Preliminary

Hydrology and Hydraulics Report The Magnet

SEC of State Street and Ramona Expressway

January 23, 2024

This Hydraulic Study has been prepared by, and under the direction of, the undersigned, a duly Registered Civil Engineer in the State of California. Except as noted, the undersigned attests to the technical information contained herein, and has judged to be acceptable the qualifications of any technical specialists providing engineering data for this report, upon which findings, conclusions, and recommendations are based.

Daniela Malott, P.E.

Registered Civil Engineer No. C586581

Exp.: 03/31/2025

Prepared for:

Rich Development

600 N. Tustin Avenue, Suite 150 Santa Ana, CA 92705 (714) 835-3311

Company

Prepared by:

Tait & Associates, Inc.

701 N. Parkcenter Drive Santa Ana, CA 92705 (714) 560-8200

Table of Contents

Section	1 Introduction and Background	1
1.1	Project Description	1
Section	2 Hydrology and Hydraulics Design Criteria, Methodology, and Analysis	2
2.1	Hydrology Design Criteria and Methodology	2
2.2	Hydraulics Design Criteria and Methodology	3
Section	3 Hydrology Study	4
3.1	Onsite Existing Condition Hydrology Analysis	4
3.2	Onsite Proposed Condition Hydrology Analysis	4
3.3	Offsite Hydrology Study	5
3.3	3.1 Offsite Study Background and Purpose	5
3.3	3.2 Master Plan Line H	5
3.3	3.3 Master Plan Line H-1	6
3.3	3.4 Master Plan Line H-2	6
3.3	3.5 Master Plan Line H-3	6
Section	4 Hydraulics Study	7
4.1	Master Plan Line H-2 Hydraulic Study	7
4.2	Master Plan Line H-3 Hydraulic Study	7
Section	5 Summary of Results and Conclusions	8
5.1	Onsite Study	8
5.2	Offsite Study	8
5.3	Conclusions	8
TECHNI	CAL APPENDIX	9
Appe	endix A – NOAA Precipitation Data	A
Арре	endix B – USGS Soil Survey	B
Арре	endix C – Downstream Receiving Waters Maps	C
Арре	endix D – Existing Onsite Hydrology Map and Rational Method	D
Арре	endix E – Proposed Onsite Hydrology Map and Rational Method	E
Appe	endix F – Offsite Storm Facility Exhibit	F
Арре	endix G – Offsite Hydrology Map and Rational Method	G
Anno	andix H _ WSDG Calculations and Profiles	ш

Section 1 Introduction and Background

The Rich Development Company has retained Tait & Associates (Tait) to prepare the drainage design for the Magnet development. The Magnet development is approximately 14.4 acres and it is located in the City of San Jacinto (City), California at the southeast corner of State Street and Romana Expressway. The proposed project Vicinity Map is provided in Figure 1 below. The Hydrology & Hydraulics Report studies the existing and proposed condition drainage system and patterns. This study follows the requirements of the Riverside County Flood Control and Water Conservation District (RCFCWD) and the Riverside County Hydrology Manual (RCHM), dated 1978 and was prepared for the 10- and 100-year storm events for both the existing and proposed condition. The following sections include the general project characteristics, the drainage design, criteria and methodology.

1.1 Project Description

The Magnet development is proposed for commercial uses. The project will develop a total of 14.4 acres that will include 13 new commercial buildings, paved parking areas, and landscape planter areas along with all associated improvements such as gas, electric, and water utilities. Immediately west of the project is State Street, on the east side is Eagle Drive, on the north side is Ramona Expressway and on the south side the project is bound by undeveloped land.

Figure 1 – Vicinity Map (Not To Scale)

Section 2 Hydrology and Hydraulics Design Criteria, Methodology, and Analysis

2.1 Hydrology Design Criteria and Methodology

The RCHM uses the Rational Method to determine the runoff flow for watershed areas that are less than 300 acres in size. The Synthetic Unit Hydrograph is used for watershed areas larger than 300 to 500 acres. The Rational Method is based on the equation $Q = C \times I \times A$

where:

Q = peak discharge (cfs)

C = runoff coefficient representing the ratio of runoff to rainfall

I = the time-averaged rainfall intensity in inches per hour corresponding to the time of concentration (in/hr)

A = drainage area (acres).

The runoff coefficient is determined from the soil characteristics and the land use types. The time of concentration is the time it takes for the entire watershed to contribute runoff to the concentration point, and it is determined based on the longest flow path. The total drainage area for the site is 14.51 acres, thus only the Rational Method analysis was required. The precipitation depth and intensity was determined per NOAA Atlas 14 is provided in Appendix A. The Rational Method was prepared using the Advance Engineering Software (AES) RATSCX software which is approved by Riverside County for the Rational Method.

In addition to the onsite hydrology analyses, an offsite study was conducted that analyzed the existing Master Plan of the Public Drainage facilities that surround the site. The offsite hydrology analysis consists of a total of 204 acres, thus only the Rational Method analysis is required. The precipitation depth and intensity was determined per NOAA Atlas 14 for the offsite hydrology study.

Per the USDA Natural Resources Conservation Service Soil Survey (USDA NRCS), published in 2006, the project site is located within the hydrology soil group of D. Group D Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist of clays that have a high shrink-swell potential, soils that have a high-water table, soils that have a clay layer at or near the surface. The project site location is shown on the USDA Soil Resource map, included in Appendix B.

2.2 Hydraulics Design Criteria and Methodology

The Water Surface Pressure Gradient (WSPGW) software developed by the Los Angeles County Flood Control District and approved by the County of Riverside was used to calculate the Hydraulic Grade Line (HGL) for the offsite drainage facilities. The WSPG software uses the Bernoulli equation to calculate the HGL for each storm drain line utilizing the flow and the boundary conditions. Boundary conditions were set at the downstream end of the study based on the as-builts for Storm Drain Line H; refer to Section 3 for further information. HGL calculations were conducted to reflect the flows produced from the 10- and 100-year storm events. The storm drain sizing and design was based on an HGL that lies 2-feet below ground surface for the 10-year storm event.

Section 3 Hydrology Study

The following sections present the hydrologic analysis of the project site in the existing and proposed condition as well as the findings of the offsite hydrology study in the existing condition.

3.1 Onsite Existing Condition Hydrology Analysis

The project site is located within Zone 4 of the RCFCD drainage system (Riverside County Flood Control District). The project discharges to county storm drain Line H which discharges to an open channel that runs from Ramona Expressway and discharges to San Jacinto River. San Jacinto River conveys flows to Canyon Lake and then to Lake Elsinore. Lake Elsinore discharges to Temescal Creek which connects to Prado Basin, then to Santa Ana River and ultimately discharges to the Pacific Ocean. See Appendix C for Watershed and Downstream Tributary Maps. The topography of the project site is relatively flat with slopes varying from 0.1 %to 0.6%. Site elevations range from 1520-1528 feet above Mean Sea Level. The existing site is a vacant lot of barren dirt with two existing concrete driveways along Ramona Expressway.

The runoff produced in the existing condition sheet flows from the southeast corner of the site to the northwest corner of the site and discharges onto Ramona Expressway where it is captured by an existing catch basin that conveys the flows to an open channel via an underground 4'x8' reinforced concrete box (RCB). Flows from the vacant lot to the south of the project also run on to the site location. However, these flows are neglected in the existing condition analysis as they will be diverted away from the site in the proposed condition. Thus, the overall onsite hydrologic analysis will compare the flows generated from the same acreage of land from existing to proposed condition. The Existing Onsite Hydrology Map is provided in Appendix D and it depicts drainage subareas, elevations, flow lengths and slopes used for the hydrology calculations. The existing condition 10- and 100-year storm events Rational Method Analysis results are also included in Appendix D.

3.2 Onsite Proposed Condition Hydrology Analysis

The proposed site will mimic existing drainage patterns with flow going from the southeast corner to the northwest corner of the site. Runoff will sheet flow to a proposed storm drain system that discharges to two underground infiltration basins with a total storage volume of 30,723 CF to treat the required Design Capture Volume for the project. Manholes with weirs are proposed downstream of the basins for the high flows which will conveyed to a private storm drain system and ultimately discharge to a proposed 48-inch RCP beneath State St. via a new on-site storm drain facility. The southern boundary of the proposed site will contain a retaining curb that will effectively divert the flows coming towards the site from the adjacent vacant lot. The rest of the project site is relatively flat with slopes varying from 0.5% to 3%. Site

elevations range from 1518-1527 feet above Mean Sea Level. The proposed site includes 13 new buildings with associated parking areas and commercial landscape areas. The overall site will contain mostly asphalt or concrete surfaces with an approximate imperviousness of 90%.

The Proposed Onsite Hydrology Map is provided in Appendix E and it depicts drainage subareas, elevations, flow lengths and slopes used for the hydrology calculations. The proposed condition 10- and 100-year storm events Rational Method analysis results are also included in Appendix E.

3.3 Offsite Hydrology Study

This Section describes the hydrologic conditions of the area surrounding the project and the flows that are expected to be conveyed by the public offsite storm drain facilities. Appendix F provides an exhibit detailing all storm drain facilities referenced in the following sections.

3.3.1 Offsite Study Background and Purpose

The San Jacinto Valley Master Drainage Plan Update (SJMDPU) prepared in 2010 by Webb & Associates analyzed the hydrologic and hydraulic conditions of proposed Master Plan facility Line H. The study is based on the 1982 Master Plan prepared by Riverside County Flood Control & Water Quality District (RCFC&WCD) that depicts Line H to be a 60-inch Reinforced Concrete Pipe with one tributary Master Plan facility Line H-1. In 2012, the City built three storm drain lines at the intersection of Ramona Expressway and State Street, Master Plan Facility Lines: H, H-2, and H-3. Per communications with the City, no Hydrology studies were prepared at the time these lines were built. Additionally, Ramona Expressway was widened in 2014 and along with this improvement was the construction of a 24-inch storm drain line, located east of the intersection of Ramona Expressway and Eagle Road that connects to Line H-3.

With the development of the Magnet, the City has requested the extension of Line H-2 along State Street within the limits of the project as well as the construction of Master Plan facility Line H-1. These lines were analyzed in this study and the narrative below provides a summary of the findings for each proposed storm drain line.

3.3.2 Master Plan Line H

Per the as-built plans prepared by the City in 2012, Line H is an 8'x4' RCB that begins at an earthen channel along State Street and terminates at a 28-foot catch basin at the corner of State Street and Ramona Expressway. This line was designed to convey 283 cfs of flow from the 100-year storm event. Connecting to this line are storm drain Lines H-2 and H-3. This study analyzed the hydrology for the 100-year storm event to the most upstream end of Line H. However, the hydraulics of Line H was not analyzed in this study and the HGL was taken from the as-builts.

3.3.3 Master Plan Line H-1

Per the SJMPDU, Line H-1 was a proposed 48-inch RCP that would convey approximately 105 acres of area from the housing tracts East of Eagle Road. During the review of current existing drainage patterns, about 8.5 acres of undeveloped private property south of the Magnet would drain towards the proposed location of Line H-1. The residential developments east of Eagle Road were found to drain mostly to Ramona Expressway and Line H-3, with a portion of the development draining to Idyllwild Drive that ultimately flows to Line H-2. Construction of Line H-1 is found to be unnecessary since the existing drainage facility Lines H-2 and H-3 currently convey the flows originally tabled for Line H-1.

3.3.4 Master Plan Line H-2

Per the as-built plans prepared by the City in 2012, Line H-2 is a 48-inch RCP that connects to Line H and runs along State Street, terminating at a junction structure with a 24-inch RCP lateral that connects to a 28-foot catch basin. The drainage delineation conducted in this study shows that approximately 127 acres of surface runoff, which includes the 14.5-acre Magnet development, flow towards Line H-2. The Proposed Offsite Hydrology Map in Appendix G includes the flows paths, drainage areas, land types, and soil types that are tributary to this Line. The Offsite Rational Method study results show that approximately 99.24 cfs of flow drains to Line H-2 in the 10-year storm event (Appendix G).

3.3.5 Master Plan Line H-3

The 2012 plans prepared by the City show Line H-3 as a 36-inch RCP that connects to Line H. It is located on the east side of the intersection of Ramona Expressway and State Street, terminating at a junction structure that connects to an 18-inch RCP lateral. This lateral connects to a 12-foot catch basin located north of the project site. As part of the 2014 widening of Ramona Expressway, a 24-inch RCP extension was constructed that discharges to the existing 14' catch basin and runs easterly on Ramona Expressway. The 24-inch line has three 4-foot catch basins that collect surface runoff from the street. Approximately 58.7 acres of area is tributary to Line H-3 which generates 49.59 cfs of flow in the 10-yr storm event. See Appendix G for Offsite Rational Method Calculations.

Section 4 Hydraulics Study

The following sections summarize the Hydraulic analysis prepared for Lines H-2 and H-3. All WSPG calculation inputs and outputs, and the HGL profiles can be found in Appendix H.

4.1 Master Plan Line H-2 Hydraulic Study

The Hydraulic conditions of Master Plan Line H-2 was analyzed under its existing condition as well as the proposed extension per request of the City. The WSPG calculations for the 48-inch Line H-2 show an HGL for the 10-year storm event that lies beneath the existing surface with 12-inches of freeboard. The Hydraulic calculations for Line H-2 utilized the existing off-site flows and the proposed Magnet development flows.

4.2 Master Plan Line H-3 Hydraulic Study

The Hydraulic conditions of Master Plan Line H-3 was analyzed under its existing condition for the 10-year storm event. The WSPG calculations for Line H-3 indicate that the 36" RCP was size adequately for the 10 year flows; however, upstream of the 36" line, the line does not have the capacity for the 10 year flows due to an existing 18" RCP lateral connecting the 24" RCP and the 36" RCP. Additionally the 24" RCP constructed as part of Ramona widening in 2014 does not have the capacity to convey 10 year flows. The Magnet Development will not discharge any flows to Line H-3; therefore, no improvements are proposed for this line.

Section 5 Summary of Results and Conclusions

5.1 Onsite Study

The Onsite Hydrology study was conducted for the 10- and 100-year storm events for both the existing and the proposed conditions. The proposed site contains a higher imperviousness than the existing site which increases the flows being discharged off-site in the final condition.

Rational Method results are shown in the table below:

Table 1: Onsite Flow Summary

Condition	10-year Flows (cfs)	100-year Flows (cfs)		
Existing	11.97	27.87		
Proposed	18.06	36.95		

5.2 Offsite Study

The Offsite Rational Method analyses was conducted to determine the proposed flows that are conveyed to Master Plan Lines H-2 and H-3. The calculations were conducted for the 10- and 100-year storm events and the results are listed below:

Table 1: Offsite Flow Summary

Line	10-year Flows (cfs)	100-year Flows (cfs)	Tributary Area (ac)
H-2	99.24	223.39	134.39
H-3	49.59	106.61	51.53

5.3 Conclusions

The proposed Magnet development will cause an increase in peak flows in both the 10- and 100-yr storm events. The WSPG analysis shows that the proposed 48-inch RCP extension to Line H-2 will have capacity to convey the 10-yr storm event without the need for onsite flow mitigation. The developer's construction of the Line H-2 extension will be provided to capture the onsite flows from the Magnet Development and to benefit the City in the future plans to complete the Master Plan of Drainage facilities that would alleviate potential flooding within the surface.

TECHNICAL APPENDIX

Appendix A - NOAA Precipitation Data

TAIT JOB # SP8950 Appendix A

NOAA Atlas 14, Volume 6, Version 2 Location name: San Jacinto, California, USA* Latitude: 33.8005°, Longitude: -116.97° Elevation: 1524 ft**

: San Jacinto, California, USA*
.8005°, Longitude: -116.97°
evation: 1524 ft**
* source: ESRI Maps
** source: USGS

300100. 0000

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

POINT PRECIPITATION FREQUENCY ESTIMATES

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

	S-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.082 (0.069-0.100)	0.112 (0.094-0.136)	0.158 (0.131-0.192)	0.201 (0.166-0.246)	0.270 (0.215-0.342)	0.332 (0.259-0.431)	0.405 (0.308-0.538)	0.491 (0.363-0.672)	0.653 (0.462-0.933)	0.873 (0.596-1.29)
10-min	0.118 (0.099-0.143)	0.161 (0.134-0.195)	0.226 (0.188-0.275)	0.288 (0.238-0.353)	0.387 (0.308-0.491)	0.477 (0.371-0.617)	0.581 (0.441-0.772)	0.704 (0.520-0.963)	0.936 (0.662-1.34)	1.25 (0.854-1.85)
15-min	0.143 (0.119-0.173)	0.194 (0.162-0.235)	0.274 (0.228-0.332)	0.349 (0.288-0.427)	0.468 (0.373-0.594)	0.576 (0.449-0.747)	0.702 (0.534-0.933)	0.851 (0.628-1.16)	1.13 (0.800-1.62)	1.51 (1.03-2.24)
30-min	0.228 (0.190-0.275)	0.309 (0.258-0.375)	0.436 (0.362-0.529)	0.555 (0.458-0.679)	0.745 (0.594-0.945)	0.917 (0.715-1.19)	1.12 (0.849-1.48)	1.36 (1.00-1.85)	1.80 (1.27-2.57)	2.41 (1.64-3.56)
60-min	0.359 (0.300-0.433)	0.488 (0.407-0.590)	0.687 (0.571-0.833)	0.874 (0.721-1.07)	1.17 (0.936-1.49)	1.44 (1.13-1.87)	1.76 (1.34-2.34)	2.14 (1.58-2.92)	2.84 (2.01-4.06)	3.80 (2.59-5.62)
2-hr	0.542 (0.453-0.656)	0.696 (0.581-0.842)	0.925 (0.769-1.12)	1.13 (0.936-1.39)	1.46 (1.16-1.85)	1.74 (1.36-2.26)	2.06 (1.57-2.74)	2.43 (1.80-3.33)	3.00 (2.12-4.29)	3.83 (2.62-5.67)
3-hr	0.663 (0.554-0.802)	0.835 (0.697-1.01)	1.09 (0.905-1.32)	1.32 (1.08-1.61)	1.66 (1.32-2.11)	1.96 (1.53-2.54)	2.30 (1.75-3.05)	2.68 (1.98-3.66)	3.26 (2.30-4.65)	3.87 (2.64-5.73)
6-hr	0.929 (0.776-1.12)	1.15 (0.961-1.39)	1.47 (1.22-1.79)	1.76 (1.45-2.15)	2.18 (1.74-2.76)	2.54 (1.98-3.29)	2.93 (2.23-3.90)	3.38 (2.49-4.62)	4.03 (2.85-5.76)	4.60 (3.14-6.80)
12-hr	1.21 (1.01-1.47)	1.51 (1.26-1.83)	1.94 (1.61-2.35)	2.32 (1.91-2.84)	2.88 (2.29-3.65)	3.35 (2.61-4.34)	3.86 (2.94-5.13)	4.44 (3.28-6.07)	5.29 (3.74-7.55)	6.01 (4.10-8.89)
24-hr	1.61 (1.42-1.85)	2.04 (1.80-2.36)	2.66 (2.35-3.08)	3.21 (2.80-3.74)	4.02 (3.40-4.84)	4.69 (3.89-5.77)	5.43 (4.40-6.84)	6.25 (4.93-8.09)	7.46 (5.65-10.1)	8.49 (6.22-11.8)
2-day	1.97 (1.74-2.27)	2.57 (2.27-2.97)	3.41 (3.01-3.95)	4.14 (3.62-4.84)	5.20 (4.40-6.27)	6.07 (5.04-7.47)	7.01 (5.68-8.82)	8.03 (6.33-10.4)	9.51 (7.20-12.8)	10.7 (7.86-14.9)
3-day	2.17 (1.92-2.51)	2.89 (2.55-3.34)	3.88 (3.42-4.49)	4.73 (4.14-5.52)	5.95 (5.04-7.18)	6.95 (5.76-8.54)	8.00 (6.49-10.1)	9.15 (7.22-11.8)	10.8 (8.17-14.5)	12.1 (8.88-16.9)
4-day	2.32 (2.05-2.68)	3.13 (2.76-3.61)	4.24 (3.74-4.91)	5.18 (4.53-6.05)	6.54 (5.53-7.88)	7.63 (6.33-9.38)	8.78 (7.12-11.1)	10.0 (7.90-13.0)	11.8 (8.93-15.9)	13.2 (9.69-18.4)
7-day	2.61 (2.31-3.01)	3.62 (3.19-4.17)	4.99 (4.40-5.77)	6.15 (5.38-7.18)	7.80 (6.60-9.40)	9.12 (7.56-11.2)	10.5 (8.52-13.2)	12.0 (9.46-15.5)	14.1 (10.7-19.0)	15.8 (11.6-22.0)
10-day	2.82 (2.50-3.26)	3.97 (3.51-4.58)	5.53 (4.87-6.40)	6.84 (5.98-7.99)	8.71 (7.37-10.5)	10.2 (8.46-12.5)	11.8 (9.54-14.8)	13.4 (10.6-17.4)	15.8 (12.0-21.3)	17.7 (13.0-24.7)
20-day	3.49 (3.09-4.03)	4.96 (4.39-5.73)	6.96 (6.14-8.06)	8.65 (7.57-10.1)	11.0 (9.35-13.3)	13.0 (10.8-15.9)	15.0 (12.1-18.9)	17.1 (13.5-22.2)	20.2 (15.3-27.2)	22.6 (16.6-31.5)
30-day	4.10 (3.63-4.73)	5.81 (5.14-6.71)	8.15 (7.18-9.44)	10.1 (8.86-11.8)	12.9 (11.0-15.6)	15.2 (12.6-18.7)	17.6 (14.2-22.1)	20.1 (15.9-26.0)	23.7 (18.0-32.0)	26.7 (19.5-37.1)
45-day	4.90 (4.33-5.65)	6.88 (6.08-7.94)	9.59 (8.45-11.1)	11.9 (10.4-13.9)	15.2 (12.9-18.3)	17.8 (14.8-21.9)	20.6 (16.7-26.0)	23.7 (18.7-30.6)	28.0 (21.2-37.7)	31.5 (23.1-43.9)
60-day	5.71 (5.05-6.59)	7.94 (7.01-9.16)	11.0 (9.69-12.7)	13.6 (11.9-15.9)	17.4 (14.7-20.9)	20.4 (16.9-25.1)	23.6 (19.1-29.7)	27.1 (21.4-35.1)	32.1 (24.3-43.2)	36.2 (26.5-50.4)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 33.8005°, Longitude: -116.9700°

NOAA Atlas 14, Volume 6, Version 2

5

0

Created (GMT): Wed Jun 21 14:42:33 2023

500

1000

Back to Top

100

200

Maps & aerials

Small scale terrain

10

25

Average recurrence interval (years)

50

2-day

3-day 4-day

7-day

10-day

20-day

30-day

45-day

60-day

3-hr

6-hr

12-hr

24-hr

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

NOAA Atlas 14, Volume 6, Version 2 Location name: San Jacinto, California, USA* Latitude: 33.8005°, Longitude: -116.97° Elevation: 1524 ft**

evation: 1524 ft**

* source: ESRI Maps

** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

D4! a	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.984 (0.828-1.20)	1.34 (1.13-1.63)	1.90 (1.57-2.30)	2.41 (1.99-2.95)	3.24 (2.58-4.10)	3.98 (3.11-5.17)	4.86 (3.70-6.46)	5.89 (4.36-8.06)	7.84 (5.54-11.2)	10.5 (7.15-15.5)
10-min	0.708 (0.594-0.858)	0.966 (0.804-1.17)	1.36 (1.13-1.65)	1.73 (1.43-2.12)	2.32 (1.85-2.95)	2.86 (2.23-3.70)	3.49 (2.65-4.63)	4.22 (3.12-5.78)	5.62 (3.97-8.02)	7.51 (5.12-11.1
15-min	0.572 (0.476-0.692)	0.776 (0.648-0.940)	1.10 (0.912-1.33)	1.40 (1.15-1.71)	1.87 (1.49-2.38)	2.30 (1.80-2.99)	2.81 (2.14-3.73)	3.40 (2.51-4.66)	4.53 (3.20-6.47)	6.05 (4.13-8.96
30-min	0.456 (0.380-0.550)	0.618 (0.516-0.750)	0.872 (0.724-1.06)	1.11 (0.916-1.36)	1.49 (1.19-1.89)	1.83 (1.43-2.38)	2.24 (1.70-2.97)	2.71 (2.00-3.71)	3.60 (2.55-5.15)	4.82 (3.29-7.13
60-min	0.359 (0.300-0.433)	0.488 (0.407-0.590)	0.687 (0.571-0.833)	0.874 (0.721-1.07)	1.17 (0.936-1.49)	1.44 (1.13-1.87)	1.76 (1.34-2.34)	2.14 (1.58-2.92)	2.84 (2.01-4.06)	3.80 (2.59-5.62
2-hr	0.271 (0.226-0.328)	0.348 (0.290-0.421)	0.462 (0.384-0.561)	0.567 (0.468-0.694)	0.729 (0.581-0.924)	0.870 (0.679-1.13)	1.03 (0.784-1.37)	1.22 (0.898-1.66)	1.50 (1.06-2.14)	1.92 (1.31-2.84
3-hr	0.220 (0.184-0.267)	0.278 (0.232-0.336)	0.361 (0.301-0.439)	0.437 (0.361-0.536)	0.553 (0.441-0.701)	0.653 (0.509-0.846)	0.764 (0.581-1.02)	0.891 (0.658-1.22)	1.08 (0.766-1.55)	1.29 (0.879-1.9
6-hr	0.155 (0.129-0.187)	0.192 (0.160-0.232)	0.245 (0.204-0.298)	0.293 (0.241-0.359)	0.364 (0.290-0.461)	0.424 (0.330-0.549)	0.489 (0.372-0.651)	0.563 (0.416-0.771)	0.673 (0.476-0.962)	0.767 (0.523-1.14
12-hr	0.100 (0.084-0.121)	0.125 (0.104-0.151)	0.160 (0.133-0.195)	0.192 (0.158-0.235)	0.238 (0.190-0.302)	0.277 (0.216-0.359)	0.320 (0.243-0.426)	0.368 (0.271-0.503)	0.438 (0.310-0.626)	0.498 (0.340-0.73
24-hr	0.067 (0.059-0.077)	0.085 (0.075-0.098)	0.110 (0.097-0.128)	0.133 (0.116-0.155)	0.167 (0.141-0.201)	0.195 (0.162-0.240)	0.226 (0.183-0.284)	0.260 (0.205-0.337)	0.310 (0.235-0.418)	0.353 (0.259-0.49
2-day	0.041 (0.036-0.047)	0.053 (0.047-0.061)	0.071 (0.062-0.082)	0.086 (0.075-0.100)	0.108 (0.091-0.130)	0.126 (0.104-0.155)	0.145 (0.118-0.183)	0.167 (0.131-0.216)	0.198 (0.150-0.266)	0.223 (0.163-0.31
3-day	0.030 (0.026-0.034)	0.040 (0.035-0.046)	0.053 (0.047-0.062)	0.065 (0.057-0.076)	0.082 (0.070-0.099)	0.096 (0.080-0.118)	0.111 (0.090-0.139)	0.127 (0.100-0.164)	0.149 (0.113-0.201)	0.168 (0.123-0.23
4-day	0.024 (0.021-0.027)	0.032 (0.028-0.037)	0.044 (0.038-0.051)	0.054 (0.047-0.063)	0.068 (0.057-0.082)	0.079 (0.065-0.097)	0.091 (0.074-0.115)	0.104 (0.082-0.135)	0.122 (0.093-0.165)	0.137 (0.100-0.19
7-day	0.015 (0.013-0.017)	0.021 (0.019-0.024)	0.029 (0.026-0.034)	0.036 (0.032-0.042)	0.046 (0.039-0.055)	0.054 (0.045-0.066)	0.062 (0.050-0.078)	0.071 (0.056-0.092)	0.083 (0.063-0.113)	0.094 (0.068-0.13
10-day	0.011 (0.010-0.013)	0.016 (0.014-0.019)	0.023 (0.020-0.026)	0.028 (0.024-0.033)	0.036 (0.030-0.043)	0.042 (0.035-0.052)	0.049 (0.039-0.061)	0.056 (0.044-0.072)	0.065 (0.049-0.088)	0.073 (0.054-0.10
20-day	0.007 (0.006-0.008)	0.010 (0.009-0.011)	0.014 (0.012-0.016)	0.018 (0.015-0.021)	0.023 (0.019-0.027)	0.026 (0.022-0.033)	0.031 (0.025-0.039)	0.035 (0.028-0.046)	0.042 (0.031-0.056)	0.047 (0.034-0.06
30-day	0.005 (0.005-0.006)	0.008 (0.007-0.009)	0.011 (0.009-0.013)	0.014 (0.012-0.016)	0.017 (0.015-0.021)	0.021 (0.017-0.025)	0.024 (0.019-0.030)	0.027 (0.022-0.036)	0.032 (0.024-0.044)	0.037 (0.027-0.05
45-day	0.004 (0.004-0.005)	0.006 (0.005-0.007)	0.008 (0.007-0.010)	0.011 (0.009-0.012)	0.014 (0.011-0.016)	0.016 (0.013-0.020)	0.019 (0.015-0.024)	0.021 (0.017-0.028)	0.025 (0.019-0.034)	0.029 (0.021-0.04
60-day	0.003	0.005	0.007 (0.006-0.008)	0.009	0.012	0.014	0.016	0.018	0.022	0.025

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 33.8005°, Longitude: -116.9700°

NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Wed Jun 21 14:43:02 2023

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

Appendix B – USGS Soil Survey

TAIT JOB # SP8950 Appendix B

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:15.800. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: Western Riverside Area, California Soil Rating Lines Survey Area Data: Version 15, Sep 6, 2022 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. A/D Date(s) aerial images were photographed: Mar 15, 2022—May 28, 2022 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
DgB	Dello loamy sand, 0 to 5 percent slopes	A/D	8.5	2.0%
DnB	Dello loamy sand, gravelly substratum, 0 to 5 percent s lopes	A/D	36.4	8.5%
DoA	Dello loamy fine sand, 0 to 2 percent slopes	A/D	14.2	3.3%
DrA	Dello loamy fine sand, gravelly substratum, 0 to 2 percent slopes	A/D	167.5	39.2%
GoB	Grangeville loamy fine sand, drained, 0 to 5 percent slopes	A/D	86.6	20.3%
GP	Gravel pits		2.3	0.5%
GsB	Grangeville sandy loam, sandy substratum, drained, saline-alkali, 0 to 5 percent slopes	A/D	0.3	0.1%
GtA	Grangeville fine sandy loam, drained, 0 to 2 percent sl opes	A/D	0.2	0.0%
GwA	Grangeville fine sandy loam, loamy substratum, drained, 0 to 2 percent slopes	A/D	72.9	17.1%
GxA	Grangeville fine sandy loam, loamy substratum, drained, saline-a lkali, 0 to 2 percent slopes	A/D	10.3	2.4%
MgB	Metz loamy fine sand, gravelly sand substratum, 0 to 5 percent slopes	A	9.4	2.2%
SeA	San Emigdio fine sandy loam, 0 to 2 percent slopes, occassional frost	A	12.7	3.0%
SfA	San Emigdio fine sandy loam, deep, 0 to 2 percent slopes	A	5.9	1.4%
Totals for Area of Inte	rest		427.3	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Appendix C - Downstream Receiving Waters Maps

TAIT JOB # SP8950 Appendix C

Appendix D - Existing Onsite Hydrology Map and Rational Method

TAIT JOB # SP8950 Appendix D

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Release Date: 07/01/2016 License ID 1334

Analysis prepared by:

```
******************* DESCRIPTION OF STUDY ***************
* SP8950 SAN JACINTO
* EXISTING ONSITE RATIONAL METHOD
* 10-YEAR STORM EVENT PJ
****************************
 FILE NAME: SJ10REX.DAT
 TIME/DATE OF STUDY: 08:16 07/19/2023
    USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.730
 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.874
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.490
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.760
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.3810757
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.3820757
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT =
               10.00
                      1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.3811
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO
                   STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                      HIKE FACTOR
NO.
             (FT)
                   SIDE / SIDE/ WAY (FT)
                                           (FT) (FT)
1
     30.0
            20.0
                   0.018/0.018/0.020
                                   0.67
                                           2.00 0.0313 0.167 0.0150
```

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

```
1. Relative Flow-Depth = 0.00 FEET
      as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*****************************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 963.00
 UPSTREAM ELEVATION(FEET) = 1528.04
 DOWNSTREAM ELEVATION(FEET) = 1521.00
 ELEVATION DIFFERENCE(FEET) =
                            7.04
 TC = 0.533*[(963.00**3)/(7.04)]**.2 = 22.236
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.289
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6692
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 7.98
 TOTAL AREA(ACRES) = 9.25 TOTAL RUNOFF(CFS) = 7.98
********************************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1521.00 DOWNSTREAM(FEET) = 1519.51
 CHANNEL LENGTH THRU SUBAREA(FEET) = 469.00 CHANNEL SLOPE = 0.0032
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.146
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6486
 SOIL CLASSIFICATION IS "D"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.74
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.98
 AVERAGE FLOW DEPTH(FEET) = 0.42 TRAVEL TIME(MIN.) = 7.98
 Tc(MIN.) =
            30.22
 SUBAREA AREA(ACRES) = 2.05 SUBAREA RUNOFF(CFS) = 1.52
TOTAL AREA(ACRES) = 11.3 PEAK FLOW RATE(CFS) = 9.50
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 FLOW VELOCITY(FEET/SEC.) = 1.02
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1432.00 FEET.
```

```
FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 30.22
 RAINFALL INTENSITY(INCH/HR) = 1.15
 TOTAL STREAM AREA(ACRES) = 11.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               9.50
****************************
 FLOW PROCESS FROM NODE
                    20.00 TO NODE
                                   12.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 787.00
 UPSTREAM ELEVATION(FEET) = 1523.00
 DOWNSTREAM ELEVATION(FEET) = 1519.51
 ELEVATION DIFFERENCE(FEET) =
                         3.49
 TC = 0.533*[(787.00**3)/(3.49)]**.2 = 22.668
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.279
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6679
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 2.76
 TOTAL AREA(ACRES) =
                    3.23 TOTAL RUNOFF(CFS) = 2.76
**********************************
 FLOW PROCESS FROM NODE 12.00 TO NODE
                                   12.00 \text{ IS CODE} = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.67
 RAINFALL INTENSITY(INCH/HR) = 1.28
 TOTAL STREAM AREA(ACRES) = 3.23
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.76
 ** CONFLUENCE DATA **
         RUNOFF
 STREAM
                   Tc
                         INTENSITY
                                    AREA
 NUMBER
          (CFS)
                 (MIN.)
                         (INCH/HOUR)
                                    (ACRE)
          9.50
                 30.22
                                    11.30
    1
                           1.146
           2.76
                 22.67
                           1.279
                                     3.23
*******************************WARNING**********************
```

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK	FLOW RATE	TABLE **	
STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	9.89	22.67	1.279
2	11.97	30.22	1.146

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 11.97 Tc(MIN.) = 30.22

TOTAL AREA(ACRES) = 14.5

LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1432.00 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 14.5 TC(MIN.) = 30.22

PEAK FLOW RATE(CFS) = 11.97

END OF RATIONAL METHOD ANALYSIS

1

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Release Date: 07/01/2016 License ID 1334

Analysis prepared by:

```
******************* DESCRIPTION OF STUDY ***************
* SP8950 SAN JACINTO
* EXISTING ONSITE RATIONAL METHOD
* 100-YEAR STORM EVENT PJ
*****************************
 FILE NAME: SJ100REX.DAT
 TIME/DATE OF STUDY: 08:50 07/19/2023
     USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.730
 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.874
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.490
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.760
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.3810757
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.3820757
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00
                      1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.3821
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO
                   STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                      HIKE FACTOR
NO.
             (FT)
                   SIDE / SIDE/ WAY (FT)
                                           (FT) (FT)
1
     30.0
            20.0
                   0.018/0.018/0.020
                                   0.67
                                           2.00 0.0313 0.167 0.0150
```

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

```
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
******************************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 963.00
 UPSTREAM ELEVATION(FEET) = 1528.04
 DOWNSTREAM ELEVATION(FEET) = 1521.00
 ELEVATION DIFFERENCE(FEET) = 7.04
TC = 0.533*[( 963.00**3)/( 7.04)]**.2 = 22.236
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.572
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7674
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 18.25
TOTAL AREA(ACRES) = 9.25 TOTAL RUNOFF(CFS) = 18.25
********************************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1521.00 DOWNSTREAM(FEET) = 1519.51
 CHANNEL LENGTH THRU SUBAREA(FEET) = 469.00 CHANNEL SLOPE = 0.0032
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50
       ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
           CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
           ALLOWABLE DEPTH).
           AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
           ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.385
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7586
 SOIL CLASSIFICATION IS "D"
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.11
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.61
 AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 4.86
 Tc(MIN.) = 27.09
 SUBAREA AREA(ACRES) = 2.05 SUBAREA RUNOFF(CFS) = 3.71
```

1. Relative Flow-Depth = 0.00 FEET

```
TOTAL AREA(ACRES) = 11.3 PEAK FLOW RATE(CFS) = 21.96
       ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
          CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
          ALLOWABLE DEPTH).
          AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
          ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.50 FLOW VELOCITY(FEET/SEC.) = 1.76
 ==>FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1432.00 FEET.
********************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.09
 RAINFALL INTENSITY(INCH/HR) = 2.38
 TOTAL STREAM AREA(ACRES) = 11.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 21.96
*****************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 12.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 787.00
 UPSTREAM ELEVATION(FEET) = 1523.00
 DOWNSTREAM ELEVATION(FEET) = 1519.51
 ELEVATION DIFFERENCE(FEET) =
                           3.49
 TC = 0.533*[(787.00**3)/(3.49)]**.2 = 22.668
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.553
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7665
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 6.32
TOTAL AREA(ACRES) = 3.23 TOTAL RUNOFF(CFS) = 6.32
***********************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1
```

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 22.67 RAINFALL INTENSITY(INCH/HR) = TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.32 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY **AREA** NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 21.96 27.09 2.385 11.30 2 6.32 22.67 2.553 3.23 *******************************WARNING********************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ******************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE **

STREAM RUNOFF Tc **INTENSITY** NUMBER (CFS) (MIN.) (INCH/HOUR) 1 24.70 22.67 2.553 2 27.87 27.09 2.385

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 27.87 Tc(MIN.) = 27.09

TOTAL AREA(ACRES) = 14.5

LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 1432.00 FEET.

END OF STUDY SUMMARY:

TOTAL AREA(ACRES) = 14.5 TC(MIN.) = 27.09

PEAK FLOW RATE(CFS) = 27.87

END OF RATIONAL METHOD ANALYSIS

Appendix E - Proposed Onsite Hydrology Map and Rational Method

TAIT JOB # SP8950 Appendix E

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0)

Release Date: 07/01/2016 License ID 1334

Analysis prepared by:

```
* SP8950 SAN JACINTO
* PROPOSED ONSITE RATIONAL METHOD
* 10-YEAR STORM EVENT PJ
 ****************
 FILE NAME: SJ10RPR.DAT
 TIME/DATE OF STUDY: 15:16 01/10/2024
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT (YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.730
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.874
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.490
 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.760
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.3810757
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.3820757
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.883
 SLOPE OF INTENSITY DURATION CURVE = 0.3811
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
    (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
                                   _____
    _____
    30.0
           20.0
                   0.018/0.018/0.020
                                   0.67
                                          2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
```

```
UPSTREAM ELEVATION (FEET) = 1524.88
 DOWNSTREAM ELEVATION (FEET) = 1524.44
 ELEVATION DIFFERENCE (FEET) = 0.44
TC = 0.303*[( 68.00**3)/( 0.44)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.276
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8853
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 0.26
TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.91 DOWNSTREAM(FEET) = 1520.42
 FLOW LENGTH (FEET) = 99.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.21
ESTIMATED PIPE DIAMETER (INCH) = 6.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 0.26
 PIPE TRAVEL TIME (MIN.) = 0.75 Tc (MIN.) = 5.75
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                       12.00 =
                                                 167.00 FEET.
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.158
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8846
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.23
TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.4
 TC(MIN.) =
            5.75
******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.42 DOWNSTREAM(FEET) = 1520.27
 FLOW LENGTH (FEET) = 29.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.66
ESTIMATED PIPE DIAMETER (INCH) = 9.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.49
 PIPE TRAVEL TIME (MIN.) = 0.18
                            Tc(MIN.) =
                                      5.93
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                       13.00 =
                                                196.00 FEET.
*************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.93
 RAINFALL INTENSITY (INCH/HR) = 2.13
 TOTAL STREAM AREA(ACRES) = 0.25
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 0.49
```

```
*****************
 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 UPSTREAM ELEVATION (FEET) = 1526.42
 DOWNSTREAM ELEVATION (FEET) = 1524.04
 ELEVATION DIFFERENCE (FEET) = 2.38
 TC = 0.303*[(300.00**3)/(2.38)]**.2 =
                                      7.808
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.920
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8831
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                     1.15
                   0.68 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
*****************
 FLOW PROCESS FROM NODE 31.00 TO NODE 13.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.35 DOWNSTREAM(FEET) = 1520.27
 FLOW LENGTH (FEET) = 13.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.47
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 9.00
 PIPE-FLOW(CFS) = 1.15
PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) =
                                        7.87
                        30.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                       13.00 =
********************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.87
 RAINFALL INTENSITY (INCH/HR) = 1.91
 TOTAL STREAM AREA(ACRES) = 0.68
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                1.15
 ** CONFLUENCE DATA **
 ** CONFLOENCE DITTS

STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 0.49 5.93 2.133

7 87 1.914
                                      AREA
                                      (ACRE)
                                     0.25
                                       0.68
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                          INTENSITY
                  (MIN.) (INCH/HOUR)
          (CFS)
 NUMBER
```

```
1.36 5.93 2.133
1.59 7.87 1.914
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.59 Tc(MIN.) = TOTAL AREA(ACRES) = 0.9
                                   7.87
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                   13.00 =
                                            313.00 FEET.
*****************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.27 DOWNSTREAM(FEET) = 1519.96
 FLOW LENGTH (FEET) = 63.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.51
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.59
PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) =
                                    8.17
                                    14.00 =
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
**********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.887
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.32
TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 1.91
 TC(MIN.) =
********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1519.96 DOWNSTREAM(FEET) = 1519.23
 FLOW LENGTH (FEET) = 146.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.69
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.91
 PIPE TRAVEL TIME (MIN.) = 0.66 Tc (MIN.) =
                                    8.83
 LONGEST FLOWPATH FROM NODE
                      30.00 TO NODE
                                    15.00 =
                                             522.00 FEET.
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.832
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8824
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.49 SUBAREA RUNOFF(CFS) = 0.79
TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 2.7
 TC(MIN.) =
          8.83
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 31
 ______
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1519.23 DOWNSTREAM(FEET) = 1516.77
 FLOW LENGTH (FEET) = 490.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.04
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.70
PIPE TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 10.85
                                       16.00 =
 LONGEST FLOWPATH FROM NODE
                        30.00 TO NODE
                                               1012.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                     16.00 TO NODE 16.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.85
RAINFALL INTENSITY(INCH/HR) = 1.69
TOTAL STREAM AREA(ACRES) = 1.61
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
***********************
 FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION (FEET) = 1524.00
 DOWNSTREAM ELEVATION (FEET) = 1522.66
 ELEVATION DIFFERENCE (FEET) = 1.34
TC = 0.303*[( 97.00**3)/( 1.34)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.276
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8853
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 0.75
TOTAL AREA(ACRES) = 0.37 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 41.00 TO NODE 16.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1517.17 DOWNSTREAM(FEET) = 1516.77
 FLOW LENGTH (FEET) = 79.00 MANNING'S N = 0.012
DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.93
ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.75
 PIPE TRAVEL TIME (MIN.) = 0.45 Tc (MIN.) =
                                      5.45
 LONGEST FLOWPATH FROM NODE
                        40.00 TO NODE
                                        16.00 =
                                                 176.00 FEET.
****************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 5.45
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.37
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                0.75
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                         (INCH/HOUR)
                                     (ACRE)
          2.70 10.85 1.694 1.61
   1
          0.75 5.45
                           2.202
                                      0.37
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
********************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF To
                        INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
2.10 5.45 2.202
3.28 10.85 1.694
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.28 Tc(MIN.) = 10.85 TOTAL AREA(ACRES) = 2.0
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                      16.00 = 1012.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.77 DOWNSTREAM(FEET) = 1516.53
 FLOW LENGTH (FEET) = 48.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.22
 ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.28
 PIPE TRAVEL TIME (MIN.) = 0.19 Tc (MIN.) = 11.04
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                      17.00 =
                                               1060.00 FEET.
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.683
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8812
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.16 SUBAREA RUNOFF(CFS) = 0.24
TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 3.5
 TC(MIN.) =
          11.04
*****************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
  ._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<

⁶

```
ELEVATION DATA: UPSTREAM(FEET) = 1516.53 DOWNSTREAM(FEET) = 1516.37
 FLOW LENGTH (FEET) = 33.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.23
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.51
 PIPE TRAVEL TIME (MIN.) = 0.13 Tc (MIN.) = 11.17
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 18.00 = 1093.00 FEET.
************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 11.17
 RAINFALL INTENSITY(INCH/HR) = 1.68
TOTAL STREAM AREA(ACRES) = 2.14
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 3.51
*******************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 430.00
 UPSTREAM ELEVATION (FEET) = 1526.34
 DOWNSTREAM ELEVATION (FEET) = 1522.26
 ELEVATION DIFFERENCE (FEET) = 4.08
 TC = 0.303*[(430.00**3)/(4.08)]**.2 =
                                       8.700
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.843
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8825
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                      1.97
 TOTAL AREA (ACRES) =
                   1.21 TOTAL RUNOFF (CFS) =
*************************
 FLOW PROCESS FROM NODE 51.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.51 DOWNSTREAM(FEET) = 1516.37
 FLOW LENGTH (FEET) = 30.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.60
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.97
PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) =
                                      8.84
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE
                                       18.00 =
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) =
```

```
RAINFALL INTENSITY(INCH/HR) = 1.83
TOTAL STREAM AREA(ACRES) = 1.21
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 1.97
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSIII
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 675 2.1
          3.51 11.17 1.675
1.97 8.84 1.831
                                     2.14
    1
    2
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS)
                 (MIN.) (INCH/HOUR)
 NUMBER
                       1.831
    1
          4.75
                 8.84
          5.31
    2
                 11.17
                          1.675
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.31 Tc(MIN.) = TOTAL AREA(ACRES) = 3.4
                                      11.17
 LONGEST FLOWPATH FROM NODE
                         30.00 TO NODE
                                       18.00 = 1093.00 FEET.
************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.37 DOWNSTREAM(FEET) = 1516.13
 FLOW LENGTH (FEET) = 48.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.76
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.31
PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 11.34
                        30.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                       19.00 = 1141.00 \text{ FEET}.
*********************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.666
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8810
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.13
TOTAL AREA(ACRES) = 3.4 TOTAL RUNOFF(CFS) = 5.44
 TC(MIN.) = 11.34
************************
 FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.13 DOWNSTREAM(FEET) = 1515.07
```

FLOW LENGTH (FEET) = 212.00 MANNING'S N = 0.012

```
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.79
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                  5.44
 PIPE TRAVEL TIME (MIN.) = 0.74
                          Tc(MIN.) = 12.07
 LONGEST FLOWPATH FROM NODE
                        30.00 TO NODE
                                      20.00 =
                                             1353.00 FEET.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.626
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8807
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) = 0.97
TOTAL AREA(ACRES) = 4.1 TOTAL RUNOFF(CFS) = 6.4
 TC(MIN.) = 12.07
*****************
 FLOW PROCESS FROM NODE
                   20.00 TO NODE 21.00 \text{ IS CODE} = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.07 DOWNSTREAM(FEET) = 1514.80
 FLOW LENGTH (FEET) = 42.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.48
                                NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
 PIPE-FLOW(CFS) = 6.42
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 12.20
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                      21.00 =
                                             1395.00 FEET.
********************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 227.00
 UPSTREAM ELEVATION (FEET) = 1523.50
 DOWNSTREAM ELEVATION (FEET) = 1521.80
 ELEVATION DIFFERENCE (FEET) = 1.70
TC = 0.303*[( 227.00**3)/( 1.70)]**.2 = 7.065
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.995
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8836
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 0.85
TOTAL AREA(ACRES) = 0.48 TOTAL RUNOFF(CFS) =
********************
 FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1515.61 DOWNSTREAM(FEET) = 1515.51
 FLOW LENGTH (FEET) = 8.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.1 INCHES
 DEPTH OF FLOW IN 5.0 I....

PIPE-FLOW VELOCITY (FEET/SEC.) = 4.27

DIAMETER (INCH) = 9.00
                           4.27
 ESTIMATED PIPE DIAMETER (INCH) =
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.85
 PIPE TRAVEL TIME (MIN.) = 0.03 Tc (MIN.) =
                                      7.10
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                       62.00 =
********************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.991
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8836
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.07 SUBAREA RUNOFF(CFS) = 0.12
 TOTAL AREA (ACRES) =
                     0.6 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 7.10
************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.51 DOWNSTREAM(FEET) = 1514.95
 FLOW LENGTH (FEET) = 112.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.10
ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.97
 PIPE TRAVEL TIME (MIN.) = 0.60
                           Tc(MIN.) = 7.70
                        60.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                       63.00 =
                                                 347.00 FEET.
*******************
 FLOW PROCESS FROM NODE 63.00 TO NODE 63.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.70
 RAINFALL INTENSITY (INCH/HR) = 1.93
 TOTAL STREAM AREA(ACRES) = 0.55
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 0.97
*******************
 FLOW PROCESS FROM NODE 70.00 TO NODE 71.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 1526.13
 DOWNSTREAM ELEVATION (FEET) =
                         1520.93
 ELEVATION DIFFERENCE (FEET) = 5.20
TC = 0.303*[( 543.00**3)/( 5.20)]**.2 =
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.779
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8820
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                      3.92
```

```
TOTAL AREA (ACRES) =
                  2.50 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 71.00 TO NODE 63.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.46 DOWNSTREAM(FEET) = 1514.95
 FLOW LENGTH (FEET) = 102.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.38
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.92
 PIPE TRAVEL TIME (MIN.) = 0.39 Tc (MIN.) =
                                      9.92
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                     63.00 =
                                              645.00 FEET.
*******************
 FLOW PROCESS FROM NODE 63.00 TO NODE 63.00 IS CODE = 1
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.92
 RAINFALL INTENSITY (INCH/HR) =
                         1.75
 TOTAL STREAM AREA(ACRES) = 2.50
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                               3.92
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc INTENSITY
                                   AREA
                (MIN.) (INCH/HOUR)
         (CFS)
 NUMBER
                                   (ACRE)
                7.70 1.930
9.92 1.753
    1
          0.97
                9.92
    2
          3.92
                          1.753
                                      2.50
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
                      (INCH/HOUR)
         (CFS)
 NUMBER
                 (MIN.)
          4.01
                       1.930
                 7.70
    1
                9.92
          4.80
                         1.753
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 4.80 Tc (MIN.) = 9.92
TOTAL AREA (ACRES) = 3.0
 LONGEST FLOWPATH FROM NODE
                       70.00 TO NODE
                                     63.00 =
                                              645.00 FEET.
********************
 FLOW PROCESS FROM NODE 63.00 TO NODE 21.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.95 DOWNSTREAM(FEET) = 1514.80
 FLOW LENGTH (FEET) = 19.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.1 INCHES
```

```
PIPE-FLOW VELOCITY (FEET/SEC.) = 5.47
 ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.80
 PIPE TRAVEL TIME (MIN.) = 0.06 Tc (MIN.) =
                                        9.98
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                       21.00 =
                                                 664.00 FEET.
*******************
 FLOW PROCESS FROM NODE 21.00 TO NODE
                                  21.00 \text{ IS CODE} = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                    AREA
       (CFS)
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 4.80 9.98 1.749 3.05
LONGEST FLOWPATH FROM NODE 70.00 TO NODE 21.00 =
                                                664.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 6.42 12.20 1.620
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)  1 \qquad 6.42 \quad 12.20 \qquad 1.620 \qquad 4.12 \\  \text{LONGEST FLOWPATH FROM NODE} \qquad 30.00 \text{ TO NODE} \qquad 21.00 = \qquad 1395.00 \text{ FEET.} 
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*******************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
                  (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
               12.20
                  9.98 1.749
    1
         10.05
         10.87
                            1.620
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 10.87 Tc (MIN.) = 12.20
 TOTAL AREA (ACRES) =
                      7.2
*******************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 12
_____
 >>>>CLEAR MEMORY BANK # 1 <<<<<
************************
FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 31
______
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.80 DOWNSTREAM(FEET) = 1514.78
 FLOW LENGTH (FEET) = 16.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.31
 ESTIMATED PIPE DIAMETER (INCH) = 27.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.87
 PIPE TRAVEL TIME (MIN.) = 0.08 Tc (MIN.) = 12.28
 LONGEST FLOWPATH FROM NODE
                        30.00 TO NODE
                                       22.00 =
                                                1411.00 FEET.
*******************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

12

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1517.64 DOWNSTREAM(FEET) = 1514.37
 FLOW LENGTH (FEET) = 654.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.57
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.87
 PIPE TRAVEL TIME (MIN.) = 1.96 Tc (MIN.) = 14.24
 LONGEST FLOWPATH FROM NODE
                      30.00 TO NODE
                                     23.00 =
                                             2065.00 FEET.
******************
 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*******************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 1523.97
 DOWNSTREAM ELEVATION (FEET) = 1521.00
 ELEVATION DIFFERENCE (FEET) =
 TC = 0.303*[(106.00**3)/(
                        2.97)1**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.276
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8853
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) = 0.24
                  0.12 TOTAL RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1516.36 DOWNSTREAM(FEET) = 1516.19
 FLOW LENGTH (FEET) = 34.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.20
 ESTIMATED PIPE DIAMETER (INCH) =
                          6.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.24
 PIPE TRAVEL TIME (MIN.) = 0.26
                           Tc(MIN.) =
                                     5.26
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 =
*************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.232
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8851
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.73 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 0.9
 TC(MIN.) =
         5.26
*******************
```

```
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.19 DOWNSTREAM(FEET) = 1515.54
 FLOW LENGTH (FEET) = 130.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.09
ESTIMATED PIPE DIAMETER(INCH) = 9.00
 ESTIMATED PIPE DIAMETER (INCH) =
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.97
 PIPE TRAVEL TIME (MIN.) = 0.70 Tc (MIN.) =
                                      5.96
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                     103.00 =
                                               270.00 FEET.
****************
 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.128
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8845
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.21
 TOTAL AREA (ACRES) = 0.6 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 5.96
************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1515.54 DOWNSTREAM(FEET) = 1515.34
 FLOW LENGTH (FEET) = 40.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 7.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.17
ESTIMATED PIPE DIAMETER (INCH) = 9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.18
 PIPE TRAVEL TIME (MIN.) = 0.21
                            Tc(MIN.) =
                                       6.17
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 =
                                               310.00 FEET.
*************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.17
 RAINFALL INTENSITY(INCH/HR) = 2.10
TOTAL STREAM AREA(ACRES) = 0.60
                          2.10
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                1.18
*************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 117.00
 UPSTREAM ELEVATION (FEET) = 1525.00
 DOWNSTREAM ELEVATION (FEET) = 1523.13
 ELEVATION DIFFERENCE (FEET) =
```

```
TC = 0.303*[(117.00**3)/(1.87)]**.2 = 4.657
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.276
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8853
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                         0.22
 TOTAL AREA (ACRES) =
                     0.11 TOTAL RUNOFF (CFS) =
*****************
 FLOW PROCESS FROM NODE 121.00 TO NODE 104.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.63 DOWNSTREAM(FEET) = 1515.34
 FLOW LENGTH (FEET) = 27.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.89
 ESTIMATED PIPE DIAMETER (INCH) = 6.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.22
PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                            5.16
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 104.00 =
********************
 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 5.16
 RAINFALL INTENSITY (INCH/HR) = 2.25
 TOTAL STREAM AREA(ACRES) = 0.11
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                    0.22
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        1.18
        6.17
        2.100
        0.6

        2
        0.22
        5.16
        2.249
        0.1

                     Tc
                                          0.60
                                            0.11
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC NUMBER (CFS) (MIN.)
                            INTENSITY
                    (MIN.) (INCH/HOUR)
           1.21 5.16
1.39 6.17
   1
                              2.100
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.39 Tc(MIN.) =
 TOTAL AREA (ACRES) =
                         0.7
 LONGEST FLOWPATH FROM NODE
                           100.00 TO NODE
                                           104.00 =
*******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.34 DOWNSTREAM(FEET) = 1514.71
 FLOW LENGTH (FEET) = 126.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.42
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.39
PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) =
                                        6.78
                        100.00 TO NODE
                                       105.00 =
 LONGEST FLOWPATH FROM NODE
                                                 436.00 FEET.
*******************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.78
RAINFALL INTENSITY(INCH/HR) = 2.03
 RAINFALL INTENSITY(INCH/HR) = 2.03
TOTAL STREAM AREA(ACRES) = 0.71
                           2.03
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
***********************
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
     ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 354.00
 UPSTREAM ELEVATION (FEET) = 1523.57
 DOWNSTREAM ELEVATION (FEET) = 1520.36
 ELEVATION DIFFERENCE (FEET) = 3.21
TC = 0.303*[( 354.00**3)/( 3.21)]**.2 =
                                       8.122
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.891
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8829
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) = 1.22
TOTAL AREA (ACRES) = 0.73 TOTAL RUNOFF (CFS) = 1.22
*******************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1515.86 DOWNSTREAM(FEET) = 1515.37
 FLOW LENGTH(FEET) = 97.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 9.0 INCH PIPE IS 7.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.20
ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.22
 PIPE TRAVEL TIME (MIN.) = 0.51 Tc (MIN.) =
                                       8.63
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                       132.00 =
                                                 451.00 FEET.
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.848
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8826
```

```
SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.13
TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 1.3
 TC(MIN.) =
            8.63
*************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 105.00 IS CODE = 31
  -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.37 DOWNSTREAM(FEET) = 1514.71
 FLOW LENGTH (FEET) = 129.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                              3.42
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.35
PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) =
                                           9.26
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 105.00 =
                                                      580.00 FEET.
*****************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.26
 RAINFALL INTENSITY(INCH/HR) = 1.80
TOTAL STREAM AREA(ACRES) = 0.81
                             1.80
                                  1.35
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        1.39
        6.78
        2.026
        0.7

        2
        1.35
        9.26
        1.799
        0.8

                                          0.71
                                            0.81
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
 NUMBER
          (CFS)
                   (MIN.) (INCH/HOUR)
           2.38 6.78 2.026
2.58 9.26 1.799
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.38 Tc(MIN.) = TOTAL AREA(ACRES) = 1.5
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                           105.00 =
                                                       580.00 FEET.
****************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1514.71 DOWNSTREAM(FEET) = 1514.19
 FLOW LENGTH (FEET) = 104.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.83
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.38
 PIPE TRAVEL TIME (MIN.) = 0.45
                           Tc(MIN.) =
                                       7.24
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 106.00 =
                                                684.00 FEET.
*********************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.24
 RAINFALL INTENSITY (INCH/HR) = 1.98
 TOTAL STREAM AREA(ACRES) = 1.52
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 2.38
********************
 FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 230.00
 UPSTREAM ELEVATION (FEET) = 1524.75
 DOWNSTREAM ELEVATION (FEET) = 1521.05
 ELEVATION DIFFERENCE (FEET) = 3.70
 TC = 0.303*[(230.00**3)/(3.70)]**.2 = 6.095
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.110
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8843
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                      1.14
 TOTAL AREA (ACRES) =
                    0.61 TOTAL RUNOFF (CFS) =
************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 106.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.37 DOWNSTREAM(FEET) = 1514.19
 FLOW LENGTH (FEET) = 36.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.18
 ESTIMATED PIPE DIAMETER (INCH) = 9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.14
 PIPE TRAVEL TIME (MIN.) = 0.19 Tc (MIN.) =
                                       6.28
                                      106.00 =
 LONGEST FLOWPATH FROM NODE
                        140.00 TO NODE
************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.28 RAINFALL INTENSITY(INCH/HR) = 2.09
```

```
TOTAL STREAM AREA (ACRES) = 0.61
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 1.14
 ** CONFLUENCE DATA **
 ** CONFLUENCE DELL
STREAM RUNOFF TC INTENSITY ALG...
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 2.38 7.24 1.977 1.5
                                      1.52
                                         0.61
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
NUMBER (CFS) (MIN.)
                         INTENSITY
                  (MIN.) (INCH/HOUR)
           3.20 6.28 2.086
3.45 7.24 1.977
   1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.45 Tc(MIN.) = TOTAL AREA(ACRES) = 2.1
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 106.00 =
************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.19 DOWNSTREAM(FEET) = 1512.97
 FLOW LENGTH (FEET) = 127.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.34
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.45
 PIPE TRAVEL TIME (MIN.) = 0.40 Tc (MIN.) =
                                        7.63
                                        107.00 =
                         130.00 TO NODE
                                                  811.00 FEET.
 LONGEST FLOWPATH FROM NODE
*****************
 FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.937
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8832
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.10
TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 3.9
 TOTAL AREA (ACRES) =
 TC(MIN.) = 7.63
*******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1512.97 DOWNSTREAM(FEET) = 1512.66
 FLOW LENGTH (FEET) = 32.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.4 INCHES
```

```
PIPE-FLOW VELOCITY (FEET/SEC.) = 5.37
 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 3.56
 PIPE TRAVEL TIME (MIN.) = 0.10
                          Tc(MIN.) =
                                      7.73
                                    108.00 =
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                               843.00 FEET.
*******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION (FEET) = 1525.50
 DOWNSTREAM ELEVATION (FEET) = 1520.21
 ELEVATION DIFFERENCE (FEET) = 5.29
TC = 0.303*[( 221.00**3)/( 5.29)]**.2 =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.188
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8848
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                    1.12
 TOTAL AREA (ACRES) =
                  0.58 TOTAL RUNOFF(CFS) =
**********************
 FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1515.74 DOWNSTREAM(FEET) = 1514.49
 FLOW LENGTH (FEET) = 252.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.16
ESTIMATED PIPE DIAMETER(INCH) = 9.00
                               NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) =
 PIPE-FLOW(CFS) =
                1.12
 PIPE TRAVEL TIME (MIN.) = 1.33 Tc(MIN.) =
                                     6.87
 LONGEST FLOWPATH FROM NODE
                      150.00 TO NODE 152.00 =
************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 152.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.016
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.21
                     0.7 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
 TC(MIN.) =
           6.87
*************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 153.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.49 DOWNSTREAM(FEET) = 1514.41
```

```
FLOW LENGTH (FEET) = 14.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.57
ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                   NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 1.34
 PIPE TRAVEL TIME (MIN.) = 0.07
                             Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 153.00 =
                                                  487.00 FEET.
******************
 FLOW PROCESS FROM NODE 153.00 TO NODE 153.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.94
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.70
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                  1.34
********************
 FLOW PROCESS FROM NODE 160.00 TO NODE 161.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
       ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 293.00
 UPSTREAM ELEVATION (FEET) = 1521.25
 DOWNSTREAM ELEVATION (FEET) = 1520.45
 ELEVATION DIFFERENCE (FEET) =
                           0.80
 TC = 0.303*[(293.00**3)/(0.80)]**.2 = 9.574
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.777
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8820
 SOIL CLASSIFICATION IS "D"
 SOIL CLASSIFICATED = 0.96
SUBAREA RUNOFF (CFS) = 0.61 TOTAL RUNOFF (CFS) =
********************
 FLOW PROCESS FROM NODE 161.00 TO NODE 153.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.45 DOWNSTREAM(FEET) = 1514.41
 FLOW LENGTH (FEET) = 8.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.08
 ESTIMATED PIPE DIAMETER (INCH) = 9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.96
 PIPE TRAVEL TIME (MIN.) = 0.04
                             Tc(MIN.) =
                                        9.62
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 153.00 =
********************
 FLOW PROCESS FROM NODE 153.00 TO NODE 153.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.62
RAINFALL INTENSITY(INCH/HR) = 1.77
                        0.61
 TOTAL STREAM AREA (ACRES) =
```

	PEAK FLOW RA	IL (CFS) AI	CONFLUER	NCE = U	. 96			
	** CONFLUENC	E DATA **						
	STREAM R	IINOFF	Tc	INTENSITY	AREA	-		
	NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)		
	1	1.34	6.94	2.009 1.773	0.	70		
	2	0.96	9.62	1.773	0.	61		
	*****	*****	*****	**WARNING***	*****	*****	*****	
	IN THIS COMP	IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED						
		ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA						
		WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.						
	RAINFALL INT CONFLUENCE F				ON RATIO			
	** PEAK FLOW	ו סאדבי דאפו	₽ **					
	STREAM R	IINOFF	Tc	INTENSITY				
	NUMBER	(CFS) (MIN.)	(INCH/HOUR)				
	1	2.03 2.14	6.94	2.009				
	2	2.14	9.62	1.773				
	COMPUTED CON	FIJIENCE ES	TTMATES A	ARE AS FOLLO	ws•			
	PEAK FLOW RA					94		
	TOTAL AREA (A	CRES) =	1.3					
	LONGEST FLOW	IPATH FROM	NODE 1	150.00 TO NO	DE 153	.00 =	487.00 FEET.	
*	*****	*****	******	*****	*****	*****	*****	
_	FLOW PROCESS	FROM NODE	153.0	00 TO NODE	154.00	IS CODE =	31	
	>>>>COMPUTE	OMPUTER-ES	STIMATED E	PIPESIZE (NO	N-PRESSUR	E FLOW) <<		
=	ELEVATION DA						======================================	
	FLOW LENGTH (1311.10	
	DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.9 INCHES							
	PIPE-FLOW VELOCITY (FEET/SEC.) = 3.70 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1							
	ESTIMATED PI PIPE-FLOW(CF			= 12.00	NUMBER OF	PIPES =	1	
				B Tc (MIN.) = 7.	22		
	LONGEST FLOW	PATH FROM	NODE 1	L50.00 TO NO	DE 154	.00 =	550.00 FEET.	
.1.	to also also also also also also also als	and the standards of the standards	and the standards of the standards	la ala ala ala ala ala ala ala ala ala	ale ale ale ale ale ale ale ale ale	als als als als als als als als als	*****	
*	FLOW PROCESS							
_								
=	>>>>DESIGNA		_					
	TOTAL NUMBER					_		
	CONFLUENCE V				EAM I AR	E:		
	TIME OF CONC	ENSITY(INC	HIN.) =	1.98				
	TOTAL STREAM							
	PEAK FLOW RA	TE(CFS) AT	CONFLUE	ICE = 2	.03			
*	*****	*****	******	*****	*****	*****	*****	
	FLOW PROCESS							
-								
=	>>>>RATIONA							
		ED INITIAL OPMENT IS						
	TC = K*[(LEN				2			
	INITIAL SUBAREA FLOW-LENGTH (FEET) = 191.00							
	UPSTREAM ELE	CVATION (FEE	T) = 15	520.50				

PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.96

```
DOWNSTREAM ELEVATION (FEET) = 1518.67
 ELEVATION DIFFERENCE (FEET) = 1.83
TC = 0.303*[( 191.00**3)/( 1.83)]**.2 =
                                     6.277
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.087
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8842
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                    0.66
                   0.36 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
********************
 FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.63 DOWNSTREAM(FEET) = 1514.32
 FLOW LENGTH (FEET) = 59.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.90
                          9.00
 ESTIMATED PIPE DIAMETER (INCH) =
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                0.66
 PIPE TRAVEL TIME (MIN.) = 0.34 Tc (MIN.) =
                                     6.62
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 172.00 =
***********************
 FLOW PROCESS FROM NODE 172.00 TO NODE 172.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.045
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8839
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.07 SUBAREA RUNOFF(CFS) = 0.13
 TOTAL AREA (ACRES) =
                    0.4 TOTAL RUNOFF (CFS) =
 TC(MIN.) =
           6.62
******************
 FLOW PROCESS FROM NODE 172.00 TO NODE 154.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.32 DOWNSTREAM(FEET) = 1514.10
 FLOW LENGTH (FEET) = 45.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.94
 ESTIMATED PIPE DIAMETER (INCH) = 9.00
                                NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 0.79
 PIPE TRAVEL TIME (MIN.) = 0.25
                           Tc(MIN.) =
                                      6.87
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 154.00 =
                                               295.00 FEET.
******************
 FLOW PROCESS FROM NODE 154.00 TO NODE 154.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.87
 RAINFALL INTENSITY(INCH/HR) = 2.02
TOTAL STREAM AREA(ACRES) = 0.43
                         2.02
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                0.79
```

** CONFLUENCE DATA **

```
RUNOFF TC INTENSITY AREA (CFS) (MIN.) (INCH/HOUR) (ACRE) 2.03 7.22 1.978 1.31 0.79 6.87 2.016 0.43
 NUMBER
   1
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
         (CFS)
                (MIN.) (INCH/HOUR)
 NUMBER
          2.72 6.87 2.016
2.80 7.22 1.978
   1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.80 Tc(MIN.) = 7.22
TOTAL AREA(ACRES) = 1.7
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE
                                      154.00 =
                                                550.00 FEET.
*****************
 FLOW PROCESS FROM NODE 154.00 TO NODE 155.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.10 DOWNSTREAM(FEET) = 1513.91
 FLOW LENGTH (FEET) = 37.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.12
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                  NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 2.80
 PIPE TRAVEL TIME (MIN.) = 0.15
                            Tc(MIN.) =
                                       7.37
 LONGEST FLOWPATH FROM NODE
                       150.00 TO NODE 155.00 =
                                                587.00 FEET.
************************
 FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.37
 RAINFALL INTENSITY (INCH/HR) =
                          1.96
 TOTAL STREAM AREA (ACRES) = 1.74
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 2.80
*************************
 FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 203.00
 UPSTREAM ELEVATION (FEET) = 1524.30
 DOWNSTREAM ELEVATION (FEET) = 1520.26
 ELEVATION DIFFERENCE (FEET) =
                           4.04
 ELEVATION DIFFERENCE (FEET) = 4.04
TC = 0.303*[(203.00**3)/(4.04)]**.2 = 5.557
```

```
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.186
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8848
 SOIL CLASSIFICATION IS "D"
 SOIL CLASSIFICATION
SUBAREA RUNOFF(CFS) = 0.56

O.29 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 181.00 TO NODE 155.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.01 DOWNSTREAM(FEET) = 1513.91
 FLOW LENGTH (FEET) = 29.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.37
 ESTIMATED PIPE DIAMETER (INCH) = 9.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.56
 PIPE TRAVEL TIME (MIN.) = 0.20
                                        5.76
                             Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 180.00 TO NODE 155.00 =
*************************
 FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.76
 RAINFALL INTENSITY(INCH/HR) = 2.16
TOTAL STREAM AREA(ACRES) = 0.29
                           2.16
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 0.56
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                    Tc
                           INTENSITY
                                       AREA
           (CFS) (MIN.) (INCH/HOUK) 2.80 7.37 1.963 1.74 5.76 2.156 0.29
         (CFS)
 NUMBER
   1
           0.56
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                          INTENSITY
         (CFS) (MIN.) (INCH/HOU
2.75 5.76 2.156
3.31 7.37 1.963
 NUMBER
                 (MIN.) (INCH/HOUR)
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 3.31 Tc (MIN.) =
                                        7.37
 TOTAL AREA (ACRES) =
                       2.0
 LONGEST FLOWPATH FROM NODE
                         150.00 TO NODE
                                        155.00 =
*************************
 FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

²⁵

```
ELEVATION DATA: UPSTREAM(FEET) = 1513.91 DOWNSTREAM(FEET) = 1513.75
 FLOW LENGTH (FEET) = 33.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.18
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.31
 PIPE TRAVEL TIME (MIN.) = 0.13
                            Tc(MIN.) =
                                        7.50
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 156.00 =
************************
 FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.50
 RAINFALL INTENSITY(INCH/HR) = 1.95
TOTAL STREAM AREA(ACRES) = 2.03
                          1.95
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                  3.31
*******************
 FLOW PROCESS FROM NODE 190.00 TO NODE 191.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 314.00
 UPSTREAM ELEVATION (FEET) = 1525.80
 DOWNSTREAM ELEVATION (FEET) = 1520.70
 ELEVATION DIFFERENCE (FEET) = 5.10
TC = 0.303*[( 314.00**3)/( 5.10)]**.2 =
                                      6.890
   10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.014
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                      1.60
 TOTAL AREA (ACRES) =
                    0.90 TOTAL RUNOFF(CFS) =
*************************
 FLOW PROCESS FROM NODE 191.00 TO NODE 156.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.56 DOWNSTREAM(FEET) = 1513.75
 FLOW LENGTH (FEET) = 162.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.55
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.60
PIPE TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) =
                                        7.65
 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 156.00 =
*******************
 FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) =
                           7.65
```

```
RAINFALL INTENSITY(INCH/HR) = 1.93
TOTAL STREAM AREA(ACRES) = 0.90
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                       1.60
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        3.31
        7.50
        1.950
        2.0

        2
        1.60
        7.65
        1.935
        0.9

                                             2.03
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                             INTENSITY
           (CFS)
                     (MIN.) (INCH/HOUR)
 NUMBER
                             1.950
            4.88 7.50
4.89 7.65
     1
     2
                                1.935
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.88 Tc(MIN.) = TOTAL AREA(ACRES) = 2.9
                                              7.50
 TOTAL AREA (ACRES) =
                             150.00 TO NODE 156.00 =
 LONGEST FLOWPATH FROM NODE
                                                          620.00 FEET.
*****************
 FLOW PROCESS FROM NODE 156.00 TO NODE 108.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1513.75 DOWNSTREAM(FEET) = 1512.66
 FLOW LENGTH (FEET) = 70.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.17
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.88
PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
                                               7.66
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 108.00 =
                                                          690.00 FEET.
********************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 4.88 7.66 1.934 2.93

LONGEST FLOWPATH FROM NODE 150.00 TO NODE 108.00 = 690.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
         (CFS)
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 3.56 7.73 1.927 2.19
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 108.00 = 843.00 FEET.
```

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED

```
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ******************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
 NUMBER
        (CFS)
                (MIN.) (INCH/HOUR)
         8.41 7.66 1.934
8.42 7.73 1.927
    1
                  7.73
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 8.41
                          Tc(MIN.) = 7.66
 TOTAL AREA (ACRES) =
                     5.1
********************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
*****************
 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1512.66 DOWNSTREAM(FEET) = 1511.91
 FLOW LENGTH (FEET) = 48.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 12.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.92
ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                8.41
 PIPE TRAVEL TIME (MIN.) = 0.10 Tc (MIN.) =
                                     7.77
                       130.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                     109.00 =
********************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.77
 RAINFALL INTENSITY (INCH/HR) = 1.92
 TOTAL STREAM AREA(ACRES) = 5.12
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                               8.41
*****************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 317.00
 UPSTREAM ELEVATION (FEET) = 1524.74
 DOWNSTREAM ELEVATION (FEET) = 1517.89
 ELEVATION DIFFERENCE (FEET) = 6.85
TC = 0.303*[( 317.00**3)/( 6.85)]**.2 =
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.055
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8840
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 3.89
TOTAL AREA(ACRES) = 2.14 TOTAL RUNOFF(CFS) = 3.89
```

```
********************
 FLOW PROCESS FROM NODE 201.00 TO NODE 109.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1512.08 DOWNSTREAM(FEET) = 1511.91
 FLOW LENGTH (FEET) = 33.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.43
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.89
 PIPE TRAVEL TIME (MIN.) = 0.12
                           Tc(MIN.) =
                                      6.66
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                     109.00 =
                                                350.00 FEET.
*****************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.66
 RAINFALL INTENSITY (INCH/HR) =
                          2.04
 TOTAL STREAM AREA(ACRES) = 2.14
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                               3.89
 ** CONFLUENCE DATA **
 STREAM RUNOFF
NUMBER (CFS)
                 Tc
                        INTENSITY
                                    AREA
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
                       1.924
                7.77
          8.41
   1
                                     5.12
          3.89 6.66
                           2.040
                                       2.14
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *****************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
11.10 6.66 2.040
12.08 7.77 1.924
         (CFS)
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 12.08 Tc (MIN.) = TOTAL AREA (ACRES) = 7.3
                                     7.77
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 109.00 =
                                               891.00 FEET.
******************
 FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1511.91 DOWNSTREAM(FEET) = 1511.59
 FLOW LENGTH (FEET) = 21.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.74
```

```
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.08
 PIPE TRAVEL TIME (MIN.) = 0.04 Tc (MIN.) =
                                            7.81
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                            110.00 =
                                                       912.00 FEET.
*****************
 FLOW PROCESS FROM NODE 110.00 TO NODE 23.00 IS CODE = 31
  ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.56 DOWNSTREAM(FEET) = 1514.37
 FLOW LENGTH (FEET) = 18.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                               7.73
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.08
 PIPE TRAVEL TIME (MIN.) = 0.04 Tc (MIN.) =
                                           7.84
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                            23.00 =
                                                       930.00 FEET.
*******************
 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)  1 \quad 12.08 \quad 7.84 \quad 1.917 \quad 7.26 \\  \text{LONGEST FLOWPATH FROM NODE} \quad 130.00 \text{ TO NODE} \quad 23.00 = \quad 930.00 \text{ FEET.} 
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 10.87 14.24 1.527 7.17
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 2
                                            23.00 = 2065.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *****************
 ** PEAK FLOW RATE TABLE **

        STREAM
        RUNOFF
        Tc
        INTENSITY

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)

        1
        18.06
        7.84
        1.917

        2
        20.49
        14.24
        1.527

 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 18.06 Tc(MIN.) =
                                             7.84
 TOTAL AREA (ACRES) =
                        14.4
********************
 FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.37 DOWNSTREAM(FEET) = 1514.11
 FLOW LENGTH (FEET) = 51.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.48
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                     NUMBER OF PIPES = 1
```

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) (Rational Tabling Version 23.0)

Release Date: 07/01/2016 License ID 1334

Analysis prepared by:

```
* SP8950 SAN JACINTO
* PROPOSED ONSITE RATIONAL METHOD
* 100-YR STORM EVEN PJ
 ****************
 FILE NAME: SJ100RPR.DAT
 TIME/DATE OF STUDY: 15:25 01/10/2024
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
  ______
 USER SPECIFIED STORM EVENT (YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.730
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.874
 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.490
 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.760
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.3810757
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.3820757
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.760
 SLOPE OF INTENSITY DURATION CURVE = 0.3821
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
    (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
                                  _____
   30.0
           20.0
                  0.018/0.018/0.020
                                   0.67
                                         2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
```

```
UPSTREAM ELEVATION (FEET) = 1524.88
 DOWNSTREAM ELEVATION (FEET) = 1524.44
 ELEVATION DIFFERENCE (FEET) = 0.44
TC = 0.303*[( 68.00**3)/( 0.44)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.548
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8920
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 0.53
TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.91 DOWNSTREAM(FEET) = 1520.42
 FLOW LENGTH (FEET) = 99.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.68
ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 0.53
 PIPE TRAVEL TIME (MIN.) = 0.62 Tc (MIN.) = 5.62
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                      12.00 =
                                                167.00 FEET.
******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.351
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8917
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.47
TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.9
 TC(MIN.) =
           5.62
******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.42 DOWNSTREAM(FEET) = 1520.27
 FLOW LENGTH (FEET) = 29.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                           3.15
 ESTIMATED PIPE DIAMETER (INCH) = 9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.99
 PIPE TRAVEL TIME (MIN.) = 0.15
                            Tc(MIN.) =
                                      5.77
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                      13.00 =
                                               196.00 FEET.
*************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 5.77
 RAINFALL INTENSITY (INCH/HR) =
                         4.31
 TOTAL STREAM AREA(ACRES) = 0.25
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 0.99
```

```
******************
 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00
 UPSTREAM ELEVATION (FEET) = 1526.42
 DOWNSTREAM ELEVATION (FEET) = 1524.04
 ELEVATION DIFFERENCE (FEET) = 2.38
 TC = 0.303*[(300.00**3)/(2.38)]**.2 = 7.808
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.836
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8907
 SOIL CLASSIFICATION IS "D"
                      2.32
 SUBAREA RUNOFF (CFS) =
                   0.68 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
*****************
 FLOW PROCESS FROM NODE 31.00 TO NODE 13.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.35 DOWNSTREAM(FEET) = 1520.27
 FLOW LENGTH (FEET) = 13.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.16
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
 PIPE-FLOW(CFS) = 2.32
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) =
                                        7.86
 LONGEST FLOWPATH FROM NODE
                        30.00 TO NODE
                                       13.00 =
********************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.86
 RAINFALL INTENSITY (INCH/HR) = 3.83
 TOTAL STREAM AREA(ACRES) = 0.68
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                2.32
 ** CONFLUENCE DATA **
 ** CONFLOENCE DITT

STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 0.99 5.77 4.306

7 86 3.826
                                      AREA
                                      (ACRE)
                                     0.25
                                       0.68
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ********************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                          INTENSITY
                  (MIN.) (INCH/HOUR)
          (CFS)
 NUMBER
```

```
2.70 5.77 4.306
3.21 7.86 3.826
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 3.21 Tc (MIN.) = TOTAL AREA (ACRES) = 0.9
                                   7.86
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                   13.00 =
                                            313.00 FEET.
****************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.27 DOWNSTREAM(FEET) = 1519.96
 FLOW LENGTH (FEET) = 63.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.17
                              NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
 PIPE-FLOW(CFS) = 3.21
PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) =
                                    8.11
                                    14.00 =
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
*********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.781
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8905
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.64
TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 3.85
 TC(MIN.) =
**********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1519.96 DOWNSTREAM(FEET) = 1519.23
 FLOW LENGTH (FEET) = 146.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.36
                              NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
 PIPE-FLOW(CFS) = 3.85
 PIPE TRAVEL TIME (MIN.) = 0.56 Tc (MIN.) =
                                    8.67
 LONGEST FLOWPATH FROM NODE
                      30.00 TO NODE
                                    15.00 =
                                             522.00 FEET.
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.686
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8903
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.49 SUBAREA RUNOFF(CFS) = 1.61
TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 5.4
 TC(MIN.) =
          8.67
******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 31
 ______
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1519.23 DOWNSTREAM(FEET) = 1516.77
 FLOW LENGTH (FEET) = 490.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.80
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.45
PIPE TRAVEL TIME(MIN.) = 1.70 Tc(MIN.) = 10.37
                                      16.00 =
 LONGEST FLOWPATH FROM NODE
                        30.00 TO NODE
                                              1012.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.37
RAINFALL INTENSITY(INCH/HR) = 3.44
TOTAL STREAM AREA(ACRES) = 1.61
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 5.45
************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION (FEET) = 1524.00
 DOWNSTREAM ELEVATION (FEET) = 1522.66
 ELEVATION DIFFERENCE (FEET) = 1.34
TC = 0.303*[( 97.00**3)/( 1.34)]**.2 =
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.548
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8920
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) = 1.50

TOTAL AREA (ACRES) = 0.37 TOTAL RUNOFF (CFS) =
************************
 FLOW PROCESS FROM NODE 41.00 TO NODE 16.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1517.17 DOWNSTREAM(FEET) = 1516.77
 FLOW LENGTH (FEET) = 79.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.51
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.50
 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) =
                                     5.38
 LONGEST FLOWPATH FROM NODE
                        40.00 TO NODE
                                       16.00 =
                                                176.00 FEET.
*****************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 5.38
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.37
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 1.50
 ** CONFLUENCE DATA **
 | STREAM | RUNOFF | TC | INTENSITY | AREA | NUMBER | (CFS) | (MIN.) | (INCH/HOUR) | (ACRE) | 1 | 5.45 | 10.37 | 3.442 | 1.61 | 2 | 1.50 | 5.38 | 4.424 | 0.37
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF To
                         INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
4.33 5.38 4.424
6.62 10.37 3.442
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.62 Tc(MIN.) = 10.37 TOTAL AREA(ACRES) = 2.0
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                       16.00 = 1012.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.77 DOWNSTREAM(FEET) = 1516.53
 FLOW LENGTH (FEET) = 48.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.98
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.62
 PIPE TRAVEL TIME (MIN.) = 0.16 Tc (MIN.) = 10.53
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                        17.00 =
                                                  1060.00 FEET.
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.422
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8897
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.16 SUBAREA RUNOFF(CFS) = 0.49
TOTAL AREA(ACRES) = 2.1 TOTAL RUNOFF(CFS) = 7.1
 TC(MIN.) =
          10.53
*****************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
  ------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<

```
ELEVATION DATA: UPSTREAM(FEET) = 1516.53 DOWNSTREAM(FEET) = 1516.37
 FLOW LENGTH (FEET) = 33.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.96
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.11
 PIPE TRAVEL TIME (MIN.) = 0.11 Tc (MIN.) = 10.64
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 18.00 = 1093.00 FEET.
*************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 10.64
 RAINFALL INTENSITY(INCH/HR) = 3.41
TOTAL STREAM AREA(ACRES) = 2.14
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                  7.11
******************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 430.00
 UPSTREAM ELEVATION (FEET) = 1526.34
 DOWNSTREAM ELEVATION (FEET) = 1522.26
 ELEVATION DIFFERENCE (FEET) = 4.08
 TC = 0.303*[(430.00**3)/(4.08)]**.2 =
                                      8.700
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.681
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8903
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                      3.97
 TOTAL AREA (ACRES) =
                   1.21 TOTAL RUNOFF (CFS) =
*************************
 FLOW PROCESS FROM NODE 51.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.51 DOWNSTREAM(FEET) = 1516.37
 FLOW LENGTH (FEET) = 30.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.26
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.97
PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) =
                                      8.82
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE
                                       18.00 =
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) =
                           8.82
```

```
RAINFALL INTENSITY(INCH/HR) = 3.66
TOTAL STREAM AREA(ACRES) = 1.21
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 3.97
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITE (ACRE)

WIMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

2 408 2.1
          7.11 10.64 3.408
3.97 8.82 3.662
                                     2.14
    1
    2
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS)
                 (MIN.) (INCH/HOUR)
 NUMBER
                       3.662
    1
          9.85
                 8.82
         10.80 10.64
    2
                          3.408
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 10.80 Tc(MIN.) = TOTAL AREA(ACRES) = 3.4
                                      10.64
                         30.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                      18.00 = 1093.00 FEET.
*************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.37 DOWNSTREAM(FEET) = 1516.13
 FLOW LENGTH (FEET) = 48.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.57
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.80
 PIPE TRAVEL TIME (MIN.) = 0.14 Tc (MIN.) = 10.79
 LONGEST FLOWPATH FROM NODE 30.00 TO NODE
                                      19.00 = 1141.00 \text{ FEET}.
********************
 FLOW PROCESS FROM NODE 19.00 TO NODE 19.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.391
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8896
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.27
TOTAL AREA(ACRES) = 3.4 TOTAL RUNOFF(CFS) = 11.0
                   3.4 TOTAL RUNOFF (CFS) = 11.07
 TOTAL AREA (ACRES) =
 TC(MIN.) = 10.79
************************
 FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.13 DOWNSTREAM(FEET) = 1515.07
```

FLOW LENGTH (FEET) = 212.00 MANNING'S N = 0.012

```
DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.59
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) =
                11.07
 PIPE TRAVEL TIME (MIN.) = 0.63
                         Tc(MIN.) = 11.42
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                     20.00 =
                                            1353.00 FEET.
******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.318
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8894
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) = 2.01
TOTAL AREA(ACRES) = 4.1 TOTAL RUNOFF(CFS) = 13.
 TC(MIN.) = 11.42
*****************
 FLOW PROCESS FROM NODE
                   20.00 TO NODE 21.00 \text{ IS CODE} = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.07 DOWNSTREAM(FEET) = 1514.80
 FLOW LENGTH (FEET) = 42.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 6.35
                               NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
 PIPE-FLOW(CFS) = 13.08
 PIPE TRAVEL TIME (MIN.) = 0.11 Tc (MIN.) = 11.53
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                     21.00 =
                                            1395.00 FEET.
********************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 1523.50
 DOWNSTREAM ELEVATION (FEET) = 1521.80
 ELEVATION DIFFERENCE (FEET) = 1.70
TC = 0.303*[( 227.00**3)/( 1.70)]**.2 = 7.065
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.985
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8910
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) = 1.70
                   0.48 TOTAL RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
********************
 FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1515.61 DOWNSTREAM(FEET) = 1515.51
 FLOW LENGTH (FEET) = 8.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.98
ESTIMATED PIPE DIAMETER(INCH) = 9.00
 ESTIMATED PIPE DIAMETER (INCH) =
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.70
PIPE TRAVEL TIME(MIN.) = 0.03
                                      7.09
                           Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                       62.00 =
********************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.980
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8910
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.07 SUBAREA RUNOFF(CFS) = 0.25
 TOTAL AREA (ACRES) =
                     0.6 TOTAL RUNOFF(CFS) =
 TC(MIN.) = 7.09
************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.51 DOWNSTREAM(FEET) = 1514.95
 FLOW LENGTH (FEET) = 112.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.70
ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.95
 PIPE TRAVEL TIME (MIN.) = 0.50 Tc (MIN.) = 7.60
                         60.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                       63.00 =
                                                 347.00 FEET.
******************
 FLOW PROCESS FROM NODE 63.00 TO NODE 63.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.60
 RAINFALL INTENSITY (INCH/HR) = 3.88
 TOTAL STREAM AREA(ACRES) = 0.55
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 1.95
*******************
 FLOW PROCESS FROM NODE 70.00 TO NODE 71.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 1526.13
 DOWNSTREAM ELEVATION (FEET) =
                         1520.93
 ELEVATION DIFFERENCE (FEET) = 5.20
TC = 0.303*[( 543.00**3)/( 5.20)]**.2 =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.554
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900
 SOIL CLASSIFICATION IS "D"
                      7.91
 SUBAREA RUNOFF (CFS) =
```

```
TOTAL AREA (ACRES) =
                  2.50 TOTAL RUNOFF(CFS) =
************************
 FLOW PROCESS FROM NODE 71.00 TO NODE 63.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.46 DOWNSTREAM(FEET) = 1514.95
 FLOW LENGTH (FEET) = 102.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.26
 ESTIMATED PIPE DIAMETER (INCH) = 21.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.91
PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) =
                                      9.86
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                     63.00 =
                                               645.00 FEET.
*******************
 FLOW PROCESS FROM NODE 63.00 TO NODE 63.00 IS CODE = 1
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.86
 RAINFALL INTENSITY (INCH/HR) =
                         3.51
 TOTAL STREAM AREA(ACRES) = 2.50
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                               7.91
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc INTENSITY
                                   AREA
                (MIN.) (INCH/HOUR)
         (CFS)
 NUMBER
                                   (ACRE)
          1.95 7.60 3.876
    1
                9.86
    2
          7.91
                          3.509
                                      2.50
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS)
                      (INCH/HOUR)
 NUMBER
                 (MIN.)
          8.05
                       3.876
                 7.60
    1
                9.86
          9.68
                         3.509
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 9.68 Tc (MIN.) = 9.86
TOTAL AREA (ACRES) = 3.0
 LONGEST FLOWPATH FROM NODE
                       70.00 TO NODE
                                     63.00 =
                                              645.00 FEET.
**********************
 FLOW PROCESS FROM NODE 63.00 TO NODE 21.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.95 DOWNSTREAM(FEET) = 1514.80
 FLOW LENGTH (FEET) = 19.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.5 INCHES
```

```
PIPE-FLOW VELOCITY (FEET/SEC.) = 6.35
 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.68
 PIPE TRAVEL TIME (MIN.) = 0.05 Tc (MIN.) =
 LONGEST FLOWPATH FROM NODE 70.00 TO NODE
                                     21.00 =
                                              664.00 FEET.
*******************
 FLOW PROCESS FROM NODE 21.00 TO NODE
                                21.00 \text{ IS CODE} = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                  AREA
      (CFS)
                      (INCH/HOUR) (ACRE)
3.503 3.05
 NUMBER
                 (MIN.)
         (CFS) (MIN.)
9.68 9.91
  1
 1 9.68 9.91 3.503 3.05
LONGEST FLOWPATH FROM NODE 70.00 TO NODE 21.00 =
                                             664.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                       (INCH/HOUR) (ACRE)
3.305 4.12
        13.08 11.53
   1
 1 13.08 11.53 3.305 4.12
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 21.00 = 1395.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*******************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
                 (MIN.) (INCH/HOUR)
 NUMBER
        (CFS)
        20.91 9.52
21.53
                 9.91
                       3.503
   1
                           3.305
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 22.21 Tc (MIN.) = 11.53
 TOTAL AREA (ACRES) =
                    7.2
*******************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.00 IS CODE = 12
_____
 >>>>CLEAR MEMORY BANK # 1 <<<<<
************************
FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 31
______
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.80 DOWNSTREAM(FEET) = 1514.78
 FLOW LENGTH (FEET) = 16.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.98
 ESTIMATED PIPE DIAMETER (INCH) = 36.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                22.21
 PIPE TRAVEL TIME (MIN.) = 0.07 Tc (MIN.) = 11.60
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                     22.00 =
                                             1411.00 FEET.
*******************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1517.64 DOWNSTREAM(FEET) = 1514.37
 FLOW LENGTH (FEET) = 654.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.62
 ESTIMATED PIPE DIAMETER (INCH) = 27.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 22.21
 PIPE TRAVEL TIME (MIN.) = 1.65 Tc (MIN.) = 13.24
 LONGEST FLOWPATH FROM NODE
                       30.00 TO NODE
                                      23.00 =
                                              2065.00 FEET.
******************
 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*******************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 1523.97
 DOWNSTREAM ELEVATION (FEET) = 1521.00
 ELEVATION DIFFERENCE (FEET) =
 TC = 0.303*[(106.00**3)/(
                        2.97)1**.2 =
                                    4.001
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.548
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8920
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) = 0.49
                   0.12 TOTAL RUNOFF (CFS) =
 TOTAL AREA (ACRES) =
************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1516.36 DOWNSTREAM(FEET) = 1516.19
 FLOW LENGTH (FEET) = 34.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.63
ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.49
 PIPE TRAVEL TIME (MIN.) = 0.22
                           Tc(MIN.) =
                                      5.22
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 =
*************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.476
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8919
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 1.48 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 1.5
 TC(MIN.) =
          5.22
**********************
```

```
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.19 DOWNSTREAM(FEET) = 1515.54
 FLOW LENGTH (FEET) = 130.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.70
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.96
 PIPE TRAVEL TIME (MIN.) = 0.58
                          Tc(MIN.) =
                                     5.80
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                              270.00 FEET.
                                    103.00 =
****************
 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.297
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8916
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.42
 TOTAL AREA (ACRES) = 0.6 TOTAL RUNOFF (CFS) =
 TC(MIN.) = 5.80
************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1515.54 DOWNSTREAM(FEET) = 1515.34
 FLOW LENGTH (FEET) = 40.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.83
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.39
 PIPE TRAVEL TIME (MIN.) = 0.17
                           Tc(MIN.) =
                                      5.97
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 =
                                              310.00 FEET.
*************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 5.97
 RAINFALL INTENSITY(INCH/HR) = 4.25
TOTAL STREAM AREA(ACRES) = 0.60
                         4.25
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                2.39
*************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 117.00
 UPSTREAM ELEVATION (FEET) = 1525.00
 DOWNSTREAM ELEVATION (FEET) = 1523.13
 ELEVATION DIFFERENCE (FEET) =
```

```
TC = 0.303*[(117.00**3)/(1.87)]**.2 = 4.657
 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.548
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8920
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                      0.45
 TOTAL AREA (ACRES) =
                    0.11 TOTAL RUNOFF (CFS) =
****************
 FLOW PROCESS FROM NODE 121.00 TO NODE 104.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.63 DOWNSTREAM(FEET) = 1515.34
 FLOW LENGTH (FEET) = 27.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.41
 ESTIMATED PIPE DIAMETER (INCH) = 6.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.45
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) =
                                        5.13
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 104.00 =
*******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 5.13
 RAINFALL INTENSITY (INCH/HR) = 4.50
 TOTAL STREAM AREA(ACRES) = 0.11
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 0.45
 ** CONFLUENCE DATA **
 ** CONFEDERAL DILL

STREAM RUNOFF TC INTENSITY ACC...

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 2.39 5.97 4.249 0.6

- 45 5.13 4.503 0.1
                                       0.60
                                         0.11
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC NUMBER (CFS) (MIN.)
                         INTENSITY
                   (MIN.) (INCH/HOUR)
                        4.503
           2.50 5.13
2.81 5.97
   1
                           4.249
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 2.81 Tc(MIN.) =
 TOTAL AREA (ACRES) =
                       0.7
 LONGEST FLOWPATH FROM NODE
                         100.00 TO NODE
                                        104.00 =
*******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.34 DOWNSTREAM(FEET) = 1514.71
 FLOW LENGTH (FEET) = 126.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.07
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.81
PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) =
                                       6.49
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                      105.00 =
                                                436.00 FEET.
*******************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.49
RAINFALL INTENSITY (INCH/HR) = 4.12
 RAINFALL INTENSITY(INCH/HR) = 4.12
TOTAL STREAM AREA(ACRES) = 0.71
                          4.12
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
************************
 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21
    ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 354.00
 UPSTREAM ELEVATION (FEET) = 1523.57
 DOWNSTREAM ELEVATION (FEET) = 1520.36
 ELEVATION DIFFERENCE (FEET) = 3.21
TC = 0.303*[( 354.00**3)/( 3.21)]**.2 =
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.779
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8905
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) = 2.46

TOTAL AREA (ACRES) = 0.73 TOTAL RUNOFF (CFS) =
*******************
 FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1515.86 DOWNSTREAM(FEET) = 1515.37
 FLOW LENGTH (FEET) = 97.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.86
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.46
 PIPE TRAVEL TIME (MIN.) = 0.42
                           Tc(MIN.) =
                                      8.54
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                      132.00 =
                                                451.00 FEET.
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.707
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8904
```

```
SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.26
TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 2.7
 TC(MIN.) =
            8.54
*************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 105.00 IS CODE = 31
  ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.37 DOWNSTREAM(FEET) = 1514.71
 FLOW LENGTH (FEET) = 129.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                              4.08
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.72
PIPE TRAVEL TIME(MIN.) = 0.53 Tc(MIN.) =
                                           9.07
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 105.00 =
                                                      580.00 FEET.
********************
 FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 9.07
 RAINFALL INTENSITY(INCH/HR) = 3.62
TOTAL STREAM AREA(ACRES) = 0.81
                             3.62
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                  2.72
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        2.81
        6.49
        4.117
        0.7

        2
        2.72
        9.07
        3.623
        0.8

                                          0.71
                                            0.81
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
          (CFS)
 NUMBER
                   (MIN.) (INCH/HOUR)
            4.75 6.49 4.117
5.19 9.07 3.623
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.75 Tc(MIN.) = TOTAL AREA(ACRES) = 1.5
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                           105.00 =
                                                       580.00 FEET.
****************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
_____
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1514.71 DOWNSTREAM(FEET) = 1514.19
 FLOW LENGTH (FEET) = 104.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 12.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.48
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.75
PIPE TRAVEL TIME(MIN.) = 0.39
                           Tc(MIN.) =
                                       6.88
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 106.00 =
                                                 684.00 FEET.
**********************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<-<-
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.88
 RAINFALL INTENSITY (INCH/HR) =
                          4.03
 TOTAL STREAM AREA(ACRES) = 1.52
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 4.75
******************
 FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 230.00
 UPSTREAM ELEVATION(FEET) = 1524.75
 DOWNSTREAM ELEVATION (FEET) = 1521.05
 ELEVATION DIFFERENCE (FEET) = 3.70
 TC = 0.303*[(230.00**3)/(3.70)]**.2 = 6.095
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.217
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8914
 SOIL CLASSIFICATION IS "D"
                      2.29
 SUBAREA RUNOFF (CFS) =
                    0.61 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
*************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 106.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.37 DOWNSTREAM(FEET) = 1514.19
 FLOW LENGTH (FEET) = 36.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.81
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.29
 PIPE TRAVEL TIME (MIN.) = 0.16 Tc (MIN.) =
                                       6.25
                                       106.00 =
 LONGEST FLOWPATH FROM NODE
                        140.00 TO NODE
************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.25
RAINFALL INTENSITY(INCH/HR) = 4.18
```

```
PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                        2.29
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        4.75
        6.88
        4.027
        1.5

        2
        2.29
        6.25
        4.176
        0.6

                                              1.52
                                                 0.61
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ********************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **

        STREAM
        RUNOFF
        Tc
        INTENSIT

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOU

        1
        6.61
        6.25
        4.176

        2
        6.96
        6.88
        4.027

                              INTENSITY
                      (MIN.) (INCH/HOUR)
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.96 Tc(MIN.) = TOTAL AREA(ACRES) = 2.1
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 106.00 =
*************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.19 DOWNSTREAM(FEET) = 1512.97
 FLOW LENGTH (FEET) = 127.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 6.52
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.96
 PIPE TRAVEL TIME (MIN.) = 0.32 Tc (MIN.) =
                                                7.20
                                                107.00 =
                              130.00 TO NODE
                                                            811.00 FEET.
 LONGEST FLOWPATH FROM NODE
*****************
 FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.956
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8909
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.21
TOTAL AREA(ACRES) = 2.2 TOTAL RUNOFF(CFS) = 7.18
 TC(MIN.) = 7.20
*******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1512.97 DOWNSTREAM(FEET) = 1512.66
 FLOW LENGTH (FEET) = 32.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES
```

TOTAL STREAM AREA (ACRES) = 0.61

```
PIPE-FLOW VELOCITY (FEET/SEC.) = 6.59
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                               NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 7.18
 PIPE TRAVEL TIME (MIN.) = 0.08
                          Tc(MIN.) =
                                    108.00 =
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                               843.00 FEET.
*******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION (FEET) = 1525.50
 DOWNSTREAM ELEVATION (FEET) = 1520.21
 ELEVATION DIFFERENCE (FEET) = 5.29
TC = 0.303*[( 221.00**3)/( 5.29)]**.2 =
                                     5.540
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.373
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8917
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                    2.26
                  0.58 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
**********************
 FLOW PROCESS FROM NODE 151.00 TO NODE 152.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.74 DOWNSTREAM(FEET) = 1514.49
 FLOW LENGTH (FEET) = 252.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.78
ESTIMATED PIPE DIAMETER(INCH) = 12.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                2.26
 PIPE TRAVEL TIME (MIN.) = 1.11 Tc(MIN.) =
                                     6.65
 LONGEST FLOWPATH FROM NODE
                       150.00 TO NODE 152.00 =
************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 152.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.079
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8912
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.44
                     0.7 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
 TC(MIN.) =
           6.65
*************************
 FLOW PROCESS FROM NODE 152.00 TO NODE 153.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.49 DOWNSTREAM(FEET) = 1514.41
```

```
FLOW LENGTH (FEET) = 14.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.12
ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                   NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 2.70
 PIPE TRAVEL TIME (MIN.) = 0.06
                             Tc(MIN.) =
                                         6.71
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 153.00 =
                                                  487.00 FEET.
******************
 FLOW PROCESS FROM NODE 153.00 TO NODE 153.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.71
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 0.70
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                   2.70
*******************
 FLOW PROCESS FROM NODE 160.00 TO NODE 161.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 293.00
 UPSTREAM ELEVATION (FEET) = 1521.25
 DOWNSTREAM ELEVATION (FEET) = 1520.45
 ELEVATION DIFFERENCE (FEET) =
                           0.80
 TC = 0.303*[(293.00**3)/(0.80)]**.2 = 9.574
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.549
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900
 SOIL CLASSIFICATION IS "D"
 SOIL CLASSIFICATED = 1.93
SUBAREA RUNOFF (CFS) = 1.93
O.61 TOTAL RUNOFF (CFS) =
*******************
 FLOW PROCESS FROM NODE 161.00 TO NODE 153.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.45 DOWNSTREAM(FEET) = 1514.41
 FLOW LENGTH (FEET) = 8.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.69
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.93
PIPE TRAVEL TIME(MIN.) = 0.04
                             Tc(MIN.) =
                                        9.61
 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 153.00 =
********************
 FLOW PROCESS FROM NODE 153.00 TO NODE 153.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.61
RAINFALL INTENSITY(INCH/HR) = 3.54
                         0.61
 TOTAL STREAM AREA(ACRES) =
```

```
** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AND (ACRE)

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
          2.70 6.71 4.065
    1
                                    0.70
          1.93 9.61
                          3.543
                                      0.61
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS)
                       (INCH/HOUR)
 NUMBER
                 (MIN.)
          4.04 6.71 4.065
4.28 9.61 3.543
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.04 Tc(MIN.) = TOTAL AREA(ACRES) = 1.3
                                     6.71
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE
                                     153.00 =
                                               487.00 FEET.
*******************
 FLOW PROCESS FROM NODE 153.00 TO NODE 154.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.41 DOWNSTREAM(FEET) = 1514.10
 FLOW LENGTH (FEET) = 63.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.37
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.04
 PIPE TRAVEL TIME (MIN.) = 0.24
                           Tc(MIN.) =
                                     6 95
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 154.00 =
******************
 FLOW PROCESS FROM NODE 154.00 TO NODE 154.00 IS CODE = 1
  ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.95
 RAINFALL INTENSITY (INCH/HR) =
                         4.01
 TOTAL STREAM AREA (ACRES) = 1.31
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                4.04
************************
 FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 191.00
 UPSTREAM ELEVATION (FEET) = 1520.50
```

PEAK FLOW RATE (CFS) AT CONFLUENCE =

```
DOWNSTREAM ELEVATION (FEET) = 1518.67
 ELEVATION DIFFERENCE (FEET) = 1.83
TC = 0.303*[( 191.00**3)/( 1.83)]**.2 =
                                      6.277
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.170
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8913
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                     1.34
                   0.36 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
********************
 FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.63 DOWNSTREAM(FEET) = 1514.32
 FLOW LENGTH (FEET) = 59.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.45
ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.34
 PIPE TRAVEL TIME (MIN.) = 0.29 Tc (MIN.) =
                                      6.56
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 172.00 =
************************
 FLOW PROCESS FROM NODE 172.00 TO NODE 172.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.100
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8912
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.07 SUBAREA RUNOFF(CFS) = 0.26
 TOTAL AREA (ACRES) =
                     0.4 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
           6.56
*******************
 FLOW PROCESS FROM NODE 172.00 TO NODE 154.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.32 DOWNSTREAM(FEET) = 1514.10
 FLOW LENGTH (FEET) = 45.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.51
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
                                 NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 1.59
 PIPE TRAVEL TIME (MIN.) = 0.21
                           Tc(MIN.) =
                                       6.78
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 154.00 =
                                               295.00 FEET.
*******************
 FLOW PROCESS FROM NODE 154.00 TO NODE 154.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.78
 RAINFALL INTENSITY(INCH/HR) = 4.05
TOTAL STREAM AREA(ACRES) = 0.43
                         4.05
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 1.59
```

** CONFLUENCE DATA **

```
RUNOFF TC INTENSITY AREA
(CFS) (MIN.) (INCH/HOUR) (ACRE)
4.04 6.95 4.011 1.31
1.59 6.78 4.050 0.43
 NUMBER
    1
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
         (CFS)
                (MIN.) (INCH/HOUR)
 NUMBER
          5.54 6.78 4.050
5.62 6.95 4.011
   1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.62 Tc(MIN.) = 6.95
TOTAL AREA(ACRES) = 1.7
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE
                                      154.00 =
                                                550.00 FEET.
*****************
 FLOW PROCESS FROM NODE 154.00 TO NODE 155.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.10 DOWNSTREAM(FEET) = 1513.91
 FLOW LENGTH (FEET) = 37.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.87
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                  NUMBER OF PIPES =
 PIPE-FLOW(CFS) = 5.62
 PIPE TRAVEL TIME (MIN.) = 0.13
                           Tc(MIN.) =
                                       7.07
 LONGEST FLOWPATH FROM NODE
                        150.00 TO NODE 155.00 =
                                                587.00 FEET.
*************************
 FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 1
 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.07
 RAINFALL INTENSITY (INCH/HR) =
                          3.98
 TOTAL STREAM AREA (ACRES) = 1.74
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 5.62
*************************
 FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 203.00
 UPSTREAM ELEVATION (FEET) = 1524.30
 DOWNSTREAM ELEVATION (FEET) = 1520.26
 ELEVATION DIFFERENCE (FEET) =
                           4.04
 ELEVATION DIFFERENCE (FEET) = 4.04
TC = 0.303*[(203.00**3)/(4.04)]**.2 = 5.557
```

```
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.368
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8917
 SOIL CLASSIFICATION IS "D"
 *******************
 FLOW PROCESS FROM NODE 181.00 TO NODE 155.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.01 DOWNSTREAM(FEET) = 1513.91
 FLOW LENGTH (FEET) = 29.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.83
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER (INCH) = 12.00
 PIPE-FLOW(CFS) = 1.13
 PIPE TRAVEL TIME (MIN.) = 0.17
                                       5.73
                             Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 180.00 TO NODE 155.00 =
*************************
 FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 5.73
 RAINFALL INTENSITY(INCH/HR) = 4.32
TOTAL STREAM AREA(ACRES) = 0.29
                           4.32
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.13
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                    Tc
                          INTENSITY
                                      AREA
         (CFS) (MIN.) (INCH/HOUR) (5.62 7.07 3.984 1.74 7.72 4.318 0.29
 NUMBER
   1
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *******************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                         INTENSITY
         (CFS) (MIN.) (INCH/HOU
5.68 5.73 4.318
6.66 7.07 3.984
 NUMBER
                 (MIN.) (INCH/HOUR)
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.66 Tc(MIN.) = TOTAL AREA(ACRES) = 2.0
                                       7.07
 LONGEST FLOWPATH FROM NODE
                         150.00 TO NODE
                                       155.00 =
*************************
 FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1513.91 DOWNSTREAM(FEET) = 1513.75
 FLOW LENGTH (FEET) = 33.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.9 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.92
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.66
 PIPE TRAVEL TIME (MIN.) = 0.11
                            Tc(MIN.) =
                                       7.19
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 156.00 =
*************************
 FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.19
 RAINFALL INTENSITY (INCH/HR) =
                          3.96
 TOTAL STREAM AREA (ACRES) = 2.03
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                 6.66
*******************
 FLOW PROCESS FROM NODE 190.00 TO NODE 191.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 314.00
 UPSTREAM ELEVATION (FEET) = 1525.80
 DOWNSTREAM ELEVATION (FEET) = 1520.70
 ELEVATION DIFFERENCE (FEET) = 5.10
TC = 0.303*[( 314.00**3)/( 5.10)]**.2 =
                                       6.890
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.024
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8910
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF (CFS) =
                      3.23
                    0.90 TOTAL RUNOFF(CFS) =
 TOTAL AREA (ACRES) =
*************************
 FLOW PROCESS FROM NODE 191.00 TO NODE 156.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.56 DOWNSTREAM(FEET) = 1513.75
 FLOW LENGTH (FEET) = 162.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.21
 ESTIMATED PIPE DIAMETER (INCH) = 15.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.23
PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) =
                                       7.53
 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 156.00 =
********************
 FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) =
```

```
RAINFALL INTENSITY(INCH/HR) = 3.89
TOTAL STREAM AREA(ACRES) = 0.90
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                        3.23
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        6.66
        7.19
        3.960
        2.0

        2
        3.23
        7.53
        3.889
        0.9

                                            2.03
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                             INTENSITY
           (CFS)
                     (MIN.) (INCH/HOUR)
 NUMBER
                             3.960
            9.74 7.19
9.77 7.53
     1
     2
                                3.889
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.74 Tc(MIN.) = TOTAL AREA(ACRES) = 2.9
                                              7.19
                             150.00 TO NODE 156.00 =
 LONGEST FLOWPATH FROM NODE
                                                          620.00 FEET.
*****************
 FLOW PROCESS FROM NODE 156.00 TO NODE 108.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1513.75 DOWNSTREAM(FEET) = 1512.66
 FLOW LENGTH (FEET) = 70.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.48
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.74
PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) =
                                               7.32
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 108.00 =
                                                          690.00 FEET.
********************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA

NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)

1 9.74 7.32 3.931 2.93

LONGEST FLOWPATH FROM NODE 150.00 TO NODE 108.00 = 690.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
         (CFS)
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 7.18 7.28 3.940 2.19
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 108.00 = 843.00 FEET.
```

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED

```
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ******************
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
 NUMBER
         (CFS)
                (MIN.) (INCH/HOUR)
    1
         16.86 7.28
16.90 7.32
                          3.940
         16.90
                            3.931
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 16.90
                           Tc(MIN.) = 7.32
 TOTAL AREA (ACRES) =
                     5.1
********************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
*****************
 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1512.66 DOWNSTREAM(FEET) = 1511.91
 FLOW LENGTH (FEET) = 48.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.67
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.90
 PIPE TRAVEL TIME (MIN.) = 0.08 Tc (MIN.) =
                                     7.41
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                     109.00 =
********************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.41
 RAINFALL INTENSITY (INCH/HR) = 3.91
 TOTAL STREAM AREA(ACRES) = 5.12
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                               16.90
*****************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 317.00
 UPSTREAM ELEVATION (FEET) = 1524.74
 DOWNSTREAM ELEVATION (FEET) = 1517.89
 ELEVATION DIFFERENCE (FEET) = 6.85
TC = 0.303*[( 317.00**3)/( 6.85)]**.2 =
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.107
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8912
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 7.83
TOTAL AREA(ACRES) = 2.14 TOTAL RUNOFF(CFS) = 7.83
```

```
*******************
 FLOW PROCESS FROM NODE 201.00 TO NODE 109.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1512.08 DOWNSTREAM(FEET) = 1511.91
 FLOW LENGTH (FEET) = 33.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.13
 ESTIMATED PIPE DIAMETER (INCH) = 18.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.83
 PIPE TRAVEL TIME (MIN.) = 0.11
                           Tc(MIN.) =
                                      6.64
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                     109.00 =
******************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.64
 RAINFALL INTENSITY (INCH/HR) =
                         4.08
 TOTAL STREAM AREA (ACRES) = 2.14
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                                7.83
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC
NUMBER (CFS) (MIN.)
                        INTENSITY
                                    AREA
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
         16.90 7.41 3.914
   1
                                     5.12
                 6.64
          7.83
                           4.081
                                       2.14
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *****************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
22.99 6.64 4.081
24.41 7.41 3.914
         (CFS)
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 24.41 Tc (MIN.) = TOTAL AREA (ACRES) = 7.3
                                     7.41
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 109.00 =
                                               891.00 FEET.
******************
 FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1511.91 DOWNSTREAM(FEET) = 1511.59
 FLOW LENGTH (FEET) = 21.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.7 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.48
```

```
ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 24.41
 PIPE TRAVEL TIME (MIN.) = 0.03 Tc (MIN.) =
                                      7.44
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                     110.00 =
                                               912.00 FEET.
*****************
 FLOW PROCESS FROM NODE 110.00 TO NODE 23.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.56 DOWNSTREAM(FEET) = 1514.37
 FLOW LENGTH (FEET) = 18.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) =
                          8.90
 ESTIMATED PIPE DIAMETER (INCH) = 24.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 24.41
 PIPE TRAVEL TIME (MIN.) = 0.03
                          Tc(MIN.) = 7.47
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                      23.00 =
                                               930.00 FEET.
*******************
 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 24.41 7.47 3.901 7.26
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 23.00 = 930.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
         (CFS) (MIN.) (INCH/HOUR) (ACRE)
 NUMBER
 1 22.21 13.24 3.135 7.17 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 2
                                      23.00 = 2065.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*****************
 ** PEAK FLOW RATE TABLE **
         (CFS) (MIN.) (INCH/HOUR)
36.95 7.47 3.901
41.83 13.24 3.135
 STREAM RUNOFF Tc
 NUMBER
        (CFS)
   1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 36.95 Tc (MIN.) = 7.47
 TOTAL AREA (ACRES) =
                     14.4
********************
 FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.37 DOWNSTREAM(FEET) = 1514.11
 FLOW LENGTH (FEET) = 51.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.62
ESTIMATED PIPE DIAMETER (INCH) = 33.00
                                NUMBER OF PIPES = 1
```

END OF RATIONAL METHOD ANALYSIS

Appendix F - Offsite Storm Facility Exhibit

TAIT JOB # SP8950 Appendix F

Appendix G - Offsite Hydrology Map and Rational Method

TAIT JOB # SP8950 Appendix G

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Release Date: 07/01/2016 License ID 1334

Analysis prepared by:

```
******************* DESCRIPTION OF STUDY ***************
* SP8950 SAN JACINTO
* OFFSITE RUN-ON RATIONAL METHOD
* 10-YEAR STORM EVENT PJ
****************************
 FILE NAME: SJ10RO.DAT
 TIME/DATE OF STUDY: 13:54 09/06/2023
    USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.730
 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.874
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.490
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.760
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.3810757
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.3820757
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT =
               10.00
                      1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.3811
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO
                   STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                      HIKE FACTOR
NO.
             (FT)
                   SIDE / SIDE/ WAY (FT)
                                           (FT) (FT)
1
     30.0
            20.0
                   0.018/0.018/0.020
                                   0.67
                                           2.00 0.0313 0.167 0.0150
```

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

```
1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
*******************************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 962.00
 UPSTREAM ELEVATION(FEET) = 1556.00
 DOWNSTREAM ELEVATION(FEET) = 1551.00
 ELEVATION DIFFERENCE(FEET) =
                         5.00
 TC = 0.393*[(962.00**3)/(5.00)]**.2 = 17.541
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.410
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .5996
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 4.53
TOTAL AREA(ACRES) = 5.36 TOTAL RUNOFF(CFS) = 4.53
****************************
 FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.410
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2991
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) =
                                            0.20
 TOTAL AREA(ACRES) = 5.8 TOTAL RUNOFF(CFS) =
                                            4.74
 TC(MIN.) = 17.54
************************************
 FLOW PROCESS FROM NODE
                    11.00 TO NODE 12.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1551.00 DOWNSTREAM ELEVATION(FEET) = 1535.00
 STREET LENGTH(FEET) = 2683.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.99
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) =
                              12.46
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.90
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.73
 STREET FLOW TRAVEL TIME(MIN.) = 23.59 Tc(MIN.) = 41.13
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.019
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8727
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 2.83 SUBAREA RUNOFF(CFS) = 2.52
TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) =
                                                       7.25
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.55
 FLOW VELOCITY(FEET/SEC.) = 1.98 DEPTH*VELOCITY(FT*FT/SEC.) = 0.80
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 3645.00 FEET.
********************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.019
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6267
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 3.02 SUBAREA RUNOFF(CFS) = 1.93
TOTAL AREA(ACRES) = 11.7 TOTAL RUNOFF(CFS) = 9.18
 TC(MIN.) = 41.13
******************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.019
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .2381
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.19 SUBAREA RUNOFF(CFS) = 0.53
 TOTAL AREA(ACRES) = 13.9 TOTAL RUNOFF(CFS) = 9.71
 TC(MIN.) = 41.13
******************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.019
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7634
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 16.39 SUBAREA RUNOFF(CFS) = 12.75
 TOTAL AREA(ACRES) = 30.3 TOTAL RUNOFF(CFS) =
          41.13
 TC(MIN.) =
******************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.019
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .5691
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 7.89 SUBAREA RUNOFF(CFS) = 4.58
 TOTAL AREA(ACRES) =
                 38.2 TOTAL RUNOFF(CFS) =
                                        27.04
          41.13
 TC(MIN.) =
******************************
                    12.00 TO NODE
 FLOW PROCESS FROM NODE
                                12.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 41.13
 RAINFALL INTENSITY(INCH/HR) = 1.02
 TOTAL STREAM AREA(ACRES) = 38.16
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.04
*******************************
 FLOW PROCESS FROM NODE 20.00 TO NODE
                                21.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 972.00
 UPSTREAM ELEVATION(FEET) = 1536.50
 DOWNSTREAM ELEVATION(FEET) =
                       1536.00
 ELEVATION DIFFERENCE(FEET) =
                       0.50
 TC = 0.393*[(972.00**3)/(0.50)]**.2 = 27.974
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.181
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7769
 SOIL CLASSIFICATION IS "D"
```

```
SUBAREA RUNOFF(CFS) = 4.68
TOTAL AREA(ACRES) = 5.10 TOTAL RUNOFF(CFS) = 4.68
******************************
 FLOW PROCESS FROM NODE 21.00 TO NODE 12.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1536.00 DOWNSTREAM ELEVATION(FEET) = 1535.00
 STREET LENGTH(FEET) = 238.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.30
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.42
   HALFSTREET FLOOD WIDTH(FEET) = 14.65
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.73
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.73
 STREET FLOW TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) = 30.27
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.146
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7742
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 5.91 SUBAREA RUNOFF(CFS) = 5.24
TOTAL AREA(ACRES) = 11.0 PEAK FLOW RATE(CFS) = 9.92
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.68
 FLOW VELOCITY(FEET/SEC.) = 1.85 DEPTH*VELOCITY(FT*FT/SEC.) = 0.85
 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 12.00 = 1210.00 FEET.
**************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 30.27
 RAINFALL INTENSITY(INCH/HR) = 1.15
```

TOTAL STREAM AREA(ACRES) = 11.01
PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.92

```
** CONFLUENCE DATA **
          RUNOFF
                     Tc
 STREAM
                            INTENSITY
                                         AREA
 NUMBER
          (CFS)
                    (MIN.)
                            (INCH/HOUR)
                                        (ACRE)
          27.04
                                          38.16
     1
                   41.13
                              1.019
     2
            9.92
                              1.146
                                          11.01
                   30.27
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ***************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
          RUNOFF Tc
                          INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
     1
           29.82 30.27
                             1.146
     2
           35.87
                   41.13
                             1.019
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                       35.87
                               Tc(MIN.) = 41.13
 TOTAL AREA(ACRES) =
                       49.2
 LONGEST FLOWPATH FROM NODE
                          10.00 TO NODE
                                          12.00 = 3645.00 FEET.
********************************
                       FLOW PROCESS FROM NODE
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1535.00 DOWNSTREAM ELEVATION(FEET) = 1526.00
 STREET LENGTH(FEET) = 1584.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 37.31
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:

```
STREET FLOW DEPTH(FEET) = 0.64
   HALFSTREET FLOOD WIDTH(FEET) = 26.60
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.83
 STREET FLOW TRAVEL TIME(MIN.) = 9.22 Tc(MIN.) = 50.35
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.944
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8712
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 3.49 SUBAREA RUNOFF(CFS) = 2.87
 TOTAL AREA(ACRES) = 52.7 PEAK FLOW RATE(CFS) = 38.74
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.64 HALFSTREET FLOOD WIDTH(FEET) = 26.99
 FLOW VELOCITY(FEET/SEC.) = 2.89 DEPTH*VELOCITY(FT*FT/SEC.) = 1.86
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 5229.00 FEET.
********************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.944
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6119
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 2.75 SUBAREA RUNOFF(CFS) = 1.59
 TOTAL AREA(ACRES) = 55.4 TOTAL RUNOFF(CFS) = 40.33
 TC(MIN.) = 50.35
*******************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.944
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6119
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 5.33 SUBAREA RUNOFF(CFS) = 3.08
 TOTAL AREA(ACRES) = 60.7 TOTAL RUNOFF(CFS) = 43.41
 TC(MIN.) = 50.35
******************************
 FLOW PROCESS FROM NODE 13.00 TO NODE
                                   13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.944
 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8424
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 2.23 SUBAREA RUNOFF(CFS) = 1.77
TOTAL AREA(ACRES) = 63.0 TOTAL RUNOFF(CFS) = 45.18
```

```
TC(MIN.) =
         50.35
******************************
 FLOW PROCESS FROM NODE
                 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.944
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7559
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 10.26 SUBAREA RUNOFF(CFS) = 7.32
 TOTAL AREA(ACRES) = 73.2 TOTAL RUNOFF(CFS) = 52.50
 TC(MIN.) = 50.35
******************************
 FLOW PROCESS FROM NODE
                 ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 50.35
 RAINFALL INTENSITY(INCH/HR) = 0.94
 TOTAL STREAM AREA(ACRES) = 73.23
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                          52.50
******************************
 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
     ASSUMED INITIAL SUBAREA UNIFORM
     DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 978.00
 UPSTREAM ELEVATION(FEET) = 1533.00
 DOWNSTREAM ELEVATION(FEET) = 1532.00
 ELEVATION DIFFERENCE(FEET) =
                     1.00
 TC = 0.393*[( 978.00**3)/(
                     1.00)]**.2 =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.243
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7815
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                  5.91
 TOTAL AREA(ACRES) = 6.08 TOTAL RUNOFF(CFS) =
******************************
 FLOW PROCESS FROM NODE 31.00 TO NODE
                             13.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
```

```
UPSTREAM ELEVATION(FEET) = 1532.00 DOWNSTREAM ELEVATION(FEET) = 1526.00
 STREET LENGTH(FEET) = 2198.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   10.48
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.49
   HALFSTREET FLOOD WIDTH(FEET) = 18.55
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.60
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                        0.79
 STREET FLOW TRAVEL TIME(MIN.) = 22.85 Tc(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.967
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7583
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 9.10
                                                        15.00
 TOTAL AREA(ACRES) = 18.5
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.45
 FLOW VELOCITY(FEET/SEC.) = 1.74 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                           30.00 TO NODE
                                          13.00 = 3176.00 FEET.
********************************
 FLOW PROCESS FROM NODE
                        13.00 TO NODE
                                        13.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 47.29
 RAINFALL INTENSITY(INCH/HR) =
                             0.97
 TOTAL STREAM AREA(ACRES) =
                           18.49
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
          RUNOFF
                    Tc
 STREAM
                            INTENSITY
                                         AREA
 NUMBER
          (CFS)
                    (MIN.)
                            (INCH/HOUR)
                                         (ACRE)
          52.50
                   50.35
                            0.944
                                         73.23
     1
     2
          15.00 47.29
                              0.967
                                          18.49
```

```
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ***********************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
          RUNOFF Tc
                           INTENSITY
           (CFS) (MIN.) (INCH/HOUR)
 NUMBER
            64.31 47.29
                              0.967
     2
            67.15 50.35
                              0.944
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 67.15 Tc(MIN.) = 50.35
 TOTAL AREA(ACRES) = 91.7
 LONGEST FLOWPATH FROM NODE
                            10.00 TO NODE
                                           13.00 = 5229.00 \text{ FEET.}
**********************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1522.00
 STREET LENGTH(FEET) = 914.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 67.62
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.77
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.14
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.85 Tc(MIN.) =
                                                55.20
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.911
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8705
```

```
SOIL CLASSIFICATION IS "D"
                   1.19 SUBAREA RUNOFF(CFS) = 0.94
 SUBAREA AREA(ACRES) =
 TOTAL AREA(ACRES) = 92.9
                           PEAK FLOW RATE(CFS) = 68.09
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.77 HALFSTREET FLOOD WIDTH(FEET) = 35.40
 FLOW VELOCITY(FEET/SEC.) = 3.15 DEPTH*VELOCITY(FT*FT/SEC.) = 2.44
 LONGEST FLOWPATH FROM NODE
                      10.00 TO NODE
                                    14.00 = 6143.00 FEET.
****************************
 FLOW PROCESS FROM NODE
                    14.00 TO NODE
                                  14.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.911
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6049
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.81 SUBAREA RUNOFF(CFS) = 1.00
 TOTAL AREA(ACRES) = 94.7 TOTAL RUNOFF(CFS) = 69.09
 TC(MIN.) = 55.20
*******************************
 FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 55.20
 RAINFALL INTENSITY(INCH/HR) = 0.91
 TOTAL STREAM AREA(ACRES) = 94.72
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             69.09
**************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 811.00
 UPSTREAM ELEVATION(FEET) = 1532.00
 DOWNSTREAM ELEVATION(FEET) = 1526.00
 ELEVATION DIFFERENCE(FEET) =
                        6.00
 TC = 0.303*[(811.00**3)/(6.00)]**.2 = 11.786
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.641
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8808
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 7.65
```

```
TOTAL AREA(ACRES) = 5.29 TOTAL RUNOFF(CFS) = 7.65
****************************
 FLOW PROCESS FROM NODE
                     41.00 TO NODE 14.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1522.00
 STREET LENGTH(FEET) = 1354.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.40
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.56
   HALFSTREET FLOOD WIDTH(FEET) = 22.07
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.85
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 12.21 Tc(MIN.) = 23.99
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.252
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8764
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.37 SUBAREA RUNOFF(CFS) = 1.50
 TOTAL AREA(ACRES) = 6.7 PEAK FLOW RATE(CFS) = 9.15
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 22.85
 FLOW VELOCITY(FEET/SEC.) = 1.88 DEPTH*VELOCITY(FT*FT/SEC.) = 1.08
 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 14.00 = 2165.00 FEET.
******************************
 FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.252
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6642
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 8.99 SUBAREA RUNOFF(CFS) = 7.47
 TOTAL AREA(ACRES) = 15.6 TOTAL RUNOFF(CFS) = 16.62
 TC(MIN.) = 23.99
```

```
*******************************
 FLOW PROCESS FROM NODE
                     14.00 TO NODE
                                  14.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 23.99
 RAINFALL INTENSITY(INCH/HR) = 1.25
 TOTAL STREAM AREA(ACRES) =
                       15.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               16.62
*******************************
 FLOW PROCESS FROM NODE
                    50.00 TO NODE
                                  14.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 897.00
 UPSTREAM ELEVATION(FEET) = 1527.00
 DOWNSTREAM ELEVATION(FEET) =
                        1522.00
 ELEVATION DIFFERENCE(FEET) =
                          5.00
 TC = 0.533*[(897.00**3)/(
                       5.00)]**.2 =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.276
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6675
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                   7.21
                  8.47 TOTAL RUNOFF(CFS) = 7.21
 TOTAL AREA(ACRES) =
********************************
 FLOW PROCESS FROM NODE
                     14.00 TO NODE
                                  14.00 \text{ IS CODE} = 1
------
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.82
 RAINFALL INTENSITY(INCH/HR) = 1.28
 TOTAL STREAM AREA(ACRES) =
                        8.47
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              7.21
 ** CONFLUENCE DATA **
                  Tc
         RUNOFF
 STREAM
                         INTENSITY
                                    AREA
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
         69.09
                                    94.72
    1
                 55.20
                         0.911
    2
          16.62
                23.99
                          1.252
                                     15.65
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

```
** PEAK FLOW RATE TABLE **
STREAM
         RUNOFF Tc
                         INTENSITY
NUMBER
          (CFS) (MIN.)
                         (INCH/HOUR)
          51.58 22.82
   1
                            1.276
   2
          53.73 23.99
                            1.252
   3
          86.34 55.20
                            0.911
```

3

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 86.34 Tc(MIN.) = 55.20

TOTAL AREA(ACRES) = 118.8

LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 6143.00 FEET.

FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 62

>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<

UPSTREAM ELEVATION(FEET) = 1522.00 DOWNSTREAM ELEVATION(FEET) = 1518.06

STREET LENGTH(FEET) = 584.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00

DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018

OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1

STREET PARKWAY CROSSFALL(DECIMAL) = 0.020

Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150

Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200

**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 86.75

STREET FLOWING FULL

STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:

STREET FLOW DEPTH(FEET) = 0.78

HALFSTREET FLOOD WIDTH(FEET) = 35.70

AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.93

PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.07

STREET FLOW TRAVEL TIME(MIN.) = 2.47 Tc(MIN.) = 57.67

```
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.896
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8702
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.04 SUBAREA RUNOFF(CFS) = 0.81
TOTAL AREA(ACRES) = 119.9 PEAK FLOW RATE(CFS) = 87.15
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.76
 FLOW VELOCITY(FEET/SEC.) = 3.94 DEPTH*VELOCITY(FT*FT/SEC.) = 3.08
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 15.00 = 6727.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
****************************
 FLOW PROCESS FROM NODE 60.00 TO NODE
                                 61.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 292.00
 UPSTREAM ELEVATION(FEET) = 1526.20
 DOWNSTREAM ELEVATION(FEET) = 1522.29
 ELEVATION DIFFERENCE(FEET) = 3.91
TC = 0.303*[(292.00**3)/(3.91)]**.2 = 6.956
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.006
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8837
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 5.85
 TOTAL AREA(ACRES) = 3.30 TOTAL RUNOFF(CFS) = 5.85
*****************************
 FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1519.20 DOWNSTREAM(FEET) = 1518.20
 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.65
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.85
 PIPE TRAVEL TIME(MIN.) = 1.96 Tc(MIN.) = 8.92
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 62.00 = 722.00 FEET.
```

```
*******************************
 FLOW PROCESS FROM NODE
                    62.00 TO NODE
                                 62.00 \text{ IS CODE} = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.92
 RAINFALL INTENSITY(INCH/HR) = 1.83
 TOTAL STREAM AREA(ACRES) =
                        3.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               5.85
*******************************
 FLOW PROCESS FROM NODE
                    70.00 TO NODE
                                 62.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 452.00
 UPSTREAM ELEVATION(FEET) = 1526.20
 DOWNSTREAM ELEVATION(FEET) =
                        1520.20
 ELEVATION DIFFERENCE(FEET) =
                          6.00
 TC = 0.303*[(452.00**3)/(6.00)]**.2 =
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.876
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                   10.28
 TOTAL AREA(ACRES) = 6.21 TOTAL RUNOFF(CFS) =
                                          10.28
********************************
 FLOW PROCESS FROM NODE
                    62.00 TO NODE
                                  62.00 \text{ IS CODE} = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.30
 RAINFALL INTENSITY(INCH/HR) = 1.88
 TOTAL STREAM AREA(ACRES) =
                        6.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
         RUNOFF
                 Tc
 STREAM
                        INTENSITY
                                    AREA
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
          5.85
                8.92
                                    3.30
    1
                        1.825
         10.28 8.30
    2
                          1.876
                                     6.21
```

```
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF Tc
 STREAM
                       INTENSITY
          (CFS) (MIN.)
 NUMBER
                       (INCH/HOUR)
          15.73 8.30
15.86 8.92
                         1.876
    2
                          1.825
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 15.73 Tc(MIN.) = 8.30
 TOTAL AREA(ACRES) = 9.5
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                     62.00 = 722.00 \text{ FEET}.
***********************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1518.20 DOWNSTREAM(FEET) = 1515.88
 FLOW LENGTH(FEET) = 433.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.30
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 15.73
 PIPE TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) =
                                      9.45
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                      63.00 = 1155.00 FEET.
*****************************
 FLOW PROCESS FROM NODE
                    63.00 TO NODE
                                 63.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.45
 RAINFALL INTENSITY(INCH/HR) =
                         1.79
 TOTAL STREAM AREA(ACRES) = 9.51
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.73
********************************
```

FLOW PROCESS FROM NODE 80.00 TO NODE

63.00 IS CODE = 21

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 407.00
 UPSTREAM ELEVATION(FEET) = 1523.79
 DOWNSTREAM ELEVATION(FEET) =
                          1517.83
 ELEVATION DIFFERENCE(FEET) =
                            5.96
 TC = 0.303*[(407.00**3)/(
                          5.96)]**.2 =
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.920
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8831
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                    8.48
                     5.00 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
********************************
 FLOW PROCESS FROM NODE
                     63.00 TO NODE
                                    63.00 \text{ IS CODE} = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                          7.80
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) =
                          5.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                    Tc
 STREAM
          RUNOFF
                          INTENSITY
                                      AREA
 NUMBER
           (CFS)
                   (MIN.)
                          (INCH/HOUR)
                                      (ACRE)
    1
           15.73
                  9.45
                            1.786
                                        9.51
    2
           8.48
                            1.920
                                        5.00
                  7.80
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
          RUNOFF
                  Tc
 STREAM
                          INTENSITY
 NUMBER
         (CFS)
                  (MIN.)
                         (INCH/HOUR)
          21.47
                  7.80
    1
                           1.920
                           1.786
    2
           23.61
                  9.45
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                       23.61
                               Tc(MIN.) =
                                          9.45
 TOTAL AREA(ACRES) =
                       14.5
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                          63.00 =
                                                    1155.00 FEET.
******************************
 FLOW PROCESS FROM NODE
                        63.00 TO NODE
                                       15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.88 DOWNSTREAM(FEET) = 1514.88
 FLOW LENGTH(FEET) = 207.00
                          MANNING'S N = 0.012
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.78
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                    NUMBER OF PIPES = 1
                   23.61
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                           15.00 =
                                                    1362.00 FEET.
*********************************
 FLOW PROCESS FROM NODE
                        15.00 TO NODE
                                       15.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
          RUNOFF
                   Tc
                           INTENSITY
                                       AREA
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
                                      (ACRE)
                   9.95
                                       14.51
           23.61
                             1.750
 LONGEST FLOWPATH FROM NODE
                           60.00 TO NODE
                                         15.00 = 1362.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
          RUNOFF
                    Tc
                           INTENSITY
                                       AREA
                                      (ACRE)
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
           87.15
                   57.67
                             0.896
                                      119.88
 LONGEST FLOWPATH FROM NODE
                           10.00 TO NODE
                                          15.00 = 6727.00 FEET.
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ****************************
 ** PEAK FLOW RATE TABLE **
 STREAM
          RUNOFF
                    Tc
                           INTENSITY
 NUMBER
          (CFS)
                   (MIN.)
                           (INCH/HOUR)
          38.66
                    9.95
                              1.750
     1
     2
          99.24
                    57.67
                               0.896
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 99.24 Tc(MIN.) =
                                 57.67
 TOTAL AREA(ACRES) =
                 134.4
*******************************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
******************************
 FLOW PROCESS FROM NODE
                  15.00 TO NODE 16.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.88 DOWNSTREAM(FEET) = 1512.92
 FLOW LENGTH(FEET) = 161.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.66
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                             NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 99.24
 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) =
                                 57.87
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                 16.00 = 6888.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
****************************
                             101.00 IS CODE = 21
 FLOW PROCESS FROM NODE
                  100.00 TO NODE
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
     ASSUMED INITIAL SUBAREA UNIFORM
     DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1534.00
 DOWNSTREAM ELEVATION(FEET) =
                     1533.00
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(672.00**3)/(1.00)]**.2 = 15.066
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.495
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8794
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 1.72
TOTAL AREA(ACRES) = 1.31 TOTAL RUNOFF(CFS) = 1.72
```

```
*******************************
 FLOW PROCESS FROM NODE
                    ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1526.69 DOWNSTREAM(FEET) = 1520.80
 FLOW LENGTH(FEET) = 1228.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.54
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.72
 PIPE TRAVEL TIME(MIN.) = 5.78 Tc(MIN.) = 20.85
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                    102.00 = 1900.00 FEET.
********************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 20.85
 RAINFALL INTENSITY(INCH/HR) = 1.32
 TOTAL STREAM AREA(ACRES) = 1.31
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               1.72
*******************************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 688.00
 UPSTREAM ELEVATION(FEET) = 1533.00
 DOWNSTREAM ELEVATION(FEET) = 1528.00
 ELEVATION DIFFERENCE(FEET) =
                          5.00
 TC = 0.303*[(688.00**3)/(5.00)]**.2 = 11.075
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.681
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8812
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 1.78
TOTAL AREA(ACRES) = 1.20 TOTAL RUNOFF(CFS) = 1.78
***********************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 102.00 IS CODE = 62
```

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1528.00 DOWNSTREAM ELEVATION(FEET) = 1524.00
 STREET LENGTH(FEET) = 566.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.47
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.36
   HALFSTREET FLOOD WIDTH(FEET) =
                               10.98
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.94
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.86 Tc(MIN.) = 15.93
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.463
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8790
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 1.38
 TOTAL AREA(ACRES) = 2.3
                               PEAK FLOW RATE(CFS) =
                                                          3.15
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.30
 FLOW VELOCITY(FEET/SEC.) = 2.04 DEPTH*VELOCITY(FT*FT/SEC.) = 0.78
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 102.00 = 1254.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                             15.93
 RAINFALL INTENSITY(INCH/HR) =
                           1.46
 TOTAL STREAM AREA(ACRES) =
                            2.27
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   3.15
 ** CONFLUENCE DATA **
 STREAM
           RUNOFF
                      Tc
                            INTENSITY
                                          AREA
                    (MIN.)
 NUMBER
            (CFS)
                            (INCH/HOUR)
                                         (ACRE)
```

1 2	1.72 3.15	20.85 15.93	1.321 1.463		1.31 2.27		

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.							
** PEAK FL STREAM NUMBER 1 2	RUNOFF	ABLE ** Tc (MIN.) (15.93 20.85	INTENSITY INCH/HOUR) 1.463 1.321				
PEAK FLOW TOTAL AREA	RATE(CFS) (ACRES) =	ESTIMATES A = 4.4 3.6 DM NODE 1	7 Tc(MIN	.) =		1900.00 FEE	ЕТ.

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA <cccc>>>>SUSING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC</cccc>							
ELEVATION FLOW LENGT DEPTH OF F PIPE-FLOW	DATA: UPS H(FEET) = LOW IN 1! VELOCITY(I	======================================	= 1520.80 MANNING'S PE IS 10.1 : 5.11	DOWNS N = 0.0 INCHES	TREAM(FEET) 012	= 1520.45	===
PIPE TRAVE	L TIME(MIN	4.47 N.) = 0.17 OM NODE 1	Tc(MIN	.) =	16.10 103.00 =	1951.00 FEE	ĒT.
********** FLOW PROCE		*********** ODE 103.0					****
>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<							

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<							

ASSUMED INITIAL SUBAREA UNIFORM

```
DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1533.00
 DOWNSTREAM ELEVATION(FEET) =
                           1526.00
 ELEVATION DIFFERENCE(FEET) =
                            7.00
 TC = 0.393*[(944.00**3)/(7.00)]**.2 = 16.215
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.453
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7946
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                       13.17
 TOTAL AREA(ACRES) = 11.40 TOTAL RUNOFF(CFS) =
                                                13.17
*****************************
 FLOW PROCESS FROM NODE
                       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1525.50
 STREET LENGTH(FEET) = 626.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.08
   ***STREET FLOW SPLITS OVER STREET-CROWN***
   FULL DEPTH(FEET) = 0.70 FLOOD WIDTH(FEET) = 31.58
   FULL HALF-STREET VELOCITY(FEET/SEC.) =
   SPLIT DEPTH(FEET) = 0.62 SPLIT FLOOD WIDTH(FEET) =
                                                    25.82
   SPLIT FLOW(CFS) = 6.50 SPLIT VELOCITY(FEET/SEC.) = 1.06
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) = 31.58
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.16
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 8.99 Tc(MIN.) = 25.20
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.229
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7805
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 6.08 SUBAREA RUNOFF(CFS) = 5.83
 TOTAL AREA(ACRES) = 17.5
                              PEAK FLOW RATE(CFS) = 18.99
```

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58
 FLOW VELOCITY(FEET/SEC.) = 1.16 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 1570.00 FEET.
************************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>>>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 25.20
 RAINFALL INTENSITY(INCH/HR) = 1.23
 TOTAL STREAM AREA(ACRES) = 17.48
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
****************************
 FLOW PROCESS FROM NODE 130.00 TO NODE
                                 131.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 975.00
 UPSTREAM ELEVATION(FEET) = 1532.00
 DOWNSTREAM ELEVATION(FEET) = 1527.00
 ELEVATION DIFFERENCE(FEET) = 5.00
TC = 0.393*[( 975.00**3)/( 5.00)]**.2 = 17.683
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.406
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7919
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 6.69
 TOTAL AREA(ACRES) = 6.01 TOTAL RUNOFF(CFS) = 6.69
*****************************
 FLOW PROCESS FROM NODE 131.00 TO NODE 122.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 1527.00 DOWNSTREAM ELEVATION(FEET) = 1525.50
 STREET LENGTH(FEET) = 990.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.59
   HALFSTREET FLOOD WIDTH(FEET) = 23.71
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 11.91 Tc(MIN.) = 29.59
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.156
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7750
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 17.25
                              SUBAREA RUNOFF(CFS) = 15.45
 TOTAL AREA(ACRES) = 23.3
                                 PEAK FLOW RATE(CFS) = 22.14
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 28.01
 FLOW VELOCITY(FEET/SEC.) = 1.54 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 122.00 = 1965.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                       122.00 TO NODE
                                      122.00 IS CODE = 1
    ......
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 29.59
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) =
                          23.26
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  22.14
 ** CONFLUENCE DATA **
 STREAM
          RUNOFF
                     Tc
                           INTENSITY
                                        AREA
 NUMBER
                           (INCH/HOUR)
         (CFS)
                    (MIN.)
                                        (ACRE)
          18.99 25.20
                            1.229
                                        17.48
    1
           22.14
                             1.156
     2
                  29.59
                                         23,26
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                          INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
 NUMBER
          37.86 25.20
     1
                            1.229
           40.01 29.59
                             1.156
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 40.01 Tc(MIN.) = 29.59
 TOTAL AREA(ACRES) = 40.7
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 122.00 = 1965.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 122.00 TO NODE
                                      103.00 \text{ IS CODE} = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1525.50 DOWNSTREAM ELEVATION(FEET) = 1524.13
 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 40.20
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) = 31.61
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.43
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70
 STREET FLOW TRAVEL TIME(MIN.) = 2.68 Tc(MIN.) = 32.26
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.118
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8744
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 0.38
 TOTAL AREA(ACRES) = 41.1
                              PEAK FLOW RATE(CFS) = 40.39
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.61
 FLOW VELOCITY(FEET/SEC.) = 2.44 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 103.00 = 2355.00 FEET.
```

```
**********************************
 FLOW PROCESS FROM NODE
                    103.00 TO NODE
                                  103.00 \text{ IS CODE} = 11
_____
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
_____
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
         RUNOFF
                  Tc
                        INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                  (ACRE)
          40.39
                 32.26
                          1.118
                                   41.13
    1
 LONGEST FLOWPATH FROM NODE
                       130.00 TO NODE
                                    103.00 =
                                              2355.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
         RUNOFF
                 Tc
                       INTENSITY
                                   AREA
 NUMBER
          (CFS)
                 (MIN.)
                        (INCH/HOUR)
                                  (ACRE)
           4.47
                 16.10
                          1.457
                                   3.58
    1
 LONGEST FLOWPATH FROM NODE
                       100.00 TO NODE
                                     103.00 =
                                              1951.00 FEET.
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF
                        INTENSITY
                 Tc
 NUMBER
         (CFS)
                 (MIN.)
                        (INCH/HOUR)
    1
         24.62
                 16.10
                           1.457
         43.82
                 32.26
                           1.118
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 43.82
                           Tc(MIN.) =
 TOTAL AREA(ACRES) =
                    44.7
****************************
                    103.00 TO NODE
 FLOW PROCESS FROM NODE
                                  103.00 \text{ IS CODE} = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<<
______
******************************
 FLOW PROCESS FROM NODE
                    103.00 TO NODE
                                  104.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1520.45 DOWNSTREAM(FEET) = 1517.99
 FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.16
```

```
ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              43.82
 PIPE TRAVEL TIME(MIN.) = 1.54 Tc(MIN.) =
                                    33.80
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                    104.00 =
                                            3015.00 FEET.
************************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 33.80
 RAINFALL INTENSITY(INCH/HR) = 1.10
 TOTAL STREAM AREA(ACRES) = 44.71
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
****************************
 FLOW PROCESS FROM NODE 140.00 TO NODE
                                 141.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 986.00
 UPSTREAM ELEVATION(FEET) = 1526.00
 DOWNSTREAM ELEVATION(FEET) = 1524.60
 ELEVATION DIFFERENCE(FEET) = 1.40
TC = 0.393*[( 986.00**3)/( 1.40)]**.2 = 22.964
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.273
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7835
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 4.18
 TOTAL AREA(ACRES) = 4.19 TOTAL RUNOFF(CFS) =
                                          4.18
******************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 104.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 1524.60 DOWNSTREAM ELEVATION(FEET) = 1521.49
 STREET LENGTH(FEET) = 774.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 16.68
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       0.84
 STREET FLOW TRAVEL TIME(MIN.) = 7.08 Tc(MIN.) = 30.05
   10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.149
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8749
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.39
                              SUBAREA RUNOFF(CFS) = 1.40
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 5.6
                                                        5.58
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.62
 FLOW VELOCITY(FEET/SEC.) = 1.88 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 104.00 = 1760.00 FEET.
 ********************************
 FLOW PROCESS FROM NODE
                       104.00 TO NODE
                                      104.00 IS CODE = 1
    ..........
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 30.05
 RAINFALL INTENSITY(INCH/HR) = 1.15
 TOTAL STREAM AREA(ACRES) =
                           5.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  5.58
 ** CONFLUENCE DATA **
 STREAM
          RUNOFF
                    Tc
                           INTENSITY
                                        AREA
                  (MIN.)
 NUMBER
                           (INCH/HOUR)
         (CFS)
                                        (ACRE)
          43.82 33.80
                           1.099
                                        44.71
    1
           5.58 30.05
                             1.149
     2
                                         5.58
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
 NUMBER
        44.53 30.05
    1
                        1.149
        49.15 33.80
                        1.099
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 49.15 Tc(MIN.) = 33.80
 TOTAL AREA(ACRES) = 50.3
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 104.00 = 3015.00 FEET.
******************************
 FLOW PROCESS FROM NODE 104.00 TO NODE
                               105.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1517.99 DOWNSTREAM(FEET) = 1514.68
 FLOW LENGTH(FEET) = 267.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.60
 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                49.15
 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 34.18
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 105.00 = 3282.00 FEET.
*******************************
 FLOW PROCESS FROM NODE
                   105.00 TO NODE
                               105.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 34.18
 RAINFALL INTENSITY(INCH/HR) = 1.09
 TOTAL STREAM AREA(ACRES) = 50.29
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 49.15
*******************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 304.00
 UPSTREAM ELEVATION(FEET) = 1522.00
 DOWNSTREAM ELEVATION(FEET) = 1520.02
```

```
ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(304.00**3)/(
                        1.98)]**.2 = 8.165
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.888
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 0.75
 TOTAL AREA(ACRES) = 0.45 TOTAL RUNOFF(CFS) = 0.75
******************************
 FLOW PROCESS FROM NODE 151.00 TO NODE
                                105.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.32 DOWNSTREAM(FEET) = 1514.68
 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.82
 ESTIMATED PIPE DIAMETER(INCH) = 6.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  0.75
 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) =
                                     8.22
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE
                                    105.00 =
                                              328.00 FEET.
 FLOW PROCESS FROM NODE
                    105.00 TO NODE
                                 105.00 IS CODE = 1
   ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                        8.22
 RAINFALL INTENSITY(INCH/HR) = 1.88
 TOTAL STREAM AREA(ACRES) =
                        0.45
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              0.75
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                 Tc
                        INTENSITY
                                   AREA
 NUMBER
                 (MIN.)
        (CFS)
                        (INCH/HOUR)
                                   (ACRE)
         49.15 34.18
                        1.094
                                   50.29
    1
          0.75
                          1.883
    2
                8.22
                                     0.45
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
                (MIN.)
 NUMBER
        (CFS)
                      (INCH/HOUR)
                8.22
        12.56
    1
                        1.883
        49.59
                34.18
                        1.094
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 49.59 Tc(MIN.) = 34.18
 TOTAL AREA(ACRES) = 50.7
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                   105.00 = 3282.00 FEET.
******************************
 FLOW PROCESS FROM NODE 105.00 TO NODE
                               16.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 1514.68 DOWNSTREAM(FEET) = 1512.92
 FLOW LENGTH(FEET) = 324.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.35
 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                49.59
 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) = 34.83
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                   16.00 = 3606.00 FEET.
*******************************
 FLOW PROCESS FROM NODE
                   16.00 TO NODE
                                 16.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.086
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8739
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.77 SUBAREA RUNOFF(CFS) =
 TOTAL AREA(ACRES) = 51.5 TOTAL RUNOFF(CFS) = 50.32
 TC(MIN.) = 34.83
******************************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
** MAIN STREAM CONFLUENCE DATA **
                Tc
         RUNOFF
 STREAM
                      INTENSITY
                                AREA
 NUMBER
         (CFS)
                (MIN.)
                      (INCH/HOUR)
                                (ACRE)
         50.32 34.83
                      1.086 51.51
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 16.00 = 3606.00 FEET.
```

```
** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
         RUNOFF
                 Tc
                       INTENSITY
                                 AREA
 NUMBER
          (CFS)
                (MIN.)
                      (INCH/HOUR)
                                (ACRE)
          99.24
                57.87
                                134.39
    1
                        0.895
 LONGEST FLOWPATH FROM NODE
                       10.00 TO NODE
                                    16.00 =
                                            6888.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
****************************
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF
                 Tc
                       INTENSITY
 NUMBER
                (MIN.)
        (CFS)
                      (INCH/HOUR)
                 34.83
    1
        110.05
                          1.086
    2
        140.71
                 57.87
                          0.895
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                   140.71
                          Tc(MIN.) =
                                   57.87
 TOTAL AREA(ACRES) =
                   185.9
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                      185.9 TC(MIN.) =
                                     57.87
 PEAK FLOW RATE(CFS) =
                     140.71
______
______
```

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL

Release Date: 07/01/2016 License ID 1334

Analysis prepared by:

```
******************* DESCRIPTION OF STUDY ***************
* SP8950 SAN JACINTO
* OFFSITE RUN-ON RATIONAL METHOD
* 100-YEAR STORM EVENT PJ
****************************
 FILE NAME: SJ100RO.DAT
 TIME/DATE OF STUDY: 06:30 09/07/2023
    USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 1.730
 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.874
 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.490
 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.760
 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.3810757
 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.3820757
 COMPUTED RAINFALL INTENSITY DATA:
 STORM EVENT = 100.00
                      1-HOUR INTENSITY(INCH/HOUR) =
 SLOPE OF INTENSITY DURATION CURVE = 0.3821
 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
      AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO
                   STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                      HIKE FACTOR
NO.
             (FT)
                   SIDE / SIDE/ WAY (FT)
                                           (FT) (FT)
1
     30.0
            20.0
                   0.018/0.018/0.020
                                   0.67
                                           2.00 0.0313 0.167 0.0150
```

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

```
1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
******************************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 962.00
 UPSTREAM ELEVATION(FEET) = 1556.00
 DOWNSTREAM ELEVATION(FEET) = 1551.00
 ELEVATION DIFFERENCE(FEET) =
                         5.00
 TC = 0.393*[(962.00**3)/(5.00)]**.2 = 17.541
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.816
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6743
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) = 10.18
TOTAL AREA(ACRES) = 5.36 TOTAL RUNOFF(CFS) = 10.18
****************************
 FLOW PROCESS FROM NODE 11.00 TO NODE 11.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.816
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4486
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) = 0.61
 TOTAL AREA(ACRES) = 5.8 TOTAL RUNOFF(CFS) = 10.78
 TC(MIN.) = 17.54
************************************
 FLOW PROCESS FROM NODE
                    11.00 TO NODE 12.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1551.00 DOWNSTREAM ELEVATION(FEET) = 1535.00
 STREET LENGTH(FEET) = 2683.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.43
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.48
   HALFSTREET FLOOD WIDTH(FEET) = 17.54
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.28
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09
 STREET FLOW TRAVEL TIME(MIN.) = 19.59 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.114
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8844
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 2.83 SUBAREA RUNOFF(CFS) = 5.29
TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 16.07
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 18.87
 FLOW VELOCITY(FEET/SEC.) = 2.38 DEPTH*VELOCITY(FT*FT/SEC.) = 1.19
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 3645.00 FEET.
********************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.114
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7437
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 3.02 SUBAREA RUNOFF(CFS) = 4.75
TOTAL AREA(ACRES) = 11.7 TOTAL RUNOFF(CFS) = 20.82
 TC(MIN.) = 37.13
******************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.114
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3846
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.19 SUBAREA RUNOFF(CFS) = 1.78
TOTAL AREA(ACRES) = 13.9 TOTAL RUNOFF(CFS) = 22.60
 TC(MIN.) = 37.13
******************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.114
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8218
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 16.39 SUBAREA RUNOFF(CFS) = 28.48
 TOTAL AREA(ACRES) = 30.3 TOTAL RUNOFF(CFS) =
 TC(MIN.) =
          37.13
******************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.114
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .6423
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 7.89 SUBAREA RUNOFF(CFS) =
                                         10.71
 TOTAL AREA(ACRES) =
                  38.2 TOTAL RUNOFF(CFS) = 61.80
          37.13
 TC(MIN.) =
******************************
 FLOW PROCESS FROM NODE
                    12.00 TO NODE
                                 12.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 37.13
 RAINFALL INTENSITY(INCH/HR) = 2.11
 TOTAL STREAM AREA(ACRES) = 38.16
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            61.80
*******************************
 FLOW PROCESS FROM NODE 20.00 TO NODE
                                 21.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 972.00
 UPSTREAM ELEVATION(FEET) = 1536.50
 DOWNSTREAM ELEVATION(FEET) =
                       1536.00
 ELEVATION DIFFERENCE(FEET) =
                        0.50
 TC = 0.393*[(972.00**3)/(0.50)]**.2 = 27.974
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.356
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8286
 SOIL CLASSIFICATION IS "D"
```

```
SUBAREA RUNOFF(CFS) = 9.95
TOTAL AREA(ACRES) = 5.10 TOTAL RUNOFF(CFS) = 9.95
*****************************
 FLOW PROCESS FROM NODE 21.00 TO NODE 12.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1536.00 DOWNSTREAM ELEVATION(FEET) = 1535.00
 STREET LENGTH(FEET) = 238.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.57
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 19.96
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.07
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.08
 STREET FLOW TRAVEL TIME(MIN.) = 1.91 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.297
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8270
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 5.91 SUBAREA RUNOFF(CFS) = 11.23
TOTAL AREA(ACRES) = 11.0 PEAK FLOW RATE(CFS) = 21.18
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 22.62
 FLOW VELOCITY(FEET/SEC.) = 2.22 DEPTH*VELOCITY(FT*FT/SEC.) = 1.26
 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 12.00 = 1210.00 FEET.
****************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 29.89
 RAINFALL INTENSITY(INCH/HR) = 2.30
```

TOTAL STREAM AREA(ACRES) = 11.01 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.18

STREET FLOWING FULL

```
** CONFLUENCE DATA **
          RUNOFF
                     Tc
 STREAM
                            INTENSITY
                                         AREA
 NUMBER
          (CFS)
                    (MIN.)
                            (INCH/HOUR)
                                         (ACRE)
                                          38.16
     1
           61.80
                   37.13
                              2.114
     2
           21.18
                   29.89
                              2.297
                                          11.01
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
          RUNOFF Tc
                          INTENSITY
 NUMBER
           (CFS)
                   (MIN.)
                           (INCH/HOUR)
     1
           70.92 29.89
                             2.297
     2
           81.29 37.13
                             2.114
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                       81.29
                               Tc(MIN.) =
                                          37.13
 TOTAL AREA(ACRES) =
                       49.2
 LONGEST FLOWPATH FROM NODE
                          10.00 TO NODE
                                          12.00 = 3645.00 FEET.
********************************
                       FLOW PROCESS FROM NODE
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1535.00 DOWNSTREAM ELEVATION(FEET) = 1526.00
 STREET LENGTH(FEET) = 1584.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 84.34
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.79
  HALFSTREET FLOOD WIDTH(FEET) = 36.31
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.68
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.92
 STREET FLOW TRAVEL TIME(MIN.) = 7.18 Tc(MIN.) = 44.31
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.976
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8835
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 3.49 SUBAREA RUNOFF(CFS) = 6.09
TOTAL AREA(ACRES) = 52.7 PEAK FLOW RATE(CFS) =
                           PEAK FLOW RATE(CFS) = 87.39
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 36.68
 FLOW VELOCITY(FEET/SEC.) = 3.72 DEPTH*VELOCITY(FT*FT/SEC.) = 2.98
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 5229.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 13.00 TO NODE
                                  13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.976
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7348
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 2.75 SUBAREA RUNOFF(CFS) = 3.99
TOTAL AREA(ACRES) = 55.4 TOTAL RUNOFF(CFS) = 91.38
 TC(MIN.) = 44.31
******************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.976
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7348
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 5.33 SUBAREA RUNOFF(CFS) = 7.74
 TOTAL AREA(ACRES) = 60.7 TOTAL RUNOFF(CFS) = 99.12
 TC(MIN.) = 44.31
**************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.976
 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8670
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 2.23 SUBAREA RUNOFF(CFS) = 3.82
```

```
TOTAL AREA(ACRES) = 63.0 TOTAL RUNOFF(CFS) = 102.94
 TC(MIN.) = 44.31
******************************
 FLOW PROCESS FROM NODE
                  13.00 TO NODE
                               13.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.976
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8174
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 10.26 SUBAREA RUNOFF(CFS) = 16.57
 TOTAL AREA(ACRES) = 73.2 TOTAL RUNOFF(CFS) = 119.51
 TC(MIN.) = 44.31
****************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 44.31
 RAINFALL INTENSITY(INCH/HR) = 1.98
 TOTAL STREAM AREA(ACRES) =
                      73.23
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            119.51
*****************************
 FLOW PROCESS FROM NODE
                   30.00 TO NODE
                                31.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
_____
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 978.00
 UPSTREAM ELEVATION(FEET) = 1533.00
 DOWNSTREAM ELEVATION(FEET) = 1532.00
 ELEVATION DIFFERENCE(FEET) =
                       1.00
 TC = 0.393*[(978.00**3)/(1.00)]**.2 = 24.443
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.480
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8316
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 12.54
 TOTAL AREA(ACRES) = 6.08 TOTAL RUNOFF(CFS) = 12.54
******************************
 FLOW PROCESS FROM NODE 31.00 TO NODE 13.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
```

```
>>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1532.00 DOWNSTREAM ELEVATION(FEET) = 1526.00
 STREET LENGTH(FEET) = 2198.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.69
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                  1.92
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 19.04 Tc(MIN.) = 43.48
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.990
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8179
 SOIL CLASSIFICATION IS "D"
                            SUBAREA RUNOFF(CFS) = 20.20
 SUBAREA AREA(ACRES) = 12.41
 TOTAL AREA(ACRES) = 18.5
                                 PEAK FLOW RATE(CFS) = 32.74
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.68 HALFSTREET FLOOD WIDTH(FEET) = 29.88
 FLOW VELOCITY(FEET/SEC.) = 2.11 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                          30.00 TO NODE
                                        13.00 = 3176.00 FEET.
********************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 1
 -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 43.48
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 18.49
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  32.74
 ** CONFLUENCE DATA **
                     Tc INTENSITY
 STREAM RUNOFF
                                       AREA
 NUMBER
                   (MIN.)
          (CFS)
                           (INCH/HOUR)
                                        (ACRE)
          119.51 44.31
                            1.976
                                        73.23
```

2

*******************************WARNING********************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. **************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY (CFS) (MIN.) 150.03 43.48 NUMBER (INCH/HOUR) 1 1.990 152.02 44.31 1.976 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 152.02 Tc(MIN.) = 44.31TOTAL AREA(ACRES) = 91.7 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 13.00 = 5229.00 FEET. **************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 62 ______ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA< >>>>(STREET TABLE SECTION # 1 USED)< ______ UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1522.00 STREET LENGTH(FEET) = 914.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 153.03 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.98HALFSTREET FLOOD WIDTH(FEET) = 45.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.99 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.91 STREET FLOW TRAVEL TIME(MIN.) = 3.82 Tc(MIN.) = 48.13 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.915

```
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8830
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.19 SUBAREA RUNOFF(CFS) = 2.01
 TOTAL AREA(ACRES) = 92.9
                           PEAK FLOW RATE(CFS) = 154.03
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.98 HALFSTREET FLOOD WIDTH(FEET) = 45.83
 FLOW VELOCITY(FEET/SEC.) = 3.99 DEPTH*VELOCITY(FT*FT/SEC.) = 3.93
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 6143.00 FEET.
********************************
 FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.915
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7304
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.81 SUBAREA RUNOFF(CFS) = 2.53
TOTAL AREA(ACRES) = 94.7 TOTAL RUNOFF(CFS) = 156.56
 TC(MIN.) = 48.13
****************************
 FLOW PROCESS FROM NODE
                    14.00 TO NODE
                                  14.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 48.13
 RAINFALL INTENSITY(INCH/HR) = 1.91
 TOTAL STREAM AREA(ACRES) = 94.72
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 156.56
*****************************
 FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 811.00
 UPSTREAM ELEVATION(FEET) = 1532.00
 DOWNSTREAM ELEVATION(FEET) = 1526.00
 ELEVATION DIFFERENCE(FEET) =
                        6.00
 TC = 0.303*[(811.00**3)/(6.00)]**.2 = 11.786
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.278
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8893
 SOIL CLASSIFICATION IS "D"
```

```
SUBAREA RUNOFF(CFS) = 15.42
TOTAL AREA(ACRES) = 5.29 TOTAL RUNOFF(CFS) = 15.42
******************************
 FLOW PROCESS FROM NODE 41.00 TO NODE 14.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1522.00
 STREET LENGTH(FEET) = 1354.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.99
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.68
   HALFSTREET FLOOD WIDTH(FEET) = 29.88
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.19
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.49
 STREET FLOW TRAVEL TIME(MIN.) = 10.31 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.578
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8868
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.37 SUBAREA RUNOFF(CFS) = 3.13
TOTAL AREA(ACRES) = 6.7 PEAK FLOW RATE(CFS) = 18.55
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.58
 FLOW VELOCITY(FEET/SEC.) = 2.23 DEPTH*VELOCITY(FT*FT/SEC.) = 1.56
 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 14.00 = 2165.00 FEET.
******************************
 FLOW PROCESS FROM NODE 14.00 TO NODE
                                      14.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.578
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7676
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 8.99 SUBAREA RUNOFF(CFS) = 17.79
TOTAL AREA(ACRES) = 15.6 TOTAL RUNOFF(CFS) = 36.34
```

```
TC(MIN.) = 22.10
******************************
 FLOW PROCESS FROM NODE
                   14.00 TO NODE
                                 14.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                        22.10
 RAINFALL INTENSITY(INCH/HR) =
                        2.58
 TOTAL STREAM AREA(ACRES) = 15.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
                   50.00 TO NODE
                                 14.00 \text{ IS CODE} = 21
 FLOW PROCESS FROM NODE
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) =
                      1527.00
 DOWNSTREAM ELEVATION(FEET) =
                       1522.00
 ELEVATION DIFFERENCE(FEET) =
                         5.00
 TC = 0.533*[(897.00**3)/(
                        5.00)]**.2 = 22.818
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.546
 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7663
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                   16.53
                   8.47 TOTAL RUNOFF(CFS) = 16.53
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 1
   >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) =
                        22.82
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 8.47
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              16.53
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                  Tc
                        INTENSITY
                                   AREA
 NUMBER
                 (MIN.)
         (CFS)
                       (INCH/HOUR)
                                  (ACRE)
         156.56
                48.13
                         1.915
                                   94.72
```

```
36.34 22.10 2.578
                                          15.65
     3
           16.53
                   22.82
                              2.546
                                           8.47
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF Tc
                          INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
         124.24 22.10
     1
                            2.578
     2
         126.66 22.82
                            2.546
     3
         195.98 48.13
                            1.915
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
                              Tc(MIN.) = 48.13
 PEAK FLOW RATE(CFS) = 195.98
 TOTAL AREA(ACRES) =
                      118.8
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 14.00 = 6143.00 FEET.
********************************
                       14.00 TO NODE 15.00 IS CODE = 62
 FLOW PROCESS FROM NODE
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<><<
______
 UPSTREAM ELEVATION(FEET) = 1522.00 DOWNSTREAM ELEVATION(FEET) = 1518.06
 STREET LENGTH(FEET) = 584.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 196.85
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.99
   HALFSTREET FLOOD WIDTH(FEET) = 46.26
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.00
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
```

```
STREET FLOW TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.886
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8828
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.04 SUBAREA RUNOFF(CFS) = 1.73
TOTAL AREA(ACRES) = 119.9 PEAK FLOW RATE(CFS) = 197.71
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.99 HALFSTREET FLOOD WIDTH(FEET) = 46.32
 FLOW VELOCITY(FEET/SEC.) = 5.01 DEPTH*VELOCITY(FT*FT/SEC.) = 4.97
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 15.00 = 6727.00 FEET.
******************************
 FLOW PROCESS FROM NODE 15.00 TO NODE
                                 15.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
********************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 292.00
 UPSTREAM ELEVATION(FEET) = 1526.20
 DOWNSTREAM ELEVATION(FEET) = 1522.29
 ELEVATION DIFFERENCE(FEET) =
 TC = 0.303*[(292.00**3)/(3.91)]**.2 = 6.956
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.009
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8910
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 11.79
TOTAL AREA(ACRES) = 3.30 TOTAL RUNOFF(CFS) = 11.79
********************************
 FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1519.20 DOWNSTREAM(FEET) = 1518.20
 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.35
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.79
 PIPE TRAVEL TIME(MIN.) = 1.65 Tc(MIN.) = 8.61
```

```
LONGEST FLOWPATH FROM NODE 60.00 TO NODE 62.00 = 722.00 FEET.
*****************************
 FLOW PROCESS FROM NODE
                   62.00 TO NODE
                                62.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                        8.61
 RAINFALL INTENSITY(INCH/HR) =
                        3.70
 TOTAL STREAM AREA(ACRES) = 3.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
                   70.00 TO NODE
                                62.00 \text{ IS CODE} = 21
 FLOW PROCESS FROM NODE
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 452.00
 UPSTREAM ELEVATION(FEET) = 1526.20
 DOWNSTREAM ELEVATION(FEET) =
                       1520,20
 ELEVATION DIFFERENCE(FEET) =
                         6.00
 TC = 0.303*[(452.00**3)/(
                      6.00)]**.2 = 8.299
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.748
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8905
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                  20.72
                 6.21 TOTAL RUNOFF(CFS) = 20.72
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 1
------
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
 RAINFALL INTENSITY(INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 6.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              20.72
 ** CONFLUENCE DATA **
 STREAM
         RUNOFF
                  Tc
                       INTENSITY
                                 AREA
                 (MIN.)
                       (INCH/HOUR)
 NUMBER
         (CFS)
                                  (ACRE)
         11.79
                        3.696
                                    3.30
                8.61
```

```
2
          20.72 8.30
                            3.748
                                       6.21
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*****************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
          RUNOFF
                  Tc
                         INTENSITY
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
                 8.30
    1
          32.09
                           3.748
          32.23
                  8.61
                           3.696
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                     32.09 \text{ Tc}(MIN.) = 8.30
 TOTAL AREA(ACRES) =
                      9.5
 LONGEST FLOWPATH FROM NODE
                        60.00 TO NODE
                                      62.00 = 722.00 FEET.
****************************
 FLOW PROCESS FROM NODE
                     62.00 TO NODE
                                   63.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1518.20 DOWNSTREAM(FEET) = 1515.88
 FLOW LENGTH(FEET) = 433.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.61
 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  32.09
 PIPE TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) =
                                       9.25
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                       63.00 =
                                               1155.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                     63.00 TO NODE 63.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 9.25
 RAINFALL INTENSITY(INCH/HR) = 3.60
```

32.09

TOTAL STREAM AREA(ACRES) = 9.51
PEAK FLOW RATE(CFS) AT CONFLUENCE =

```
FLOW PROCESS FROM NODE 80.00 TO NODE 63.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
       ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 407.00
 UPSTREAM ELEVATION(FEET) = 1523.79
 DOWNSTREAM ELEVATION(FEET) =
                          1517.83
 ELEVATION DIFFERENCE(FEET) =
                             5.96
 TC = 0.303*[(407.00**3)/(
                           5.96)1**.2 = 7.804
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.837
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8907
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                     17.09
 TOTAL AREA(ACRES) =
                     5.00 TOTAL RUNOFF(CFS) =
                                             17.09
*****************************
 FLOW PROCESS FROM NODE
                    63.00 TO NODE
                                      63.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.80
 RAINFALL INTENSITY(INCH/HR) = 3.84
 TOTAL STREAM AREA(ACRES) =
                          5.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  17.09
 ** CONFLUENCE DATA **
          RUNOFF
                   Tc
 STREAM
                           INTENSITY
                                       AREA
 NUMBER
         (CFS)
                   (MIN.)
                           (INCH/HOUR)
                                       (ACRE)
           32.09
                   9.25
                             3.596
                                         9.51
    1
    2
           17.09
                   7.80
                             3.837
                                         5.00
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 **************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
          RUNOFF
                  Tc
                         INTENSITY
 NUMBER
           (CFS)
                  (MIN.)
                          (INCH/HOUR)
           44.17
                  7.80
                            3.837
```

1

86.34

9.68

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 48.11 Tc(MIN.) =
                                         9.25
 TOTAL AREA(ACRES) =
                      14.5
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                         63.00 = 1155.00 FEET.
********************************
 FLOW PROCESS FROM NODE 63.00 TO NODE
                                     15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1515.88 DOWNSTREAM(FEET) = 1514.88
 FLOW LENGTH(FEET) = 207.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.89
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   48.11
 PIPE TRAVEL TIME(MIN.) = 0.44
                             Tc(MIN.) =
                                         9.68
 LONGEST FLOWPATH FROM NODE 60.00 TO NODE
                                         15.00 =
                                                 1362.00 FEET.
***************************
 FLOW PROCESS FROM NODE
                       15.00 TO NODE
                                     15.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
_____
 ** MAIN STREAM CONFLUENCE DATA **
          RUNOFF
 STREAM
                   Tc
                          INTENSITY
                                     AREA
 NUMBER
           (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
    1
           48.11
                   9.68
                            3.533
                                     14.51
 LONGEST FLOWPATH FROM NODE
                          60.00 TO NODE
                                        15.00 = 1362.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
          RUNOFF
                    Tc
                          INTENSITY
                                     AREA
 NUMBER
           (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
                                     119.88
    1
          197.71
                  50.07
                            1.886
 LONGEST FLOWPATH FROM NODE
                          10.00 TO NODE
                                        15.00 =
                                                 6727.00 FEET.
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 *****************************
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
                   Tc
                          INTENSITY
 NUMBER
          (CFS)
                  (MIN.)
                         (INCH/HOUR)
```

3.533

```
2 223.39 50.07 1.886
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 223.39 Tc(MIN.) =
                                50.07
 TOTAL AREA(ACRES) = 134.4
*****************************
 FLOW PROCESS FROM NODE
                 ______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
******************************
 FLOW PROCESS FROM NODE
                 15.00 TO NODE
                            16.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.88 DOWNSTREAM(FEET) = 1512.92
 FLOW LENGTH(FEET) = 161.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 43.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.41
 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              223.39
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 50.24
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 16.00 = 6888.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 16.00 TO NODE
                            16.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
***********************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
     ASSUMED INITIAL SUBAREA UNIFORM
     DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 672.00
 UPSTREAM ELEVATION(FEET) = 1534.00
 DOWNSTREAM ELEVATION(FEET) = 1533.00
 ELEVATION DIFFERENCE(FEET) =
                     1.00
 TC = 0.303*[(672.00**3)/(1.00)]**.2 = 15.066
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.984
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8883
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 3.47
```

```
TOTAL AREA(ACRES) = 1.31 TOTAL RUNOFF(CFS) = 3.47
***************************
                   FLOW PROCESS FROM NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1526.69 DOWNSTREAM(FEET) = 1520.80
 FLOW LENGTH(FEET) = 1228.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.21
 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 4.86 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                  102.00 = 1900.00 FEET.
***************************
 FLOW PROCESS FROM NODE
                   102.00 TO NODE
                               102.00 IS CODE = 1
------
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 19.93
 RAINFALL INTENSITY(INCH/HR) = 2.68
 TOTAL STREAM AREA(ACRES) = 1.31
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.47
******************************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 688.00
 UPSTREAM ELEVATION(FEET) = 1533.00
 DOWNSTREAM ELEVATION(FEET) = 1528.00
 ELEVATION DIFFERENCE(FEET) =
                       5.00
 TC = 0.303*[(688.00**3)/(5.00)]**.2 = 11.075
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.356
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8895
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 3.58
TOTAL AREA(ACRES) = 1.20 TOTAL RUNOFF(CFS) = 3.58
********************************
 FLOW PROCESS FROM NODE 111.00 TO NODE 102.00 IS CODE = 62
```

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1528.00 DOWNSTREAM ELEVATION(FEET) = 1524.00
 STREET LENGTH(FEET) = 566.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.00
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 14.96
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.28
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.14 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.973
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8883
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 2.83
 TOTAL AREA(ACRES) = 2.3
                              PEAK FLOW RATE(CFS) =
                                                        6.41
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.60
 FLOW VELOCITY(FEET/SEC.) = 2.41 DEPTH*VELOCITY(FT*FT/SEC.) = 1.11
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 102.00 = 1254.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 102.00 TO NODE
                                     102.00 \text{ IS CODE} = 1
   ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.21
 RAINFALL INTENSITY(INCH/HR) = 2.97
 TOTAL STREAM AREA(ACRES) = 2.27
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.41
 ** CONFLUENCE DATA **
 STREAM
          RUNOFF TC INTENSITY
                                        AREA
```

NUMBER (CFS) (MIN.) 3.47 19.93 6.41 15.21	(INCH/HOUR) 2.682 2.973	(ACRE) 1.31 2.27
IN THIS COMPU ON THE RCFC&W WILL NOT NECE:	TER PROGRAM, THE CD FORMULA OF PLA SSARILY RESULT IN	CONFLUENCE VALU TE D-1 AS DEFAU THE MAXIMUM VA	LT VALUE. THIS FORMULA
	NSITY AND TIME OF RMULA USED FOR 2		RATIO
NUMBER (RATE TABLE ** NOFF TC CFS) (MIN.) 9.06 15.21 9.25 19.93 LUENCE ESTIMATES	(INCH/HOUR) 2.973 2.682	
PEAK FLOW RATE TOTAL AREA(ACL LONGEST FLOWPA	E(CFS) = 9. RES) = 3.6 ATH FROM NODE	06 Tc(MIN.) = 100.00 TO NODE	
FLOW PROCESS	FROM NODE 102.	00 TO NODE 1	03.00 IS CODE = 31
>>>>USING CO		PIPESIZE (NON-P	EA<<<<< RESSURE FLOW)<<<<<
ELEVATION DATA FLOW LENGTH(FI DEPTH OF FLOW PIPE-FLOW VELO ESTIMATED PIPE PIPE-FLOW(CFS PIPE TRAVEL TI	A: UPSTREAM(FEET) EET) = 51.00 IN 18.0 INCH PI OCITY(FEET/SEC.) E DIAMETER(INCH)) = 9.06 IME(MIN.) = 0.1	= 1520.80 DOI MANNING'S N = PE IS 14.5 INCI = 5.92 = 18.00 NUM	WNSTREAM(FEET) = 1520.45 0.012 HES BER OF PIPES = 1

	EAM MEMORY COPIED		NK # 2 <<<<
******	*******	******	**************************************
	METHOD INITIAL S		

```
ASSUMED INITIAL SUBAREA UNIFORM
        DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
 UPSTREAM ELEVATION(FEET) = 1533.00
 DOWNSTREAM ELEVATION(FEET) =
                             1526.00
 ELEVATION DIFFERENCE(FEET) =
                              7.00
 TC = 0.393*[(944.00**3)/(7.00)]**.2 =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.901
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8402
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) =
                        27.79
 TOTAL AREA(ACRES) = 11.40 TOTAL RUNOFF(CFS) = 27.79
**********************************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1526.00 DOWNSTREAM ELEVATION(FEET) = 1525.50
 STREET LENGTH(FEET) = 626.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
                                                             0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.16
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.81
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.41
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 7.39 Tc(MIN.) = 23.60
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.514
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8324
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 6.08 SUBAREA RUNOFF(CFS) = 12.72
TOTAL AREA(ACRES) = 17.5 PEAK FLOW RATE(CFS) =
                                                           40.51
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.85 HALFSTREET FLOOD WIDTH(FEET) = 39.12
 FLOW VELOCITY(FEET/SEC.) = 1.49 DEPTH*VELOCITY(FT*FT/SEC.) = 1.27
```

```
*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 626.0 FT WITH ELEVATION-DROP = 0.5 FT, IS 13.2 CFS,
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 122.00
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 1570.00 FEET.
************************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 23.60
 RAINFALL INTENSITY(INCH/HR) = 2.51
 TOTAL STREAM AREA(ACRES) = 17.48
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
***************************
 FLOW PROCESS FROM NODE 130.00 TO NODE
                                 131.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 975.00
 UPSTREAM ELEVATION(FEET) = 1532.00
 DOWNSTREAM ELEVATION(FEET) = 1527.00
 ELEVATION DIFFERENCE(FEET) = 5.00
TC = 0.393*[( 975.00**3)/( 5.00)]**.2 = 17.683
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.807
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8385
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 14.15
 TOTAL AREA(ACRES) = 6.01 TOTAL RUNOFF(CFS) = 14.15
*****************************
 FLOW PROCESS FROM NODE 131.00 TO NODE 122.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1527.00 DOWNSTREAM ELEVATION(FEET) = 1525.50
 STREET LENGTH(FEET) = 990.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 31.21
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.73
   HALFSTREET FLOOD WIDTH(FEET) =
                                33.02
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.70
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 9.71 Tc(MIN.) = 27.39
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.375
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8291
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 17.25 SUBAREA RUNOFF(CFS) = 33.96
 TOTAL AREA(ACRES) = 23.3 PEAK FLOW RATE(CFS) =
                                                          48.11
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.81 HALFSTREET FLOOD WIDTH(FEET) = 37.41
 FLOW VELOCITY(FEET/SEC.) = 1.96 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 990.0 FT WITH ELEVATION-DROP = 1.5 FT, IS
                                                        36.7 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                          122.00
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 122.00 = 1965.00 FEET.
******************************
 FLOW PROCESS FROM NODE
                        122.00 TO NODE
                                        122.00 \text{ IS CODE} = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.39
 RAINFALL INTENSITY(INCH/HR) = 2.37
 TOTAL STREAM AREA(ACRES) = 23.26
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.11
 ** CONFLUENCE DATA **
                     Tc
           RUNOFF
 STREAM
                             INTENSITY
                                          AREA
                  (MIN.)
 NUMBER
          (CFS)
                             (INCH/HOUR)
                                          (ACRE)
     1
            40.51
                    23.60
                             2.514
                                           17.48
     2
                               2.375
                                            23.26
            48.11
                    27.39
 *******************************WARNING**********************
```

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

```
*******************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                           INTENSITY
           (CFS) (MIN.) (INCH/HOUR)
81.97 23.60 2.514
 NUMBER
     1
     2
            86.38 27.39
                              2.375
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 86.38 Tc(MIN.) =
                                           27.39
 TOTAL AREA(ACRES) = 40.7
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                           122.00 = 1965.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 103.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1525.50 DOWNSTREAM ELEVATION(FEET) = 1524.13
 STREET LENGTH(FEET) = 390.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 86.78
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.86
   HALFSTREET FLOOD WIDTH(FEET) = 39.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.14
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.07 Tc(MIN.) =
                                                29.46
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.310
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8855
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) =
                       0.39
                                SUBAREA RUNOFF(CFS) = 0.80
 TOTAL AREA(ACRES) =
                      41.1
                                  PEAK FLOW RATE(CFS) = 87.18
```

END OF SUBAREA STREET FLOW HYDRAULICS:

```
DEPTH(FEET) = 0.86
                  HALFSTREET FLOOD WIDTH(FEET) = 39.43
 FLOW VELOCITY(FEET/SEC.) = 3.15 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                          130.00 TO NODE
                                        103.00 =
                                                 2355.00 FEET.
*****************************
 FLOW PROCESS FROM NODE
                      103.00 TO NODE
                                     103.00 \text{ IS CODE} = 11
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM
          RUNOFF
                    Tc
                          INTENSITY
                                      AREA
 NUMBER
                  (MIN.)
           (CFS)
                          (INCH/HOUR)
                                     (ACRE)
           87.18
                  29.46
                            2.310
                                      41.13
 LONGEST FLOWPATH FROM NODE
                                        103.00 =
                          130.00 TO NODE
                                                  2355.00 FEET.
 ** MEMORY BANK # 2 CONFLUENCE DATA **
          RUNOFF
 STREAM
                    Tc
                          INTENSITY
                                      AREA
 NUMBER
           (CFS)
                  (MIN.)
                          (INCH/HOUR)
                                     (ACRE)
                  15.36
    1
            9.06
                            2.962
                                       3.58
 LONGEST FLOWPATH FROM NODE
                          100.00 TO NODE
                                        103.00 =
                                                  1951.00 FEET.
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
 ********************************
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF
                    Tc
                          INTENSITY
                  (MIN.)
                          (INCH/HOUR)
 NUMBER
          (CFS)
                             2.962
    1
          54.50
                   15.36
     2
          94.24
                   29.46
                              2.310
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                      94.24
                              Tc(MIN.) =
                                        29.46
 TOTAL AREA(ACRES) =
                      44.7
**********************************
                      103.00 TO NODE
 FLOW PROCESS FROM NODE
                                     103.00 \text{ IS CODE} = 12
 ______
 >>>>CLEAR MEMORY BANK # 2 <<<<<
******************************
 FLOW PROCESS FROM NODE
                      103.00 TO NODE
                                     104.00 \text{ IS CODE} = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 1520.45 DOWNSTREAM(FEET) = 1517.99
 FLOW LENGTH(FEET) = 660.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.63
 ESTIMATED PIPE DIAMETER(INCH) = 51.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 94.24
 PIPE TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 30.74
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                   104.00 =
                                            3015.00 FEET.
****************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 30.74
 RAINFALL INTENSITY(INCH/HR) = 2.27
 TOTAL STREAM AREA(ACRES) = 44.71
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 94.24
******************************
 FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE)
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 986.00
 UPSTREAM ELEVATION(FEET) = 1526.00
 DOWNSTREAM ELEVATION(FEET) = 1524.60
 ELEVATION DIFFERENCE(FEET) =
                        1.40
 TC = 0.393*[( 986.00**3)/( 1.40)]**.2 =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.540
 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8330
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 8.87
 TOTAL AREA(ACRES) = 4.19 TOTAL RUNOFF(CFS) = 8.87
******************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 104.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 1524.60 DOWNSTREAM ELEVATION(FEET) = 1521.49
 STREET LENGTH(FEET) = 774.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 10.30
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.57
   HALFSTREET FLOOD WIDTH(FEET) = 22.54
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.18
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.23
 STREET FLOW TRAVEL TIME(MIN.) = 5.93 Tc(MIN.) =
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.327
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8856
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 1.39 SUBAREA RUNOFF(CFS) = 2.86
 TOTAL AREA(ACRES) = 5.6
                               PEAK FLOW RATE(CFS) = 11.73
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 23.71
 FLOW VELOCITY(FEET/SEC.) = 2.25 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 104.00 = 1760.00 FEET.
******************************
 FLOW PROCESS FROM NODE
                        104.00 TO NODE
                                        104.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 28.89
 RAINFALL INTENSITY(INCH/HR) = 2.33
 TOTAL STREAM AREA(ACRES) = 5.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.73
 ** CONFLUENCE DATA **
                    Tc
           RUNOFF
 STREAM
                            INTENSITY
                                         AREA
          (CFS) (MIN.)
                                          (ACRE)
 NUMBER
                             (INCH/HOUR)
     1
            94.24
                    30.74
                             2.272
                                          44.71
     2
                               2.327
                                            5.58
            11.73
                    28.89
*******************************WARNING**********************
```

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

```
*******************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
         RUNOFF Tc
                      INTENSITY
 NUMBER
         (CFS) (MIN.) (INCH/HOUR)
         100.30 28.89
    1
                        2.327
    2
         105.70 30.74
                         2.272
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 105.70 Tc(MIN.) =
                                   30.74
 TOTAL AREA(ACRES) = 50.3
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                   104.00 = 3015.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1517.99 DOWNSTREAM(FEET) = 1514.68
 FLOW LENGTH(FEET) = 267.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 31.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.89
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 105.70
 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) =
                                   31.06
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                   105.00 = 3282.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                   105.00 TO NODE
                               105.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>>>>
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 31.06
 RAINFALL INTENSITY(INCH/HR) = 2.26
 TOTAL STREAM AREA(ACRES) = 50.29
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 105.70
****************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
      ASSUMED INITIAL SUBAREA UNIFORM
```

ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL

```
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 304.00
 UPSTREAM ELEVATION(FEET) = 1522.00
 DOWNSTREAM ELEVATION(FEET) = 1520.02
 ELEVATION DIFFERENCE(FEET) =
                         1.98
 TC = 0.303*[(304.00**3)/(
                         1.98)]**.2 = 8.165
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.771
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8905
 SOIL CLASSIFICATION IS "D"
 SUBAREA RUNOFF(CFS) = 1.51
 TOTAL AREA(ACRES) =
                    0.45 TOTAL RUNOFF(CFS) = 1.51
*****************************
                     151.00 TO NODE
 FLOW PROCESS FROM NODE
                                  105.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1516.32 DOWNSTREAM(FEET) = 1514.68
 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 4.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.99
 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 8.21
 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 105.00 =
                                              328.00 FEET.
*****************************
                     105.00 TO NODE
 FLOW PROCESS FROM NODE
                                  105.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.21
 RAINFALL INTENSITY(INCH/HR) = 3.76
 TOTAL STREAM AREA(ACRES) = 0.45
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                  Tc
 STREAM
         RUNOFF
                         INTENSITY
                                    AREA
                         (INCH/HOUR)
 NUMBER
         (CFS)
                  (MIN.)
                                    (ACRE)
                                     50.29
    1
         105.70
                 31.06
                         2.263
    2
                           3.763
                                      0.45
           1.51
                 8.21
*******************************WARNING**********************
```

IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.

```
*******************************
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                      INTENSITY
 NUMBER
         (CFS) (MIN.) (INCH/HOUR)
         29.45
                8.21
                        3.763
    1
    2
         106.61 31.06
                         2.263
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 106.61 Tc(MIN.) =
                                    31.06
 TOTAL AREA(ACRES) = 50.7
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                    105.00 = 3282.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 16.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 1514.68 DOWNSTREAM(FEET) = 1512.92
 FLOW LENGTH(FEET) = 324.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.12
 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 106.61
 PIPE TRAVEL TIME(MIN.) = 0.53 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 130.00 TO NODE
                                   16.00 = 3606.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                   16.00 TO NODE
                                16.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.249
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8851
 SOIL CLASSIFICATION IS "D"
 SUBAREA AREA(ACRES) = 0.77 SUBAREA RUNOFF(CFS) = 1.53
TOTAL AREA(ACRES) = 51.5 TOTAL RUNOFF(CFS) = 108.14
 TC(MIN.) =
****************************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
```

^{**} MAIN STREAM CONFLUENCE DATA **

```
STREAM
          RUNOFF
                   Tc
                          INTENSITY
                                     AREA
                  (MIN.)
 NUMBER
           (CFS)
                         (INCH/HOUR)
                                     (ACRE)
          108.14
                  31.59
                            2.249
                                     51.51
    1
 LONGEST FLOWPATH FROM NODE
                         130.00 TO NODE
                                        16.00 =
                                                3606.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM
          RUNOFF
                                     AREA
                    Tc
                          INTENSITY
 NUMBER
                  (MIN.)
                         (INCH/HOUR)
           (CFS)
                                     (ACRE)
          223.39
                  50.24
                            1.884
                                     134.39
    1
 LONGEST FLOWPATH FROM NODE
                          10.00 TO NODE
                                        16.00 =
                                                 6888.00 FEET.
*******************************WARNING**********************
 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
 ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
 WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
****************************
 ** PEAK FLOW RATE TABLE **
         RUNOFF
 STREAM
                   Tc
                          INTENSITY
 NUMBER
                  (MIN.)
          (CFS)
                         (INCH/HOUR)
         248.62
                   31.59
                             2.249
    1
    2
         313.97
                   50.24
                             1.884
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) =
                     313.97 Tc(MIN.) =
                                        50.24
 TOTAL AREA(ACRES) =
                     185.9
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                        185.9 TC(MIN.) =
                                          50.24
 PEAK FLOW RATE(CFS)
                        313.97
______
______
```

END OF RATIONAL METHOD ANALYSIS

1

Appendix H - WSPG Calculations and Profiles

TAIT JOB # SP8950 Appendix H

T1 SAN JACINTO 0

T2 PROPOSED LINE H-2 EXTENSION

Т3	10-YEAR	STORM	EVENT

S0	1000.0001513.290			1						1516.0	00					
R	10	04.	720151	13.310	1		.013							.000	.000	0
R	10	15.6	560151	13.350	1		.013						5	1.169	.000	0
R	10	61.6	010151	13.470	1		.013							.000	.000	0
R	11	00.0	080151	13.590	1		.013						-9	7.881	.000	0
R	11	25.0	030151	13.660	1		.013							.000	.000	0
JX	11	31.0	030151	13.690	3	2	.013		.810		1513	.660		-45.0		
.000 R	11	95.3	110151	13.870	3		.013							.000	.000	0
JX	12	01.	1101513.890		5	4	.013	23	.610		1513	.870		-45.0		
.000 R	15	86.0	060151	15.040	5		.013							.000	.000	0
R	16	02. 3	3301515.094		7		.013							.000	.000	0
SH	16	02. 3	02.3301515.094		7						1515.0	94				
CD	1	4	1	.000	4	.000		.000	.000	.000	.00					
CD	2	4	1	.000	2	.000		.000	.000	.000	.00					
CD	3	4	1	.000	4	.000		.000	.000	.000	.00					
CD	4	4	1	.000	2	.500		.000	.000	.000	.00					
CD	5	4	1	.000	4	.000		.000	.000	.000	.00					
CD	7	4	1	.000	4	.000		.000	.000	.000	.00					
Q				. 340	.0											

W S P G W - CIVILDESIGN Version 14.07

PAGE 1

Program Package Serial Number: 7132

WATER SURFACE PROFILE LISTING

Date: 9- 7-2023 Time: 7:15:42 SAN JACINTO

PROPOSED LINE H-2 EXTENSION

```
***********************************
       | Invert | Depth | Water | O | Vel Vel | Energy | Super
|Critical|Flow Top|Height/|Base Wt| | No Wth | Station | Elev | (FT) | Elev | (CFS) | (FPS) | Head | Grd.El. | Elev |
Depth | Width | Dia.-FT | or I.D. | ZL | Prs/Pip
              -|- -|- -|- -|-
             - | -
 L/Elem | Ch Slope |
                                            SF Avel HF | SE
Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
******|******|*****|*****|****
                  3.181 1516.471 110.76
 1000.000 1513.290
                                      10.34
                                              1.66 1518.13
3.18 3.23 4.000 .000 .00
                               1 .0
             - | -
                     - | -
                                    -|- -|- -|-
      - | -
             - | -
                   - | -
                         - | -
                                                      .03
   4.720 .0042
                                              .0061
                                                            3.18
      4.00
             .013
                      .00
                          .00 PIPE
 1.00
              3.297 1516.607 110.76 10.00
 1004.720 1513.310
                                              1.55 1518.16
                     .000 .00 1 .0
3.18
       3.04
             4.000
             - | -
                     - | -
                                    - | -
                                        -|- -|-
             - | -
                   - | -
                         - | -
      - | -
                               |-
                                                      .06
   10.940
          .0036
                                              .0057
                                                            3.68
                      .00
      4.00
             .013
                          .00 PIPE
  .92
 1015.660 1513.350
                  3.407 1516.757 110.76 9.71
                                              1.46 1518.22
                                                            .00
      2.84
             4.000
                    .000 .00 1 .0
                                  -|- -|- -|-
              - | -
                     - | -
      - | -
                         - | -
             - | -
                               |-
   29.150 .0026
                                             .0054 .16
                                                            3.41
  .85 4.00
             .013
                     .00
                         .00 PIPE
```

```
16.200 .0026
             .0052 .08 3.62
39.070 .0031
             .0052 .20
                  3.82
24.950 .0028
             .0052 .13 3.83
JUNCT STR .0050
             .0054 .03 3.92
            12.478 .0028
             .0055 .07 3.96
3.17 .00 4.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|-
-|- -|- -|- |-
51.602 .0028 .00 .00 PIPE
             .0057 .30 4.00
♠ FILE: SJPRH2.WSW
        W S P G W - CIVILDESIGN Version 14.07
         PAGE 2
```

Program Package Serial Number: 7132

WATER SURFACE PROFILE LISTING

Date: 9- 7-2023 Time: 7:15:42 SAN JACINTO

PROPOSED LINE H-2 EXTENSION

```
| Invert | Depth | Water | Q | Vel
                                           Vel | Energy | Super
|Critical|Flow Top|Height/|Base Wt| | No Wth
 Station | Elev | (FT) | Elev
                             | (CFS) | (FPS) | Head | Grd.El. | Elev |
Depth | Width | Dia.-FT | or I.D. | ZL | Prs/Pip
                          - | -
            -|- -|-
                                   -|- -|- -|-
      - | -
             - | -
                   - | -
                        -|- -|
 L/Elem | Ch Slope |
                                            SF Ave
                                                    HF | SE
Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
******| ******| ******| *****| ***** | *****
 1195.110 1513.870 4.157 1518.027 109.95 8.75 1.19 1519.22 .00
3.17 .00 4.000 .000 .00 1 .0
      - | -
             - | -
                     - | -
                                    - | -
                                       - | -
                                                - | -
             - | -
                   - | -
                         - | -
                               |-
JUNCT STR .0033
                                             .0047
                                                   .03 4.16
 .00
             .013
                     .00
                          .00 PIPE
                                                       4.879 1518.769 86.34
 1201.110 1513.890
                                       6.87
                                              .73 1519.50
                                                            .00
                   .000 .00 1 .0
      .00
             4.000
              - | -
                                   - | -
      - | -
                     - | -
                           - | -
                                        -|- -|-
                         - | -
      - | -
                   - | -
             - | -
  384.950 .0030
                                             .0036
                                                     1.39
                                                           4.88
             .013
     4.00
                     .00
                          .00 PIPE
  .00
                                                5.119 1520.159 86.34 6.87
 1586.060 1515.040
                                              .73 1520.89
                                                            .00
                    .000 .00 1 .0
2.82 .00
             4.000
                     - | -
      - | -
              - | -
                                    -|- -|- -|-
                   -|- -|- |-
      - | -
             - | -
   16.270 .0033
                                             .0036
                                                     .06
                                                           5.12
             .013
                     .00 .00 PIPE
      3.46
```

1602.330 1515.094 5.124 1520.218 86.34 6.87 .73 1520.95 .00
2.82 .00 4.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|- -|-

T1 SAN JACINTO 0

T2 EXISTING LINE H-3

13	TO-1	EAK	3101	M EVENI								
S0	1000.0001513.290 1							1	516.000			
R	1010.5901513.330				1	.013				.000	.000	0
R	1018.5001513.360				1	.013				-30.079	.000	0
R	13	1323.9501514.680			1	.013				.000	.000	0
JX		29.	98015	514.780	5 4	.013	750		1514.680	45.0		
.00 R		66.	12015	515.730	5	.013				.000	.000	0
TS	15	68.	22015	515.830	10	.013				.000		
R	15	68.	32015	515.880	8	.013				.000	45.000	0
R	15	90.	82015	517.990	8	.013				.000	.000	0
SH	15	90.	82015	517.990	8			1	517.990			
CD	1	4	1	.000	3.000	.000	.000	.000	.00			
CD	2	4	1	.000	1.500	.000	.000	.000	.00			
CD	3	4	1	.000	3.000	.000	.000	.000	.00			
CD	4	4	1	.000	1.500	.000	.000	.000	.00			
CD	5	4	1	.000	3.000	.000	.000	.000	.00			
CD	6	4	1	.000	1.500	.000	.000	.000	.00			
CD	7	4	1	.000	1.500	.000	.000	.000	.00			
CD	8	4	1	.000	1.500	.000	.000	.000	.00			
CD	9	4	1	.000	1.500	.000	.000	.000	.00			
CD	10	4	1	.000	1.500	.000	.000	.000	.00			
Q			49	9.150	.0							

PAGE 1

Program Package Serial Number: 7132

WATER SURFACE PROFILE LISTING

Date: 1-22-2024 Time: 5:52: 5 SAN JACINTO

EXISTING LINE H-3

```
***********************************
        | Invert | Depth | Water | O | Vel Vel | Energy | Super
|Critical|Flow Top|Height/|Base Wt| | No Wth | Station | Elev | (FT) | Elev | (CFS) | (FPS) | Head | Grd.El. | Elev |
Depth | Width | Dia.-FT | or I.D. | ZL | Prs/Pip
                  -|- -|- -|- -|-
              - | -
             - | -
 L/Elem | Ch Slope |
                                             SF Ave | HF | SE
Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
******|******|*****|*****|****
                  2.710 1516.000 49.90
 1000.000 1513.290
                                       7.43 .86 1516.86
2.30 1.77
             3.000
                   .000 .00 1 .0
              - | -
                     - | -
                                         -|- -|-
      - | -
             - | -
                    - | -
                          - | -
                                                      .05
  10.590 .0038
                                              .0049
                                                             2.71
              .013
                      .00
                           .00 PIPE
  .67
      3.00
              1010.590 1513.330
                  2.731 1516.061 49.90
                                       7.39 .85 1516.91
2.30
       1.71
             3.000
                     .000 .00 1 .0
             - | -
                     - | -
                                    - | -
                                         -|- -|-
             - | -
                    - | -
      - | -
                          - | -
                               |-
                                              .0049
                                                      .04
   7.910
          .0038
                                                             2.83
                      .00
  .66
     3.00
              .013
                           .00 PIPE
 1018.500 1513.360
                  2.746 1516.106
                                49.90 7.36 .84 1516.95
                                                             .00
2.30
       1.67
             3.000
                    .000 .00 1 .0
                                   -|- -|- -|-
              - | -
                     - | -
             - | -
                          - | -
                               |-
  240.511 .0043
                                              .0051
                                                     1.23
                                                             2.75
  .64
       3.00
             .013
                     .00
                         .00 PIPE
```

```
64.939 .0043
                     .0055 .35 3.00
2.30 .00 3.000 .000 .00 1 .0

-|- -|- -|- -|- -|- -|- -|- -|-
                    .0055 .03 3.08
JUNCT STR .0166
.00 .013 .00 .00 PIPE
                     1329.980 1514.780 3.061 1517.841 49.15 6.95 .75 1518.59 .00
2.28 .00 3.000 .000 1 .0
62.488 .0040
                     .0054 .34 3.06
2.28 .00 3.000 .000 .00 1 .0

-|- -|- -|- -|- |-

HYDRAULIC JUMP
5.492 .0040
                     .0183 .10 1.59
2.28 3.00 3.000 .000 .00 1 .0
-|- -|- -|- -|- -|- -|-
-|- -|- -|- |-
13.198 .0040
                     .0199 .26 1.57
2.07 3.00 .013 .00 .00 PIPE
♠ FILE: SJEXH3NS10Y.WSW
              W S P G W - CIVILDESIGN Version 14.07
              PAGE 2
```

Program Package Serial Number: 7132

WATER SURFACE PROFILE LISTING

Date: 1-22-2024 Time: 5:52: 5

SAN JACINTO

EXISTING LINE H-3

```
| Invert | Depth | Water | Q | Vel Vel | Energy | Super
|Critical|Flow Top|Height/|Base Wt| | No Wth
 Station | Elev | (FT) | Elev | (CFS) | (FPS) | Head | Grd.El. | Elev |
Depth | Width | Dia.-FT | or I.D. | ZL | Prs/Pip
           -|- -|-
                         - | -
                                 -|- -|- -|-
      - | -
            - | -
                  - | -
                       -|- -|
 L/Elem | Ch Slope |
                                          SF Ave
                                                  HF SE
Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
1411.158 1515.107 1.511 1516.617 49.15 13.78 2.95 1519.57
            3.000 .000 .00 1 .0
      3.00
      - | -
            - | -
                    - | -
                                - | -
                                     - | -
                                              - | -
            - | -
                  - | -
                        - | -
                             |-
  12.865
         .0040
                                           .0226 .29
                                                        1.51
 2.23 3.00
             .013
                    .00
                       .00 PIPE
                 1.455 1516.614 49.15 14.45
 1424.023 1515.158
                                           3.24 1519.86
                                                         .00
                  .000 .00 1 .0
      3.00
            3.000
      - | -
             - | -
                                 - | -
                    - | -
                         - | -
                                     - | -
                                              - | -
                        -|- |-
      - | -
                  - | -
            - | -
  12.516 .0040
                                           .0257
                                                 .32
                                                        1.46
            .013
 2.39 3.00
                    .00
                        .00 PIPE
                 1.403 1516.611 49.15 15.16
 1436.539 1515.209
                                           3.57 1520.18
                                                         .00
      2.99
            3.000
                   .000 .00 1 .0
                    - | -
      - | -
             - | -
                                  -|- -|- -|-
                          -|-
      - | -
                  -|- -|- |-
            - | -
  12.149 .0040
                                           .0292
                                                   .36
                                                        1.40
            .013
                    .00 .00 PIPE
 2.57
      3.00
```

```
    1448.689
    1515.257
    1.352
    1516.610
    49.15
    15.90
    3.92
    1520.53
    .00

    2.28
    2.99
    3.000
    .000
    .00
    1
    .0

-|- -|- -|- -|- -|-
-|- -|- -|- |-
                    .0333 .39 1.35
11.769 .0040
11.390 .0040
                     .0379 .43 1.30
11.017 .0040
                     .0431 .47 1.26
10.641 .0040
                    .0491 .52 1.21
3.39 3.00 .013 .00 .00 PIPE
10.274 .0040
                     .0560 .58 1.17
9.915 .0040
                     .0638 .63 1.13
3.88 3.00 .013 .00 .00 PIPE
♠ FILE: SJEXH3NS10Y.WSW
                W S P G W - CIVILDESIGN Version 14.07
              PAGE 3
```

Program Package Serial Number: 7132

Date: 1-22-2024 Time: 5:52: 5 SAN JACINTO

EXISTING LINE H-3

```
| Invert | Depth | Water | Q | Vel | Energy | Super
|Critical|Flow Top|Height/|Base Wt| | No Wth
 Station | Elev | (FT) | Elev | (CFS) | (FPS) | Head | Grd.El. | Elev |
Depth | Width | Dia.-FT | or I.D. | ZL | Prs/Pip
     -|- -|- -|- -|- -|-
-|- -|-
           - | - | -
                    -|- -|
L/Elem |Ch Slope |
                                      SF Ave | HF | SE
Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch
******|******|*****|*****|****
 1513.695 1515.519 1.091 1516.610 49.15 21.16 6.95 1523.56 .00
           3.000 .000 1 .0
     2.89
                      - | -
                              -|- -|- -|-
            - | -
                  - | -
     - | -
                -|- -|- |-
-|- -|-
          - | -
  9.563 .0040
                                       .0728 .70
                                                    1.09
                 .00 .00 PIPE
 4.16 3.00 .013
                                        1523.259 1515.557 1.053 1516.611 49.15 22.19 7.65 1524.26
                                                    .00
           3.000 .000 .00 1 .0
2.28 2.86
           - | -
                 -|-
-|- -|- |-
                              -|- -|- -|-
     - | -
     - | -
   9.221 .0040
                                       .0830
                                               .77
                                                    1.05
                  .00 .00 PIPE
     3.00
           .013
                                                1532.479 1515.595
               1.017 1516.612 49.15 23.28 8.41 1525.02
                                                    .00
     2.84
           3.000
                 .000 .00 1 .0
     -|- -|-
                             -|- -|- -|-
                  - | -
                       - | -
                 -|- -|- |-
    - | -
           - | -
  8.886 .0040
                                       .0948 .84
                                                    1.02
 4.76 3.00 .013
                  .00 .00 PIPE
               .983 1516.613 49.15 24.41 9.25 1525.87 .00
 1541.365 1515.630
2.28 2.82 3.000 .000 .00 1 .0
```

```
.1082 .93 .98
8.563 .0040
2.28 2.79 3.000 .000 1 .0
-|- -|- -|- -|- -|- -|- -|-
8.248 .0040
                  .1235 1.02 .95
5.44 3.00 .013 .00 .00 PIPE | | | | |
                   -|- -|- -|- -|- -|- -|-
-|- -|- -|- |-
7.944 .0040
                   .1411 1.12 .92
TRANS STR .0476
.1758 .37 .89
1.50 .07 1.500 .000 1 .0

-|- -|- -|- -|- -|- -|-
.003 .0938
                  .2092 .00 1.50
1.00 1.50 .013 .00 .00 PIPE
♠ FILE: SJEXH3NS10Y.WSW
             W S P G W - CIVILDESIGN Version 14.07
             PAGE 4
         Program Package Serial Number: 7132
```

WATER SURFACE PROFILE LISTING

Date: 1-22-2024 Time: 5:52: 5

SAN JACINTO

EXISTING LINE H-3

Invert Depth Water Q Vel Vel Energy Super Critical Flow Top Height/ Base Wt No Wth
Station Elev (FT) Elev (CFS) (FPS) Head Grd.El. Elev
Depth Width DiaFT or I.D. ZL Prs/Pip
- -
L/Elem Ch Slope
Dpth Froude N Norm Dp "N" X-Fall ZR Type Ch
****** ****** ****** ****** ******
****** ****** ****** ****** ***** ******

