BLUFF STUDY REPORT
 4677 VIA ROBLADA
 HOPE RANCH AREA OF SANTA BARBARA COUNTY, CALIFORNIA

PROJECT NO.: 301995-001
NOVEMBER 30, 2022
(REVISED OCTOBER 4, 2023)

PREPARED FOR
HR PROPERTY TRUST
ATTENTION: TIM PASQUINELLI
C/O ROBERT GOODWIN

BY
EARTH SYSTEMS PACIFIC
5917 OLIVAS PARK DRIVE, SUITE F VENTURA, CALIFORNIA 93003

Earth Systems
115 West Canon Perdido Street | Santa Barbara, CA 93101 \| (805) 642-6727 | www.earthsystems.com

November 30, 2022
(Revised October 4, 2023)

Project No.: 301995-001
Report No.: 22-11-93

HR Property Trust
Attention: Tim Pasquinelli
4677 Via Roblada
Santa Barbara, CA 93110
c/o Robert Goodwin

Project: 4677 Via Roblada
Hope Ranch Area of Santa Barbara County, California
Subject: Bluff Study Report
As authorized, Earth Systems Pacific (Earth Systems) has prepared this Bluff Study Report for a proposed future construction at 4677 Via Roblada in the Hope Ranch area of Santa Barbara County, California. The accompanying Bluff Study Report presents the results of our subsurface exploration and laboratory testing programs, and our conclusions and recommendations pertaining to geotechnical aspects of project design. This report completes Phase 1 of the scope of services described within our Proposal No. SBA-21-02-008 dated February 24, 2021, revised March 22, 2022, and authorized by Tim Pasquinelli on May 2, 2022.

We have appreciated the opportunity to be of service to you on this project. Please call if you have any questions, or if we can be of further service.

Respectfully submitted,

TABLE OF CONTENTS

INTRODUCTION 1
PROJECT DESCRIPTION 1
PURPOSE AND SCOPE OF WORK 1
SITE SETTING 1
AERIAL PHOTO REVIEW 2
SOIL/BEDROCK AND GROUNDWATER CONDITIONS 4
GROSS (GLOBAL) SLOPE STABILITY 5
STRENGTH PARAMETERS 5
SLOPE STABILITY ANALYSES CRITERIA 6
RESULTS OF SLOPE STABILITY ANALYSES 7
BUILDING CODE SETBACK 7
RATE OF RETREAT 8
SEA LEVEL RISE AND RATE OF RETREAT 9
CONCLUSIONS AND RECOMMENDATIONS 12
LIMITATIONS AND UNIFORMITY OF CONDITIONS 13
BIBLIOGRAPHY 14

TABLE OF CONTENTS (Continued)

APPENDIX A

Vicinity Map
Regional Geologic Map 1 (Dibblee)
Regional Geologic Map 2 (USGS)
Field Study
Site Plan/Geologic Map
Geologic Cross-Section A-A'
Logs of Borings
Boring Log Symbols
Unified Soil Classification System

APPENDIX B

Laboratory Testing
Tabulated Laboratory Test Results
Individual Laboratory Test Results
Composited Direct Shear Graphs

APPENDIX C

Minimum Foundation Design Table
Slope Setbacks for Foundations on or Adjacent to Slopes

APPENDIX D

Slope Stability Analyses Results - Using Composited Shear Strengths
Slope Stability Analyses Results - Using Back-Calculated Shear Strengths

APPENDIX E

Table G-8 (CACC 2018)
Transect ID 4061 Site Data

INTRODUCTION

Project Description

This report presents results of a bluff study performed for a proposed future construction at 4677 Via Roblada in the Hope Ranch area of Santa Barbara County, California (see Vicinity Map in Appendix A). Current plans indicate that the proposed future construction will include a new residence with a basement.

Purpose and Scope of Work

The purpose of the bluff study that led to this report was to analyze the soil/bedrock conditions at the project site and to provide bluff study recommendations for design and construction. The soil conditions include surface and subsurface soil types, soil expansion potential, soil strength, slope stability, and the presence or absence of subsurface water. The scope of work included:

- Reviewing historical stereographic aerial photographs of project site.
- Performing a reconnaissance of the project site.
- Drilling, sampling, and down-hole logging two bucket-auger borings to study bedrock, soil, and groundwater conditions.
- Laboratory testing soil samples obtained during the subsurface exploration to determine their physical and engineering properties.
- Analyzing the data obtained.
- Preparing this report.

Site Setting

An existing residence currently occupies the project site. The area surrounding the existing residence is covered by landscaping (planters, lawns, and trees) and hardscaping (walkways and driveways). There is a descending slope (sea cliff or bluff) located about 130 feet south of the existing residence. This descending slope is about 130 -foot high and ranges in slope gradient from about 0.7 - to 4 -horizontal versus 1 -vertical.

The geographic coordinates of the proposed future construction are 34.4173° North Latitude and 119.7849° West Longitude.

AERIAL PHOTO REVIEW

An aerial photograph study was performed by Dr. Larry Gurrola (subcontracted geologist) on July 13-14, 2022. The following aerial photographs were reviewed for the subject property:

Date	Flight and Frame Numbers	Scale
1928	C-311 C-Section: A5, A6	18,000
1929	C-430: A8, A9	24,000
1938	C-4950: SF-39, SF-40	1938
1943	BTM-1943: 4B-190, 4B-191	20,000
1944	C-9113: 6-53, 6-54	7,200
1953	GS-YO: 2-112	37,400
1954	BTM-1954: 6K-118, 6K-119	20,000
1956	HA-AN: 1-38, 1-39	9,600
1957	HA-BY: 87, 88	4,200
1961	BTM-1961: 7BB-65, 7BB-66	20,000
1962	HA-OI: 85, 86	12,000
1964	HB-VX: 70, 71	12,000
1965	HB-FV: 88, 89, 90	6,000
1968	HB-LC: 45, 46	12,000
1968	HB-LI: 45, 46	12,000
1969	HB-QD: 17, 18	12,000
1971	HB-SJ: 14, 15	12,000
1973	HB-WL: 40, 41	12,000
1975	HB-XQ: 11, 12	12,000
1992	PW-SB-8: 5 (non-stereo)	24,000
1997	PW-SB-10: 10 (non-stereo)	24,000
2001	CCC-BQK-C: 72-8 (non-stereo)	12,000

Google Earth images dated: 2002-2019, 2020-2022.
California Coastline images dated 1972, 1979, and 1987.

The aerial photographs listed in Table 1 were supplemented with Google Earth, California Coastline images, and County of Santa Barbara GIS Mapping tool. The use of stereo and nonstereo aerial photographs permits observation and evaluation of the site conditions for the last
 performance of the subject slopes was evaluated following both above average and below average rainfall seasons.

A mirrored stereoscope with 3 X magnification was used to view aerial photographs for the subject property in 3-D and to map areas of instability on the subject slopes. Areas of instability such as flows, rock falls, rock topples and slides, in addition to development history of the site vicinity were recorded.

The subject property is situated on an elevated marine terrace (bench feature) where the southern portion of the property forms a coastal sea cliff slope. The sea cliff forms a subvertical, approximately 130 -foot high, bluff slope that descends to the beach. The relatively flat terrace exhibits a topographic step with a slightly higher ground surface on the landward side and this topographic step is likely a paleo beach shoreline and buried sea cliff.

The bluff slope was mostly absent of vegetation and a gully was present at the top of bluff in the earliest 1920's aerials. In this period, the elevated terrace area and surrounding vicinity was mostly undeveloped except for the Via Roblada roadway. A few trees were present on the bluff top and a few small gullies on the bluff face in the late 1930's. The eastern portion of Via Roblada (east of the subject site) was developed but the subject property appears to be cultivated for agriculture. The gullies were apparently the result of runoff from the agricultural field.

Agricultural activities continued and were observed on the subject property in the 1940's and 1950's period. An orchard was observed on the higher terrace and a grass field observed on the lower, seaward terrace. A drainage ditch was observed on the lower terrace that apparently drained the fields and directed runoff to the west to a drainage ditch along the west property line. The bluff face remained mostly free of vegetation suggesting the face was actively spalling. The lower terrace was cultivated into small rectangular fields in the late 1950's. Also, an elongate landslide was observed on the eastern portion of the bluff face and embayments formed at the top of bluff appear to be result of active spalling of the bluff face and small rock topples and shallow slides.

A topographically low area which was drained by a former drainage ditch has formed a small area where runoff has collected in 1961 and this area was scarified and graded in 1962, no longer forming a topographic depression. The eastern top of bluff appeared embayed or "scalloped" by recent erosion indicating that shallow slides or rock topples recently occurred in
1967. The western top of bluff appeared embayed in 1968 with recent shallow, rockslides that occurred near the upper portions of the bluff. A small debris cone that was partially vegetated and present on the beach indicated rockslides or topples had occurred in 1969.

The residence on the subject property was observed in 1973 and a swath of ground along the bluff top was grubbed with some grasses and shrubs remaining. The eastern portion of the bluff face was thickly vegetated, however the top of bluff is highly embayed indicating that erosion along occurred in 1987. Evidence of rock falls and topples from near the upper bluff slope was observed in the 1990's to 2000's. Retreat of both headlands and embayments occurred at the top of bluff from about 2011 to 2019, and this period, a few feet to several feet of bluff retreat was estimated.

It is noted that deep seated, large landslides where significant portions of the bluff slid or failed were not observed over the course of the last 95 years. Most of the landslides appear to be rock topples, shallow rockslides, and spalling of the bluff face. A few of the rockslides from the upper portion of the slope appear to have entrained rock materials from the lower slope, and some of these slides and topples produced small debris cones at the base of the slope. Areas immediately above the topples and slides subsequently became over steepened, and ultimately collapsed shortly thereafter.

Large scale stereo pair aerial photographs dated 1944 were used as a base reference measurement for the estimation of bluff retreat for the last 78 years. A field survey was performed in 2022 and these data were used for the calculated rate of bluff retreat. The rate of retreat is discussed in detail in the Rate of Retreat section.

SOIL/BEDROCK AND GROUNDWATER CONDITIONS

In Borings BA-1 and BA-2, Earth Systems encountered a veneer of soil (about 2 feet in thickness, comprised of silty sand) overlying marine terrace deposits (about 14 feet in thickness, comprised of interbedded sand, silt, and clay), which is underlain by Monterey Formation bedrock (comprised of siltstone, mudstone, and shale).

Testing indicates that anticipated bearing soils lie in the "Very Low" expansion range based on a measured expansion index of 15 , although layers of expansive soil/marine terrace were observed during logging of the borings to depths representing the depth of the proposed basement. A version of this classification of soil expansion is incorporated into a Minimum Foundation Design Table, which is included in Appendix C of this report. It appears that soils can be cut by normal grading equipment.

Groundwater was not encountered in either boring BA-1 or BA-2 to a maximum depth of about 71 feet below the existing ground surface. It should be noted that fluctuations in groundwater levels may occur because of variations in rainfall, regional climate, and other factors.

GROSS (GLOBAL) SLOPE STABILITY

Slope stability analyses were performed for Section A-A' shown on the Site Plan/Geologic Map in Appendix A. Section $A-A^{\prime}$ is believed to be representative of the crtitical slope condition (height and gradient) for descending slope on the south side of the project site.

Strength Parameters

The unit weights, ultimate shear strengths, and peak shear strengths of the marine terrace deposit (Qt) and Monterey Formation bedrock (Tm) for the slope stability analyses were selected based on results of laboratory testing on samples that were obtained from the project site. The direct shear tests were performed with the samples saturated. The shear data were composited to determine the average shear strength parameters of the relatively undisturbed samples of Monterey Formation bedrock that were tested.

The residual shear strengths of the Monterey Formation bedrock were determined by utilizing a chart developed by Timothy D. Stark; Hangseok Choi; and Sean McCone (May 2005). Using a liquid limit of 93 and a clay fraction of 46.7% (tested from a Monterey Formation bedrock's weak bed sample collected during field exploration), a residual friction angle of 9 degrees with zero cohesion was determined.

Ultimate shear strength parameters were used in the analyses of static conditions, while peak shear strength parameters were used in the analyses of seismic (earthquake, pseudostatic) conditions. Residual shear strength parameters were used in both static and seismic conditions.

Results of the composite shear strength graphs are included in Appendix B. The composited results are summarized in the following table:

Unit	Unit Weight (pcf)	Cohesion (psf)	Friction Angle
Marine Terrace Deposit (Ultimate)	113 (Moist)	0	30
Marine Terrace Deposit (Peak)	113 (Moist)	0	31

Monterey Formation Bedrock (Ultimate)	95 (Moist)	329	34.4°
Monterey Formation Bedrock (Peak)	95 (Moist)	1,021	32.4°
Monterey Formation Bedrock (Residual)	95 (Moist)	0	9°

The ultimate strength parameters for the section shown above yielded a safety factor of smaller than 1.0 under static condition, which intuitively is incorrect because the slope is actually stable, see Appendix D. Hence, it appears that the ultimate strength parameters do not reflect the in-situ condition at the project site.

Consequently, Earth Systems performed back-calculations on ultimate shear strengths to determine strength parameters that yield a safety factor of at least 1.0. These values represent the minimum of potential strength values. The following table presents strength parameters determined, and that are used in the slope stability analyses that follow. It should be noted that because the back-calculated ultimate shear strengths for the marine terrace deposit are higher than the originally composited peak shear strengths, the peak shear strengths used in the analyses were increased to be identical to the back-calculated ultimate shear strengths.

Unit	Unit Weight (pcf)	Cohesion (psf)	Friction Angle
Marine Terrace Deposit (Ultimate)	113 (Moist)	100	34°
Marine Terrace Deposit (Peak)	113 (Moist)	100	34°
Monterey Formation Bedrock (Ultimate)	95 (Moist)	515	35°
Monterey Formation Bedrock (Peak)	95 (Moist)	1,021	32.4°
Monterey Formation Bedrock (Residual)	95 (Moist)	0	9°

Slope Stability Analyses Criteria

The stability of Section A-A' was analyzed using the SLIDE2 program for anisotropic material with circular and planar types of failures because Monterey Formation bedrock's apparent dip for Section $A-A^{\prime}$ is calculated to be about 42 degrees along the slope. Hence, along bedding failures should be considered. Spencer's method was used to analyze the slope. Approximately 112,200 circular-type and 50,000 planar-type failure surfaces were analyzed during each solution.

A seismic coefficient of 0.15 g was used for the pseudostatic analyses performed, and a minimum safety factor of 1.10 is required by the County of Santa Barbara. For gross static stability, the County of Santa Barbara requires a minimum safety factor of 1.50.

Results of Slope Stability Analyses

The slope stability plots and printouts are included in Appendix D. The following table summarizes the minimum safety factors that were computed for gross (global) stability analyses of Section A-A' using the back-calculated shear strengths mentioned earlier:

Cross-Section Analyzed	Case	Minimum Safety Factor
A-A'	Static, Circular	1.018
A-A'	Seismic, Circular, $k=0.15 \mathrm{~g}$	1.057
A-A'	Static, Planar	1.008
A-A'	Seismic, Planar, $k=0.15 \mathrm{~g}$	1.056

Failure surfaces with safety factors less than 1.50 (for static conditions) and 1.10 (for seismic conditions) were found. The unacceptable failure surfaces reached into the property pad to a maximum distance of about 117 feet behind the top of slope, which is considered the slope stability setback line. See Site Plan/Geologic Map in Appendix A.

BUILDING CODE SETBACK

The foundation system the proposed future construction should satisfy the minimum setback clearances from descending slopes in accordance with Section 1808.7 of the 2019 CBC. Because this slope appears to be steeper than $1 \mathrm{H}: 1 \mathrm{~V}$, any inhabited structures should be setback from the top of slope a distance equal to the full height to the slope divided by three (H/3), measured from an imaginary plane projected from the toe of the slope at an angle of 45 degrees from vertical. In general, when adjacent slopes are steeper than 3 -horizontal versus 1 -vertical, foundations should be setback from descending slopes by a distance equal to the slope height divided by three $(\mathrm{H} / 3)$. The setback from descending slopes should not be less than 5 feet and need not exceed 40 feet. See the Slope Setbacks for Foundations on or Adjacent to Slopes in Appendix C. Because the slope on the southwest side of the project site appears to have a height of about 130 feet, a building code setback of 40 feet will be needed.

RATE OF RETREAT

An analysis of the rate of retreat was performed to determine the amount of bluff retreat of the southern slope of the subject property. The analysis was performed along two survey transects located within the property limits and the transect with the highest amount of retreat was used to calculate a rate of retreat. It is necessary to utilize the same geographic reference point to accurately determine the amount of retreat that has occurred for a given time period, in this case, 78 years. Horizontal distances were measured from the geographic reference points to the top of bluff along the survey.

The earliest measurements of the distance to top of bluff on the eastern side of the property were made on large scale 1944 aerial photos and a field survey was performed in November 2022. Therefore, the amount of bluff top retreat was estimated for a 78-year period between 1944 and 2022.

Utilizing the distance to the bluff top in 1944 photos as a base reference and utilizing the field measurements, the estimated total amount of retreat from 1944 to 2022 is approximately 38.5 feet which is rounded up to 39 feet. Therefore, the long-term rate of retreat for the eastern survey is approximately 0.50 feet per year (6 inches per year). It is well established that bluff retreat is episodic in nature and does not occur on an annual basis, that is, 6 inches of retreat every year (Johnson, 2003). Rather, bluff retreat occurs episodically, which results in a few feet to several feet of the bluff top lost due to erosion, rock topples, and slides. The total amount of bluff retreat is measured for a specific time period and divided by the time period that the retreat occurred to establish an average rate of retreat. This rate of retreat is applied to the County of Santa Barbara's 100 year required development setback from the top of bluff, that is the rate of retreat is multiplied by 100 years to determine the required erosion setback.

Based on a rate of retreat of 0.50 feet per year, the estimated amount of retreat of the subject property in 100 years is 55 feet. However, we anticipate that the construction of new home will require $21 / 2$ years to build, so $21 / 2$ years is added to the 100 years development setback which equals $1021 / 2$ years for the development setback. Therefore, a rate of retreat of 0.5 feet per year multiplied by $1021 / 2$ years equals 51.25 feet which is rounded up to 52 feet.

The estimated amount of 52 feet of retreat in $1021 / 2$ years does not account for accelerated rates of bluff retreat due to sea level rise. The following section presents the analysis that accounts for accelerating sea level rise and estimates the increased rates of bluff retreat in Santa Barbara for the next 100-year period.

SEA LEVEL RISE AND RATE OF RETREAT

Due to climatic changes over the past 100 years, average worldwide sea level has been rising approximately 1 to 2 millimeters per years since the end of the "Little Ice Age" in the 19th century (USGS, 2000 and Douglas, 1995). This rise is not globally uniform and there is considerable debate regarding the accuracy of predicted future sea level changes. However, there is general scientific consensus that sea levels will rise at an accelerating rate in the coming decades. A recently adopted California Coastal Commission guidance document, the "Sea Level Rise Policy" dated November 7, 2018 contains future sea level rise projections under various time scales and risk scenarios, which were developed in a 2017 report by the California Ocean Protection Council under direction of the State of California (OPC, 2017).

For Santa Barbara (see Table G-8 in Appendix E), the projected sea level rise (SLR) at the year 2100 is 3.1 feet in the "Low Risk Aversion" category, which is defined as 17 percent likely that sea level rise will exceed the 3.1 feet estimate. In the "Medium - High Risk Aversion" category, an estimate of 0.5 percent probability that sea level rise will be higher than 6.6 feet at the year 2100. The 2018 state guidance recommends that the "Medium-High Risk" category be used for establishing setbacks for residential development given the uncertainty of the sea level rise projections, the limitation of adaptation options, and the potential risk to life and property. The sea level rise projections are presented in 10-year increments (see Table G-8 in Appendix A) and have utilized this data for 20 year "periods" to estimate accelerated rate of sea cliff retreat, as described below.

Projected Coastal Bluff Retreat

The future rate of coastal bluff retreat is estimated by application of a percentage increase to the site-specific historical retreat rate shown in Appendix B, estimated as described above, based on the increase in the rate of bluff retreat determined by the U.S. Geological Survey's Coastal Storm Modeling System also known as CoSMoS. This widely recognized model simulates coastal hazards that predicts ocean wave data input, storm surge, tides, and sea level rise.

The CoSMoS model (current version is CoSMoS 3.0) includes a shoreline hazard map with various historic and projected bluff edge retreat rates at noted transect locations. The transects with numerical identifiers are separated roughly 300 feet horizontally along the coastline in the Hope Ranch area. The CoSMoS transect number 4061 is located within the subject property limits near the eastern property line. The aerial photography rate of retreat transect line presents the increase of bluff retreat based on various amounts of sea level rise (see Appendix B). The data for this transect lists the historical sea cliff retreat rate at 0.19738 meters per year (0.65 feet per year). The reported CoSMoS historical retreat rate is based on the USGS's evaluation of historic regional topographic maps and regional aerial imagery (Hapke and Reid, 2007). This retreat rate uses 19th century coast surveys and early 1928 aerial photos that typically have a degree of error associated with them due to spatial distortions and surveys were based on outdated coordinate systems. This is the reason that site specific surveys are performed to estimate a site specific rate of retreat, in this case, 0.5 feet per year for the subject property.

The California Coastal Commission (CCC, 2018) "Sea Level Rise Policy Guidance" projections for the Santa Barbara area are used in conjunction with the CoSMoS projections. The CACC guidance projects the upper limit of sea level rise to be 1.1 feet (0.34 meter) at year 2040 under the "Medium-High Risk Aversion" category (see Table G-8 in Appendix A). The CoSMoS model at transect number 4061 (see Appendix B) shows that for a sea level that has risen by 0.25 meter (the closest value to the 0.34 meter rise projected at 2040 by the 2018 CACC document), the sea cliff retreat rate is by that time forecast to increase to 0.23931 meters per year (1.1 feet per year). The comparison of the projected future CoSMoS retreat rate at 2040 to the historical CoSMoS retreat rate ($.239 \mathrm{~m} / \mathrm{yr}$ minus $.197 \mathrm{~m} / \mathrm{yr}$) shows an increase rate of retreat equivalent to $0.042 \mathrm{~m} /$ year. An increase from 0.19757 m per year to 0.239 m per year ($0.042 / 0.197$) is equivalent to a 21.3 percent increase in the CoSMoS model retreat rate. The increase of 21.3% is then applied to the site-specific historical retreat rate of $0.55 \mathrm{ft} / \mathrm{year}$ to derive a new retreat rate of 0.67 feet per year. The new retreat rate for the 17 year period from 2023 to 2040 is calculated to be 10.4 feet which is the estimated amount of retreat due to sea level rise for this time period. The percentage increase of the rate of retreat for the subsequent 20-year period from 2040 to 2060 is estimated to be 56.9% and percentage increase for the 2060 to 2080 period is 201%.

Since there is considerable debate among scientists of the predicted amount of sea level rise and associated increase in the bluff erosion rate, we use the conservative yet reasonable
percentage increase of 201% for the remaining period from year 2080 to $2025 \frac{1}{2}$. The incremental changes in sea level (CACC, 2018) at Santa Barbara and the corresponding sea cliff retreat rate percentage change we use in our analysis are summarized in the following matrix. Also included is the incremental percentage change in retreat rate applied to the site-specific historical retreat rate and the resulting total horizontal cliff edge retreat for the noted time period increment.

Applying the site-specific historical retreat rate of 0.50 feet/year for the subject property and accounting for predicted sea level rise, the total estimated amount of retreat for the next $1021 / 2$ years is approximately 92 feet.

CoSMoS Historical Retreat Rate (baseline) $=0.19738$ meters per year ($=0.65$ feet per year) for CoSMoS Site specific rate of retreat $=0.50$ feet per year. Transect Station 4061 located on the subject property: 4677 Via Roblada, Santa Barbara.					
Time Increment (Years)	Change in Sea Level (meters/feet) CACC MediumHigh Risk Aversion	Percentage Increase in Retreat Rate from CoSMoS Historical Rate	Site Specific Historical Retreat Rate (ft/year)	Projected Average Site Specific Annual Retreat Rate (ft/year)	Incremental Estimated Retreat (feet)
2023-2040 (17 years)	0.34 m (1.1 ft)	21.3\%	0.50	0.61	10.4
2040-2060	0.76 m (2.5 ft)	56.9\%	0.50	0.78	15.6
2060-2080	$1.31 \mathrm{~m} / 4.3 \mathrm{ft}$	201.0\%	0.50	1.0	20.0
2080-2100*	$1.31 \mathrm{~m} / 4.3 \mathrm{ft}$	201.0\%	0.50	1.0	20.0
2100-2120*	$1.31 \mathrm{~m} / 4.3 \mathrm{ft}$	201.0\%	0.50	1.0	20.0
2120-2125 $1 / 2$ *	$1.31 \mathrm{~m} / 4.3 \mathrm{ft}$	201.0\%	0.50	1.0	5.5

[^0]Total Retreat at year $21251 / 2=91.5$ feet $=92$ feet

CONCLUSIONS AND RECOMMENDATIONS

Based on the established slope stability setback of 117 feet, the building code (Section 1808.7 of the 2019 CBC) setback of 40 feet, and the bluff retreat setback of 92 feet, it appears that the total cumulative setback from the bluff edge should be 209 feet, which is the summation of a slope stability setback of 117 feet and a bluff retreat setback of 92 feet. Any proposed future construction should be built northeast of this 209-foot setback zone. See Site Plan/Geologic Map in Appendix A.

The proposed basement is located approximately 109 feet from the closest potential slope failure surface with a factor-of-safety of 1.5 and the top of bluff is 117 feet from the same point. 1.5 is the minimum acceptable factor-of-safety. The basement is well beyond this potential failure surface. Hence, it has no influence on slope stability and will not change the location of the potential minimum factor-of-safety failure surface.

The lawn area in front of the proposed residence will be enclosed by a low wall that will retain a maximum of 3 feet of fill near the residence and about 2 feet of fill at the seaward limit of this area. The seaward limit of the enclosed area is about 80 to 90 feet from the top of bluff. In the area between the top of bluff and the enclosed area no fill will be placed, and the amount of cutting is limited in area and less than 0.5 feet in depth and can be ignored. We compared the volume of material captured by the minimum factor of safety (1.5) failure surface and estimate it to be about 9,980 cubic feet per lateral foot of bluff. The amount of fill added to the yard area is about 120 cubic feet per lateral foot of bluff. This equates to about a 1.2% increase in the weight of the potential slide mass. Although this would shift the minimum factor-of-safety line closer to the residence, that change is probably less than 2 feet and would not change the conclusion of our report with regard to slope stability.

The proposed basement will have no effect of bluff retreat caused by erosion because there is no relationship between the bluff retreat process and the existence of a basement over 200 feet from the top of the bluff. Nor will the thin veneer of fill placed in the yard between the residence and the top of bluff influence the geologic process of bluff retreat because there is no mechanistic relationship between the process and the fill.

The construction is not thought to have a negative impact on the current ground water regime. The proposed basement and service tunnels will be constructed with drains that will collect
excess groundwater and direct it to sumps so that it can be disposed of properly and, thereby, reducing any impact groundwater may have on erosion or stability.

LIMITATIONS AND UNIFORMITY OF CONDITIONS

The analyses and recommendations submitted in this report are based in part upon the data obtained from the on-site borings. The nature and extent of variations between and beyond the points of exploration may not become evident until construction. If variations then appear evident, it will be necessary to reevaluate the recommendations of this report.

The scope of services did not include any environmental assessment or investigation for the presence or absence of wetlands, hazardous or toxic materials in the soil, surface water, groundwater or air, on, below, or around this site. Any statements in this report or on the soil boring logs regarding odors noted, unusual or suspicious items or conditions observed, are strictly for the information of the client.

Findings of this report are valid as of this date; however, changes in conditions of a property can occur with passage of time whether they are because of natural processes or works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur whether they result from legislation or broadening of knowledge. Accordingly, findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of 1 year.

In the event that any changes in the nature, design, or location of the proposed future construction and/or other improvements are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and the conclusions of this report modified or verified in writing.

This report is issued with the understanding that it is the responsibility of the Owner, or of his representative to ensure that the information and recommendations contained herein are called to the attention of the Architect and Engineers for the project and incorporated into the plan and that the necessary steps are taken to see that the Contractor and Subcontractors carry out such recommendations in the field.

As the Geotechnical Engineers for this project, Earth Systems has striven to provide services in accordance with generally accepted geotechnical engineering practices in this community at this time. No warranty or guarantee is expressed or implied. This report was prepared for the exclusive use of the Client for the purposes stated in this document for the referenced project only. No third party may use or rely on this report without express written authorization from Earth Systems for such use or reliance.

It is recommended that Earth Systems be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications. If Earth Systems is not accorded the privilege of making this recommended review, it can assume no responsibility for misinterpretation of the recommendations contained herein.

BIBLIOGRAPHY

California Building Standards Commission, 2019, California Building Code, California Code of Regulations Title 24.

California Coastal Commission, 2018 "Sea Level Rise Policy Guidance," Science Update adopted - November 7, 2018

California Ocean Protection Council, 2017, "Rising Seas in California: An Update on Sea Level Rise Science," April 2017.

County of Los Angeles Department of Public Works, 2013, Manual for Preparation of Geotechnical Reports, July 1.

Dibblee, Jr., Thomas W., and Helmut E. Ehrenspeck, 1987, Geologic Map of the Goleta Quadrangle, Santa Barbara County, California, Dibblee Foundation Map No. DF-07.

Douglas, B.C.: 1995, Global Sea Level Change: Determination and interpretation, Revs. Geophys. (supp.), pp. 1425-1432.

NOAA, 2006, "Mean Sea Level Trend, 9410660 Los Angeles, California," http:// tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=9410660.

Norris, R.M., 1995, "Southern Santa Barbara County, Gaviota Beach to Rincon Point," in "Living with the California Coast," Duke University Press.

United States Geological Survey (USGS), 2009, Geological Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California.

United States Geological Survey (USGS), 2014, "Coastal Storm Modelling System (CoSMoS)," for the Southern California Bight, Version 3.0.

APPENDIX A

Vicinity Map
Regional Geologic Map 1 (Dibblee)
Regional Geologic Map 2 (USGS)
Field Study
Site Plan/Geologic Map
Geologic Cross-Section A-A'
Logs of Borings
Boring Log Symbols
Unified Soil Classification System

*Taken from USGS Topo Map, Goleta Quadrangle, California, 2015.

Approximate Scale: $1^{\prime \prime}=2,000^{\prime}$	VICINITY MAP	
	4677 Via Roblada Hope Ranch Area of Santa Barbara County, California	
0 2,000 ${ }^{\prime}$ 4,000	(Earth Systems	
	November 2022	301995-001

*Taken from Dibblee, Jr., Geologic Map of The Goleta Quadrangle, Santa Barbara County, California, 1987, DF-07.

OLDER DISSECTED SURFICIAL SEDIMENTS
Qoa Former alluvial deposits of silt, sand and gravel, in places weakly consolidated; local
unconformities at base
Qog Cobble-boulder fan gravel and fanglomerate deposits composed largely of sandstone detritus
Tm
TmI
Marine; early to late Miocene age
Tm Upper shale unit: white-weathering, thin bedded, hard, platy to brittle siliceous shale;
Mohnian Stage
Tml Lower shale unit: white weathering, soft, fissle to punky organic, phosphatic, and
calcareous shale with thin interbeds of hard siliceous shale and limestone; Luisian to
uppermost Saucesian Stages

Tmi Lower shale unit: white weathering, soft, fissle to punky organic, phosphatic, and uppermost Saucesian Stages

REGIONAL GEOLOGIC MAP 1

4677 Via Roblada
Hope Ranch Area of Santa Barbara County, California

*Taken from Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California, 2009.

Contact-Long-dashed where approximately located; short-dashed where inferred; dotted where concealed; tic shows direction and angle of dip| Trace of marker bed

-------- Outline of erosionally beveled geomorphic surface

- Marine-terrace shoreline angle-Approximately located based on subtle to strong topographic steps of terrace surface; locally coincides with contact between Qmt and older units
${ }^{57}$ P36 Faults-Long-dashed where approximately located; short dashed where inferred; dotted where concealed; queried where uncertain; small red arrow shows direction and angle of dip; red diamond-headed arrow shows bearing and rake of slickenlines and inferred slip direction of hanging-wall block
\rightleftharpoons ? Strike-slip fault-Opposing arrows show sense of strike-slip movement, queried where uncertain; bi-directional arrows indicate superposed dextral and sinistral slip on same fault
_ Normal fault-Ball and bar on apparent downthrown side
- - Reverse fault-Rectangles on apparent upthrown side
- . Thrust fault-Sawteeth on apparent upthrown side
$\omega \omega \omega \omega \perp$ Fault-line scarp-Inferred from aerial photographs; hachures point downscarp
$\omega \omega \omega \omega \perp$ Slide-block boundary-Inferred; hachures on slide block
Fold and warp axial traces-Long-dashed where approximately located; short-dashed where inferred; dotted where concealed

Qmt: Marine-terrace deposits (upper Pleistocene)

Approximate Scale: 1" = 2,000'
0
2,000
4,000'

	Anticline-Large arrow indicates plunge direction Overtumed anticline
$\longleftarrow \downarrow$	Upwarp axis-Large arrow indicates plunge direction; mapped in Quaternary deposits where geomorphically expressed
$\longleftarrow \uparrow$	Syncline-Large arrow indicates plunge direction
t \downarrow	Overturned syncline
$\frac{\downarrow}{\uparrow}$	Downwarp axis-Mapped in Quaternary deposits where geomorphically expressed
\oplus	Horizontal bedding
40	Inclined bedding-Showing strike and dip
-35	Inclined bedding-Showing approximate strike and dip
20	Inclined bedding-Showing strike and dip of beds calculated from bedding trace
+	Vertical bedding-Showing strike
$\stackrel{65}{+}$	Overturned bedding-Showing strike and dip
(Tsq) ${ }^{14}$	Concealed bedding-Measured in unit indicated where temporarily exposed at low tide or in construction excavation

REGIONAL GEOLOGIC MAP 2
4677 Via Roblada
Hope Ranch Area of Santa Barbara County, California

FIELD STUDY

A. On July 7 and 8, 2022, two large-diameter borings (BA-1 and BA-2) were drilled to depths of about 71 and 61 feet, respectively, below the existing ground surface to observe the soil profile and to obtain samples for laboratory analyses. The borings were drilled using a 24 -inch diameter bucket-auger powered by a GEAX EK110. The approximate locations of these borings were determined in the field by pacing and sighting, and are shown on the Site Plan/Geologic Map in this Appendix.
B. Samples were obtained within the borings with a Modified California (M.C.) ring sampler (ASTM D 3550 with shoe similar to ASTM D 1586). The M.C. sampler has a 3 -inch outside diameter, and a 2.42 -inch inside diameter when used with brass ring liners (as it was during this study). The samples were obtained by driving the sampler with a machineoperated hammer.
C. Bulk soil samples were collected from the cuttings of the soils encountered in Borings BA-1 and BA-2 between depths of zero and 5 feet.
D. The final logs of the borings represent interpretations of the contents of the field logs obtained during the subsurface study and the results of laboratory testing performed on the samples. The final logs are included in this Appendix.

Logs of Borings

Page 1 of 2

Page 2 of 2

Page 1 of 2

Page 2 of 2

BORING LOG SYMBOLS

1. The location of borings were approximately determined by pacing and/or siting from visible features. Elevations of borings are approximately determined by interpolating between plan contours. The location and elevation of the borings should be considered.
2. The stratification lines represent the approximate boundary between soil types and the transition may be gradual.
3. Water level readings have been made in the drill holes at times and under conditions stated on the boring logs. This data has been reviewed and interpretations made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater may occur due to variations in rainfall, tides, temperature, and other factors at the time measurements were made.

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR DIVISIONS			GRAPH SYMBOL	LETTER SYMBOL	TYPICAL DESCRIPTIONS
COARSE GRAINED SOILS	GRAVEL AND GRAVELLY SOILS	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVELSAND MIXTURES, LITTLE OR NO FINES
		FINES)	$0<6$	GP	POORLY-GRADED GRAVELS, GRAVELSAND MIXTURES, LITTLE OR NO FINES
	MORE THAN 50\% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	GRAVELS WITH FINES (APPRECIABLE AMOUNT OF FINES		GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
				GC	MIXTURES
	SAND AND SANDY SOILS	CLEAN SAND (LITTLE OR NO FINES)		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	MORE THAN 50\% OF COARSE FRACTION PASSING NO. 4 SIEVE			SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50\% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE		SANDS WITH FINES (APPRECIABLE AMOUNTOF FINES)		SM	SILTY SANDS, SAND-SILT MIXTURES
				SC	CLAYEY SANDS, SAND-CLAY MIXTURES
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESSTHAN 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		MH	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
MORE THAN 50\% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE				CH	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
				OH	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGHLY ORGANIC SOILS				PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH
			场迷		ORGANIC CONTENT

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

UNIFIED SOIL CLASSIFICATION SYSTEM

Earth Systems

APPENDIX B

Laboratory Testing
Tabulated Laboratory Test Results
Individual Laboratory Test Results
Composited Direct Shear Graphs

LABORATORY TESTING

A. Samples were reviewed along with field logs to determine which would be analyzed further. Those chosen for laboratory analyses were considered representative of soils that would be exposed and/or used during grading, and those deemed to be within the influence of proposed construction. Test results are presented in graphic and tabular form in this Appendix.
B. In-situ moisture content and dry unit weight for the ring samples were determined in general accordance with ASTM D 2937.
C. A maximum density test was performed to estimate the moisture-density relationship of typical soil materials. The test was performed in accordance with ASTM D 1557.
D. The relative strength characteristics of soils were determined from the results of direct shear tests on one remolded sample and seven relatively undisturbed ring sample. The specimens were placed in contact with water at least 24 hours before testing, and then sheared under normal loads ranging from 0.5 to 10 ksf in general accordance with ASTM D 3080.
E. An expansion index test was performed on a bulk soil sample in accordance with ASTM D 4829. The sample was surcharged under 144 pounds per square foot at moisture content of near 50 percent saturation. The sample was then submerged in water for 24 hours, and the amount of expansion was recorded with a dial indicator.
F. The gradation characteristics of the bulk sample were evaluated by hydrometer (in accordance with ASTM D 7928) and sieve analysis procedures. The sample was soaked in water until individual soil particles were separated, then washed on the No. 200 mesh sieve, oven dried, weighed to calculate the percent passing the No. 200 sieve, and mechanically sieved. Additionally, a hydrometer analysis was performed to assess the distribution of the particles that passed the No. 200 screen. The hydrometer portion of the test was run using sodium hexametaphosphate as a dispersing agent.
G. The Plasticity Indices of a selected sample was evaluated in accordance with ASTM D 4318.

TABULATED LABORATORY TEST RESULTS

REMOLDED SAMPLE

BORING AND DEPTH	BA-1@0'-0'	BA-1@20.5'
USCS	SC	MH
MAXIMUM DRY DENSITY (pcf)	126.5	--
OPTIMUM MOISTURE (\%)	8	--
PEAK COHESION (psf)	80	--
PEAK FRICTION ANGLE	29°	--
ULTIMATE COHESION (psf)	40	--
ULTIMATE FRICTION ANGLE	29°	--
EXPANSION INDEX	15	--
GRAIN SIZE DISTRIBUTION (\%)		
\quad GRAVEL	--	0.0
\quad SAND	--	11.7
\quad SILT	--	26.5
\quad CLAY (2um to 5um)	--	15.1
\quad CLAY ($\leq 2 u m)$	--	46.7
LIQUID LIMIT	--	93
PLASTIC LIMIT	--	64
PLASTICITY INDEX	--	28

TABULATED LABORATORY TEST RESULTS (Continued)

RELATIVELY UNDISTURBED SAMPLES

BORING AND DEPTH	BA-1@10'	BA-1@20'	BA-1@30'	BA-1@40'
IN-PLACE DRY DENSITY (pcf)	101.2	45.0	52.1	59.3
IN-PLACE MOISTURE (\%)	11.5	94.7	82.8	70.1
PEAK COHESION (psf)	0	370	0	0
PEAK FRICTION ANGLE	31°	33°	47°	44°
ULTIMATE COHESION (psf)	0	0	0	0
ULTIMATE FRICTION ANGLE	30°	36°	38°	38°
BORING AND DEPTH	BA-1@50'	BA-1@60'	BA-1@70'	
IN-PLACE DRY DENSITY (pcf)	62.1	55.1	57.6	
IN-PLACE MOISTURE (\%)	57.2	63.6	47.7	
PEAK COHESION (psf)	4,450	2,660	3,240	
PEAK FRICTION ANGLE	0°	24°	18°	
ULTIMATE COHESION (psf)	2,090	1,340	3,240	
ULTIMATE FRICTION ANGLE	21°	30°	18°	

COMPOSITED DIRECT SHEAR RESULTS

MATERIAL TYPE Monterey Formation Bedrock (Peak) Monterey Formation Bedrock (Ultimate)
COHESION (psf)

1,021 329

FRICTION ANGLE
32.4°
34.4°

Individual Laboratory Test Results

Job Name: 4677 Via Roblada
Sample ID: B A 1 @ 0-5'
Date: 10/26/2022
Description: Clayey Sand

		Sieve Size	\% Retained
Maximum Density:	$\mathbf{1 2 6 . 5} \mathbf{~ p c f}$	$3 / 4^{\prime \prime}$	0.0
Optimum Moisture:	$\mathbf{8 \%}$	$3 / 8^{\prime \prime}$	0.0
		$\# 4$	2.1

- Peak ■ Ultimate ——Linear (Peak) — - Linear (Ultimate)

DIRECT SHEAR DATA*

Sample Location: B A 1 @ 0-5'
Sample Description: Clayey Sand
Dry Density (pcf): 113.1
Intial \% Moisture: 8
Average Degree of Saturation: 99.7
Shear Rate (in/min): $0.005 \mathrm{in} / \mathrm{min}$

Normal stress (psf)	1000	2000	3000
Peak stress (pss)	648	1200	1776
Ultimate stress (psf)	600	1200	1728
	Peak	Ultimate	
ϕ Angle of Friction (degrees):	29	29	
c Cohesive Strength (psf):	80	40	

Normal stress (psf)	1000	2000	3000
Peak stress (psf)	648	1200	1776
Ultimate stress (psf)	600	1200	1728
	Peak	Ultimate	
ϕ Angle of Friction (degrees):	29	29	
c Cohesive Strength (psf):	80	40	

Test Type: Peak \& Ultimate

* Test Method: ASTM D-3080

Note: Sample specimens were initially saturated before testing by partially immersing the specimens in water for about 24 hours while the specimens were restrained from swelling. Initial saturation was not performed in the direct shear machine, and is not prescribed by ASTM D 3080.

DIRECT SHEAR TEST
4677 Via Roblada

Earth Systems

DIRECT SHEAR DATA*

DIRECT SHEAR TEST		
4677 VIA ROBLADA		
Earth Systems		
OCTOBER 2022		

DIRECT SHEAR DATA*

DIRECT SHEAR DATA*

File No.: 301995-001

Job Name: 4677 Via Roblada
Sample ID: B A 1 @ 0-5'
Soil Description: SC

Initial Moisture, \%:

7.9
Initial Compacted Dry Density, pcf: 116.4
Initial Saturation, \%: 48
Final Moisture, \%: 21.2
Volumetric Swell, \%: $\quad 1.5$

Expansion Index: 15 Very Low

EI	UBC Classification
$0-20$	Very Low
$21-50$	Low
$51-90$	Medium
$91-130$	High
$130+$	Very High

Job Name: 4677 Via Roblada

Job No.: 301995-001

$$
\text { Sample ID: B A } 1 \text { @ 20.5' }
$$

Soil Description: Bedrock
Hydrometer ID: 504229

Hydroscopic Moisture

Air Dry Wt, g:	100.0
Oven Dry Wt, g	100.0
\% Moisture:	0.0

Air Dry Sample Wt., g: 183.5
Corrected Wt., g: 183.5
Sieve Analysis for + \#10 Material

Sieve Size	Wt Ret	\% Ret	\% Passing
$1 / 2$ inch	0.0	0.00	100.00
$3 / 8$ inch	0.0	0.00	100.00
$\# 4$	0.0	0.00	100.00
$\# 8$	0.0	0.00	100.00
$\# 10$	0.0	0.00	100.00

Air Dry Hydro Sample Wt., g: 52.9

$$
\text { Corrected Wt., g: } \quad 52.9
$$

Calculation Factor 0.5290

Hydrometer Analysis for < \#10 Material

Start time: 12:39:00 AM

Short Hydro	Time of Reading	Hydro		Teading Reading, at, ${ }^{\circ} \mathrm{C}$	Correction		Factor	Corrected
Hydro Reading								

\% Gravel:	0.0
\% Sand ($2 \mathrm{~mm}-74 \mu \mathrm{~m}$)	11.7
\% Silt $(74 \mu \mathrm{~m}-5 \mu \mathrm{~m})$:	26.5
\% Clay ($5 \mu \mathrm{~m}-2 \mu \mathrm{~m}$)	15.1
\% Clay $(\leq 2 \mu \mathrm{~m})$:	46.7

Job Name: 4677 Via Roblada
Sample ID: B A 1 @ 20.5'
Soil Description: Bedrock

DATA SUMMARY
Number of Blows:
Water Content, \%
Plastic Limit:
$97.3 \quad 91.9$
$63.5 \quad 64.4$

13	27	33	LIQUID LIMIT	93
97.3	91.9	89.7	PLASTIC LIMIT	$\mathbf{6 4}$
63.5	64.4		PLASTICITY INDEX	$\mathbf{2 8}$

TEST RESULTS93

Composited Direct Shear Graphs

APPENDIX C

Minimum Foundation Design Table
Slope Setbacks for Foundations on or Adjacent to Slopes

MINIMUM FOUNDATION DESIGN

FOUNDATIONS FOR STUD BEARING WALLS - MINIMUM REQUIREMENTS

EXPANSION INDEX (E. I.)	FOUNDATIONS FOR SLAB AND RAISED FLOOR SYSTEM							CONCRETE SLAB3-1/2" MINIMUM THICKNESS (4" WHEN OVER 51, E. I.)		PREMOISTENING CONTROLS FOR SOILS UNDER FOOTINGS, PEIRS AND SLABS	PIERS UNDER RAISED FLOORS	
	$\begin{aligned} & \text { NUMBER } \\ & \text { OF } \\ & \text { STORIES } \end{aligned}$	$\begin{gathered} \text { STEM } \\ \text { THCKNESS } \end{gathered}$	FOOTING WIDTH	$\begin{aligned} & \text { FOOTING } \\ & \text { THICKNESS } \end{aligned}$	ALL INTERIOR PERIMETER FOOTINGS FOOTINGS FOR SLAB AND RAISED FLOORS DEPTH BELOW NATURAL SURFACE OF GROUND \& FINISH GRADE		REINFORCEMENT FOR FOUNDATIONS					
							REINFORCEMENT	TOTAL THICKNESS				
		inches										
0-20	1	6	12	6	12							
VERY LOW	2	8	15	7	18	18	AND BOTTOM	\#3 @ 24" O.c. EACH WAY	$2^{\prime \prime}$	MOISTENING OF GROUND PRIOR TO	PIERS	
(NON-	3	10	18	8	24					PLACING CONCRETE		
										IS RECOMMENDED	LOADS ONLY	
$\begin{aligned} & 21-50 \\ & \text { Low } \end{aligned}$	123	$\begin{gathered} 6 \\ 8 \\ 10 \end{gathered}$	$\begin{aligned} & 12 \\ & 15 \\ & 18 \end{aligned}$	6	15	12	1-\#4@ TOP	\#3 @ 24" o.c.	$4 "$	3\% OVER OPTIMUM		
				7	18	18	AND BOTTOM	EaCh Way		MOISTURE CONTENT TO	ALLOWED FO	
				8	24	24				A DEPTH OF 18" BELOW	INGLE FLOOR	
										LOWEST ADJACENT GRADE TESTING REQ'D	LOADS ONLY	
$\begin{gathered} 51-90 \\ \text { MEDIUM } \end{gathered}$	123	$\begin{gathered} 6 \\ 8 \\ 10 \end{gathered}$	$\begin{aligned} & 12 \\ & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 24 \end{aligned}$	$\begin{aligned} & 12 \\ & 18 \\ & 24 \end{aligned}$	-\#4@top		$4^{\prime \prime}$	3% OVER OPTIMUM MOISTURE CONTENT TO A DEPTH OF $18^{\prime \prime}$ BELOW LOWEST ADJ ACENT GRADE TESTING REQ'D	PIERS NOT ALLOWED	
							AND Bottom	EACH WAY				
							\#3 BARS © $24^{\text {" }}$ O.C. $12^{\text {" }}$ INTO FOOTING AND BENT 3^{\prime} INTO SLAB					
$\begin{aligned} & 91-130 \\ & \mathrm{HIGH} \end{aligned}$	123	$\begin{gathered} 6 \\ 8 \\ 10 \end{gathered}$	$\begin{aligned} & 12 \\ & 15 \\ & 18 \end{aligned}$	888	$\begin{aligned} & 27 \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 12 \\ & 18 \\ & 24 \end{aligned}$	2-\#4@ TOP	\#3 @ 24" o.c.	4"	3% OVER OPTIMUM MOISTURE CONTENT TO A DEPTH OF 24" BELOW LOWEST ADJACENT GRADE TESTING REQ'D		
							AND BOTTOM	EACH WAY			ALLOWED	
							\#3 bars @ 24" O.C. $12^{\prime \prime}$ INTO FOOTING AND BENT 3^{\prime} INTO SLAB					

SLOPE SETBACKS Based on 2019 California Building Code Section 1808.7

FOUNDATIONS ON OR ADJACENT TO SLOPES:

The placement of buildings and structures on or adjacent to slopes steeper than 3 horizontal to 1 vertical shall be in accordance with the following illustrations. The provisions are intended to provide protection for the building from slope drainage, erosion and mudflow, loose slope debris, shallow slope failures, and foundation movement.
(1)

(2)

(3)
(8)

(11)

(12)
"If 'S' is less than 7', the pool wall shall be capable of supporting the water in the pool without soil support.

APPENDIX D

Slope Stability Analyses Results - Using Composited Shear Strengths
Slope Stability Analyses Results - Using Back-Calculated Shear Strengths

Slope Stability Analyses Results - Using Composited Shear Strengths

Slide2 Analysis Information

1. 301995-001 4677 Via Roblada Bluff Study

Project Summary

File Name:
Slide2 Modeler Version:
Compute Time:
Project Title:
Date Created:

1. 301995-001 4677 Via Roblada Bluff Study.sImd 9.024

00h:00m:13.140s
Slide2 - An Interactive Slope Stability Program
11/15/2022, 2:09:35 PM

General Settings

Units of Measurement:
Time Units:
Permeability Units:
Data Output:
Failure Direction:

Imperial Units
days
feet/second
Standard
Right to Left

Analysis Options

Slices Type:	Vertical
	Analysis Methods Used
Number of slices:	Spencer
Tolerance:	50
Maximum number of iterations:	0.005
Check malpha < 0.2:	75
Create Interslice boundaries at intersections with water	Yes
tables and piezos:	
Initial trial value of FS:	1
Steffensen Iteration:	Yes
Eliminate vertical segments in non-circular search	Yes

Surface Options

Surface Type:
Search Method:
Radius Increment:
Composite Surfaces:
Reverse Curvature:
Minimum Elevation:
Minimum Depth [ft]:
Minimum Area:
Minimum Weight:

Circular
Grid Search
10
Enabled
Create Tension Crack
Not Defined
4
Not Defined
Not Defined

Seismic Loading

Advanced seismic analysis: No

Staged pseudostatic analysis: No

Materials

Qt (Ultimate)

Color

Strength Type
Unit Weight [lbs/ft3]
Cohesion [psf]
Friction Angle [deg] 30
Water Surface None
Ru Value
0

Tm (Ultimate)

Color
Strength Type
Unit Weight [lbs/ft3]
Anisotropic function
Water Surface
Ru Value

Mohr-Coulomb
113
0

Anisotropic Functions

Name: Tm (Ultimate)						phi
Angle From		Angle To		c		34.4
-40			329		9	
-44	-40		0		34.4	
-40	90		329			

Global Minimums

Method: spencer

Center:	$-38.359,373.296$	$\mathbf{0 . 7 7 3 5 1 8}$
Radius:	314.072	
Left Slip Surface Endpoint:	$139.157,114.202$	
Right Slip Surface Endpoint:	$159.027,129.000$	
Resisting Moment:	$917609 \mathrm{lb}-\mathrm{ft}$	
Driving Moment:	$1.18628 \mathrm{e}+06 \mathrm{lb}-\mathrm{ft}$	
Resisting Horizontal Force:	2341.72 lb	
Driving Horizontal Force:	3027.36 lb	
Total Slice Area:	$55.8902 \mathrm{ft2}$	
Surface Horizontal Width:	19.8695 ft	
Surface Average Height:	2.81286 ft	

Slide2 Analysis Information

1. 301995-001 4677 Via Roblada Bluff Study

Project Summary

File Name:
Slide2 Modeler Version:
Compute Time:
Project Title:
Date Created:

1. 301995-001 4677 Via Roblada Bluff Study.sImd 9.024

00h:00m:16.851s
Slide2 - An Interactive Slope Stability Program
11/15/2022, 2:09:35 PM

General Settings

Units of Measurement:
Time Units:
Permeability Units:
Data Output:
Failure Direction:

Imperial Units
days
feet/second
Standard
Right to Left

Analysis Options

Slices Type:	Vertical
	Analysis Methods Used
Number of slices:	Spencer
Tolerance:	50
Maximum number of iterations:	0.005
Check malpha < 0.2:	75
Create Interslice boundaries at intersections with water	Yes
tables and piezos:	
Initial trial value of FS:	1
Steffensen Iteration:	Yes
Eliminate vertical segments in non-circular search	Yes

Surface Options

Surface Type:
Search Method:
Radius Increment:
Composite Surfaces:
Reverse Curvature:
Minimum Elevation:
Minimum Depth [ft]:
Minimum Area:
Minimum Weight:

Circular
Grid Search
10
Enabled
Create Tension Crack
Not Defined
4
Not Defined
Not Defined

Seismic Loading

Advanced seismic analysis: No
Staged pseudostatic analysis: No
Seismic Load Coefficient (Horizontal): 0.15

Materials

Qt (Peak)

Color	\square
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	113
Cohesion [psf]	0
Friction Angle [deg]	31
Water Surface	None
Ru Value	0

Tm (Peak)

Color
Strength Type
Unit Weight [lbs/ft3]
Water Surface
Ru Value

Anisotropic Functions

Name: Tm (Peak)						phi
Angle From	-44		Angle To		c	
-90	-40		1021		32.4	
-44	90		0		9	
-40		1021		32.4		

Global Minimums

Method: spencer

Center:	$-38.359,373.296$	
Radius:	314.072	
Left Slip Surface Endpoint:	$139.157,114.202$	
Right Slip Surface Endpoint:	$159.027,129.000$	
Resisting Moment:	$847187 \mathrm{lb}-\mathrm{ft}$	
Driving Moment:	$1.42306 \mathrm{e}+06 \mathrm{lb}-\mathrm{ft}$	
Resisting Horizontal Force:	2164.61 lb	
Driving Horizontal Force:	3635.98 lb	
Total Slice Area:	$55.8902 \mathrm{ft2}$	
Surface Horizontal Width:	19.8695 ft	
Surface Average Height:	2.81286 ft	

Slide2 Analysis Information

1. 301995-001 4677 Via Roblada Bluff Study

Project Summary

File Name:
Slide2 Modeler Version:
Compute Time:
Project Title:
Date Created:

1. 301995-001 4677 Via Roblada Bluff Study.sImd 9.024

00h:00m:11.979s
Slide2 - An Interactive Slope Stability Program
11/15/2022, 2:09:35 PM

General Settings

Units of Measurement:
Time Units:
Permeability Units:
Data Output:
Failure Direction:

Imperial Units
days
feet/second
Standard
Right to Left

Analysis Options

Slices Type:	Vertical
	Analysis Methods Used
Number of slices:	Spencer
Tolerance:	50
Maximum number of iterations:	0.005
Check malpha < 0.2:	75
Create Interslice boundaries at intersections with water	Yes
tables and piezos:	
Initial trial value of FS:	1
Steffensen Iteration:	Yes
Eliminate vertical segments in non-circular search	Yes

Surface Options

Surface Type:	Non-Circular Block Search
Number of Surfaces:	50000
Multiple Groups:	Disabled
Pseudo-Random Surfaces:	Enabled
Convex Surfaces Only:	Enabled
Left Projection Angle (Start Angle) [deg]:	95
Left Projection Angle (End Angle) [deg]:	175
Right Projection Angle (Start Angle) [deg]:	5
Right Projection Angle (End Angle) [deg]:	85
Minimum Elevation:	Not Defined
Minimum Depth [ft]:	4
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No
Staged pseudostatic analysis: No

Materials

Qt (Ultimate)

Color
Strength Type
Unit Weight [lbs/ft3] 113
Cohesion [psf] 0
Friction Angle [deg] 30
Water Surface None
Ru Value 0
Tm (Ultimate)
Color
Strength Type
Unit Weight [lbs/ft3]
Water Surface
Ru Value

Anisotropic function
95
$\longrightarrow 0$

Anisotropic Functions

Name: Tm (Ultimate)						phi
Angle From	-44			c To		34.4
90	-40		329		9	
-44	90		0		34.4	
-40			329			

Global Minimums

Method: spencer

Axis Location:	$\mathbf{0 . 8 4 6 1 2 6}$	
Left Slip Surface Endpoint:	$16.432,166.865$	
Right Slip Surface Endpoint:	$80.000,19.000$	
Resisting Moment:	$172.865,129.000$	
Driving Moment:	$2.1155 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Resisting Horizontal Force:	$2.50022 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Driving Horizontal Force:	88163.9 lb	
Total Slice Area:	104197 lb	
Surface Horizontal Width:	2142.8 ft	
Surface Average Height:	92.8648 ft	
	23.0744 ft	

Slide2 Analysis Information

1. 301995-001 4677 Via Roblada Bluff Study

Project Summary

File Name:
Slide2 Modeler Version:
Compute Time:
Project Title:
Date Created:

1. 301995-001 4677 Via Roblada Bluff Study.sImd 9.024

00h:00m:14.959s
Slide2 - An Interactive Slope Stability Program
11/15/2022, 2:09:35 PM

General Settings

Units of Measurement:
Time Units:
Permeability Units:
Data Output:
Failure Direction:

Imperial Units
days
feet/second
Standard
Right to Left

Analysis Options

Slices Type:	Vertical
	Analysis Methods Used
Number of slices:	Spencer
Tolerance:	50
Maximum number of iterations:	0.005
Check malpha < 0.2:	75
Create Interslice boundaries at intersections with water	Yes
tables and piezos:	
Initial trial value of FS:	1
Steffensen Iteration:	Yes
Eliminate vertical segments in non-circular search	Yes

Surface Options

Surface Type:	Non-Circular Block Search
Number of Surfaces:	50000
Multiple Groups:	Disabled
Pseudo-Random Surfaces:	Enabled
Convex Surfaces Only:	Enabled
Left Projection Angle (Start Angle) [deg]:	95
Left Projection Angle (End Angle) [deg]:	175
Right Projection Angle (Start Angle) [deg]:	5
Right Projection Angle (End Angle) [deg]:	85
Minimum Elevation:	Not Defined
Minimum Depth [ft]:	4
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No
Staged pseudostatic analysis: No
Seismic Load Coefficient (Horizontal): 0.15

Materials

Qt (Peak)

Color

Strength Type
Unit Weight [lbs/ft3]
Cohesion [psf]
Friction Angle [deg]
Water Surface None
Ru Value 0
Tm (Peak)

Color

Strength Type
Unit Weight [lbs/ft3]
Water Surface
Ru Value

Mohr-Coulomb
113
0
31

Ru Valu

Anisotropic Functions

Name: Tm (Peak)						phi
Angle From	-44		Angle To		c	
-90			1021		32.4	
-44	-40		0		9	
-40	90		1021		32.4	

Global Minimums

Method: spencer

		$\mathbf{1 . 0 4 9 9 4 0}$
Axis Location:	$28.128,190.256$	
Left Slip Surface Endpoint:	$80.000,19.000$	
Right Slip Surface Endpoint:	$196.256,129.000$	
Resisting Moment:	$5.19589 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Driving Moment:	$4.94874 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Resisting Horizontal Force:	221274 lb	
Driving Horizontal Force:	210749 lb	
Total Slice Area:	3731.63 ft	
Surface Horizontal Width:	116.256 ft	
Surface Average Height:	32.0984 ft	

Slope Stability Analyses Results - Using Back-Calculated Shear Strengths

Slide2 Analysis Information

2. 301995-001 4677 Via Roblada Bluff Study (Back Calculation)

Project Summary

File Name:
Slide2 Modeler Version:
Compute Time:
Project Title:
Date Created:
2. 301995-001 4677 Via Roblada Bluff Study (Back

Calculation).sImd
9.024

00h:00m:12.205s
Slide2 - An Interactive Slope Stability Program
11/15/2022, 2:09:35 PM

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:
Vertical
Analysis Methods Used
Spencer

Number of slices:

50
Tolerance:
0.005

Maximum number of iterations:
75
Check malpha < 0.2:
Yes
Create Interslice boundaries at intersections with water Yes
tables and piezos:
1
Steffensen Iteration: Yes
Eliminate vertical segments in non-circular search Yes

Surface Options

Surface Type:
Search Method:
Radius Increment:
Composite Surfaces:
Reverse Curvature:
Minimum Elevation:
Minimum Depth [ft]:
Minimum Area:
Minimum Weight:

Circular
Grid Search
10
Enabled
Create Tension Crack
Not Defined
4
Not Defined
Not Defined

Seismic Loading

Advanced seismic analysis: No

Staged pseudostatic analysis: No

Materials

Qt (Ultimate)

Color

Strength Type
Unit Weight [lbs/ft3]
Cohesion [psf] 100
Friction Angle [deg] 34
Water Surface None
Ru Value 0
Tm (Ultimate)
Color
Strength Type
Unit Weight [lbs/ft3]
Water Surface
Ru Value

Mohr-Coulomb
113

Anisotropic Functions

Name: Tm (Ultimate)						
Angle From		Angle To		c		phi
-90	-44		515		35	
-44	-40		0		9	
-40	90		515		35	

Global Minimums

Method: spencer

Center:	$\mathbf{1 . 0 1 8 1 1 0}$	
Radius:	183.630	
Left Slip Surface Endpoint:	$81.696,21.483$	
Right Slip Surface Endpoint:	$173.011,129.000$	
Resisting Moment:	$3.42078 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Driving Moment:	$3.35995 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Resisting Horizontal Force:	124301 lb	
Driving Horizontal Force:	122090 lb	
Total Slice Area:	2522.29 ft 2	
Surface Horizontal Width:	91.3156 ft	
Surface Average Height:	27.6217 ft	

Slide2 Analysis Information

2. 301995-001 4677 Via Roblada Bluff Study (Back Calculation)

Project Summary

File Name:
Slide2 Modeler Version:
Compute Time:
Project Title:
Date Created:
2. 301995-001 4677 Via Roblada Bluff Study (Back

Calculation).sImd
9.024

00h:00m:16.419s
Slide2 - An Interactive Slope Stability Program
11/15/2022, 2:09:35 PM

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:
Vertical
Analysis Methods Used
Spencer

Number of slices:

50
Tolerance:
0.005

Maximum number of iterations:
75
Check malpha < 0.2:
Yes
Create Interslice boundaries at intersections with water Yes
tables and piezos:
1
Steffensen Iteration: Yes
Eliminate vertical segments in non-circular search Yes

Surface Options

Surface Type:
Search Method:
Radius Increment:
Composite Surfaces:
Reverse Curvature:
Minimum Elevation:
Minimum Depth [ft]:
Minimum Area:
Minimum Weight:

Circular
Grid Search
10
Enabled
Create Tension Crack
Not Defined
4
Not Defined
Not Defined

Seismic Loading

Advanced seismic analysis: No
Staged pseudostatic analysis: No
Seismic Load Coefficient (Horizontal): 0.15

Materials

Qt (Peak)

Color	\square
Strength Type	Mohr-Coulomb
Unit Weight [lbs/ft3]	113
Cohesion [psf]	100
Friction Angle [deg]	34
Water Surface	None
Ru Value	0

Tm (Peak)

Color
Strength Type
Unit Weight [lbs/ft3]
Water Surface
Ru Value

Anisotropic Functions

Name: Tm (Peak)						phi
Angle From		Angle To		c		32.4
-44		1021		9		
-44	-40		0		32.4	
-40	90		1021			

Global Minimums

Method: spencer

CS	$\mathbf{1 . 0 5 7 1 0 0}$	
Radius:	$-1.874,205.352$	
Left Slip Surface Endpoint:	203.488	
Right Slip Surface Endpoint:	$80.061,19.089$	
Resisting Moment:	$186.747,129.000$	
Driving Moment:	$5.79452 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Resisting Horizontal Force:	$5.4815 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Driving Horizontal Force:	206129 lb	
Total Slice Area:	194994 lb	
Surface Horizontal Width:	3502.9 ft	
Surface Average Height:	106.686 ft	

Slide2 Analysis Information

2. 301995-001 4677 Via Roblada Bluff Study (Back Calculation)

Project Summary

File Name:
Slide2 Modeler Version:
Compute Time:
Project Title:
Date Created:
2. 301995-001 4677 Via Roblada Bluff Study (Back

Calculation).sImd
9.024

00h:00m:10.915s
Slide2 - An Interactive Slope Stability Program
11/15/2022, 2:09:35 PM

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:
Vertical
Analysis Methods Used
Spencer

Number of slices:

50
Tolerance:
0.005

Maximum number of iterations:
75
Check malpha < 0.2:
Yes
Create Interslice boundaries at intersections with water Yes
tables and piezos:
1
Steffensen Iteration: Yes
Eliminate vertical segments in non-circular search Yes

Surface Options

Surface Type:	Non-Circular Block Search
Number of Surfaces:	50000
Multiple Groups:	Disabled
Pseudo-Random Surfaces:	Enabled
Convex Surfaces Only:	Enabled
Left Projection Angle (Start Angle) [deg]:	95
Left Projection Angle (End Angle) [deg]:	175
Right Projection Angle (Start Angle) [deg]:	5
Right Projection Angle (End Angle) [deg]:	85
Minimum Elevation:	Not Defined
Minimum Depth [ft]:	4
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No
Staged pseudostatic analysis: No

Materials

Qt (Ultimate)

Color

Strength Type
Unit Weight [lbs/ft3] 113
Cohesion [psf] 100
Friction Angle [deg] 34
Water Surface None
Ru Value 0
Tm (Ultimate)
Color
Strength Type
Unit Weight [lbs/ft3]
Water Surface
Ru Value

Anisotropic function
95

Anisotropic Functions

Name: Tm (Ultimate)						
Angle From	Angle To		c		phi	
90	-44		515		35	
-44	-40		0		9	
-40	90		515		35	

Global Minimums

Method: spencer

		$\mathbf{1 . 0 0 8 0 3 0}$
Axis Location:	$18.385,170.770$	
Left Slip Surface Endpoint:	$80.000,19.000$	
Right Slip Surface Endpoint:	$176.770,129.000$	
Resisting Moment:	$3.05589 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Driving Moment:	$3.03155 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Resisting Horizontal Force:	127353 lb	
Driving Horizontal Force:	126339 lb	
Total Slice Area:	2594.09 ft 2	
Surface Horizontal Width:	96.7696 ft	
Surface Average Height:	26.8068 ft	

Global Minimum Coordinates

Method: spencer

\mathbf{X}	\mathbf{Y}
80	19
83.3107	20.1976
87.8849	22.4089
92.3018	24.9617
97.5621	28.1384
101.742	31.0176
105.095	33.3603
108.674	36.0635
112.572	39.1775
115.826	42.1073
119.08	45.0681
122.489	48.7523
125.898	52.5761
128.988	56.2323
132.079	59.8886
135.169	63.5448
138.259	67.201
141.946	71.608
145.634	77.2094
149.322	82.9126
152.417	87.9346
155.077	92.2515
157.632	96.4908
159.857	100.192
161.777	103.461
163.474	106.352
165.528	109.852
167.583	113.352
170.929	119.051
173.849	124.025
176.77	129

Slide2 Analysis Information

2. 301995-001 4677 Via Roblada Bluff Study (Back Calculation)

Project Summary

File Name:
Slide2 Modeler Version:
Compute Time:
Project Title:
Date Created:
2. 301995-001 4677 Via Roblada Bluff Study (Back

Calculation).sImd
9.024

00h:00m:13.228s
Slide2 - An Interactive Slope Stability Program
11/15/2022, 2:09:35 PM

General Settings

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Data Output:	Standard
Failure Direction:	Right to Left

Analysis Options

Slices Type:
Vertical
Analysis Methods Used
Spencer

Number of slices:

50
Tolerance:
0.005

Maximum number of iterations:
75
Check malpha < 0.2:
Yes
Create Interslice boundaries at intersections with water Yes
tables and piezos:
1
Steffensen Iteration: Yes
Eliminate vertical segments in non-circular search Yes

Surface Options

Surface Type:	Non-Circular Block Search
Number of Surfaces:	50000
Multiple Groups:	Disabled
Pseudo-Random Surfaces:	Enabled
Convex Surfaces Only:	Enabled
Left Projection Angle (Start Angle) [deg]:	95
Left Projection Angle (End Angle) [deg]:	175
Right Projection Angle (Start Angle) [deg]:	5
Right Projection Angle (End Angle) [deg]:	85
Minimum Elevation:	Not Defined
Minimum Depth [ft]:	4
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic Loading

Advanced seismic analysis: No
Staged pseudostatic analysis: No
Seismic Load Coefficient (Horizontal): 0.15

Materials

Qt (Peak)

Color

Strength Type
Unit Weight [lbs/ft3]
Cohesion [psf]
Friction Angle [deg]
Water Surface

Ru Value

Tm (Peak)

Color

Strength Type
Unit Weight [lbs/ft3]
Water Surface
Ru Value

Mohr-Coulomb
113
100
34
None
0

Anisotropic Functions

Name: Tm (Peak)					
Angle From	Angle To		c		phi
90	-44		1021		32.4
-44	-40		0		9
-40	90		1021		32.4

Global Minimums

Method: spencer

FS	$\mathbf{1 . 0 5 6 0 5 0}$	
Axis Location:	$28.472,190.945$	
Left Slip Surface Endpoint:	$80.000,19.000$	
Right Slip Surface Endpoint:	$196.945,129.000$	
Resisting Moment:	$5.32331 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Driving Moment:	$5.04077 \mathrm{e}+07 \mathrm{lb}-\mathrm{ft}$	
Resisting Horizontal Force:	226472 lb	
Driving Horizontal Force:	214451 lb	
Total Slice Area:	$3800.42 \mathrm{ft2}$	
Surface Horizontal Width:	116.945 ft	
Surface Average Height:	32.4976 ft	

Global Minimum Coordinates

Method: spencer

\mathbf{X}	\mathbf{Y}
80	19
85.4795	21.3051
91.7709	23.9958
98.249	27.1773
104.728	30.9345
111.024	34.9486
117.194	39.0811
123.457	43.6891
129.719	48.9354
134.263	52.9814
138.808	57.2904
143.352	61.8014
147.923	66.7806
152.494	71.7599
157.065	76.8201
161.769	82.5036
166.474	88.187
170.431	93.4874
174.388	98.7877
177.755	103.297
181.287	108.028
185.031	113.043
189.002	118.362
192.974	123.681
196.945	129

APPENDIX E

Table G-8 (CACC 2018)
Transect ID 4061 Site Data

Table G-8. Sea Level Rise Projections for the Santa Barbara Tide Gauge ${ }^{113}$ (OPC 2018)

Projected Sea Level Rise (in feet): Santa Barbara

	Probabilistic Projections (in feet) (based on Kopp et al. 2014)		$\begin{gathered} \text { H++ Scenario } \\ \text { (Sweet et al. 2017) } \end{gathered}$
	Low Risk Aversion	Medium-High Risk Aversion	Extreme Risk Aversion
	Upper limit of "likely range" (~17\% probability SLR exceeds...)	1-in-200 chance (0.5\% probability SLR exceeds...)	Single scenario (no associated probability)
2030	0.4	0.7	1.0
2040	0.7	1.1	1.6
2050	1.0	1.8	2.5
2060	1.3	2.5	3.6
2070	1.7	3.3	4.9
2080	2.1	4.3	6.3
2090	2.6	5.3	7.9
2100	3.1	6.6	9.8
2110*	3.2	6.9	11.5
2120	3.7	8.2	13.7
2130	4.2	9.5	16.0
2140	4.8	11.0	18.6
2150	5.3	12.6	21.4

*Most of the available climate model experiments do not extend beyond 2100. The resulting reduction in model availability causes a small dip in projections between 2100 and 2110, as well as a shift in uncertainty estimates (see Kopp et al., 2014). Use of 2110 projections should be done with caution and acknowledgement of increased uncertainty around these projections.

[^1]| California Coastal Commission Sea Level Rise Policy Guidance Final Adopted Science Update \| November 7, 2018
 Appendix G: Sea Level Rise Projections for 12 California Tide | TABLE G-8 | |
| :---: | :---: | :---: |
| | 4121 Creciente Drive
 Hope Ranch Area, Santa Barbara County, California | |
| | (| ms |
| | November 2021 | 304649-001 |

TRANSECT ID 4061 SITE DATA

Transect ID	4061
Historical cliff retreat rate (m / yr)	0.197
Historical retreat rate uncertainty (m / yr)	0.15
Cliff retreat rate (m / yr), 0.25 m SLR	0.239
Cliff retreat rate (m / yr), 0.50 m SLR	0.282
Cliff retreat rate (m / yr), 0.75 m SLR	0.309
Cliff retreat rate (m / yr), 1.00 m SLR	0.351
Cliff retreat rate (m / yr), 1.25 m SLR	0.395
Cliff retreat rate $(\mathrm{m} / \mathrm{yr}), 1.50 \mathrm{~m} \mathrm{SLR}$	0.461
Cliff retreat rate $(\mathrm{m} / \mathrm{yr}), 1.75 \mathrm{~m} \mathrm{SLR}$	0.521
Cliff retreat rate $(\mathrm{m} / \mathrm{yr}), 2.00 \mathrm{~m} \mathrm{SLR}$	0.611
Cliff retreat rate $(\mathrm{m} / \mathrm{yr}), 5.00 \mathrm{~m} \mathrm{SLR}$	1.370

[^0]: * We use the estimated percentage increase of the 2060-2080 time period for the period from 2080 to $21251 / 2$ for the estimated amount of retreat for the next $1021 / 2$ years.

[^1]: ${ }^{113}$ Probabilistic projections for the height of sea level rise and the $\mathrm{H}++$ scenario are presented. The $\mathrm{H}++$ projection is a single scenario and does not have an associated likelihood of occurrence. Projections are with respect to a baseline year of 2000 (or more specifically, the average relative sea level over 1991-2009). Table is adapted from the 2018 OPC SLR Guidance to present only the three scenarios OPC recommends evaluating. Additionally, while the OPC tables include low emissions scenarios, only high emissions scenarios, which represent RCP 8.5, are included here because global greenhouse gas emissions are currently tracking along this trajectory. The Coastal Commission will continue to update best available science as necessary, including if emissions trajectories change.

