Traffic Impact Study

Gas Station with Convenience Market, Fast Food Restaurants, and Truck Fueling Facility
 at Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California

April 20, 2022
Revised August 14, 2023

Project No. 21-922

Submitted by:

Matthew K. VoVilla, R.C.E. 43130 Date

LAV//PINNACLE

Consulting \& Engineering Services
Planning - Engineering - Surveying - Project Management

Table of Contents

I. Introduction 1
A. Project Description 1
B. Existing and Surrounding Land Use 2
II. Existing Local Street Network 2
III. Method of Analysis \& Traffic Estimates 3
A. General 3
B. Traffic Counts 4
C. Future Year Traffic Volumes 5
D. Project Generated Traffic 7
E. Trip Distribution and Assignment 11
F. Trip Assimilation 11
IV. Impact of Project Traffic 11
A. Level of Service (LOS) 11
B. Traffic Impact Analysis 13
C. Traffic Signal Warrant Analysis 28
V. Vehicle Miles Travelled 32
A. Background 32
B. Project Generated Trips for VMT Calculation 32
VI. Traffic Mitigation. 32
A. Project's Obligation to Fund Mitigation 32
B. Project's Pro-Rata Share of Mitigation. 33
C. Proposed Mitigation 35
VII. Conclusions \& Recommendations 36

List of Tables:

Table 1: Projected Average Annual Growth Rates 6
Table 2: Trip Generation 11
Table 3: Level of Service for Signalized Intersections 17
Table 4: Level of Service for Un-Signalized Intersections 17
Table 5: Level of Service for Highways and Arterials 18
Table 6: Intersection Level of Service - A.M. Peak Hour 21
Table 7a: Street Segment Level of Service - A.M. Peak Hour 24
Table 7b: Street Segment Level of Service - P.M. Peak Hour 25
Table 8: Peak Hour Warrant Analysis 29
Table 9: Project Pro-Rated Share 34

Appendix " A " Exhibits and Figures:

Architectural Site Plan

Figure 1: \quad Project Location and Existing Street Network
Figure 2: \quad Year 2020 Existing A.M. Peak Hour Volumes \& Turning Movements
Figure 3: Year 2020 Existing P.M. Peak Hour Volumes \& Turning Movements
Figure 4A: \quad Project Generated Traffic - A.M.
Figure 4B: \quad Project Generated Traffic - P.M.
Figure 5A: Year 2023 Existing A.M. Peak Hour Volumes \& Turning Movements Plus Project Generated Traffic

Figure 5B: Year 2023 Existing P.M. Peak Hour Volumes \& Turning Movements Plus Project Generated Traffic

Figure 6A: Year 2025A.M. Peak Hour Volumes \& Turning Movements (Opening Day)
Figure 6B: Year 2025 P.M. Peak Hour Volumes \& Turning Movements (Opening Day)
Figure 7A: \quad Year 2025 A.M. Peak Hour Volumes \& Turning Movements Plus Project Generated Traffic (Opening Day)
(Continued)

Appendix " A " Exhibit and Figures (Continued):

Figure 7B: \quad Year 2025 P.M. Peak Hour Volumes \& Turning Movements Plus Project Generated Traffic (Opening Day)

Figure 8A: Year 2035 Projected A.M. Peak Hour Volumes \& Turning Movements
Figure 8B: Year 2035 Projected P.M. Peak Hour Volumes \& Turning Movements
Figure 9A: Year 2035 Projected A.M. Peak Hour Volumes \& Turning Movements Plus Project Generated Traffic

Figure 9B: \quad Year 2035 Projected P.M. Peak Hour Volumes \& Turning Movements Plus
Figure 10A: Year 2045 Projected A.M. Peak Hour Volumes \& Turning Movements
Figure 10B: Year 2045 Projected P.M. Peak Hour Volumes \& Turning Movements
Figure 11A: Year 2045 Projected A.M. Peak Hour Volumes \& Turning Movements Plus Project Generated Traffic

Figure 11B: Year 2045 Projected P.M. Peak Hour Volumes \& Turning Movements Plus Project Generated Traffic

APPENDIX "B" - Level of Service Calculations

APPENDIX "C" - Additional Documents

I. INTRODUCTION

This traffic impact study was prepared to determine traffic impact and potential mitigation for a proposed highway commercial development in Tulare County, sited at the northeast corner of State Highway 65 and Cedar Street, roughly one quarter mile west of the city of Lindsay. The study has been required by the California Department of Transportation.

A. Project Description

The Project site comprises 6.28 acres and proposes a 5,439 square foot convenience market, two fast food restaurants, one with drive through service, 16 automobile fueling positions and a sixposition truck fueling facility.

The site is relatively flat and is currently vacant, but in the past was under cultivation as row crops.

The Project is bounded by State Highway 65 along its southern frontage and Cedar Avenue along its western boundary. Ingress and egress from the Project is proposed from both State Highway 65 and Cedar Avenue.

The Project is intended to attract truckers and the traveling public from State Route 65. The site is laid out to facilitate circulation through fueling stations and eliminate queuing. The access drive from SR 65 is 47 -feet wide with 50 foot radii curb returns. In addition, a 200 -foot deceleration lane is proposed for westbound traffic (technically northbound) entering the site. This configuration will rapidly remove vehicles from the SR 65 traveled way and eliminate any hindrances for trucks turning into the site. In addition, and per Caltrans' recommendation, a raised median porkchop is proposed for the SR 65 project entrance. The "porkchop" will prohibit any movement other than westbound (northbound) "right in and egress "right out". The "porkchop" will also prohibit eastbound (technically southbound) left turns into the site.

The six truck fueling positions have been aligned 240 -feet directly north of the SR 65 entrance drive. This will provide sufficient decision time for truckers to select a vacant fuel bay and will provide storage if needed. The combining benefits of a wide drive approach, large return radii, deceleration lane and on-site circulation will result in rapid processing of trucks through the fueling facility.

Similarly, a westbound (northbound) deceleration and right turn lane is proposed for Cedar Avenue, as well as an eastbound (southbound) dedicated left turn lane.

Finally, the turning wheel paths of large trucks have been superimposed on the site plan to demonstrate ease of circulation.

Additional traffic mitigation is discussed later in this report.

Figure 1, included in Appendix A, shows the project location within Tulare County and its proximity to the City of Lindsay.

An Architectural Site Plan, included in Appendix A, provides the Project's site layout.

B. Existing and Surrounding Land Use

Surrounding land is entirely under cultivation; however, a residential neighborhood in the City of Lindsay exists about one quarter mile east of the Project.

Roughly one quarter mile to the west on the north frontage of SR 65, exists a Chevron gas station with three retail stores.

Figure 1 is a recent aerial photo showing the Project site and the surrounding area.

II. EXISTING LOCAL STREET NETWORK

The following is a description of streets in the vicinity of the site, which may be impacted to some extent by the Project.

State Route 65: Pursuant to the Surface Transportation Act of 1982 State Route 65 is a designated route for large trucks. State Route 65 commences in Bakersfield and runs northward roughly 94 miles through the cities and communities of Oildale, Ducor, Terra Bella, Strathsmore, Lindsay, and terminates at its intersection with State Route 198 just north of Exeter and about 8 miles east of Visalia. State Route 65 transitions back and forth between a two-lane rural highway and a four lane expressway. In the vicinity of the Project, SR 65 is a two lane undivided road with dedicated left and right turn lanes at major intersections.

Caltrans and the County of Tulare have plans to re-align and reconstruct State Route 65, which will include the construction of a roundabout, located at the intersection of State Route 65 and Cedar Avenue. Construction is tentatively planned to commence in 2034.

Cedar Avenue: Cedar Avenue is as two lane County Road running between State Route 65 at its south end and terminating one mile north at its intersection with Avenue 240. Cedar Avenue is not a thoroughfare and provides access to agricultural property and less than ten residences. Cedar Avenue was surfaced in the past with asphalt concrete, but the pavement is old and in disrepair and missing in many locations. Along the Project's frontage, Cedar is planned to be improved to accommodate the anticipated Project traffic. The existing pavement structural section should be evaluated for adequacy under future truck loads.

As part of the SR 65 realignment project, Caltrans intend to realign Cedar north of it intersection (with SR 65) to tie into Oak Avenue.

As previously mentioned above, Caltrans and the County of Tulare have plans to re-align and reconstruct State Route 65. As a part of the roundabout project, Cedar Ave will be realigned to the East to connect with Oak Ave. It is recommended that the intersection of State Route 65 and Cedar Avenue be re-evaluated in the future.

North Spruce Avenue: North Spruce is a Tulare County road which commences a mile south of SR 65 and runs north 9 miles paralleling SR 65 to its terminus at its intersection with State Route 198. North Spruce Road is a two-lane paved Tulare County Road with paved shoulders and is in a good state of repair. Traffic counts indicate that this is a well-used roadway.

North Spruce Avenue is signalized at its intersection with State Route 65. A signal dedicated lane is provided for each movement from State Route 65; however, only a signal shared lane is provided for the north and south legs of this intersection.

West Tulare Avenue: West Tulare Avenue is a two lane, paved east-west road running through residential neighborhoods in the northern part of Lindsay. The west Terminus of West Tulare is its intersection with SR 65. West Tulare Avenue becomes East Tulare Avenue in the City of Lindsay and has a paved shoulder, curb, gutter and sidewalk over most of its length. Between SR 65 and 650 feet to the east, West Tulare Avenue has only paved shoulders. As part of the planned realignment of SR 65, West Tulare Avenue will be realigned to tie into Oak Avenue and its intersection with SR 65 will be removed.

III. METHOD OF ANALYSIS \& TRAFFIC ESTIMATES

A. General

Additional detailed descriptions of methods and "findings" are provided in the appropriate sections herein. However, as a preface to the following sections, a brief step-by-step description used for analysis in this report, as follows:

1. Existing conditions of the Project and surrounding area are surveyed, including traffic counts, laneage, and intersection control. Traffic counts were performed during periods of peak volume.
2. Using growth rates project from historical traffic data in the vicinity of the Project, existing traffic is extrapolated to future year volumes. In this case, future traffic was estimated for Year 2025 and Year 2045. Year 2025 is the anticipated "opening" day, i.e., when the development is open for business.

It is possible that opening day could be sooner than 2025. In that scenario, the theoretical traffic developed for 2025 would be larger than previous years, and the results considered conservative.
3. Project-generated traffic, based on the proposed land use, is estimated and distributed onto the street network. Project-generated traffic is added to both present day and future year scenarios described in the following step.
4. Intersections, and street segments with any significant impact from Project-generated traffic are analyzed for "Level of Service" (LOS) for the various scenarios: A) Existing conditions with No Project; B) Existing Conditions plus Project Traffic; C) Year 2025 (Assumed as "Opening Day") with No Project; D) Year 2025 plus Project traffic; E) Year 2045 with No Project; F) Year 2035 plus Project Traffic; and G) Year 2032 plus Cumulative Project traffic and proposed mitigation improvements. H) Year 2045 plus Project Traffic; and I) Year 2042 plus Cumulative Project traffic and proposed mitigation improvements.
5. Mitigation or capacity/level of service improvements are determined for any of the above scenarios which result in an unacceptable "Level of Service" (LOS). Usually, an unacceptable LOS is anything less than " C ". Given special circumstances, occasionally an agency will lower the "mitigation threshold" to a LOS of "D".
6. Resultant LOS's are calculated to determine the effectiveness of the proposed mitigation. If improvements to the facility are funded by the RTIF program, they are evaluated for adequacy under future traffic conditions. The Project's obligation for funding of any needed mitigation improvements is determined. Project-funded mitigation improvements are usually improvements that would not necessarily be needed if there was no project. In these cases, the Project's obligation, in very simplified terms, is the cost of a particular mitigation improvement multiplied by the ratio of Project-generated traffic to total estimated future year traffic volume.
7. Vehicle Miles Traveled: The total daily Vehicle Miles Traveled (VMT) is calculated for the Project. This methodology is explained later in this report, but VMT, is theoretically, the vehicle miles caused by the Project.

Again, in the following sections methodology, findings, and mitigation are discussed in further detail.

B. Traffic Counts

Traffic counts were performed over the existing street network to determine existing intersection volumes, and traffic flow patterns. As discussed in the following section, future year traffic volumes are estimated by applying annual growth rates derived from historical growth rates.

Traffic counts were performed in February of 2023 during the morning and evening peak periods during weekdays, excluding Mondays, Fridays, holidays, and days preceding or following holidays. Weekdays before or after holidays or weekends are not representative of normal traffic patterns and thus are not counted or considered appropriate for analysis.

Specifically, traffic counts were performed during the morning peak period between 6:30 A.M. and 8:30 A.M. as well as the evening peak period between 4:00 P.M. and 6:00 P.M. Usually, the peak period for various intersections and streets are close but do not occur at identical times. In this study, conservatively, the highest one-hour volumes for each intersection or street segment within their individual peak periods were used for analysis in this report.

Figures 2 \& 3, included in Appendix "A" of this study, show the peak hour volumes during the morning and evening peak periods, respectively, for all facilities counted. These figures also show the actual turning movements at all counted intersections.

C. Future Year Traffic Volumes

As mentioned, future traffic for the Years 2025, 2035, and 2045 were estimated by applying growth rates to existing volumes. Growth rates were extrapolated from Caltrans traffic data from years 2016 and 2018. The latest year of published traffic volumes by Caltrans is 2020. However, year 2020 data was not used since it would result in a negative growth rate, which would not be accepted by Caltrans.

Table 1 herein provides a weighted average of SR 65 between Years 2016 and 2018, yielding an average annual growth rate of 1.9 percent. This growth was applied to present day volumes and compounded annually to arrive at Year 2025, Year 2035, and Year 2045 volumes.

Figures 2 and 3, included in Appendix A, shows the morning and evening "Year 2023", or presentday peak hour volumes and turning movements used for analysis in this Study. Figures 6A and 6B show the Year 2025 morning and evening peak hour volumes and turning movements. Figures 8 A and 8 B , also in Appendix A , show the Year 2035 morning and evening peak hour volumes and turning movements. Figures 10A and 10B, also in Appendix A, show the Year 2045 morning and evening peak hour volumes and turning movements.

Project generated traffic was not added to any of the previously mentioned figures.

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

Table 1: Projected Average Annual Growth Rates

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Item No.	Road Segment	From	To	Year 2016 Annual Average Daily Traffic	Year 2018 Annual Average Daily Traffic	Annual Average Growth Rate (\%)	Factor: Year 2023 to Year 2025	Factor: Year 2023 to Year 2035	Factor: Year 2023 to Year 2045
1.	State Route 65	Hermosa Street	Oak Avenue	21,600	21,800	0.5\%	1.0093	1.0569	1.1067
2.	State Route 65	Oak Avenue	Spruce Avenue	22,250	22,250	0.0\%	1.0000	1.0000	1.0000
3.	State Route 65	Spruce Avenue	State Route 137	17,500	18,550	3.0\%	1.0600	1.4185	1.8983
4.	State Route 137	Road 140	Road 168	10,300	11,100	3.8\%	1.0777	1.5664	2.2769
5.	State Route 137	Road 168	State Route 65	10,500	11,550	4.9\%	1.1000	1.7716	2.8531
Weighted Average:						1.9\%	1.0387	1.2562	1.5192

Notes:

1) Annual Average Daily Traffic (AADT) per Caltrans Traffic Census Program
2) Due to Covid-19's effect on traffic volumes, "Pre-Covid" Traffic Census data was selected for analysis. Analysis of 2018-2020 results in negative growth for the region.

D. Project Generated Traffic

Project generated vehicular trips were estimated using the Institute of Transportation Engineers Trip Generation Manual, $11^{\text {th }}$ Edition, hereinafter referred to as the ITE Manual. The ITE Manual provides mathematical correlations between various land uses and trip generation, i.e., the ITE Manual provides average trip rates for many land use types. Some ITE land uses also include fitted curves for trip generation rates. As discussed in Section I, and as shown on the site plan in Appendix " A ", the Project includes fueling for automobiles, a convenience market, truck fueling and fast food restaurants, one with drive through service.

The following Table 2 provides an ITE Code appropriate for each land use, provides the land use description, the independent variable, and a trip generation rate associated with each independent variable. In this case, the independent variable used for each land use is "gross leasable floor area", and "fueling positions". Table 2 also provides trip rates and total trip generation for the 24-hour average day, and the A.M. and P.M. peak hour, and the directional split for each scenario. Table 2 indicates an unadjusted total for all land uses as 8,712 average daily trips, and 765 and 655 peak hour trips for the morning and evening peak hours respectively.

The challenge in accurately estimating trips is avoiding over-estimations. However, given agency restrictions on trip adjustment factors, this is only partially obtainable. A true Project-generated primary trip is one that departs from an origin, travels to the Project, and then returns to its origin; or vise-versa. In other words, the sole purpose of the trip was to visit the project site and then return to the origin, or vice versa.

Theoretically, any visit to the site for fuel counts as two trips: the arrival and the departure. This same theory applies to any other land uses such as fast food. If a motorist stops for gas and gets fast food at the same commercial center, they have theoretically created 4 trips. In this case, without adjustment factors, 4 trips would be added to the public roadway, when in fact only two were appropriate.

Similarly, if someone stopped for fast food as part of the work to home commute, is it appropriate to state that the commercial facility caused two trips to be added to the public roadway? In this scenario, the work to home commute is the primary trip, and the only trip on the roadway. In this case the commercial center did not add traffic to the public road, and two trips should not be allocated to the project.

In another scenario, a trucker exits from a freeway to get gas and food, then returns to the freeway to continue onto their primary destination. In this case, it would be improper to add 4 project trips to the freeway. However, it is appropriate to add two trips to the freeway ramps and the cross-street since those facilities are impacted by the stop for food and gas.

To account for the above scenarios, adjustment factors have been developed which are intended to apply to basic trip generation calculation to yield realistic values.

In the following, trip types and said trip adjustment factors are discussed.
"Pass-bys": Briefly, "Pass-By" trips are intermediate trips or stops taken as part of the primary trip. As an example, stopping at a highway commercial center for fuel or fast-food while commuting between home and work, (without diverted from the primary travel route), is considered a "pass-by" trip, i.e., in a proper traffic analysis, the stop at the commercial center, not being the purpose of the primary trip, should not be considered as project-generated trips to be added to the surrounding street network. Without a reduction for "pass-by" all intermediate stops during a primary trip would be improperly included in the summation of traffic volume contributed by the Project.

As discussed further in the section below, driveway surveys of similar facilities, performed by LAV//Pinnacle Engineering, have yielded pass-by rates of close to 100 percent. For analysis of Level of Service for this Project, a "pass-by" reduction of 20 percent was selected.
"Diverted-Link trips" are similar to "pass-bys" except these trips make a slight detour to reach an interim destination, then return to the original route to continue onto their primary destination. As an example, a diverted link trip would be exiting the freeway to reach the Project site, then returning to the freeway to continue the primary trip. Although "Diverted-Link" trips are not additive to freeway traffic, they nevertheless impact the freeway ramps and the crossstreet to reach said interim destination. However, given the Project fronts State Highway 65, (the source of the majority of trips), there are no "side routes" necessary to reach the Project site, and thus "diverted-link trips" were considered unlikely and not factored into final trip generation calculations, i.e., no deductions were taken for "diverted link trips."

Captured Trips: Another traffic phenomenon, "Capture", can be described as trips that are made internally within the limits of a mix use project. "Internally" means these trips do not return to the public street network between trips within the same site. Similar to the previous example provided, captured trips would include stopping for gas and fast food at different establishments within the same commercial center. Without an adjustment for "capture", four trips attributable to the Project, would be added to the public street network, when only two trips were appropriate: the arrival and the departure from the commercial center. Capture adjustments are intended to eliminate double and trip counting of project-generated trips.

Capture is appropriately applied to all types of trips, including primary, diverted link and passbys.

Caltrans permits a reduction of 5\% for "Capture".

Driveway Surveys: To accurately estimate "Pass-Bys", "Diverted Link" and "Captured" trips, driveway surveys were performed at a similar highway commercial establishment, located at the Southeast corner of Highway 65 and Avenue 128. Two surveys were performed during weekday
peak and non-peak hours. Non-peak hours were included since the results for "Pass-By" and "Diverted Link" would likely be conservative given a lesser make-up of commuters. At the time of this study, the Chevron Station (and C-Store) $1 / 4 /$ mile west of the Project at the intersection of North Spruce Street and State Highway 65 was under construction, invalidating it as a suitable location for a driveway survey.

In both surveys, 100 percent of survey respondents indicated that their stop at said commercial center was not the primary purpose of their trip. All respondents indicated that they were traveling to other destinations. As stated, employee arrivals and departures are primary trips; the driveway surveys were random and no respondents indicated they were employees.

Numerous surveys for establishments similar to the Project have been performed by the author of this report. These surveys were performed in both urban and rural areas. All yield similar results: nearly 100 percent of trips were either "pass-bys", "diverted link" trips, or a combination thereof. The surveys have been included in Appendix "C" herein.

Caltrans' Guide for the Preparation of Traffic Impact Studies sets a limit for "pass-by" and "capture" to 15 percent and five percent respectively. However, a larger reduction can be applied on the condition that the increased reduction is justified. Given the results of the surveys discussed above, a "pass-bys" reduction of 20 percent was considered conservative, and therefore appropriate for traffic analysis. After a discussion with Caltrans, the 20 reduction was approved for use in the study. Said correspondence has been included in Appendix " C " herein.

Table 2 shows said trip reduction taken for both "pass-bys" and "capture" at 20 percent and 5 percent respectively. Given these limited deductions, it is apparent that Project-generated trips allocated to the surrounding street network is certainly very conservative. Distribution and assignment of Project-generated trips are discussed in the following section.

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

Table 2: Trip Generation for Commercial Development at the Northeast Corner of Ave 232 \& Cedar Ave, Lindsay

E. Trip Distribution and Assignment

There are no known additional roadways, roadway realignments, or road closures anticipated in the near future that would significantly change existing traffic patterns. Therefore, Projectgenerated trips were distributed on the existing street network assuming they would follow existing traffic patterns well into the future. Existing traffic patterns, again, were determined from traffic counts, traffic observations, and driveway surveys of the adjacent development.

Project-generated trip distribution have been shown in Figure 4.

F. Trip Assimilation

Based on information provided by the Tulare County Council of Government, the average work commute travel time for Tulare County is 20 minutes. At an average speed of 33 miles per hour, this yields an average work-commute trip of 11 miles. Assuming a $50 / 50$ split of work-commute trips less than and greater than 11 miles, an average trip assimilation rate of 8.33 percent per mile is derived. This rate of assimilation is likely conservative and over the years has been accepted by various reviewing agencies. The trip distribution shown in Figure 4 has been adjusted accordingly.

IV. IMPACT OF PROJECT TRAFFIC

A. Level of Service (LOS)

Operational analysis of streets and intersections were performed using methods outlined in the Transportation Research Board, National Research Council Highway Capacity Manual, HCM, 2016.

Level of Service (LOS) is the generally accepted gauge for describing the quality of operation of either a road segment or street intersection. Other attributes of operational quality associated with each Level of Service are v/c - volume to capacity ratio, vehicle delay through an intersection, and reserve capacity of an intersection approach. For each type of street segment or intersection analysis, the Level of Service criteria varies slightly. Levels of Service for every type of roadway or intersection are described thoroughly in the Highway Capacity Manual, however, the brief descriptions have been provided in the following:

Table 3: Level of Service for Signalized Intersections

Level of Service	Stopped Delay per Vehicle (sec.)
A	<5.0
B	5.1 to 15.0
C	15.1 to 25.0
D	25.1 to 40.0
E	40.1 to 60.0
F	>60.0

Table 4: Level of Service for Un-Signalized Intersections

Level of Service	Reserve Capacity (DCPH)	Expected Delay to Minor Street Traffic
A	≥ 400	Little or no delay
B	$300-399$	Short traffic delay
C	$200-299$	Average traffic delay
D	$100-199$	Long traffic delay
E	$0-99$	Very long traffic delay
F	Note 1	See Note 1

Note 1: When demand volume exceeds the capacity of the lane, extreme delays will be encountered. This condition usually warrants improvement to the intersection.

Table 5: Level of Service for Highways and Arterials

Level of Service	Description
A	Free flow conditions, unimpeded ability to maneuver and pass, very little delay, no platoons, highest average travel speeds.
B	Mostly free flow conditions: presence of other vehicles begins to be noticeable. Passing is required to maintain speeds, slightly less average travel speeds than Level of Service "A".
C	Traffic density clearly affects the ability to pass and maneuver within the stream. Speeds are reduced to about 50 mph on highways and to about 50\% of the average on urban arterials.
D	Unstable flow. Speeds are reduced from 40\% to 60\% of normal. Passing demand is high although mostly impossible on 2-Lane Highways. Traffic disruptions usually cause extensive queues.
E	Very unstable flow at or near capacity. Passing and maneuvering is virtually impossible. Extensive platooning on highways and queuing on arterials. Speeds range from 20 mph or less on arterials and 2-Lane Highways, and up to 50 mph on Multi-Lane Highways.
F	Forced or breakdown flow. Demand exceeds capacity. Vehicles experience short spurts of movement followed by stoppages. Intersection congestion, long queues and delays are common.

B. Traffic Impact Analysis

As discussed in Section III herein, Project-generated traffic was distributed onto the existing street network based on existing patterns. In accordance with agency criteria, any street segment or intersection, currently operating at or above a "C" Level of Service, must be analyzed if it receives 50 or more Project-generated peak hour trips. If the facility currently operates at a "D", "E" or "F", the analysis threshold drops to 40, 20 and 10 trips, respectively.

Level of Service calculations are based on methods outlined in the Highway Capacity Manual, 2016. Computer software from "McTrans Highway Capacity" package was used to facilitate extensive calculations.

In accordance with Caltrans' requirement, various traffic scenarios were analyzed to include present day traffic, and the addition of Project-generated traffic to existing (Year 2023), Project "Opening day" (Year 2025), and future traffic (Years 2035 \& 2045). The following lists the various specific scenarios that were analyzed and provides a reference to the appropriate figures.

Existing Year 2023 A.M. Peak Hour without Project-Generated Trips - (No Project Scenario). These volumes are actual traffic counts, as discussed in Section III, and are shown in Figure 2 herein.

Existing Year 2023 P.M Peak Hour- without Project-Generated Trips (No Project Scenario). These volumes are actual traffic counts, as discussed in Section III, and are shown in Figure 3 herein.

Year 2023 A.M. Peak Hour Volumes with the addition Project-Generated Trips. These volumes can be referenced in Figure 5A of this report.

Year 2023 P.M. Peak Hour Volumes with the addition of Project-Generated Trips. These volumes can be referenced in Figure 5B of this report.

Year 2025 "Opening Day" A.M Peak Hour without Project-Generated Trips - (No Project Scenario). Derivation of these volumes is discussed in Section III and is shown in Figure 6Aof this report.

Year 2025 "Opening Day" P.M Peak Hour without Project-Generated Trips. - (No Project Scenario). Derivation of these volumes is discussed in Section III and is shown in Figure 6B of this report.

Year 2025 "Opening Day" A.M. Peak Hour Volumes with the addition of Project-Generated Trips. These volumes can be referenced in Figure 7A of this report.

Year 2025 "Opening Day" P.M Peak Hour Volumes with the addition of Project-Generated Trips. These volumes can be referenced in Figure 7B of this report.

Year 2035 A.M Peak Hour without Project-Generated Trips - (No Project Scenario). Derivation of these volumes is discussed in Section III and is shown in Figure 8Aof this report.

Year 2035 P.M Peak Hour without Project-Generated Trips. - (No Project Scenario). Derivation of these volumes is discussed in Section III and is shown in Figure 8B of this report.

Year 2035 A.M. Peak Hour Volumes with the addition of Project-Generated Trips. These volumes can be referenced in Figure 9A of this report.

Year 2035 P.M Peak Hour Volumes with the addition of Project-Generated Trips. These volumes can be referenced in Figure 9B of this report.

Year 2045 A.M. Peak Hour Volumes without the addition Project-Generated Trips ("No
Project" Scenario). Derivation of these volumes is discussed in Section III of this report and can be referenced in Figure 10A herein.

Year 2045 P.M. Peak Hour Volumes without the addition of Project-Generated Trips ("No Project" Scenario). Derivation of these volumes is discussed in Section III of this report and can be referenced in Figure 10B herein.

Year 2045 A.M. Peak Hour Volumes with the addition of Project-Generated Trips. These volumes can be referenced in Figure 11A of this report.

Year 2045 P.M. Peak Hour Volumes with the addition of Project-Generated Trips. These volumes can be referenced in Figure 11B of this report.

Year 2045 A.M. Peak Hour Volumes with the addition of Project-Generated Trips - Evaluated under proposed mitigation improvements. In addition to the above scenarios, any facility needing mitigation was analyzed to determine the resultant Level of Service once proposed improvements were in-place.

Year 2045 P.M. Peak Hour Volumes with the addition of Project-Generated Trips - Evaluated under proposed mitigation improvements. In addition to the above scenarios, any facility needing mitigation was analyzed to determine the resultant Level of Service once proposed improvements were in-place. The criteria to warrant mitigation is discussed in Section V of this report.

Summaries of the Level of Service calculations for the various scenarios described have been included in the following tables:

- Table 6 shows the results of the intersection Level of Service calculations for all listed scenarios.
- Table 7 show the results of Level of Service calculations for various street segments for all listed scenarios.

The above list tables show scenarios with poor Levels of Service (below "C"), and resultant LOS with mitigation improvements. A detailed discussion of mitigation has been provided in Section VI of this report.

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 6: Intersection Level of Service (LOS) - Peak Hour

Legend:		S = Signalized	1W = One Way Stop Control				4W = All Way Stop			$\mathrm{R}=$ Roundabout						Comp LOS	Intersection Delay (sec/veh)	Peak Hour Warrant Met (Yes/No)
				Northbound			Southbound			Eastbound			Westbound					
No.	Intersection	Time Period	Control	Left	Thru	Right												
1)	 Cedar Ave	Year 2023 A.M. Existing	1W	-	-	-	-	-	-	C	-	-	-	-	-	C	15.4	No
		Year 2023 A.M. with Project	1W	-	-	-	-	F	-	D	-	-	-	-	-	F	2109.2	Yes
		Year 2025 A.M. without Project	1W	-	-	-	-	-	-	C	-	-	-	-	-	C	16.0	No
		Year 2025 A.M. with Project	1W	-	-	-	-	F	-	D	-	-	-	-	-	F	2482.5	Yes
		Year 2035 A.M. without Project	1W	-	-	-	-	-	-	C	-	-	-	-	-	C	20.4	No
		Year 2035 A.M. with Project	1W	-	-	-	-	F	-	F	-	-	-	-	-	F	8080.8	Yes
		Year 2045 A.M. without Project	1W	-	-	-	-	-	-	D	-	-	-	-	-	D	27.9	No
		Year 2045 A.M. with Project	1W	-	-	-	-	F	-	F	-	-	-	-	-	F	9954.1	Yes
		Year 2045 A.M. with Project Mitigated	S	-	-	-	-	E	D	F	A	-	-	-	-	C	32.5	N/A
		Year 2023 P.M. Existing	1W	-	-	-	-	-	-	B	-	-	-	-	-	B	11.4	No
		Year 2023 P.M. with Project	1W	-	-	-	-	F	-	B	-	-	-	-	-	F	517.7	Yes
		Year 2025 P.M. without Project	1W	-	-	-	-	-	-	B	-	-	-	-	-	B	11.7	No
		Year 2025 P.M. with Project	1W	-	-	-	-	F	-	C	-	-	-	-	-	F	583.1	Yes
		Year 2035 P.M. without Project	1W	-	-	-	-	-	-	B	-	-	-	-	-	B	13.4	No
		Year 2035 P.M. with Project	1W	-	-	-	-	F	-	C	-	-	-	-	-	F	1080.5	Yes
		Year 2045 P.M. without Project	1W	-	-	-	-	-	-	C	-	-	-	-	-	C	16.0	No
		Year 2045 P.M. with Project	1W	-	-	-	-	F	-	D	-	-	-	-	-	F	2166.9	Yes
		Year 2045 P.M. with Project Mitigated	S	-	-	-	-	E	D	B	A	-	-	-	-	B	10.2	N/A
2)	Hwy 65 \& W Tulare Rd	Year 2023 A.M. Existing	1W	-	-	-	F	-	D	D	-	-	-	-	-	D	34.7	Yes
		Year 2023 A.M. with Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	91.2	Yes
		Year 2025 A.M. without Project	1W	-	-	-	F	-	E	D	-	-	-	-	-	E	43.5	Yes
		Year 2025 A.M. with Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	138.5	Yes
		Year 2035 A.M. without Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	438.0	Yes
		Year 2035 A.M. with Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	688.1	Yes
		Year 2045 A.M. without Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	1365.1	Yes
		Year 2045 A.M. with Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	2692.4	Yes
		Year 2045 A.M. with Project Mitigated	S	-	-	-	-	D	E	F	A	-	-	A	A	B	14.8	N/A

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 6: Intersection Level of Service (LOS) - Peak Hour

Legend:		$s=$ Signalized	1W = One Way Stop Control				4W = All Way Stop			$\mathrm{R}=$ Roundabout						$\begin{aligned} & \text { Comp } \\ & \text { LOS } \end{aligned}$	Intersection Delay (sec/veh)	Peak Hour Warrant Met (Yes/No)
				Northbound			Southbound			Eastbound			Westbound					
No.	Intersection	Time Period	Control	Left	Thru	Right												
2)	Hwy 65 \& W Tulare Rd	Year 2023 P.M. Existing	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	86.0	Yes
		Year 2023 P.M. with Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	248.7	Yes
		Year 2025 P.M. without Project	1W	-	-	-	E	-	F	E	-	-	-	-	-	F	126.8	Yes
		Year 2025 P.M. with Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	489.4	Yes
		Year 2035 P.M. without Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	1109.1	Yes
		Year 2035 P.M. with Project	1w	-	-	-	F	-	F	F	-	-	-	-	-	F	4363.8	Yes
		Year 2045 P.M. without Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	8617.4	Yes
		Year 2045 P.M. with Project	1W	-	-	-	F	-	F	F	-	-	-	-	-	F	32771.1	Yes
		Year 2045 P.M. with Project Mitigated	S	-	-	-	-	D	F	F	A	-	-	A	A	B	14.4	N/A
3)	Hwy 65 \& W Hermosa St	Year 2023 A.M. Existing	S	E	B	B	E	B	B	D	D	-	D	D	D	c	28.5	N/A
		Year 2023 A.M. with Project	S	E	C	B	E	B	B	D	D	-	D	D	D	c	28.7	N/A
		Year 2025 A.M. without Project	S	E	c	B	E	B	B	D	D	-	D	C	D	c	29.0	N/A
		Year 2025 A.M. with Project	S	E	c	B	E	B	B	D	D	-	D	c	D	c	29.3	N/A
		Year 2035 A.M. without Project	S	E	c	C	E	B	B	D	D	-	D	C	C	C	33.2	N/A
		Year 2035 A.M. with Project	S	E	c	c	E	C	B	D	D	-	D	c	c	c	34.3	N/A
		Year 2045 A.M. without Project	S	E	F	c	E	D	C	D	D	-	D	c	c	E	62.0	N/A
		Year 2045 A.M. with Project	S	E	F	c	E	C	B	D	E	-	F	c	C	E	62.3	N/A
		Year 2023 P.M. Existing	S	E	B	B	E	B	B	D	D	-	E	D	D	C	26.7	N/A
		Year 2023 P.M. with Project	S	E	B	B	E	B	B	D	D	-	E	D	D	c	26.8	N/A
		Year 2025 P.M. without Project	S	E	B	B	E	B	B	D	D	-	D	D	D	c	27.2	N/A
		Year 2025 P.M. with Project	S	E	B	B	E	B	B	D	D	-	D	D	D	c	27.3	N/A
		Year 2035 P.M. without Project	S	E	C	C	E	C	B	D	D	-	D	C	D	c	30.6	N/A
		Year 2035 P.M. with Project	S	E	C	C	E	c	B	D	D	-	D	C	D	C	31.3	N/A
		Year 2045 P.M. without Project	S	E	D	C	E	c	B	D	D	-	D	c	C	D	36.9	N/A
		Year 2045 P.M. with Project	S	E	D	c	E	c	B	D	D	-	D	c	c	D	39.4	N/A

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 6: Intersection Level of Service (LOS) - Peak Hour

Legend:		S = Signalized	1W = One Way Stop Control				4W = All Way Stop			$\mathrm{R}=$ Roundabout							Intersection Delay (sec/veh)	Peak Hour Warrant Met (Yes/No)
				Northbound			Southbound			Eastbound			Westbound			$\begin{aligned} & \text { Comp } \\ & \text { LOS } \end{aligned}$		
No.	Intersection	Time Period	Control	Left	Thru	Right												
4)	Hwy 65 \& W Lindmore St	Year 2023 A.M. Existing	1W	A	-	-	A	-	-	E	-	B	E	-	B	A	9.8	No
		Year 2023 A.M. with Project	1W	A	-	-	A	-	-	F	-	B	F	-	B	B	10.4	No
		Year 2025 A.M. without Project	1W	A	-	-	A	-	-	E	-	B	E	-	B	B	10.0	No
		Year 2025 A.M. with Project	1W	A	-	-	B	-	-	F	-	B	F	-	B	B	10.6	No
		Year 2035 A.M. without Project	1W	A	-	-	B	-	-	F	-	B	F	-	B	B	11.2	No
		Year 2035 A.M. with Project	1W	B	-	-	B	-	-	F	-	B	F	-	B	B	12.4	No
		Year 2045 A.M. without Project	1W	B	-	-	B	-	-	F	-	B	F	-	B	B	14.0	No
		Year 2045 A.M. with Project	1W	B	-	-	B	-	-	F	-	B	F	-	B	C	17.0	No
		Year 2023 P.M. Existing	1W	A	-	-	B	-	-	F	-	B	E	-	B	B	11.4	No
		Year 2023 P.M. with Project	1W	B	-	-	B	-	-	F	-	B	F	-	B	B	12.7	No
		Year 2025 P.M. without Project	1W	A	-	-	B	-	-	F	-	B	F	-	B	B	12.1	No
		Year 2025 P.M. with Project	1W	B	-	-	B	-	-	F	-	B	F	-	B	B	13.6	No
		Year 2035 P.M. without Project	1W	B	-	-	B	-	-	F	-	B	F	-	B	B	19.1	No
		Year 2035 P.M. with Project	1W	B	-	-	B	-	-	F	-	B	F	-	B	B	24.3	No
		Year 2045 P.M. without Project	1W	B	-	-	B	-	-	F	-	B	F	-	C	F	60.7	No
		Year 2045 P.M. with Project	1W	C	-	-	C	-	-	F	-	C	F	-	C	F	85.6	No
5)	 Marigold St	Year 2023 A.M. Existing	1W	A	-	-	A	-	-	C	-	A	B	-	B	B	8.6	No
		Year 2023 A.M. with Project	1W	A	-	-	A	-	-	C	-	A	C	-	B	B	8.9	No
		Year 2025 A.M. without Project	1W	A	-	-	A	-	-	C	-	A	B	-	B	B	8.6	No
		Year 2025 A.M. with Project	1W	A	-	-	A	-	-	C	-	A	C	-	B	B	9.0	No
		Year 2035 A.M. without Project	1W	A	-	-	A	-	-	C	-	A	C	-	B	B	9.1	No
		Year 2035 A.M. with Project	1W	A	-	-	A	-	-	C	-	B	C	-	B	B	9.5	No
		Year 2045 A.M. without Project	1W	A	-	-	A	-	-	D	-	B	C	-	B	B	9.6	No
		Year 2045 A.M. with Project	1W	A	-	-	B	-	-	D	-	B	C	-	B	B	10.1	No

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 6: Intersection Level of Service (LOS) - Peak Hour

Legend:		S = Signalized	1W = One Way Stop Control				4W = All Way Stop			$\mathrm{R}=$ Roundabout						Comp LOS	Intersection Delay (sec/veh)	Peak Hour Warrant Met (Yes/No)
				Northbound			Southbound			Eastbound			Westbound					
No.	Intersection	Time Period	Control	Left	Thru	Right												
5)	 Marigold St	Year 2023 P.M. Existing	1W	B	-	-	B	-	-	-	-	B	E	-	B	B	11.2	No
		Year 2023 P.M. with Project	1W	B	-	-	B	-	-	-	-	B	E	-	B	B	11.8	No
		Year 2025 P.M. without Project	1W	B	-	-	B	-	-	-	-	B	E	-	B	B	11.4	No
		Year 2025 P.M. with Project	1W	B	-	-	B	-	-	-	-	B	F	-	B	B	12.1	No
		Year 2035 P.M. without Project	1W	B	-	-	B	-	-	-	-	C	F	-	B	B	13.7	No
		Year 2035 P.M. with Project	1W	B	-	-	B	-	-	-	-	C	F	-	B	B	15.0	No
		Year 2045 P.M. without Project	1W	C	-	-	B	-	-	-	-	C	F	-	C	D	26.3	No
		Year 2045 P.M. with Project	1W	C	-	-	B	-	-	-	-	C	F	-	C	D	34.4	No
6)	Hwy 65 \& Ave 208	Year 2023 A.M. Existing	1W	A	-	-	A	-	-	-	-	B	C	-	B	B	9.2	No
		Year 2023 A.M. with Project	1W	A	-	-	A	-	-	-	-	B	C	-	B	B	9.6	No
		Year 2025 A.M. without Project	1W	A	-	-	A	-	-	-	-	B	C	-	B	B	9.3	No
		Year 2025 A.M. with Project	1W	A	-	-	A	-	-	-	-	B	C	-	B	B	9.7	No
		Year 2035 A.M. without Project	1W	A	-	-	B	-	-	-	-	B	C	-	B	B	10.0	No
		Year 2035 A.M. with Project	1W	A	-	-	B	-	-	-	-	B	D	-	B	B	10.4	No
		Year 2045 A.M. without Project	1W	A	-	-	B	-	-	-	-	B	D	-	B	B	11.0	No
		Year 2045 A.M. with Project	1W	B	-	-	B	-	-	-	-	B	E	-	B	B	11.6	No
		Year 2023 P.M. Existing	1W	A	-	-	B	-	-	F	-	B	D	-	B	B	10.7	No
		Year 2023 P.M. with Project	1W	B	-	-	B	-	-	F	-	B	D	-	B	B	11.2	No
		Year 2025 P.M. without Project	1W	B	-	-	B	-	-	F	-	B	D	-	B	B	10.9	No
		Year 2025 P.M. with Project	1W	B	-	-	B	-	-	F	-	B	E	-	B	B	11.4	No
		Year 2035 P.M. without Project	1W	B	-	-	B	-	-	F	-	B	E	-	B	B	12.6	No
		Year 2035 P.M. with Project	1W	B	-	-	B	-	-	F	-	B	F	-	B	B	13.2	No
		Year 2045 P.M. without Project	1W	B	-	-	B	-	-	F	-	C	F	-	C	C	16.5	No
		Year 2045 P.M. with Project	1W	B	-	-	C	-	-	F	-	C	F	-	C	C	19.9	No

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 6: Intersection Level of Service (LOS) - Peak Hour

Legend:		S = Signalized	1W = One Way Stop Control				4W = All Way Stop			$R=$ Roundabout						Comp LOS	Intersection Delay (sec/veh)	Peak Hour Warrant Met (Yes/No)
				Northbound			Southbound			Eastbound			Westbound					
No.	Intersection	Time Period	Control	Left	Thru	Right												
7)	Hwy 65 \& N Spruce Ave	Year 2023 A.M. Existing	S	-	E	-	-	D	-	E	B	-	F	B	B	C	24.0	N/A
		Year 2023 A.M. with Project	S	-	E	-	-	D	-	E	C	-	E	C	C	C	28.4	N/A
		Year 2025 A.M. without Project	S	-	E	-	-	D	-	E	B	-	F	B	C	C	25.1	N/A
		Year 2025 A.M. with Project	S	-	E	-	-	D	-	E	C	-	E	C	C	C	30.1	N/A
		Year 2035 A.M. without Project	S	-	E	-	-	D	-	E	C	-	F	C	D	D	35.7	N/A
		Year 2035 A.M. with Project	S	-	E	-	-	F	-	E	D	-	E	D	D	D	52.0	N/A
		Year 2045 A.M. without Project	S	-	E	-	-	F	-	E	D	-	E	D	E	E	69.2	N/A
		Year 2045 A.M. with Project	S	-	E	-	-	F	-	E	D	-	E	F	F	F	95.4	N/A
		Year 2045 A.M. with Project Mitigated	S	-	E	-	D	D	-	C	B	-	B	C	F	C	34.0	N/A
		Year 2023 P.M. Existing	S	-	E	-	-	D	-	E	C	B	E	C	B	C	25.5	N/A
		Year 2023 P.M. with Project	S	-	E	-	-	D	-	E	C	B	E	C	C	C	30.1	N/A
		Year 2025 P.M. without Project	S	-	E	-	-	D	-	E	C	B	E	C	B	C	26.9	N/A
		Year 2025 P.M. with Project	S	-	E	-	-	D	-	E	C	B	E	C	C	C	32.3	N/A
		Year 2035 P.M. without Project	S	-	E	-	-	D	-	E	D	B	E	D	C	D	45.0	N/A
		Year 2035 P.M. with Project	S	-	E	-	-	F	-	E	F	C	E	E	B	E	61.0	N/A
		Year 2045 P.M. without Project	S	-	E	-	-	F	-	E	F	B	E	F	C	F	88.0	N/A
		Year 2045 P.M. with Project	S	-	E	-	-	F	-	E	F	B	E	F	C	F	113.6	N/A
		Year 2045 P.M. with Project Mitigated	S	-	E	-	D	D	-	C	B	B	B	C	D	C	33.2	N/A
8)	 Hwy 137	Year 2023 A.M. Existing	S	D	D	-	D	D	-	E	B	B	E	C	B	C	32.1	N/A
		Year 2023 A.M. with Project	S	D	D	-	D	D	-	E	C	B	E	C	B	C	32.4	N/A
		Year 2025 A.M. without Project	S	D	D	-	D	D	-	E	C	B	E	C	B	C	32.7	N/A
		Year 2025 A.M. with Project	S	D	D	-	D	D	-	E	C	B	E	C	B	C	33.0	N/A
		Year 2035 A.M. without Project	S	D	D	-	D	D	-	E	C	B	E	C	C	D	37.4	N/A
		Year 2035 A.M. with Project	S	D	D	-	D	D	-	E	C	B	E	D	C	D	38.9	N/A
		Year 2045 A.M. without Project	S	D	F	-	D	D	-	E	D	C	E	E	C	E	56.5	N/A
		Year 2045 A.M. with Project	S	D	F	-	D	D	-	E	E	C	E	F	C	E	64.4	N/A

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 6: Intersection Level of Service (LOS) - Peak Hour

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 6: Intersection Level of Service (LOS) - Peak Hour

	Legend:	S = Signalized	1W = One Way Stop Control				4W = All Way Stop			$\mathrm{R}=$ Roundabout						$\begin{gathered} \text { Comp } \\ \text { LOS } \end{gathered}$	Intersection Delay (sec/veh)	Peak Hour Warrant Met (Yes/No)
				Northbound			Southbound			Eastbound			Westbound					
No.	Intersection	Time Period	Control	Left	Thru	Right												
10)	Hwy 137 \& Road 180	Year 2023 A.M. Existing	1w	-	B	-	-	B	-	-	A	-	-	A	-	A	3.5	No
		Year 2023 A.M. with Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.6	No
		Year 2025 A.M. without Project	1w	-	B	-	-	B	-	-	A	-	-	A	-	A	3.5	No
		Year 2025 A.M. with Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.6	No
		Year 2035 A.M. without Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.6	No
		Year 2035 A.M. with Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.7	No
		Year 2045 A.M. without Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.7	No
		Year 2045 A.M. with Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.8	No
		Year 2023 P.M. Existing	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.6	No
		Year 2023 P.M. with Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.7	No
		Year 2025 P.M. without Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.6	No
		Year 2025 P.M. with Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.7	No
		Year 2035 P.M. without Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.7	No
		Year 2035 P.M. with Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.8	No
		Year 2045 P.M. without Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.8	No
		Year 2045 P.M. with Project	1W	-	B	-	-	B	-	-	A	-	-	A	-	A	3.9	No
		Year 2023 A.M. Existing	1W	-	A	-	-	A	-	-	B	-	-	C	-	A	4.2	No
		Year 2023 A.M. with Project	1W	-	A	-	-	A	-	-	B	-	-	c	-	A	4.4	No
		Year 2025 A.M. without Project	1W	-	A	-	-	A	-	-	B	-	-	c	-	A	4.3	No
	N Spruce Ave \&	Year 2025 A.M. with Project	1W	-	A	-	-	A	-	-	B	-	-	c	-	A	4.5	No
11)	Acacia Ave	Year 2035 A.M. without Project	1W	-	A	-	-	A	-	-	B	-	-	C	-	A	4.7	No
		Year 2035 A.M. with Project	1W	-	A	-	-	A	-	-	C	-	-	D	-	A	4.9	No
		Year 2045 A.M. without Project	1W	-	A	-	-	A	-	-	C	-	-	D	-	B	5.3	No
		Year 2045 A.M. with Project	1W	-	A	-	-	A	-	-	c	-	-	E	-	B	5.7	No

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 6: Intersection Level of Service (LOS) - Peak Hour

Legend:		S = Signalized	1W = One Way Stop Control				4W = All Way Stop			$\mathrm{R}=$ Roundabout							Intersection Delay (sec/veh)	Peak Hour Warrant Met (Yes/No)
				Northbound			Southbound			Eastbound			Westbound			$\begin{aligned} & \text { Comp } \\ & \text { LOS } \end{aligned}$		
No.	Intersection	Time Period	Control	Left	Thru	Right												
11)	N Spruce Ave \& Acacia Ave	Year 2023 P.M. Existing	1W	-	A	-	-	A	-	-	B	-	-	C	-	A	4.1	No
		Year 2023 P.M. with Project	1W	-	A	-	-	A	-	-	B	-	-	C	-	A	4.2	No
		Year 2025 P.M. without Project	1W	-	A	-	-	A	-	-	B	-	-	C	-	A	4.1	No
		Year 2025 P.M. with Project	1W	-	A	-	-	A	-	-	B	-	-	C	-	A	4.2	No
		Year 2035 P.M. without Project	1W	-	A	-	-	A	-	-	B	-	-	C	-	A	4.4	No
		Year 2035 P.M. with Project	1W	-	A	-	-	A	-	-	B	-	-	D	-	A	4.6	No
		Year 2045 P.M. without Project	1W	-	A	-	-	A	-	-	B	-	-	D	-	A	4.9	No
		Year 2045 P.M. with Project	1W	-	A	-	-	A	-	-	C	-	-	E	-	B	5.1	No
12)	N Spruce Ave \& Sycamore Ave	Year 2023 A.M. Existing	4W	F	-	-	F	-	-	C	-	-	C	-	-	F	56.9	No
		Year 2023 A.M. with Project	4W	F	-	-	F	-	-	C	-	-	C	-	-	F	76.8	No
		Year 2025 A.M. without Project	4W	F	-	-	F	-	-	C	-	-	C	-	-	F	67.1	Yes
		Year 2025 A.M. with Project	4W	F	-	-	F	-	-	C	-	-	C	-	-	F	92.1	Yes
		Year 2035 A.M. without Project	4W	F	-	-	F	-	-	E	-	-	D	-	-	F	165.7	Yes
		Year 2035 A.M. with Project	4W	F	-	-	F	-	-	E	-	-	D	-	-	F	200.9	Yes
		Year 2045 A.M. without Project	4W	F	-	-	F	-	-	E	-	-	D	-	-	F	1196.2	Yes
		Year 2045 A.M. with Project	4W	F	-	-	F	-	-	F	-	-	F	-	-	F	1371.0	Yes
		Year 2045 A.M. with Project Mitigated	S	B	C	-	B	C	B	D	D	D	D	D	D	C	33.7	N/A
		Year 2023 P.M. Existing	4W	D	-	-	C	-	-	B	-	-	B	-	-	C	21.9	No
		Year 2023 P.M. with Project	4W	D	-	-	C	-	-	B	-	-	B	-	-	C	23.5	No
		Year 2025 P.M. without Project	4W	E	-	-	C	-	-	B	-	-	B	-	-	D	26.9	No
		Year 2025 P.M. with Project	4W	F	-	-	C	-	-	B	-	-	B	-	-	D	34.0	No
		Year 2035 P.M. without Project	4W	F	-	-	D	-	-	C	-	-	B	-	-	F	166.5	Yes
		Year 2035 P.M. with Project	4W	F	-	-	E	-	-	C	-	-	B	-	-	F	208.5	Yes
		Year 2045 P.M. without Project	4W	F	-	-	F	-	-	D	-	-	C	-	-	F	515.3	Yes
		Year 2045 P.M. with Project	4W	F	-	-	F	-	-	D	-	-	C	-	-	F	582.5	Yes
		Year 2045 P.M. with Project Mitigated	S	A	B	-	B	B	A	-	E	D	-	E	D	C	25.7	N/A

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 7a: Street Segment Level of Service for AM Peak Hour

				Year 2023 Existing A.M. Volumes (Figure 2)	Year 2023 A.M. Plus Project Traffic (Figure 5A)	Year 2025 A.M. Without Project Traffic (Figure 6A)	Year 2025 A.M. Plus Project Traffic (Figure 7A)	Year 2035 A.M. Without Project Traffic (Figure 8A)	Year 2035 A.M. Plus Project Traffic (Figure 9A)	Year 2045 A.M. Without Project Traffic (Figure 8A)	Year 2045 A.M. Plus Project Traffic (Figure 9A)
Item	Street Segment	Limits	Existing \# of Laneage	Level of Service (LOS)							
1	Hwy 65	Cedar Ave/ Tulare Rd	2	E	E	E	E	E	E	F	F
2	Hwy 65	Tulare Rd/ Hermosa St	4	A	A	A	A	A	A	A	A
3	Hwy 65	Hermosa St/ Lindmore St	4	A	A	A	A	A	A	A	A
4	Hwy 65	Lindmore St/ Marigold St	4	A	A	A	A	A	A	A	A
5	Hwy 65	Marigold St/ Ave 208	4	A	A	A	A	A	A	A	A

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 7a: Street Segment Level of Service for AM Peak Hour (cont.)

				Year 2023 Existing A.M. Volumes (Figure 2)	Year 2023 A.M. Plus Project Traffic (Figure 5A)	Year 2025 A.M. Without Project Traffic (Figure 6A)	Year 2025 A.M. Plus Project Traffic (Figure 7A)	Year 2035 A.M. Without Project Traffic (Figure 8A)	Year 2035 A.M. Plus Project Traffic (Figure 9A)	Year 2045 A.M. Without Project Traffic (Figure 8A)	Year 2045 A.M. Plus Project Traffic (Figure 9A)
Item	Street Segment	Limits	Existing \# of Laneage	Level of Service (LOS)							
6	Hwy 65	Cedar Ave/ N Spruce Ave	2	E	E	E	E	E	E	F	F
7	Hwy 65	N Spruce Ave/ Hwy 137	2	D	D	D	D	E	E	E	E
8	Hwy 137	Hwy 65/ Road 188	2	D	D	D	D	D	D	D	D
9	Hwy 137	Road 188/ Road 180	2	C	C	C	C	C	C	C	C
10	N Spruce Ave	Hwy 65/ Acacia Ave	2	D	D	D	D	D	D	E	E
11	N Spruce Ave	Acacia Ave/ Sycamore Ave	2	D	D	D	D	D	D	D	D

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 7b: Street Segment Level of Service for PM Peak Hour

				Year 2023 Existing P.M. Volumes (Figure 2)	Year 2023 P.M. Plus Project Traffic (Figure 5B)	Year 2025 P.M. Without Project Traffic (Figure 6B)	$\begin{gathered} \text { Year } 2025 \\ \text { P.M. Plus } \\ \text { Project } \\ \text { Traffic } \\ \text { (Figure 7B) } \end{gathered}$	Year 2035 P.M. Without Project Traffic (Figure 8B)	Year 2035 P.M. Plus Project Traffic (Figure 9B)	Year 2045 P.M. Without Project Traffic (Figure 8B)	Year 2045 P.M. Plus Project Traffic (Figure 9B)
Item	Street Segment	Limits	Existing \# of Laneage	Level of Service (LOS)							
1	Hwy 65	Cedar Ave/ Tulare Rd	2	E	E	E	E	F	F	F	F
2	Hwy 65	Tulare Rd/ Hermosa St	4	A	A	A	A	A	A	A	A
3	Hwy 65	Hermosa St/ Lindmore St	4	A	A	A	A	A	A	A	A
4	Hwy 65	Lindmore St/ Marigold St	4	A	A	A	A	A	A	A	A
5	Hwy 65	Marigold St/ Ave 208	4	A	A	A	A	A	A	A	A

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

TABLE 7b: Street Segment Level of Service for PM Peak Hour (cont.)

				Year 2023 Existing P.M. Volumes (Figure 2)	Year 2023 P.M. Plus Project Traffic (Figure 5B)	Year 2025 P.M. Without Project Traffic (Figure 6B)	Year 2025 P.M. Plus Project Traffic (Figure 7B)	Year 2035 P.M. Without Project Traffic (Figure 8B)	Year 2035 P.M. Plus Project Traffic (Figure 9B)	Year 2045 P.M. Without Project Traffic (Figure 8B)	Year 2045 P.M. Plus Project Traffic (Figure 9B)
Item	Street Segment	Limits	Existing \# of Laneage	Level of Service (LOS)							
6	Hwy 65	Cedar Ave/ N Spruce Ave	2	E	E	E	E	E	E	F	F
7	Hwy 65	N Spruce Ave/ Hwy 137	2	D	D	D	D	E	E	E	E
8	Hwy 137	Hwy 65/ Road 188	2	D	D	D	D	D	D	D	D
9	Hwy 137	Road 188/ Road 180	2	C	C	C	C	C	C	C	C
10	N Spruce Ave	Hwy 65/ Acacia Ave	2	D	D	D	D	D	D	D	D
11	N Spruce Ave	Acacia Ave/ Sycamore Ave	2	D	D	D	D	D	D	D	D

C. Traffic Signal Warrant Analysis

Non-signalized intersections within a Project's vicinity are typically analyzed for satisfaction of the Peak Hour Volume Warrant as described in Section 9 of the Caltrans Traffic Manual and the Manual of Uniform Traffic Control Devices. A brief explanation of the intersection warrant analysis is provided as follows:

The Manual of Uniform Traffic Control Devices (MUTCD) prescribes "tests" which are conducted to determine the need for installation of a traffic signal. These "tests" are referred to as "warrants". The MUTCD list minimum signal "warrants", which have been adopted by the California Department of Transportation and most California agencies, including the City of Lindsay and the Country of Tulare. These "warrants" consist of evaluation of various criteria that have been determined as critical for the installation of a signal. The warrant criterion has been derived empirically.

In actual practice, justification for signal installation is usually based on satisfaction of a number of warrants as well as poor Levels of Service for multiple movements. In keeping within the scope of this traffic study, non-signalized intersections were evaluated for signalization, including expansion of the intersection, based solely on satisfaction of said Peak Hour Signal Warrant and a poor level of service.

As shown in Table 8 herein, the intersection of State Route 65 and Cedar Avenue, by the Year 2025, with the addition of Project-generated traffic, satisfies the Peak Hour Warrant. In addition, the intersection of State Route 65 and W. Tulare Road satisfies the Peak Hour Warrant under existing traffic volumes, without the addition of Project-generated traffic.

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

Table 8: Peak Hour Warrant Analysis ${ }^{1}$

		Year 2023 Volumes		Year 2025 Volumes		Year 2035 Volumes		Year 2045 Volumes	
		Existing Volumes (Figures 2 \& 3)	Existing Volumes Plus Project (Figure 5)	Opening Day Volumes (Figure 6)	Opening Day Volumes Plus Project (Figure 7)	Future Volumes (Figures 8)	Future Volumes Plus Project (Figures 9)	Future Volumes (Figures 10)	Future Volumes Plus Project (Figures 11)
No.	Existing NonSignalized Intersection	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied			
1)	Hwy 65 \& Cedar Ave AM	No	Yes	No	Yes	No	Yes	No	Yes
	Hwy 65 \& Cedar Ave PM	No	Yes	No	Yes	No	Yes	No	Yes
2)	Hwy 65 \& W Tulare Rd AM	Yes							
	Hwy 65 \& W Tulare Rd PM	Yes							
3)	Hwy 65 \& W Lindmore St AM	No							
	Hwy 65 \& W Lindmore St PM	No							

1) Table shown as summary only. Peak Warrant calculations included in Appendix " C " herein.

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

Table 8: Peak Hour Warrant Analysis (cont.) ${ }^{1}$

		Year 2023 Volumes		Year 2025 Volumes		Year 2035 Volumes		Year 2045 Volumes	
		Existing Volumes 3)	Existing Volumes Plus Project (Figure 5)	Opening Day Volumes (Figure 6)	Opening Day Volumes Plus Project (Figure 7)	Future Volumes (Figures 8)	Future Volumes Plus Project (Figures 9)	Future Volumes (Figures 10)	Future Volumes Plus Project (Figures 11)
No.	Existing NonSignalized Intersection	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied			
4)	Hwy 65 \& Marigold St AM	No							
	Hwy 65 \& Marigold St PM	No							
5)	Hwy 65 \& Ave 208 AM	No							
	Hwy 65 \& Ave 208 PM	No							
6)	Hwy 137 \& Road 188 AM	No							
	Hwy 137 \& Road 188 PM	No							

1) Table shown as summary only. Peak Warrant calculations included in Appendix " C " herein.

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

Table 8: Peak Hour Warrant Analysis (cont.) ${ }^{1}$

		Year 2023 Volumes		Year 2025 Volumes		Year 2035 Volumes		Year 2045 Volumes	
		Existing Volumes (Figures 2 \& 3)	Existing Volumes Plus Project (Figure 5)	Opening Day Volumes (Figure 6)	Opening Day Volumes Plus Project (Figure 7)	Future Volumes (Figures 8)	Future Volumes Plus Project (Figures 9)	Future Volumes (Figures 10)	Future Volumes Plus Project (Figures 11)
No.	Existing NonSignalized Intersection	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied	Peak Hour Warrant Satisfied			
7)	Hwy 137 \& Road 180 AM	No							
	Hwy 137 \& Road 180 PM	No							
8)	N Spruce Ave \& Acacia Ave AM	No							
	N Spruce Ave \& Acacia Ave PM	No							
9)	N Spruce Ave \& Sycamore Ave AM	No	No	Yes	Yes	Yes	Yes	Yes	Yes
	N Spruce Ave \& Sycamore Ave PM	No	No	No	No	Yes	Yes	Yes	Yes

1) Table shown as summary only. Peak Warrant calculations included in Appendix " C " herein.

V. PROJECT VEHICLE MILES TRAVELED

A. Background

The California Legislature, through Senate Bill 746, Senate Bill 32, and Executive Order, have required the California Environmental Quality Act (CEQA) to consider the effects of a project on the surrounding transportation system, with Vehicle Miles Traveled (VMT) as an appropriate measure of impact. The specific goal is reduction of greenhouse gas emission by reducing reliance on individual vehicles, improving mass transit, and reduction in trip length via denser infill development.

Senate Bill 32 requires the State of California to reduce greenhouse gas emission to 40 percent below 1990 levels by Year 2030; and Executive Order requires reduction of greenhouse gas emission to 90 percent below 1990 levels by Year 2050.

The calculation of VMT of any project, simply put, is the number of project-generated trips multiplied by the travel length of each trip. Obviously, there is no completely precise method for determining VMT for any project prior to development and occupancy; however, the best available data must be used for estimating both project-generated trips and trip length.

B. Project Generated Trips for VMT Calculation

The phenomena of "Capture", "Pass-by" and "Diverted Link" trips have been previously discussed. However, trip reductions taken for these phenomena for the purpose of Level of Service (LOS) analysis are typically limited by agency standards. This ensures a conservative analysis of Level of Service (LOS) impact. For determination of VMT, this analysis has defaulted to rates obtained from driveway surveys. As indicated earlier, multiple field surveys of the adjacent highway commercial development as well as other similar facilities virtually all Projectgenerated trips are "pass-bys" trips do not contribute to VMT. Since all vehicles must eventually stop for fuel, it can be argued that any other fueling destination would not be a lesser distance traveled than the Project.

VI. TRAFFIC MITIGATION

A. Project's Obligation to Fund Mitigation

Mitigation is normally considered necessary if a particular intersection or street segment, under any existing or future scenario, (with or without the addition of Project-generated traffic), is anticipated to function at a less than Level of Service (LOS) "C". Generally, the objective of traffic mitigation is to restore the Level of Service to a "C" or better. However, the Project, only has an obligation to fund mitigation if the addition of its trip generation caused the Level of Service (LOS) of a facility to fall below " C "; or degrade a pre-Project LOS that is already less than " C " further.

In other words, if a facility presently functions at a LOS of " D ", and Project-generated traffic does not degrade the LOS further to an " E ", then the project has no obligation to fund mitigation. However, in this same scenario, if Project trips degraded the LOS from a "D" to an "E", then the project would be obligated to mitigate to the pre-project LOS of "D".

B. Project's Pro-Rata Share of Mitigation

In a scenario where degradation of a facility's LOS to less than " C " is attributable to Projectgenerated traffic, the Project pro-rata share of mitigation necessary to restore a " C " LOS. If a facility's pre-project LOS was a " D " or worse, mitigation is only required to restore the LOS to the pre-project condition. Again, if the LOS degradation is not attributable to the Project, the developer has no obligation to fund mitigation.

For mitigation improvements inside the Caltrans right of way, the equation is the ratio of Project traffic to the difference of future traffic and current existing traffic. Again, the total Year 2042 traffic includes Project or cumulative project trips. The equation is as follows:

$$
\text { Caltrans Pro - rata Share }=\frac{\text { Project Traffic }}{\text { Total Future Traffic - Current Existing Traffic }}
$$

Traffic Impact Study for Gas Station, Convenience Market, Fast Food Restaurants and Truck Fueling Facility, Northeast Corner of State Highway 65 and Cedar Avenue, Tulare County, California, Revised August 14, 2023

Table 9: Project Pro-Rata Share

		2045 A.M. Peak Hour				2045 P.M. Peak Hour				Weighted Average Project ProRata Share
Location	Mitigation	Total Traffic Year 2022	Total Traffic Year 2042	Project Generated Traffic	Project Pro-Rata Share	Total Traffic Year 2022	Total Traffic Year 2042	Project Generated Traffic	Project Pro-Rata Share	
Highway 65 and Cedar Ave	Install Traffic Signal	1,959	2,760	419	52\%	1,601	2,242	363	57\%	54\%
Highway 65 and N Spruce Ave	Widened for Additional Lanes	2,418	3,528	286	26\%	2,474	3,639	234	20\%	23\%

Notes:

1. Pro-rata Share for mitigation in Caltrans' right of way calculated using the Caltrans pro-rata share formula: (Project Traffic/(Future Traffic-Present Traffic))

C. Proposed Mitigation

As discussed in detail earlier in this report, a poor operational Level of Service for multiple movements, and satisfaction of the Peak Hour Warrant were considered justification for installation of a traffic signal or upgrading an existing signalized intersection (to full expansion in accordance with all local standards).

In any present day or future year scenario, degradation of the LOS of a street segment to less than "C", whether or not attributable to Project-traffic, was considered justification for mitigation. However, as discussed, the Project may or may not be obligated to fund such mitigation.

It should be noted that in the analysis of an intersection, every through and turning movement is evaluated for its own Level of Service (LOS). However, the average estimated delay of all vehicles passing through the intersection is used to determine a composite, or average LOS. The composite level of service is used to determine if mitigation is required. In the following, the need for mitigation is discussed for every intersection and street segment within the scope of this study.
I. Intersections: As shown in Table 6, there are four intersections that are anticipated to degrade or currently function at an unsatisfactory LOS. In the following, each intersection within the scope of this study is discussed including the need for mitigation and Project obligation for funding such:
A. State Route 65 and W. Tulare Avenue: Under present day traffic volumes, this intersection has been shown to operate at a Level of Service (LOS) of "D". Again, the poor LOS is without the addition of Project-generation traffic.

Recommended Mitigation: Signalization of this intersection would theoretically improve its LOS to an " A "; however, this intersection is less than a quarter mile from the intersection of Cedar Avenue. As discussed in the next item, a signal is also warranted at Cedar Avenue and SR 65. However, since mitigation was warranted under existing traffic volumes without the addition of Project-generated traffic, the Project should have no obligation to fund mitigation. Again, as mentioned in Section II herein, W. Tulare will be realigned to tie into Oak Avenue and its intersection with SR 65 will be removed.
B. Intersection of State Route 65 and Cedar Avenue: Under existing conditions, with a "no Project scenario", this intersection currently function at an LOS of " C ". The addition of Project-generated traffic further degrades the LOS to less than " C ".

Recommended Mitigation: Installation of a traffic signal at this intersection will improve the LOS to a " C " and better through the year 2045. Given the addition of Projectgenerated traffic degrades the LOS under present day and future volumes, this signal
should be installed by "Opening Day". As mentioned previously, roundabout project, Cedar Ave will be realigned as a part of the roundabout construction project and realignment of State Route 65. It is recommended that the intersection be re-evaluated in the future in order to determine new intersection control methods are appropriate for the new layout.
C. Intersection of State Route 65 and North Spruce Avenue: For Year 2035 analysis, with a "no Project scenario", this intersection currently function at an LOS of " C ". The addition of Project-generated traffic further degrades the LOS of "D".

Recommended Mitigation: Widening this intersection to include more lanes will improve the LOS to a " C " through the year 2045. For the western and eastern segments, the intersection should be widened to include three lanes in each direction, including dedicated left turn lane. For the northern segment, it should be widened to three lanes, with two lanes as dedicated left turn lanes. The southern segment can remain unchanged. Again, the addition of Project-generated traffic degrades the LOS under Year 2035 conditions only. Under present day and opening day conditions, the LOS does not degrade with the addition of the project.
D. North Spruce Avenue and Sycamore Avenue: Under present day traffic volumes, this intersection has been shown to operate at a Level of Service (LOS) of "F". The poor LOS is without the addition of Project-generation traffic.

Recommended Mitigation: Signalization of this intersection would theoretically improve its LOS to an "C"; Since mitigation was warranted under existing traffic volumes, and without the addition of Project-generated traffic, the Project should have no obligation to fund mitigation.
II. Street Segments: Street segment LOS for all analyzed traffic scenarios are shown in Table 7 a and 7 b . The addition of Project-generated traffic under any present day or future scenario did not degrade the level of service; therefore, no mitigation is warranted.

VII. CONCLUSIONS \& RECOMMENDATIONS

The study has shown that with the addition of Project-generated traffic, a traffic signal is warranted at the intersection of Cedar Avenue and State Route 65. This signal is warranted by "opening day" of the Project and will result in a satisfactory LOS for this intersection through the year 2045.

It is noted that this study has been prepared in a conservative manner. Some of the conservative methodology is summarized in the following:

- Although the latest surveys for State Highway 65 indicate a decreasing trend in traffic volume, a positive growth factor of 1.9% was used to extrapolate future traffic scenarios.
- "Pass-by" rates used to determine final trip count were far less than that yielded by numerous surveys of similar highway commercial developments. Although pass-by trips will affect driveway and intersection LOS, they should not be added to the volume of surrounding streets, to include State Route 65 . Since the trip reduction for "pass-bys" was only 20 percent, the analysis of State 65 should certainly be considered conservative.

Finally, the calculations and "findings" of this report have shown that with implementation of recommended mitigation the impact of the Project and adjacent development will be "less-thansignificant".

Additionally, as mentioned previously, Caltrans and the County of Tulare have plans to re-align and reconstruct State Route 65, which will include the construction of a roundabout, located at the intersection of State Route 65 and Cedar Avenue, tentatively planned to commence in 2034. As a part of the roundabout project, Cedar Ave will be realigned to the East to connect with Oak Ave. It is recommended that the intersection of State Route 65 and Cedar Avenue be re-evaluated in the future to determine if the intersection's traffic control improvements are adequate.

Appendix " A "

Exhibits and Figures

Intersections

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	16		20	0	16	0	8	612	24	0	20	476	12
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour + project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	16		20	0	18	0	8	689	24	0	23	541	14
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	17		21	0	17	0	8	636	25	0	21	495	12
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour + project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	17		21	0	19	0	8	713	25	0	24	560	14
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	20		25	0	20	0	10	771	30	0	25	600	15
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour + project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	20		25	0	22	0	10	848	30	0	28	665	17
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	24		30	0	24	0	12	930	36	0	30	724	18
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour + project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	24		30	0	26	0	12	1007	36	0	44	789	20
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		0	660				880	0						0		0
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0													0	
Capacity, c (veh/h)	346														
v/c Ratio	0.00														
95\% Queue Length, Q ${ }_{95}$ (veh)	0.0														
Control Delay (s/veh)	15.4														
Level of Service (LOS)	C														
Approach Delay (s/veh)		0.0													
Approach LOS															

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		139	660				954	0						134		72
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		0	686				914	0						0		0
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0													0	
Capacity, c (veh/h)	326														
v / c Ratio	0.00														
95\% Queue Length, Q_{95} (veh)	0.0														
Control Delay (s/veh)	16.0														
Level of Service (LOS)	C														
Approach Delay (s/veh)		0.0													
Approach LOS															

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		139	686				988	0						134		72
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		0	832				1109	0						0		0
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0													0	
Capacity, c (veh/h)	233														
v/c Ratio	0.00														
95\% Queue Length, Q_{95} (veh)	0.0														
Control Delay (s/veh)	20.4														
Level of Service (LOS)	C														
Approach Delay (s/veh)		0.0													
Approach LOS															

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		139	832				1183	0						134		72
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		0	1003				1338	0						0		0
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0													0	
Capacity, c (veh/h)	157														
v/c Ratio	0.00														
95\% Queue Length, Q_{95} (veh)	0.0														
Control Delay (s/veh)	27.9														
Level of Service (LOS)	D														
Approach Delay (s/veh)		0.0													
Approach LOS															

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		139	1003				1412	0						134		72
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	158													234	
Capacity, c (veh/h)	138														
v/c Ratio	1.14														
95\% Queue Length, Q ${ }_{95}$ (veh)	21.2														
Control Delay (s/veh)	427.7														
Level of Service (LOS)	F														
Approach Delay (s/veh)		2.1													
Approach LOS															

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		8	8	0		8	0	8	0	0	460	20	0	0	344	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		9	8	0		8	0	10	0	0	548	20	0	0	422	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		8	8	0		8	0	8	0	0	478	21	0	0	357	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		9	8	0		8	0	10	0	0	566	21	0	0	435	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

[^0]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		10	10	0		10	0	10	0	0	580	25	0	0	433	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		11	10	0		10	0	12	0	0	668	25	0	0	511	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		12	12	0		12	0	12	0	0	699	30	0	0	523	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		13	12	0		12	0	14	0	0	787	30	0	0	601	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	12	8		0	12	32	0	4	644	0	0	12	584	4
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	12	8		0	12	37	0	4	743	0	0	13	668	4
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	12	8		0	12	33	0	4	669	0	0	12	607	4
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

Copyright © 2023 University of Florida. All Rights Reserved.

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	12	8		0	12	38	0	4	768	0	0	13	691	4
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

[^1]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	15	10		0	15	40	0	5	811	0	0	15	736	5
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	15	10		0	15	45	0	5	910	0	0	16	820	5
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

[^2]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	18	12		0	18	49	0	6	979	0	0	18	888	6
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	18	12		0	18	54	0	6	1078	0	0	19	972	6
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		L	T				T	R						L		R
Volume (veh/h)		108	875				960	55						14		114
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	123												16		130
Capacity, c (veh/h)	274												22		254
v/c Ratio	0.45												0.74		0.51
95\% Queue Length, Q_{95} (veh)	2.4												3.7		3.0
Control Delay (s/veh)	28.7												464.0		33.7
Level of Service (LOS)	D												F		D
Approach Delay (s/veh)	3.1											80.7			
Approach LOS														F	

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		L	T				T	R						L		R
Volume (veh/h)		130	987				1098	55						14		130
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		L	T				T	R						L		R
Volume (veh/h)		112	909				997	57						15		118
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	127												17		134
Capacity, c (veh/h)	256												17		240
v/c Ratio	0.50												0.99		0.56
95\% Queue Length, Q_{95} (veh)	2.8												5.0		3.6
Control Delay (s/veh)	32.7												819.0		38.5
Level of Service (LOS)	D												F		E
Approach Delay (s/veh)	3.6											126.6			
Approach LOS														F	

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		L	T				T	R						L		R
Volume (veh/h)		134	1021				1135	57						15		134
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	152												17		152
Capacity, c (veh/h)	202												5		194
v/c Ratio	0.75												3.34		0.79
95\% Queue Length, Q_{95} (veh)	7.1												8.9		7.9
Control Delay (s/veh)	71.9												5768.5		82.5
Level of Service (LOS)	F												F		F
Approach Delay (s/veh)	8.3											654.9			
Approach LOS														F	

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		L	T				T	R						L		R
Volume (veh/h)		136	1103				1210	69						18		144
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		L	T				T	R						L		R
Volume (veh/h)		158	1215				1348	69						18		160
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	180												20		182
Capacity, c (veh/h)	137														139
v/c Ratio	1.31														1.31
95\% Queue Length, Q_{95} (veh)	30.3														30.4
Control Delay (s/veh)	689.1														680.3
Level of Service (LOS)	F														F
Approach Delay (s/veh)		9.3													
Approach LOS															

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		L	T				T	R						L		R
Volume (veh/h)		164	1330				1459	84						21		173
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	186												24		197
Capacity, c (veh/h)	110														117
v/c Ratio	1.70														1.69
95\% Queue Length, Q_{95} (veh)	44.6														46.3
Control Delay (s/veh)	1368.1														1342.0
Level of Service (LOS)	F														F
Approach Delay (s/veh)		0.2													
Approach LOS															

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		L	T				T	R						L		R
Volume (veh/h)		186	1442				1597	84						21		189
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	156	0		0	148	0		12	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^3]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	199	0		0	189	0		12	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0				0					16				3	
Capacity, c (veh/h)	1120				1336					516				583	
v/c Ratio	0.00				0.00					0.03				0.01	
95\% Queue Length, Q_{95} (veh)	0.0				0.0					0.1				0.0	
Control Delay (s/veh)	8.2				7.7					12.2				11.2	
Level of Service (LOS)	A				A					B				B	
Approach Delay (s/veh)		. 0				0.0				12.2				11.2	
Approach LOS										B				B	

[^4]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	162	0		0	154	0		12	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0				0					16				3	
Capacity, c (veh/h)	1188				1385					583				644	
v/c Ratio	0.00				0.00					0.03				0.01	
95\% Queue Length, Q_{95} (veh)	0.0				0.0					0.1				0.0	
Control Delay (s/veh)	8.0				7.6					11.3				10.6	
Level of Service (LOS)	A				A					B				B	
Approach Delay (s/veh)		. 0				0.0				11.3				10.6	
Approach LOS										B				B	

[^5]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	205	0		0	195	0		12	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^6]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	197	0		0	186	0		15	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^7]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	240	0		0	227	0		15	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^8]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	237	0		0	225	0		18	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^9]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	280	0		0	268	0		18	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^10]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		12	224	4		0	332	20		0	8	0		16	4	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		12	271	4		0	377	23		0	8	0		19	4	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	14				0					9				26	
Capacity, c (veh/h)	784				1242					302				296	
v / c Ratio	0.02				0.00					0.03				0.09	
95\% Queue Length, Q_{95} (veh)	0.1				0.0					0.1				0.3	
Control Delay (s/veh)	9.7				7.9					17.3				18.3	
Level of Service (LOS)	A				A					C				C	
Approach Delay (s/veh)		0.6				0.0				17.3				18.3	
Approach LOS										C				C	

[^11]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		12	233	4		0	345	21		0	8	0		17	4	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		12	280	4		0	390	24		0	8	0		20	4	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^12]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		15	282	5		0	418	25		0	10	0		20	5	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		15	329	5		0	463	28		0	10	0		23	5	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	17				0					11				32	
Capacity, c (veh/h)	672				1173					234				222	
v / c Ratio	0.03				0.00					0.05				0.14	
95\% Queue Length, Q_{95} (veh)	0.1				0.0					0.2				0.5	
Control Delay (s/veh)	10.5				8.1					21.2				23.9	
Level of Service (LOS)	B				A					C				C	
Approach Delay (s/veh)		0.8				0.0				21.2				23.9	
Approach LOS										C				C	

[^13]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		18	340	6		0	505	30		0	12	0		24	6	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	20				0					14				34	
Capacity, c (veh/h)	623				1160					211				196	
v / c Ratio	0.03				0.00					0.06				0.17	
95\% Queue Length, Q_{95} (veh)	0.1				0.0					0.2				0.6	
Control Delay (s/veh)	11.0				8.1					23.3				27.2	
Level of Service (LOS)	B				A					C				D	
Approach Delay (s/veh)		1.0				0.0				23.3				27.2	
Approach LOS										C				D	

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		18	387	6		0	550	33		0	12	0		27	6	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	20				0					14				38	
Capacity, c (veh/h)	575				1108					180				164	
v / c Ratio	0.04				0.00					0.08				0.23	
95\% Queue Length, Q_{95} (veh)	0.1				0.0					0.2				0.9	
Control Delay (s/veh)	11.5				8.2					26.6				33.4	
Level of Service (LOS)	B				A					D				D	
Approach Delay (s/veh)		1.0				0.0				26.6				33.4	
Approach LOS										D				D	

[^14]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

[^15]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

[^16]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

[^17]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	AM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2023	North/South Street	N Spruce Ave
Analysis Time Period (hrs)	0.25	0.92	
Time Analyzed	AM Peak Hour		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	16	128	92	4	164	52	32	420	0	44	400	4
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	257			239			491			487		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.228			0.213			0.437			0.433		
Final Departure Headway, hd (s)	8.26			8.42			7.52			7.53		
Final Degree of Utilization, x	0.589			0.559			1.027			1.018		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	6.26			6.42			5.52			5.53		

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	257		239		491		487		
Capacity	436		428		478		478		
95\% Queue Length, Q ${ }_{95}$ (veh)	3.7		3.3		14.4		14.1		
Control Delay (s/veh)	22.4		21.6		75.9		73.4		
Level of Service, LOS	C		C		F		F		
Approach Delay (s/veh)		22.4		21.6		75.9		73.4	
Approach LOS		C		C		F		F	
Intersection Delay, s/veh \| LOS	56.9				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	North/South Street	Sycamore Ave
Analysis Year	2023	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	0.25	0.92	
Time Analyzed	AM Peak Hour + Project		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	16	128	99	5	164	52	35	464	0	44	432	4
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	264			240			542			522		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.235			0.214			0.482			0.464			
Final Departure Headway, hd (s)	8.24			8.44			7.53			7.53			
Final Degree of Utilization, x	0.604			0.563			1.134			1.091			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, ts (s)	6.24			6.44			5.53			5.53			

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	264		240		542		522		
Capacity	437		427		478		478		
95\% Queue Length, Q_{95} (veh)	3.9		3.4		18.8		17.0		
Control Delay (s/veh)	23.0		21.8		109.7		95.1		
Level of Service, LOS	C		C		F		F		
Approach Delay (s/veh)		23.0		21.8		109.7		95.1	
Approach LOS		C		C		F		F	
Intersection Delay, s/veh \| LOS	76.8				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2025	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	0.25		0.92
Time Analyzed	AM Peak Hour		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	17	133	96	4	170	54	33	436	0	46	416	4
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	267			248			510			507		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	267		248		510		507		
Capacity	434		426		474		474		
95\% Queue Length, Q ${ }_{95}$ (veh)	4.0		3.6		16.2		16.0		
Control Delay (s/veh)	23.7		22.6		90.4		88.3		
Level of Service, LOS	C		C		F		F		
Approach Delay (s/veh)		23.7		22.6		90.4		88.3	
Approach LOS		C		C		F		F	
Intersection Delay, s/veh \| LOS	67.1				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	$3 / 28 / 23$	Earisdiction
Date Performed	2025	North/South Street	County
Analysis Year	0.25	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	AM Peak Hour + Project	0.92	
Time Analyzed	TIS for Lindsay Gas Station C-Store		
Project Description			

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	17	133	103	5	170	54	36	480	0	46	448	4
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	275			249			561			541		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.244			0.221			0.499			0.481			
Final Departure Headway, hd (s)	8.30			8.51			7.67			7.67			
Final Degree of Utilization, x	0.634			0.589			1.194			1.153			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, ts (s)	6.30			6.51			5.67			5.67			

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	275		249		561		541		
Capacity	434		423		470		470		
95\% Queue Length, Q ${ }_{95}$ (veh)	4.3		3.7		21.3		19.4		
Control Delay (s/veh)	24.6		23.0		132.1		116.9		
Level of Service, LOS	C		C		F		F		
Approach Delay (s/veh)		24.6		23.0		132.1		116.9	
Approach LOS		C		C		F		F	
Intersection Delay, s/veh \| LOS	92.1				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2035	North/South Street	N Spruce Ave
Analysis Time Period (hrs)	0.25	0.92	
Time Analyzed	AM Peak Hour		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	20	161	116	5	207	66	40	529	0	55	504	5
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	323			302			618			613		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.287			0.269			0.550			0.545		
Final Departure Headway, hd (s)	8.70			8.87			8.39			8.39		
Final Degree of Utilization, x	0.780			0.745			1.442			1.429		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	6.70			6.87			6.39			6.39		

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	323		302		618		613		
Capacity	414		406		429		429		
95\% Queue Length, Q ${ }_{95}$ (veh)	6.7		6.0		31.1		30.5		
Control Delay (s/veh)	36.4		33.6		234.7		229.4		
Level of Service, LOS	E		D		F		F		
Approach Delay (s/veh)		36.4		33.6		234.7		229.4	
Approach LOS		E		D		F		F	
Intersection Delay, s/veh \| LOS	165.7				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2035	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	0.25	0.92	
Time Analyzed	AM Peak Hour + Project		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	20	161	123	6	207	66	43	573	0	55	536	5
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	330			303			670			648		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	330		303		670		648		
Capacity	413		404		426		426		
95\% Queue Length, Q ${ }_{95}$ (veh)	7.1		6.1		37.2		34.8		
Control Delay (s/veh)	38.5		34.4		290.8		268.9		
Level of Service, LOS	E		D		F		F		
Approach Delay (s/veh)		38.5		34.4		290.8		268.9	
Approach LOS		E		D		F		F	
Intersection Delay, s/veh \| LOS	200.9				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2045	North/South Street	N Spruce Ave
Analysis Time Period (hrs)	1.00	0.92	
Time Analyzed	AM Peak Hour		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	24	195	140	6	249	79	49	636	0	57	608	6
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	390			363			745			729		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	390		363		745		729		
Capacity	389		381		378		378		
95\% Queue Length, Q ${ }_{95}$ (veh)	24.5		19.4		189.3		181.8		
Control Delay (s/veh)	144.0		105.0		1779.7		1706.6		
Level of Service, LOS	F		F		F		F		
Approach Delay (s/veh)		144.0		105.0		1779.7		1706.6	
Approach LOS		F		F		F		F	
Intersection Delay, s/veh \| LOS	1196.2				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2045	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	1.00		0.92
Time Analyzed	AM Peak Hour + Project		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	24	195	147	7	249	79	52	682	0	67	640	6
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	398			364			798			775		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.354			0.324			0.709			0.689		
Final Departure Headway, hd (s)	9.26			9.46			9.50			9.50		
Final Degree of Utilization, x	1.024			0.957			2.106			2.046		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	7.26			7.46			7.50			7.50		

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	398		364		798		775		
Capacity	389		380		379		379		
95\% Queue Length, Q_{95} (veh)	26.8		19.6		215.1		203.8		
Control Delay (s/veh)	165.9		107.2		2021.7		1913.6		
Level of Service, LOS	F		F		F		F		
Approach Delay (s/veh)		165.9		107.2		2021.7		1913.6	
Approach LOS		F		F		F		F	
Intersection Delay, s/veh \| LOS	1371.0				F				

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	4	20		24	0	0	0	0	864	10	0	20	768	8
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	4	20		24	0	0	0	0	933	10	0	22	834	8
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6	
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1	
Configuration		LT		R		LT		R		L	T	R		L	T	R	
Volume (veh/h)		0	4	21		25	0	0	0	0	898	10	0	21	798	8	
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8			
Proportion Time Blocked																	
Percent Grade (\%)	0				0												
Right Turn Channelized	No																
Median Type \\| Storage	Left Only								1								
Critical and Follow-up Headways																	
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1			
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28			

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	4	21		25	0	0	0	0	967	10	0	23	864	8
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	5	25		30	0	0	0	0	1089	13	0	25	968	10
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6	
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1	
Configuration		LT		R		LT		R		L	T	R		L	T	R	
Volume (veh/h)		0	5	25		30	0	0	0	0	1158	13	0	27	1034	10	
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8			
Proportion Time Blocked																	
Percent Grade (\%)	0				0												
Right Turn Channelized	No																
Median Type \\| Storage	Left Only								1								
Critical and Follow-up Headways																	
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1			
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28			

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	6	30		36	0	0	0	0	1313	15	0	30	1167	12
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Ave 208
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	6	30		36	0	0	0	0	1382	15	0	32	1233	12
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		0	636				600	0						0		0
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0													0	
Capacity, c (veh/h)	558														
v/c Ratio	0.00														
95\% Queue Length, Q_{95} (veh)	0.0														
Control Delay (s/veh)	11.4														
Level of Service (LOS)	B														
Approach Delay (s/veh)		0.0													
Approach LOS															

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		121	636				656	0						130		56
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	138													211	
Capacity, c (veh/h)	507													89	
v/c Ratio	0.27													2.36	
95\% Queue Length, Q_{95} (veh)	1.1													65.8	
Control Delay (s/veh)	14.7													2564.7	
Level of Service (LOS)	B													F	
Approach Delay (s/veh)		2.4											256	4.7	
Approach LOS													F	F	

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		0	661				623	0						0		0
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0													0	
Capacity, c (veh/h)	537														
v/c Ratio	0.00														
95\% Queue Length, Q_{95} (veh)	0.0														
Control Delay (s/veh)	11.7														
Level of Service (LOS)	B														
Approach Delay (s/veh)		0.0													
Approach LOS															

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		121	661				679	0						130		56
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	138													211	
Capacity, c (veh/h)	488													82	
v/c Ratio	0.28													2.58	
95\% Queue Length, Q_{95} (veh)	1.2													69.4	
Control Delay (s/veh)	15.3													2970.2	
Level of Service (LOS)	C													F	
Approach Delay (s/veh)		2.4											2970	0.2	
Approach LOS													F	F	

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		0	801				756	0						0		0
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0													0	
Capacity, c (veh/h)	428														
v/c Ratio	0.00														
95\% Queue Length, Q_{95} (veh)	0.0														
Control Delay (s/veh)	13.4														
Level of Service (LOS)	B														
Approach Delay (s/veh)		0.0													
Approach LOS															

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		121	801				812	0						130		56
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)													0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	138													211	
Capacity, c (veh/h)	389													48	
v/c Ratio	0.35													4.42	
95\% Queue Length, Q ${ }_{95}$ (veh)	1.6													85.5	
Control Delay (s/veh)	19.3													6341.0	
Level of Service (LOS)	C													F	
Approach Delay (s/veh)		2.5											634	1.0	
Approach LOS													F	F	

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		0	967				912	0						0		0
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0													0	
Capacity, c (veh/h)	327														
v/c Ratio	0.00														
95\% Queue Length, Q_{95} (veh)	0.0														
Control Delay (s/veh)	16.0														
Level of Service (LOS)	C														
Approach Delay (s/veh)		0.0													
Approach LOS															

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Cedar Ave
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	Cedar Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		L	T					TR							LR	
Volume (veh/h)		121	967				968	0						130		56
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	0		28	4	8	0	0	792	36	0	4	1008	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	0		28	4	9	0	0	869	36	0	4	1084	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	0		29	4	8	0	0	823	37	0	4	1047	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	0		29	4	9	0	0	900	37	0	4	1123	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	0		35	5	10	0	0	998	45	0	5	1270	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	0		35	5	11	0	0	1075	45	0	5	1346	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	0		43	6	12	0	0	1204	55	0	6	1532	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/Marigold St
Jurisdiction	County
East/West Street	Marigold St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	0	0		43	6	13	0	0	1281	55	0	6	1608	0
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

General Information

Agency
Analyst
Jurisdiction
Urban Street
Intersection
Project Description
Demand Information
Approach Movement
Demand (v), veh/h

Intersection Information

LAV Consulting	Analysis Date	Mar 28, 2023
BMB	Time Period	PM Peak Hour + Project
County	Analysis Year	2023
Hwy 65	Pis	

Hwy 65/W Hermosa St

| Duration, h | 0.250 |
| :--- | :--- | :--- |

Area Type	Other
PHF	0.88

Analysis Period 1> 7:00
File Name Hwy 65 and W Hermosa St 2023 PM+Proj.xus

EB			WB		
L	T	R	L	T	R
44	115	61	184	75	116

NB		
L	T	R
39	764	138

SB		
L	T	R
116	796	40

Signal Information

Timer Results	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Assigned Phase	7	4	3	8	5	2	1	6
Case Number	1.1	4.0	2.0	3.0	2.0	3.0	2.0	3.0
Phase Duration, s	8.8	19.2	19.3	29.7	8.5	67.3	14.3	73.0
Change Period, $(Y+R c)$, s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Max Allow Headway $(M A H)$, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Clearance Time $(g s)$, s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Green Extension Time $(g e), s$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Phase Call Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Max Out Probability	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Movement Group Results	EB			WB			NB			SB		
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Assigned Movement	7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow Rate (v), veh/h	0	0		0	0	0	0	0	0	0	0	0
Adjusted Saturation Flow Rate (s), veh/h/ln	0	0		0	0	0	0	0	0	0	0	0
Queue Service Time ($g s$), s	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Queue Clearance Time (g_{c}), s	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Green Ratio (g/C)	0.17	0.13		0.13	0.21	0.21	0.04	0.53	0.53	0.09	0.57	0.57
Capacity (c), veh/h	302	227		230	407	345	68	1907	849	155	2079	925
Volume-to-Capacity Ratio (X)	0.159	0.844		0.868	0.200	0.366	0.619	0.435	0.177	0.815	0.416	0.047
Back of Queue (Q), ft/ln (95 th percentile)	52.9	236.7		246.6	85.3	137.4	57.7	268.2	92.2	169	249	21.5
Back of Queue (Q), veh/ln (95 th percentile)	2.1	9.5		9.9	3.4	5.5	2.3	10.7	3.7	6.8	10.0	0.9
Queue Storage Ratio ($R Q$) (95 th percentile)	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d_{1}), s/veh	42.8	51.2		51.4	38.7	40.2	56.9	17.4	14.8	53.9	14.3	11.2
Incremental Delay (d_{2}), s/veh	0.1	3.3		3.9	0.1	0.2	3.4	0.7	0.5	3.9	0.6	0.1
Initial Queue Delay (d_{3}), s/veh	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh	42.9	54.5		55.2	38.8	40.4	60.2	18.1	15.2	57.9	14.9	11.2
Level of Service (LOS)	D	D		E	D	D	E	B	B	E	B	B
Approach Delay, s/veh / LOS	52.2		D	47.4		D	19.5		B	20.0		B
Intersection Delay, s/veh / LOS				. 8								

Multimodal Results	EB		WB		NB		SB	
Pedestrian LOS Score / LOS	2.46	B	2.46	B	2.09	B	1.89	B
Bicycle LOS Score / LOS	0.88	A	1.16	A	1.33	A	1.34	A

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

Copyright © 2023 University of Florida, All Rights Reserved.

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	20	16		8	4	16	0	40	828	8	0	24	684	4
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	20	16		8	4	18	0	40	913	8	0	27	767	4
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	21	17		8	4	17	0	42	860	8	0	25	711	4
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	21	17		8	4	19	0	42	945	8	0	28	794	4
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	25	20		10	5	20	0	50	1043	10	0	30	862	5
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	25	20		10	5	22	0	50	1128	10	0	33	945	5
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	30	24		12	6	24	0	61	1259	12	0	36	1040	6
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Lindmore St
Jurisdiction	County
East/West Street	W Lindmore St
North/South Street	Hwy 65
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	1	0	1	2	1
Configuration		LT		R		LT		R		L	T	R		L	T	R
Volume (veh/h)		0	30	24		12	6	26	0	61	1344	12	0	61	1344	12
Percent Heavy Vehicles (\%)		8	8	8		8	8	8	8	8			8	8		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized	No															
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		6.48	6.66	7.06		7.66	6.66	7.06		4.26				4.26		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		2.34	4.08	3.38		3.58	4.08	3.38		2.28				2.28		

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		117	1135				1046	46						19		96
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	133												22		109
Capacity, c (veh/h)	240												9		215
v/c Ratio	0.55												2.39		0.51
95\% Queue Length, Q_{95} (veh)	3.5												9.6		2.9
Control Delay (s/veh)	38.2												3473.1		38.7
Level of Service (LOS)	E												F		E
Approach Delay (s/veh)	3.6											606.1			
Approach LOS														F	

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		133	1249				1162	46						19		108
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		122	1179				1087	48						20		100
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		138	1293				1203	48						20		112
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		147	1430				1318	58						24		121
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	167												27		138
Capacity, c (veh/h)	147														139
v/c Ratio	1.14														0.99
95\% Queue Length, Q_{95} (veh)	21.7														14.0
Control Delay (s/veh)	409.1														234.9
Level of Service (LOS)	F														F
Approach Delay (s/veh)		8.1													
Approach LOS															

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		163	1544				1434	58						24		133
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	185												27		151
Capacity, c (veh/h)	120														116
v/c Ratio	1.54														1.30
95\% Queue Length, Q_{95} (veh)	39.6														26.3
Control Delay (s/veh)	1091.8														694.4
Level of Service (LOS)	F														F
Approach Delay (s/veh)		4.3													
Approach LOS															

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		178	1725				1590	70						29		146
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 65/W Tulare Rd
Jurisdiction	County
East/West Street	Hwy 65
North/South Street	W Tulare Rd
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	T					TR						L		R
Volume (veh/h)		194	1839				1706	70						29		158
Percent Heavy Vehicles (\%)		8												8		8
Proportion Time Blocked																
Percent Grade (\%)																
Right Turn Channelized																
Median Type \| Storage					ded											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		6.48												6.48		6.28
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.34												3.57		3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	176	12		0	196	0		1	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0				0					3				3	
Capacity, c (veh/h)	1107				1351					578				587	
v/c Ratio	0.00				0.00					0.01				0.01	
95\% Queue Length, Q_{95} (veh)	0.0				0.0					0.0				0.0	
Control Delay (s/veh)	8.3				7.7					11.3				11.2	
Level of Service (LOS)	A				A					B				B	
Approach Delay (s/veh)		0.0				0.0				11.3				11.2	
Approach LOS										B				B	

[^18]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	206	12		0	233	0		1	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0				0					3				3	
Capacity, c (veh/h)	1040				1312					526				533	
v/c Ratio	0.00				0.00					0.01				0.01	
95\% Queue Length, Q_{95} (veh)	0.0				0.0					0.0				0.0	
Control Delay (s/veh)	8.5				7.7					11.9				11.8	
Level of Service (LOS)	A				A					B				B	
Approach Delay (s/veh)		0.0				0.0				11.9				11.8	
Approach LOS										B				B	

[^19]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	183	12		0	204	0		1	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^20]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	213	12		0	241	0		1	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^21]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	222	15		0	247	0		1	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^22]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	252	15		0	284	0		1	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^23]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	268	18		0	298	0		1	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^24]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 180
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 180
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	298	18		0	335	0		1	1	1		1	1	1
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		8	296	8		0	388	28		4	12	0		16	8	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^25]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		8	329	8		0	428	31		4	12	0		18	8	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^26]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		8	308	8		0	403	29		4	12	0		17	8	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^27]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		8	341	8		0	443	32		4	12	0		19	8	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	9				0					18				31	
Capacity, c (veh/h)	690				1157					239				234	
v/c Ratio	0.01				0.00					0.08				0.13	
95\% Queue Length, Q_{95} (veh)	0.0				0.0					0.2				0.4	
Control Delay (s/veh)	10.3				8.1					21.3				22.7	
Level of Service (LOS)	B				A					C				C	
Approach Delay (s/veh)		0.4				0.0				21.3				22.7	
Approach LOS										C				C	

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	373	10		0	489	35		5	15	0		20	10	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^28]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	406	10		0	529	38		5	15	0		22	10	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	11				0					23				36	
Capacity, c (veh/h)	590				1084					181				173	
v / c Ratio	0.02				0.00					0.13				0.21	
95\% Queue Length, Q_{95} (veh)	0.1				0.0					0.4				0.8	
Control Delay (s/veh)	11.2				8.3					27.8				31.3	
Level of Service (LOS)	B				A					D				D	
Approach Delay (s/veh)		0.5				0.0				27.8				31.3	
Approach LOS										D				D	

[^29]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		12	450	12		0	590	43		6	18	0		24	12	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

[^30]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	East-West
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	Hwy 137/Road 188
Jurisdiction	County
East/West Street	Hwy 137
North/South Street	Road 188
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		12	483	12		0	630	46		6	18	0		25	12	0
Percent Heavy Vehicles (\%)		8				3				14	14	14		8	3	8
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		6.48				4.13				7.24	6.64	6.34		7.18	6.53	6.28
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.34				2.23				3.63	4.13	3.43		3.57	4.03	3.37

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	14				0					27				42	
Capacity, c (veh/h)	490				1004					129				119	
v/c Ratio	0.03				0.00					0.21				0.35	
95\% Queue Length, Q_{95} (veh)	0.1				0.0					0.8				1.6	
Control Delay (s/veh)	12.6				8.6					40.3				51.6	
Level of Service (LOS)	B				A					E				F	
Approach Delay (s/veh)		0.8				0.0				40.3				51.6	
Approach LOS										E				F	

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2023
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

[^31]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2025
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

[^32]
General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2035
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

General Information

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 23$
Analysis Year	2045
Time Analyzed	PM Peak Hour + Project
Intersection Orientation	North-South
Project Description	TIS for Lindsay Gas Station C-Store

Site Information

Intersection	N Spruce Ave/Acacia Ave
Jurisdiction	County
East/West Street	Acacia Ave
North/South Street	N Spruce Ave
Peak Hour Factor	0.88
Analysis Time Period (hrs)	1.00

Lanes

Major Street: North-South
Vehicle Volumes and Adjustments

Delay, Queue Length, and Level of Service

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	$3 / 28 / 23$	Earisdiction
Date Performed	2023	North/South Street	County
Analysis Year	1.00	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	PM Peak Hour	0.92	
Time Analyzed	TIS for Lindsay Gas Station C-Store		
Project Description			

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	0	152	56	0	60	8	72	408	0	12	296	12
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	226			74			522			348		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.201			0.066			0.464			0.309		
Final Departure Headway, hd (s)	6.36			6.92			5.59			5.81		
Final Degree of Utilization, x	0.400			0.142			0.809			0.562		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	4.36			4.92			3.59			3.81		

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	226		74		522		348		
Capacity	566		520		645		619		
95\% Queue Length, Q_{95} (veh)	2.0		0.5		10.8		3.7		
Control Delay (s/veh)	13.6		11.1		30.9		16.2		
Level of Service, LOS	B		B		D		C		
Approach Delay (s/veh)		13.6		11.1		30.9		16.2	
Approach LOS		B		B		D		C	
Intersection Delay, s/veh \| LOS	21.9				C				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2023	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	1.00		0.96
Time Analyzed	PM Peak Hour + Project		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	0	152	62	0	60	8	77	435	0	12	325	12
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	223			71			533			364		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	223		71		533		364		
Capacity	561		514		643		618		
95\% Queue Length, Q_{95} (veh)	2.0		0.5		12.0		4.1		
Control Delay (s/veh)	13.6		11.1		33.8		17.0		
Level of Service, LOS	B		B		D		C		
Approach Delay (s/veh)		13.6		11.1		33.8		17.0	
Approach LOS		B		B		D		C	
Intersection Delay, s/veh \| LOS	23.5				C				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2025	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	1.00		0.92
Time Analyzed	PM Peak Hour		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	0	158	58	0	62	8	75	424	0	12	308	12
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	235			76			542			361		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	235		76		542		361		
Capacity	549		501		629		602		
95\% Queue Length, Q_{95} (veh)	2.2		0.5		14.1		4.3		
Control Delay (s/veh)	14.4		11.5		40.4		17.8		
Level of Service, LOS	B		B		E		C		
Approach Delay (s/veh)		14.4		11.5		40.4		17.8	
Approach LOS		B		B		E		C	
Intersection Delay, s/veh \| LOS	26.9				D				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2025	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	1.00		0.94
Time Analyzed	PM Peak Hour + Project		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	0	158	64	0	62	8	80	451	0	12	337	12
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	236			74			565			384		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	236		74		565		384		
Capacity	538		487		621		593		
95\% Queue Length, Q_{95} (veh)	2.3		0.5		18.3		5.2		
Control Delay (s/veh)	14.9		11.7		54.5		20.0		
Level of Service, LOS	B		B		F		C		
Approach Delay (s/veh)		14.9		11.7		54.5		20.0	
Approach LOS		B		B		F		C	
Intersection Delay, s/veh \| LOS	34.0				D				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2035	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	1.00		0.92
Time Analyzed	PM Peak Hour		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	0	192	71	0	76	10	91	514	0	15	373	15
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	286			93			658			438		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.254			0.083			0.585			0.389		
Final Departure Headway, hd (s)	7.06			7.95			6.36			6.50		
Final Degree of Utilization, x	0.561			0.206			1.162			0.791		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	5.06			5.95			4.36			4.50		

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	286		93		658		438		
Capacity	510		453		566		554		
95\% Queue Length, Q_{95} (veh)	3.7		0.8		61.9		9.7		
Control Delay (s/veh)	19.0		13.0		341.6		32.6		
Level of Service, LOS	C		B		F		D		
Approach Delay (s/veh)		19.0		13.0		341.6		32.6	
Approach LOS		C		B		F		D	
Intersection Delay, s/veh \| LOS	166.5				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2035	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	1.00		0.94
Time Analyzed	PM Peak Hour + Project		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	0	192	77	0	76	10	96	544	0	15	402	15
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	286			91			681			460		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	286		91		681		460		
Capacity	507		448		561		553		
95\% Queue Length, Q_{95} (veh)	3.8		0.8		73.9		11.8		
Control Delay (s/veh)	19.2		13.1		429.0		38.6		
Level of Service, LOS	C		B		F		E		
Approach Delay (s/veh)		19.2		13.1		429.0		38.6	
Approach LOS		C		B		F		E	
Intersection Delay, s/veh \| LOS	208.5				F				

HCS7 All-Way Stop Control Report

General Information

Analyst	BMB	Intersection	N Spruce Ave/SycamoreAve
Agency/Co.	LAV Consulting	Jurisdiction	County
Date Performed	$3 / 28 / 23$	East/West Street	Sycamore Ave
Analysis Year	2045	Peak Hour Factor	N Spruce Ave
Analysis Time Period (hrs)	1.00		0.92
Time Analyzed	PM Peak Hour		
Project Description	TIS for Lindsay Gas Station C-Store		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	0	231	85	0	91	12	109	617	0	18	450	18
\% Thrus in Shared Lane												
Lane	L1	L2	L3									
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	343			112			789			528		
Percent Heavy Vehicles	2			2			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.305			0.100			0.701			0.470			
Final Departure Headway, hd (s)	7.56			8.81			7.11			7.06			
Final Degree of Utilization, x	0.722			0.274			1.558			1.036			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, ts (s)	5.56			6.81			5.11			5.06			

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	343		112		789		528		
Capacity	476		409		506		510		
95\% Queue Length, Q_{95} (veh)	7.0		1.1		149.3		33.2		
Control Delay (s/veh)	29.4		15.1		1034.2		162.2		
Level of Service, LOS	D		C		F		F		
Approach Delay (s/veh)		29.4		15.1		1034.2		162.2	
Approach LOS		D		C		F		F	
Intersection Delay, s/veh \| LOS	515.3				F				

Street Segments

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1114	veh/h		
Opposing directi	ion volume,	- 660	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)		Opposing		
PCE for trucks, ET	1.0		1.0		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	1.000		1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00		
Directional flow rate, (note-2) vi	1211	pc / h	717		pc / h
Base percent time-spent-following, (n	te-4) BPTSFd	80.7	\%		
Adjustment for no-passing zones, fnp		13.1			
Percent time-spent-following, PTSFd		88.9	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.71	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	37.4	mi / h	
Percent time-spent-following, PTSFd (from above)	88.9	E	

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1210.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.79
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1261	veh/h		
Opposing directi	ion volume,	799	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.81	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	35.2
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	91.3	E.

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1370.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.85
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1157	veh/h		
Opposing directi	ion volume,	- 686	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.74	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.9	mi / h	
Percent time-spent-following, PTSFd (from above)	89.9	E	

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1257.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.81
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1304	veh/h		
Opposing directi	ion volume,	- 825	veh/h		

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	141	pc / h	897	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		34.6	mi/h	
Percent Free Flow Speed, PFFS		65.3	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.83	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1417.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.87
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis direction vol	lume,	1433	veh/h		
Opposing direction vol	lume,	832	veh/h		

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	155	pc / h	904	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		33.4	mi/h	
Percent Free Flow Speed, PFFS		63.1	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.92	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1557.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.91
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.0		1.000	
Grade adj. factor, (note-1) fg	1.0		1.00	
Directional flow rate, (note-2) vi	168		1055	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		31.3	mi / h	
Percent Free Flow Speed, PFFS		59.0	\%	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	1685	pc/h	1055
Base percent time-spent-following, (note-4)	BPTSFd	90.4	$\%$
Adjustment for no-passing zones, fnp		8.0	
Percent time-spent-following, PTSFd		95.3	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.99	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$31.3 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	95.3	E	

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1684.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.95
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.0		1.000	
Grade adj. factor, (note-1) fg	1.0		1.00	
Directional flow rate, (note-2) vi	184		1090	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		29.8	mi / h	
Percent Free Flow Speed, PFFS		56.2	\%	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	1841	pc/h	1090
Base percent time-spent-following, (note-4)	BPTSFd	92.2	$\%$
Adjustment for no-passing zones, fnp		8.3	
Percent time-spent-following, PTSFd		97.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	1.08	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	29.8	mi / h
Percent time-spent-following, PTSFd (from above)	97.4	F

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1841.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.00
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	200	pc / h	1241	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		27.4	mi/h	
Percent Free Flow Speed, PFFS		51.7	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	2001	pc/h	1241	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	94.4	$\%$	
Adjustment for no-passing zones, fnp		8.0		
Percent time-spent-following, PTSFd		99.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	1.18	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	27.4
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	99.3	F
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 2001.1
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.04
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	957	pc/h	1068	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	77.7	$\%$	
Adjustment for no-passing zones, fnp		13.3		
Percent time-spent-following, PTSFd		84.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.56	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.8	mi / h	
Percent time-spent-following, PTSFd (from above)	84.0	E	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 956.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.67
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	1037	pc / h	1214	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		35.1	mi / h	
Percent Free Flow Speed, PFFS		66.2	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.61	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	35.1	mi / h
Percent time-spent-following, PTSFd (from above)	86.1	E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1037.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.71
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	993	pc/h	1110	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	79.1	$\%$	
Adjustment for no-passing zones, fnp		12.6		
Percent time-spent-following, PTSFd	85.0	$\%$		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.58	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 993.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.69
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	1074	pc/h	1255	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	82.3	$\%$	
Adjustment for no-passing zones, fnp		10.3		
Percent time-spent-following, PTSFd	87.0	$\%$		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.63	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1073.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.73
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	120	pc / h	1347	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		32.7	mi / h	
Percent Free Flow Speed, PFFS		61.8	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	1205	pc/h	1347	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	85.7	$\%$	
Adjustment for no-passing zones, fnp		8.2		
Percent time-spent-following, PTSFd		89.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.71	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 mi | |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 32.7 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 89.6 | E |

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1205.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.78
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up / down	-	\%	Access point density	8	/mi
Analysis direction vol	lume,	1183	veh/h		
Opposing direction vo	lume,	1373	veh/h		

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	1286	pc/h	1492	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	87.9	$\%$	
Adjustment for no-passing zones, fnp		7.1		
Percent time-spent-following, PTSFd		91.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.76	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	31.0
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	91.2	E.

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1285.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.82
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Highway class Class	1		Peak hour factor, PHF	0.87	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis direction vol	lume,	1336	veh/h		
Opposing direction vol	lume,	1494	veh/h		

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	153	pc / h	1717	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		27.3	mi / h	
Percent Free Flow Speed, PFFS		51.5	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	1536	pc/h	1717	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	91.7	$\%$	
Adjustment for no-passing zones, fnp		5.5		
Percent time-spent-following, PTSFd		94.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	0.90	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	$\mathrm{mi}^{27.3}$
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	94.3	F
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1535.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.88
Bicycle LOS E
```

Notes:

1. Note that the adjustment factor for level terrain is 1.00 , as level terrain
is one of the base conditions. For the purpose of grade adjustment, specific
dewngrade segments are treated as level terrain.
2. If vi (vd or vo) $>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
3. For the analysis direction only and for $v>200$ veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
specific downgrade.

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	1535	pc/h	1770	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	91.7	$\%$	
Adjustment for no-passing zones, fnp		5.8		
Percent time-spent-following, PTSFd		94.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	0.90	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	26.9	mi / h
Percent time-spent-following, PTSFd (from above)	94.4	
Level of service, LOSd (from above)	F	

Level of service, LOSd (from above)
\qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1534.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.91
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```


Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	851	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	600	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^33]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	960	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	685	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^34]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	884	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	623	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^35]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	993	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	708	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^36]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1072	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	741	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	-
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^37]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1181	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	826	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^38]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary
Direction 1 Geometric Data			

Direction 1	1293	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	912	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	Adjusted Capacity (cadj), pc/h/ln	2090	
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^39]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1407	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	997	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^40]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	648	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	344	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	Adjusted Capacity (cadj), pc/h/ln	2090	
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^41]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	747	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	422	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	-
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^42]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	673	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	357	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^43]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	772	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	435	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^44]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	816	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	433	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^45]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	915	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	511	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^46]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary
Direction 1 Geometric Data			

Direction 1	985	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	523	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^47]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1084	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	601	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^48]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	480	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	508	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^49]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	568	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	578	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^50]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	499	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	528	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^51]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	587	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	598	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^52]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	605	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	637	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^53]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	693	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	710	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^54]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary
Direction 1 Geometric Data			

Direction 1	729	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	772	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^55]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	817	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	853	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^56]HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	677	pc/h	676	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	63.4	$\%$	
Adjustment for no-passing zones, fnp		21.1		
Percent time-spent-following, PTSFd		74.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.40	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 677.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.49
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.44	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	40.6	mi
Percent time-spent-following, PTSFd (from above)	76.5	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 755.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.55
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.41	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	41.4	mi / h	
Percent time-spent-following, PTSFd (from above)	74.4	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 704.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.51
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	719	veh/h		
Opposing directi	ion volume,	- 732	veh/h		

Average Travel Speed

Direction Anal	Analysis		Opposing (o)	
PCE for trucks, ET	1.1			
PCE for RVs, ER	1.0			
Heavy-vehicle adj. factor, (note-5) fHV	0.9			
Grade adj. factor, (note-1) fg	1.0			
Directional flow rate, (note-2) vi	786	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		40.2	mi/h	
Percent Free Flow Speed, PFFS		75.9	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.46	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	40.2
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	77.8	D
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 781.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.57
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	785	veh/h		
Opposing directi	ion volume,	-784	veh/h		

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	853	pc / h	852	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		39.3	mi / h	
Percent Free Flow Speed, PFFS		74.2	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	853	pc/h	852	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	71.7	$\%$	
Adjustment for no-passing zones, fnp		16.7		
Percent time-spent-following, PTSFd	80.1	$\%$		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.50	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	39.3	mi / h	
Percent time-spent-following, PTSFd (from above)	80.1	E	

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 853.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.61
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	932	pc / h	945	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		38.0	mi / h	
Percent Free Flow Speed, PFFS		71.6	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.55	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$38.0 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	82.7	E	

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 931.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.65
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	1028	pc/h	1028
Base percent time-spent-following, (note-4)	BPTSFd	79.0	$\%$
Adjustment for no-passing zones, fnp		13.0	
Percent time-spent-following, PTSFd	85.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.60	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	36.6	mi / h
Percent time-spent-following, PTSFd (from above)	85.5	E

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1028.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.70
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	110	pc / h	1121	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		35.3	mi / h	
Percent Free Flow Speed, PFFS		66.5	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	1107	pc/h	1121	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	82.0	$\%$	
Adjustment for no-passing zones, fnp		11.4		
Percent time-spent-following, PTSFd		87.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.65	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1106.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.74
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```


Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1015	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	801	Lerrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	Adjusted Capacity (cadj), pc/h/ln	2096	
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^57]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1153	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	907	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^58]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1054	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	832	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^59]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1192	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	938	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^60]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary
Direction 1 Geometric Data			

Direction 1	1279	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1009	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.8		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^61]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1417	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1115	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^62]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	AM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary
Direction 1 Geometric Data			

Direction 1	1543	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1217	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	Level
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^63]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1681	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1323	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.8		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^64]HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	AM Peak Hour
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2023
Description TIS for	mercia Development

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.3		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.982		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	390	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.8	mi / h	
Average travel speed, ATSd		44.4	mi/h	
Percent Free Flow Speed, PFFS		83.8	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 382.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.20
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 137
From/To	Hwy $65 /$ Road 188
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.3		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.982		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	443	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.7	mi / h	
Average travel speed, ATSd		43.7	mi / h	
Percent Free Flow Speed, PFFS		82.4	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.26	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 43.7 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 58.0 | D |

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 434.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.27
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	AM Peak Hour
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2025
Description TIS for	mercia Development

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.3		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.982		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	405	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.7	mi/h	
Average travel speed, ATSd		44.2	mi/h	
Percent Free Flow Speed, PFFS		83.3	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	44.2	mi / h
Percent time-spent-following, PTSFd (from above)	55.2	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 397.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.22
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 137
From/To	Hwy $65 /$ Road 188
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.26	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad 43.4$	mi
Average travel speed, ATSd (from above)	59.7	mi
Percent time-spent-following, PTSFd (from above)	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 450.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.29
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	AM Peak Hour
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2035
Description TIS for	mercia Development

Direction An	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	$V \quad 0.988$		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	487	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi / h	
Adj. for lane and shoulder width, (note-3	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) f	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		42.5	mi / h	
Percent Free Flow Speed, PFFS		80.2	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.28	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	42.5	mi / h	
Percent time-spent-following, PTSFd (from above)	61.1	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 481.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.32
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 137
From/To	Hwy $65 /$ Road 188
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.31	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	41.9	mi / h
Percent time-spent-following, PTSFd (from above)	64.9	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 533.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.37
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

___-_Directional Two-Lane Highw	
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 137
From/To	Hwy $65 /$ Road 188
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.34	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	40.8	mi / h
Percent time-spent-following, PTSFd (from above)	67.8	
Level of service, LOSd (from above)	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 581.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.42
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 137
From/To	Hwy $65 /$ Road 188
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.994		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	638	pc / h	992	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		60.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		58.0	mi/h	
Adjustment for no-passing zones, fnp		0.6	mi / h	
Average travel speed, ATSd		44.8	mi/h	
Percent Free Flow Speed, PFFS		77.2	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.37	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 633.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.46
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 137
From/To	Road $188 /$ Road 180
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1	1.1		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.994	0.994		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	162	pc/h	262	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	18.8	$\%$	
Adjustment for no-passing zones, fnp		35.1		
Percent time-spent-following, PTSFd		32.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.09	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 160.9
Effective width of outside lane, We 28.68
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 2.53
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 137
From/To	Road 188/Road 180
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1	1.1		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.994	0.994		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	207	pc/h	314	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	25.3	$\%$	
Adjustment for no-passing zones, fnp		36.4		
Percent time-spent-following, PTSFd		39.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	47.6	mi / h
Percent time-spent-following, PTSFd (from above)	39.8	
Level of service, LOSd (from above)	C	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 205.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.89
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 137
From/To	Road $188 /$ Road 180
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	48.2	mi / h
Percent time-spent-following, PTSFd (from above)	33.7	
Level of service, LOSd (from above)	C	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 167.4
Effective width of outside lane, We 28.14
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 2.70
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 137
From/To	Road 188/Road 180
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	47.5	mi / h
Percent time-spent-following, PTSFd (from above)	40.2	

Level of service, LOSd (from above) C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 212.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.90
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 137
From/To	Road $188 /$ Road 180
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.5		1.4	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.971		0.977	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	208	pc / h	336	pc / h
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi / h	
Adjustment for no-passing zones, fnp		1.3	mi/h	
Average travel speed, ATSd		47.5	mi / h	
Percent Free Flow Speed, PFFS		89.6	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1	1.1		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.994	0.994		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	203	pc/h	330	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	24.5	$\%$	
Adjustment for no-passing zones, fnp		35.5		
Percent time-spent-following, PTSFd		38.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 47.5 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 38.0 | C |

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 202.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.88
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 137
From/To	Road 188/Road 180
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.5		1.3	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.971		0.982	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	254	pc / h	386	pc / h
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi / h	
Adjustment for no-passing zones, fnp		1.2	mi/h	
Average travel speed, ATSd		46.8	mi / h	
Percent Free Flow Speed, PFFS		88.3	\%	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.1	1.1	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.994	0.994	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	248	pc/h	382
Base percent time-spent-following, (note-4)	BPTSFd	29.4	$\%$
Adjustment for no-passing zones, fnp		35.3	
Percent time-spent-following, PTSFd		43.3	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 246.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.98
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	Hwy 137
From/To	Road $188 /$ Road 180
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1	1.1		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.994	0.994		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	246	pc/h	398	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	30.0	$\%$	
Adjustment for no-passing zones, fnp		34.0		
Percent time-spent-following, PTSFd		43.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	46.7
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	43.0	
Level of service, LOSd (from above)	C	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 244.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.98
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	Hwy 137
From/To	Road 188/Road 180
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.994	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	293	pc/h	447	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	35.7	$\%$	
Adjustment for no-passing zones, fnp		30.5		
Percent time-spent-following, PTSFd		47.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	46.1	mi / h
Percent time-spent-following, PTSFd (from above)	47.8	
Level of service, LOSd (from above)	C	

Level of service, LOSd (from above) C
Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 291.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.06
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

Direction An	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.3	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.9		0.982	
Grade adj. factor, (note-1) fg	1.0		1.00	
Directional flow rate, (note-2) vi	497	pc / h	456	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) f	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		1.1	mi/h	
Average travel speed, ATSd		44.5	mi/h	
Percent Free Flow Speed, PFFS		84.0	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.29	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 491.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.33
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.32	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	43.8	mi / h	
Percent time-spent-following, PTSFd (from above)	67.8	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 542.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.38
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.30	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	44.3
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	67.3	D
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 509.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.35
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

Direction Ana	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1			
PCE for RVs, ER	1.0			
Heavy-vehicle adj. factor, (note-5) fHV	0.9			
Grade adj. factor, (note-1) fg	1.0			
Directional flow rate, (note-2) vi	564	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		1.0	mi/h	
Average travel speed, ATSd		43.6	mi/h	
Percent Free Flow Speed, PFFS		82.3	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.33	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-m	mi	
Length of passing lane including tapers, Lpl	-	43.6	mi
Average travel speed, ATSd (from above)	68.9	D	
Percent time-spent-following, PTSFd (from above)			

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 560.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.40
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	618	pc/h	564	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	58.8	$\%$	
Adjustment for no-passing zones, fnp		24.4		
Percent time-spent-following, PTSFd		71.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.36	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	42.9	mi
Percent time-spent-following, PTSFd (from above)	71.6	
Level of service, LOSd (from above)	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 618.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.45
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	42.2	mi
Percent time-spent-following, PTSFd (from above)	73.3	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 669.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.49
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.44	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	41.2	mi
Average travel speed, ATSd (from above)	76.5	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 746.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.54
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.47	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	-	40.5
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	78.5	D
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 797.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.58
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	AM Peak Hour
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for	mercia Development

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.34	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 575.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.41
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.38	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	43.2	mi / h
Percent time-spent-following, PTSFd (from above)	72.7	
Level of service, LOSd (from above)	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 638.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.46
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	AM Peak Hour
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for	mercia Development

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.35	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	43.8	mi / h
Percent time-spent-following, PTSFd (from above)	71.0	D
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 597.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.43
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	661	pc/h	491	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	60.4	$\%$	
Adjustment for no-passing zones, fnp		23.5		
Percent time-spent-following, PTSFd		73.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 660.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.48
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highwa
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.43	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 722.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.53
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.46	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	41.5	mi / h	
Percent time-spent-following, PTSFd (from above)	78.4	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl -
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 787.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.57
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	AM Peak Hour
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for	mercia Development

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	875	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.7	mi/h	
Average travel speed, ATSd		40.5	mi/h	
Percent Free Flow Speed, PFFS		76.5	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.51	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 40.5 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 80.7 | |
| Level of service, LOSd (from above) | E | |

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 875.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.62
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	AM Peak Hour + Project
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	938	pc / h	698	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.6	mi / h	
Average travel speed, ATSd		39.7	mi / h	
Percent Free Flow Speed, PFFS		74.9	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.55	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 938.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.66
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1129	veh/h		
Opposing directi	ion volume,	- 636	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.72	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1227.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.79
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

___-_Directional Two-Lane Highway S	
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1242	veh/h		
Opposing directi	ion volume,	757	veh/h		

Average Travel Speed

Direction An	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.0		0.994	
Grade adj. factor, (note-1) fg	1.0		1.00	
Directional flow rate, (note-2) vi	135	pc / h	828	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) f	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		35.6	mi/h	
Percent Free Flow Speed, PFFS		67.2	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.79	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 mi | |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | $35.6 \mathrm{mi} / \mathrm{h}$ | |
| Percent time-spent-following, PTSFd (from above) | 90.9 | E |

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1350.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.84
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1173	veh/h		
Opposing directi	ion volume,	661	veh/h		

Average Travel Speed

\qquad

Direction Anal	Analysis(d)		Opposing	(0)
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	1.000		1.000	
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	1275	pc / h	718	pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	82.1	\%	
Adjustment for no-passing zones, fnp		12.1		
Percent time-spent-following, PTSFd		89.8	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.75	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	36.9	mi / h	
Percent time-spent-following, PTSFd (from above)	89.8	E	

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1275.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.81
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1286	veh/h		
Opposing directi	ion volume,	782	veh/h		

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	(0)
PCE for trucks, ET	1.0		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	139	pc / h	855	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		35.1	mi/h	
Percent Free Flow Speed, PFFS		66.1	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.82	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	35.1	mi / h
Percent time-spent-following, PTSFd (from above)	91.8	E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1397.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.86
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	1423	veh/h		
Opposing directi	ion volume,	801	veh/h		

Average Travel Speed

Direction An	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.0		1.000	
Grade adj. factor, (note-1) fg	1.0		1.00	
Directional flow rate, (note-2) vi	154	pc / h	871	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) f	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		33.8	mi/h	
Percent Free Flow Speed, PFFS		63.7	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.91	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	33.8	mi / h
Percent time-spent-following, PTSFd (from above)	93.5	E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1546.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.91
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	167	pc / h	1002	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		31.8	mi / h	
Percent Free Flow Speed, PFFS		60.0	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	$1670 \quad$ pc/h	1002	pc/h	
Base percent time-spent-following, (note-4)	BPTSFd	90.0	$\%$	
Adjustment for no-passing zones, fnp		8.2		
Percent time-spent-following, PTSFd		95.1	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.98	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 31.8 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 95.1 | |
| Level of service, LOSd (from above) | E | |

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1669.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.95
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	186	pc / h	1051	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		29.9	mi / h	
Percent Free Flow Speed, PFFS		56.4	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	1865	pc/h	1051	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	92.2	$\%$	
Adjustment for no-passing zones, fnp		8.5		
Percent time-spent-following, PTSFd		97.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	1.10	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	$9.9 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	F	
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1865.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.01
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/N Spruce Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	198	pc / h	1183	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		27.9	mi / h	
Percent Free Flow Speed, PFFS		52.7	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	1988	pc/h	1183	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	94.2	$\%$	
Adjustment for no-passing zones, fnp		8.2		
Percent time-spent-following, PTSFd		99.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	1.17	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	27.9
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	99.3	F
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1988.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.04
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.9		1.000	
Grade adj. factor, (note-1) fg	1.0		1.00	
Directional flow rate, (note-2) vi	656		1339	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		37.1	mi / h	
Percent Free Flow Speed, PFFS		69.9	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	652	pc/h	1339	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	69.0	$\%$	
Adjustment for no-passing zones, fnp		10.8		
Percent time-spent-following, PTSFd		72.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.38	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	37.1	mi / h
Percent time-spent-following, PTSFd (from above)	72.5	E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 652.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.47
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Direction Ana	Analysis (d)		Opposing (o)	
PCE for trucks, ET	1.1		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.994		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	717	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		35.3	mi / h	
Percent Free Flow Speed, PFFS		66.6	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.42	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 713.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.52
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	677	pc/h	1414	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	70.6	$\%$	
Adjustment for no-passing zones, fnp		10.4		
Percent time-spent-following, PTSFd		74.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.40	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$36.3 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	74.0	E	

Average Travel Speed with Passing Lane		
Downstream length of two-lane highway within effective		
length of passing lane for average travel speed, Lde	-	mi
Length of two-lane highway downstream of effective		
length of the passing lane for average travel speed, Ld	-	mi
Adj. factor for the effect of passing lane on average speed, fpl	-	
Average travel speed including passing lane, ATSpl	-	
Percent free flow speed including passing lane, PFFSpl	0.0	\%

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 677.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.49
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.994		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	742	pc / h	1555	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		34.7	mi / h	
Percent Free Flow Speed, PFFS		65.5	\%	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	738	pc/h	1555
Base percent time-spent-following, (note-4)	BPTSFd	74.2	$\%$
Adjustment for no-passing zones, fnp		9.9	
Percent time-spent-following, PTSFd		77.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.43	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 738.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.54
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.9		1.000	
Grade adj. factor, (note-1) fg	1.0		1.00	
Directional flow rate, (note-2) vi	827		1714	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		32.8	mi / h	
Percent Free Flow Speed, PFFS		61.9	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	822	pc/h	1714	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	77.5	$\%$	
Adjustment for no-passing zones, fnp		9.4		
Percent time-spent-following, PTSFd		80.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	0.48	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	32.8	mi / h
Percent time-spent-following, PTSFd (from above)	80.5	
Level of service, LOSd (from above)	F	

Level of service, LOSd (from above)
F

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 821.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.59
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	883	pc/h	1877	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	79.4	$\%$	
Adjustment for no-passing zones, fnp		9.3		
Percent time-spent-following, PTSFd		82.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	0.52	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 31.1 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 82.4 | |
| Level of service, LOSd (from above) | F | |

Level of service, LOSd (from above)
F

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 882.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.63
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	104	pc / h	2187	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		27.4	mi / h	
Percent Free Flow Speed, PFFS		51.8	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	1048	pc/h	2187	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	83.8	$\%$	
Adjustment for no-passing zones, fnp		9.2		
Percent time-spent-following, PTSFd		86.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	0.62	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	$\mathrm{mi}^{27.4}$
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	86.8	
Level of service, LOSd (from above)	F	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 1048.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.71
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	Cedar Ave/Tulare Rd
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	1052	pc/h	2210
Base percent time-spent-following, (note-4)	BPTSFd	83.9	$\%$
Adjustment for no-passing zones, fnp		9.2	
Percent time-spent-following, PTSFd	86.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	F	
Volume to capacity ratio, v/c	0.62	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	27.2	mi / h
Percent time-spent-following, PTSFd (from above)	86.9	F
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 1052.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.72
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```


Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	850	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	712	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^65]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	960	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vOL),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	685	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^66]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	883	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	740	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^67]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	974	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vOL),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	826	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^68]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1071	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1162	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^69]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1162	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	983	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^70]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1293	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/n	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	912	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	Adjusted Capacity (cadj), pc/h/ln	2090	
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^71]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1383	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1168	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^72]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	876	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/n	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1012	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^73]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	961	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1088	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	-
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^74]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	955	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1127	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^75]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	910	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1051	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^76]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1103	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1275	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^77]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1188	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1351	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	-
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^78]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1332	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/n	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1538	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^79]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1417	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1614	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^80]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	828	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/n	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	796	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^81]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	905	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vOL),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	864	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^82]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	860	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	827	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	Adjusted Capacity (cadj), pc/h/ln	2090	
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^83]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	937	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vOL),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	895	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^84]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1043	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/n	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1003	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^85]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1119	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1071	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	-
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^86]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1259	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/n	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1209	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^87]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1336	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.5	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fm)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		
Direction 1 Bicycle LOS	Effective Speed Factor (St)	4.62	
Flow Rate in Outside Lane (vol),veh/h	0	Bicyle LOS Score (BLOS)	0.00
Effective Width of Volume (Wv), ft	36	Bicycle Level of Service (LOS)	A
Average Effective Width (We), ft	42		

Direction 2 Geometric Data

Direction 2	1277	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	2.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided		
Free-Flow Speed (FFS), mi/h	54.5		

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2090
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2090
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.5
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.5		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^88]HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.38	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 642.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.47
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.42	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 709.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.52
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.1		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.994		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	671	pc / h	759	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi/h	
Average travel speed, ATSd		41.4	mi/h	
Percent Free Flow Speed, PFFS		78.1	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	41.4	mi
Average travel speed, ATSd (from above)	72.5	D	
Percent time-spent-following, PTSFd (from above)			

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 667.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.48
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.43	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	-	40.3 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	75.6	D
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 734.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.53
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.48	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 39.1 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 78.4 | |
| Level of service, LOSd (from above) | E | |

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 809.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.58
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing	
PCE for trucks, ET	1.0		1.0	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	1.000		1.000	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	877	pc / h	992	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS	-3) fLS	55.0	mi/h	
Adj. for lane and shoulder width, (note-3)		0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		38.0	mi / h	
Percent Free Flow Speed, PFFS		71.8	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.52	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	38.0	mi / h	
Percent time-spent-following, PTSFd (from above)	81.0	E	

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 877.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.62
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	977	pc/h	1104	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	78.6	$\%$	
Adjustment for no-passing zones, fnp		12.8		
Percent time-spent-following, PTSFd		84.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.57	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 mi | |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 36.4 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 84.6 | E |

Level of service, LOSd (from above)
\qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 977.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.68
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highway S
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 65
From/To	N Spruce Ave/Hwy 137
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	E	
Volume to capacity ratio, v/c	0.49	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Level of service, LOSd (from above)
E

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 839.1
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.60
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```


Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1092	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	844	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^89]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2023
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1208	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts $/ \mathrm{mi}$	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/n	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	952	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^90]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1135	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	877	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^91]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2025
Jurisdiction	County	Time Analyzed	AM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1249	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	985	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^92]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1376	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1064	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^93]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2035
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1492	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1172	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^94]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	PM Peak Hour
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1660	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLw)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume (Wv), ft	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1283	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^95]
Project Information

Analyst	BMB	Date	$3 / 28 / 2023$
Agency	LAV Consulting	Analysis Year	2045
Jurisdiction	County	Time Analyzed	PM Peak Hour + Project
Project Description	TIS for Commercial Development	Units	U.S. Customary

Direction 1 Geometric Data

Direction 1	1776	Terrain Type	Level
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 1 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 1 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 1 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 1 Bicycle LOS

Flow Rate in Outside Lane $(\mathrm{vOL}), \mathrm{veh} / \mathrm{h}$	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width $(\mathrm{We}), \mathrm{ft}$	42	Bicycle Level of Service (LOS)	A

Direction 2 Geometric Data

Direction 2	1391	Terrain Type	
Number of Lanes (N), In	2	Percent Grade, \%	-
Segment Length (L), ft	-	Grade Length, mi	-
Measured or Base Free-Flow Speed	Base	Access Point Density, pts/mi	1.0
Base Free-Flow Speed (BFFS), mi/h	55.0	Left-Side Lateral Clearance (LCR), ft	6
Lane Width, ft	12	Total Lateral Clearance (TLC), ft	12
Median Type	Divided	54.8	
Free-Flow Speed (FFS), mi/h			

Direction 2 Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Driver Population SAF	1.000	Final Capacity Adjustment Factor (CAF)	1.000
Driver Population CAF	1.000		

Direction 2 Demand and Capacity

Volume(V) veh/h	0	Heavy Vehicle Adjustment Factor (fHV)	1.000
Peak Hour Factor	0.88	Flow Rate (Vp), pc/h/ln	0
Total Trucks, \%	0.00	Capacity (c), pc/h/ln	2096
Single-Unit Trucks (SUT), \%	-	Adjusted Capacity (cadj), pc/h/ln	2096
Tractor-Trailers (TT), \%	Volume-to-Capacity Ratio (v/c)	0.00	

Direction 2 Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	54.8
Total Lateral Clearance Adj. (fLLC)	0.0	Density (D), pc/mi/ln	0.0
Median Type Adjustment (fM)	0.0	Level of Service (LOS)	A
Access Point Density Adjustment (fA)	0.3		

Direction 2 Bicycle LOS

Flow Rate in Outside Lane (vOL),veh/h	0	Effective Speed Factor (St)	4.62
Effective Width of Volume $(\mathrm{Wv}), \mathrm{ft}$	36	Bicyle LOS Score (BLOS)	0.00
Average Effective Width (We), ft	42	Bicycle Level of Service (LOS)	A

[^96]HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	PM Peak Hour
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2023
Description TIS for	mercia Development

Average Travel Speed

Direction An	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.2	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.9		0.988	
Grade adj. factor, (note-1) fg	1.0		1.00	
Directional flow rate, (note-2) vi	458	pc / h	498	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) f	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		1.0	mi/h	
Average travel speed, ATSd		44.6	mi/h	
Percent Free Flow Speed, PFFS		84.1	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	44.6	mi / h
Percent time-spent-following, PTSFd (from above)	62.3	D

Level of service, LOSd (from above)
D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 452.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.29
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.49	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	41.1	mi / h	
Percent time-spent-following, PTSFd (from above)	79.2	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 825.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.59
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	PM Peak Hour
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2025
Description TIS for	mercia Development

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.988		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	474	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi / h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.8	mi / h	
Average travel speed, ATSd		44.0	mi / h	
Percent Free Flow Speed, PFFS		83.1	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.28	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	-	44.0 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	61.3	D
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 468.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.31
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.988		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	523	pc / h	618	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.8	mi / h	
Average travel speed, ATSd		43.4	mi/h	
Percent Free Flow Speed, PFFS		81.9	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.30	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-m	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	43.4	mi / h	
Percent time-spent-following, PTSFd (from above)	64.8	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 516.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.35
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highw
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 137
From/To	Hwy $65 /$ Road 188
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.34	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-m	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	42.5	mi / h	
Percent time-spent-following, PTSFd (from above)	68.3	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 569.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.40
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.994		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	620	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.6	mi / h	
Average travel speed, ATSd		42.1	mi/h	
Percent Free Flow Speed, PFFS		79.5	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	616	pc/h	695	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	60.5	$\%$	
Adjustment for no-passing zones, fnp		21.5		
Percent time-spent-following, PTSFd		70.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.36	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 42.1 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 70.6 | |
| Level of service, LOSd (from above) | D | |

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 616.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.44
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	PM Peak Hour
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2045
Description TIS for	mercia Development

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.40	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 688.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.50
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 137
From/To	Hwy 65/Road 188
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.43	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	44.9	mi / h
Percent time-spent-following, PTSFd (from above)	75.7	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 734.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.53
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 137
From/To	Road $188 /$ Road 180
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.5		1.4	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.971		0.977	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	219	pc / h	347	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		1.3	mi / h	
Average travel speed, ATSd		47.3	mi/h	
Percent Free Flow Speed, PFFS		89.3	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1	1.1		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.994	0.994		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	214	pc/h	341	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	26.4	$\%$	
Adjustment for no-passing zones, fnp		35.9		
Percent time-spent-following, PTSFd		40.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	47.3	mi / h
Percent time-spent-following, PTSFd (from above)	40.2	

Level of service, LOSd (from above) C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 213.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.91
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 137
From/To	Road 188/Road 180
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.4		1.3	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.977		0.982	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	259	pc / h	382	pc / h
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi / h	
Adjustment for no-passing zones, fnp		1.2	mi/h	
Average travel speed, ATSd		46.8	mi / h	
Percent Free Flow Speed, PFFS		88.3	\%	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.1	1.1	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.994	0.994	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	255	pc/h	377
Base percent time-spent-following, (note-4)	BPTSFd	30.3	$\%$
Adjustment for no-passing zones, fnp		35.6	
Percent time-spent-following, PTSFd		44.7	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 253.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.99
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 137
From/To	Road $188 /$ Road 180
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.5		1.3	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.971		0.982	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	228	pc / h	356	pc / h
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi / h	
Adjustment for no-passing zones, fnp		1.3	mi/h	
Average travel speed, ATSd		47.2	mi / h	
Percent Free Flow Speed, PFFS		89.1	\%	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.1	1.1	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.994	0.994	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	223	pc/h	352
Base percent time-spent-following, (note-4)	BPTSFd	26.9	$\%$
Adjustment for no-passing zones, fnp		36.1	
Percent time-spent-following, PTSFd		40.9	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 221.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.93
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 137
From/To	Road 188/Road 180
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.4		1.3	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.977		0.982	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	268	pc / h	395	pc / h
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		1.2	mi/h	
Average travel speed, ATSd		46.6	mi / h	
Percent Free Flow Speed, PFFS		88.0	\%	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.1	1.1	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.994	0.994	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	264	pc/h	390
Base percent time-spent-following, (note-4)	BPTSFd	31.8	$\%$
Adjustment for no-passing zones, fnp		34.6	
Percent time-spent-following, PTSFd	45.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	46.6	mi
Percent time-spent-following, PTSFd (from above)	45.8	
Level of service, LOSd (from above)	C	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 262.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.01
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 137
From/To	Road $188 /$ Road 180
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.4		1.3	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.977		0.982	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	275	pc / h	435	pc / h
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi / h	
Adjustment for no-passing zones, fnp		1.1	mi/h	
Average travel speed, ATSd		46.3	mi / h	
Percent Free Flow Speed, PFFS		87.4	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	46.3
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	44.6	
Level of service, LOSd (from above)	C	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 268.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.02
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 137
From/To	Road 188/Road 180
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.4		1.2	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.977		0.988	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	316	pc / h	469	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		1.1	mi / h	
Average travel speed, ATSd		45.8	mi/h	
Percent Free Flow Speed, PFFS		86.5	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.994	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	311	pc/h	463	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	36.4	$\%$	
Adjustment for no-passing zones, fnp		29.3		
Percent time-spent-following, PTSFd		48.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Level of service, LOSd (from above) C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 308.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.09
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	Hwy 137
From/To	Road $188 /$ Road 180
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

| Total length of analysis segment, Lt | 0.0 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | - | mi |
| Length of passing lane including tapers, Lpl | - | mi |
| Average travel speed, ATSd (from above) | 45.4 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 49.2 | |

Level of service, LOSd (from above) C

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 323.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.12
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	Hwy 137
From/To	Road 188/Road 180
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.3		1.2	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.982		0.988	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	363	pc / h	546	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.9	mi / h	
Average travel speed, ATSd		45.0	mi / h	
Percent Free Flow Speed, PFFS		85.0	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.1	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.994	1.000		
Grade adjustment factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	359	pc/h	539	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	42.3	$\%$	
Adjustment for no-passing zones, fnp		26.6		
Percent time-spent-following, PTSFd		52.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	45.0	mi
Percent time-spent-following, PTSFd (from above)	52.9	C
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 356.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.18
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.2	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.988		0.988	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	528	pc / h	485	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi / h	
Free-flow speed, FFSd		53.0	mi / h	
Adjustment for no-passing zones, fnp		1.0	mi / h	
Average travel speed, ATSd		44.1	mi / h	
Percent Free Flow Speed, PFFS		83.2	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.31	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-m	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	44.1	mi / h	
Percent time-spent-following, PTSFd (from above)	66.9	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 521.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.36
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.33	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 556.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.39
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.32	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	43.8	mi / h	
Percent time-spent-following, PTSFd (from above)	67.8	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 542.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.38
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	577	pc/h	541	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	56.8	$\%$	
Adjustment for no-passing zones, fnp		26.0		
Percent time-spent-following, PTSFd		70.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.34	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	$43.3 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	70.2	D

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 577.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.41
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.994		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	662	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.8	mi / h	
Average travel speed, ATSd		42.4	mi/h	
Percent Free Flow Speed, PFFS		80.0	\%	

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.0	1.0	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	1.000	
Grade adjustment factor, (note-1) fg	1.00	1.00	
Directional flow rate, (note-2) vi	658	pc/h	604
Base percent time-spent-following, (note-4)	BPTSFd	60.5	$\%$
Adjustment for no-passing zones, fnp		22.7	
Percent time-spent-following, PTSFd		72.3	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Level of service, LOSd (from above) D
Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 657.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.48
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	696	pc/h	648	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	63.5	$\%$	
Adjustment for no-passing zones, fnp		21.0		
Percent time-spent-following, PTSFd		74.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.41	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 695.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.51
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.46	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad 40.6$	mi
Average travel speed, ATSd (from above)	78.3	
Percent time-spent-following, PTSFd (from above)	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 789.1
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.57
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	N Spruce Ave
From/To	Acacia Ave/Sycamore Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	748	veh/h		
Opposing directi	ion volume,	- 710	veh/h		

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.1		1.1	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.994		0.994	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	818	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi / h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.5	mi / h	
Average travel speed, ATSd		40.1	mi/h	
Percent Free Flow Speed, PFFS		75.7	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.48	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	40.1	mi / h	
Percent time-spent-following, PTSFd (from above)	78.5	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 813.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.59
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	PM Peak Hour
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for	mercia Development

Highway class C	Class 1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	6	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	0.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Level		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	20	\%
Up/down	-	\%	Access point density	8	/mi
Analysis directi	ion volume,	407	veh/h		
Opposing directi	ion volume,	- 440	veh/h		

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.3		1.2	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.982		0.988	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	451	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		1.0	mi/h	
Average travel speed, ATSd		44.7	mi/h	
Percent Free Flow Speed, PFFS		84.4	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.26	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 442.4
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.28
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2023
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.2	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.988		0.988	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	490	pc / h	538	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.9	mi / h	
Average travel speed, ATSd		44.1	mi/h	
Percent Free Flow Speed, PFFS		83.2	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.28	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	44.1	mi / h	
Percent time-spent-following, PTSFd (from above)	63.8	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 483.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.32
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	3/28/2023
Analysis Time Period	PM Peak Hour
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for	mercia Development

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.2	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.988		0.988	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	465	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi / h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		1.0	mi/h	
Average travel speed, ATSd		44.5	mi/h	
Percent Free Flow Speed, PFFS		84.0	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 459.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.30
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2025
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis(d)		Opposing (o)	
PCE for trucks, ET	1.2		1.2	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adj. factor, (note-5) fHV	0.988		0.988	
Grade adj. factor, (note-1) fg	1.00		1.00	
Directional flow rate, (note-2) vi	507	pc / h	557	
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.9	mi / h	
Average travel speed, ATSd		43.9	mi / h	
Percent Free Flow Speed, PFFS		82.8	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.0	1.0		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	1.000	1.000		
Grade adjustment factor, (note-1) fg	1.00	1.00		
Directional flow rate, (note-2) vi	501	pc/h	550	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	51.6	$\%$	
Adjustment for no-passing zones, fnp		27.2		
Percent time-spent-following, PTSFd		64.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.29	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad 43.9$	mi
Average travel speed, ATSd (from above)	64.6	
Percent time-spent-following, PTSFd (from above)	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 501.1
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.34
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highwa
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

Direction Anal	Analysis		Opposing (o)	
PCE for trucks, ET	1.1			
PCE for RVs, ER	1.0			
Heavy-vehicle adj. factor, (note-5) fHV	0.9			
Grade adj. factor, (note-1) fg	1.0			
Directional flow rate, (note-2) vi	560	pc / h		
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		55.0	mi/h	
Adj. for lane and shoulder width, (note-3)	-3) fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA	fA	2.0	mi/h	
Free-flow speed, FFSd		53.0	mi/h	
Adjustment for no-passing zones, fnp		0.8	mi/h	
Average travel speed, ATSd		43.2	mi/h	
Percent Free Flow Speed, PFFS		81.5	\%	

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.33	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	43.2	mi / h	
Percent time-spent-following, PTSFd (from above)	67.2	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 556.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.39
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2035
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.35	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-m	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	42.5	mi / h	
Percent time-spent-following, PTSFd (from above)	69.2	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 597.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.43
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

	Directional Two-Lane Highwa
Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.40	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1700	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1700	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi		
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	41.5	mi / h	
Percent time-spent-following, PTSFd (from above)	73.4	D	

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 672.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.49
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

HCS7: Two-Lane Highways Release 7.7

Phone:
Fax:
E-Mail:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	BMB
Agency/Co.	LAV Consulting
Date Performed	$3 / 28 / 2023$
Analysis Time Period	PM Peak Hour + Project
Highway	N Spruce Ave
From/To	Hwy 65/Acacia Ave
Jurisdiction	County
Analysis Year	2045
Description TIS for Commercia Development	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.42	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h
Capacity from ATS, CdATS	1700	veh/h
Capacity from PTSF, CdPTSF	1700	veh/h
Directional Capacity	1700	veh/h

Passing Lane Analysis

Total length of analysis segment, Lt	0.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	40.9	mi
Percent time-spent-following, PTSFd (from above)	74.9	D
Level of service, LOSd (from above)		

Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
_____Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 714.1
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.52
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```


Appendix "C" Additional Documents

California Department of Transportation

DISTRICT 6 OFFICE
1352 WEST OLIVE AVENUE |P.O. BOX 12616 |FRESNO, CA 93778-2616
(559) 840-6066 | FAX (559) 488-4195 | TTY 711
www.dot.ca.gov

June 15, 2023
TUL-65-30.30
TRAVEL CENTER (5)
CEDAR AVENUE, LINDSAY, CA
GTS \#: $\underline{36146}$

SENT VIA EMAIL: brent@lavpinnacle.com

Mr. Brent Barenberg
LAV // Pinnacle
Consulting \& Engineering Services
12418 Rosedale Highway, Suite B
Bakersfield, CA 93312

Dear Mr. Barenberg:
Caltrans has completed review the Traffic Impact Study (TIS) dated April 20, 2023, for a Travel Center which proposes a convenience store, 2 quick serve restaurants (QSR) with drive-thru, a gas fueling canopy with 8 pumps (16 dispensers), and a diesel fueling area with 6 pumps (12 dispensers) (Project). The Project site is located on northeast corner of the State Route (SR) 65 intersection with Cedar Avenue in the City of Lindsay, Tulare County.

Caltrans provides the following comments consistent with the State's smart mobility goals that support a vibrant economy and sustainable communities:

1. On page 13, of the TIS, the last paragraph states "Caltrans' policy sets a limit ...pass-by and captured to 25 percent." The Caltrans Guide for the Preparation of Traffic Impact Studies states that a reduction of more than 15% for "pass-by" as well as 5% for "internal capture" trips shall be justified and must be discussed in the TIS. Please provide examples and discussion in the TIS, of similar development sites, as a part of the justification for a reduction of more than 15%.
2. Table 2, on page 14 , under the calculated trips generation, indicates reduction for "pass-by" trips was computed at 20\% which exceeds the limits for "pass-by" trips set by Caltrans in the Traffic Impact Study Guide (This is also stated at the top of page 41). Please provide examples/discussion of similar development sites, as justification for a reduction of more than 15%.
3. Please correct, page 15, second paragraph under "Trip Simulation", where it states, "Based on information provided by Kern Council of Government ...". This project is in Tulare County and should be changed to "Tulare County Council of Government...".
4. Please correct, page 32, second paragraph, where it states "...including the City of Bakersfield and the County of Kern." This project is in Tulare County and should indicate "...including the City of Lindsay and the County of Tulare."
5. Please verify and correct, Table 9: Project Pro-Rata Share, on page 38. The year of the Pro-Rata Share is listed as year 2042, however the analysis year (future life cycle of the project) in the report is shown as year 2045.
6. Caltrans does not disagree with the calculated Pro-Rata Share in the Table 9 . However, Caltrans has partnered with the County of Tulare to design and construct the re-alignment of SR 65, which is west of the current existing SR 65 alignment and is tentatively scheduled to start construction in 2034.
7. As a point of information, the new SR 65 re-alignment project will include the construction of a Roundabout at the SR 65 and Cedar Avenue intersection. As part of the SR 65 re-alignment project, Cedar Avenue would be terminated north of SR 65 and realigned to the East to connect with the new alignment of Oak Avenue. The existing W. Tulare Road will be closed or re-aligned when the roundabout is constructed. For further information, it is recommended to contact Caltrans Project Manager, Mohamad Annan at (559) 270-4448 or mohamad.annan@dot.ca.gov
8. Caltrans anticipates that the recommended signalization of the SR 65 / Cedar Avenue intersection may need to be re-evaluated in the future. Caltrans Traffic Operations Directive 13-02 requires the analysis of any new intersection control, to evaluate the most effective traffic control strategies (whether signal, multi-stop or yield or roundabout control) for an intersection within the State's right-of-way.
9. Regarding the site plan for the proposed development, Layout A-1, on page 43:
a) It is we request that structures (above-ground or underground) like underground storage fuel tanks or monument signage be installed outside of the footprint of the future roundabout at the Cedar Avenue intersection. The Project developer understands that any improvements, upon, over, and across said real property within the roundabout footprint shall be removed at Project developer's expense, when construction of the roundabout starts.
b) It is requests that all truck traffic to enter/exit the Project site via the Cedar Avenue driveway which should be designed for truck traffic movements. Therefore, it is recommended that the SR 65 / Cedar intersection be re-evaluated by the TIS for truck turning movements.
c) Please be advised that the westbound to northbound right turn lane shall be designed to meet the Caltrans standards specified in the Highway Design Manual (HDM Index 405.3).
d) A 6-foot bike lane shall also be installed between the thru-lane and the right-turn lane as required by the Caltrans HDM Index 403.6.(1). Additional safety measures must be considered, during the design phase, to facilitate safe operations for motoring public, especially at the proposed access point (driveway) on SR 65.
10. On page 45, Figure 2: 2023 traffic volume/count, please verify there is no turning volumes (in/out to/from SR 65) at Cedar Avenue during peak hours. This is the same for all future year analysis (without project scenario).
11. Please provide the traffic signal warrant sheets (calculations) for the unsignalized intersections listed in Table 8.
12. For Appendix B, regarding printouts/outputs for the LOS calculations:
a) For the signalized analysis, the peak hour factor (PHF) is set at 1.0. Please verify that the PHF calculation is correct.
b) For the multi-lane highway analysis, the access point density is set at zero. Please verify that the correct value for access density is being used.
13. Caltrans requires the Project to construct highway frontage improvements along SR 65 including but not limited to roadway pavement improvements, curb, gutter, sidewalks, streetlights and drainage facilities.
14. Caltrans requires a minimum of a 6 -foot sidewalk (10-foot preferred), measured from the back of the curb.
15. Dust control measures shall be implemented on the site in a manner to prevent dust from entering the State right-of-way.
16. No water from the proposed project shall flow into the State right-of-way without approval from the District Hydraulic Engineer.
17. Caltrans recommends the Project install sidewalks and streetlights at the SR 65 and Cedar Avenue intersection and along Cedar Avenue for pedestrian security and safe operations of the intersection.
18. All proposed landscaping plans shall meet current standards as determined by the District Landscape Architect. Proposed landscaping adjacent to driveways needs to be low growing, less than two feet in height, due to sight distance concerns. All features of landscaping shall be evaluated for type, location and site visibility conflicts during the encroachment review process. All permits for landscaping in conventional highway right-of-way must be accompanied by a "District" approved maintenance agreement obligating a local agency or the permittee to maintaining the
landscaping. Said maintenance agreement must accompany and be approved prior to issuance of the landscape permit. Proposed landscape projects in access control rights-of-way require an exception process, and approval is subject to the Headquarters Departmental approval process.
19. The sidewalk, streetlights and any landscaping shall be maintained per a "District 6" approved maintenance agreement.
20. As a point of information, any work completed in the State's right-of-way will require a Caltrans encroachment permit. An encroachment permit must be obtained for all proposed activities for placement of encroachments within, under or over the State highway rights-of-way. Activity and work planned in the State right-of-way shall be performed to State standards and specifications, at no cost to the State. Engineering plans, calculations, specifications, and reports (documents) shall be stamped and signed by a licensed Engineer or Architect. Engineering documents for encroachment permit activity and work in the State right-of-way may be submitted using English Units. The Permit Department and the Environmental Planning Branch will review and approve the activity and work in the State right-of-way before an encroachment permit is issued. The Streets and Highways Code Section 670 provides Caltrans discretionary approval authority for projects that encroach on the State Highway System. Encroachment permits will be issued in accordance with Streets and Highway Codes, Section 671.5, "Time Limitations." Encroachment permits do not run with the land. A change of ownership requires a new permit application. Only the legal property owner or his/her authorized agent can pursue obtaining an encroachment permit.
21. Prior to an encroachment permit application submittal, the project proponent is required to schedule a "Pre-Submittal" meeting with District 6 Encroachment Permit Office. To schedule this meeting, please call the Caltrans Encroachment Permit Office - District 6: 1352 W. Olive, Fresno, CA 93778, at (559) 383-5047 or (559) 383-5235.
22. Please review the encroachment permit application - required document checklist at: https://forms.dot.ca.gov/v2Forms/servlet/FormRenderer?frmid=TR0402\&distpath=MAOT O\&brapath=PERM.
23. Please also review the encroachment permit application - processing checklist at: https://dot.ca.gov/-/media/dot-media/programs/traffic-operations/documents/encroachment-permits/tr-0416-applicable-review-processchecklist.pdf.
24. Any advertising signs within the immediate area outside the State right-of-way need to be cleared through the Caltrans Division of Traffic Operations, Office of Outdoor Advertising. The project proponent must construct and maintain the advertising signs without access to the State Routes. Please contact the Outdoor Advertising Program, P.O. Box 942874, MS-36, Sacramento, CA 94274-001, by email at ODA@dot.ca.gov or at

Mr. Brent Barenberg - TIS
June 15, 2023
Page 5
(916) 654-6473 for additional information or to obtain a sign permit application. Additional information on Caltrans Outdoor Advertising Permit requirement may also be found on the Internet at http://dot.ca.gov/programs/traffic-operations/oda.

If you have any other questions, please call David Deel, Associate Transportation Planner at (559) 981-1041.

Sincerely,
Lorena Mendibles
Ms. Lorena Mendibles, Branch Chief, Transportation Planning - South

LAV//PINNACLE
 Consulting \& Engineering Services
 Planning - Engineering - Surveying - Project Management

Ms. Lorena Medibles, Branch Chief
August 14, 2023
Transportation Planning, - South
California Department of Transportation - District 6 Office
1352 West Olive Avenue, P.O. Box 12616
Fresno, California 93778-2316
\section*{RE: Travel Center TUL-6.5-30.30, Cedar Avenue, Lindsay - Response to Traffic Impact Study Review - Caltrans Letter of 6-15-23}

Dear Ms. Mendibles:
This letter is in response to your letter of June 15, 2023, to Mr. Brent Barenberg, LAV/Pinnacle Engineering, in which you provided a review and comments for the referenced traffic impact study (TIS). Thank you for your prompt review of the TIS.

In addition to review of the TIS, your letter of June 15th included numerous Caltrans design, construction, and landscaping requirements. This letter and the attached revised TIS can only address comments related to the TIS. Compliance with Caltrans' site design, landscaping, erosion, dust control, and drainage criteria can only be demonstrated with submission of improvement plans. However, the full range of improvements can only be determined once the TIS is approved. With this submittal, we are seeking approval of the TIS from your office.

In the following, I have reiterated each comment from your letter of June $15^{\text {th }}$, and provided our responses:

Comment 1: On page 13, of the TIS, the last paragraph states "Caltrans' policy sets a limit ...pass-by and captured to 25 percent." The Caltrans Guide for the Preparation of Traffic Impact Studies states that a reduction of more than 15% for "pass-by" as well as 5% for "intemal capture" trips shall be justified and must be disc ussed in the TIS. Please provide examples and disc ussion in the TIS, of similar development sites, as a part of the justification fora reduction of more than 15%.

Response to Comment No. 1: Given comments no. 1 and 2 are of a similar nature, we have provided a combined response to both comments: Please see our response that follows Comment No. 2.

Comment 2: Table 2, on page 14, under the calculated trips generation, indicates reduction for "pass-by" tripswascomputed at 20\%which exceedsthe limitsfor "passby" trips set by C a ltrans in the Traffic Impa ct Study Guide (This is also sta ted at the top of page 41). Please provide examples/discussion of similar development sites, as justific ation for a reduction of more than 15%.

Response to Comment No. 1 and 2: Our office has specialized in the development of truck stops, gas stations with convenience markets and quick serve restaurants. These sites also often include specialty retail stores. As in the referenced project, these facilities are typically located along major arterials, thoroughfares, expressways, and freeways. The Project itself is located at the intersection of State Route (SR) 65. South of the Project, much of SR 65 is classified as an expressway, but it downgrades to a rural two-lane highway in the vicinity of Lindsay. Nevertheless, SR 65 carries a significant amount of traffic bound for central valley locations.

Having been involved in so many similar projects, including preparation of traffic impact studies (TIS), we have performed numerous driveway surveys of like projects. These surveys have been performed at all hours to include peak and non-peak periods. As in the case of every project, we perform a driveway survey at the nearest similar facility. As discussed in page 8 of the Project TIS, without exception, these surveys all indicated well over 90 percent of trips to these facilities are "side trips", being part of the principal trip to a destination other than the project. If the project was "sited" along a major thoroughfare, our surveys revealed over 90 percent of trips were "passbys". If the project was at or near a freeway interchange, our surveys revealed the majority of trips were "diverted link" trips. In either scenario, again without exception, less than 2 percent of trips to these projects were primary trips, being mostly employees.

As I am sure you are aware, current editions of the ITE Manual do not include data or case studies for "pass-by" and "capture". However, past editions provided numerous studies for similar projects and resulting rates ranging from 58% to 90%, and 15% to 38% for "pass-by" and "capture", respectively.

Given our own research, as well as that by other reputable sources, we have no doubt that the 20 percent used in this study for the combined effects of "pass-by" and "capture", is extremely conservative.

Comment 3: Please correct, page 15, second paragraph under "Trip Simulation", where it states, "Based on information provided by Kem Counc il of Govemment ...". This project is in Tulare County and should be changed to "Tulare County Council of Govemment..."

Response to Comment No. 3: The information in the report was in fact provided by the Kern Council of Governments (KernCOG). Said information only relates to average trip length. KernCOG maintains a traffic simulation model for Kern County, and we have not found an agency in Tulare County providing same. Since central Lindsay is about 1.5 miles from the Project, and the majority of the trips are "pass-bys", using 4 miles for an average trip assimilation length is considered conservative. Actual average trip lengths for gas or convenience items are likely less than the 4 miles used in the study.

Comment 4: Please correct, page 32, second paragraph, where it states "...including the City of Bakersfield and the County of Kem." This project is in Tulare

LAV//PINNACLE
 Consulting \& Engineering Services
 Planning - Engineering - Surveying - Project Management

County and should indicate "...including the City of Lindsay and the County of Tulare."

Response to Comment No. 4: The correction has been made in the revised copy, attached and dated August 14, 2023.

Comment 5: Please verify and correct, Table 9: Project Pro-Rata Share, on page 38. The yea rof the Pro-Rata Share is listed as year 2042, howeverthe a na lysis year (future life cycle of the project) in the report is shown as year 2045.

Response to Comment No. 5: The correction has been made in the revised copy, attached, and dated August 14, 2023.

Comment 6: Caltrans does not disagree with the calculated Pro-Rata Share in the Table 9. However, Caltrans has partnered with the County of Tulare to design and construct the re-alignment of SR 65, which is west of the current existing SR 65 a lignment and istentatively scheduled to start construction in 2034.

Response to Comment No. 6: Comment noted.
Comment 7: Asa point of information, the new SR 65 re-a lignment project will include the construction of a Roundabout at the SR 65 and Cedar Avenue intersection. As part of the SR 65 re-alignment project, Cedar Avenue would be temminated north of SR 65 and realigned to the East to connect with the new alignment of Oak Avenue. The existing W. Tulare Road will be closed or re-aligned when the roundabout is constructed. For further information, it is recommended to contact Caltrans Project Manager, Mohamad Annan at (559) 270-4448 or mohamad.annan@dot.ca.gov

Response to Comment No. 7: As recommended I spoke with Mr. Annan, who participated in our conference call months ago, and he has seen the site plan for the Project. Mr. Annan indicated that the Project Report for the SR 65 realignment would be completed in about 6 weeks, at which time a more "final" drawing of the realignment will be available. However, Mr. Annan did not indicate any substantial changes that would affect the Project. In our discussion, I indicated the Project's current site layout is compatible with Caltrans' realignment of SR 65, including the roundabout.

Your comment indicated that Cedar Avenue would be closed north of SR 65 and realigned to tie into Oak Avenue. Since it will be tying into Oak Avenue, I have assumed that a short segment of Cedar Avenue will still connect to SR 65, rather than its complete removal. Either way will be compatible with the Project. We are also in agreement with the realignment of W. Tulare Road such that it does not intersect with SR 65. Certainly realignment of W. Tulare Road as a first order of work would simplify construction and traffic control for the SR 65 project.

As you know, the TIS recommends a traffic signal at the intersection of Cedar Avenue and SR 65. This signal will simply be removed and salvaged when the SR 65 realignment project commences work on the roundabout in 2034.

Comment 8: Caltra ns antic ipa tes that the recommended signa liza tion of the SR 65 / Cedar Avenue intersection may need to be re-evaluated in the future. Caltrans Traffic Operations Direc tive 13-02 requires the a nalysis of a ny new intersection c ontrol, to evaluate the most effective traffic control strategies (whether signal, multi-stop or yield or roundabout control) for an intersection within the State's right-of-way.

Response to Comment No. 8: We do not disagree that the proposed traffic signal at the intersection SR 65 and Cedar may need reevaluation in the future. Please be aware that the TIS for the Project, in addition to a signal analysis of Cedar Avenue and SR 65, evaluated the intersection for a two-way stop and a multi-stop, both with additional dedicated turn lanes; however, the "finding" was that a traffic signal was the only mitigation resulting in a satisfactory Level of Service. As I discussed in my response to Comments 1 and 2, the TIS calculations are overly conservative given Caltrans' limitations on "pass-by" and "capture" rates. We are happy to reanalyze the intersection of Cedar Avenue and SR 65 using realistic values for "pass-by" and "capture." I should also mention that the TIS used growth factors of 1.9 percent, compounded annually to estimate future traffic. Even though the last few years of data indicate decreasing traffic, lesser or negative growth factors have been rejected by Caltrans and local agencies in past studies.

Decreasing traffic is largely attributed to California’s decreasing population, and the continued post-pandemic trend in working remotely. Please let me know if we should reanalyze the intersection of Cedar Avenue and SR 65 using "pass-by" and "capture" rates consistent with our driveway surveys and other data.

Comment 9: Regarding the site plan for the proposed development, Layout A-1, on page 43:
a) It is we request that structures (above-ground or underground) like underground storage fuel tanks or monument signage be installed outside of the footprint of the future roundabout at the Cedar Avenue intersection. The Project developer understands that any improvements, upon, over, and across said real property within the roundabout footprint shall be removed at Project developer's expense, when construction of the rounda bout starts.

Response to Comment No. 9a: Comment noted. Please understand that following this recommendation can only be demonstrated with submission of improvement plans. At this time, we are only seeking approval of the TIS; but the current site plan has located underground tanks and structures outside of the future footprint of said roundabout.
b) It is requests that a ll truck traffic to enter/ exit the Project site via the CedarAvenue driveway which should be designed for truck traffic movements. Therefore, it is recommended that the SR 65 / Cedarintersection be re-evaluated by the TISfortruck tuming movements.

Response to Comment No. 9b: The intersection of Cedar Avenue and SR 65 has been reanalyzed routing all anticipated project-related truck traffic through the intersection. Calculations have been attached herewith and are included in the attached revised TIS. The analysis has indicated that the intersection will operate at a satisfactory Level of Service with proposed mitigation in place.
c)Please be advised that the westbound to northbound right tum lane shall be designed to meet the Caltrans standards specified in the Highway Design Manual (HDM Index 405.3).

Response to Comment No. 9c: Comment noted; however, given the presence of W. Tulare Road, the length of a west bound right-turn lane is limited. Once W. Tulare Road is realigned and does not intersect with SR 65, the right turn lane could be lengthened.
d) A 6-foot bike lane shall also be installed between the thru-lane and the right-tum lane as required by the Caltrans HDM Index 403.6.(1). Additional safety measures must be considered, during the design phase, to facilitate safe operations for motoring public, especially at the proposed access point (driveway) on SR 65.

Response to Comment No. 9d: We request that Caltrans reconsider the requirement for a striped 6-foot bike lane for the following reasons: 1) There is currently no bike lane striping on either side of the Project, nor anywhere in its vicinity. 2) There is not a planned bike route along SR 65 or any other side street. 3) Five hundred feet of striped bike lane with no connectivity at either end would obviously not be utilized by bicyclists and would only confuse motorists.

Comment 10: On page 45, Figure 2: 2023 traffic volume/count, please verify there is no tuming volumes (in/out to/from SR 65) at Cedar Avenue during peak hours. This is the same for all future year a nalysis (without project scena rio).

Response to Comment No. 10: The volumes indicated in the original report reflect our actual counts. However, we have reanalyzed the intersection, adding a small volume of traffic, including turning movements. The Level of Service calculations under this scenario did not yield different results.

Comment 11: Please provide the traffic signal warrant sheets (calculations) for the unsigna lized intersections listed in Table 8.

Response to Comment No. 11: Warrant sheets are included in Appendix "C" of the original TIS. Additional copies are attached herewith.

Comment 12: For Appendix B, regarding printouts/ outputs for the LOS calculations:
a) For the signa lized a na lysis, the peak hour factor (PHF) is set at 1.0.

Plea se verify that the PHF calculation is correct.
Response to Comment No. 12a: A calculation of the PHF was prepared and yielded a value of 0.88 . The intersection has been recalculated; however, the Level of Service did not change. The overall average delay did increase from 38.3 to 38.9 seconds.
b) For the multi-lane highway analysis, the access point density is set at zero. Please verify that the correct value for access density is being used.

Response to Comment No. 12b: The muli-lane access point densities have been adjusted, ranging from 1.0 to 2.0 where appropriate, but the Level of Service results did not change.

Comment 13: Caltrans requires the Project to construct highway frontage improvements along SR 65 including but not limited to roadway pavement improvements, curb, gutter, sidewalks, streetlights a nd dra ina ge facilities.

Response to Comment No. 13: The current site plan shows said required improvements. These improvements will also be verified by Caltrans when plans are submitted as part of the encroachment permit process.

Comment 14: Caltrans requires a minimum of a 6-foot sidewalk (10-foot preferred), measured from the back of the curb.

Response to Comment No. 14: The current site plan shows a sidewalk width of 6-feet.

Comment No. 15: Dust control measures shall be implemented on the site in a manner to prevent dust from entering the State right-of-way.

Response to Comment No. 15: The Grading Plan, yet unsubmitted, includes both erosion control and dust control measures. Fugitive dust will not leave the Project site.

Comment 16: No water from the proposed project shall flow into the State right-ofway without approval from the District Hydra ulic Engineer.

Response to Comment No. 16: The Grading Plan, yet unsubmitted, includes erosion control measures. The site is not large enough to "trigger" a Storm Water Pollution Control Plan (SWPPP), yet a comprehensive plan of appropriate BMPs for erosion control is included. This plan is as comprehensive as any SWPPP.

LAV//PINNACLE
 Consulting \& Engineering Services
 Planning - Engineering - Surveying - Project Management

Comment 17: Caltrans recommends the Project install sidewalks and streetlights at the SR 65 and Cedar Avenue intersection and along Cedar Avenue for pedestrian security and safe operations of the intersection.

Response to Comment No. 17: The Grading Plan, yet unsubmitted, includes sidewalks and street lights. These improvements will be verified by Caltrans during the encroachment permit process.

Comment 18: All proposed landscaping plans shall meet current standards as determined by the District Landscape Architect. Proposed landscaping adjacent to driveways needsto be low growing, less than two feet in height, due to sight dista nce concems. All features of landscaping shall be evaluated for type, location and site visibility conflicts during the encroachment review process. All permits for landscaping in conventional highway right-of-way must be accompanied by a "District" approved maintenance agreement obligating a local agency or the permittee to maintaining the landscaping. Said maintenance agreement must accompany and be approved prior to issuance of the landscape pemit. Proposed la ndsc a pe projectsin accesscontrol rights-of-way require an exception process, and a pproval is subject to the Headquarters Departmental a pproval process.

Response to Comment No. 18: Comment noted. We also are especially concerned with maintaining safe site distance at all intersections and project entrances.

Comment 19: The sidewalk, streetlights a nd a ny land sc a ping shall be ma inta ined per a "District 6" approved maintenance agreement.

Response to Comment No. 19: Comment noted.
Comment 20: As a point of information, any work completed in the State's right-ofway will require a Caltrans encroachment permit. An encroachment permit must be obta ined for all proposed a ctivities for placement of enc roachments within, under or over the State highway rights-of-way. Activity and work planned in the State right-ofway shall be performed to State standardsand specific ations, at no cost to the State. Engineering plans, calculations, specifications, and reports (documents) shall be stamped and signed by a licensed Engineer orArchitect. Engineering documents for encroachment permit activity and work in the State right-of-way may be submitted using English Units. The Permit Department and the Environmental Planning Branch will review and approve the activity and work in the State right-of-way before an encroachment permit is issued. The Streets a nd HighwaysCode Section 670 provides Caltrans discretionary approval authority for projects that encroach on the State Highwa y System. Enc roa chment permits will be issued in a ccord ance with Streets a nd Highway Codes, Section 671.5, "Time Limitations." Encroachment permits do not run with the land. A change of ownership requires a new permit application. Only the

LAV//PINNACLE
 Consulting \& Engineering Services
 Planning - Engineering - Surveying - Project Management

legal property owner or his/her authorized agent can pursue obtaining an encroachment pemit.

Response to Comment No. 20: Comment noted. The Owner's intent is to pursue the encroachment as soon as possible. Engineered plans must be comprehensive and include all requirements of an approved TIS.

Comment 21: Prior to an encroachment permit application submittal, the project proponent is required to schedule a "Pre-Submittal" meeting with District 6 Encroachment Permit Office. To schedule this meeting, please call the Caltrans Encroachment Permit Office - District 6: 1352 W. Olive, Fresno, CA 93778, at (559) 3835047 or (559) 383-5235.

Response to Comment No. 21: Comment noted.
Comment 22. Please review the encroachment permit a pplic ation - required document checklist at:
https:// forms.dot.ca.gov/v2Forms/ servlet/ FormRenderer? frmid =TR0402\&d istpath=M AOTO\&brapath=PERM.

Response to Comment No. 22: Comment noted.
Comment 23: Please a lso review the encroachment permit application - processing checklist at: https://dot.ca.gov/-/media/dot-media/programs/trafficoperations/doc uments/encroa c hment-permits/tr-0416-a pplic able-review-processchec klist.pdf.

Response to Comment No. 23: Comment noted.
Comment 24: Any a dvertising signs within the immed iate a rea outside the Sta te right-of-way need to be cleared through the Caltrans Division of Traffic Operations, Office of Outdoor Advertising. The project proponent must construct and mainta in the advertising signs without access to the State Routes. Please contact the Outdoor Advertising Program, P.O. Box 942874, MS-36, Sa cramento, CA 94274-001, by email at ODA@dot.ca.gov orat
(916)654-6473 for additional information or to obtain a sign pemit application. Additional information on Caltra ns Outdoor Advertising Permit requirement may also be found on the Intemet athttp://dot.ca.gov/programs/traffic-operations/oda.

Response to Comment No. 24: Comment noted.

LAV//PINNACLE

Consulting \& Engineering Services
Planning - Engineering - Surveying - Project Management
Thank you again for your review and comments. Again, all comments related to the TIS have been addressed with this letter, the revised TIS, and attachments. Please let me know if you need any further information. We hereby request approval of the attached TIS, dated August 14, 2023.

Sincerely,

Matt VoVilla, P.E.

Attachments

From:	Deel, David@DOT
To:	Brent Barenberg
Cc:	Scott Quintana; Alyssa Allen; Mendibles, Lorena@DOT
Subject:	RE: TIS Lindsay Gas Station Route 65 [21-992]
Date:	Friday, July 14, 2023 1:38:47 PM

Brent,
Got a quick reply and both questions a re YES.
Q1 =Yes, granted a section of the study was devoted to justifying the reasoning
Q2 $=$ Yes, Given the findings of the surveys, would Caltrans find the 20\% reduction to be acceptable for the basis of our study?

Respectfully,
DAVID DEEL| CALIRANSD6| Offic e: 559.981.1041

From: Brent Barenberg brent@lavpinnacle.com
Sent: Thursday, July 13, 2023 9:04 AM
To: Deel, David@DOT david.deel@dot.ca.gov
Cc: Scott Quintana scott@lavpinnacle.com; Alyssa Allen alyssa@lavpinnacle.com
Subject: RE: TIS Lindsay Gas Station Route 65 [21-992]

EXTERNAL EMAIL. Links/attachments may not be safe.

Hello David,

I am addressing the comment letter you provided for the Lindsay Traffic Study. I had a question regarding comments $1 \& 2$.

Both comments regard justifying a pass-by percentage of 20%. Based on how the comments are written, it seems that the 20% reduction could be considered acceptable, granted a section of the study was devoted to justifying the reasoning. Am I correct in this assessment?

In regard to pass-by, we determined a 20% reduction is conservative based on a driveway survey done at a travel center near the Project site. Additionally, several driveway surveys of travel centers in the region were looked at as a basis of comparison. For the Lindsay driveway survey, it was found that 100% of trips are pass-by trips. In all other surveys, the pass-by percentage was a minimum of 30% of surveyed trips, with several surveys exceeding 90% pass-by. Several such surveys, including the Lindsay survey, have been attached to this email. Given the findings of the surveys, would Caltrans find the 20% reduction to be acceptable for the basis of our study?

Thank you for your help. Please let me know if you have any questions or need any additional information.

Brent Barenberg
LAV // Pinnacle

From: Deel, David@DOT david.deel@dot.ca.gov
Sent: Thursday, June 15, 2023 4:08 PM
To: Brent Barenberg brent@lavpinnacle.com
Cc: logananthonycouch@gmail.com; Scott Quintana scott@lavpinnacle.com; Alyssa Allen alyssa@lavpinnacle.com; Matt Vovilla matt@lavpinnacle.com; Mendibles, Lorena@DOT
lorena.mendibles@dot.ca.gov
Subject: RE: TIS Lindsay Gas Station Route 65 [21-992]

Brent,

C altrans comment letter is attached for the TIS review for the proposed Travel Center on SR 65 in Lindsay.

If you have further questions, please contact me.

Respectfully,
DAVID DEEL| Associate Transportation Planner| Desk \& Mobile: 559.981.1041
Pla nning, Local Programs \& Environmental Analysis Division
C ALTRANS - District 6
1352 W. Olive Avenue (P.O. Box 12616)
Fresno, CA 93778-2616

For real-time highway conditions: http://quickmap.dotca.gov/

From: Brent Barenberg brent@lavpinnacle.com
Sent: Tuesday, May 23, 2023 3:58 PM
To: Deel, David@DOT david.deel@dot.ca.gov
Cc: logananthonycouch@gmail.com; Scott Quintana scott@lavpinnacle.com; Alyssa Allen alyssa@lavpinnacle.com; Matt Vovilla matt@lavpinnacle.com
Subject: TIS Lindsay Gas Station Route 65 [21-992]

EXTERNAL EMAIL. Links/attachments may not be safe.
Hello David,

Please find in the link below the Traffic Impact Study for the proposed Gas Station/C-Store located on Route 65 in Lindsay.

$\underline{\text { https://lavpinnacle.sharefile.com/d-s84d0dce2e5754568828c523bdc5c1640 }}$

Please let me know if you have any questions or need any additional information.

Brent Barenberg
LAV // Pinnacle
Consulting \& Engineering Services
12418 Rosedale Highway, Suite B
Bakersfield, CA 93312
brent@lavpinnacle.com
Office: (661) 869-0184

From:	Deel, David@DOT
To:	Brent Barenberg
Cc:	Scott Quintana; "Matt Vovilla"; "Nashwan Obad"; najimoh09@gmail.com; "Kari Rivera"; Ly, Duc Ken K@DOT; Lee, Albert M@DOT; Mendibles, Lorena@DOT; Olson, Eric@DOT; Annan, Mohamad@DOT; Navarro, Michael@DOT; logananthonycouch@gmail.com
Subject:	RE: TIS Scope for Lindsay Route 65 and Route 198/245 [21-992]
Date:	Wednesday, January 04, 2023 10:54:31 AM
Attachments:	$\begin{aligned} & \text { image001.png } \\ & \text { image002.png } \end{aligned}$

Brent,
The following is what the Traffic study a nd a nalysis should include:

1. Existing condition (current year 2023 in this case)
2. Opening day condition \{with project and without project; approximately year 2025 in this case \}.
3. Future condition with cumulative traffic in the in area, approximate year 2045 \{with project and without project $\}$
4. If viable, include the near term or mid-term analysis (10 years afterthe opening day, approximately year 2035 in this case).

Also, the following wasemailed to Logan Couch on 12/20/22:
From: Deel, David@DOT
Sent: Tuesday, December 20, 2022 1:22 PM
To: logananthonycouch@gmail.com; Mendibles, Lorena@DOT lorena.mendibles@dot.ca.gov
Cc: 'Scott Quintana' scott@lavpinnacle.com; 'Matt Vovilla' matt@pinnaclex2.com; 'Nashwan Obad' nashwanobad@gmail.com; najimoh09@gmail.com; 'Kari Rivera' krivera@cmconstructionservices.com; Ly, Duc Ken K@DOT duc.ken.ly@dot.ca.gov; Lee, Albert M@DOT albert.lee@dot.ca.gov; Olson, Eric@DOT eric.olson@dot.ca.gov; Annan, Mohamad@DOT mohamad.annan@dot.ca.gov; Navarro, Michael@DOT michael.navarro@dot.ca.gov
Subject: RE: TUL-65-30.30 Lindsay update - Lindsay Route 65 and Route 198/245 Operational Improvements Project

Logan,
See my responses below in bold that corespond to the imbedded map from the Caltrans website forthe Lindsay Route 65 and Route 198/245 Operational Improvements Project (https://dot.ca.gov/caltrans-near-me/district-6/district-6-projects/ 06-43080):

- Anticipated construction date for the large 2 lane roundabout south of our site. (Location \#3 and the Roundabouts at Cedar Avenue and Hermosa Street do not have an estimated construction date, at this time.)
- Anticipated construction date for the smaller roundabout to the east of our site. (Location \#1 and the Roundabout at Oak Avenue has an approximate construction start date in Mid-2027.)
- Confirm our development will not need to provide LOS analysis for the 'post roundabout' condition. Our TIS will only include the 'pre roundabout condition'. (Correct, no LOS analysis for Post-Roundabout, analysis is only for PreRoundabout)
- Advise on SCE easement for new power poles on the south side of our site, adjacent to HWY 65 ROW, pre and post roundabout conditions. (Please contact Caltrans Project Manager, Mohamad Annan at (559) 270-4448 ormohamad.annan@dotca.gov)

[

If you have furtherquestions, please contact me.
Respectfully,
DAVID DEFL|Associate Transportation Planner| Desk \& Mobile: 559.981.1041
Planning, Local Programs \& Environmental Analysis Division
Local Development Review (LDR) - Tulare \& Kem
Regional Planning - Tulare
FTA 5311 Transit - Tulare
CALTRANS - District 6
1352 W. Olive Avenue (P.O. Box 12616)
Fresno, CA 93778-2616

For real-time highway conditions: http://quickmap.dotca.gov/

2

From: Brent Barenberg brent@lavpinnacle.com
Sent: Wednesday, December 21, 2022 11:33 AM
To: Deel, David@DOT david.deel@dot.ca.gov

Cc: Scott Quintana scott@lavpinnacle.com; 'Matt Vovilla' matt@pinnaclex2.com; 'Nashwan Obad'
nashwanobad@gmail.com; najimoh09@gmail.com; 'Kari Rivera' krivera@cmconstructionservices.com; Ly, Duc Ken K@DOT duc.ken.ly@dot.ca.gov; Lee, Albert M@DOT albert.lee@dot.ca.gov; Mendibles, Lorena@DOT lorena.mendibles@dot.ca.gov; Olson, Eric@DOT eric.olson@dot.ca.gov; Annan, Mohamad@DOT mohamad.annan@dot.ca.gov; Navarro, Michael@DOT michael.navarro@dot.ca.gov; logananthonycouch@gmail.com Subject: TIS Scope for Lindsay Route 65 and Route 198/245 [21-992]

EXTERNAL EMAIL. Links/attachments may not be safe

Hello David,

Thank you for your help with clarifying the scope of this Project. Based on the previous correspondence, the following is, as we understand it, a summary of the scope for the Traffic Impact Study:

The Traffic Impact Study will determine the potential impact of the Project on local traffic. Impact will be determined through Level of Service (LOS) calculations and Vehicle Miles Travelled (VMT) calculations. Calculations will be performed for current conditions (2023), opening day conditions (~ 2025), and future conditions (~ 2043). The analysis for all conditions will be performed based on current improvements only. The construction of the roundabout by Caltrans will not be a factor in any analysis.

Please let us know if this is an accurate summary of the scope, or if you have any clarifications.

Brent Barenberg
LAV // Pinnacle
Consulting \& Engineering Services
12418 Rosedale Highway, Suite B
Bakersfield, CA 93312
brent@lavpinnacle.com
Office: (661) 869-0184

Table 8: Peak Hour Warrant Analysis

		Year 2023 Volumes						Year 2025 Volumes					
		Existing Volumes (Figures 2 \& 3)			Existing Volumes Plus Project (Figure 5)			Opening Day Volumes (Figure 6)			Opening Day Volumes Plus Project (Figure 7)		
No.	Existing Non-Signalized Intersection	Highest Minor Approach Volume (vph)	Total Major Approach Volume (vph)	Peak Hour Warrant Satisfied	Highest Minor Approach Volume (vph)	Total Major Approach Volume (vph)	Peak Hour Warrant Satisfied	Highest Minor Approach Volume (vph)	Total Major Approach Volume (vph)	Peak Hour Warrant Satisfied	Highest Minor Approach Volume (vph)	Total Major Approach Volume (vph)	Peak Hour Warrant Satisfied
1)	Hwy 65 \& Cedar Ave AM	0	1,520	No	206	1,753	Yes	0	1,600	No	206	1,813	Yes
	Hwy 65 \& Cedar Ave PM	0	1,236	No	186	1,413	Yes	0	1,284	No	186	1,461	Yes
2)	Hwy 65 \& W Tulare Rd AM	128	1,998	Yes	144	2,270	Yes	133	2,075	Yes	149	2,347	Yes
	Hwy 65 \& W Tulare Rd PM	115	2,344	Yes	127	2,590	Yes	120	2,436	Yes	132	2,682	Yes
3)	Hwy 65 \& W Lindmore St AM	44	1,248	No	49	1,432	No	45	1,296	No	50	1,480	No
	Hwy 65 \& W Lindmore St PM	36	1,588	No	36	1,759	No	38	1,650	No	38	1,821	No
4)	Hwy 65 \& Marigold St AM	16	824	No	18	990	No	16	856	No	18	1,022	No
	Hwy 65 \& Marigold St PM	40	1,839	No	41	1,992	No	41	1,911	No	42	2,064	No
5)	Hwy 65 \& Ave 208 AM	36	1,152	No	38	1,099	No	38	1,197	No	40	1,344	No
	Hwy 65 \& Ave 208 PM	24	1,670	No	24	1,807	No	25	1,735	No	25	1,892	No
6)	Hwy 137 \& Road 188 AM	20	592	No	23	687	No	21	615	No	24	710	No
	Hwy 137 \& Road 188 PM	24	728	No	26	804	No	25	756	No	27	832	No
7)	Hwy 137 \& Road 180 AM	12	304	No	12	388	No	12	316	No	12	400	No
	Hwy 137 \& Road 180 PM	0	384	No	0	451	No	0	399	No	0	466	No
8)	N Spruce Ave \& Acacia Ave AM	10	941	No	11	1,045	No	10	978	No	11	1,082	No
	N Spruce Ave \& Acacia Ave PM	19	847	No	21	926	No	20	881	No	22	959	No
9)	N Spruce Ave \& Sycamore Ave AM	236	900	No	243	979	No	246	935	Yes	253	1,014	Yes
	N Spruce Ave \& Sycamore Ave PM	208	728	No	214	784	No	216	831	No	222	892	No

Table 8: Peak Hour Warrant Analysis

		Year 2035 Volumes						Year 2045 Volumes					
		Future Volumes (Figures 8)			Future Volumes Plus Project (Figures 9)			Future Volumes (Figures 10)			Future Volumes Plus Project (Figures 11)		
No.	Existing Non-Signalized Intersection	Highest Minor Approach Volume (vph)	Total Major Approach Volume (vph)	Peak Hour Warrant Satisfied	Highest Minor Approach Volume (vph)	Total Major Approach Volume (vph)	Peak Hour Warrant Satisfied	Highest Minor Approach Volume (vph)	Total Major Approach Volume (vph)	Peak Hour Warrant Satisfied	Highest Minor Approach Volume (vph)	Total Major Approach Volume (vph)	Peak Hour Warrant Satisfied
1)	Hwy 65 \& Cedar Ave AM	0	1,941	No	206	2,154	Yes	0	2,341	No	206	2,415	Yes
	Hwy 65 \& Cedar Ave PM	0	1,557	No	186	1,734	Yes	0	1,879	No	186	2,056	Yes
2)	Hwy 65 \& W Tulare Rd AM	162	2,518	Yes	178	2,790	Yes	194	3,037	Yes	210	3,309	Yes
	Hwy 65 \& W Tulare Rd PM	145	2,953	Yes	157	3,199	Yes	175	3,563	Yes	187	3,809	Yes
3)	Hwy 65 \& W Lindmore St AM	55	1,557	No	60	1,741	No	67	1,897	No	72	2,081	No
	Hwy 65 \& W Lindmore St PM	45	2,020	No	45	2,171	No	54	2,414	No	54	2,585	No
4)	Hwy 65 \& Marigold St AM	20	1,038	No	22	1,204	No	24	1,252	No	26	1,418	No
	Hwy 65 \& Marigold St PM	50	2,318	No	51	2,471	No	61	2,797	No	62	2,944	No
5)	Hwy 65 \& Ave 208 AM	45	1,451	No	47	1,234	No	54	1,750	No	56	1,908	No
	Hwy 65 \& Ave 208 PM	30	2,105	No	30	2,242	No	36	2,537	No	36	2,674	No
6)	Hwy 137 \& Road 188 AM	25	745	No	28	830	No	30	899	No	33	994	No
	Hwy 137 \& Road 188 PM	30	917	No	32	993	No	36	1,107	No	38	1,183	No
7)	Hwy 137 \& Road 180 AM	15	383	No	15	467	No	18	462	No	18	548	No
	Hwy 137 \& Road 180 PM	0	484	No	0	551	No	0	584	No	0	651	No
8)	N Spruce Ave \& Acacia Ave AM	12	1,185	No	13	1,292	No	16	1,431	No	17	1,535	No
	N Spruce Ave \& Acacia Ave PM	24	1,068	No	26	1,146	No	29	1,289	No	31	1,367	No
9)	N Spruce Ave \& Sycamore Ave AM	297	1,133	Yes	304	1,212	Yes	359	1,368	Yes	366	1,447	Yes
	N Spruce Ave \& Sycamore Ave PM	263	1,008	Yes	269	1,072	Yes	316	1,212	Yes	322	1,263	Yes

Pass-By and Diverted Link Study
Location: \qquad Date: $3 \mid 01$

Pass-By and Diverted Link Study
Location: N\&S TRAVEL CENTER (WWY 65 \& AVE 128)
Date: $3 / 16$

No.	Purpose of your trip	Trip Origin	Trip Destination	Route In		Route Out		Time PM	Trip Type		
				Street	Direction	Street	Direction		Primary	Pass-By	Diverted Link
1)	GAS			128	EAST	65	N	6:10			
2)	GAS/FOOD			128	EAST	65	N	6.14		\checkmark	
3)	BEER			128	EAST	65	N	$6: 18$			
4)	BFEN			128	EAST	65	5	6: 25			
5)	FOOD/REER			123	EASS	65	5	$6: 32$			
6)	GAS/BEER			128	WFST	65	N	6.35		\checkmark	
7)	GAS/SNACKS			123	EAST	65	N	$6: 42$			
8)	BEER			123	EAST	65	5	$6: 50$		\checkmark	
9)											
10)											
11)											
12)											

6:15-8:00am

$$
6: 15-8: 00 \mathrm{am}
$$

$$
6: 15-8: 00 a \mathrm{am}
$$

Pass-By and Diverted Link Study for Gas Station/C-Store at Comanche Drive \& Hwy 58:								$\begin{array}{\|c\|} \hline \text { Date: } 9 / 25 \\ \hline \text { Pass-Bys } \\ \hline \end{array}$	
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	Edison	Comanche	Hwy. 58	Time:	Yes	No
49)	Basiness	Boren	Portland			\checkmark	$7: 53$	\checkmark	
50)	Work	Bakersfield	Arvin		\checkmark		$7: 54$	\checkmark	
51)	Work	Bakersfield	Arvin		\checkmark		$7: 57$	\checkmark	
52)									
53)									
54)									
55)									
56)									
57)									
58)									
59)									
60)									

4:00-5:30pm

Driveway Survey for Stockdale Hwy \& I5:								Date:		
				Arrival		Primary Route Departure		Survey By:		CF
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	15	Stockdale Hwy	15	Stockdale Hwy	$\begin{array}{\|c\|} \hline \text { Pass- } \\ \text { Bys } \\ \hline \end{array}$	Diverted Link	Time:
1)	Home	Lost Hills	Bakersfield	S			E	X		4:06
2)	Visit Family	San Jose	Ventura	S		S			X	4:10
3)	Vacation	Bakersfield	San Diego		W	S		X		4:13
4)	Home	Oregon	Los Angeles	S		S			X	4:17
5)	Home	Taft	Bakersfield		E		E	X		4:29
6)	Vacation	Los Angeles	San Francisco	S		N			X	4:32
7)	Home	Atascadero	Bakerfield	S			E	X		4:35
8)	Moving	San Diego	Eugene, OR	N		N			X	4:41
9)	Home	Los Angeles	Sacramento	N		N			X	4:47
10)	Work	Bakersfield	Paramount Farms		W	N		X		4:53
11)	Home	Los Angeles	Bakersfield	N			E	X		4:57

Driveway Survey for Stockdale Hwy \& I5:								Date:		
				Arrival		Primary Route Departure		Survey By:		CF
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	15	Stockdale Hwy	15	Stockdale Hwy	$\begin{aligned} & \text { Pass- } \\ & \text { Bys } \end{aligned}$	Diverted Link	Time:
1)	Moving	San Diego	Oregon	N					X	10:28
2)	Dog Show	San Francisco	Palm Springs	S					X	10:30
3)	Vacation	Oakland	Palm Springs	S					X	10:35
4)	Take Daughter Home	Los Angeles	San Jose	N					X	10:35
5)	Visit Sister	Lahaba	Yuba	N					X	10:38
6)	Deliver Furniture	Bakersfield	Oregon		E	N		X		10:43
7)	Visiting Friends	Bakersfield	San Francisco		E	N		X		10:54
8)	Work	Lebec	Bakersfield		E	N		X		10:54
9)	Vacation	Santa Rosa	Texas	N		S			X	10:55
10)	Work	McFarland	Avenall	S		N			X	11:00
11)	Vacation	Prescott AZ	Napa	S		N			X	11:01
12)	Vacation	Los Angeles	San Francisco	S		N			X	11:03

Driveway Survey for Stockdale Hwy \& 15:								Date:		
					Arrival	Primary Route Departure		Survey By:		CF
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	15	Stockdale Hwy	15	Stockdale Hwy	$\begin{array}{\|c\|} \hline \text { Pass- } \\ \text { Bys } \\ \hline \end{array}$	Diverted Link	Time:
13)	Golf	Sacramento	Palm Springs	N		S			X	11:09
14)	Vacation	Los Angeles	San Francisco	S		N			X	11:11
15)	Visit Friends	San Jose	Los Angeles	N		S			X	11:12
16)	Business	Los Angeles	San Francisco	S		N			X	11:14
17)	Church Revival	Los Angeles	San Francisco	S		N			X	11:20
18)	Vacation	Carson	Eureka	S		N			X	11:20
19)	Moving	Paso Robles	Burbank	N		S			X	11:26
20)	Visit Friends	Los Angeles	Livermore	S		N			X	11:30
21)	Work	Chino	Redding	S		N			X	11:36
22)	Universal Studios	San Francisco	Universal Studios	N		S			X	11:36
23)	Visit Friends	Los Angeles	Sacramento	S		N			X	11:38
24)	Visit Friends	Burbank	San Francisco	S		N			X	11:43

Driveway Survey for Stockdale Hwy \& I5:								Date:		
				Prim	Arrival	Primary Route Departure		Survey By:		CF
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	15	Stockdale Hwy	15	Stockdale Hwy	$\begin{array}{\|c\|} \hline \text { Pass- } \\ \text { Bys } \end{array}$	Diverted Link	Time:
25)	Moving	Las Vegas	San Francisco	S		N			X	11:52
26)	Take child to school	Los Angeles	San Francisco	S		N			x	11:53
27)	Take family home	Firebough	Los Angeles	N		S			x	11:53
28)	Work	Oakland	San Diego	N		S			X	11:54
29)	Disneyland	San Bruno	Anaheim	N		S			X	11:55
30)	Visit Friends	Fresno	Los Angeles	N		S			x	11:55
31)	Moving	Phoenix	Menlo Park	S		N			X	11:56
32)	Business	Los Angeles	San Jose	S		N			X	12:03
33)	Vacation	Ensenada	San Francisco	S		N			X	12:03
34)	Work	Buttonwillow	Bakersfield		E		w	X		12:04
35)	Vacation	San Ramon	San Francisco	S		N			x	12:05
36)	College Tour	Los Angeles	Davis	S		N			X	12:10

Driveway Survey for Stockdale Hwy \& I5:								Date:		
				Prim	Arrival	Primary Route Departure		Survey By:		CF
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	15	Stockdale Hwy	15	Stockdale Hwy	$\begin{array}{\|c\|} \hline \text { Pass- } \\ \text { Bys } \end{array}$	Diverted Link	Time:
37)	Business	Bakersfield	Maricopa		W		E	X		12:13
38)	Vacation	San Francisco	Los Angeles	N		S			X	12:14
39)	Work	Lindsey	Long Beach	N		S			X	12:17
40)	Visiting Family	Los Angeles	Sacramento	S		N			X	12:18
41)	Visiting Family	Bakersfield	San Francisco		W	N		X		12:20
42)	Work	Los Angeles	San Francisco	S		N			X	12:21
43)	Vacation	Bakersfield	Napa		W	N		X		12:21
44)	Work	Buttonwillow	Bakersfield		E		W	X		12:22
45)	Work	Bakersfield	Paso Robles		W	N		X		12:24
46)	Visit Family	Los Angeles	Oakland	S		N			X	12:25
47)	Visit Family	Bakersfield	Pismo Beach		E		w	X		12:29
48)	Visit Family	Los Angeles	San Francisco	S		N			X	12:30
49)	Vacation	Burbank	San Jose	S		N			X	12:30

Driveway Survey for Stockdale Hwy \& I5:								Date:		
				Arrival		Primary Route Departure		Survey By:		CF
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	15	Stockdale Hwy	15	Stockdale Hwy	$\begin{array}{\|c\|} \hline \text { Pass- } \\ \text { Bys } \end{array}$	Diverted Link	Time:
1)	Vacation	Ventura	Dublin	S		N			X	4:20
2)	Work	Bakersfield	Sacramento		W	N		x		4:24
3)	Work	Mississippi	Eureka	S		N			x	4:25
4)	Go back to School	San Francisco	San Diego	N		S			X	4:26
5)	Work	Los Angeles	Sacramento	S		N			X	4:41
6)	Work	Concord	Burbank	N		S			x	4:42
7)	Work	Bakersfield	Mckitrick		W		E	X		4:46
8)	Work	Paso Robles	Bakersfield	N			E	X		4:47
9)	Work	Orange County	Cupertino	S		N			X	4:53
10)	Visit Friends	Sacramento	Los Angeles	N		S			X	4:54
11)	Work	Bakersfield	Lost Hills		W		E	x		4:59
12)	Work	BelRidge	Bakersfield		E		w	X		4:59

Driveway Survey for Stockdale Hwy \& I5:								Date:		
				Arrival		Primary Route Departure		Survey By:		CF
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	15	Stockdale Hwy	15	Stockdale Hwy	$\begin{array}{\|c} \hline \text { Pass- } \\ \text { Bys } \end{array}$	Diverted Link	Time:
13)	Work	Oxnard	Salinas	N		S			X	5:00
14)	Work	Long Beach	San Jose	S		N			X	5:01
15)	Visit Family	Seaside	Oakland	S		N			x	5:10
16)	Funeral	Stockton	Bakersfield	N			E	X		5:23
17)	Work	Santabarbara	San Francisco	S		N			X	5:24
18)	Work	San Jose	Los Angeles	N		S			X	5:29
19)	Vacation	Mexico	Woodland	S		N			X	5:30
20)	Vacation	Los Angeles	Stockton	S		N			X	5:31
21)	Work	San Francisco	San Diego	N		S			x	5:35
22)	Funeral	Los Angeles	Monteca	S		N			X	5:36
23)	Work	San Francisco	Bakersfield	N			E	x		5:39
24)	Work	Los Angeles	Paso Robles	S		N			X	5:43

Driveway Survey for Stockdale Hwy \& I5:								Date: 5/25/20 Survey By:		
				Primary Route Arrival		Primary Route Departure				CF
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	15	Stockdale Hwy	15	Stockdale Hwy	$\begin{array}{\|c} \begin{array}{c} \text { Pass- } \\ \text { Bys } \end{array} \\ \hline \end{array}$	Diverted Link	Time:
25)	Vacation	Stockton	San Diego	N		S			x	5:49
26)	Work	Los Angeles	San Francisco	S		N			x	5:54
27)	Work	Bakersfield	Redwood City		w	N		x		5:56
28)	Work	Tracy	Bakersfield	N			E	x		5:58
							Total			
							Pass-By	29\%		
							Diverted Link	71\%		

Page 8

Taft Highway \& 99 Travel Center Driveway Survey

Taft Highway \& 99 Travel Center Driveway Survey

Pass-By and Diverted Link Study:									$\begin{array}{\|c\|c\|} \hline \text { Date: } \\ \hline \text { Pass-Bys } \\ \hline \end{array}$	
				Route In		Route Out		$\frac{\text { AM }}{\text { Time: }}$		
No.	Purpose of your trip:	Trip Origin:	Trip Destination:	99	119	99	119		Yes	No
13)	work	Bakersfield	Taft	S			ω	8:10	\checkmark	
14)	vacation	Bakersfield	Yosemite		E	N		8:13	\checkmark	
15)	work	Bakersfield	Bakersfield	S			ω	8:14	\checkmark	
16)	work	Bakersfield	Bakersfield		E	5		8:15	\checkmark	
17)	work	Bakersfield	Taft	5			ω	8:18	\checkmark	
18)	work	Bakersfield	Bakersfield		ω		ω	8:19	\checkmark	
19)	work	Fresno	Bakersfield	S			ω	8:23	\checkmark	
20)	work	Bakersfield	Bakersfield		E	N		8:28	\checkmark	
21)	work	Bakersfield	Bakersfield	s			ω	$8: 31$	\checkmark	
22)										
23)										
24)										

Taft Highway \& 99 Travel Center Driveway Survey

[^0]: Copyright © 2023 University of Florida. All Rights Reserved

[^1]: Copyright © 2023 University of Florida. All Rights Reserved

[^2]: Copyright © 2023 University of Florida. All Rights Reserved

[^3]: Copyright © 2023 University of Florida. All Rights Reserved.

[^4]: Copyright © 2023 University of Florida. All Rights Reserved

[^5]: Copyright © 2023 University of Florida. All Rights Reserved.

[^6]: Copyright © 2023 University of Florida. All Rights Reserved

[^7]: Copyright © 2023 University of Florida. All Rights Reserved.

[^8]: Copyright © 2023 University of Florida. All Rights Reserved

[^9]: Copyright © 2023 University of Florida. All Rights Reserved.

[^10]: Copyright © 2023 University of Florida. All Rights Reserved

[^11]: Copyright © 2023 University of Florida. All Rights Reserved.

[^12]: Copyright © 2023 University of Florida. All Rights Reserved.

[^13]: Copyright © 2023 University of Florida. All Rights Reserved.

[^14]: Copyright © 2023 University of Florida. All Rights Reserved

[^15]: Copyright © 2023 University of Florida. All Rights Reserved.

[^16]: Copyright © 2023 University of Florida. All Rights Reserved.

[^17]: Copyright © 2023 University of Florida. All Rights Reserved.

[^18]: Copyright © 2023 University of Florida. All Rights Reserved.

[^19]: Copyright © 2023 University of Florida. All Rights Reserved.

[^20]: Copyright © 2023 University of Florida. All Rights Reserved.

[^21]: Copyright © 2023 University of Florida. All Rights Reserved.

[^22]: Copyright © 2023 University of Florida. All Rights Reserved.

[^23]: Copyright © 2023 University of Florida. All Rights Reserved.

[^24]: Copyright © 2023 University of Florida. All Rights Reserved.

[^25]: Copyright © 2023 University of Florida. All Rights Reserved.

[^26]: Copyright © 2023 University of Florida. All Rights Reserved.

[^27]: Copyright © 2023 University of Florida. All Rights Reserved.

[^28]: Copyright © 2023 University of Florida. All Rights Reserved.

[^29]: Copyright © 2023 University of Florida. All Rights Reserved.

[^30]: Copyright © 2023 University of Florida. All Rights Reserved.

[^31]: Copyright © 2023 University of Florida. All Rights Reserved

[^32]: Copyright © 2023 University of Florida. All Rights Reserved.

[^33]: Copyright © 2023 University of Florida. All Rights Reserved.

[^34]: Copyright © 2023 University of Florida. All Rights Reserved.

[^35]: Copyright © 2023 University of Florida. All Rights Reserved.

[^36]: Copyright © 2023 University of Florida. All Rights Reserved.

[^37]: Copyright © 2023 University of Florida. All Rights Reserved.

[^38]: Copyright © 2023 University of Florida. All Rights Reserved.

[^39]: Copyright © 2023 University of Florida. All Rights Reserved.

[^40]: Copyright © 2023 University of Florida. All Rights Reserved.

[^41]: Copyright © 2023 University of Florida. All Rights Reserved.

[^42]: Copyright © 2023 University of Florida. All Rights Reserved.

[^43]: Copyright © 2023 University of Florida. All Rights Reserved.

[^44]: Copyright © 2023 University of Florida. All Rights Reserved.

[^45]: Copyright © 2023 University of Florida. All Rights Reserved.

[^46]: Copyright © 2023 University of Florida. All Rights Reserved.

[^47]: Copyright © 2023 University of Florida. All Rights Reserved.

[^48]: Copyright © 2023 University of Florida. All Rights Reserved.

[^49]: Copyright © 2023 University of Florida. All Rights Reserved.

[^50]: Copyright © 2023 University of Florida. All Rights Reserved.

[^51]: Copyright © 2023 University of Florida. All Rights Reserved.

[^52]: Copyright © 2023 University of Florida. All Rights Reserved.

[^53]: Copyright © 2023 University of Florida. All Rights Reserved.

[^54]: Copyright © 2023 University of Florida. All Rights Reserved.

[^55]: Copyright © 2023 University of Florida. All Rights Reserved.

[^56]: Copyright © 2023 University of Florida. All Rights Reserved.

[^57]: Copyright © 2023 University of Florida. All Rights Reserved.

[^58]: Copyright © 2023 University of Florida. All Rights Reserved.

[^59]: Copyright © 2023 University of Florida. All Rights Reserved.

[^60]: Copyright © 2023 University of Florida. All Rights Reserved.

[^61]: Copyright © 2023 University of Florida. All Rights Reserved.

[^62]: Copyright © 2023 University of Florida. All Rights Reserved.

[^63]: Copyright © 2023 University of Florida. All Rights Reserved.

[^64]: Copyright © 2023 University of Florida. All Rights Reserved.

[^65]: Copyright © 2023 University of Florida. All Rights Reserved.

[^66]: Copyright © 2023 University of Florida. All Rights Reserved

[^67]: Copyright © 2023 University of Florida. All Rights Reserved.

[^68]: Copyright © 2023 University of Florida. All Rights Reserved

[^69]: Copyright © 2023 University of Florida. All Rights Reserved.

[^70]: Copyright © 2023 University of Florida. All Rights Reserved.

[^71]: Copyright © 2023 University of Florida. All Rights Reserved

[^72]: Copyright © 2023 University of Florida. All Rights Reserved.

[^73]: Copyright © 2023 University of Florida. All Rights Reserved

[^74]: Copyright © 2023 University of Florida. All Rights Reserved.

[^75]: Copyright © 2023 University of Florida. All Rights Reserved.

[^76]: Copyright © 2023 University of Florida. All Rights Reserved.

[^77]: Copyright © 2023 University of Florida. All Rights Reserved.

[^78]: Copyright © 2023 University of Florida. All Rights Reserved.

[^79]: Copyright © 2023 University of Florida. All Rights Reserved.

[^80]: Copyright © 2023 University of Florida. All Rights Reserved.

[^81]: Copyright © 2023 University of Florida. All Rights Reserved

[^82]: Copyright © 2023 University of Florida. All Rights Reserved

[^83]: Copyright © 2023 University of Florida. All Rights Reserved

[^84]: Copyright © 2023 University of Florida. All Rights Reserved

[^85]: Copyright © 2023 University of Florida. All Rights Reserved.

[^86]: Copyright © 2023 University of Florida. All Rights Reserved

[^87]: Copyright © 2023 University of Florida. All Rights Reserved.

[^88]: Copyright © 2023 University of Florida. All Rights Reserved

[^89]: Copyright © 2023 University of Florida. All Rights Reserved.

[^90]: Copyright © 2023 University of Florida. All Rights Reserved.

[^91]: Copyright © 2023 University of Florida. All Rights Reserved.

[^92]: Copyright © 2023 University of Florida. All Rights Reserved.

[^93]: Copyright © 2023 University of Florida. All Rights Reserved.

[^94]: Copyright © 2023 University of Florida. All Rights Reserved.

[^95]: Copyright © 2023 University of Florida. All Rights Reserved.

[^96]: Copyright © 2023 University of Florida. All Rights Reserved.

