevations obtained from Google Earth and visual observations made at the time of the subsurface investigation, the eastern parking area slopes downward to the north at a gradient of less than \(1 \pm\) percent. The western portion of the site has a central low point with gentle ascending slopes to the south, west and north with estimated gradients between 2 and \(3 \pm\) percent.

\section*{Proposed Development}

SCG was provided with conceptual site plan prepared by HPA Architecture (Scheme 5). Based on Scheme 5, the site will be developed with one (1) new warehouse building, 271,359土 \(\mathrm{ft}^{2}\) in size, located in the north-central area of the site. Dock-high doors will be constructed along most of the southern building wall. The building will be surrounded by asphaltic concrete pavements in the parking and drive lanes, Portland cement concrete pavements in the loading dock areas, and limited areas of concrete flatwork and landscape planters throughout the site.

We understand that the proposed development will include on-site storm water infiltration. The infiltration system will consist of a below-grade chamber system located in the southeastern area of the site. The bottom of the infiltration system is expected to be 8 to \(9 \pm\) feet below the existing site grades.

\section*{Concurrent Study}

The subsurface exploration for this phase of the project consisted of six (6) borings advanced to depths of 15 to \(25 \pm\) feet below the existing site grades. Artificial fill soils were encountered beneath the pavements/slab at several of the boring locations, extending to depths of \(41 / 2\) to \(6 \pm\) feet. The fill soils generally consisted of loose to medium dense silty fine to medium sands and fine to medium sandy silts. Native alluvium was encountered beneath the fill soils at all of the boring locations. The alluvial soils generally consisted of loose to medium dense fine sandy silts, clayey fine sands, fine to coarse sands, silty fine to medium sands, and stiff to hard silty clays extending to at least the maximum depth explored of \(25 \pm\) feet.

\section*{Groundwater}

Free water was not encountered during the drilling of any of the borings. Based on the lack of any water within the borings, and the moisture contents of the recovered soil samples, the static groundwater table is considered to have existed at a depth in excess of \(25 \pm\) feet at the time of the subsurface exploration.

Recent water level data was obtained from the California State Water Resources Control Board, GeoTracker, website, https://geotracker.waterboards.ca.gov/. One monitoring well on record is located \(210 \pm\) feet south of the site. Water level readings within this monitoring well indicate a high groundwater level of 79士 feet below the ground surface in February 2015.

\section*{Subsurface Exploration}

\section*{Scope of Exploration}

The subsurface exploration conducted for the infiltration testing consisted of two (2) infiltration test borings, advanced to a depth of \(9 \pm\) feet below the existing site grades. The infiltration borings (identified as Infiltration No. I-1 and I-2) were advanced using a truck-mounted drilling rig, equipped with 8 -inch-diameter hollow stem augers and were logged during drilling by a member of our staff. The borings were logged during drilling by a member of our staff. The approximate locations of the infiltration borings are indicated on the Infiltration Test Location Plan, enclosed as Plate 2 of this report.

\section*{Geotechnical Conditions}

Fill soils were encountered beneath the pavements at both of the infiltration boring locations. The fill soils consist of medium dense clayey fine to medium sands with varying amounts of silt extended to a depth of \(3 \pm\) feet. Native alluvial soils were encountered beneath the fill soils at both of the infiltration boring locations. The alluvial soils consist of medium dense to dense, silty fine to coarse sands and fine to medium sandy silts extending to the maximum depth explored of \(9 \pm\) feet. The Boring Logs, which illustrate the conditions encountered at the infiltration test locations, are presented in this report.

\section*{Infiltration Testing}

The infiltration testing was performed in general accordance with the Riverside County guidelines: Riverside County - Low Impact Development BMP Design Handbook - Section 2.3 of Appendix A.

\section*{Pre-soaking}

In accordance with the county infiltration standards for sandy soils, all infiltration test borings were pre-soaked 2 hours prior to the infiltration testing or until all of the water had percolated through the test holes. The pre-soaking process consisted of filling test borings by inverting a full 5-gallon bottle of clear water supported over each hole so that the water flow into the hole holds constant at a level at least 5 times the hole's radius above the gravel at the bottom of each hole. Pre-soaking was completed after all of the water had percolated through the test holes.

\section*{Infiltration Testing}

Following the pre-soaking process, SCG performed the infiltration testing. Each test hole was filled with water to a depth of at least 5 times the hole's radius above the gravel at the bottom of the test holes. In accordance with the Riverside County guidelines, since "sandy soils" (where 6 inches of water infiltrated into the surrounding soils in less than 25 minutes for two consecutive readings) were encountered at the bottom of Infiltration Test No. I-1, readings were taken at 10-minute intervals for a total of at least 1 hour. Since "non-sandy soils" (where 6 inches of water did not infiltrate into the surrounding soils in less than 25 minutes for two consecutive readings) were encountered at the bottom of Infiltration Test No. I-2, readings were taken at 30-minute intervals for a total of at least 6 hours.

After each reading, water was added to the borings so that the depth of the water was at least 5 times the radius of the hole. The water level readings are presented on the spreadsheets enclosed with this report. The infiltration rates for each of the timed intervals are also tabulated on the spreadsheets.

The infiltration rates from the tests are tabulated in inches per hour. In accordance with the typically accepted practice, it is recommended that the most conservative reading from the latter part of the infiltration tests be used as the design infiltration rate. The rates are summarized below:
\begin{tabular}{cc}
\begin{tabular}{cc} 
Infiltration \\
Test No.
\end{tabular} & \begin{tabular}{c}
\(\frac{\text { Depth }}{\text { (feet) }}\) \\
I-1
\end{tabular} \\
I-2 & 9
\end{tabular}

\section*{Soil Description \\ Infiltration Rate (inches/hour) \\ Fine to medium Sandy Silt to Silty fine to medium Sand, trace coarse Sand, trace Clay \\ Fine to medium Sandy Silt to Silty fine to medium Sand, trace coarse Sand, trace Clay}

\section*{Laboratory Testing}

\section*{Moisture Content}

The moisture contents for the recovered soil samples within the borings were determined in accordance with ASTM D-2216 and are expressed as a percentage of the dry weight. These test results are presented on the Boring Logs.

\section*{Grain Size Analysis}

The grain size distribution of selected soils collected from the base of each infiltration test boring have been determined using a range of wire mesh screens. These tests were performed in general accordance with ASTM D-422 and/or ASTM D-1140. The weight of the portion of the sample retained on each screen is recorded and the percentage finer or coarser of the total weight is calculated. The results of these tests are presented on Plates \(\mathrm{C}-1\) and \(\mathrm{C}-2\) of this report.

\section*{Design Recommendations}

Two (2) infiltration tests were performed at the subject site. As noted above, the infiltration rates at these locations vary from 0.3 to 2.4 inches per hour. Based on the infiltration test results, we recommend an average rate of 1.4 inches per hour be used for the infiltration chamber system.

We recommend that a representative from the geotechnical engineer be on-site during the construction of the proposed infiltration systems to identify the soil classification at the base of each chamber system. It should be confirmed that the soils at the base of the proposed infiltration systems correspond with those presented in this report to ensure that the performance of the systems will be consistent with the rates reported herein.

The design of the storm water infiltration system should be performed by the project civil engineer, in accordance with the City of Perris and/or County of Riverside guidelines. It is recommended that the system be constructed so as to facilitate removal of silt and clay, or other deleterious materials from any water that may enter the systems. The presence of such materials would decrease the effective infiltration rates. It is recommended that the project civil engineer apply an appropriate factor of safety. The infiltration rates recommended above is based on the assumption that only clean water will be introduced to the subsurface profile. Any fines, debris, or organic materials could significantly impact the infiltration rate. It should be noted that the recommended infiltration rates are based on infiltration testing at two (2) discrete locations and that the overall infiltration rates of the proposed infiltration systems could vary considerably.

\section*{Infiltration Rate Considerations}

The infiltration rates presented herein was determined in accordance with the Riverside County guidelines and are considered valid only for the time and place of the actual test. Varying subsurface conditions will exist in other areas of the site, which could alter the recommended infiltration rates presented above. The infiltration rates will decline over time between maintenance cycles as silt or clay particles accumulate on the BMP surface. The infiltration rate is highly dependent upon a number of factors, including density, silt and clay content, grainsize distribution throughout the range of particle sizes, and particle shape. Small changes in these factors can cause large changes in the infiltration rates.

Infiltration rates are based on unsaturated flow. As water is introduced into soils by infiltration, the soils become saturated and the wetting front advances from the unsaturated zone to the saturated zone. Once the soils become saturated, infiltration rates become zero, and water can only move through soils by hydraulic conductivity at a rate determined by pressure head and soil permeability. Changes in soil moisture content will affect the infiltration rate. Infiltration rates should be expected to decrease until the soils become saturated. Soil permeability values will then govern groundwater movement. Permeability values may be on the order of 10 to 20 times less than infiltration rates. The system designer should incorporate adequate factors of safety and allow for overflow design into appropriate traditional storm drain systems, which would transport storm water off-site.

\section*{Construction Considerations}

The infiltration rates presented in this report are specific to the tested locations and tested depths. Infiltration rates can be significantly reduced if the soils are exposed to excessive disturbance or compaction during construction. Compaction of the soils at the bottom of the infiltration system can significantly reduce the infiltration ability of the basins. Therefore, the subgrade soils within proposed infiltration system areas should not be over-excavated, undercut or compacted in any significant manner. It is recommended that a note to this effect be added to the project plans and/or specifications.

We recommend that a representative from the geotechnical engineer be on-site during the construction of the proposed infiltration systems to identify the soil classification at the base of each system. It should be confirmed that the soils at the base of the proposed infiltration systems
correspond with those presented in this report to ensure that the performance of the systems will be consistent with the rates reported herein.

We recommend that scrapers and other rubber-tired heavy equipment not be operated on the basin bottom, or at levels lower than 2 feet above the bottom of the system, particularly within basins. As such, the bottom 24 inches of the infiltration systems should be excavated with non-rubber-tired equipment, such as excavators.

\section*{Chamber Maintenance}

The proposed project may include infiltration chambers. Water flowing into these chambers will carry some level of sediment. This layer has the potential to significantly reduce the infiltration rate of the chamber subgrade soils. Therefore, a formal chamber maintenance program should be established to ensure that these silt and clay deposits are removed from the chamber on a regular basis.

\section*{Location of Infiltration Systems}

The use of on-site storm water infiltration systems carries a risk of creating adverse geotechnical conditions. Increasing the moisture content of the soil can cause the soil to lose internal shear strength and increase its compressibility, resulting in a change in the designed engineering properties. Overlying structures and pavements in the infiltration area could potentially be damaged due to saturation of the subgrade soils. The proposed infiltration systems for this site should be located at least 25 feet away from any structures, including retaining walls. Even with this provision of locating the infiltration system at least 25 feet from the building(s), it is possible that infiltrating water into the subsurface soils could have an adverse effect on the proposed or existing structures. It should also be noted that utility trenches which happen to collect storm water can also serve as conduits to transmit storm water toward the structure, depending on the slope of the utility trench. Therefore, consideration should also be given to the proposed locations of underground utilities which may pass near the proposed infiltration system.

The infiltration system designer should also give special consideration to the effect that the proposed infiltration systems may have on nearby subterranean structures, open excavations, or descending slopes. In particular, infiltration systems should not be located near the crest of descending slopes, particularly where the slopes are comprised of granular soils. Such systems will require specialized design and analysis to evaluate the potential for slope instability, piping failures and other phenomena that typically apply to earthen dam design. This type of analysis is beyond the scope of this infiltration test report, but these factors should be considered by the infiltration system designer when locating the infiltration systems.

\section*{General Comments}

This report has been prepared as an instrument of service for use by the client in order to aid in the evaluation of this property and to assist the architects and engineers in the design and preparation of the project plans and specifications. This report may be provided to the contractor(s) and other design consultants to disclose information relative to the project. However, this report is not intended to be utilized as a specification in and of itself, without
appropriate interpretation by the project architect, structural engineer, and/or civil engineer. The design of the proposed storm water infiltration system is the responsibility of the civil engineer. The role of the geotechnical engineer is limited to determination of infiltration rate only. By using the design infiltration rate contained herein, the civil engineer agrees to indemnify, defend, and hold harmless the geotechnical engineer for all aspects of the design and performance of the proposed storm water infiltration system. The reproduction and distribution of this report must be authorized by the client and Southern California Geotechnical, Inc. Furthermore, any reliance on this report by an unauthorized third party is at such party's sole risk, and we accept no responsibility for damage or loss which may occur.

The analysis of this site was based on a subsurface profile interpolated from limited discrete soil samples. While the materials encountered in the project area are considered to be representative of the total area, some variations should be expected between boring locations and testing depths. If the conditions encountered during construction vary significantly from those detailed herein, we should be contacted immediately to determine if the conditions alter the recommendations contained herein.

This report has been based on assumed or provided characteristics of the proposed development. It is recommended that the owner, client, architect, structural engineer, and civil engineer carefully review these assumptions to ensure that they are consistent with the characteristics of the proposed development. If discrepancies exist, they should be brought to our attention to verify that they do not affect the conclusions and recommendations contained herein. We also recommend that the project plans and specifications be submitted to our office for review to verify that our recommendations have been correctly interpreted. The analysis, conclusions, and recommendations contained within this report have been promulgated in accordance with generally accepted professional geotechnical engineering practice. No other warranty is implied or expressed.

\section*{Closure}

We sincerely appreciate the opportunity to be of service on this project. We look forward to providing additional consulting services during the course of the project. If we may be of further assistance in any manner, please contact our office.

Respectfully Submitted,

\section*{SOUTHERN CALIFORNIA GEOTECHNICAL,INC.}



Daryl Kas, CEG 2467 Senior Geologist



\begin{tabular}{|c|c|c|}
\hline SAMPLE TYPE & GRAPHICAL SYMBOL & SAMPLE DESCRI PTI ON \\
\hline AUGER & & SAMPLE COLLECTED FROM AUGER CUTTINGS, NO FIELD MEASUREMENT OF SOIL STRENGTH. (DISTURBED) \\
\hline CORE & & ROCK CORE SAMPLE: TYPICALLY TAKEN WITH A DIAMOND-TIPPED CORE BARREL. TYPICALLY USED ONLY IN HIGHLY CONSOLIDATED BEDROCK. \\
\hline GRAB & NMY & SOIL SAMPLE TAKEN WITH NO SPECIALIZED EQUIPMENT, SUCH AS FROM A STOCKPILE OR THE GROUND SURFACE (DISTURBED) \\
\hline CS & & CALIFORNIA SAMPLER: 2-1/2 INCH I.D. SPLIT BARREL SAMPLER, LINED WITH 1-INCH HIGH BRASS RINGS. DRIVEN WITH SPT HAMMER. (RELATIVELY UNDISTURBED \\
\hline NSR &  & NO RECOVERY: THE SAMPLING ATTEMPT DID NOT RESULT IN RECOVERY OF ANY SIGNIFICANT SOIL OR ROCK MATERIAL. \\
\hline SPT & \[
>
\] & STANDARD PENETRATION TEST: SAMPLER IS A 1.4 INCH ISSIDE DIAMETER SPLTT BARREL, DRRIVEN 18
INCHES WTHH THE SPT HAMMER RISTURBED) NCEHES WTH THE SPT HAMMER. (DISTURBED) \\
\hline SH & & SHELBY TUBE: TAKEN WITH A THIN WALL SAMPLE TUBE, PUSHED INTO THE SOIL AND THEN EXTRACTED. (UNDISTURBED) \\
\hline VANE & \[
\square
\] & VANE SHEAR TEST: SOIL STRENGTH OBTAINED USING A 4 BLADED SHEAR DEVICE. TYPICALLY USED IN SOFT CLAYS-NO SAMPLE RECOVERED. \\
\hline
\end{tabular}

\section*{COLUMN DESCRIPTI ONS}

DEPTH:
SAMPLE:
BLOW COUNT:

POCKET PEN.:

\section*{GRAPHIC LOG:}

DRY DENSITY:
MOISTURE CONTENT:
LIQUID LIMIT:
PLASTIC LIMIT:
PASSING \#200 SIEVE:
UNCONFINED SHEAR:

Distance in feet below the ground surface.
Sample Type as depicted above.
Number of blows required to advance the sampler 12 inches using a 140 lb hammer with a 30 -inch drop. \(50 / 3^{\prime \prime}\) indicates penetration refusal ( \(>50\) blows) at 3 inches. WH indicates that the weight of the hammer was sufficient to push the sampler 6 inches or more.

Approximate shear strength of a cohesive soil sample as measured by pocket penetrometer.
Graphic Soil Symbol as depicted on the following page.
Dry density of an undisturbed or relatively undisturbed sample in lbs/ft \({ }^{3}\).
Moisture content of a soil sample, expressed as a percentage of the dry weight.
The moisture content above which a soil behaves as a liquid.
The moisture content above which a soil behaves as a plastic.
The percentage of the sample finer than the \#200 standard sieve.
The shear strength of a cohesive soil sample, as measured in the unconfined state.

\section*{SOIL CLASSIFICATION CHART}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{MAJOR DIVISIONS}} & \multicolumn{2}{|l|}{SYMBOLS} & \multirow[t]{2}{*}{TYPICAL DESCRIPTIONS} \\
\hline & & & GRAPH & LETTER & \\
\hline \multirow{4}{*}{COARSE GRAINED SOILS} & \multirow[t]{2}{*}{GRAVEL AND GRAVELLY SOILS} & CLEAN GRAVELS &  & GW & \begin{tabular}{l}
WELL-GRADED GRAVELS, GRAVEL - \\
SAND MIXTURES, LITTLE OR NO FINES
\end{tabular} \\
\hline & & (LITTLE OR NO FINES) & \[
\begin{aligned}
& 00000 \\
& 10000 \\
& 00000 \\
& 00000
\end{aligned}
\] & GP & POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES \\
\hline & MORE THAN 50\% OF COARSE & GRAVELS WITH FINES & \[
\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0
\end{array}
\] & GM & SILTY GRAVELS, GRAVEL - SAND SILT MIXTURES \\
\hline & 4 SIEVE & (APPRECIABLE AMOUNT OF FINES) & \[
\begin{gathered}
28=0= \\
6
\end{gathered}
\] & GC & CLAYEY GRAVELS, GRAVEL - SAND CLAY MIXTURES \\
\hline \multirow{4}{*}{MORE THAN 50\% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SAND } \\
& \text { AND } \\
& \text { SANDY } \\
& \text { SOILSS }
\end{aligned}
\]} & CLEAN SANDS &  & SW & WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES \\
\hline & & (LITTLE OR NO FINES) & & SP & POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES \\
\hline & \multirow[t]{2}{*}{MORE THAN 50\% F COARSE FRACTION PASSING ON NO. 4 SIEVE} & SANDS WITH FINES & & SM & SILTY SANDS, SAND - SILT MIXTURES \\
\hline & & (APPRECIABLE AMOUNT OF FINES) &  & SC & CLAYEY SANDS, SAND - CLAY MIXTURES \\
\hline \multirow{4}{*}{FINE GRAINED SOILS} & \multirow{4}{*}{SILTS AND CLAYS} & \multirow{4}{*}{LIQUID LIMIT LESS THAN 50} & & ML & INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR
CLAYEY FINE SANDS OR CLAYEY CLAYEY
SILTS WITH SLIGHT PLASTICITY \\
\hline & & &  & CL & INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS \\
\hline & & & & & \\
\hline & & &  & OL & ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY \\
\hline \multirow[t]{3}{*}{MORE THAN 50\% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE} & \multirow{3}{*}{SILTS AND CLAYS} & \multirow{3}{*}{LIQUID LIMIT GREATER THAN 50} & \multirow[b]{3}{*}{} & MH & INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS \\
\hline & & & & CH & INORGANIC CLAYS OF HIGH PLASTICITY \\
\hline & & & & OH & ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS \\
\hline \multicolumn{3}{|c|}{HIGHLY ORGANIC SOILS} &  & PT & PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { JOB NO.: } 22 \mathrm{G122-2} \\
& \text { PROJECT: First Sinclair Logistics Center } \\
& \text { LOCATION: Perris, California }
\end{aligned}
\]} & \begin{tabular}{l}
DRILLING DATE: 2/4/22 \\
DRILLING METHOD: Hollow Stem Auger
LOGGED BY: Jamie Hayward
\end{tabular} & \multicolumn{7}{|c|}{WATER DEPTH: Dry CAVE DEPTH: --READING TAKEN: At Completion} \\
\hline \multicolumn{4}{|l|}{FIELD RESULTS} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 0 \\
& 0 \\
& \text { O } \\
& \text { O} \\
& \frac{1}{0}
\end{aligned}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
DESCRIPTION \\
SURFACE ELEVATION: MSL
\end{tabular}} & \multicolumn{6}{|l|}{LABORATORY RESULTS} & \\
\hline  &  & \[
\begin{aligned}
& \frac{1}{3} \\
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& 0 \\
& \hline 1
\end{aligned}
\] &  & & &  &  &  &  &  &  & \(\sum_{i}^{\infty}\) \\
\hline &  & 12
5


22 & &  & \begin{tabular}{l}
\(3 \pm\) inches Asphaltic Concrete; \(4 \pm\) inches Aggregate Base FILL: Brown Clayey fine to coarse Sand, trace Silt, medium dense-moist \\
ALLUVIUM: Brown Silty fine to coarse Sand, loose to medium dense-moist \\
Brown fine to medium Sandy Silt to Silty fine to medium Sand, trace coarse Sand, trace Clay, medium dense-moist
\end{tabular} & & \begin{tabular}{l}
10 \\
9 \\
6 \\
13
\end{tabular} & & & 18
46 & & \\
\hline & & & & & Trench Terminated at 9 ' & & & & & & & \\
\hline
\end{tabular}

BORING NO.
I-2


\section*{INFILTRATION CALCULATIONS}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Soil Criteria Test} \\
\hline \begin{tabular}{l}
Interval \\
Number
\end{tabular} & & Time & Time Interval (min) & \begin{tabular}{l}
Water Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Change in Water Level \\
(in)
\end{tabular} & Did 6 inches of water seep away in less than 25 minutes? & Sandy Soils or NonSandy Soils? \\
\hline \multirow[t]{2}{*}{1} & Initial & 7:00 AM & \multirow[t]{2}{*}{25.00} & 7.20 & \multirow[t]{2}{*}{10.92} & \multirow[t]{2}{*}{YES} & \multirow[t]{2}{*}{SANDY SOILS} \\
\hline & Final & 7:25 AM & & 8.11 & & & \\
\hline \multirow[t]{2}{*}{2} & Initial & 7:27 AM & \multirow[t]{2}{*}{25.00} & 7.20 & \multirow[t]{2}{*}{9.84} & \multirow[t]{2}{*}{YES} & \multirow[t]{2}{*}{SANDY SOILS} \\
\hline & Final & 7:52 AM & & 8.02 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Test Data} \\
\hline Interval Number & & Time & Time Interva (min) & \begin{tabular}{l}
Water Depth \\
(ft)
\end{tabular} & \begin{tabular}{l}
Change in Water Level \\
(ft)
\end{tabular} & Average Head Height (ft) & Infiltration Rate Q (in/hr) \\
\hline \multirow[t]{2}{*}{1} & Initial & 7:55 AM & \multirow[t]{2}{*}{10.00} & 7.20 & \multirow[t]{2}{*}{0.42} & \multirow[t]{2}{*}{1.59} & \multirow[t]{2}{*}{2.87} \\
\hline & Final & 8:05 AM & & 7.62 & & & \\
\hline \multirow[t]{2}{*}{2} & Initial & 8:07 AM & \multirow[t]{2}{*}{10.00} & 7.20 & \multirow[t]{2}{*}{0.41} & \multirow[t]{2}{*}{1.60} & \multirow[t]{2}{*}{2.79} \\
\hline & Final & 8:17 AM & & 7.61 & & & \\
\hline \multirow[t]{2}{*}{3} & Initial & 8:27 AM & \multirow[t]{2}{*}{10.00} & 7.20 & \multirow[t]{2}{*}{0.39} & \multirow[t]{2}{*}{1.61} & \multirow[t]{2}{*}{2.64} \\
\hline & Final & 8:37 AM & & 7.59 & & & \\
\hline \multirow{2}{*}{4} & Initial & 8:39 AM & \multirow[b]{2}{*}{10.00} & 7.20 & \multirow{2}{*}{0.38} & \multirow{2}{*}{1.61} & \multirow{2}{*}{2.57} \\
\hline & Final & 8:49 AM & & 7.58 & & & \\
\hline \multirow[b]{2}{*}{5} & Initial & 8:51 AM & \multirow[b]{2}{*}{10.00} & 7.20 & \multirow[b]{2}{*}{0.36} & \multirow[b]{2}{*}{1.62} & \multirow[b]{2}{*}{2.42} \\
\hline & Final & 9:01 AM & & 7.56 & & & \\
\hline \multirow[t]{2}{*}{6} & Initial & 9:03 AM & \multirow[t]{2}{*}{10.00} & 7.20 & \multirow[t]{2}{*}{0.36} & \multirow[t]{2}{*}{1.62} & \multirow[t]{2}{*}{2.42} \\
\hline & Final & 9:13 AM & & 7.56 & & & \\
\hline
\end{tabular}

Per County Standards, Infiltration Rate calculated as follows:
\[
\mathrm{Q}=\frac{\Delta \mathrm{H}(60 \mathrm{r})}{\Delta \mathrm{t}\left(\mathrm{r}+2 \mathrm{H}_{\text {avg }}\right)}
\]

Where:
Q = Infiltration Rate (in inches per hour)
\(\Delta \mathrm{H}=\) Change in Height (Water Level) over the time interval
\(r=\) Test Hole (Borehole) Radius
\(\Delta t=\) Time Interval
\(H_{\text {avg }}=\) Average Head Height over the time interval

\section*{INFILTRATION CALCULATIONS}
\begin{tabular}{|c|c|}
\hline Project Name & First Sinclair Logistics Center \\
\hline Project Location & Perris, California \\
\hline Project Number & 22G122-2 \\
\hline Engineer & CB \\
\hline Test Hole Radius & 4 (in) \\
\hline Test Depth & 9.00 (ft) \\
\hline Infiltration Test Hole & \(\mathrm{I}-2\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Soil Criteria Test} \\
\hline Interval Number & & Time & Time Interval (min) & \begin{tabular}{l}
Water Depth \\
(ft)
\end{tabular} & Change in Water Level (in) & Did 6 inches of water seep away in less than 25 minutes? & Sandy Soils or NonSandy Soils? \\
\hline \multirow[b]{2}{*}{1} & Initial & 9:30 AM & \multirow[b]{2}{*}{25.00} & 7.30 & \multirow[b]{2}{*}{0.96} & \multirow[b]{2}{*}{NO} & \multirow[b]{2}{*}{NON-SANDY SOILS} \\
\hline & Final & 9:55 AM & & 7.38 & & & \\
\hline \multirow[b]{2}{*}{2} & Initial & 9:57 AM & \multirow[b]{2}{*}{25.00} & 7.30 & \multirow[b]{2}{*}{0.72} & \multirow[b]{2}{*}{NO} & \multirow[b]{2}{*}{NON-SANDY SOILS} \\
\hline & Final & 10:22 AM & & 7.36 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Test Data} \\
\hline Interval Number & & Time & Time Interval (min) & \begin{tabular}{l}
Water Depth \\
(ft)
\end{tabular} & Change in Water Level (ft) & \begin{tabular}{l}
Average Head Height \\
(ft)
\end{tabular} & Infiltration Rate Q (in/hr) \\
\hline \multirow[t]{2}{*}{1} & Initial & 10:25 AM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.29} & \multirow[t]{2}{*}{1.56} & \multirow[t]{2}{*}{0.67} \\
\hline & Final & 10:55 AM & & 7.59 & & & \\
\hline \multirow[t]{2}{*}{2} & Initial & 10:55 AM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.26} & \multirow[t]{2}{*}{1.57} & \multirow[t]{2}{*}{0.60} \\
\hline & Final & 11:25 AM & & 7.56 & & & \\
\hline \multirow[t]{2}{*}{3} & Initial & 11:25 AM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.25} & \multirow[t]{2}{*}{1.58} & \multirow[t]{2}{*}{0.57} \\
\hline & Final & 11:55 AM & & 7.55 & & & \\
\hline \multirow[t]{2}{*}{4} & Initial & 11:55 AM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.23} & \multirow[t]{2}{*}{1.59} & \multirow[t]{2}{*}{0.53} \\
\hline & Final & 12:25 PM & & 7.53 & & & \\
\hline \multirow[t]{2}{*}{5} & Initial & 12:25 PM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.20} & \multirow[t]{2}{*}{1.60} & \multirow[t]{2}{*}{0.45} \\
\hline & Final & 12:55 PM & & 7.50 & & & \\
\hline \multirow[t]{2}{*}{6} & Initial & 12:55 PM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.19} & \multirow[t]{2}{*}{1.61} & \multirow[t]{2}{*}{0.43} \\
\hline & Final & 1:25 PM & & 7.49 & & & \\
\hline \multirow[t]{2}{*}{7} & Initial & 1:25 PM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.18} & \multirow[t]{2}{*}{1.61} & \multirow[t]{2}{*}{0.41} \\
\hline & Final & 1:55 PM & & 7.48 & & & \\
\hline \multirow[t]{2}{*}{8} & Initial & 1:55 PM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.15} & \multirow[t]{2}{*}{1.63} & \multirow[t]{2}{*}{0.33} \\
\hline & Final & 2:25 PM & & 7.45 & & & \\
\hline \multirow[t]{2}{*}{9} & Initial & 2:25 PM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.14} & \multirow[t]{2}{*}{1.63} & \multirow[t]{2}{*}{0.31} \\
\hline & Final & 2:55 PM & & 7.44 & & & \\
\hline \multirow[t]{2}{*}{10} & Initial & 2:55 PM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.13} & \multirow[t]{2}{*}{1.64} & \multirow[t]{2}{*}{0.29} \\
\hline & Final & 3:25 PM & & 7.43 & & & \\
\hline \multirow[t]{2}{*}{11} & Initial & 3:25 PM & \multirow[t]{2}{*}{30.00} & 7.30 & \multirow[t]{2}{*}{0.13} & \multirow[t]{2}{*}{1.64} & \multirow[t]{2}{*}{0.29} \\
\hline & Final & 3:55 PM & & 7.43 & & & \\
\hline \multirow[b]{2}{*}{12} & Initial & 3:55 PM & \multirow[b]{2}{*}{30.00} & 7.30 & \multirow[b]{2}{*}{0.13} & \multirow[b]{2}{*}{1.64} & \multirow[b]{2}{*}{0.29} \\
\hline & Final & 4:25 PM & & 7.43 & & & \\
\hline
\end{tabular}

Per County Standards, Infiltration Rate calculated as follows:
\[
\mathrm{Q}=\frac{\Delta \mathrm{H}(60 \mathrm{r})}{\Delta \mathrm{t}\left(\mathrm{r}+2 \mathrm{H}_{\text {avg }}\right)}
\]

Where: \(\quad Q=\) Infiltration Rate (in inches per hour)
\(\Delta H=\) Change in Height (Water Level) over the time interval
\(r=\) Test Hole (Borehole) Radius
\(\Delta t=\) Time Interval
\(H_{\text {avg }}=\) Average Head Height over the time interval




PIPE STORAGE VOLUME \(=26,239 \mathrm{CF}\)
-TOTAL STORAGE PROVIDED \(=33,215 \mathrm{CF}\)

PIPE DETALLS
- DIAMETER \(=96 "\)

CORRUGATION \(=5 x\)
GAGE \(=16\)
COATING \(=\) ALT
- COATING = ALTT
- BARREL SPACING = \(36 "\)

BACKFILL DETALLS
WIDTH AT ENDS \(=12\)
ABOVE PIPE \(=0 "\)
WIDTH AT SIDES
- BELOW PIPE = 0 "

NOTES
ALL RISER AND STUB DIMENSIONS ARE TO
CENERLINE.ALL ELEVATIONS, DIMENSIONS, AN VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASTNG FOR FABRICATION. ASTM A998.
ALL RISERS AND STUBS ARE \(2^{2} / 3^{\prime \prime} \times 1 / 2^{\prime \prime}\) CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED
RISERS TO BE FIELD TRIMMED TO GRADE - QUANTTTY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIP FOR CONNECTING THE SYSTEM TO
EXISTING PIPE OR DRAINAGE STRUCTURES OUR YSSTEM AS DETAILED PROVIDES NOMINAL INLE ANDOR OUTLETPIPE STUB FOR CONNECTIONTO EXISTING DRAINAGE FACILTIIES. II ADDITIONA
IS NEEDED IT IS THE RESPONSIBLITY OF THE CONTRACTOR. - BAND TYP TO BE DETERMINED UPON FINAL DESIG DYODS DESIGN, QUANTITIES ARE APPROX. AND
SHOULD BE VERIFIED UPON FINAL DESIGN AND SHOULD BE VERIIIED UPON FINAL DESIGN AND
APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOE
 AND ONLY ACCOUUNS FOR MATERIAL WITHIN THE
ESTIMATED EXCAVATION FOATPINT - THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSE AND DO NOT REFLECTANY LOCAL PREFERENCE
REGULATIONS. PLEASE CONTACTYOUR LOCAL REGUACHONS. LLEASE CONTACC YOUR
CONTECH REP FOR MOIFICATIONS.


\(\cdots \quad 1\) INITIAL FILL ENVELOPE \(\ldots\)
MINIMUM WIDTH DEPENDS ON SITE CONDITIONS AND ENGINEERING JUDGEMENT. FOUNDATIONIBEDDING PREPARATION
2) PRIOR TO PLACING THE BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STABLE GRADE. IN THE EVENT THAT UNSUITABLE FOUNDATION
MATERIALS ARE ENCOUNTERED DURING EXCAVATION THEY SHALL BE REMOVED AND BROUGHTBACK TO THE GRADE WITHAFILL MATERIAL AS APPROVED BY
THENGINER
5. HAUNCH ZONE MATERIAL SHALL BE PLACED AND UNIFORMLY COMPACTED WITHOU SOFT SPOT

BACKFILL
MATERIAL SHALL BE PLACED IN 8"-10" MAXIMUM LIFTS. INADEQUATE COMPACTION CAN SOLLS OVER THE SYSTEM BACKFIL SHALL LE PLLACED SUCH THAT THERE IS NO MORE
 THE LENGTH OF THE SYSTEM AT THE SAME RATE TO AVOID DIFFERENTIAL LOADING ON ANY PIPES IN THE SYSTEM.

EQUIPMENT USED TO PLACE AND COMPACT THE BACKFILL SHALL BE OF A SIZE AND
TYPE SO AS NOT TO DISTORT DAMAGE OR DISPLACE THE PIPE ATTENTION MUST BE GIVEN TO PROVIDING ADEQUATE MIIIUMM COVER FOR SUCH EQUNIONT BE GIVEN TO PROVIDING ADEQUATE MINIMUM COVER FOR SUCHE EQUIPMEN
MAINTAIN BALANCED LOADING ON ALL PIPES IN THE SYSTEM DURING ALL MAINTAN BALANCE

OTHER ALTERNATE BACKFILL MATERIAL MAY BE ALLOWED DEPENDING ON SITE SPECIFIC CONDITIONS. REFER TO TYPICAL BACKFILL DETALL FOR MATERIAL REQUIRED.

\(5^{5 " \times 1 "}\) " CORRUGATION - STEEL ONLY
EDGE SPACING EQUAL ON BOTH SIDES


NOTES:
PERFORATIONS MEETAASHTO AND ASTM SPECIFICATIONS
 THE NOMINAL DIAMETER AND LENGTH OF PIPE.
ALL DIMENSIONS ARE SUBJECT TO MANUFACTURING TOLERANCES HOLES \(83 / 8^{"}\)

TYPICAL PERFORATION DETAIL
SCALE: N.t.S.


FRONT
NOTE: MANWAY DETALL APPLICABLE FOR CM SYSTEMS WITH DAMMETERS A8" AND

 RISER (TYP.)

END ELEVATION

TYPICAL RISER DETAIL ScALE: N.t.S.

ADDERS ARE OPTIONAL AND ARE NOT REQUIRED FOR ALL SYSTEMS

20 miLh hPE mimazan
INER OVER TOP OF PIPE


TYPICAL SECTION VIEW
LINER OVER ROW
SCALE: N.T.S
NOTE: IF SALTING AGENTS FOR SNOW AND ICE REMOVAL ARE USED ON OR NEAR
 POTENTAL ADVERSE EFFECTS THAT MAY RESULT FROM ACHANGE IN THE SURROUNDING ENVIRONMENT OVER A PERIOD OF TIME. PLEASE REFER
CORRUATED METALPIPE DETENTION DESIGN GUIDE FOR ADITIONAL CORRUGATED M
INFORMATION.

CMP DETENTION SYSTEMS CONTECH
DYONWNG
DRAWN

DYO21274 Sinclair S
Under Ground Chamber System - Water Quality
Perris, CA
DETENTION SYSTEM
\begin{tabular}{|c|c|c|}
\hline (ecr no. & \(\underbrace{\text { No.t }}_{\substack{\text { sea, } \\ 21274}}\) & \({ }_{\text {PTEI/42022 }}\) \\
\hline IGNE: & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Drawn \({ }^{\text {den }}\)}} \\
\hline oro & & \\
\hline CHECKED: & \multicolumn{2}{|r|}{\({ }_{\text {APPROVVE: }}^{\text {dro }}\)} \\
\hline SHEETNO: & & \\
\hline
\end{tabular}
CONSTRUCTION LOADS
OR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINMUM REQUIREMENTS SHOWN IN THE TABLE BELOW,
THE USE F HEAYY CONSTRUCTION EQUIPMENT NECESITATES GREATER PROTECTON FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NOR EQUHMENM HECESSIC
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
PIPE SPAN, \\
INCHES
\end{tabular}} & \multicolumn{4}{|c|}{ AXLE LOADS (kips) } \\
\cline { 2 - 5 } & \(18-50\) & \(50-75\) & \(75-110\) & \(110-150\) \\
\hline & \multicolumn{3}{|c|}{ MINIMUM COVER (FT) } \\
\cline { 2 - 5 } & 2.0 & 2.5 & 3.0 & 3.0 \\
\(48-42\) & 3.0 & 3.0 & 3.5 & 4.0 \\
\(78-120\) & 3.0 & 3.5 & 4.0 & 4.0 \\
\(126-144\) & 3.5 & 4.0 & 4.5 & 4.5 \\
\hline
\end{tabular}
MINMMUM COVER MAY VARYY DEPENDING ONLOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL
COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO COVER REQUIRED TA AVOID DAMAGE TO THE PIPE. MINIMUM COVER
THE TOP OF THE MAITTAINED CONSTRUCTION ROADWAY SURFACE.
CONSTRUCTION LOADING DIAGRAM

\section*{SCALE: N.T.S.}
SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE
THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF
THE DESIGNED DETENTION SYSTEM DETAlIED IN THE PROJECT PLANS. MATERIAL
MATERAL THE MALERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS
ALUMINIZED TYPE 2 STEEL COLLS SHALL CONFORM TO THE
REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.
THE GALVANIZED STEEL COILS SHALL CONFORM TO THE
REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.
THE POLYMER COATED STEEL COLLS SHALL CONFORM TO THE
REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.
THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE
CONSTRUCTION LOADS
MANUFACTURER'S OR NCSPA GUIDELINES THAN FINAL LOADS. FOLLOW THE

PREFRENCES OR REGULTALOCNANLLEASE
CONTACT YOUR LOCAL CONTECH REP FOR

PIPE THPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:
ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760
GALVANIZED: AASHTO M-36 OR ASTM A-760
AFPQL®AAHF COATED: AASHTO M-245 OR ASTM A-762
ALUMINUM: AASHTO M-196 OR ASTM B-745
APPLLCABLE
HANDLIN AND ASSEMBLY
SHALLL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL APAPEABEECIATION) FOR ALUMIIIZED TYPE 2, GALVANIZED OR POLYMER COAAED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDAT
REQUIREMENTS
INSTALATIN
INSTALLATION
SHALL
HEINACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HAGHAY BRIDGES, SECTION N6, DIVISION II DIVIIION II OR ASTM A-T98 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM
B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WTH THE PROJECT
PLANS AND SPECIFICATIONS IF THERE ARE ANY INCONSISTENCIES OR PLANS AND SUECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR
CONFLLCTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE
SITE ENGINER.

IT IS ALWAYS THE RESPONSIBLITY OF THE CONTRACTOR TO FOLLOW OSHA
GUIDELINES FOR SAFE PRACTICES.


ROUND OPTION PLAN VIEW
NOTES:
1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
2. DESIGN LOAD HS25.
3. EARTH COVER = \(1^{\prime}\) MAX
4. CONCRETE STRENGTH \(=3,500 \mathrm{psi}\)
5. REIIFORCING STEEL \(=\) ASTM A615, GRADE 6
6. PROVIDE ADDITIONAL REINFORCING AROUND HALF EACH SIDE. ADDITIONAL BARS TO BEIN HALF EAMH SIDE. ADDITIONAL BARS TO BE IN
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{REINFORCING TABLE} \\
\hline \[
\begin{aligned}
& \varnothing \text { CMP } \\
& \text { RISER }
\end{aligned}
\] & A & \(\otimes \mathrm{B}\) & REINFORCING & **BEARING PRESSURE (PSF) \\
\hline \({ }^{24 "}\) & \[
\begin{gathered}
84^{\prime} \\
4^{\prime} \times 4^{\prime}
\end{gathered}
\] & \({ }^{26 "}\) & \#5 @ 12" OCEW \#5 @ 12" OCEW & \[
\begin{aligned}
& 2,410 \\
& \hline, 780
\end{aligned}
\] \\
\hline 30" & \[
\begin{gathered}
84^{\prime}-6 " \\
4^{4}-6 \times 4^{\prime \prime}-6 "
\end{gathered}
\] & \(32^{\prime \prime}\) & \#5 @ 12" OCEW \#5 @ 12" OCEW & \[
\begin{aligned}
& 2,120 \\
& 1,550
\end{aligned}
\] \\
\hline 36" & \[
{ }^{85^{\prime}} \times 5^{\prime} 5^{\prime}
\] & \(38{ }^{\prime \prime}\) & \#5 @ 10" OCEW \#5 @ 10" OCEW & \[
\begin{aligned}
& 1,890 \\
& 1,350
\end{aligned}
\] \\
\hline \(42^{\prime \prime}\) & \[
\begin{gathered}
85^{-1}-65^{\prime \prime}-5^{\prime \prime} \\
55^{-6 " 6 "}
\end{gathered}
\] & 44" & \#5 @ 10" OCEW
\#5 @ 9 OCEW & \[
\begin{aligned}
& 1,720 \\
& 1,210
\end{aligned}
\] \\
\hline \(48{ }^{\prime \prime}\) & \[
{ }^{86^{\prime}}{ }_{x 6^{\prime}} 6^{\prime}
\] & 50" & \#5 @ 9" OCEW \#5 @ 8" OCEW & \[
\begin{aligned}
& 1,600 \\
& 1,1,00
\end{aligned}
\] \\
\hline
\end{tabular}
**ASSUMED SOIL BEARING CAPACITY


SQUARE OPTION PLAN VIEW

TRIM OPENING WITH DIAGONAL \#4 BARS, EXTEN BARS A MINIMUM OF 12 " BEYOND OPENING, BEND
BARS AS REQUIRED TO MAINTAN BAR COVER.
8. PROTECTION SLAB AND ALL MATERIALS TO BE
PROVIDED AND INSTALED BY CONTRACTOR.
9. Detall design by delta engineering, binghamton, ny.

\section*{MANHOLE CAP DETAIL}
sCALE: N.t.s.

CNENTENERE Sounons

CMP DETENTION SYSTEMS CONTECH
DYONWNG
DRAWN

DYO21274 Sinclair S
Under Ground Chamber System - Water Quality
Perris, CA
DETENTION SYSTEM

\section*{CMP DETENTION INSTALLATION GUIDE}

PROPER INSTALLATION OF AFLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. C PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADOITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

\section*{FOUNDATION}

CONSTRUCTA FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION
IF SOFT OR UNSUITABLE SOLLS ARE ENCOUNTERED, REMOVE THE POOR SOILS DELVNTION WITHB ACOMPETENT BACKFILL MATERIAL. THE STRUCTUURARAL FILL

 UNDERLYING SOLISAN ENGINEERR
SEPARATOR INABRIC SHOULD SE USED ASA
SOME CASES, USING A STIFF REINFORCING GEOGRID REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.


GRADE THE FOUNDATION SUBGRADE TOA UNIIFORM OR SLIGHTLY SLOPING
GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE
CONSTUCTTO SEQUENCE WILLLAST FOR AN EXTENDED PERIOD OF TIME, IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL
ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE

\section*{ALLOW EXCE
SUBGRADE.}

\section*{GEOMEMBRANE BARRIER}

A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE
BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LNER IS BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS
INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.
THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING
AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HISHER BEST JUDGEMENT TO DETERMIEE IF ANY ADDTIIONALPROTECTIVE MEASURES ARE REQUIRED. BELOW ISA TYPICAL DETALL SHOWING THE
PLACEMENT OF AGEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


\section*{N-SITU TRENCH WALL}
if excavation is required, the trench wall needs to be capable of SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO EETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE UTER MOST PIPES.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION. TYPICALLY, SMALLLLIF S ARE PLACED BETWEEN THE PIPES AND THEN
 BALANCE BETWEEN THE UPLIF TFORCE OF THE CLSM, THE OPPOSING
WEIGHT OF THE PIPE AND THE EFFECT OF OTHER RESTRAINING
 PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM
LIFT THICKNESS YOUR LOCAL CONTECH SALES ENGINEER CAN HELP LIFT THCICNESS. YOUR LOCAL CONTECH SAL
DETERMINE THE PROPER LIFT THICKNESS.


\section*{BACKFILL PLACEMENT}

Material shall be worked into the pipe haunches by means of SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.


F AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED
 ENGINEER OF RECORD ( (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH
THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE
 TO THE END OF THE RECENTLY PLACED FLLL, AND BEGIN THE SEQUUNCE
AGAIN UNTLLTHE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFLL
DIRECTLY BEHIND THE BACKHOE AS WEL AS THE MOVEMENTOF OIRECTLY BEHIND THE BACKHOE, AS WELLAS THE MOVEMENT OF
CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE
 DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE DETERMINE THE PROPER COVER OVER T TE PIPES T T ALLOW THE
MOVEMENT OFCOSTRUCTIOREQUIPMENT SEE TABLE 1 OR CONTACT YOUR
LOCAL CONTECH SALES ENGINEER.


ECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE AROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE O THE OUTLET PIPE.


\section*{CONSTRUCTION LOADING}

TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGNLE NECESSARY. SINCE COMSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, TIS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER EQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING YOUR PRE-CONSTRUCTION MEETING.


\section*{CMP DETENTION SYSTEM INSPECTION AND}

\section*{MAINTENANCE}

UNDERGROUND STORMWATER DETENTION AND INFLLTRATION SYSTEMS MUST EE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES O PERFORMANCE AND LONGEVITY.

\section*{NSPECTION}
nspection is the key to effective maintenance of cmp detention YSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECTEM. ACTVIES RATHER THANTHE SIZE OR CONFIGURATION OF THE YSTEM.

NSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE CORROSIVE CONDITIONS.A ARECORD OF EAC
MAINTAINED FOR THE LIFE OF THE SYSTEM

\section*{MAINTENANCE}

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARG orifice.
ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED
THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE THERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUNEE IS NO PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMLLAE
FRON OF THE OUTLET ORNICICE MANOLE COVERA SHOULDE SECURELY

 APPROPRIATE PRECAUTIONS REGAR
REGULATIONS SHOULD BE FOLLOWED.
ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. AURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS ISTENS
 RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE
AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.
MAINTAIING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS MAINTANING AN UNDERGROUND DETENTIN OR INFILTRATION SYSTEM
EASIEST WHEN THERE II NO FLOWENTERING THE SYSTEM. FOR THIS
REASON, IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY EASIESTWHAN
REASONTI
WEATHER.

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE TO FUNCTION AS INTENDED BY IDENTIEYING RECOMMENDED REGULAR \begin{tabular}{l} 
TO \\
INSECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE \\
\hline
\end{tabular} RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUND
OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

- APPROX. LINEAR FOOTAGE \(=2,998\) LF

STORAGE SUMMARY
STORAGE VOLUME REQUIRED = N/A
- PIPE STORAGE VOLUME \(=150,671\) CF
- TOTAL STORAGE PROVIDED \(=150,671 \mathrm{CF}\)

PIPE DETALLS
DIAMETER \(=96 "\)
CORRUGATION \(=5 \times 1\)
GAGE \(=16\)
- COATING = ALT2
- BARREL SPACING = \(36^{\prime \prime}\)

BACKFILL DETALLS
- WIDTH AT ENDS \(=12\)
- ABOVE PIPE = O"
- WIDTH AT SIDES \(=12^{\prime \prime}\)

NOTES
ALL RISER AND STUB DIMENSIONS ARE TO
CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AN
LOCATIONS OF RISERS AND INLETS SHALL BE
OCATIONS OF RISERS AND INLETS, SHALL BE
VRFIIID BY TE ENG
INER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
ALL FITTINGS AND REINFORCEMENT COMPLY WITH ALL AITTINGS
ASTM A998.
- ALL RISERS AND STUBS ARE \(22 / 3 \times 1 /{ }^{\prime \prime}\) CORRUGATION AND 16 GAGE UNLESS OTHERWISE NOTED.
-RISERS TO BE FIELD TRIMMED TO GRADE. - QUANTTY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIP FOR CONNECTING THE SYRTEM TO
EXISTING PIPE OR DRAINAGE STRUCTURES OUR EXISTING PIPE OR DRAINAGE STRUCTURES. OUR
SYSTEM AS DETAILED PROVIDES NOMINAL INLET
 EXISTING DRAINAGE FACLITIIES. IF ADDITIONAL
IS NEDED IT IS THE RESPONSIBIITY OF THE CNETRACTOR - BAND TYPE TO BE DETERMINED UPON FINAL DESI DYODS DESIGN QUANTITIES ARE APPROX. AND
SHOULD BE VERFIED UPON FINAL DESIGN AND SHOULD BE VERIFIED UPON FINAL DESIGN AND
APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOE APPRVALL
NOT CONSIDER ALL VARIABLESS SUCH AS SHORING
AND AND ONL ACCOULTS FOR MATERIAL WITHIN THE
ESTIMATED EXCAVATION FOOTPINT - THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES
REGULATIONS. PLEASE CONTACT YOUR LOCAL REGULATIONS. PLEASE CONTACT YOU
CONTECH REP FOR MODIFICATIONS.


\section*{ASSEMBLY SCALE: \(1^{\prime \prime}=30^{\prime}\)}

CONSTRUCTION LOADS
OR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW,
THE USE O HEAY CONSTRUCTIN EQUPMPNT NEESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED
GRADE COVER MINIMUMS ROR NORMAL HIGHWAY TRAFFIC.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
PIPE SPAN, \\
INCHES
\end{tabular}} & \multicolumn{4}{|c|}{ AXLE LOADS (kips) } \\
\cline { 2 - 5 } & \(18-50\) & \(50-75\) & \(75-110\) & \(110-150\) \\
\hline & \multicolumn{3}{|c|}{ MINIMUM COVER (FT) } \\
\cline { 2 - 5 } & 2.0 & 2.5 & 3.0 & 3.0 \\
\(48-72\) & 3.0 & 3.0 & 3.5 & 4.0 \\
\(78-120\) & 3.0 & 3.5 & 4.0 & 4.0 \\
\(126-144\) & 3.5 & 4.0 & 4.5 & 4.5 \\
\hline
\end{tabular}
MINMUM COVER MAY VARYY DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER
THE TOP OF THE MAITTAINED CONSTRUCTION ROADWAY SURFACE.
CONSTRUCTION LOADING DIAGRAM

\section*{SCALE: N.T.S.}
SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE
THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF
THE MATERIAL
MATERAL THE MALERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS
ALUMINIZED TYPE 2 STEEL COLLS SHALL CONFORM TO THE
REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.
THE GALVANIZED STEEL COILS SHALL CONFORM TO THE
REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.
THE POLYMER COATED STEEL COLLS SHALL CONFORM TO THE
REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.
THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE
CONSTRUCTION LOADS
MANUFACTURER'S OR NCSPA GUIDELINES THAN FINAL LOADS. FOLLOW THE



PIPE THPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:
ALUMIIIZED TYPE 2: AASHTO M-36 OR ASTM A-760
GALVANIZED: AASHTO M-36 OR ASTM A-760
AfPQL\&AHEF COATED: AASHTO M-245 OR ASTM A-762
ALUMINUM: AASHTO M-196 OR ASTM B-745
HANLICABLIL
SHALLL BE AND ASSEMSLCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL APAPEABEECIATION) FOR ALUMIIIZED TYPE 2, GALVANIZED OR POLYMER COATE STELEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S
RECOMMENDATINNS FOR ALUMNUM PIPE. RECOMMENDAT
REQUREMENTS
ISTALATON
INSTALLATION
SHAL BE INACORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHMY BRIDGES, SECTIO N N6, DIVIIIION IIDIVISION IT OR ASTM A-T98 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM
B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT B-788 (FOR ALUMINUM PIPE) AND IN CONFORRMNCE WITH THE PROJECT
PLANS AND SPECIFICATIONS IF THERE ARE ANY INCONSISTENCIES OR PLANS AND SUECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR
CONFLLCTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE
SITE ENGINER.

IT IS ALWAYS THE RESPONSIBLITY OF THE CONTRACTOR TO FOLLOW OSHA
GUIDELINES FOR SAFE PRACTICES.


ROUND OPTION PLAN VIEW
NOTES:
1. DESIGN IN ACCORDANCE WITH AASHTO, 17th EDITION.
2. DESIGN LOAD HS25.
3. EARTH COVER = \(1^{\prime}\) MAX
4. CONCRETE STRENGTH \(=3,500\) psi
5. REIIFORCING STEEL \(=\) ASTM A615, GRADE 6
6. PROVIDE ADDITIONAL REINFORCING AROUND HALF EACH SIDE. ADDITIONAL BARS TO BEIN HALF EACH SIDE ADDITIONAL BARS TO BE IN
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{REINFORCING TABLE} \\
\hline \[
\begin{aligned}
& \varnothing \text { CMP } \\
& \text { RISER }
\end{aligned}
\] & A & \(\varnothing \mathrm{B}\) & REINFORCING & **BEARING PRESSURE (PSF) \\
\hline \(24 "\) & \[
\begin{aligned}
& 84^{\prime} \\
& 4^{\prime} \times{ }^{\prime}
\end{aligned}
\] & \({ }^{26 "}\) & \#5 @ 12" OCEW
\#5 @ 12" OCEW & \[
\begin{aligned}
& 2,410 \\
& 1,780
\end{aligned}
\] \\
\hline \(30 "\) & \[
\begin{gathered}
84^{\prime}-6^{\prime \prime} \\
4^{4}-66^{\prime \prime} \times 4^{\prime}-6^{\prime \prime}
\end{gathered}
\] & \(32^{\prime \prime}\) & \#5 @ 12" OCEW \#5 @ 12" OCEW & \[
\begin{aligned}
& 2,120 \\
& 1,50
\end{aligned}
\] \\
\hline 36" & \[
{ }^{85^{\prime}} \times 5^{\prime} 5^{\prime}
\] & 38" & \#5 @ 10" OCEW \#5 @ 10" OCEW & \[
\begin{aligned}
& 1,890 \\
& 1,350
\end{aligned}
\] \\
\hline \(42^{\prime \prime}\) & \[
\begin{gathered}
85^{-}-6 " 5^{\prime \prime}-6 " \\
\times 5^{\prime}-66^{\prime \prime}
\end{gathered}
\] & 44" & \#5 @ 10" OCEW \#5 @ 9" OCEW & \[
\begin{aligned}
& 1,720 \\
& 1,210
\end{aligned}
\] \\
\hline \(48{ }^{\prime \prime}\) & \[
{ }^{\infty} 6^{\prime}{ }_{x 6^{\prime}} 6^{\prime}
\] & 50" & \#5 @ 9" OCEW \#5 @ 8" OCEW & \[
\begin{aligned}
& 1,600 \\
& 1,100
\end{aligned}
\] \\
\hline
\end{tabular}
**ASSUMED SOIL BEARING CAPACITY


SQUARE OPTION PLAN VIEW

TRIM OPENING WITH DIAGONAL \#4 BARS EXTEN BARS A MINIMUM OF 12 " BEYOND OPENING, BEND
BARS AS REQUIRED TO MAINTAN BAR COVER.
8. PROTECTION SLAB AND ALL MATERIALS TO BE
PROVIDED AND INSTALED BY CONTRACTOR.
9. Detall design by delta engineering, binghamton, ny.

\section*{MANHOLE CAP DETAIL}
scale: n.t.s.

CNENTENER Sounons

CNavTETH
CMP DETENTION SYSTEMS CoNTECH
DYOOS

DYO21273 Sinclair St Underground Chamber System

Perris, CA
DETENTION SYSTEM


\section*{CMP DETENTION INSTALLATION GUIDE}

PROPER INSTALLATION OF AFLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. C PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADOITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

\section*{FOUNDATION}

CONSTRUCTA FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION
IF SOFT OR UNSUITABLE SOLLS ARE ENCOUNTERED, REMOVE THE POOR SOILS DELVNTION WITHB ACOMPETENT BACKFILL MATERIAL. THE STRUCTUURARAL FILL

 UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED ASA
SEPRARTOR IN SOM EASES, USIN A STIFF RIIFORCINGEOGRID REDUCES OVER EXCAVATIONAND REPLACEMENT FILL QUANTITIES.



GRADE THE FOUNDATION SUBGRADE TOA UNIIFORM OR SLIGHTLY SLOPING
GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE
CONSTUCTTO SEQUENCE WILLLAST FOR AN EXTENDED PERIOD OF TIME, IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL
ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE

\section*{ALLOW EXCE
SUBGRADE.}

\section*{GEOMEMBRANE BARRIER}

A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE
BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LNER IS BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER I EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.
THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING
AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HISHER BEST JUDGEMENT TTD DETERMINE IF ANY ADDITIONALPROTECTIVE MEASURES ARE REQUIRED. BELOW ISA TYPICAL DETALL SHOWING THE
PLACEMENT OF AGEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE.


N-SITU TRENCH WALL
excavation is required, the trench wall needs to be capable of SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO EETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE UTER MOST PIPES.



Beobinc-wll grabo
Granu iar in smaler

\section*{BACKFILL PLACEMENT}
material shall be worked into the pipe haunches by means of SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS.


F AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE ADEQUTTE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED
 ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH
THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE
 TO THE END OF THE RECENTLY PLACED FLLL, AND BEGIN THE SEQUUNCE
AGAIN UNTLLTHE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFLL
DIRECTLY BEHIND THE BACKHOE, AS WELLAS THE MOVEMENTOF OIRECTLY BEHIND THE BACKHOE, AS WELLAS THE MOVEMENT OF
CONSTRUCTION TRAFFIC. MATERIAL STOCKPILES ON TOP OF THE
 DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE DETERMINE THE PROPER COVER OVER T TE PIPES T T ALLOW THE
MOVEMENT OFCOSTRUCTIOREQUIPMENT SEE TABLE 1 OR CONTACT YOUR
LOCAL CONTECH SALES ENGINEER.

WHEN FLOWABLE FLLL IS USED, YOU MUST PREVENT PIPE FLOATATION.
TYPICALY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN TYPICALLY, SMALLLLIFS ARE PLACED BETWEEN THE PIPES AND THEN
 BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING
WEIGHT OF THE PIPE AND THE EFFECT OF OTHER RESTRAINING
 PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM
LIFT THICKNESS YOUR LOCAL CONTECH SALES ENGINEER CAN HELP LIFT THCICNESS. YOUR LOCAL CONTECH SAL
DETERMINE THE PROPER LIFT THICKNESS.


\section*{CONSTRUCTION LOADING}

TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIV LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM
IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER YOUR PRE-CONSTRUCTION MEETING.

\section*{ADDITIONAL CONSIDERATIONS}
because most systems are constructed below-grade, rainfall CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE AROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE.



\section*{CMP DETENTION SYSTEM INSPECTION AND}

\section*{MAINTENANCE}

UNDERGROUND STORMWATER DETENTION AND INFLLTRATION SYSTEMS MUST EINSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES O PERFORMANCE AND LONGEVITY.

\section*{INSPECTION}
nspection is the key to effective maintenance of cmp detention YSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING, CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIIIC ACTIVTIES RATHER THAN THE SIZE OR CONFIGURATION OF THE YSTEM.

NSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT OPERATIONS TAKE PLACE, AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE CORROSIVE CONDITIONS.A ARECORD OF EAC
MAINTAINED FOR THE LIFE OF THE SYSTEM

\section*{MAINTENANCE}

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARG orifice.
ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED
THROUGH THE MANHOLE OVER THE OUTLET ORIFICE IF MANTENANCE
 SEATED FOLLOOWNG LEANNG ACTIVITES. CONTECH SUGGESTS THAT ALL
 GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL REGULATIONS SHOULD BEFOLLOWED.
ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS
 RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE
AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM.
MAINTAIIING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS MAINTAINING AN NNDERGROUND DETENTIIN OR INFLLTRATION SYSTEM I
EASIET WHEN TERERE NO FOW ENTRRNG THE SSSTEM. FOR THIS
REASN, ITIS GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY
WEATHER

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE
UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAG TO FUNCTION AS INTENDED BY IDENTEYING RECOMMENDED REGULAR IT RELATED TO THE STRUCTURAL INEGRIT OF HE PRE OR SHE SOUN
OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.


\begin{tabular}{llrrrr} 
Calculation for Mixed Surface Type & 100 W Sinclair Street & & \\
& Type & Fraction & \multicolumn{2}{l}{ Area } & \\
DMA 1 & Landscaping & 0.1 & 55789.9 & 5578.99 & Runoff Coefficient \\
& Roof & 1 & 423223.99 & 423224 & \\
& Concrete/Asphalt & & 1 & 369324.21 & 369324.2 \\
& & & & & 0.940813 \\
& & & 848338.10 & &
\end{tabular}

```

