<u>Appen</u>dix F

Geotechnical Investigation

GEOTECHNICAL INVESTIGATION

SEASIDE FIRE STATION NO. 2 SEASIDE, CALIFORNIA

FOR **RRM DESIGN GROUP** SAN LUIS OBISPO, CALIFORNIA

CONSULTING GEOTECHNICAL ENGINEERS

2302-M232-E51 MARCH 2023 www.4pacific-crest.com

GEOTECHNICAL | ENVIRONMENTAL | CHEMICAL | MATERIAL TESTING | SPECIAL INSPECTIONS

March 10, 2023

Project No. 2302-M232-E51

Mr. Michael Scott, Principal RRM Design Group 3765 South Higuera St. Suite 102 San Luis Obispo, CA 93401

Subject: Geotechnical Investigation – Design Phase Seaside Fire Station No. 2 Northwest Corner of 1st Avenue and Giggling Road APN 031-151-012 Seaside, California

Dear Mr. Scott,

In accordance with your authorization, we have performed a design-level geotechnical investigation for the proposed fire station located at the northwestern corner of Giggling Road and 1st Avenue in Seaside, California.

The accompanying report presents our conclusions and recommendations as well as the results of the geotechnical investigation on which they are based. The conclusions and recommendations presented in this report are contingent upon our review of the plans during the design phase of the project, and our observation and testing during the construction phase of the project.

Very truly yours,

PACIFIC CREST ENGINEERING INC.

Prepared by:

Chris Johnson, PE Principal Civil Engineer C 82630 Expires 9/30/2024 Reviewed by:

Elizabeth M. Mitchell, GE Associate Geotechnical Engineer GE 2718 Expires 12/31/2024

TABLE OF CONTENTS

I.	INTRODUCTION	1
	PURPOSE AND SCOPE	1
	PROJECT LOCATION	2
	PROPOSED IMPROVEMENTS	2
II.	INVESTIGATION METHODS	2
	TEST BORINGS	2
	INFILTRATION TESTING	3
	LABORATORY TESTING	4
III.	FINDINGS AND ANALYSIS	4
	GEOLOGIC SETTING	4
	SURFACE CONDITIONS	4
	SUBSURFACE CONDITIONS	5
	INFILTRATION TEST RESULTS	5
	SOIL CORROSIVITY	6
	FAULTING AND SEISMICITY	7
	GEOTECHNICAL HAZARDS	8
IV.	DISCUSSION AND CONCLUSIONS	10
	GENERAL	10
	PRIMARY GEOTECHNICAL CONSIDERATIONS	10
V.	RECOMMENDATIONS	11
	GENERAL EARTHWORK	11
	FOUNDATIONS	15
	SLAB-ON-GRADE CONSTRUCTION	17
	RETAINING WALLS	18
	STRUCTURAL PAVEMENT	19
	SURFACE DRAINAGE	21
	STORM WATER INFILTRATION	22
	EROSION CONTROL	23
	PLAN REVIEW	23
VI.	LIMITATIONS AND UNIFORMITY OF CONDITIONS	23
	APPENDIX A	25
	Regional Site Map	26
	Site Map Showing Test Borings	27
	Key to Soil Classification	28

Log of Test Borings	
Corrosivity Test Summary	49
Direct Shear Test Results	51
R-Value Test Results	
Typical Retaining Wall Drain Detail	54
Surcharge Pressure Diagram	55
APPENDIX B	56
Infiltration Test Results	57
APPENDIX C	60
Seismically-Induced Settlement Calculations	61
APPENDIX C Seismically-Induced Settlement Calculations	60 61

GEOTECHNICAL INVESTIGATION REPORT Seaside Fire Station No. 2 Seaside, California

I. INTRODUCTION

PURPOSE AND SCOPE

This report describes the geotechnical investigation and presents our conclusions and recommendations for the construction of the proposed fire station in Seaside, California. For purposes of this report, "site" refers to the undeveloped parcel located on the northwest corner of Giggling Road and 1st Street in Seaside, California.

Our scope of services for this project has consisted of:

- 1. Site reconnaissance to observe the existing conditions.
- 2. Review of the following published maps and documents:
 - Geologic Map of the Monterey Peninsula and Vicinity, Monterey County, California, Dibblee Jr., 1999.
 - Geologic Map of Monterey County, California, Rosenberg, 2001.
 - Map Showing Relative Earthquake-Induced Landslide Susceptibility of Monterey County, California, Rosenberg, 2001.
 - Map Showing Liquefaction Susceptibility of Monterey County, California, Rosenberg, 2001.
 - Map Showing Relative Fault Hazards of Monterey County, California, Rosenberg, 2001.
 - U.S. Geological Survey (and the California Geologic Survey), 2018, Quaternary fault and fold database for the United States, accessed April 2021, from USGS web site: https://www.usgs.gov/natural-hazards/earthquake-hazards/hazards
- 3. Field exploration including the drilling and logging of eleven (11) geotechnical test borings and three (3) infiltration test borings.
- 4. Infiltration testing of three (3) test holes in accordance with the Central Coast Low Impact Development Initiative, with procedures outlined in the report titled "Native Soil Assessment for Small Infiltration-Based Storm Water Control Measures". Our infiltration study followed the "Shallow Quick Infiltration Test" method, as described within Attachment 1 of that document.
- 5. Laboratory analysis of retrieved soil samples.
- 6. Engineering analysis of the field and laboratory test results.
- 7. Preparation of this report documenting our investigation and presenting geotechnical recommendations for the design and construction of the project.

PROJECT LOCATION

The subject site is an undeveloped parcel located at the northwest corner of Giggling Drive and 1st Street in Seaside. Please refer to the Regional Site Map, Figure No. 1, in Appendix A for the general vicinity of the project site, which is approximately located by the following coordinates:

Latitude = 36.64463611 degrees Longitude = -121.8138167 degrees

PROPOSED IMPROVEMENTS

Based on our review of preliminary plans and discussions with design team, it is our understanding that the project will include the construction of an approximately 12,544 ft² fire station, two parking lots, a multistory training tower, storage/maintenance buildings, a trash enclosure structure, and fuel storage tanks. The site improvements will also include retaining walls along 1st Street, an approximately 1-acre fire truck driver training area, driveways, walking paths, and patio flatwork. The project will also include bioswales for storm water management, driveway access gates, and underground utilities associated with these improvements.

The vast majority of earthwork activities will be focused on the fire station, parking lots, and firetruck driver's training area. Except for the retaining walls along 1st Street, the excavations for the proposed improvements are expected to be 4 feet or less. Given the relatively shallow excavation depths, we do not expect the need for temporary shoring or extensive cut/fill slopes.

II. INVESTIGATION METHODS

TEST BORINGS

Eleven, 8-inch diameter test borings (Boring B1 through Boring B11) were drilled at the site on January 17 and 18, 2023. The approximate locations of the test borings are shown on Figure No. 2, in Appendix A. The drilling method used was hydraulically operated continuous flight hollow stem augers on a track mounted drill rig. An engineer from Pacific Crest Engineering Inc. was present during the drilling operations to log the soil encountered and to choose sampler type and locations.

The soils encountered in the borings were continuously logged in the field and visually described in accordance with the Unified Soil Classification System (ASTM D2488) as described in the Boring Log Explanation, Figures No. 3 and 4, in Appendix A. The soil classification was verified upon completion of laboratory testing in accordance with ASTM D2487.

Samples retrieved with the track mounted drill rig were obtained by driving a split spoon sampler 18 inches into the ground. This was achieved by dropping a 140-pound hammer a vertical height of 30 inches with an automatic trip hammer. The field blow counts in 6-inch increments were obtained and are reported on the Boring Logs adjacent to each sample as well as the Standard Penetration Test data (SPT). The outside diameter of the samplers used was 3-inch or 2-inch and is designated on the Boring Logs as "L" or "T", respectively. All SPT data has been normalized to a 2-inch O.D. sampler and is reported on the Boring Logs as SPT "N" values. The normalization method used was derived from the second edition of the Foundation Engineering Handbook (H.Y. Fang, 1991). The method utilizes a Sampler Hammer Ratio which is dependent

on the weight of the hammer, height of hammer drop, outside diameter of sampler, and inside diameter of sample.

Appendix A contains the site plan showing the locations of the test borings, our borings logs and an explanation of the soil classification system used. Stratification lines on the boring logs are approximate as the actual transition between soil types may be gradual.

INFILTRATION TESTING

Three (3) infiltration test borings were advanced in the area of the proposed detention/retention basins (Borings P1, P2 and P3). The locations of the infiltration test borings are depicted on the site map included within Appendix A of this report. The infiltration test borings were advanced to depths of 5 to 7 feet below the existing ground surface elevation, as exact grades of the bottom of the bioswale(s) were unknown at the time of our investigation. The "Native Soil Assessment For Small Infiltration-Based Storm water Control Measures" test procedure was followed during the testing of these infiltration test borings.

All infiltration test holes were drilled using a track mounted drill rig equipped with 8-inch diameter augers. An engineer from Pacific Crest Engineering Inc. was present during the drilling operations to log the soil encountered and to verify the infiltration test depths. Approximately 1 to 2 inches of clean, %-inch diameter gravel was placed at the bottom of each boring. A 4-inch diameter perforated pipe was then placed within each test hole, and the annular space backfilled with gravel. The test holes were presoaked for approximately 24 hours prior to infiltration testing.

The infiltration tests were performed in accordance with the Central Coast Low Impact Development Initiative, with procedures outlined in the report titled "Native Soil Assessment for Small Infiltration-Based Storm Water Control Measures". Our infiltration study followed the "Shallow Quick Infiltration Test" method, as described within Attachment 1 of the above referenced document. This procedure is generally described as follows:

- 1. At the commencement of each test, the water level within the infiltration test boring was adjusted to the top of the test zone (approximately 2 feet above the bottom of the boring). This was accomplished by using a flow meter, allowing the initial volume of water placed within the test boring to be recorded.
- 2. The water level within each test boring was maintained at a constant head for the initial 30 minutes of the test. The volume of water required to maintain the constant head was recorded.
- 3. Following the initial 30-minute constant head period, the water elevation was allowed to fall. This portion of the test was continued for a minimum of 2 hours, with water elevation readings being taken every 5- to 20-minutes contingent on the rate of fall. The difference in water elevation was then used to compute the infiltration rate at each time interval.
- 4. If the test boring were to run out of water during the 2-hour test, it would be refilled to the initial elevation. If the rate of fall was such that the test boring was to run dry following 2 refills (not including the initial fill-up), then the test was concluded.

- 5. If the rate of fall at any time was less than 6 inches in 2 hours, or if the readings were not stable at the end of the 2-hour test, then the test was continued for an additional 2-hour interval (4 hours total).
- 6. The final infiltration rate was defined as the average infiltration rate during the last time interval. The last time interval is considered to be the last refill cycle or the last 2 hours of a 4-hour test. All final infiltration rates (It) are calculated in (in³/in²)/hr. or (in/hr.). The factored infiltration rate (K_f), which includes a factor of safety of 2, was also calculated from the final interval.

A summary of the infiltration test results is provided in Table 1 below. The complete infiltration test sheets are provided within Appendix B of this report.

LABORATORY TESTING

The laboratory testing program was developed to aid in evaluating the engineering properties of the materials encountered at the site. Laboratory tests performed include:

- Moisture Density relationships in accordance with ASTM D2937.
- Gradation testing in accordance with ASTM D1140.
- Direct Shear testing in accordance with ASTM D3080.
- R-Value testing in accordance with CTM 301.
- Corrosivity testing in accordance with CTM 643, 422, and 417.

The results of the laboratory testing are presented on the boring logs opposite the sample tested and/or presented graphically in Appendix A.

III. FINDINGS AND ANALYSIS

GEOLOGIC SETTING

The surficial geology in the project site is mapped as Eolian Deposits (Rosenberg, 2001). These deposits are described as poorly graded silt and sand deposited as extensive coastal dune fields. These deposits are generally described as weakly to moderately consolidated and fine to medium grained. The native soils encountered within our test borings are generally consistent with this description.

SURFACE CONDITIONS

The subject site is situated near the northwestern corner of Giggling Road and 1st Street in Seaside, California. The site is gently flat but slopes up (4H:1V) on the eastern edge to meet the grade of 1st Street. The site is currently undeveloped but shows some signs of minor grading in the areas around 1st Street and Giggling Road as well as unpaved access roads that traverse the parcel. Overhead powerline poles are located along the southern edge of the parcel and run parallel to Giggling Road. The site is currently undeveloped, sparsely wooded and covered in native grasses, ice plant and shrubbery native to the Monterey Bay area.

SUBSURFACE CONDITIONS

Our subsurface exploration program included the advancement of eleven (11) test borings and three (3) infiltration test borings. All test borings were drilled as close to proposed improvements as possible, given the preliminary layout drawings that were available to us at the time. The remaining three (3) infiltration borings were located as close as possible to proposed bioswale areas. The exploratory borings extended from 16½ to 51½ feet below existing grades, while the infiltration test boings within the proposed bioswale areas extended from 5 to 7 feet below existing grades. The soil profiles and classifications, laboratory test results and groundwater conditions encountered for each test boring are presented in the Logs of Test Borings, in Appendix A. The general subsurface conditions are described below.

The upper surficial soils within the site were generally classified as silty sand or sand with silt and extended from about 9½ to 19½ below existing grades. These soils were generally poorly graded and fine to medium grained. At these depths, the soil was generally described as very loose to medium dense.

Underlying the surficial soils described above our borings encountered a layer of poorly graded sand that extended to the maximum explored depth of 51½. These sands were generally medium to fine grained. At these depths, the soil was generally described as medium dense to dense.

Groundwater was not encountered in our test borings and no evidence of shallow ground water was observed at the site.

Please refer the Logs of Test Borings in Appendix A, for a more detailed description of the subsurface conditions encountered in each of our test borings at the subject site.

INFILTRATION TEST RESULTS

A summary of the infiltration test results is provided below. The complete infiltration test sheets are provided within Appendix B of this report.

- ·	t Test Depth (ft)	Test Soil Type within epth (ft) Test Zone	Soil Gradation			Infiltration	Factored Infiltration
Test No.			Gravel (%)	Sand (%)	Fines (%)	Rate, I _t (in/hr.)	Rate, K _f (in/hr.)
P1	4.6 to 6.6	Silty Sand	0.0	85.6	14.4	0.6	0.4
P2	3.8 to 5.8	Silty Sand	0.0	84.0	16.0	1.4	0.9
P3	2.8 to 4.8	Silty Sand	0.0	80.9	19.1	0.3	0.1

Table No. 1 – Summary of Infiltration Test Results

Infiltration tests were performed in 8-inch diameter borings. In general, we expect tests performed in larger diameter borings to generate faster infiltration rates. This is due to a key assumption in the Porchet Method for calculating infiltration rates which assumes the horizontal and vertical hydraulic conductivities of a soil are equal. In reality, the vertical hydraulic conductivity of a soil is typically greater than the horizontal. Consequently, infiltration rates generally increase if the surface area at the base of the boring is increased.

This testing was conducted during a relatively wet winter following several years of regional drought. As a result, the current saturation levels of the in-situ soils may be higher than normal. Generally, infiltration rates tend to decrease as the relative saturation of the soil increases. Therefore, the infiltration rates as achieved during this site-specific investigation may increase or decrease depending on the relative saturation of the soils. As a result, we would recommend that the civil engineer apply a safety factor to the design values as a way to account for seasonal variations. Please note that the "Factored Infiltration Rate, K_f " provided above includes a factor of safety equal to two. The actual factor of safety should be determined by the project civil engineer.

SOIL CORROSIVITY

In order to address the corrosivity potential at the subject site, testing was performed on two (2) samples of the on-site soils likely to come in contact with concrete and buried metallic structures. The results are summarized as follows:

	Approximate	Soil		Sulfate	
Sample	Sample	Resistivity	Chloride	(water soluble)	pН
	Depth (ft)	Ohm-cm	mg/kg	mg/kg	
2-3-1	6.0	8177	4	13	6.9
8-1-1	2.0	13930	30	24	5.3

TABLE No. 2 - Corrosivity Test Summary

According to the Cal Trans Corrosion Guidelines, Version 3.2 (May 2021), a site may be considered corrosive to foundation elements if one or more of the following conditions exist:

- The soil resistivity is less than 1,100 ohm-cm
- Chloride concentration is greater than or equal to 500 mg/Kg (ppm)
- Sulfate concentration is greater than or equal to 1500 mg/Kg (ppm)
- The soil pH is 5.5 or less

Furthermore, According to Pacific Gas and Electric (PG&E) Electric & Gas Service Requirements (TD-7001M) 2020-2021, a site may be considered corrosive if one or more of the following conditions exist:

- The soil resistivity is less than 3,000 ohm-cm
- The soil pH is less than 4.5 or greater than 9

In comparing the test results to the threshold values, we have determined that the soils likely to be in contact with concrete and buried metallic structures are potentially corrosive. The corrosion potential for any imported select fill should also be tested for corrosivity. Please refer to Appendix A for a site plan that shows the corrosivity test boring locations (Figure 2), associated boring logs, and specific results of the corrosivity testing by the analytical laboratory (Figure 24 & 25).

FAULTING AND SEISMICITY

Faulting

Mapped faults which have the potential to generate earthquakes that could significantly affect the subject site are listed in Table No. 3. The fault distances are approximate distances based on the U.S. Geological Survey and California Geological Survey, Quaternary fault and fold database, accessed in April 2021 from the USGS website (https://www.usgs.gov/natural-hazards/earthquake-hazards/hazards) and overlaid onto Google Earth.

Fault Name	Distance (miles)	Direction	
Reliz	2	Northeast	
Monterey Bay-Tularcitos	41⁄2	Southwest	
San Gregorio	12½	Southwest	
Zayante-Vergeles	16½	Northeast	
San Andreas	201⁄2	Northeast	
Sargant	24½	Northeast	
Calaveras	26½	Northeast	

Seismic Shaking and CBC Design Parameters

Due to the proximity of the site to active and potentially active faults, it is reasonable to assume the site will experience high intensity ground shaking during the lifetime of the project. Structures founded on thick, soft soil deposits are more likely to experience more destructive shaking, with higher amplitude and lower frequency, than structures founded on bedrock. Generally, shaking will be more intense closer to earthquake epicenters. Thick, soft soil deposits large distances from earthquake epicenters, however, may result in seismic accelerations significantly greater than expected in bedrock.

Selection of seismic design parameters should be determined by the project structural designer. The site coefficients and seismic ground motion values shown in the table below were developed based on CBC 2022 incorporating the ASCE 7-16 standard, and the project site location.

Table No. 4 - 2022	CBC Seismic Design	Parameters 1, 2
--------------------	---------------------------	-----------------

Seismic Design Parameter	ASCE 7-16 Value
Site Class	D
Spectral Acceleration for Short Periods	Ss = 1.393g
Spectral Acceleration for 1-second Period	S ₁ = 0.506g
Short Period Site Coefficient	Fa = 1.0

Seismic Design Parameter	ASCE 7-16 Value
1-Second Period Site Coefficient	$Fv = N/A^2$
MCE Spectral Response Acceleration for Short Period	S _{MS} = 1.393g
MCE Spectral Response Acceleration for 1-Second Period	$S_{M1} = N/A^2$
Design Spectral Response Acceleration for Short Period	S _{DS} = 0.929g
Design Spectral Response Acceleration for 1-Second Period	$S_{D1} = N/A^2$
Seismic Design Category ³	D

Note 1: Design values have been obtained by using the ASCE Hazard Tool at https://asce7hazardtool.online

Note 2: Per Section 11.4.8 of ASCE 7-16, a ground motion hazard analysis may be required for Site Class D sites with S_1 greater than or equal to 0.2. The values provided in this table assume that the value of the seismic response coefficient Cs can be determined by the structural engineer based on the Exceptions as detailed in Section 11.4.8. This should be verified by the structural designer and Pacific Crest Engineering, Inc. should be contacted for revised parameters if these Exceptions are not applicable to the project.

Note 3: The Seismic Design Category assumes a structure with IV occupancy as defined by Table 1604.5 of the 2022 CBC. Pacific Crest Engineering Inc. should be contacted for revised seismic design parameters if the proposed structure has a different occupancy rating than that assumed.

The recommendations of this report are intended to reduce the potential for structural damage to an acceptable risk level, however strong seismic shaking could result in damage to improvements and the need for post-earthquake repairs. It should be assumed that exterior improvements such as pavements or sidewalks may also need to be repaired or replaced following strong seismic shaking.

GEOTECHNICAL HAZARDS

A quantitative analysis of geotechnical hazards was beyond our scope of services for this project. In general however, the geotechnical hazards associated with projects in the Seaside area include seismic shaking (discussed above), ground surface fault rupture, liquefaction, lateral spreading and landsliding. A qualitative discussion of these hazards is presented below.

Ground Surface Fault Rupture

Pacific Crest Engineering Inc. has not performed a specific investigation for the presence of active faults at the project site. Based upon our review of the U.S. Geological Survey, Quaternary fault and fold database 2022, the project site is not underlain by any active or potentially active faults.

Ground surface fault rupture typically occurs along the surficial traces of active faults during significant seismic events. Since the nearest known active, or potentially active fault trace is mapped approximately 2 miles from the site, it is our opinion that the potential for ground surface fault rupture to occur at the site should be considered low.

Liquefaction and Lateral Spreading

Based upon our review of the regional liquefaction maps (Rosenberg, 2001) the subject site and surrounding area lie within an area mapped as having a low potential for liquefaction.

Liquefaction tends to occur in loose, saturated fine-grained sands and coarse silt, or clays with low plasticity. We did not encounter groundwater during our field investigation. Consequently, it is our opinion that the potential for liquefaction to occur at the subject site may be considered low.

Liquefaction-induced lateral spreading occurs when a liquefied soil mass fails toward an open slope face or fails on an inclined topographic slope. Our analysis indicates that the site has a low potential for liquefaction, consequently the potential for lateral spreading is also considered low.

Landsliding

Based upon our review of the Map Showing Relative Earthquake-Induced Landsliding of Monterey County, California (Rosenberg, 2001), the subject site and surrounding area lie within an area mapped as having a low potential for earthquake-induced landsliding.

The subject site and immediate vicinity are relatively flat to gently sloping. Provided our recommendations are followed, it is our opinion that the potential for shallow landsliding to occur and adversely affect the proposed development may be considered low.

Slope failures can also occur where surface drainage is allowed to concentrate onto unprotected slopes. Appropriate landscaping and good control of surface drainage around the project area becomes very important to reduce potential for shallow slumping of slopes. Erosion control measures should be implemented and maintained. Under no circumstances should surface runoff be directed toward, or discharged upon, any topographic slopes.

Seismically Induced Settlement

Seismically induced settlement occurs as a result of the compression of intergranular void space during a seismic loading event. In order to assess this hazard, we have evaluated the potential for the upper 50 feet of soil column to settle under seismic "dynamic" loading.

The potential for seismically induced dry sand settlement was evaluated quantitatively for this project, based upon the data obtained from our exploratory test borings. Our analysis utilized the software program LiqSVs Version 1.2.1.6, which is based upon the most recent recommendations of the NCEER Workshop and the work of Pradel 1998. The program calculates the seismically induced settlement due to "dynamic" compaction of loose, dry sands above the design water table.

The following criteria were used in our analysis:

- Peak Ground Acceleration (PGA_M) value of 0.58g determined in accordance with section 1803A.5.12 of the California Building Code.
- Earthquake magnitude 7.1 occurring on the San Andreas Fault, as derived from a deaggregation tool available from the USGS website.
- Groundwater elevation greater than 50 feet below ground surface.

Using the above parameters and subsurface data obtained during the course of our investigation, we have estimated seismically induced settlement on the order of 1 to 2 inches. Please refer to Appendix C for full model parameters and results.

IV. DISCUSSION AND CONCLUSIONS

<u>GENERAL</u>

1. The results of our investigation indicate that the proposed improvements are feasible from a geotechnical engineering standpoint, provided our recommendations are included in the design and construction of the project.

2. Grading and foundation plans should be reviewed by Pacific Crest Engineering Inc. during their preparation and prior to contract bidding.

3. Pacific Crest Engineering Inc. should be notified at least four (4) working days prior to any site clearing and grading operations on the property in order to observe the stripping and disposal of unsuitable materials, and to coordinate this work with the grading contractor. During this period, a pre-construction conference should be held on the site, with at least the client or their representative, the grading contractor, and one of our engineers present. At this meeting, the project specifications and the testing and inspection responsibilities will be outlined and discussed.

4. The findings, conclusions and recommendations provided in this report are based on the understanding that Pacific Crest Engineering will remain as Geotechnical Engineer of Record throughout the design and construction phase of the project. The validity of the findings, conclusions and recommendations contained in this report are dependent upon our review of project plans as well as an adequate testing and observation program during the construction phase. Field observation and testing must therefore be provided by a representative of Pacific Crest Engineering Inc., to enable us to form an opinion as to whether the extent of work related to earthwork or foundation excavation complies with the project plans, specifications and our geotechnical recommendations. Pacific Crest Engineering assumes no responsibility for any site earthwork that is performed without the full knowledge and direct observation of Pacific Crest Engineering Inc.

PRIMARY GEOTECHNICAL CONSIDERATIONS

5. Based upon the results of our investigation, it is our opinion that the primary geotechnical issues associated with the design and construction of the proposed project are the following:

- a. Loose and Compressible Soils Beneath Foundations and Concrete Slabs-On-Grade: Loose and compressible native soils of varying depth underlie the site. Foundations and concrete slabs-on-grade underlain by compressible material may be subject to settlement and distress. In order to reduce potential settlement and distress we recommend that soils underlying proposed foundations, concrete slabs and/or pavement sections be subexcavated as recommended below and recompacted as engineered fill. Detailed recommendations for earthwork, foundations, and concrete slabs-on-grade are presented in the following sections of this report.
- b. <u>Seismically Induced Settlement</u>: The soils underlying the site have the potential for settlement during a strong seismic event. Calculated seismically induced settlements are on the order of 1 to

2 inches. Similar to our mitigation approach for loose surficial soils, this hazard may also be reduced by over excavating the loose surficial soils and bringing the building pad up to design grades with engineered fill. Detailed recommendations for earthwork, foundations, and concrete slabs-on-grade are presented in the following sections of this report.

c. <u>Strong Seismic Shaking</u>: The project site is located within a seismically active area and strong seismic shaking is expected to occur within the design lifetime of the project. Improvements should be designed and constructed in accordance with the most current CBC and the recommendations of this report to minimize reaction to seismic shaking. Structures built in accordance with the latest edition of the California Building Code have an increased potential for experiencing relatively minor damage which should be repairable, however strong seismic shaking could result in damage to improvements and the need for post-earthquake repairs.

V. <u>RECOMMENDATIONS</u>

GENERAL EARTHWORK

Clearing and Stripping

1. The initial preparation of the site may consist of demolition of portions of any existing structures and their foundations and removal of debris. All foundation elements from existing structures must be completely removed from the building areas. Septic tanks and leaching lines, if found, must be completely removed. The extent of this soil removal will be designated by a representative of Pacific Crest Engineering Inc. in the field. This material must be removed from the site.

2. Any voids created by the removal of old structures and their foundations, septic tanks, and leach lines must be backfilled with properly compacted engineered fill which meets the requirements of this report.

3. Any wells encountered shall be capped in accordance with the requirements and approval of the County Health Department. The strength of the cap shall be equal to the adjacent soil and shall not be located within 5 feet of a structural footing.

4. Surface vegetation and organically contaminated topsoil should then be removed ("stripped") from the area to be graded. In addition, any remaining debris or large rocks must also be removed (this includes asphalt or rocks greater than 2 inches in greatest dimension). This material may be stockpiled for future landscaping.

5. It is anticipated that the depth of stripping may be 2 to 6 inches. Final required depth of stripping must be based upon visual observations by a representative of Pacific Crest Engineering Inc., in the field. The required depth of stripping will vary based upon the type and density of vegetation across the project site and with the time of year.

Subgrade Preparation

6. Areas of man-made fill, if encountered, will need to be completely excavated to undisturbed native material. The excavation process should be observed, and the extent designated by a representative of

Pacific Crest Engineering Inc., in the field. Any voids created by fill removal must be backfilled with properly compacted engineered fill.

7. After clearing and stripping are completed the following subexcavation depths are recommended:

Exterior concrete slabs-on-grade/flatwork: 12 inches below design soil subgrade elevation. Structural pavement sections: 12 inches below design soil subgrade elevation Structural foundations/interior concrete slabs: 5 feet below design ground surface, or 3 feet below bottom of footing, whichever is greater.

Following subexcavation to the recommended depths, the exposed subgrade soil should then be scarified 8 inches, moisture conditioned and compacted as outlined below.

8. Subexcavations should extend at least 5 feet horizontally beyond structural foundations and at least 3 feet horizontally beyond pavements and concrete flatwork.

9. Final depth of subexcavation should be determined by a representative of Pacific Crest Engineering Inc., in the field.

Material for Engineered Fill

10. Native or imported soil proposed for use as engineered fill should meet the following requirements:

- a. free of organics, debris, and other deleterious materials,
- b. free of "recycled" materials such as asphaltic concrete, concrete, brick, etc.,
- c. granular in nature, well graded, and contain sufficient binder to allow utility trenches to stand open,
- d. free of rocks in excess of 2 inches in size.

11. In addition to the above requirements, import fill should have a Plasticity Index between 4 and 12, and a minimum Resistance "R" Value of 30, and be non-expansive.

12. Samples of any proposed imported fill planned for use on this project should be submitted to Pacific Crest Engineering Inc. for appropriate testing and approval not less than ten (10) working days before the anticipated jobsite delivery. This includes proposed import trench sand, drain rock and for aggregate base materials. Imported fill material delivered to the project site without prior submittal of samples for appropriate testing and approval must be removed from the project site.

Engineered Fill Placement and Compaction

13. Following any necessary subexcavations and/or subgrade preparation, areas should be brought up to design grades with engineered fill that is moisture conditioned and compacted according to the recommendations of this report. This should result in a minimum of 36 inches of engineered fill beneath all structural foundations and interior concrete slabs, and 12 inches beneath exterior concrete slabs-on-grade and pavement subgrades. Recompacted sections should extend at least 5 feet horizontally beyond all foundations and 3 feet beyond the edges of exterior concrete slabs/flatwork and pavements.

14. Engineered fill should be placed in maximum 8-inch lifts, before compaction, at a water content which is within 1 to 3 percent of the laboratory optimum value.

- 15. The soil on the project site should be compacted as follows:
 - a. In pavement areas the upper 12 inches of subgrade, and all aggregate subbase and aggregate base, should be compacted to a minimum of 95% of its maximum dry density,
 - b. In pavement areas all utility trench backfill should be compacted to 95% of its maximum dry density,
 - c. All engineered fill below structural foundations and interior concrete slabs should be compacted to a minimum of 95% of its maximum dry density.
 - d. All remaining soil on the project site should be compacted to a minimum of 90% of its maximum dry density.

16. The maximum dry density will be obtained from a laboratory compaction curve run in accordance with ASTM Procedure #D1557. This test will also establish the optimum moisture content of the material. Field density testing will be performed in accordance with ASTM Test #D6938 (nuclear method).

17. We recommend field density testing be performed in maximum 1-foot elevation differences. In general terms, we recommend at least one compaction test per 200 linear feet of utility trench or retaining wall backfill, and at least one compaction test per 2,000 square feet of building or structure area. This is a subjective value and may be changed by the geotechnical engineer based on a review of the final project layout and exposed field conditions.

Cut and Fill Slopes

18. No permanent cut or fill slopes are currently proposed for this project. Should permanent cut or fill slopes be proposed, our office should be contacted for additional recommendations. In general, cut or fill slopes should conform to the recommendations of this section.

19. Fill slopes should be constructed with engineered fill meeting the minimum requirements of this report and have a gradient no steeper than 3:1 (horizontal to vertical).

20. Permanent cut slopes in soil shall not exceed a 4:1 (horizontal to vertical) gradient.

21. The above slope gradients are based on the strength characteristics of the materials under conditions of normal moisture content that would result from rainfall falling directly on the slope, and do not take into account the additional activating forces applied by seepage.

22. The above recommended gradients do not preclude periodic maintenance of the slopes, as minor sloughing and erosion may take place.

23. All flatwork should be set back at least 5 feet horizontally from the top of cut and fill slopes. All foundations should be set back at least 8 feet horizontally from the top of cut and fill slopes.

Soil Moisture and Weather Conditions

24. If earthwork activities are done during or soon after the rainy season, the on-site soils and other materials may be too wet in their existing condition to be used as engineered fill. These materials may require a diligent and active drying and/or mixing operation to reduce the moisture content to the levels required to obtain adequate compaction as an engineered fill. If the on-site soils or other materials are too dry, water may need to be added. In some cases the time and effort to dry the on-site soil may be considered excessive, and the import of aggregate base may be required.

Utility Trench Backfill

25. Utility trenches that are parallel to the sides of the building should be placed so that they do not extend below a line sloping down and away at a 2:1 (horizontal to vertical) slope from the bottom outside edge of all footings.

26. Utility pipes should be designed and constructed so that the top of pipe is a minimum of 24 inches below the finish subgrade elevation of any road or pavement areas. Any pipes within the top 24 inches of finish subgrade should be concrete encased, per design by the project civil engineer.

27. For the purpose of this section of the report, backfill is defined as material placed in a trench starting one foot above the pipe, and bedding is all material placed in a trench below the backfill.

28. Unless concrete bedding is required around utility pipes, free-draining clean sand should be used as bedding. Sand bedding should be compacted to at least 95 percent relative compaction. Clean sand is defined as 100 percent passing the #4 sieve, and less than 5 percent passing the #200 sieve.

29. Approved imported clean sand or native soil should be used as utility trench backfill. Backfill in trenches located under and adjacent to structural fill, foundations, concrete slabs and pavements should be placed in horizontal layers no more than 8 inches thick. This includes areas such as sidewalks, patios, and other hardscape areas. Each layer of trench backfill should be water conditioned and compacted to at least 95 percent relative compaction

30. Utility trenches which carry "nested" conduits (stacked vertically) should be backfilled with a control density fill (such as 2-sack sand\cement slurry) to an elevation one foot above the nested conduit stack. The use of pea gravel or clean sand as backfill within a zone of nested conduits is not recommended.

31. A representative from our firm should be present to observe the bottom of all trench excavations, prior to placement of utility pipes and conduits. In addition, we should observe the condition of the trench prior to placement of sand bedding, and to observe compaction of the sand bedding, in addition to any backfill planned above the bedding zone.

32. Jetting of the trench backfill is not recommended as it may result in an unsatisfactory degree of compaction.

33. Trenches must be shored as required by the local agency and the State of California Division of Industrial Safety construction safety orders.

Excavations and Shoring

34. Temporary shoring is not currently anticipated for this project. Should these requirements change, please contact our office for additional recommendations.

35. It should be understood that on-site safety is the *sole responsibility* of the Contractor, and that the Contractor shall designate a *competent person* (as defined by CAL-OSHA) to monitor the slope excavation prior to the start of each work day, and throughout the work day as conditions change. The competent person designated by the Contractor shall determine if flatter slope gradients are more appropriate, or if shoring should be installed to protect workers in the vicinity of the slope excavation. Refer to Title 8, California Code of Regulations, Sections 1539-1543.

36. All excavations must meet the requirements of 29 CFR 1926.651 and 1926.652 or comparable OSHA approved state plan requirements.

37. The "top" of any temporary cut slope and excavations should be set-back at least ten feet (measured horizontally) from any nearby structure or property line. Any excavations which cannot meet this requirement will need to have a shoring system designed to support steeper sidewall gradients.

FOUNDATIONS

38. At the time we prepared this report, the project plans had not been completed and the exact locations of the structures and foundation details had not been finalized. We request the opportunity to review these items during the final design stages to determine if supplemental recommendations will be required.

Spread Footings

39. Considering the current proposed building area, the soil characteristics including the potential for settlement, and the site preparation recommendations previously provided, it is our opinion that an appropriate foundation system to support proposed structures will consist of reinforced concrete spread footings constructed as an interconnected grid and embedded into engineered fill. This system could consist of continuous exterior footings, in conjunction with interior continuous footings or concrete slabs. The footings and slab should be tied together to form an interconnected foundation grid. Isolated footings are not recommended.

40. Building areas should be underlain by engineered fill that has been prepared as outlined in the Earthwork section of this report.

41. All footings must be trenched at least 24 inches below lowest adjacent compacted pad grade.

42. All footings should be excavated into engineered fill. No footings shall be constructed with the intent of placing engineered fill against the footing after the footing is poured and counting that engineered fill as part of the embedment depth of the footing.

43. Footings constructed to the criteria above may be designed using the following parameters:

- a. Allowable bearing capacity = 2,000 psf for dead plus live loading with a one-third (1/3) increase for seismic or wind loading
- b. Ultimate friction coefficient between foundations and underlying soil subgrade = 0.30
- c. Ultimate passive resistance = 300 pounds per cubic foot

44. Passive soil resistance and friction on the base of the footing may be used in combination with no reduction.

45. Passive resistance between the sides of the footing and the adjacent soil is only applicable where concrete is placed neatly against undisturbed soil or engineered fill. Voids created by concrete forms should be backfilled with compacted engineered fill or concrete.

46. The upper 1 foot of soil should be ignored when calculating passive soil resistance.

47. In computing the pressures transmitted to the soil by the footings, the embedded weight of the footing may be neglected.

48. Footings located adjacent to utility trenches should be deepened so that the base of the foundation extends below an imaginary 1:1 plane that starts at the base of the trench/pad grade and extends upwards towards the footing.

49. No footing should be placed closer than 10 feet to the top of a fill slope nor 8 feet from the base of a cut slope.

50. No footing shall be placed on slopes steeper than 4:1 (h:v). If the intent is to place the foundation on sloping ground which exceeds 4:1 (h:v), Pacific Crest Engineering Inc. should be contacted for an alternative pier and grade beam foundation design.

51. All grade beams, thickened slab edges and other foundation elements which impart structure loads to the soil (from dead, live, wind or seismic loads) should be considered "footings" and constructed according to the recommendations of this section, including required depths below lowest adjacent soil grade.

52. The footing excavations must be free of loose material prior to placing concrete. The footing excavations should be thoroughly saturated prior to placing concrete.

53. Footing excavations must be observed by a representative of Pacific Crest Engineering Inc. before placement of formwork, steel and concrete to verify bedding into proper material.

54. The footings should contain steel reinforcement as determined by the project civil or structural engineer in accordance with applicable CBC or ACI Standards.

SLAB-ON-GRADE CONSTRUCTION

55. All concrete slabs should be underlain by non-expansive engineered fill conforming to the recommendations of this report. In addition to the recommendations presented below, design and construction of concrete slab-on-grade floors should also follow Section 4.505.2 of the 2022 California Green Building Standards Code, which includes installing a vapor retarder in direct contact with concrete and a mix design that addresses bleeding, shrinkage and curling.

56. All exterior non-structural slabs, patios, walkways, etc., should be a minimum of 4 inches in thickness and structurally independent of structural foundation system(s).

57. All interior concrete slabs-on-grade should be underlain by a minimum 6-inch-thick capillary break of ³/₄ inch clean crushed rock (no fines). It is recommended that neither Class II baserock nor sand be employed as the capillary break material.

58. Where floor coverings are anticipated or vapor transmission may be a problem, a vapor retarder/membrane should be placed between the capillary break layer and the floor slab in order to reduce the potential for moisture condensation under floor coverings. We recommend a high-quality vapor retarder at least 10 mil thick and puncture resistant (Stego Wrap or equivalent). The vapor retarder must meet the minimum specifications for ASTM E-1745, Standard Specification for Water Vapor Retarder. Please note that low density polyethylene film (such as Visqueen) may meet minimum current standards for permeability but not puncture resistance. Laps and seams should be overlapped at least six inches and properly sealed to provide a continuous layer beneath the entire slab that is free of holes, tears or gaps. Joints and penetrations should also be properly sealed.

59. Floor coverings should be installed on concrete slabs that have been constructed according to the guidelines outlined in ACI 302.2R and the recommendations of the flooring material manufacturer.

60. Currently, ACI 302-1R and Section 4.505.2 of the 2022 California Green Building Standards Code recommend that concrete slabs to receive moisture sensitive floor coverings be placed directly upon the vapor retarder, with no sand cushion. ACI states that vapor retarders are not effective in preventing residual moisture within the concrete slab from migrating to the surface. Including a low water-to-cement ratio (less than 0.50) and/or admixtures into the mix design are generally necessary to minimize water content, reduce soluble alkali content, and provide workability to the concrete. As noted in CIP 29 (*Concrete in Practice by the National Ready Mixed Concrete Association*), placing concrete directly on the vapor retarder can also create potential problems. If environmental conditions do not permit rapid drying of bleed water from the slab surface the excess bleeding can delay finishing operations (refer to CIP 13, 19 and 20). Most of these problems can be alleviated by using a concrete mix with a low water content, moderate cement factor, and well-graded aggregate with the largest possible size. With the increased occurrence of moisture related floor covering failures, minor cracking of floors placed on a vapor retarder and other problems discussed here are considered a more acceptable risk than failure of floor coverings, and these potential risks should be clearly understood by the Client and Project Owner.

61. If a sand layer is chosen as a cushion for slabs without floor coverings, it should consist of a clean sand. Clean sand is defined as 100 percent passing the #4 sieve, and less than 5 percent passing the #200 sieve.

62. Requirements for pre-wetting of the subgrade soils prior to the pouring of the slabs will depend on the specific soils and seasonal moisture conditions and will be determined by a representative of Pacific Crest Engineering Inc. at the time of construction. It is important that the subgrade soils be properly moisture conditioned at the time the concrete is poured. Subgrade moisture contents should not be allowed to exceed our moisture recommendations for effective compaction and should be maintained until the slab is poured.

63. Recommendations given above for the reduction of moisture transmission through the slab are general in nature and present good construction practice. Moisture protection measures for concrete slabs-ongrade should meet applicable ACI and ASTM standards. Pacific Crest Engineering Inc. are not waterproofing experts. For a more complete and specific discussion of moisture protection within the structure, a qualified waterproofing expert should be consulted to evaluate the general and specific moisture vapor transmission paths and any impact on the proposed construction. The waterproofing consultant should provide recommendations for mitigation of potential adverse impacts of moisture vapor transmission on various components of the structure as deemed appropriate.

64. Final slab thickness, reinforcement, and doweling should be determined by the project civil or structural engineer. The use of welded wire mesh is not recommended for slab reinforcement.

RETAINING WALLS

- 65. Retaining walls with full drainage should be designed using the following criteria:
 - a. The following lateral earth pressure values should be used for design:

Maximum Backfill	Active Earth Pressure	At-Rest Earth Pressure	
Slope (H:V)	(psf/ft of depth)	(psf/ft of depth)	
Level	45	65	
4:1	55	80	

Table No. 5 - Active and At-Rest Earth Pressure Values

- b. Should the slope behind the retaining walls be other than shown above, supplemental design criteria will be provided for the active earth or at rest pressures for the particular slope angle.
- c. Active earth pressure values may be used when walls are free to yield an amount sufficient to develop the active earth pressure condition (about ½% of height). The effect of wall rotation should be considered for areas behind the planned retaining wall (pavements, foundations, slabs, etc.). When walls are restrained at the top or to design for minimal wall rotation, at-rest earth pressure values should be used.
- d. A resistance to lateral sliding coefficient of 0.30, and a passive lateral bearing pressure of 300 psf/foot may be assumed. One of these values should be reduced by one-third where both friction and passive resistance are utilized for sliding resistance.

- e. Passive resistance should be neglected over the upper 12 inches of footing depth, or where there is less than 8 feet of horizontal distance from face of footing to face of slope.
- f. For surcharge pressures due to live or dead loads which transmit a force to the wall, please refer to the attached Figure No. 30 included in Appendix A of this report.
- g. If applicable, traffic surcharges on the retaining wall may be simulated by assuming that an additional 2 feet of soil (240 psf) exists on the inboard side of the wall.
- h. Retaining wall foundations bearing upon native soil or engineered fill may be designed using an allowable bearing capacity of 1,750 psf.
- i. If the structural designer wishes to include seismic forces in their design, the wall may be designed using the above active soil pressures plus a horizontal seismic force of 15H² pounds per lineal foot (where H is the height of retained material). The resultant seismic force should be applied at a point 1/3rd above the base of the wall. This force has been estimated using the Mononobe-Okabe method of analysis as modified by Whitman (1990) and Lew and Sitar (2010). A reduced factor of safety for overturning and sliding may be used in seismic design as determined by the structural designer.
- j. The above seismic forces should not be used in combination with at rest lateral soil pressures.

RETAINING WALL DRAINAGE

66. The above design criteria are based on fully drained conditions. Therefore, we recommend that permeable material meeting the State of California Standard Specification Section 68-2.02F, Class 1, Type A, be placed behind the wall, with a minimum width of 12 inches and extending for the full height of the wall to within 1 foot of the ground surface. The top of the permeable material should be covered with Mirafi 140N filter fabric or equivalent and then compacted native soil placed to the ground surface. A 4-inch diameter perforated rigid plastic drain pipe should be installed within 3 inches of the bottom of the permeable material and be discharge to a suitable, approved location. The perforations should be placed downward; oriented along the lower half of the pipe. Neither the pipe nor the permeable material should be wrapped in filter fabric. Please refer to the Typical Retaining Wall Drain Detail, Figure 29, in Appendix A for details.

STRUCTURAL PAVEMENT

Asphalt Concrete Pavement

67. The soils that will comprise the pavement subgrade will in all likelihood be the silty sands and sandy silts that predominate the surficial soils around the development area. The "R" Value results ranged from 66 to 70. We have conservatively assumed an "R" value of 50 for design of pavement sections provided below. This assumption should be verified during construction.

68. The table below provides a flexible pavement design based on the 6th Edition of the Caltrans Highway Design Manual – Chapter 630 (last updated July 1, 2020). Traffic Index (TI) values of 4¹/₂ to 6 are provided.

The project civil engineer should verify the required TI for this project. Our office should be contacted for supplemental recommendations for TI values that are not provided below.

Material	Traffic Index			
	41⁄2	5	6	
Asphalt Concrete	2.5 inches	3.0 inches	3.5 inches	
Class 2 Aggregate Base, R=78 min.	4.0 inches	4.0 inches	6.0 inches	
Compacted Subgrade	8.0 inches	8.0 inches	8.0 inches	
Total Section	14.5 inches	15.0 inches	17.5 inches	

69. To have the selected pavement sections perform to their greatest efficiency, it is very important that the following items be considered:

- a. Properly scarify and moisture condition the upper 8 inches of the subgrade soil and compact it to a minimum of 95% of its maximum dry density, at a moisture content of 2 to 4% over the optimum moisture content for the soil.
- b. Provide sufficient gradient to prevent ponding of water.
- c. Use only quality materials of the type and thickness (minimum) specified. All aggregate base and subbase must meet Caltrans Standard Specifications for Class 2 materials, and be angular in shape. All Class 2 aggregate base should be $\frac{3}{4}$ inch maximum in aggregate size.
- d. Compact the base and subbase uniformly to a minimum of 95% of its maximum dry density.
- e. Use ½ inch maximum, Type "A" medium graded asphaltic concrete. Place the asphaltic concrete only during periods of fair weather when the free air temperature is within prescribed limits by Cal Trans Specifications.
- f. Porous pavement systems which consist of porous paving blocks, asphaltic concrete or concrete are generally not recommended due to the potential for saturation of the subgrade soils and resulting increased potential for a shorter pavement life. At a minimum, porous pavement systems should include a layer of Mirafi HP370 geotextile fabric placed on the subgrade soil beneath the porous paving section. These pavement systems should only be used with the understanding by the Owner of the increased potential for pavement cracking, rutting, potholes, etc.
- g. Maintenance should be undertaken on a routine basis.

Portland Cement Concrete Pavement

70. The vehicular Portland Cement Concrete (PCC) pavement recommendations as summarized below are based on design procedures outlined in the Portland Cement Association (PCA) design manual titled "*Thickness Design for Concrete Highway and Street Pavements*" (*PCA, 1984*) and supplemented by procedures by the American Concrete Pavement Association (ACPA) in their report titled "*Design of Concrete Pavement for Streets and Roads*" (ACPA, 2006).

71. As noted above, the soils that will comprise the pavement subgrade will in all likelihood be the silty sands that predominate the surficial soils around the development area. The "R" Value results for these soils ranged from 66 to 70. These R-values generally correlate to modulus of subgrade reaction "k" values of 180 to 220 pci (PCA, 1984). We have conservatively assumed an "k" value of 200 pci for design of the PCC pavement sections provide below. This assumption should be verified during construction.

72. The design of PCC pavement is a function of the Average Daily Truck Traffic (ADTT), which is defined as the average truck traffic volume in both directions on a section of road over a 24-hour period. It is our understanding that ADTT values have not been tabulated for the subject project; therefore, we have provided PCC pavement sections for an assumed range of ADTT values. An allowable ADTT should be chosen that is greater than what is expected for development.

73. The following table provides minimum PCC thicknesses for a range of assumed ADTT values for PCC pavements with and without concrete curb and gutter.

	Minimum PCC Thickness (in)								
Allowable ADTT	With Curb & Gutter	Without Curb & Gutter							
23	5.5	6.5							
190	6.0	7.0							
1100	6.5	7.5							

TABLE No. 7 - PCC Pavement Sections

74. PCC pavement should have a minimum compressive strength of 4000 psi.

75. The PCC pavement sections provided above should be underlain by a minimum of 6 inches of Class 2 aggregate base and 12 inches of compacted subgrade, compacted to 95 percent relative compaction.

76. Expansion and control joints should be determined by the project civil or structural engineer. As a minimum, we recommend that joint spacing be limited to a maximum of 2 feet in each direction for each inch of PCC thickness.

SURFACE DRAINAGE

77. Surface water drainage is the responsibility of the project civil engineer. The following should be considered by the civil engineer in design of the project.

78. Surface water must not be allowed to pond or be trapped adjacent to foundations, or on building pads and parking areas.

79. All roof eaves should be guttered, with the outlets from the downspouts provided with adequate capacity to carry the storm water away from structures to reduce the possibility of soil saturation and erosion. The connection should be in a closed conduit which discharges at an approved location away from structures and graded areas.

80. Slope failures can occur where surface drainage is allowed to concentrate on unprotected slopes. Appropriate landscaping and surface drainage control around the project area is imperative in order to minimize the potential for shallow slope failures and erosion. Stormwater discharge locations should not be located at the top or on the face of any slope.

81. Final grades should be provided with positive gradient away from all foundation elements. Soil grades should slope away from foundations at least 5 percent for the first 10 feet. Impervious surfaces should slope away from foundations at least 2 percent for the first 10 feet. Concentrations of surface runoff should be handled by providing structures, such as paved or lined ditches, catch basins, etc.

82. Irrigation activities at the site should be done in a controlled and reasonable manner.

83. Following completion of the project we recommend that storm drainage provisions and performance of permanent erosion control measures be closely observed through the first season of significant rainfall, to determine if these systems are performing adequately and, if necessary, resolve any unforeseen issues.

84. The building and surface drainage facilities must not be altered nor any filling or excavation work performed in the area without first consulting Pacific Crest Engineering Inc. Surface drainage improvements developed by the project civil engineer must be maintained by the property owner at all times, as improper drainage provisions can produce undesirable affects.

STORM WATER INFILTRATION

85. At the time we prepared this report, the project plans had not been completed and the infiltration locations and system details had not been finalized. We request an opportunity to review these plans during the design stages to determine if supplemental recommendations will be required.

86. It is our understanding that all stormwater will be conveyed to the proposed bioswales along Giggling Road. Our infiltration test borings within the proposed bioswale area generally encountered silty sand within the 2-foot test zone. The fines content (silt fraction) within the infiltration zone ranged from 14.4% to 19.1%. These soil conditions facilitated Final Infiltration Rates (I_t) from 0.3 to 1.4 inches/hour, and Factored Infiltration Rates (K_f) from 0.1 to 0.7 inches/hour. Refer to the Findings and Analysis section above and Appendix B of this report for a complete summary of infiltration data.

87. Infiltration rates tend to decrease as the percentage of fine grained soil increases. Furthermore, fine grained soil can be divided into two sub-groups, silt and clay. The deviation between silt and clay is also dependent on the material's respective particle size, with silt being coarser grained than clay. Therefore, infiltration rates also tend to decrease as a soil transitions from silt to clay. A representative of Pacific Crest

Engineering, Inc. should be present during the grading process to verify that the encountered soils are consistent with the conditions discussed in this report.

88. Infiltration of water adjacent to buildings may saturate surficial soils, resulting in a reduction of shear strength. This reduction in shear strength may trigger or exacerbate differential settlement of the structure. Therefore, we recommend that infiltration systems be setback a minimum of 15 feet horizontally from structural foundation elements. Infiltration areas should also be set back a minimum of 8 feet from all exterior concrete slabs-on-grade, flatwork and pavements. Stormwater features within setback limits should be lined to prevent infiltration.

89. Maintenance of the storm water drainage facilities will be critical in order to maintain the design infiltration rates. The storm water drainage facilities must be inspected and maintained on a routine basis. Repairs and upgrades, whenever necessary, must be made in a timely manner. We recommend that the owner inspect the drainage systems prior to each rainy season, following the first significant rain, and throughout each rainy season. The civil and geotechnical engineers should be consulted if significant drainage problems occur so that the conditions can be observed, and supplemental recommendations can be provided, as necessary.

EROSION CONTROL

90. The surface soils are classified as having high potential for erosion. Therefore, the finished ground surface should be planted with ground cover and continually maintained to minimize surface erosion. For specific and detailed recommendations regarding erosion control on and surrounding the project site, the project civil engineer or an erosion control specialist should be consulted.

91. The surfaces of all cut and fill slopes should be prepared and maintained to reduce erosion. This work, at a minimum, should include track rolling of the slope and effective planting. The protection of the slopes should be installed as soon as practicable so that a sufficient growth will be established prior to inclement weather conditions. It is vital that no slope be left standing through a winter season without the erosion control measures having been provided.

PLAN REVIEW

92. We respectfully request an opportunity to review the project plans and specifications during preparation and before bidding to verify that the recommendations of this report have been included and to provide additional recommendations, if needed. These plan review services are also typically required by the reviewing agency. Misinterpretation of our recommendations or omission of our requirements from the project plans and specifications may result in changes to the project design during the construction phase, with the potential for additional costs and delays in order to bring the project into conformance with the requirements outlined within this report. Services performed for review of the project plans and specifications are considered "post-report" services and billed on a "time and materials" fee basis in accordance with our latest Standard Fee Schedule.

VI. LIMITATIONS AND UNIFORMITY OF CONDITIONS

1. This Geotechnical Investigation was prepared specifically for RRM Design Group and for the specific project and location described in the body of this report. This report and the recommendations included

herein should be utilized for this specific project and location exclusively. This Geotechnical Investigation should not be applied to nor utilized on any other project or project site.

2. The recommendations of this report are based upon the assumption that the soil conditions do not deviate from those disclosed in the borings. If any variations or undesirable conditions are encountered during construction, or if the proposed construction will differ from that planned at the time, our firm should be notified so that supplemental recommendations can be provided.

3. This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information and recommendations contained herein are called to the attention of the Architects and Engineers for the project and incorporated into the plans, and that the necessary steps are taken to ensure that the Contractors and Subcontractors carry out such recommendations in the field.

4. The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they are due to natural process or the works of man, on this or adjacent properties. In addition, changes in applicable or appropriate standards occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated, wholly or partially, by changes outside of our control. This report should therefore be reviewed in light of future planned construction and then current applicable codes. This report should not be considered valid after a period of two (2) years without our review.

5. This report was prepared upon your request for our services in accordance with currently accepted standards of professional geotechnical engineering practice. No warranty as to the contents of this report is intended, and none shall be inferred from the statements or opinions expressed.

6. The scope of our services mutually agreed upon for this project did not include any environmental assessment or study for the presence of hazardous or toxic materials in the soil, surface water, groundwater, or air, on or below or around this site.

APPENDIX A

Regional Site Map Site Map Showing Test Borings Key to Soil Classification Log of Test Borings Corrosivity Test Summary Direct Shear Test Results R-Value Test Results Typical Retaining Wall Drain Detail Surcharge Pressure Diagram

	ι	KEY TO SOIL JNIFIED SOIL C	CLASSII LASSIFIC	FICATION	DN - FII I SYSTE	NE GI M - A	RAINED S	SOILS (FG 487 (Modi	5) fied)		
М	AJOR DIVISIONS	SYMBOL	FINES	COAR	SENESS	SAND	D/GRAVEL		GROUP NAME		
		CL	< 20% plus	<15% plu:	s No. 200				Lean Clay / Silt		
		Lean Clay	No. 200	15 20% ml		% san	d ≥ % gravel	Lean Clay	with Sand / Silt with Sand		
		PI > / Plots Δhove Δ Line		12-20% bi	ius 190. 200	% san	d < % gravel	Lean Clay w	ith Gravel / Silt with Gravel		
					o	< 1	5% gravel	Sandy	Lean Clay / Sandy Silt		
		-OR-	>20% pluc	% sand \geq	2 % gravel	≥ 1	5% gravel	Sandy L	ean Clay with Gravel /		
			$\ge 30\%$ plus No. 200			< 1	15% sand	Sar Gravelly	Idy Silt with Gravel		
	*LL < 35%	PI > 4		% sand <	% gravel			Gravell	v Lean Clay with Sand /		
	Low Plasticity	Plots Below A Line			-	≥]	15% sand	Gra	velly Silt with Sand		
			<30% plus	<15% plu	s No. 200				Silty Clay		
			No. 200	15-30% pl	lus No. 200	% san	d ≥ % gravel	Sil	ty Clay with Sand		
		CL - ML				% san	d < % gravel	Silt	y Clay with Gravel		
		4 < PI < 7	>30% plus	% sand ≧	≥ % gravel	>14	5% gravel	Sandy	Sandy Silty Clay		
4			No. 200			< 1	L5% sand		iravelly Silty Clay		
บ				% sand <	% gravel	≥1	L5% sand	Gravel	ly Silty Clay with Sand		
			<30% plus	<15% plu:	s No. 200				Clay		
X 35% ≤ *LL < 50% No. 200 15-30% plus No. 200 % sand ≥ % gravel Clay with Sand V 35% ≤ *LL < 50%											
	35% ≤ *LL < 50%					% sar	nd < % gravel		Clay with Gravel		
	Diacticity	C	>30% plus	% sand ≥ 9	% gravel	< 1	5% gravel	San/	Sandy Clay		
S	Plasticity		No. 200			< 1	15% graver	Jan	Gravelly Clay		
				% sand <	% gravel	≥ :	15% sand	Grav	velly Clay with Sand		
				<pre><15% plus No. 200 us 0 15-30% plus No. 200 _</pre>				Fa	t Clay or Elastic Silt		
		CH	<30% plus			% san	ıd≥% gravel	Fa	at Clay with Sand		
		Fat Clay	No. 200				0	Ela	stic Silt with Sand		
	*11 . 500/	FIOLS ADOVE A LINE					nd < % gravel	Fat Elac	Clay with Gravel /		
	"LL > 50%	-OR-				< 1	5% gravel	Sandy Fat	Clay / Sandy Flastic Silt		
	Figh Plasticity			% sand ≥	% gravel		F 0(Sandy	Fat Clay with Gravel /		
		MH	≥30% plus			≥1	5% gravel	Sandy E	Elastic Silt with Gravel		
		Elastic Silt Plots Below A Line	No. 200			< 1	15% sand	Gravelly Fat	Clay / Gravelly Elastic Silt		
				% sand <	% gravel	≥ :	15% sand	Gravel	ly Fat Clay with Sand /		
								Gravell	y Elastic Silt with Sand		
	* LL = Liquid Lim * PI = Plasticity	iit Index						MOISTUR	E		
				л			DESCRIPTION				
	BOR	ING LOG EXPLA		N				Absence	of moisture,		
Ιſ	pe						DRY	dusty, dr	y to the touch		
							MOIST	Damp, but	no visible water		
	pth, nple	JOIL DEJCK					WET	Visible free	e water, usually		
	Sar De							3011 13 15 10 1			
	-1 $-1^{1-1} < \frac{3}{2}$	Soil Sample Nu	nber				<u><u> </u></u>	ONSISTEN			
		L = 3" Outsic	e/Type le Diameter		DESCRIP	TION	UNCC SHEAR STR	NFINED ENGTH (KSF)	STANDARD PENETRATION (BLOWS/FOOT)		
╞		M = 2.5" Ou T = 2" Outsid	tside Diamet le Diameter	er	VERY SC	OFT	<	0.25	< 2		
		ST = Shelby	Tube		SOF	Г	0.2	5 - 0.5	2 - 4		
	-4- 44	B = Bag Sam	ple	<u>_</u>	FIRM	1	0.5	5 - 1.0	5 - 8		
		= Retaine	ed Sample	5	STIF	F	1.0) - 2.0	9 - 15		
			م		VERY ST		2.0) - 4.0 4.0	16 - 30		
		Groun	u water ele	vation			· · · · · · · · · · · · · · · · · · ·	J.U	/ 30		
			Borin		xplanat	ion -	FGS	L L	igure No 3		
	Maci	fic Crest	Se Se	aside Fi	irestation	n No	2	Pr	oiect No. 2302		
	ENGI	NEERINGINC	50	Seasid	e, Califo	rnia	-		Date: 3/10/23		

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	P NAME * I-Graded Grav y Graded Grav Silt / Well- Gra d Sand Silt / Poorly G nd Sand Clay / Well-Gra	el with Sand vel with Sand ided Gravel		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	l-Graded Grav y Graded Grav Silt / Well- Gra d Sand Silt / Poorly G nd Sand Clay / Well-Gra	el with Sand vel with Sand ded Gravel		
Cu < 4 and/or 1 > Cc > 3 GP Poorly Graded Gravel/Poc GW - GM Well-Graded Gravel with with Silt a More than 50% ML or MH GP - GM Poorly Graded Gravel with Silt a Well-Graded Gravel with Silt a	y Graded Grav Silt / Well- Gra nd Sand Silt / Poorly G nd Sand Clay / Well-Gra	vel with Sand Ided Gravel		
More than 50% ML or MH GW - GM Well-Graded Gravel with silt a GP - GM Poorly Graded Gravel with silt a	Silt / Well- Gra nd Sand Silt / Poorly G nd Sand Clay / Well-Gra	ded Gravel		
GP - GM Poorly Graded Gravel with	Silt / Poorly G nd Sand Clay / Well-Gra			
b f coarse fraction 5 1 200 with Site 6	Clay / Well-Gra	raded Gravel		
is larger than No. 4 sieve size CL. Cl or CH GW - GC Well-Graded Gravel with Cl	y and Sand	aded Gravel		
GP - GC Poorly Graded Gravel with Cl	Clay / Poorly G y and Sand	raded Gravel		
ML or MH GM Silty Gravel / Si	y Gravel with	Sand		
>12% CL, Cl or CH GC Clayey Gravel/Cla	vey Gravel wit	h Sand		
CL - ML GC - GM Silty, Clayey Gravel/ Sil	Craded Sand			
$<5\%$ Cu ≤ 6 and $1 \leq Cc \geq 3$ SV Well-Graded Sand / Well- $<5\%$ Cu ≤ 6 and /or $1 \geq Cc \geq 3$ SP Poorly Graded Sand / Poorly	Graded Sand	with Gravel		
ML or MH SW - SM Well-Graded Sand with Silt	Silt / Well- Gra and Gravel	ided Sand		
SP - SM Poorly Graded Sand wit with Sil	Silt / Poorly G and Gravel	raded Sand		
is smaller than CL, CI or CH SW - SC Well-Graded Sand with With Cla	Clay / Well-Gra and Gravel	aded Sand		
SP - SC Poorly Graded Sand with Cla	Clay / Poorly (and Gravel	Graded Sand		
ML or MH SM Silty Sand / Silt	Sand with Gra	avel		
>12% CL, Cl of CH SC Clayey Sand / Cla	ey Sand With			
"with gravel" refers to materials containing 15% or greater gravel particles within a sand so 3 inch 3/4 inch No. 4 No. 10 No. 40	lo. 200 0.0	02 μm		
COBBLES AND BOULDERS GRAVEL SAND	SILT	CLAY		
RELATIVE DENSITY MOISTU	<u>:E</u>			
DESCRIPTION STANDARD PENETRATION DESCRIPTION	RITERIA			
	ence of mois	ture,		
VEKTLOOSE U-4 dus	y, dry to the	touch		
MOIST Damp	but no visible	e water		
Visibl	free water, u	sually		
DENSE 31 - 50 VVE I soil is	elow the wat	er table		
VERY DENSE > 50				

LOG	LOGGED BY JP DATE DRILLED 1/17/23 BORING DIAMETER 8" HS BORING NO. B1												
DRIL	LRIC	i	Britton - Track mounte	d CME 55	HAM	MER T	YPE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
	1-1		SILTY SAND: Brown (7.5 grained, poorly graded, ro loose	YR 4/3), fine to very fine potlets throughout, moist,	SM	2							
 - 2 -	L	2				5	1		0.0	101.4			
 - 3 -	1-2 T	Ť	Decrease in rootlets, moi	st, loose		0 2 3	0		8.9	101.4			
4		Щ				3	6		10.7		12.8		
 - 5 - 	1-3 L	2	SAND WITH SILT: Yellow medium grained to fine g loose	vish brown (10YR 5/8), rained, poorly graded, moist	SP ,S№	5							
		1				10	9		15.7	102.8			
- 10 -													
 - 11 -	L 1-4	2	poorly graded, scattered	/4), medium to fine grained, mica flakes throughout, dry	to	3 10	10			04.0			
 -12-		1				14	13		3.4	96.3			
- 13-													
 -14 -													
- 15 -	1-5		Very fine to fine grained,	poorly graded, dry to damp,		5							
- 16 -	Т.		medium dense			10 16	26		3.1		5.6		
-17-													
-18 -													
-19-				·									
20	1-6		SAND: Brownish yellow grained, poorly graded, d	(10YR 6/6), medium to fine ry to damp, medium dense	SP	8							
-21-	L 	2				17 21	20		2.6	103.7			
-22-													
-23-													
	Pacific Crest ENGINEERING INC Log of Test Seaside Fire St Seaside, Ca					gs No. 2 a				l Pro D	-igur oject ate: 3	e N No. 3/1	o. 5 . 2302 0/23

LOG	LOGGED BY JP DATE DRILLED 1/17/23 BORING DIAMETER 8" HS BORING NO. B1												
DRII	LRIC		Britton - Track mounted CME 55	. I	HAMN	1ER TY	'PE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil Description		USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
 -24-			SAND: Brownish yellow (10YR 6/6), med grained, poorly graded, dry to damp, med	dium to fine dium dense	SP								
-25-	1-7 T		Slight increase in mica flakes, slightly dar	mp, dense		9							
-26-						22	37		2.9		3.9		
- 28-													
- 29-													
- 30-	1-8 T		Less mica flakes, damp to dry, dense			7 11							
- 32-						20	31		3.1		2.7		
 - 33 - 													
- 34 -													
- 36-	1-9 L	2	Yellow (10YR 7/6), medium to fine grains fine grains, trace mica, poorly graded, da (driller added water)	ed, some very mp, dense		15 27 40	35		3.8	94.0			
- 37-													
- 38 -													
- 40-	1-10		Damp to moist, dense (driller added wate	er)		11							
-41-	T 					15 24	39		3.5		2.7		
-42-													
-43-													
 - 45 -	1-11		Moist, medium dense			13							
-46-	L	2				25 34	30		4.3	93.8			
Pacific Crest ENGINEERING INC Log of Test Borings Seaside Fire Station No. 2 Seaside, California						-			l Pro D	-igur oject ate: 3	e N No 3/1	o. 6 . 2302 0/23	

LOG	OGGED BY JP DATE DRILLED 1/17/23 BORING DIAMETER 8" HS BORING NO. B1												
DRI	LL RIG		Britton - Track mounte	d CME 55	IMAH	MER TY	/PE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
 			SAND: Yellow (10YR 7/6 very fine grains, trace mi added water)), medium to fine grained, son ca, poorly graded, moist (drille	ne SP er								
	1-12 T		Slight increase in mica fla	ikes, slightly damp, dense		13 19	47		4.2		24		
			Boring terminated at 51½ No groundwater encount	ered.		20	47		4.3		5.0		
	M.	F	Pacific Crest	Log of Test B Seaside Fire Sta Seaside, Cali	I Borin tion N forni	gs No. 2 a	<u> </u>		I	F Pro D	igur ject ate: 3	e N No 3/1	o. 7 . 2302 0/23

LOG	LOGGED BY JP DATE DRILLED 1/17/23 BORING DIAMETER 8" HS BORING NO. B2											
DRII	LRIC	i	Britton - Track mounted CME 55	IAMN	/ER TY	/PE_A	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
- 1 -	2-1		SILTY SAND: Dark brown (7.5YR 3/3), fine to very fine grained, poorly graded, rootlets throughout, moist, loose	SM								
 2 -	Ĺ	2			2 5							
	2-2 T	1	Trace rootlets, moist, loose		5 1 2	5		9.4	104.7			
4		Щ			2	4		13.5				
 _ 5 _	2-3		Reddish yellow (7.5YR 6/8) at 5½ feet, medium to fine		3							
- 6 - 		2	added water)		12 29	22		12.4	106.3			
- 8 - 												
- 9 - 			SAND: Very pale brown (10YR 8/4) medium to fine	SP								
-10 - 	2-4 L	2	grained, poorly graded, dry, loose		4			31	86.3	34		
-11- 		1			11	10		0.1	00.0	5.7		
-12- 												
-13-												
-14-												
-15-	2-5 T		Medium to fine grained, poorly graded, clean sand, dry,		4							
-16 -					8 14	22		1.9				
-17-												
-18 -												
-19-												
-20-	2-6		Dry, medium dense		12							
-21-	L 	1			22 26	25		2.0	82.2			
-22-			Boring terminated at 21½ feet. No groundwater encountered.									
-23-												
Pacific CrestLog of Test BoringsSeaside Fire Station No. 2Seaside, California								F Pro D	igur oject ate:	e N No 3/1	lo. 8 . 2302 .0/23	

LOG	LOGGED BY JP DATE DRILLED 1/17/23 BORING DIAMETER 8" HS BORING NO. B3													
DRII	LL RIG	I	Britton - Track mounte	<u>d CME 55</u>	HAM	MER	R TYI	PE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	escription	USCS	Field Blow	Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
	-		SILTY SAND: Dark brown grained, poorly graded, re	ו (7.5YR 3/3), fine to very fil potlets throughout, moist, le	ne SN oose	1								
	3-1 L	2				2	2 L							
	3-2	1	Less rootlets, moist, loos	2		1	L 2	1		9.4	104.7			
						2	<u>2</u> 2	4		11.0				
- + - - 5 - - 6 -	3-3 L	2	Reddish yellow (7.5YR 6/ poorly graded, moist, loo	8), medium to fine grained, se		35	3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
		1				7	/	7		14.4	101.1			
 - 9 -														
 - 10 -	3-4 T		SAND: Yellow (10YR 7/6 poorly graded, dry, mediu), medium to fine grained, im dense	SF	4	1							
		Щ				8	3	15		2.7		3.5		
						_								
	3-5 L	2	Dry, medium dense			6 10	5 0							
 - 17 -		1	Boring terminated at 16½	feet.		= 10	6	14		1.7	88.3			
			No groundwater encount	ered.										
 _ 19 _														
 - 20 -														
 -22-														
 -23-														
		F	Pacific Crest	Log of Test Seaside Fire St Seaside, Ca	I Borii tation aliforn	igs No. 2 ia	2			1	I Fro D	igur ject ate:	i e N No. 3/1(o. 9 . 2302 0/23

LOG	LOGGED BY JP DATE DRILLED 1/17/23 BORING DIAMETER 8" HS BORING NO. B4											
DRIL	DRILL RIG Britton - Track mounted CME 55 HAMMER TYPE Auto-trip											
Depth (feet)	Sample	Sample Type	Soil Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
	1 1		SILTY SAND: Black (7.5YR 2.5/1) and very dark brown (7.5YR 2.5/2), fine to very fine grained, poorly graded, abundant rootlets moist very loose	SM								
 2 -	L	2			1 2							
	4-2	1	Moist, loose		2 1	2		9.9	94.7			
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$					2 3	5		11.2				
- 4 -												
- 5 -	4-3 L	2	Strong brown (7.5YR 4/6), medium to fine grained, poorly graded, silt exhibits low plasticity, moist, loose		4							
- 6 - 		1			9	7		12.4	105.6			
- 8 -												
- 9 -												
-10-	4-4		SAND: Yellow (10YR 7/6), medium to fine grained, poorly graded, damp to dry, loose	SP	3							
	L	2			6	9		25	827	22		
 -12 -					12			2.5	02.7	<i></i>		
- 13-												
	4-5 T	Π	Damp to dry, medium dense		4 8							
-16 - 		Щ			8	16		2.8				
-17- 												
-18-												
-19-												
-20-	4-6		Dry, medium dense		7							
-21-	L	2			13 20	17		3.2	96.6			
-22 - Boring terminated at 21½ feet. No groundwater encountered.												
			Log of Test E	 	l gs			1	I F	ligure	∟ e No	L o. 10
	Pacific Crest Pacific Crest Seaside Fire St Seaside, Ca				∎о. 2 а				Pro D	oject ate: 3	No 3/1	. 2302 0/23

LOG	LOGGED BY_JP DATE DRILLED_1/18/23 BORING DIAMETER_8" HS BORING NOB5												
DRII	DRILL RIG Britton - Track mounted CME 55 HAMMER TYPE Auto-trip												
Depth (feet)	Sample	Sample Type	Soil D	Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
	5 1		SILTY SAND: Dark brown grained poorly graded, ro	n (7.5YR 3/4), fine to very fine ootlets throughout, moist, ver	y SM								
	L	2				1							
 _ 3 _	5-2 T	1	Brown, medium to fine g very loose	rained, poorly graded, moist,		2 1 2	1		11.8	94.2			
4		Щ				1	3		12.3				
_ 5 _ _ 5 _	5-3 L	2	Silt exhibits intermediate	plasticity, wet, loose		2							
- 6 - 	5-4	1	Wet loose			6	5		11.8	105.2	19.3		
	- T					4	10		137		16.0		
- 8 - 									10.7		10.0		
- 9 - 				medium to fine grained poor									
-10-	5-5 L	2	graded, moist, medium d	ense		4							
-11-		1				14	13		2.4	96.9			
-12-													
-13-													
-14 -													
-15-	5-6 T		Very pale brown with bro	wnish yellow, medium to fine		4							
-16 -		Ш				8	14		3.0				
-17-													
-18 -													
-19-													
-20-	5-7		Yellow (10YR 8/6), mediu	Im to fine grained, poorly		7							
-21-	L 	2	graded, slightly damp to	dry, medium dense		15 19	18		2.9	91.6			
-22-													
-23-													
Pacific Crest ENGINEERING INC Log of Test Borings Seaside Fire Station No Seaside, California					gs No. 2 a			-	F Pro D	igure oject ate: 3	e No No 3/1	o. 11 o. 2302 .0/23	

LOGGED BY_JP DATE DRILLED_1/18/23 BORING DIAMETER_8" HS BORING NOB5														
DRII	LRIG	<u>.</u>	Britton - Track mounte	d CME 55	HA	MM	1ER TY	'PE <u>A</u>	uto-i	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description		USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
 _24-			SAND: Yellow (10YR 8/6 poorly graded, slightly da), medium to fine grained, amp to dry, medium dense		SP								
- 25-	5-8		Dry, medium dense				11							
26-	L	2					19 30	21		2.3	91.5	3.2		
-27-			Boring terminated at 26½ No groundwater encount	2 feet. ered.										
-28-														
-29-														
- 30-														
-31-														
- 34-														
- 35 -														
- 37-														
- 38-														
-39-														
40-														
-41-														
-42-														
-43-														
- 44 - 														
46-				· •										
	Pacific Crest ENGINEERING INC			Log of Tes Seaside Fire S Seaside, C	of Test BoringsFigure No. 12le Fire Station No. 2Project No. 23aside, CaliforniaDate: 3/10/2				o. 12 . 2302 0/23					

LOG	LOGGED BY_JP DATE DRILLED_1/17/23 BORING DIAMETER_8" HS BORING NOB6 DRILL RIG Britton - Track mounted CME 55 HAMMER TYPE Auto-trip												
DRIL	DRILL RIG Britton - Track mounted CME 55 HAMMER TYPE Auto-trip												
Depth (feet)	Sample	Sample Type	Soil D	escription	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
	6-1		SAND WITH SILT: Dark t fine grained, poorly grade moist, loose	prown (7.5YR 3/3), fine to ve ed, rootlests throughout,	ry SP- SM	4							
- 2 - - 3 -	6-2 T	1	Brown (7.5YR 4/4), some	rootlets, moist, loose		4 5 1 1	5	· · · · · · · · ·	9.5	101.7			
4 5 	6-3 L		Brownish yellow (10YR 6	n/6), medium to very fine		2	3	a aa aa aa aa aa	12.7				
- 6 - - 7 -		1				9	8		13.1	103.0	11.8		
- 8 - - 9 -													
- 10 - - 10 - - 11 -	6-4 L	2	SAND: Yellow (10YR 7/8 poorly graded, dry, mediu), medium to fine grained, ım dense	SP	69	11		0.7	07.6			
 _ 12 _ 						12	11		3.7	97.0			
 14													
	6-5 T		Very pale brown (10YR 7 poorly graded, dry, mediu	/4), medium to fine grained, ım dense		6 12 16	28		1.9				
-17 - -18 -								a an an an an an	a an an an an an an a an an an an an an				
- 19 - - 19 - - 20 -													
 _ 21_ 	0-6 L	2	Coarse to very fine grain medium dense	ea, poorly graded, damp to d	ry,	10 22 26	25		2.7	98.3	1.9		
-22- - 23-													
Pacific Crest ENGINEERING INC Log of Test Borings Seaside Fire Station No. 2 Seaside, California								F Pro D	igure oject ate: (e No No 3/1	o. 13 . 2302 0/23		

LOG	GED	BY_	JP DATE DRIL	LED_1/17/23	BOF	RIN	G DIAI	METE	R <u>8</u>	" HS		BOF	RIN	G NO. <u>B6</u>
DRIL	LRIC	j	Britton - Track mounte	d CME 55	HA	MN	1ER TY	'PE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description		USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
			SAND: Very pale brown grained, poorly graded, d	10YR 7/4), medium to fine amp to dry, medium dense		SP								
-25-	6-7 L	2	Yellow (10YR 7/6), medii graded, damp to dry, med	um to fine grained, poorly lium dense			8 17							
- 26-		1					24	22		2.7	97.1			
-27-			Boring terminated at 26½ No groundwater encount	ered.										
-28-														
-29-														
- 30 -														
-31-														
-32-														
-33-														
-34-														
-35-														
- 36-														
- 37-														
- 38-														
- 39-														
- 40-														
- 41-														
 - 42 -														
 - 43 -														
46-														
	n.	F	Pacific Crest	Log of Tes t Seaside Fire S Seaside, C	t Bor Statio	r ing n N rnia	gs lo. 2 a				F Pro D	igure oject ate: 3	e No No 3/1	o. 14 . 2302 0/23

LOG	GED	BY_	JP DATE DRILLED 1/18/23	BO	ORIN	G DIA	METE	R <u>8</u>	" HS		BOF	RING	G NO. <u>B7</u>
DRI	LL RIG	j	Britton - Track mounted CME 55	Н	IAMN	/ER TY	(PE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil Description		USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
	7-1		SILTY SAND: Brown (7.5YR 4/2), fine to very fine grained, poorly graded, rootlets throughout, mois	t, very	SM								
<u> </u>		2				1							
	7-2 T	1	Brown (7.5YR 5/4), medium to fine grained, poorly graded, dry, very loose	y		1 1 1	1		10.4	96.0			
<u> </u>						2	3		11.0				
 	7-3 L	2	Lack of rootlets, moist, loose			2 5 5	5		12.4	104.4	16.7		
 	7-4 T		SAND: Yellow (10YR 7/6), medium to fine grained poorly graded, dry, medium dense		SP	7 13 13	26		27				
	-												
	-												
	7-5		No sample recovered, medium dense			9							
						24	23						
	7-6 L		Dry, medium dense			14 25							
	7-7 T	1	Dry, medium dense			31 7	29		1.3	97.4			
<u> </u>						23	38		1.3				
		F	Boring terminated at 23 feet. No groundwater. Log of Te Seaside Fire Seaside Fire Seaside,	st B Stat Calif	ion N oring	1 gs Jo. 2 a	<u> </u>		<u>I</u>	F Pro D	igure oject ate: :	No No 3/1	o. 15 . 2302 0/23

LOG	GED	BY_	JP DATE DRILLED 1/18/23 B	ORIN	GDIA	METE	R <u>8</u>	" HS		BOF	RIN	G NO. <u>B8</u>
DRII	LRIC	, j	Britton - Track mounted CME 55	IAMN	/ER TY	/PE_A	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
			SILTY SAND: Dark brown (7.5YR 3/4), fine to very fine grained, poorly graded, rootlets throughout, moist, very	SM								
	8-1 L	2	loose		1 2			10.8	95.1			
 - 3 -	8-2 T	1	Brown (7.5YR 4/4), some rootlets, moist, very loose		2 1 1	2						
_ 4 _		Щ			3	4		10.1				
- 5 -	8-3 L	2	Slightly less silt, silt exhibits low plasticity, some rootlets, moist, very loose		1 2							
F	8-4	1	SAND: Brownish yellow (10YR 6/6), medium to fine	SP	6 9	4		12.2	100.3	15.6		
- / - - 8 -		Ш	grained, poorly graded, slightly damp to dry, medium dense		11 14	25		4.1				
 - 9 -												
 -10 -	8-5		Yellowish brown (10YR 5/8), slightly damp to dry,		14							
	L	2 1	medium dense		19 20	21		2.5	97.2			
-12-												
-13-												
-14 - 												
-15-	8-6 T	Π	Very pale brown (10YR 7/4), dry, medium dense		5 10							
		Ш			13	26		1.4				
 - 19 -												
 - 20 -	8-7		Slightly moist medium dense									
	L	2	Signity moist, medium dense		/ 15 36	26		1.6	96.0			
 - 22 -			Boring terminated at 21½ feet.			20		1.0	70.0			
-23-			······									
	1	F	Log of Test BSeaside Fire StatSeaside, Calif	oring ion N ornia	gs No. 2 a	<u>.</u>		1	F Pro	igure oject ate: 3	e No No 3/1	o. 16 . 2302 .0/23

LOG	GEDI	3Y_	JP DATE DRIL	LED_1/18/23	BORIN	NG DIA	METE	R <u>8</u>	" HS		BOF	RIN	G NO. <u>B9</u>
DRIL	L RIG		Britton - Track mounte	d CME 55	HAM	MER T	YPE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
- 1 -	0.4		SILTY SAND: Dark brown grained, poorly graded, w	n (7.5YR 3/3), fine to very fir vood pieces, rootlets throug	ne SM h-								
 - 2 -	9-1 L	2	out, moist, very loose			1							
 - 3 -	9-2	1	Decrease in rootlets, mo	ist, very loose		2	1		10.6	97.7			
						1	2		10.0				
 - 5 - 	9-3 L	2	Brown, moist to wet, ver	y loose		1 3							
	9-4	1	Very pale brown (10YR 8	/3), sand is medium to fine		5 8	4		3.6	95.6	17.2		
	-Т		grained and poorly grade	d, dry, medium dense		12 15	27		3.1		15.5		
 - 9 -													
	0.5		SAND: Yellowish brown	(10YR 5/8), grades to yellow	/ SP								
 -11-	L	2	grains, poorly graded, dry	, medium dense		16 26 31	19		3.6	100.7			
- 12 -										100.7			
-13-													
-14-													
15	9-6		Very pale brown (10YR 7	/4), medium to fine grained	,	4							
-16 -			poorly graded, dry, medit	Im dense		7 9	16		1.5				
-17-													
-18-													
-19 <i>-</i> 													
-20- 	9-7 L	2	Dry, medium dense			10							
- 21-		1				30	26		1.5	93.4	2.7		
-22- 													
-23-								<u> </u>					
	TL.	F	Pacific Crest	Log of Test Seaside Fire St Seaside, Ca	Borin ation	gs No. 2 a				F Pro D	igure oject ate: 3	≥ No No 3/1	o. 17 o. 2302 _0/23

LOG	GED	BY_	JP DATE DRIL	LED_1/18/23	BO	RIN	G DIAI	METER	R_8	" <u>HS</u>		BOF	RING	G NO. <u>B9</u>
DRIL	LRIC	〕	Britton - Track mounte	d CME 55	HA	MM	1ER TY	′ΡΕ <u>Αι</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description		USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
			SAND: Very pale brown grained, poorly graded, d	10YR 7/4), medium to fine ry, medium dense		SP								
 - 25 -	9-8		Drv. dense				6							
	T						13 21	33		1.4				
			Boring terminated at 26½ No groundwater encount	feet. ered.										
- 30-														
														-
 														-
- 35 -														
- 40-														
- 45 -														
_ · -														
	ñ.	F	Pacific Crest	Log of Tes t Seaside Fire S Seaside, C	t Bo i Static Califo	r ing on N rnia	gs lo. 2				F Pro D	igure oject ate: 3	e No No 3/1	o. 18 . 2302 0/23

LOG	GED	BY_	MJM DATE DRILLED	1/18/23	BORI	NG	GDIAN	METER	<u>8</u>	" <u>HS</u>		BOF	RING	G NO. <u>B10</u>
DRII	LL RIG		Britton - Track mounted CN	4E 55	HAM	1M	ER TY	ΈΕ <u>Αι</u>	uto-1	trip				
Depth (feet)	Sample	Sample Type	Soil Descr	iption	USCS		Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
 - 1 - 	10-1 L		SILTY SAND: Brown (7.5YR 4 grained, poorly graded, trace moist, very loose	/3), fine to very fine rootlets throughout,	SN	Л	1 2							
_ 2 _ _ 3 _ _ 3 _ _ 4 _	10-2 T	1	SAND: Yellowish brown (10Y grained, poorly graded, trace moist, very loose	R 5/6), medium to fine rootlets throughout,	SF	P	1 1 1 2	1 3		8.5 11.9				
_ 5 _ _ 5 _ _ 6 _	10-3 L	1	Lack of rootlets, moist, loose				2 5 6	6		13.1	104.9			
- 7 - - 8 - - 8 -														
- 9 - - 10 - - 11 -	10-4 L	2	Yellow (10YR 7/6), dry, mediu	ım dense		· · · · · · · · · · · · · · · · · · ·	8 14 16	16		2.6	97.3	3.0		
- 12 - - 12 - - 13 -							10	10						
- 14 - - 15 - - 15 - - 16 -	10-5 T		Dry, medium dense				5 7 9	16		3.2				
 - 17 - - 18 -						or on or or or		10		0.2				
- 19 - - 20 -	10-6 L	2	Dry, medium dense				7 17							
- 21- - 22- - 23-		1	Boring terminated at 21½ feet No groundwater encountered	· · · · · · · · · · · · · · · · · · ·			17	18		2.8	96.6			
		F	Pacific Crest	Log of Test Seaside Fire S Seaside, C	l t Borii itation aliforr	ng No nia	s 5. 2			I	F Pro D	igure oject ate: (E No No 3/1	b. 19 . 2302 0/23

LOG	GED	BY_	JP DATE DRILLED 1/18/23	BORIN	IG DIA	METE	R <u>8</u>	" HS		BOR	RIN	G NO. <u>B11</u>
DRI	LL RIG	i	Britton - Track mounted CME 55	HAM	VER T۱	PE_A	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
 - 1 -	11-1 L	2	SILTY SAND: Dark yellowish brown (10YR 3/4), fine t very fine grained, poorly graded, rootlets throughout, moist, loose	o SM	2							
- 2 -	11-2	1	Moist, loose		0 7 2	7		8.3	104.9			
 4 _					3 3	6		11.9				
_ 5 _ _ 5 _ _ 6 _	11-3 L	2	Yellowish brown (10YR 5/8), moist, loose		4 7 9	8		12.5	105.0	12.7		
- 7 -												
- 8 - 												
- 10 -	11-4		SAND: Very pale brown (10YR 7/4), medium to fine grained, poorly graded, dry, medium dense	SP	6							
- 11 - - 12 -		2			11 16	14		1.5	94.8			
- 13 -												
- 14 -												
-15 - -16 -	11-5 T		Slightly damp to dry, medium dense		5 7	17		4 5				
 - 17 -					9	10		1.5				
-18 -												
- 19 - - 20 -												
-21-	11-6 L	2	Yellow (10YR 7/6), medium to fine grained, poorly graded, damp to dry, medium dense		7 11 18	21		1.8	88.3	2.9		
-22 -22 		_	Boring terminated at 21½ feet. No groundwater encountered.									
-23-												
	M.	F	Log of Test ISeaside Fire StaSeaside, Cal	Borin ation N liforni	gs No. 2 a				F Pro D	igure oject ate: 3	e No No 3/1	o. 20 . 2302 .0/23

LOG	GED	BY_	JP DATE DRIL	LED <u>1/17/23</u> B	ORIN	G DIA	METE	R <u>8</u>	" HS		BOR	RING	G NO. <u>P1</u>
DRI	LL RIG	j	Britton - Track mounte	d CME 55 F	IAMN	/IER TY	/PE_A	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
 - 1 -	P1-1	2	SILTY SAND: Dark brown grained, poorly graded, to moist, loose	n (7.5YR 3/3), fine to very fine race rootlets throughout,	SM	2							
- 2 - - 3 -	P1-2 T	1	Moist, loose			4 2 2	4		9.4	100.5			
_ 4 _ 5 _ _ 5 _	P1-3		SAND: Yellowish brown grained, poorly graded, s dense	(10YR 5/4), medium to fine lightly damp to dry, medium	SP	2	4	a an an an an an	12.3				
- 6 - - 7 -		1	Poring terminated at 7 fo			20	14		4.9	99.9	14.4		
- 8 -			No groundwater encount	er. ered.									
- 10 -													
_ 11 _													
-12-													
-13-													
-14-													
-15-													
-16 - 													
- 21-													
- 22 -													
-23-													
		F	Pacific Crest	Log of Test B Seaside Fire Stat Seaside, Calit	oring ion N fornia	gs No. 2	<u>I</u>		1	F Pro D	igure oject ate: 3	≥ No No 3/1	o. 21 . 2302 0/23

LOG	GED	BY_	JP DATE DRIL	LED <u>1/18/23</u>	BORIN	G DIA	METE	R <u>8</u>	<u>" HS</u>		BOF	RIN	G NO. <u>P2</u>
DRI	LL RIG	, j	Britton - Track mounte	d CME 55	HAMN	/ER Tነ	(PE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
			SILTY SAND: Dark brown grained, poorly graded, to	n (7.5YR 3/4), fine to very fine race rootlets throughout,	e SM								
F -	P2-1 B		moist						10.2				
F -													
F -	P2-2 B		Moist						10.0				
E	P2-3		Moist						9.3		16.0		
E :	I B		Boring terminated at 5 fe No groundwater encount	et. ered.									
<u> </u>													
E -	-												
F -													
F -						0 00 00 00 00 00 00 00 00							
F -													
F -													
F -													
F -													
F -													
F -													
F -													
F -													
F -													
F -													
F -													
<u> </u>								 					
	The second	F	Pacific Crest	Log of Test I Seaside Fire Sta Seaside, Cal	Boring ation N lifornia	gs No. 2 a				F Pro D	igure oject ate: (≥ No No 3/1	o. 22 . 2302 0/23

LOG	GED	BY_	JP DATE DRIL	LED_1/18/23	BORIN	IG DIA	METE	R <u>8</u>	" HS		BOF	RIN	G NO. <u>P3</u>
DRI	LL RIG	j	Britton - Track mounte	d CME 55	HAM	MER T	YPE <u>A</u>	uto-	trip				
Depth (feet)	Sample	Sample Type	Soil D	Description	USCS	Field Blow Counts	SPT "N60" Value	Pocket Pen. (tsf)	Moisture Content (%)	Dry Density (pcf)	% Passing #200	Plasticity Index	Additional Lab Results
 _ 1 _ 	Р3-1 В	П	SILTY SAND: Dark brown grained, poorly graded, to moist	n (7.5YR 3/3), fine to very fin race rootlets throughout,	e SM				10.4				
_ 3 - _ 3 - _ 4 _			SAND: Brown (7.5YR 4/3 poorly graded, moist to w	3), medium to fine grained, vet	SP SP	_							
 _ 5 _ 6 _	P3-2 B								13.7		19.1		
			Boring terminated at 6 fee No groundwater encount	et. ered.									
- 8 -													
- 9 -													
-10-													
-11-													
-12-													
-13-													
-14-													
-15 -													
- 16 -													
- 17 -													
-18 -													
-19-													
20-													
21-													
-22-													
-23-													
		F	Pacific Crest	Log of Test Seaside Fire Sta Seaside, Ca	Borin Borin ation l liforni	gs No. 2 a	<u>I</u>		1	F Pro D	igure oject oate:	⊧ No 3/1	o. 23 . 2302 0/23

<5.5 Yellow ish Red Clayey SAND Potential for acid concrete and steel Soil Visual Description attack on Hd 2,000-5,000 1,000-2,000 ASTM D2216 Moisture At Test >5,000 0-1,000 mg/kg 7.2 % SM 2580B (Redox) mv ORP Ъ Sulfate Concentration Checked: P. Proj. No: 2302 Considerable Negligible Positive Severe Cal 643 6.9 R ASTM G57 Cal 422-mod. Cal 417-mod Cal 417-mod. 0.0013 Dry Wt. % Sulfate **Corrosivity Test Summary** mg/kg Dry Wt. 13 Ъ 300-1,500 > 1,500 0-300 mg/kg Tested By: mg/kg Chloride Dry Wt. 4 Chloride Concentration Resistivity @ 15.5 °C (Ohm-cm) As Rec. Minimum Saturated Positive Negligible Pacific Crest Engineerin, Project: Seaside firestation #2 Severe Cal 643 2/3/2023 8177 As Rec. ASTM G57 Date: 5,000-10,000 1,000-2,000 2,000-5,000 >10,000 0-1000 Ohm-cm Sample Location or ID Boring Sample, No. Depth, ft. PER 2-3-1 416-694 Mildly Corrosive Fairly Corrosive Very Corrosive Negligible Corrosive Resistivity Remarks: Client: CTL# ı

Page 49

Figure No. 24 Project No. 2302 Date: 3/10/22

Corrosivity Test Summary Seaside Fire Station No. 2 Seaside, California

Pacific Crest

The state The state Date: State Date: State Paper State Paper etter Realing Realing <th></th> <th>COPER</th> <th></th> <th>Corr</th> <th>osivity</th> <th>Test S</th> <th>ummai</th> <th>ح</th> <th></th> <th></th> <th></th> <th></th>		COPER		Corr	osivity	Test S	ummai	ح				
Similar Contraction Restarting of 10 minute Statistic of 10 minute Arrait Sol Valual Description Final Astronomic Daymin Daymin Daymin Daymin Daymin Sol Valual Description Final Astronomic Daymin Daymin Daymin Daymin Daymin Sol Valual Description Final Astronomic Daymin Daymin Daymin Daymin Daymin Daymin Final Astronomic Daymin Daymin Daymin Daymin Daymin Daymin Final Briting Daymin Daymin Daymin Daymin Daymin Daymin Final Daymin Daymin Daymin Daymin Daymin Daymin Daymin Final Daymin Daymin<	ient:	416-693 Pacific Crest Engineerin	Date: Project:	2/9/2023 Seaside fires	tation #2	Tested By:	P		Checked: Proj. No: 23	PJ		
Image: Sample (see) AT Res. Minimum Sample (see) AT Res. Minimum Sample (see) AT Res. Sol (see) AT Res.	narks: San	nple Location or ID	Resistiv	ity @ 15.5 °C (Ohm-cm)	Chloride	Sulf	ate	됩	ORP	Moisture	
i Issues	ring	Sample, No. Depth, ft.	As Rec.	Minimum	Saturated	mg/kg	mg/kg	%	-	(Redox)	AtTest	Soil Visual Description
ASTMOST Calets <						Dry Wt.	Dry Wt.	Dry Wt.		Nm	%	
611 · 1390 · 1390 · 0.004 6.3 · 0.6 Exemenantsation state recommentantsation state recommentantstate recommentantsatis at recommentantsat recommentantsat			ASTM G57	Cal 643	ASTM G57	Cal 422-mod.	Cal 417-mod.(Cal 417-mod.	Cal 643	SM 2580B	ASTMD2216	
Image: stand		8-1-1 -	-	13930	-	30	24	0.0024	5.3	-	0.5	Brow n SAND w / Silt, trace organics
Image: state of the state o												
Chance Consistence Consisten												
Image: section of the section of t											•	
Image: second												
Image: section of the section of t												
Image: section of the section of t												
Activity Consider able Considerable Cons												
Image: section of the section of t												
Image: sector												
Image: statistic constraint Image: statisticonstraint Image: statistic const												
Image: service station												
Selection Solution Solu							~					
esistivity ohm-om sulfate Concentration mg/kg v Corrosive 0-1000 severe >1,500 v Corrosive 0-1000 severe >5,000 v Corrosive 1,000-2,000 severe >5,000 v Corrosive 0,000-1,000 severe 0-1,000 v Corrosive 1,000-2,000 severe 0,000-5,000 v Corrosive 0,000-1,000 severe 0,000-2,000 v Corrosive 0,000-1,000 severe 0-1,000 v Corrosive 0,000 0,000 0,000-2,000 v Corrosive 0,000-1,000 severe 0,000 v Corrosive 0,000-1,000 severe 0,000 v Corrosive 0,000 0,000 0,000 Megligible 0-1,000 severe 0,00-2,000 Megligible 0-1,000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
esitivity ohm-om solutiate Concentration mg/kg Vorrosive 0-1000 severe >1,500 Vorrosive 0-1000 severe >1,500 Vorrosive 1000-2,000 positive 300-1,500 Vorrosive 2,000-5,000 positive 0-1,000 Vorrosive 5,000-10,000 positive 0-1,000 Vorrosive 0,000-2,000 positive 0-1,000 Vorrosive 0,000-2,000 positive 0-1,000 Vorrosive 0,000-2,000 positive positive Vorrosive<												
esistivity Ohm-cm v Corrosive 0-1000 v Corrosive 0-1000 v Corrosive 1,000-2,000 consider allo 0-300 v Corrosive 2,000-5,000 v Corrosive 2,000-5,000 v Corrosive 2,000-5,000 v Corrosive 0-10,000 v Corrosive 2,000-10,000 v Corrosive 0,01,000 v Corosive 0,01,000												
Activitie 0-1000 Considerable 0-1000 y Corrosive 0-1000 Severe >1500 y Corrosive 1000-2,000 Positive 300-1,500 Py Corrosive 2,000-5,000 Positive 1,000-2,000 Py Corrosive 5,000-10,000 Positive 1,000-2,000 Py Corrosive 0-1,000 Positive 0-1,000 Negligible 0-1,000 Positive 0-1,000 Regligible >10,000-2,000 Positive Positive Seaside Fire Stanmary Positive Positive Py Corrosive Positive Positive Positive Py Corrosive Positive Positive Positive Seaside Fire Station No. 2 Project No. 2 Project No. 2	acictiv.	, iii More		Chlorido		ma/ba] _	C. If a	Concentrati		04/Pa	
v Corrosive 0-1000 Severe >1,500 Potential for acid Potential for acid <5.5 Corrosive 1,000-2,000 Positive 300-1,500 Considerable 2,000-5,000 Pattack on attack on attack on attack on concrete and steel <5.5	VIDE CO		-		מוורכוורו מרוחו		Т	ound		-	115/N5	Цd
Corrosive 1,000-2,000 Positive 300-1,500 attack on attack on Positive <5.5 rly Corrosive 2,000-5,000 Negligible 0-300 Positive 1,000-2,000 attack on concrete and steel <5.5	ry Corr	osive 0-1000		Š	evere	>1,500	_		Severe	^	5,000	Potential for acid
Inv Corrosive 2,000-5,000 Negligible 0-300 Positive 1,000-2000 Idy Corrosive 5,000-10,000 Negligible 0-1,000 Concrete and steel Vegligible >10,000 Negligible 0-1,000 Concrete and steel Vegligible >10,000 Seaside Fire Station No. 2 Project No. 22	Corrosi	ve 1,000-2,000		Pc	sitive	300-1,5(00	0	considerable	2,0(00-5,000	attack on <5.
Ily Corrosive 5.000-10,000 Vegligible >10,000 Vegligible >10,000 Registrible Project No. 22 Seaside Fire Station No. 2 Project No. 22	-ly Cort	-osive 2,000-5,000		Ne	gligible	0-300			Positive	1,00	00-2,000	concrete and steel
vegligible >10,000 Aceditic Crest Corrosivity Test Summary Broject No. 22 Seaside Fire Station No. 2	Ily Cor	rosive 5,000-10,000					ľ		Negligible	0	-1,000	
acific Crest	Vegligit	ole >10,000										
acific Crest Corrosivity Test Summary Figure No. 2 Project No. 2		-										
acific Crest						rosivitv	Tect Su	mmarv				Figure No. 2
	G	tic Crest			Se	aside Fir	e Statior	No. 2				Project No. 23

Page 50

((C))	ŀ)]			ŀ	R		
ΤE	S	T	I	N	G	L	A	В	0	R	A	T	0	R	Y	

R-Value CTM 301

CTL Job No.	: 416-695		Boring:	R-1	Reduced By:	RU
Client	Pacific Crest Engine	eering	Sample:		Checked By:	PJ
Project Number	: 2302		Depth:		Date:	2/17/2023
Project Name	Seaside Firestation	#2 ND		R-V	alue	70
Remarks	:			Expa	nsion	0
S	Decimen Designation	Α	В	C		E
Compacto	or Foot Pressure (psi)	350	50	100		
Exu	dation Pressure (psi)	711	136	260		
	Exudation Load (lbf)	8935	1709	3267		
Height	After Compaction (in)	2.33	2.38	2.25		
Exp	ansion Pressure (psf)	0	0	0		
	Stabilometer @ 2000	28	28	27		
	Turns Displacement	4.24	4.84	4.24		
	R-value	74	71	74		
	Corrected R-Value	71	69	70		
	Moisture Content (%)	11.8	14.1	12.8		
		122.0	119.1	124.8		
	Dry Density (pcr)	109.1	104.3	110.0	hina Danaa	B) (alua
100					tion Pressure V	's R-value
				Exuda	tion Pressure v	s. Expansion
90				Pressi	ure	
80						800
70						700
60						600
50						500
40						400
30						300
20						200
10						100
0						0
0 100	200 300	400	500	600	700	800

CTL Job No.: 416-696 Boring: Reduced By. RU Project Number: 2302 Depth: Date: 2/21/2023 Project Number: Seaside Firestation #2 R-Value 66 Soil Description: Dark Brown Silty SAND R-Value 66 Remarks: Expansion Project Name: Seaside Firestation #2 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 200 50 350 E Exudation Load (lbf) 4034 2639 8206 E	CTL Job No.: 416-696 Boring: Reduced By: RU Client: Pacific Crest Engineering Inc. Sample: 2 Onecked By: PJ Project Number: 2302 Depth: Date: 2/21/20: Project Name: Seaside Firestation #2 R-Value 66 Soil Description: Dark Brown Sitty SAND Fxpansion 0 Remarks: Expansion Pressure 0 Soil Description: Dark Brown Sitty SAND 500 350 0 Exudation Pressure (psi) 200 50 350 0 0 Exudation Pressure (psi) 321 210 653 0 0 Exudation Load (bf) 4034 2.40 2.40 2.40 2.40 Expansion Pressure (psf) 0 0 0 0 0 Stabilometer @ 2000 30 46 28 0 0 R-value 70 56 73 0 0 0 0 0 0]	l C	R-Value CTM 30 ⁻) 1]
Client: Pacific Crest Engineering Inc. Sample: 2 Crecked by. PJ Project Number: 2302 Depth: Date: 2/21/2023 Project Name: Seaside Firestation #2 R-Value 66 Soill Description: Dark Brown Silty SAND B C D Remarks: Specimen Designation A B C D E Compactor Foot Pressure (psi) 200 50 350 E Exudation Pressure (psi) 221 210 653 E Exudation Load (bh) 4034 240 2639 8206 E Exudation Load (bh) 4034 240 E Exudation Pressure (psi) 0 0 0 Exudation Expansion Pressure (psi) 0 0 0 Exudation Pressure (psi) 0 0 0 0 0 0 0 0 0 </td <td>Client Pacific Crest Engineering Inc. Sample: 2 Checked By: PJ Project Number: 2302 Depth: Date: 2/21/20: Project Name: Seaside Firestation #2 R-Value 66 Soil Description: Dark Brown Silty SAND R-Value 66 Remarks: Expansion Pressure 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 321 210 653 Exudation Pressure (psi) 321 240 653 Exudation Pressure (psi) 321 240 66 66 60 Exudation Pressure (psi) 321 210 653 653 66 Height After Compaction (in 2.34 2.40 2.40 66 73 67 71 67 71 67 71 67 74 71 67 71 67 74 71 67 71 67 70 60 90 90 90 90</td> <td>CTL Job No.: 41</td> <td>6-696</td> <td></td> <td>Boring:</td> <td> </td> <td>Reduced By</td> <td>RU</td>	Client Pacific Crest Engineering Inc. Sample: 2 Checked By: PJ Project Number: 2302 Depth: Date: 2/21/20: Project Name: Seaside Firestation #2 R-Value 66 Soil Description: Dark Brown Silty SAND R-Value 66 Remarks: Expansion Pressure 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 321 210 653 Exudation Pressure (psi) 321 240 653 Exudation Pressure (psi) 321 240 66 66 60 Exudation Pressure (psi) 321 210 653 653 66 Height After Compaction (in 2.34 2.40 2.40 66 73 67 71 67 71 67 71 67 74 71 67 71 67 74 71 67 71 67 70 60 90 90 90 90	CTL Job No.: 41	6-696		Boring:		Reduced By	RU
Project Number: 2302 Depth: Date: 2/21/2023 Project Name: Seaide Firestation #2 R-Value 66 Soil Description: Dark Brown Silty SAND Pressure 0 Remarks: Expansion Pressure 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 321 210 653 66 Exudation Pressure (psi) 321 210 653 66 Exudation Pressure (psi) 321 210 653 66 Exudation Pressure (psi) 321 210 653 66 Height After Compaction (in) 2.34 2.40 2.40 2.40 Exudation Pressure (psi) 0 0 0 0 Stabilometer @ 2000 30 46 28 100 Corrected R-Value 70 56 73 100 Wet Density (pcf) 116.0 115.2 115.3 800 Pressure 800 90 90 600 90 600 90 600 90<	Project Number: 2302 Depth: Date: 2/21/20; Project Name: Seaside Firestation #2 R-Value 66 Soil Description: Dark Brown Silty SAND 0 0 Remarks: Expansion Pressure 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 200 50 350 - - Exudation Pressure (psi) 21 210 653 - - Exudation Load (lbf) 4034 2639 8206 - - Height After Compaction (in) 2.34 2.40 2.40 - - Stabilometer (@ 2000 30 46 28 - - Corrected R-Value 67 54 71 - - Moisture Content (%) 10.3 12.3 9.1 - - 90 Moisture Content (%) 116.0 115.2 115.3 - - 90 Exudation Pre	Client: Pa	cific Crest Engine	ering Inc.	Sample:	2	Checked By	PJ
Project Name: Seaide Firestation #2 R-Value 66 Soil Description: Dark Brown Silty SAND 0 0 Remarks: Expansion 0 Soil Description: Dark Brown Silty SAND 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 220 50 350 - - Exudation Dressure (psi) 221 210 653 - - Exudation Load (lbf) 4034 2639 8206 - - Exudation Load (lbf) 4034 2639 8206 - - Exudation Load (lbf) 4034 2639 8206 - - Expansion Pressure (psf) 0 0 0 - - - Stabilometer @ 2000 30 46 28 - - - - - - - - - - - - - - - - - <	Project Name: Seaside Firestation #2 R-Value 66 Soil Description: Dark Brown Silty SAND 0	Project Number: 23	02		Depth:		Date:	2/21/2023
Soli Description: Dark Brown Silty SAND Expansion Pressure 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 200 500 350	Soil Description: Dark Brown Silty SAND Expansion 0 Remarks: Pressure 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 200 50 350	Project Name: Se	aside Firestation	#2		R	-Value	66
Remarks: Expansion Pressure 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 200 50 350 Image: Specimen Designation A B C D E Compactor Foot Pressure (psi) 221 210 653 Image: Specimen Designation F Specimen Designati	Remarks: Pressure 0 Specimen Designation A B C D E Compactor Foot Pressure (psi) 200 50 350	Soil Description: Da	irk Brown Silty SA	ND		F ace		
Specimen Designation A B C D E Compactor Foot Pressure (psi) 321 210 653	Specimen Designation A B C D E Compactor Foot Pressure (psi) 200 50 350	Remarks:						0
Compactor Foot Pressure (psi) 200 50 350	Compactor Foot Pressure (psi) 200 50 350 2 2 Exudation Pressure (psi) 321 210 653 650 653 650 650 650 650 650 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600	Specir	men Designation	А	B	C		F
Exudation Pressure (psi) 321 210 653 Exudation Load (lbf) 4034 2639 8206 Height After Compaction (in) 2.34 2.40 2.40 Expansion Pressure (psf) 0 0 0 Stabilometer @ 2000 30 46 28 Turns Displacement 4.54 4.78 4.38 R-value 70 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 116.0 115.2 115.3 Dry Density (pcf) 116.0 115.2 15.3 00 Exudation Pressure vs. Expansion Pressure 800 70 60 600 500 400 400 400 30 40 400 400 400 400 400 400 300 400 400 400 400 400 400 400 400 400 400	Exudation Pressure (psi) 321 210 653 Exudation Load (lbf) 4034 2639 8206 Height After Compaction (in) 2.34 2.40 2.40 Expansion Pressure (psf) 0 0 0 Stabilometer @ 2000 30 46 28 Turns Displacement 4.54 4.78 4.38 R-value 70 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 116.0 115.2 115.3 100 Fexudation Pressure vs R-Value Exudation Pressure vs Expansic 90 Exudation Pressure vs R-Value Exudation Pressure vs Expansic 90 Exudation Pressure vs Expansic Pressure 90 Exudation Pressure vs Expansic 9.0 90	Compactor Fo	ot Pressure (psi)	200	50	350		
Exudation Load (lbf) 4034 2639 8206 Height After Compaction (in) 2.34 2.40 2.40 Expansion Pressure (psf) 0 0 0 Stabilometer @ 2000 30 46 28 Turns Displacement 4.54 4.78 4.38 R-value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 115.2 115.3 100 Fesudation Pressure vs. Expansion Pressure vs. R-Value 90 Exudation Pressure vs. Expansion Pressure vs. Expan	Exudation Load (bf) 4034 2639 8206 Height After Compaction (in) 2.34 2.40 2.40 Expansion Pressure (psf) 0 0 0 0 Stabilometer @ 2000 30 46 28	Exudation	on Pressure (psi)	321	210	653		
Height After Compaction (in) 2.34 2.40 2.40 Expansion Pressure (psf) 0 0 0 Stabilometer @ 2000 30 46 28 Turns Displacement 4.54 4.78 4.38 Corrected R-Value 67 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 115.2 115.3	Height After Compaction (in) 2.34 2.40 2.40 Expansion Pressure (psf) 0	Exu	dation Load (lbf)	4034	2639	8206		
Expansion Pressure (psf) 0 0 0 0 0 Stabilometer @ 2000 30 46 28	Expansion Pressure (psf) 0 <td>Height After</td> <td>Compaction (in)</td> <td>2.34</td> <td>2.40</td> <td>2.40</td> <td></td> <td></td>	Height After	Compaction (in)	2.34	2.40	2.40		
Stabilometer @ 2000 30 46 28 Turns Displacement 4.54 4.78 4.38 R-value 70 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 125.8 100 Wet Density (pcf) 116.0 115.2 115.3 100 Fxudation Pressure vs R-Value Exudation Pressure vs R-Value 90 Fxudation Pressure vs R-Value Exudation Pressure vs R-Value 90 Fressure 800 70 60 Fressure 800 70 60 Fressure 800 70 60 Fressure 800 70 60 Fressure 800 70 70 Fressure 800 70 70 Fressure 800 70 70 Fressure 700 700 70 Fressure 700 700 70 Fressure 700 700	Stabilometer @ 2000 30 46 28 Turns Displacement 4.54 4.78 4.38 R-value 70 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3	Expansio	on Pressure (psf)	0	0	0		
Turns Displacement 4.54 4.78 4.38 R-value 70 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 Image: Content (%) 0.0 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 Image: Content (%) 0.0 127.9 129.3 125.8 Image: Content (%) 0 116.0 115.2 115.3 Image: Content (%) 0 127.9 129.3 125.8 Image: Content (%) 0 116.0 115.2 115.3 Image: Content (%) 0 0 0 0 0 Image: Content (%) 0 0 0 0 0 0 Image: Content (%) 0 0 0 0 0 0 0 <td>Turns Displacement 4.54 4.78 4.38 R-value 70 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 100 Fexudation Pressure vs R-Value Fexudation Pressure vs R-Value 90 Fexudation Pressure vs R-Value Fersure 90 Fersure Fersure 800 70 Fersure Fersure 800 70 Fersure 600 600 50 Fersure 600 600 600 50 Fersure 600 600 600 600 700 600 700</td> <td>Stabi</td> <td>lometer @ 2000</td> <td>30</td> <td>46</td> <td>28</td> <td></td> <td></td>	Turns Displacement 4.54 4.78 4.38 R-value 70 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 100 Fexudation Pressure vs R-Value Fexudation Pressure vs R-Value 90 Fexudation Pressure vs R-Value Fersure 90 Fersure Fersure 800 70 Fersure Fersure 800 70 Fersure 600 600 50 Fersure 600 600 600 50 Fersure 600 600 600 600 700 600 700	Stabi	lometer @ 2000	30	46	28		
K-Value 70 56 73 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 10 Image: Content (%) 10.0 115.2 115.3 10 Image: Content (%) 116.0 115.2 115.3 10 Image: Content (%) 116.0 115.2 115.3 10 Image: Content (%) Image: Content (%) 116.0 115.2 10 Image: Content (%) Image: Content (%) Image: Content (%) Image: Content (%) 90 Image: Content (%) Image: Content (%) Image: Content (%) Image: Content (%) 80 Image: Content (%) 90 Image: Content (%) 90 Image: Content (%)	R-value /0 56 /3 Corrected R-Value 67 54 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 00 Exudation Pressure vs R-Value Exudation Pressure vs. Expansic 90 Exudation Pressure vs. Expansic Pressure 80 Fressure 800 600 70 Fressure 600 600 600 90 Fressure 700 600 600 600 600 90 Fressure Fressure 700 600 700 <	Tur	ns Displacement	4.54	4.78	4.38		
Noisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 00 • Exudation Pressure vs. Expansion 90 • Exudation Pressure vs. Expansion 91 • Exudation Pressure vs. Expansion 92 • Exudation Pressure vs. Expansion 93 • Exudation Pressure vs. Expansion 94 • Exudation Pressure vs. Expansion 95 • Exudation Pressure vs. Expansion 96 • Exudation Pressure vs. Expansion 90 • Exudation Pressure vs. Expansion 91 • Exudation Pressure vs. Expansion 92 • Exudation Pressure vs. Expansion 93 <td>Corrected R-Value 67 34 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 100 Exudation Pressure vs R-Value Exudation Pressure vs. Expansic 90 Exudation Pressure vs. Expansic Pressure 80 Fissure 800 70 Fissure 600 60 Fissure 500 40 Fissure 500 40 Fissure Fissure 70 Fissure Fissure</td> <td></td> <td>R-value</td> <td>/0</td> <td>56</td> <td>73</td> <td></td> <td></td>	Corrected R-Value 67 34 71 Moisture Content (%) 10.3 12.3 9.1 Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 100 Exudation Pressure vs R-Value Exudation Pressure vs. Expansic 90 Exudation Pressure vs. Expansic Pressure 80 Fissure 800 70 Fissure 600 60 Fissure 500 40 Fissure 500 40 Fissure Fissure 70 Fissure Fissure		R-value	/0	56	73		
Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 00	Wet Density (pcf) 127.9 129.3 125.8 Dry Density (pcf) 116.0 115.2 115.3 100 •Exudation Pressure vs R-Value •Exudation Pressure vs. Expansic 90 •Exudation Pressure vs. Expansic •Pressure 80 •Fressure •Route •Route 70 •Fressure •Route •Route •Route 60 •Gradue •Gradue •Gradue •Gradue •Gradue 70 •Gradue •Gradue •Gradue •Gradue •Gradue •Gradue 100 •Gradue <	Mai	offected R-value	10.2	04 12.2	0.1		
Dry Density (pcf) 121.0 120.0 120.0 Dry Density (pcf) 116.0 115.2 115.3 0 Exudation Pressure vs R-Value Exudation Pressure vs. Expansion 90 Exudation Pressure vs. Expansion Pressure 80 Fressure 800 70 Fressure 600 60 Fressure 500 40 Fressure 400 30 Jone Jone Jone 10 Fressure Jone Jone	Image: Non-state of the state of t		Net Density (ncf)	127.9	12.3	125.8	1	
Exulation Pressure vs R-Value Exulation Pressure vs R-Value Exulation Pressure vs. Expansion Pressure 80 70 60<	100 90 90 90 90 90 90 90 90 90		Dry Density (pcf)	116.0	115.2	115.3	/	
	0 400 200 200 400 500 500 700 700	90 90 80 90 70 90 60 90 50 90 40 90 30 90 10 90 0 90					udation Pressure essure	vs. Expansion 800 600 600 500 400 300 200 100 0

APPENDIX B

Infiltration Test Results

SHALLOW QUICK INFILTROMETER TEST Native Soil Assessment for Small Infiltration Based Stormwater Control Measures

			Tes	t Information			
Test No.:	P-1	Test Date:	2/1/2023	Test By:	JP	Job No.:	2302
Location of T	Test:	P-1, NW area	of site near	proposed traini	ng tower	•	
			Soi	l Information			
% Gravel	0.0	% Sand	85.6	% Silt	14.4	% Clay	-
USCS Descr	iption:	Silty	Sand	USCS Classifi	cation:		SM
		•	Test Config	guration & Co	onstants	•	
Existing Surf	face Elevati	on (ft.)	170.0	Boring Depth	from Top of Pi	ipe (ft.)	7.6
Bioswale Inv	ert Elevatio	on (ft.)	-	Diameter of P	erforated Pipe	(in.)	3.75
Bottom of Bo	oring Elevai	tion (ft.)	163.4	Diameter of T	est Boring (in.))	8.0
Boring Depti	h (ft.)		6.6	Cross-Section	Area of Boring	$g(in^2)$	50.2
			Constant H	lead Infiltration	on Data		
			Interval		Initial Fill		
Inter	val	Actual Time	Time	Water Head	Volume	Final Fill	Inflitration
		(hr:min)	(min)	(<i>in</i>)	(in^3)	Volume (in [°])	Volume (in [°])
0	Start	12:36 PM	20	24.0	054.1	001.0	
0	End	1:06 PM	30	24.0	254.1	981.8	2.2
			Inf	iltration Data		•	
		A stual Time	Interval	Flow Re	eadings	Infiltration	Infiltuation Data
Inter	val	Actual Time	Time	Water Elev.	Change in	V_{0} $(in 3)$	<i>in/hr</i>)
		(m.mm)	(min)	(in)	Elev (in)	volume (in)	(11/11/)
	Start	1:06 PM	10.00	24.00	1 75	14.0	0.84
	End	1:16 PM	10.00	22.25	1.75	14.0	0.04
	Start	1:16 PM	10.00	22.25	2.00	16.0	1.03
	End	1:26 PM	10.00	20.25	2.00	10.0	1.05
	Start	1:26 PM	10.00	20.25	2.00	16.0	1 13
	End	1:37 PM	10.00	18.25	2.00	10.0	1.15
1	Start	1:37 PM	15.00	18.25	1.75	14.0	0.72
-	End	1:52 PM	15.00	16.50	1.75	1.1.0	0.72
	Start	1:52 PM	15.00	16.50	1.75	14.0	0.79
	End	2:07 PM		14.75		1	
	Start	2:07 PM	30.00	14.75	3.25	26.0	0.86
	End	2:37 PM		11.50			
	Start	2:37 PM	30.00	11.50	2.25	18.0	0.73
	End	3:07 PM		9.25	-		
T C1	T /• H	、 、		est Results	C1	T 7 (* 14 N	
Infiltration R	late, I _t (in/h	r):	0.8	Factored Ir	ntiltration Rate	$K_{\rm m}$ (${\rm In/hr}$):	0.4

SHALLOW QUICK INFILTROMETER TEST Native Soil Assessment for Small Infiltration Based Stormwater Control Measures

			Test I	nformation			
Test No.:	P-2	Test Date:	2/2/2023	Test By:	JP	Job No.:	2302
Location of 2	Test:	P-2, South-cer	nter area of s	ite near prop	posed bioswal	e	
			Soil I	nformation			
% Gravel	0.0	% Sand	84.0	% Silt	16.0	% Clay	-
USCS Descr	iption:	Silty	Sand	USCS Clas	sification:	SN	1
		Т	est Configu	ration & Co	nstants		
Existing Surj	face Elevati	on (ft.)	173.0	Boring Dep	oth from Top	of Pipe (ft.)	6.92
Bioswale Inv	vert Elevatio	on (ft.)	-	Diameter o	f Perforated	Pipe (in.)	3.75
Bottom of Bo	oring Elevat	tion (ft.)	167.3	Diameter o	of Test Boring	(in.)	8.0
Boring Dept	h (ft.)		5.8	Cross-Sect	ion Area of B	oring (in 2)	50.2
		С	onstant Hea	d Infiltratio	on Data		•
Inter	val	Actual Time (hr:min)	Interval Time (min)	Water Head (in)	Initial Fill Volume (in ³)	Final Fill Volume (in ³)	Infiltration Volume (in ³)
0	Start	8:50 AM	30	24.0	288.8	1443.8	3.5
0	End	9:20 AM	50	24.0	200.0	1445.0	5.5
		•	Infilt	ation Data		-	
			Interval	Flow I	Readings		
Inter	<i>val</i>	Actual Time (hr:min)	Time (min)	Water Elev. (in)	Change in Elev (in)	Infiltration Volume (in ³)	Infiltration Rate (in/hr)
	Start End	9:20 AM 9:30 AM	10.00	24.00 18.25	5.75	46.0	2.98
	Start End	9:30 AM 9:40 AM	10.00	18.25 12.50	5.75	46.0	3.97
1	Start End	9:40 AM 9:50 AM	10.00	12.50 8.50	4.00	32.0	3.84
	Start End	9:50 AM 10:00 AM	10.00	8.50 4.75	3.75	30.0	5.22
	Start End	10:00 AM 10:20 AM	20.00	4.75 22.00	6.75	54.0	2.63
	Start End	10:20 AM 10:40 AM	20.00	22.00 14.50	7.50	60.0	2.22
2	Start End	10:40 AM 11:00 AM	20.00	14.50 6.75	7.75	62.0	3.68
	Start End	11:00 AM 11:20 AM	20.00	6.75 23.50	7.25	58.0	2.54
			Tes	t Results	-		
Infiltration F	Rate, I _t (in/h	r):	1.9	Factored	Infiltration R	ate, K _m (in/hr):	0.9

SHALLOW QUICK INFILTROMETER TEST Native Soil Assessment for Small Infiltration Based Stormwater Control Measures

			Tes	t Informatio	on		
Test No.:	P-3	Test Date:	2/2/2023	Test By:	JP	Job No.:	22141
Location of	Test:	P-3, SW of s	ite near prop	osed bioswa	le		
		-	Soil	Informatio)n		
% Gravel	0.0	% Sand	80.9	% Silt	19.1	% Clay	-
USCS Desc	ription:	Silty	Sand	USCS Clas	sification:	SM	
			Test Config	uration &	Constants		
Existing Su	rface Eleva	tion (ft.)	165.0	Boring Dep	oth from Top oj	f Pipe (ft.)	6.0
Bioswale In	wert Elevati	ion (ft.)	-	Diameter o	f Perforated P	ipe (in.)	3.75
Bottom of E	Boring Eleve	ation (ft.)	160.2	Diameter o	f Test Boring ((in.)	8.0
Boring Dep	oth (ft.)		4.8	Cross-Sect	ion Area of Boi	ring (in 2)	50.2
			Constant H	ead Infiltra	tion Data		
Inte	rval	Actual Time (hr:min)	Interval Time (min)	Water Head (in)	Initial Fill Volume (in ³)	Final Fill Volume (in ³)	Infiltration Volume (in ³)
0	Start	9:24 AM	30	24.5	277.2	981.8	2.1
	End	9:54 AM	T 0				
			Inti	Itration Da	ta Develinen		
Inte	rval	Actual Time (hr:min)	Interval Time (min)	Water Elev. (in)	Change in Elev (in)	Infiltration Volume (in ³)	Infiltration Rate (in/hr)
	Start End	9:54 AM 10:04 AM	10.00	24.00 22.00	2.00	16.0	0.96
	Start End	10:04 AM 10:14 AM	10.00	22.00 20.00	2.00	16.0	1.04
1	Start End	10:14 AM 10:24 AM	10.00	20.00 19.25	0.75	6.0	0.42
1	Start End	10:24 AM 10:54 AM	30.00	19.25 17.50	1.75	14.0	0.34
	Start End	10:54 AM 11:24 AM	30.00	17.50 15.50	2.00	16.0	0.43
	Start End	11:24 AM 11:54 AM	30.00	15.50 13.50	2.00	16.0	0.48
Infiltertion	Data I (in /	- <i>u</i>).	0.2	Est Kesults	d Infilture : D	ata V (in /ha)	0.1
Infiltration	$\kappa ate, I_t (in/l)$	nr):	0.3	Factore	u inflitration R	are, $\kappa_{\rm m}$ (in/hr):	0.1

APPENDIX C

Seismically Induced Settlement Calculations

SPT BASED LIQUEFACTION ANALYSIS REPORT

Project title : Seaside Fire Station No. 2

SPT Name: Site Model

Location : Seaside, California

:: Input parameters and analysis properties ::

in input parameters a	ind dialysis properties in		
Analysis method:	NCEER 1998	G.W.T. (in-situ):	70.00 ft
Fines correction method:	NCEER 1998	G.W.T. (earthq.):	70.00 ft
Sampling method:	Standard Sampler	Earthquake magnitude M _w :	7.10
Borehole diameter:	200mm	Peak ground acceleration:	0.58 g
Rod length:	3.00 ft	Eq. external load:	0.00 tsf
Hammer energy ratio:	1.00		

Page 61

Project File: C:(Users(Cjohnson/Pacific Crest Engineering, Inc)2023 - Documents/PF/2302 - Seaside Fire Station No. 2/Engineering/Dry Sand Settlement/Seaside Fire Station (Using Model). Isos

Page 62

:: Field input data ::

Test Depth (ft)	SPT Field Value (blows)	Fines Content (%)	Unit Weight (pcf)	Infl. Thickness (ft)	Can Liquefy	
2.50	4	13.00	111.00	5.00	Yes	
10.00	11	15.00	113.00	10.00	No	
20.00	20	3.00	97.00	10.00	Yes	
35.00	33	3.00	97.00	25.00	Yes	

Abbreviations

Depth: De	epth at which test was performed (ft)
SPT Field Value: Nu	umber of blows per foot
Fines Content: Fir	nes content at test depth (%)
Unit Weight: Ur	nit weight at test depth (pcf)
Infl. Thickness: Th	hickness of the soil layer to be considered in settlements analysis (ft)
Can Liquefy: Us	ser defined switch for excluding/including test depth from the analysis procedure

:: Cyclic Resistance Ratio (CRR) calculation data ::

Depth (ft)	SPT Field Value	Unit Weight (pcf)	σ, (tsf)	u₀ (tsf)	σ' _{vo} (tsf)	C _N	CE	Св	C _R	Cs	(N1)60	Fines Content (%)	a	β	(N1)60cs	CRR _{7.5}
2.50	4	111.00	0.14	0.00	0.14	1.70	1.00	1.15	0.75	1.00	6	13.00	1.89	1.04	8	4.000
10.00	11	113.00	0.56	0.00	0.56	1.37	1.00	1.15	0.75	1.00	13	15.00	2.50	1.05	16	4.000
20.00	20	97.00	1.05	0.00	1.05	1.01	1.00	1.15	0.95	1.00	22	3.00	0.00	1.00	22	4.000
35.00	33	97.00	1.77	0.00	1.77	0.77	1.00	1.15	1.00	1.00	29	3.00	0.00	1.00	29	4.000

Abbreviations

- Total stress during SPT test (tsf) σ_v :
- Water pore pressure during SPT test (tsf) u_o:
- Effective overburden pressure during SPT test (tsf) Overburden corretion factor σ'_{vo}:
- C_N:
- C_E: Energy correction factor
- Borehole diameter correction factor C_B:
- C_R: Rod length correction factor
- Cs: Liner correction factor
- Corrected $N_{\mbox{\scriptsize SPT}}$ to a 60% energy ratio N₁₍₆₀₎:
- α, β: Clean sand equivalent clean sand formula coefficients
- $N_{1(60)cs}{:}$ Corected $N_{1(60)}$ value for fines content
- CRR_{7.5}: Cyclic resistance ratio for M=7.5

:: Cyclic	Stress Ratio	o calculat	ion (CSF	tully ad و	justed	and nor	malized))::						
Depth (ft)	Unit Weight (pcf)	σ _{v,eq} (tsf)	u _{o,eq} (tsf)	σ' _{vo,eq} (tsf)	r _d	a	CSR	MSF	CSR _{eq,M=7.5}	K sigma	CSR*	FS		
2,50	111.00	0.14	0.00	0.14	1.00	1.00	0.376	1.15	0.327	1.00	0.327	2,000	•	
10.00	113.00	0.56	0.00	0.56	0.98	1.00	0.369	1.15	0.321	1.00	0.321	2.000	•	
20.00	97.00	1.05	0.00	1.05	0.96	1.00	0.361	1.15	0.314	1.00	0.314	2.000	•	
35.00	97.00	1.77	0.00	1.77	0.89	1.00	0.336	1.15	0.292	0.90	0.324	2.000	•	

Abbreviations

$\sigma_{v,eq}$:	Total overburden pressure at test point, during earthquake (tsf)
U _{o,eq} :	Water pressure at test point, during earthquake (tsf)
σ' _{vo,eq} :	Effective overburden pressure, during earthquake (tsf)
r _d :	Nonlinear shear mass factor
a:	Improvement factor due to stone columns
CSR :	Cyclic Stress Ratio (adjusted for improvement)
MSF :	Magnitude Scaling Factor
CSR _{eq,M=7.5} :	CSR adjusted for M=7.5
K _{sigma} :	Effective overburden stress factor
CSR*:	CSR fully adjusted (user FS applied)***
FS:	Calculated factor of safety against soil liquefaction

*** User FS: 1.00

LiqSVs 1.3.3.1 - SPT & Vs Liquefaction Assessment Software

Page: 3

Project File: C:\Users\Cjohnson\Pacific Crest Engineering, Inc\2023 - Documents\PF\2302 - Seaside Fire Station No. 2\Engineering\Dry Sand Settlement\Seaside Fire Station (I Page 63

:: Lique	faction p	otential	accordir	ng to Iwasaki	::
Depth (ft)	FS	F	wz	Thickness (ft)	IL
2.50	2.000	0.00	9.62	7.50	0.00
10.00	2.000	0.00	8.48	7.50	0.00
20.00	2.000	0.00	6.95	10.00	0.00
35.00	2.000	0.00	4.67	15.00	0.00

Overall potential IL: 0.00

 $I_L = 0.00$ - No liquefaction

 I_L between 0.00 and 5 - Liquefaction not probable I_L between 5 and 15 - Liquefaction probable

 I_{L} > 15 - Liquefaction certain

:: Vertic	al settle	ments	estimat	ion for dr	y sand	s ::							
Depth (ft)	(N1)60	Tav	р	G _{max} (tsf)	a	b	Y	£ 15	Nc	ε _{Νc} (%)	∆h (ft)	∆S (in)	
2.50	6	0.05	0.09	272.58	0.13	20933.42	0.00	0.00	11.65	0.37	5.00	0.440	
10.00	13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.00	0.000	
20.00	22	0.38	0.70	1049.29	0.16	6224.26	0.00	0.00	11.65	0.06	10.00	0.151	
35.00	29	0.60	1.19	1497.65	0.19	4535.87	0.00	0.00	11.65	0.04	25.00	0.249	

Cumulative settlemetns: 0.839

Abbreviations

- Tav: Average cyclic shear stress
- Average stress p:
- G_{max}: Maximum shear modulus (tsf)
- a, b: Shear strain formula variables
- Average shear strain γ:
- Volumetric strain after 15 cycles ε15:
- N_c: Number of cycles
- Volumetric strain for number of cycles N_c (%) ε_{Nc}:
- Thickness of soil layer (in) Δh:
- ΔS: Settlement of soil layer (in)

:: Latera	al displa	cements	s estima	ation for	saturate	d sands
Depth (ft)	(N1)60	D _r (%)	Υ ^{max} (%)	d _z (ft)	LDI	LD (ft)
2.50	6	34.29	0.00	5.00	0.000	0.00
10.00	13	50.48	0.00	10.00	0.000	0.00
20.00	22	65.67	0.00	10.00	0.000	0.00
35.00	29	75.39	0.00	25.00	0.000	0.00

Cumulative lateral displacements: 0.00

Abbreviations

D_r: Relative density (%)

Maximum amplitude of cyclic shear strain (%) γ_{max}:

dz: Soil layer thickness (ft)

LDI: Lateral displacement index (ft)

LD: Actual estimated displacement (ft)

Project File: C:\Users\Cjohnson\Pacific Crest Engineering, Inc\2023 - Documents\PF\2302 - Seaside Fire Station No. 2\Engineering\Dry Sand Settlement\Seaside Fire Station (I Page 64

References

- Ronald D. Andrus, Hossein Hayati, Nisha P. Mohanan, 2009. Correcting Liquefaction Resistance for Aged Sands Using Measured to Estimated Velocity Ratio, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 6, June 1
- Boulanger, R.W. and Idriss, I. M., 2014. CPT AND SPT BASED LIQUEFACTION TRIGGERING PROCEDURES. DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT DAVIS
- Dipl.-Ing. Heinz J. Priebe, Vibro Replacement to Prevent Earthquake Induced Liquefaction, Proceedings of the Geotechnique-Colloquium at Darmstadt, Germany, on March 19th, 1998 (also published in Ground Engineering, September 1998), Technical paper 12-57E
- Robertson, P.K. and Cabal, K.L., 2007, Guide to Cone Penetration Testing for Geotechnical Engineering. Available at no cost at http://www.geologismiki.gr/
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J., Liao, S., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R., and Stokoe, K.H., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 127, October, pp 817-833
- Zhang, G., Robertson. P.K., Brachman, R., 2002, Estimating Liquefaction Induced Ground Settlements from the CPT, Canadian Geotechnical Journal, 39: pp 1168-1180
- Zhang, G., Robertson. P.K., Brachman, R., 2004, Estimating Liquefaction Induced Lateral Displacements using the SPT and CPT, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 130, No. 8, 861-871
- Pradel, D., 1998, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 124, No. 4, 364-368
- R. Kayen, R. E. S. Moss, E. M. Thompson, R. B. Seed, K. O. Cetin, A. Der Kiureghian, Y. Tanaka, K. Tokimatsu, 2013. Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 3, March 1