PRELIMINARY HYDROLOGY REPORT

FOR

Jefferson Square Residential

LOCATED AT

SWC of Jefferson Street and Fred Waring Drive La Quinta, CA

Prepared for

Beacon Realty Advisors LLC

1844 Camino Del Mar #11 Del Mar, CA 92014 (214) 923-3246, Mr. Omar Hussein

Prepared By:

DRC ENGINEERING, INC.

160 S Old Springs Road, Anaheim Hills, CA 92808 (714) 685-6860, Cory Mack, P.E.

DRC Project No. 21-177

December 1, 2022

TABLE OF CONTENTS

TITLE:		PAGE
SECTION I	INTRODUCTION	3
SECTION II	METHODOLOGY	3
SECTION III	PROJECT DISCUSSION	3 - 6

- Existing Condition
- Proposed Condition
- On-Site Retention Basin Emergency Outlet
- Conclusion

List of Technical Appendices

Technical Appendix A	Vicinity Map
Technical Appendix B	Selected Reference Pages from the Final Hydrology & Hydraulic Report for Jefferson Square Retail Center
Technical Appendix C	Percolation Rate Update Letter & Original Study
Technical Appendix D	Rational Method Analysis Proposed Condition
Technical Appendix E	Hydrology Map Proposed Condition

SECTION I Introduction

This preliminary hydrology report has been prepared for the addition / renovation to the existing 10.5-acre (13.0 tributary acres) Jefferson Square retail center located west of Jefferson Street and south of Fred Waring Drive in the City of La Quinta, County of Riverside. The project location is shown on the attached Vicinity Map. The proposed site drainage pattern substantially conforms to the condition described in the original approved *Final Hydrology and Hydraulic Study* prepared for the Jefferson Square retail center dated August 29, 2008 by Development Resource Consultants, Inc.

SECTION II Methodology

For both the existing and proposed conditions, the peak storm discharge for the drainage areas were calculated using the Riverside County Hydrology Manual. The Rational Method Equation (1978 April), using AES Software (Ratscx), was used to calculate the 10-year and 100-year storm events. The rational method analysis was completed to preliminarily size the on-site storm drain system to convey the 100-year storm event runoff.

The site is situated within hydrologic soil group "A" as identified in the Hydrology Manual. The Synthetic Unit Hydrograph Short-Cut Method was used in the original hydrology study to determine the required storage volume of the fully-developed site for the 1-hour, 3-hour, 6-hour and 24-hour duration events for the 100-year return frequency. The (now existing) retention basins were then designed for the 100-year storm event as required by the City and are capable of percolating the entire 100-year storm retention volume in less than 72 hours.

SECTION III Project Discussion

The project site will disturb approximately 3.5 acres of the existing 10.5 acres Jefferson Square retail center. The proposed addition / renovation consists of construction of a new 3-story apartment complex occupying 61,144 square feet and two condominium buildings occupying 41,430 square feet. Construction activities include construction of new buildings, parking lot pavement, ribbon gutter, driveways, walkways, landscaping planters, and related utilities.

Existing Conditions

The site is currently in use as a retail center with a CVS/Pharmacy store and various other smaller shops. A vacant building that was the former Fresh and Easy store is also located on the site. The remainder of the site is improved with parking lots and two graded pads. The Esplanade community is located to the north. To the south of the site

is the Monticello community and Monticello Park is located directly to the west. East of the site is a shopping center, which is within the City of Indio. In the original hydrology study, the site was broken down into three distinct drainage watersheds with some individual subareas.

Watershed "**A**" collects runoff from the existing front parking lot, two out-parcel buildings and Jefferson Street and Fred Waring Drive. The runoff is collected by the existing drain inlets onsite and the existing catch basins in the streets. Storm drain pipes then discharge into an existing underground retention and infiltration basin (**Basin** "**A**") located south of Pad A and west of Jefferson Street. Approximately 6.84 acres is tributary to Watershed A in the existing condition.

Watershed "**B**" collects the runoff from the existing major building roofs, the rear drive aisle along the west edge, and the commercially graded pad. The runoff is collected by surface flowlines and existing drain inlets onsite that discharge into an existing open retention basin (**Basin** "**B**") located on the west edge of the property behind the former Fresh & Easy store. Approximately 3.70 acres is tributary to Watershed B in the existing condition.

Watershed "C" collects runoff from along the south boundary of the Site and from street runoff. The runoff is collected by the existing drain inlets onsite and the existing catch basin in the street. Storm drain pipes then discharge into an existing open retention basin (**Basin** "C") located at the southeast corner of the site. Approximately 2.45 acres is tributary to Watershed C in the existing condition.

Watershed	Area (AC.)	Q ₁₀ (CFS)	Q ₁₀₀ (CFS)	Retention Basin Volume Required (CF)	Retention Basin Volume Provided (CF)
A	6.84	19.9	34.2	52,933	53,012
В	3.70	12.2	21.0	27,010	28,031
С	2.45	7.8	13.2	17,834	18,937
Total:	12.99	39.9	68.4	97,777	99,980

The above table summarizes the data and results for the 10-year and 100-year storm events based on the previous approved hydrology study for the Jefferson Square retail center and describes the required and provided volume of the existing retention basins that will remain. Selected pages of the previously approved *Final Hydrology and Hydraulic Report* can be found in **Appendix B** of this report to support the existing condition narrative.

Proposed Conditions

The proposed development will be consistent with the previously approved hydrology report prepared for the Jefferson Square retail center. The total disturbed area is approximately 3.4 acres of the site. Tributary areas to each watershed will be designed in such a way that substantially matches the existing condition. The proposed residential characteristics and increased pervious area of the proposed development offset the effects of the reduced time of concentration due to adjustments in the subarea delineation and the ultimate result is discharge values close to or below existing conditions.

Watershed "**A**" matches the existing condition with the addition of a proposed condominium building in a portion of the existing parking field. The runoff is collected by both existing and proposed drain inlets onsite and the existing catch basins in the streets. Storm drain pipes then discharge into an existing underground retention and infiltration basin (**Basin** "**A**") located south of Pad A and west of Jefferson Street. Approximately 6.84 acres is tributary to Watershed A in the proposed condition.

Watershed "B" matches the existing condition with the addition of a proposed apartment complex on the existing commercial pad and associated parking area. The runoff is collected by surface flowlines and both existing and proposed drain inlets onsite that discharge into an existing open retention basin (**Basin "B"**) located on the west edge of the property behind the former Fresh & Easy store. Approximately 3.68 acres is tributary to Watershed B in the proposed condition.

Watershed "C" matches the existing condition with the addition of a proposed condominium building on the existing commercial pad. The runoff is collected by the existing drain inlets onsite and the existing catch basin in the street. Storm drain pipes then discharge into an existing open retention basin (**Basin** "C") located at the southeast corner of the site. Approximately 2.47 acres is tributary to Watershed C in the existing condition.

Watershed	Area (AC.)	Q ₁₀ (CFS)	Q ₁₀₀ (CFS)	Retention Basin Volume Required (CF)	Retention Basin Volume Provided (CF)
A	6.84	19.9	34.1	52,933	53,012
В	3.66	12.3	21.2	27,010	28,031
С	2.49	6.8	12.1	17,834	18,937
Total:	12.99	39.0	67.4	97,777	99,980

The above table summarizes the data and results for the 10-year and 100-year storm event due to the proposed development. Runoff flow rates from the proposed additional / innovation to the previously approved Jefferson Square retail development are

essentially the same and reduce the peak flow by approximately 1.5%. Supporting calculations can be found in **Appendix D** of this report.

Based on the previous approved hydrology report, percolation testing was performed on the project site by Krazan & Associates, Inc. dated July 8, 2008. Krazan & Associates have reviewed the project site and provided an updated letter dated September 21, 2022 confirming that the original results of the study remain in effect. The updated letter is included in **Appendix C**. The worst-case percolation rate was determined to be 5.1 inch/hour. A conservative percolation rate of 2 inches per hour was used to determine the draw-down time. One drywell in each subarea was also used to percolate deep storage runoff to subsurface soils. The calculations in the original study show that each basin would infiltrate the stored volume in less than 72 hours. Refer to **Appendix B & C** for the supporting calculations and percolation test results from the original study.

On-Site Retention Basin Emergency Outlet

The emergency overflow outlet paths for each drainage basin constructed as part of Jefferson Square retail center will remain in place and undisturbed. Basin "A" outlets to the existing 14' catch basin at the SWC of Jefferson St. and Fred Waring Dr and to the public infrastructure without damaging the onsite buildings. Basin "B" outlets through the lowest tributary inlet located on the north side of the basin and sheet flows to Fred Waring Drive to public infrastructure. Basin "C" outlets to the catch basin south of the southernmost driveway along Jefferson Street and to public infrastructure. Therefore, all the building structures on-site will be protected. See **Appendix B** for a diagram illustrating the emergency overflow route as part of Jefferson Square retail center drainage design.

Conclusion

In conclusion, the proposed development will conform with current City of La Quinta drainage design requirements and to the previously approved hydrology report for the Jefferson Square retail center and will provide adequate protection for the proposed onsite improvements and structures without introducing adverse effects on the neighboring developments.

Technical Appendix A

Vicinity Map

Technical Appendix B

Selected Reference Pages from the Final Hydrology & Hydraulic Report For Jefferson Square Retail Center

FINAL HYDROLOGY & HYDRAULIC STUDY

FOR

JEFFERSON SQUARE SWC JEFFERSON ST. & FRED WARING DR. LA QUINTA, CALIFORNIA

Prepared For:

REGENCY CENTERS 36 Executive Park, Suite 100 Irving, California, 92614 Mr. Tom Middleton

Prepared By:

DEVELOPMENT RESOURCE CONSULTANTS, INC. 800 S. Rochester Avenue, Suite C Ontario, CA 91761 Tel. (909) 230-5246

August 29, 2008

Job No. C07-304

Ronald W. Sklepko, P.E. R.C.E. No. 46216, Exp. 12/31/08

I. INTRODUCTION/SUMMARY

JEFFERSON SQUARE SWC JEFFERSON ST. & FRED WARING DR. LA QUINTA, CA

Project Description

This report contains the hydrology and hydraulic calculations for a proposed 10.5 acre Commercial Project located west of Jefferson Street and south of Fred Waring Drive in the City of La Quinta, County of Riverside. The project location is shown on the attached Vicinity Map.

Existing Drainage Condition

The site is currently vacant and barren with little vegetative cover. Presently, stormwater runoff sheet flows easterly to Jefferson Street. Approx. 4.5 acres of the Site continues in a southerly direction to a 28 ft catch basin located at approx. 500 ft south of Independent Way (**Drainage Area "E1"**). The runoff is then conveyed to an open-air retention basin near Independent Way thru a 36" RCP. Approx. 6.0 acres of the Site and approx. 0.3 acres of the street drain to the SWC of Jefferson Street and Fred Waring Drive (**Drainage Area "E2"**). According to recorded plans, runoff from Fred Waring Dr. half street drains southerly to Monticello Ave. via curb & gutter. There is no existing cross gutter at the intersection of Fred Waring Dr. & Monticello Ave. If the curb & gutter is overloaded, a high point at the southeast corner of the intersection which allow the runoff to continue draining southerly on the other side of Monticello Ave. Runoff east of the intersection which consist of approx. 1.0 acre of the Fred Waring Drive half street drains easterly towards Jefferson Street (**Drainage Area "E3"**). Runoff from both Drainage Areas E2 & E3 are conveyed to an temporary open retention basin through two parkway drains. Refer to the "Existing Hydrology Map" for a map of the existing drainage pattern (back sleeve).

The results of the Existing Drainage Condition for the 10-Year and 100-Year Storm Events are summarized as follows:

Drainage Area	Area (AC.)	Q ₁₀ (CFS)	Q ₁₀₀ (CFS)
E1	5.3	5.0	10.8
E2	6.7	6.2	13.5
E3	1.0	3.0	5.2
Total:	13.0	14.2	29.5

Proposed Drainage Condition

The Proposed Commercial Development will consist of the construction of paved parking areas and drive aisles, landscaped areas and buildings. The site will be approx. 90% impervious due to building roofs, asphalt paving and sidewalks. In the proposed condition, the site can be broken down into three distinct drainage watersheds, each with individual subareas. **Watershed "A"** collects runoff from the front parking lot, two out-parcel buildings, and Jefferson Street & Fred Waring Drive. The runoff will be picked up by drain inlets and the existing catch basins in the streets. The storm drain pipes will then discharge into a proposed underground retention and infiltration basin (**Basin "A"**) at the southeast corner of the Site. **Watershed "B"**

collects all the runoff from the major building roofs and the rear drive aisle to the west. The runoff will be picked up by drain inlets and storm drain pipe that will discharge into a proposed below-grade open retention basin (**Basin "B"**) located along the west boundary. **Watershed** "C" collects runoff from approx. 1.9 acres along the south boundary of the Site and approx. 0.5 acres of Street Runoff. The runoff will sheet flow to a proposed below-grade open retention basin (**Basin "C"**) located along the south boundary. Refer to the "Proposed Hydrology Map" for a map of the proposed drainage areas and basins (back sleeve).

The results of the Proposed Drainage Condition for the 10-Year and 100-Year Storm Events are summarized as follows:

Watershed	Area (AC.)	Q ₁₀ (CFS)	Q ₁₀₀ (CFS)
Ā	6.8	19.9	34.2
В	3.7	12.2	21.0
С	2.5	7.8	13.2
Total:	13.0	39.9	68.4

Hydrologic Criteria

This study will be the basis for the design of the drainage systems within the proposed Commercial Development. The Hydrology Study for this project was performed in accordance with the current Riverside County Hydrology Manual, published in 1978. Peak storm flows were determined using the computer engineering software program developed by Advanced Engineering Software (AES), 2003 version, based on the Rational Method of Hydrology and Synthetic Unit Hydrograph. The program uses a nodal system to define stream routing (in street, pipe or natural stream) and subarea characteristics, (i.e. acres, land use and soil type). Peak flow rates for 10-year and 100-year storm events are included in this report. Synthetic Unit Hydrograph Short-Cut Method will be used to determine the required storage volume of the fully-developed site for the 1-hour, 3-hour, 6-hour, and 24-hour duration events for the 100-year return frequency. Retention basins are design for the 100-year storm event and capable of percolating the entire 100-year storm retention capacity in less than 72 hours.

<u>Results</u>

As a result of the Rational Method calculations, the existing undeveloped condition for the site and adjacent streets produces 29.5 CFS of runoff during the 100-year event. In the proposed developed condition, the site produces 68.4 CFS of runoff during the 100-year storm event (A difference of 38.9 CFS from the Existing Drainage Condition). The entire 100-year storm runoff volume will be captured on-site and percolated to the subsurface soils, as discussed earlier.

On-Site Retention Basin

<u>Basin "A"</u>

For the purpose of sizing the basin, we determined the total storage volume required by calculating the storm volume of the Proposed Condition Unit Hydrograph for 100-year storm event, 3-hour frequency (the worst-case scenario). The total amount of runoff that needs to be stored is 52,933 CF or 1.2 acre-feet. For this Report, we are assuming the use of a combination underground storage system consisting of five barrels of 96" CMP, 79 feet long, 2 – 52 feet long headers for storage only, one 41' deep Maxwell drywell, and 5'-0" deep single storm trap units for infiltration and storage chamber. The chamber will be accessible by two manholes and has sufficient height for a person to enter and perform maintenance procedures. The total storage volume for the combination underground system is 53,000 CF or 101% of the required storage volume.

The bottom of the 5'-0" deep storm trap units will of native granular material and will be used for infiltration of runoff into the ground soils. The subsurface soils are silty sands and no significant clayey soils were observed based on the borings taken at the job site. A percolation test performed on the project site. The worst-cast percolation rate is 4.2 inch/hour. A conservative percolation rate of 2 inches per hour is being used to determine the draw down time. One drywell is also used to percolate deep storage runoff to subsurface. The calculations show that the basin would infiltrate the stored volume in 46 hours (\leq 72 hours, therefore O.K.). Refer to Section XIII for the supporting calculations and percolation test results.

<u>Basin "B"</u>

For the purpose of sizing the basin, we determined the total storage volume required by calculating the storm volume of the Proposed Condition Unit Hydrograph for 100-year storm event, 3-hour frequency (worst-case scenario). The total amount of runoff that needs to be stored is 27,010 CF or 0.6 acre-feet. For this report, we are assuming the use of below-grade open basin, 3:1 side slopes, 4.2 feet deep and 189 ft x 20 ft bottom. The total storage volume for the open basin is 28,031 CF or 104% of the required storage volume.

The subsurface soils are silty sands and no significant clayey soils were observed based on the borings taken at the job site. A percolation test performed on the project site. The worst-cast percolation rate is 5.1 inch/hour. A conservative percolation rate of 2 inches per hour is being used to determine the draw down time. One drywell is also used to percolate deep storage runoff to subsurface. The calculations show that the basin would infiltrate the stored volume in 19 hours (\leq 72 hours, therefore O.K.). Refer to Section XIII for the supporting calculations and percolation test results.

<u>Basin "C"</u>

For the purpose of sizing the basin, we determined the total storage volume required by calculating the storm volume of the Proposed Condition Unit Hydrograph for 100-year storm event, 3-hour frequency (worst-case scenario). The total amount of runoff that needs to be stored is 17,834 CF or 0.41 acre-feet. For this report, we are assuming the use of below-grade open basin, 3:1 side slopes, 4.1 feet deep and 76 feet x 34 feet bottom. The total storage volume for the open basin is 18,937 CF or 106% of the required storage volume.

The subsurface soils are silty sands and no significant clayey soils were observed based on the borings taken at the job site. A percolation test performed on the project site. The worst-cast percolation rate is 6.5 inch/hour. A conservative percolation rate of 2 inches per hour is being used to determine the draw down time. One drywell is also used to percolate deep storage

runoff to subsurface. The calculations show that the basin would infiltrate the stored volume in 17 hours (\leq 72 hours, therefore O.K.). Refer to Section XIII for the supporting calculations and percolation test results.

Storm Drain Improvements

The proposed storm drain system is composed of Storm Drain Line 'A', 'B', 'C', 'D' & 'E' along with numerous on-site catch basins, grate inlets and laterals. Refer to the "Hydraulic Map" for a map storm drain layout and inlet locations. Hydraulics calculations were performed using Los Angeles County Water Surface Profile Gradient (WSPG). As shown on the pipe hydraulic calculation, line 'A', 'B', 'C', 'D' & 'E' has the capacity to meet or exceed the runoff generated from the 100-year storm event. Catch basins and grate inlets are sized to collect the runoff generated from 100-year storm event. Catch Basin sizing and depth of flow calculations were using L.A. County, Design manual, 1972, Plate 2.6-0651. Grate inlet calculations were performed using the Caltrans Highway Drainage Design Equation 4-6.

On-Site Retention Emergency Outlet

Basin "A": At a storage volume exceeding 52,993 CF, discharge will begin to outlet to the proposed 14' catch basin at the SWC of Jefferson St. & Fred Waring Dr. The runoff then will spill over to the other side of Fred Waring Dr. Therefore, all the building structures on-site will be protected. See Section X for a diagram illustrate the emergency overflow route.

<u>Basin "B</u>": At a storage volume exceeding 27,010 CF, discharge will begin spill out at the drain inlet (low point) in front of Shop A. The runoff will then sheet flow to Fred Waring Drive. Therefore, all the building structures on-site will be protected. See Section X for a diagram illustrate the emergency overflow route.

<u>Basin "C</u>": At a storage volume exceeding 17,834 CF, discharge will begin to outlet at the catch basin by the south driveway along Jefferson Street. The runoff then will continue south to an existing 28' catch basin near Independent Way. Therefore, all the building structures on-site will be protected. See Section XIII for supporting calculations and diagram.

Conclusion

In conclusion, the proposed development will not adversely affect the existing drainage pattern in the area and will provide adequate protection for the proposed on-site improvements and structures.

V. PROPOSED CONDITION RATIONAL METHOD CALCULATIONS

PROPOSED HYDROLOGY CALCULATIONS

FOR

JEFFERSON SOUARE LA QUINTA, CALIFORNIA

	HYDROLOGY	SUMMARY	
DRAINAGE AREA	AREA (AC.)	Q10 (CFS)	Q100 (CFS)
A1	1.58	4.87	8.31
A2	2.57	7.60	13.02
A3	2.69	7.44	12.84
TOTAL:	6.84	19.90	34.16
B1	1.38	4.83	8.23
B2	2.32	7.40	12.76
TOTAL:	3.70	12.23	20.98
С	2.45	7.76	13.23
TOTAL SITE:	12.99	39.89	68.37

3.07 CFS/AC. 5.26 CFS/AC.

.

ROPOSED CONDITION *************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT 10-YEAR (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2006 Advanced Engineering Software (aes) (Rational Tabling Version 6.0D) Release Date: 06/01/2005 License ID 1510 Analysis prepared by: Development Resource Consultants 8175 E. Kaiser Blvd Anaheim Hills, CA 92808 (714) 685-6860 * C07-304 JEFFERSON SQUARE, LA QUINTA, CA * PROPOSED CONDIDTION * 10-YEAR STORM EVENT ------FILE NAME: 7304PRO.DAT TIME/DATE OF STUDY: 10:58 02/20/2008 _____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2-YEAR, 1-HOUR PRECIPITATION(INCH) = 0.630 100-YEAR, 1-HOUR PRECIPITATION(INCH) = 2.100 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.247 SLOPE OF INTENSITY DURATION CURVE = 0.6000 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (T) (n) (FT) SIDE / SIDE/ WAY (FT) NO. _____ _____ _____ === ==== 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 l 30.0 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* PROPOSED SUBAREA A1 ***** *********** 2.00 IS CODE = 21FLOW PROCESS FROM NODE 1.00 TO NODE _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 907.00 55.70 UPSTREAM ELEVATION(FEET) = 39.50 DOWNSTREAM ELEVATION(FEET) = 16.20 ELEVATION DIFFERENCE (FEET) = 16.20)]**.2 = 10.333 TC = 0.303*[(907.00**3)/(10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.583 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8603

```
SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF (CFS) = 4.87
                 1.58 TOTAL RUNOFF(CFS) =
                                     4.87
 TOTAL AREA(ACRES) =
***********
                             3.00 IS CODE = 31
 FLOW PROCESS FROM NODE 2.00 TO NODE
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 205.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.68
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.87
                      TC(MIN.) = 11.06
 PIPE TRAVEL TIME (MIN.) = 0.73
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 1112.00 FEET.
 _____
PROPOSED SUBAREA A2
*********
 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.439
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8593
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 2.57 SUBAREA RUNOFF (CFS) =
                                       7.60
 TOTAL AREA (ACRES) = 4.2 TOTAL RUNOFF (CFS) =
                                       12.47
 TC(MIN.) = 11.06
***********
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 445.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.3 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 5.88
                             NUMBER OF PIPES =
                                          1
  ESTIMATED PIPE DIAMETER(INCH) = 24.00
  PIPE-FLOW(CFS) = 12.47
                        T_{C}(MIN.) = 12.32
  PIPE TRAVEL TIME(MIN.) = 1.26
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1557.00 FEET.
                   _____
  _____
 PROPOSED SUBAREA A3
 **********
                               4.00 IS CODE = 81
  FLOW PROCESS FROM NODE 4.00 TO NODE
    ------
                                          ____
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.224
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8579
  SOIL CLASSIFICATION IS "A"
  SUBAREA AREA (ACRES) = 2.69 SUBAREA RUNOFF (CFS) =
                                        7.44
                  6.8 TOTAL RUNOFF(CFS) =
                                        19,90
  TOTAL AREA (ACRES) =
  TC(MIN.) = 12.32
               _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 PROPOSED SUBAREA B1
 *****
                   10.00 TO NODE 20.00 IS CODE = 21
  FLOW PROCESS FROM NODE
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 420.00
                      49.00
 UPSTREAM ELEVATION(FEET) =
                      44.50
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE (FEET) =
                       4.50
 TC = 0.303*[( 420.00**3)/(
                      4.50)]**.2 =
                                  8.412
  10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.054
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8630
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =4.83TOTAL AREA (ACRES) =1.38TOTAL RUNOFF(CFS) =
                                       4.83
FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 31
 -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 380.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.67
                              NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
 PIPE-FLOW(CFS) = 4.83
 PIPE TRAVEL TIME(MIN.) = 1.36 TC(MIN.) = 9.77
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 800.00 FEET.
                         _ _ _ _ _ _ _ _ _ _
 PROPOSED SUBAREA B2
***********
 FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.706
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8610
  SOIL CLASSIFICATION IS "A"
  SUBAREA AREA (ACRES) = 2.32 SUBAREA RUNOFF (CFS) =
                                         7.40
                                          12.23
                   3.7 TOTAL RUNOFF (CFS) =
  TOTAL AREA (ACRES) =
  TC(MIN.) = 9.77
    PROPOSED DRAINAGE AREA C
 ******************
  FLOW PROCESS FROM NODE 15.00 TO NODE 25.00 IS CODE = 21
     ------
  >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
 ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
  TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
                            706.00
  INITIAL SUBAREA FLOW-LENGTH (FEET) =
  UPSTREAM ELEVATION (FEET) = 48.50
                        39.00
  DOWNSTREAM ELEVATION (FEET) =
  ELEVATION DIFFERENCE(FEET) =
                         9.50
                       9.50)]**.2 = 9.893
  TC = 0.303*[( 706.00**3)/(
    10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.678
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8608
  SOIL CLASSIFICATION IS "A"
                   7.76
  SUBAREA RUNOFF(CFS) =
                   2.45 TOTAL RUNOFF(CFS) =
                                         7.76
  TOTAL AREA(ACRES) =
 _______
  END OF RATIONAL METHOD ANALYSIS
```

COPOSED CONDITION *************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2006 Advanced Engineering Software (aes) (Rational Tabling Version 6.0D) Release Date: 06/01/2005 License ID 1510 Analysis prepared by: Development Resource Consultants 8175 E. Kaiser Blvd Anaheim Hills, CA 92808 (714) 685-6860 * C07-304 JEFFERSON SQUARE, LA QUINTA, CA PROPOSED CONDIDTION * 100-YEAR STORM EVENT _____ FILE NAME: 7304PRO.DAT TIME/DATE OF STUDY: 10:58 02/20/2008 _____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2-YEAR, 1-HOUR PRECIPITATION(INCH) = 0.630 100-YEAR, 1-HOUR PRECIPITATION(INCH) = 2.100 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 2.100 SLOPE OF INTENSITY DURATION CURVE = 0.6000 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING HALF- CROWN TO STREET CHOSTPARK- HEIGHT WIDTH LIP HIKE FACTOR WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n) SIDE / SIDE/ WAY (FT)(FT) (FT)NO. ***** ====*** **=== **==** === 2.00 0.0313 0.167 0.0150 0.018/0.018/0.020 0.67 30.0 20.0 1. GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* PROPOSED SUBAREA AL ******** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 907.00 UPSTREAM ELEVATION(FEET) = 55.70 39.50 DOWNSTREAM ELEVATION (FEET) = ELEVATION DIFFERENCE (FEET) = 16.20 16.20)]**.2 = 10.333 TC = 0.303*[(907.00**3)/(100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.033 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8712 SOIL CLASSIFICATION IS "A"

```
SUBAREA RUNOFF(CFS) = 8.31
TOTAL AREA(ACRES) = 1.58 TOTAL RUNOFF(CFS) =
                                   8.31
*****
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
                            _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 205.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.32
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              8.31
 PIPE TRAVEL TIME (MIN.) = 0.64 Tc (MIN.) = 10.98
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 1112.00 FEET.
PROPOSED SUBAREA A2
***********
 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81
                    _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.819
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8705
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 2.57 SUBAREA RUNOFF (CFS) = 13.02
                 4.2 TOTAL RUNOFF (CFS) =
                                     21.32
 TOTAL AREA(ACRES) =
 TC(MIN.) = 10.98
****************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 445.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 6.60
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.32
                      Tc(MIN.) = 12.10
 PIPE TRAVEL TIME(MIN.) = 1.12
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1557.00 FEET.
 -----
                    -----
PROPOSED SUBAREA A3
********
                             4.00 IS CODE = 81
 FLOW PROCESS FROM NODE 4.00 TO NODE
       >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.489
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8694
  SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) =2.69SUBAREA RUNOFF (CFS) =12.84TOTAL AREA (ACRES) =6.8TOTAL RUNOFF (CFS) =34.3
                                    34.16
  TC(MIN.) = 12.10
            ------
    | PROPOSED SUBAREA B1
  ***********
 FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21
     >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
```

```
ASSUMED INITIAL SUBAREA UNIFORM
      DEVELOPMENT IS COMMERCIAL
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 420.00
 UPSTREAM ELEVATION(FEET) = 49.00
                       44.50
4.50
 DOWNSTREAM ELEVATION(FEET) =
 ELEVATION DIFFERENCE (FEET) = 4.50
TC = 0.303*[(420.00**3)/(4.50)]**.2 =
                                   8.412
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.826
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8736
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =8.23TOTAL AREA (ACRES) =1.38TOTAL RUNOFF(CFS) =8.23
FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 31
                               _____
  >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 380.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.31
                               NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
 PIPE-FLOW(CFS) = 8.23
 PIPE TRAVEL TIME (MIN.) = 1.19 TC (MIN.) = 9.60
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 800.00 FEET.
 ------
 PROPOSED SUBAREA B2
        ***********
 FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81
-----
                                      >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
╾╾┿┹╾┰┹╾╾╾┲┲┹╾╍┲┿┲┲┾┺╼╾╼┲┿┲┲┿┹┲┿┺╾╾┽┺┲╄╾╍┲┍╾╍┲╾╍┲┲╼╍╼┲┹╾╍┲┹╴╴
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.304
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8721
  SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) =2.32SUBAREA RUNOFF (CFS) =12.76TOTAL AREA (ACRES) =3.7TOTAL RUNOFF (CFS) =20.9
                                          20.98
  TC(MIN.) = 9.60
 PROPOSED DRAINAGE AREA C
 ****************
                                25.00 IS CODE = 21
  FLOW PROCESS FROM NODE 15.00 TO NODE
 -----
  >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
 ASSUMED INITIAL SUBAREA UNIFORM
       DEVELOPMENT IS COMMERCIAL
  TC = K* [(LENGTH**3)/(ELEVATION CHANGE)]**.2
  INITIAL SUBAREA FLOW-LENGTH (FEET) = 706.00
  UPSTREAM ELEVATION(FEET) = 48.50
  DOWNSTREAM ELEVATION (FEET) = 39.00
ELEVATION DIFFERENCE (FEET) = 9.50
TC = 0.303*[( 706.00**3)/( 9.50)]**.2 = 9.893
   100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.193
  COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8717
  SOIL CLASSIFICATION IS "A"
  SUBAREA RUNOFF(CFS) =13.23TOTAL AREA (ACRES) =2.45TOTAL RUNOFF(CFS) =
                                         13.23
 ______
 END OF RATIONAL METHOD ANALYSIS
```

DRC (1)

STREET, STREET, ST

VIII. RETENTION BASIN DESIGN BUOYANCE FORCE CALCULATIONS CMP LIFE EXPECTANCY CALCULATIONS PERCOLATION TEST RESULT REFERENC

BASZN 'A'

<u>RETENTION BASIN SIZING (BASIN 'A')</u> JEFFERSON SQUARE, LA QUINTA, CA

USE DESIGN VOLUME: 52,993 CUBIC FEET

1. CON/SPAN LENGTH (INFILTRATION BASIN)

USE 5' DEEP SINGLE TRAP STANDARD STORMTRAP UNITS:

TOTAL VOLUME PROVIDED = 27,000 CF (SEE ATTACHED DETAIL BY MANUFACTURER)

2. DRYWELL

ONE MAXWELL PLUS DRYWELL, 41.3' DEEP, 34 FT BELOW WATER SURFACE AT 96" CMP STORAGE BASIN

STORAGE IN THE 6' DIA. SHAFT: VOLUME = 3.14 x (3 FT)² x 24' = 678 CF

STORAGE IN THE 4' DIA. SHAFT: VOLUME = 3.14 x (2 FT)^2 x 10' = 126 CF

TOTAL VOLUME = 678 SF + 138 SF = 804 SF

3. CMP PIPE

2-5 LF 48" CMP, Volume = 10 x 3.14 x 2² = 126 CF

USE 96" CMP PIPE WITH TWO MANIFOLD:

REQUIRED STORAGE VOLUME = 52,993 CF - 27,000 CF - 804 CF - 126 CF = 25,063 CUBIC FEET

TOTAL VOLUME PROVIDED = 25,082 CF (SEE ATTACHED EXCEL SHEET)

THEREFORE, FOOTPRINT = 95' x 52'

DRAW-DOWN TIME

TOTAL DEAD STORAGE VOLUME = 52,993 CUBIC FEET

AVG AREA = 4,648 SF, 1 DRYWELL PROPOSED

USE PERCOLATION RATE OF 2 INCH/HOUR AND 0.1 CFS PER DRYWELL:

TOTAL PERCOLATION = 4,648 SF x 1/12 x 2 INCH/HOUR x 1/ 3,600 + 1 DRYWELL x 0.1 CFS/DRYWELL = 0.315 CFS

DRAW TIME = <u>52,993 CUBIC FEET</u> 0.315 CFS* 3,600 S / 1 HOUR

=46 HOURS (< 72 HOURS, THEREFORE, O.K.)

A NESHS				413 3/4"	Z/1 Z = 84		-	6'-10 3/4"		
~		>		=	=	=	2		Т Т	
STEN										
SΥ		≡				_	=	2		
MTRAP		=	_	_	_	_	_	≡		
o STOR	UBIC FEET MIC FEET MIBIC FEET	=			_	_	_	=	/2	
DEE!	STORAGED = 21,253 C STORAGE = 5,747 CL VOID) = 27,000 C							=	48 4	
5'-(TOTAL VOLUME IN CHAMBERS TOTAL VOLUME IN STORE (40% TOTAL VOL	=			_		_	=		
	DF MATERALS DESCRIPTION 5-0° SINGLETRAP 5-0° SINGLETRAP TYPE II TYPE II TYPE II TYPE V UONT TAPE - 14.5 DONT TAPE - 14.5 DONT TAPE - 150° DONT WRAP - 150° DONT WRAP - 150°	=		 _	_	_		=		
	BILL (BILL (2		=	=	=	=	>		

BASIN 'A'

Footprint Calculator - Underground Detention Systems

Notes:

Development Resource	e Consultants	Sht / of /
TITTERON SAMARZ	ву: <u>У. Н.</u>	Date: <u>12-19-07</u>
b No: C07-304	Ckd:	Date:
DETERN	IZNATIZON OF CMP ST	ORAGE BASIN SERVICE LIFE
- BASTO ON THE GEOTE	CHNICAL ENGINEERING	INVESTIGATION FOR THE PROFECT .
Resistivit	y = 12,500 ohms	-cm
sulfa	te = Less than 5	t mg/kg
chlori	de = 23.4 mg/kg	
0	H = 9.02	· · · · · · · · · · · · · · · · · · ·
	- The TOP ISTMATING	THE SERVICE LIFE OF STEEL CUL
FROM CALIRANS M	ETHON FOR COMPANY	NAMEN OF STREL CULVERTS (SE
CHART FOR ESTZMAT	2016 YBARS TO PERION	
ATT ACHZO FIGURZ):		·
To off m	E CONTROMINAZATT NUR	MAWY GRAATZAR THAN 3.3,
FOR PILO	P BNV PROIVEROIVI	
YEARS =	= 1.47 R ., Whi	ich R = R35ISTZVITY ZN Ohm-CM
KBAR S-	= (1.47)×(12,500)°).41
YBARS	= 70. For 18	GAGE CMP STORAGE BASIN
-USE 14 GAGE (MP STORAGE BASA	V, BASED ON THE CHART,
FACTOR =	1.6,	
	Y3ARs = 70 × 1.6	= 112
THEREFORE, THE	PROPOSO0 14 GAGZ (CAMP STORAGE BASTN WILL HA
THZ LIFE BX	PECTANCY OF 100) YEARS OR GREATER.

ļ

RETENTION BASIN SIZING (BASIN 'B')

JEFFERSON SQUARE, LA QUINTA, CA

ON-SITE RETENTION VOLUME CALCULATION AVERAGE END AREA METHOD

Elevation (FT)	Area (SF)	Avg Area (SF)	Depth (FT)	Avg Volume (CF)
0	3,579			
		4,240	1	4,240
1	4,900			
		5,600	1	5,600
2	6,300			
		7,055	1	7,055
3	7,810			
		8,578	1	8,578
4	9,345			
		9,500	0.2	1,900
4.2	9,655			
			TOTAL (CF):	27,372

DRYWELL

ONE MAXWELL PLUS DRYWELL, 30' BELOW BASIN BOTTOM

STORAGE IN THE 6' DIA. SHAFT: VOLUME = 3.14 x (3 FT)^2 x 18' = 508 CF

STORAGE IN THE 4' DIA. SHAFT: VOLUME = 3.14 x (2 FT)² x 12' = 151 CF

TOTAL VOLUME PROVIDED

TOTAL VOLUME = 27,372 CF + 508 CF + 151 CF = 28,031 CF

PERCOLATION CALCULATION:

TOTAL DEAD STORAGE VOLUME = 27,010 CUBIC FEET

AVG AREA = 6,500 SF, 1 DRYWELL PROPOSED

USE PERCOLATION RATE OF 2 INCH/HOUR AND 0.1 CFS PER DRYWELL:

TOTAL PERCOLATION = 6,500 SF x 1/12 x 2 INCH/HOUR x 1/ 3,600 + 1 DRYWELL x 0.1 CFS/DRYWELL = 0.4 CFS

DRAW TIME = <u>27,010 CUBIC FEET</u> 0.4 CFS* 3,600 S / 1 HOUR

=19 HOURS (< 72 HOURS, THEREFORE, O.K.)

RETENTION BASIN SIZING (BASIN 'C')

JEFFERSON SQUARE, LA QUINTA, CA

ON-SITE RETENTION VOLUME CALCULATION AVERAGE END AREA METHOD

Elevation (FT)	Area (SF)	Avg Area (SF)	Depth (FT)	Avg Volume (CF)
0	2,575			
		2,988	11	2,988
1	3,400			
		3,880	1	3,880
2	4,360			
		4,855	1	4,855
3	5,350			
		5,908	1	5,908
4	6,465			
		6,483	0.1	648
4.1	6,500			
		· · ·	TOTAL (CF):	18,278

<u>DRYWELL</u>

ONE MAXWELL PLUS DRYWELL, 30' BELOW BASIN BOTTOM

STORAGE IN THE 6' DIA. SHAFT: VOLUME = 3.14 x (3 FT)^2 x 18' = 508 CF

STORAGE IN THE 4' DIA. SHAFT: VOLUME = 3.14 x (2 FT)^2 x 12' = 151 CF

TOTAL VOLUME PROVIDED

TOTAL VOLUME = 18,278 CF + 508 CF + 151 CF = 18,937 CF

PERCOLATION CALCULATION:

TOTAL DEAD STORAGE VOLUME = 17,834 CUBIC FEET

AVG AREA = 4,360 SF, 1 DRYWELL PROPOSED

USE PERCOLATION RATE OF 2 INCH/HOUR AND 0.1 CFS PER DRYWELL:

TOTAL PERCOLATION = 4,360 SF x 1/12 x 2 INCH/HOUR x 1/ 3,600 + 1 DRYWELL x 0.1 CFS/DRYWELL = 0.3 CFS

DRAW TIME = 17,834 <u>CUBIC FEET</u> 0.3 CFS* 3,600 S / 1 HOUR

=17 HOURS (< 72 HOURS, THEREFORE, O.K.)

VI. SMALL AREA UNIT HYDROGRAPH CRITERIA

Cover Three (3)	Quality of	S	oil	Gro
Cover type (3)	Cover (2)	A	B^	C
NATURAL COVERS ~				
		78	86	97
Barren		/~		
(Rockland, eroded and graded fand)				
Chaparrel, Broadleaf	Poor	53	70	80
(Manzonita, ceanothus and scrub oak)	Fair	40	63	75
	Good	31	57	71
charannal Narmoulasf	Poor	71	82	88
(Chamise and redshank)	Fair	55	72	81
(Chilling) and generally,				
Grass, Annual or Perennial	Poor	67	78	86
	Fair	20	67	19
	Good	38		^{′4}
Meadows or Cienegas	Poor	63	77	85
(Areas with seasonally high water table,	Fair	51	70	80
principal vegetation is sod forming grass)	Good	30	58	72
	Poor	62	76	84
Open Brusn (cost wood shrubs - buckwheat, sage, etc.)	Fair	46	66	77
(SOLT WOOD SHELDS - DUCKWHELE, SUJE, COUL)	Good	41	63	75
	Poor	45	66	77
Woodland	Fair	36	60	72
(Coniferous or proadlear trees predominate. Canopy density is at least 50 percent)	Good	28	55	70
Woodland, Grass	Poor	57	73	82
(Coniferous or broadleaf trees with canopy	Fair	44	65	7
density from 20 to 50 percent)	Good	33	58	7
URBAN COVERS -				
Residential or Commercial Landscaping	Good	(32) 56	6
(Lawn, shrubs, etc.)		[
The second s	Poor	58	74	8 8
(Irrighted and moved grass)	Fair	44	65	7
(IIIIgated and monod Justo)	Good	33	58	7
ACRICHT WIRAL COVERS -				
AGRICULIUMII COVIN				_ _
Fallow	Ì	16		' '
(Land plowed but not tilled or seeded)				
		<u></u>		
		, , m		
	FO	r		
				Δ.

a and a second second second second
Land Use (1)	Range-Percent	Recommended Value For Average Conditions-Percent(2
Natural or Agriculture	0 - 10	0
Single Family Residential: (3)		
40,000 S. F. (1 Acre) Lots	10 - 25	20
20,000 S. F. (% Acre) Lots	[×] 30 - 45	40
7,200 - 10,000 S. F. Lots	4 5 – 155	50
Multiple Family Residential:		
Condominiums	45 - 70	65
Apartments	65 - 90	80
Mobile Home Park	60 - 85	75
Commercial, Downtown Business or Industrial	80 -100	() ()

- 1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions.
- 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental gravels underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimating the percentage of impervious cover in developed areas.
- 3. For typical horse ranch subdivisions increase impervious area 5 percent over the values recommended in the table above.

10 000

F	RCFC & WCD SY HYDROLOGY MANUAL			NTHETIC UNIT HYDROGRAPH METHOD Basic Data Calculation Form						Proj By _ Che	ect <u>Je</u> - K. cked_	lfer: H.	son Sq	Dote	8-1-07	Sheet		
				ļ	_ ()	S	S	R/	<u>4 T</u>	E	[) (TA	<u> </u>				
	C103 AVERAGE ADJUSTED INFILTRATION RATE-IN/HR C73-C93	1/2/10								- -				. المارين 1013				
											7			2				
ш	CB J AREA SQ INHIES (AC.)	12.99												<i>1299</i>	NLY)			nit time for the
SS RAT	C7 J ADJUSTED INFILTRATION RATE-IN/HR C4 J1 I 9 C6 J	141.0												Σ[8	STORM C		IN./HR.	se $T = \frac{1}{2}$ the u
ED LO	TED DECIMAL PERCENT OF AREA IMPERVIOUS (PLATE E-6.3)	06.0													-HOUR	ч./нк.	+ 0.0713	time period,U
ADJUST	r csj Land USE	(ommercia)													RVE (24	0.0713 II	0.00 3 -(T/60)) ^{1.55}	for each unit second perioc
ERAGE	E41 PERVIOUS AREATILITRATION INFLITRATION RATE-IN/HR (PLATE E-6.2)	0.74							 						ATE CUF	= \$ CI0] /2 = .	$1 - F_{m}$) /54 = 0.0013 (24	average value it time for the
A	C3J R1 NUMBER IPLATE E-6.1)	32							 						LOSS R	ss Rate≌ F/2	4 = (Σ [10] 50)) ^{1.55} + Ϝ _m =	tes. To get an riod,T=l 2 un
	C 2 J C OVER T Y P E	Commercial Eandscaping													IABLE	r= Minimum Lo	= (F-F _m) /5 = C(24-(T/6	: = Time in minu first time per
	CIJ CIL SROUP PLATE C-I)	A													VAR		் ப ட்	Where

and the second second

	- PATTERNS IN PERCENT (For 100-YEAR 1-HOUR)
TA, CA	AINFAI
ouin.	RM R
۲	STO
IARE	OUR
SQU	Ť.
SON	INE
FERS	ERM
JEFI	DET

FOR PROPOSED CONDITION:

It [1] Rainfall Pattern (%) me (Peak 1 Hour) fod For 10-Year 3-Hour Storm Eve 1 3.1 2 9 3 0 1 3.1 2 9 3 0 3 3.1 4 2.9 5 5.0	[2] Runoff Ratio Ratio = 31.30 cfs/ 15.84 cfs int 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98	[3] Rainfall Ratio Ratio = 2.70*/2.10* 1.29 1.29 1.29 1.29	Rainfall Pattern (%) [1] x [2]x[3] For 100-Year 1-Hour Storm Event 7.9 7.6 7.9 10.7 12.7 8.9	For 100-Year 1-Hour Storm Event 12.28 11.47 11.87 12.28 13.89 13.89	Rainfall Pattern (%) For 10-Year 1-Hour Storm Event 3.0 3.1 3.2 3.5 3.5 5.0 5.0
7 3.5 8 6.8 9 7.3 0 8.2 1 5.9 12 2.0	1.98 1.98 1.98 1.98 1.98	1.29 1.29 1.29 1.29	17.3 18.5 20.8 5.1 5.1	27.20 29.22 32.85 23.57 7.84	17.0 18.5 20.8 14.5 3.0 100.0

Note: 1). Opeak For 100-Year 3-Hour Storm Event is 15.84 CFS, Rational Opeak is 31.30 cfs (wettershed A) 2) Rainfall For 100-Year 3-Hour Storm Event is 2.70°, Rainfall For 10-Year 1-Hour Storm Event is 2.10° 3) Adjusted Rainfall Pattern (%) in the beginning and end of the rain in order to obtain 100% rainfall pattern

VII. SMALL UNIT HYDROGRAPH CALCULATIONS -PROPOSED CONDITION

BASIN A 100 YBAR I HOUR

Storm Period, years:	100	
Storm Period, hrs:	1	
Area, acres:	6.84	
Point Rainfall, inches:	2.10	
Unit Time, min:	5	
Loss Rate, in/hr:	0.143	
Low Loss Rate:	18%	
Land Use:	Commercial	

Unit	%	Storm	Max. Loss	Low Loss	Effective	Flow	Flow	Perc.	Volume	Total
Time	Pattern	Rain	Rate	Rate	Rain	Rate	Volume	Volume	To Store	Storage Volume
Period	• •••••	in/hr	in/hr	in/hr	in/hr	CFS	CF	CF	CF	CF
1	30	0.756	0.1430	-	0.613	4.19	1,258	83	1,175	1,175
2	31	0 781	0,1430	-	0.638	4.37	1,310	83	1,227	2,401
	32	0.806	0.1430		0.663	4.54	1,361	83	1,278	3,680
	32	0.806	0.1430		0.663	4.54	1,361	83	1,278	4,958
	3.5	0.882	0 1430		0.739	5.05	1,516	83	1,433	6,391
	5.5	1.260	0.1430	<u> </u>	1,117	7.64	2,292	83	2,209	8,601
	5.0	1.200	0.1430		1.167	7.99	2,396	83	2,313	10,913
/	0.2	4 294	0.1430		4 141	28.32	8.497	83	8,414	19,327
8	17.0	4.204	0.1430	<u> </u>	4.510	30.91	9.273	83	9,190	28,517
9	18.5	4.002	0.1430	<u>↓ </u>	5.000	34.87	10 462	83	10,379	38,897
10	20.8	5.242	0.1430		2 511	24.02	7 205	83	7,122	46,018
11	14.5	3.654	0.1430	<u> </u>	3.511	24.02	1,000	00	1 1 75	47 193
12	3.0	0.756	0.1430		0.613	4.19	1,258	63	1,175	47,100
	100.0				23.5		48,189		<u> </u>	47,193
			-							

Effective Rain	1.96	inches	6,900	CF/AC
Storm Volume	1.08	Ac-Ft		

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on using 5' deep single trap standard storm trap unit, 6" stone below the bottom, effective percolation area = 5,980 square fee Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours

Percolation Volume = 2 inch/hour *5,980 square feet * 0.08333 hours * 1 feet / 12 inches

= 83 cubic feet per unit time

Note:

1. Storm Rainfall = (60 x 2.10 x %Pattern) / (100 x 5) = 0.252 x %Pattern

Storm Period, years:	100	
Storm Period, hrs:	3	
Area, acres:	6.84	
Point Rainfall, inches:	2.70	
Unit Time, min:	5	
Loss Rate, in/hr:	0.143	
Low Loss Rate:	18%	
Land Use:	Commercial	· · · · · · · · · · · · · · · · · · ·

Unit	%	Storm	Loss	Low Loss	Effective	Flow	Flow	Perc.	Volume	Iotal
Time	Pattern	Rain	Rate	Rate	Rain	Rate	Volume	Rate	To Store	Storage
Period	-	in/hr	in/hr	in/hr	in/hr	CFS	CF	CF	ĊF	CF
1	1.3	0.421	0.1430	-	0.278	1.90	571	83	488	488
2	1.3	0.421	0.1430	-	0.278	1.90	571	83	488	976
3	1.1	0.356	0.1430	-	0.213	1.46	438	83	355	1,331
4	1.5	0.486	0.1430	_	0.343	2.35	704	83	621	1,951
5	1.5	0.486	0.1430	-	0.343	2.35	704	83	621	2,572
6	1.8	0,583	0.1430	-	0.440	3.01	903	83	820	3,393
7	1.5	0.486	0.1430	-	0.343	2.35	704	83	621	4,013
8	1.8	0.583	0.1430	-	0.440	3.01	903	83	820	4,834
9	1.8	0.583	0.1430		0.440	3.01	903	83	820	5,654
10	1.5	0.486	0.1430	-	0.343	2.35	704	83	621	6,275
11	1.6	0.518	0.1430	-	0.375	2.57	770	83	687	6,962
12	1.8	0.583	0.1430		0.440	3.01	903	83	820	7,782
13	22	0.713	0.1430	-	0.570	3.90	1,169	83	1,086	8,869
14	2.2	0.713	0.1430	-	0.570	3.90	1,169	83	1,086	9,955
15	2.2	0.713	0.1430	-	0.570	3.90	1,169	83	1,086	11,041
16	2.0	0.648	0.1430	-	0.505	3.45	1,036	83	953	11,994
17	2.6	0.842	0.1430	-	0.699	4.78	1,435	83	1,352	13,347
18	27	0.875	0.1430	-	0.732	5.01	1,502	83	1,419	14,765
19	2.4	0.778	0.1430	•	0.635	4.34	1,302	83	1,219	15,984
20	27	0.875	0.1430	-	0.732	5.01	1,502	83	1,419	17,403
21	33	1.069	0.1430	-	0.926	6.34	1,901	83	1,818	19,221
22	31	1.004	0.1430	-	0.861	5.89	1,768	83	1,685	20,905
23	29	0.940	0.1430	-	0.797	5.45	1,635	83	1,552	22,457
24	30	0.972	0.1430	-	0.829	5.67	1,701	83	1,618	24,075
25	31	1.004	0.1430	-	0.861	5.89	1,768	83	1,685	25,760
26	4.2	1.361	0.1430	-	1.218	8.33	2,499	83	2,416	28,175
27	50	1.620	0.1430	-	1.477	10.10	3,031	83	2,948	31,123
28	3.5	1,134	0.1430	-	0.991	6.78	2,034	83	1,951	33,074
29	6.8	2.203	0.1430	-	2.060	14.09	4,228	83	4,145	37,218
30	7.3	2.365	0.1430	-	2.222	15.20	4,560	83	4,477	41,695
31	82	2.657	0.1430	-	2.514	17.19	5,158	83	5,075	46,771
32	5.9	1.912	0.1430	1 - 1	1.769	12.10	3,629	83	3,546	50,317
33	2.0	0.648	0.1430	-	0.505	3.45	1,036	83	953	51,270
34	1.8	0.583	0.1430	-	0.440	3.01	903	83	820	52,090
35	18	0.583	0.1430	-	0.440	3.01	903	83	820	52,911
36	0.6	0.194	0.1430	-	0.051	0.35	105	83	22	52,933
<u> </u>	100 0	<u>+</u>	1		19.3		55,921		I	52,933

AT PEAK

BASZN A 100 YZAR 3 HOUR

Effective Rain Storm Volume 1.61 Inches 7, 1.22 Ac-Ft

7,739 CF/AC

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on using 5' deep single trap standard storm trap unit, 6" stone below the bottom, effective percolation area = 5,980 square free? Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours

Percolation Volume = 2 inch/hour *5,980 square feet * 0.08333 hours * 1 feet / 12 inches

83 cubic feet per unit time

<u>Note:</u>

1. Storm Rainfall = (60 x 2.70 x %Pattern) / (100 x 5) = 0.324 x %Pattern

BASAN A 100 YBAR 6 HOUR

100	
6	
6.84	
3.20	
5	
0.1425	
18%	
Commercial	
	100 6 6.84 3.20 5 0.1425 18% Commercial

	_								Malanta	Tetel
Unit	%	Storm	Loss	Low Loss	Effective	Flow	Runoff	Perc.		
Time	Pattern	Rain	Rate	Rate	Rain	Rate	Volume	Volume	10 Store	Storage
Period		in/hr	in/hr	in/hr	in/hr	CFS	CF	CF	10	
1	0.5	0.192	0.1425	-	0.050	0.34	102	83	19	19
2	0.6	0.230	0.1425	-	0.088	0.60	180	83	97	110
3	0.6	0.230	0.1425	-	0.088	0.60	180	83	97	213
4	0.6	0.230	0.1425	-	0.088	0.60	180	83	97	311
5	0.6	0.230	0.1425	-	0.088	0.60	180	83	97	408
6	0.7	0.269	0.1425	-	0.126	0.86	259	83	176	584
7	0.7	0.269	0.1425	-	0.126	0.86	259	83	176	/60
8	0.7	0.269	0.1425	-	0.126	0.86	259	83	176	937
9	0.7	0.269	0.1425	-	0.126	0.86	259	83	176	1,113
10	0.7	0.269	0.1425	-	0.126	0.86	259	83	176	1,289
11	0.7	0.269	0.1425	-	0.126	0.86	259	83	1/6	1,405
12	0.8	0.307	0.1425		0.165	1.13	338	83	255	1,/20
13	0.8	0.307	0.1425		0.165	1.13	338	83	255	1,975
14	0.8	0.307	0.1425	-	0.165	1.13	338	83	255	2,230
15	0.8	0.307	0.1425	-	0.165	1.13	338	83	255	2,485
16	0.8	0.307	0.1425	-	0.165	1.13	338	83	255	2,740
17	0.8	0.307	0.1425	-	0.165	1.13	338	83	255	2,995
18	0.8	0.307	0.1425	-	0.165	1.13	338	83	255	3,250
19	0.8	0.307	0.1425		0.165	1.13	338	83	255	3,505
20	0.8	0.307	0.1425	-	0.165	1.13	338	83	255	3,760
21	0.8	0.307	0.1425	-	0.165	1.13	338	83	255	4,015
22	0.8	0.307	0.1425	•	0.165	1.13	338	83	255	4,270
23	0.8	0.307	0.1425	-	0.165	1.13	338	83	255_	4,525
24	0.9	0.346	0.1425	-	0.203	1.39	417	83	334	4,858
25	0.8	0.307	0.1425	-	0.165	1.13	338	83	255	5,113
26	0.9	0.346	0.1425	-	0.203	1.39	417	83	334	5,447
27	0.9	0.346	0.1425	-	0.203	1.39	417	83	334	5,781
28	0.9	0.346	0.1425	-	0.203	1.39	417	83	334	6,115
29	0.9	0.346	0.1425	-	0.203	1.39	417	83	334	6,448
30	0.9	0.346	0.1425	-	0.203	1.39	417	83	334	6,782
31	0.9	0.346	0.1425	-	0.203	1.39	417	83	334	7,116
32	0.9	0.346	0.1425	-	0.203	1.39	417	83	334	7,450
33	1.0	0.384	0.1425		0.242	1.65	496	83	413	7,862
34	1.0	0.384	0.1425	-	0.242	1.65	496	83	413	8,275
35	1.0	0.384	0.1425	-	0.242	1.65	496	83	413	8,687
36	1.0	0.384	0.1425	-	0.242	1.65	496	83	413	9,100
37	1.0	0.384	0.1425	-	0.242	1.65	496	83	413	9,512
38	1.1	0.422	0.1425	-	0.280	1.91	574	83	491	10,004
39	1.1	0.422	0.1425	-	0.280	1.91	574	83	491	10,495
40	1.1	0.422	0.1425	-	0.280	1.91	574	83	491	10,987
41	1.2	0.461	0.1425	-	0.318	2.18	653	83	570	11,557
42	1.3	0.499	0.1425	-	0.357	2.44	732	83	649	12,206
43	1.4	0.538	0.1425	-	0.395	2.70	811	83	728	12,933
44	1.4	0.538	0.1425	-	0.395	2.70	811	83	728	13,661
45	1.5	0.576	0.1425	-	0.434	2.97	890	83	807	14,468
46	1.5	0.576	0.1425	-	0.434	2.97	890	83	807	15,2/4
47	1.6	0.614	0.1425	-	0.472	3.23	968	83	885	16,160
48	1.6	0.614	0.1425	-	0.472	3.23	968	83	885	17,045
49	1.7	0.653	0.1425	-	0.510	3.49	1,047	83	964	10,009
50	1.8	0.691	0.1425	-	0.549	3.75	1,126	83	1,043	19,002
51	1.9	0.730	0.1425	-	0.587	4.02	1,205	83	1,122	20,174
52	20	0.768	0.1425	-	0.626	4.28	1,284	83	1,201	21,374

53	21	0.806	0.1425	-	0.664	4.54	1,362	83	1,279	22,654
54	21	0.806	0.1425	_	0.664	4.54	1,362	83	1,279	23,933
55	22	0.845	0.1425		0.702	4.80	1,441	83	1,358	25,291
56	23	0.883	0.1425	_	0.741	5.07	1,520	83	1,437	26,728
57	2.0	0.922	0.1425		0.779	5.33	1,599	83	1,516	28,244
59	24	0.922	0.1425		0.779	5.33	1,599	83	1,516	29,759
50 50	2.4	0.960	0 1425	-	0.818	5.59	1,678	83	1,595	31,354
60	2.5	0.908	0.1425		0.856	5.85	1,756	83	1,673	33,027
61	2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1425		1.048	7.17	2,150	83	2,067	35,094
	26	1 382	0.1425		1.240	8.48	2,544	83	2,461	37,556
62	3.0	1.002	0.1425		1.355	9.27	2,781	83	2,698	40,253
03	3.9	1,450	0.1425	<u>⊢ </u>	1.470	10.06	3,017	83	2,934	43,187
64	4.2	1 905	0.1425	<u> </u>	1.662	11.37	3,411	83	3,328	46,515
60	4.1	2.150	0.1425	<u> </u>	2.008	13.73	4,120	83	4,037	50,553
66	0.0	0.720	0.1425	<u>├</u>	0.587	4.02	1,205	83	1,122	51,674
6/	1.9	0.730	0.1425	<u> </u>	0.203	1.39	417	83	334	52,008
68	0.9	0.340	0.1420	<u> </u>	0.088	0.60	180	83	97	52,106
69	0.6	0.230	0.1425			0.34	102	83	19	52,124
70	U.5	0.192	0.1420	- 0.02	0.000	0.65	194	83	111	52,235
	0.3	0.115	<u>↓ · -</u>	0.02	0.063	0.00	129	83	46	52,281
72	0.2	0.077		0.01	0.000		58 257			52,281
	100.0	L	<u> </u>	L			1			

Effective Rain	1.87 Inches	7,643 CF/AC
Storm Volume	1.20 Ac-Ft	

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on using 5' deep single trap standard storm trap unit, 6" stone below the bottom, effective percolation area = 5,980 square feet Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours

Percolation Volume = 2 inch/hour *5,980 square feet * 0.08333 hours * 1 feet / 12 inches

= 83 cubic feet per unit time

Note:

1. Storm Rainfall = (60 x 3.20 x %Pattern) / (100 x 5) = 0.384 x %Pattern

Storm Period, years:	100
Storm Period, hrs:	24
Area, acres:	6.30
Point Rainfall, inches:	4.25
Unit Time, min:	15
Loss Rate, in/hr:	$F_T = 0.0013*((24-(T/60))^{1.55}+0.0713)$
Low Loss Rate:	18%
Land Use:	Commercial

						Effective	Flow	Puno#	nerc	Volume	Total
Unit	%	Storm	Time	Max. Loss	Low Loss	Effective	Pitow	Value	Porc.	To Store	Storage
Time	Pattern	Rain	(T)	Rate	Rate	Rain	Kate	volume			∆E
Period		in/hr	(Minutes)	in/hr	<u>in/hr</u>	in/hr	CFS	CF			<u> </u>
1	0.2	0.034	7.5	-	0.0061	0.028	0.18	158	158		
2	0.3	0.051	22.5		0.0092	0.042	0.26	23/	23/		
3	0.3	0.051	37.5	-	0.0092	0.042	0.26	237	231		
4	0.4	0.068	52.5		<u>0.0122</u>	0.056	0.35	316	310		
5	0.3	0.051	67.5	-	0.0092	0.042	0.26	237	237		<u>—</u>
6	0.3	0.051	82.5	-	0.0092	0.042	0.26	237	237	-	
7	0.3	0.051	97.5	-	0.0092	0.042	0.26	237	23/	-	67
8	0.4	0.068	112.5	-	0.0122	0.056	0.35	316	249	67	
9	0.4	0.068	127.5		0.0122	0.056	0.35	316	249	67	134
10	0.4	0.068	142.5	-	0.0122	0.056	0.35	316	249	67	202
11	0.5	0.085	157.5	-	0.0153	0.070	0.44	395	249	146	348
12	0.5	0.085	172.5		0.0153	0.070	0.44	395	249	146	494
13	0.5	0.085	187.5	-	0.0153	0.070	0.44	395	249	146	640
14	0.5	0.085	202.5	-	0.0153	0.070	0.44	395	249	146	/86
15	0.5	0.085	217.5	-	0.0153	0.070	0.44	395	249	146	933
16	0.6	0.102	232.5	-	0.0184	0.084	0.53	474	249	225	1,158
17	0.6	0.102	247.5		0.0184	0.084	0.53	474	249	225	1,383
18	0.7	0.119	262.5	-	0.0214	0.098	0.61	553	249	304	1,687
19	0.7	0.119	277.5		0.0214	0.098	0.61	553	249	304	1,992
20	0.8	0.136	292.5	-	0.0245	0.112	0.70	632	249	383	2,375
21	0.6	0.102	307.5	-	0.0184	0.084	0.53	474	249	225	2,600
22	0.8	0.136	322.5	-	0.0245	0.112	0.70	632	249	383	2,983
23	0.8	0.136	337.5		0.0245	0.112	0.70	632	249	383	3,367
20	0.8	0.136	352.5		0.0245	0.112	0.70	632	249	383	3,750
25	0.0	0 153	367.5	-	0.0275	0.125	0.79	711	249	462	4,212
25	1.0	0.170	382.5	-	0.0306	0.139	0.88	790	249	541	4,754
20	1.0	0.170	397.5	-	0.0306	0.139	0.88	790	249	541	5,295
21	1.0	0.170	412.5		0.0306	0.139	0.88	790	249	541	5,837
20	1.0	0.170	427.5	<u> </u>	0.0306	0.139	0.88	790	249	541	6,378
29	1.0	0.170	442.5	0.173		0.014	0.09	81	249	(168)	6,210
30	1.1	0.107	457.5	0 170		0.034	0.21	191	249	(58)	6,152
	1.2	0.204	472.5	0 168		0.053	0.33	300	249	51	6,203
32	1.5	0.221	487.5	0.166	<u> </u>	0.089	0.56	506	249	257	6,460
33	1.5	0.255	502.5	0.163	<u> </u>	0.092	0.58	519	249	270	6,731
34	1.5	0.200	517.5	0.160	<u> </u>	0.111	0.70	629	249	380	7,110
	1.0	0.272	532.5	0 159	<u> </u>	0.130	0.82	738	249	489	7,599
30	1.7	0.203	547.5	0 157	<u> </u>	0.166	1.05	943	249	694	8,293
37	2.0	0.340	562.5	0.154		0.186	1.17	1,052	249	803	9,096
30	2.0	0.357	577.5	0 152	-	0.205	1.29	1,161	249	912	10,008
38	2.1	0.374	592.5	0.150	-	0.224	1.41	1,270	249	1,021	11,029
40	1.6	0.255	607.5	0.148	t	0.107	0.67	607	249	358	11,387
41	1,0	0.200	622.5	0.146		0.109	0.69	6 <u>1</u> 9	249	370	11,757
42	1,0	0.200	637.5	0.144	<u> </u>	0.196	1.24	1,113	249	864	12,621
43	2.0	0.940	652.5	0.142	t	0.198	1.25	1,125	249	876	13,497
44	2.0	0.040	667.5	0.140	1 -	0 183	1.16	1,040	249	791	14,288
45	1.9	0.323	682.5	0.137	<u> </u>	0.186	1.17	1,052	249	803	15,091
40	1.9	0.323	697.5	0.135	1	0.154	0.97	870	249	621	15,712
4/	1.1	0.208	712.5	0.133	1 .	0.173	1.09	978	249	729	16,441
48	1.0	0.300	727.5	0.132	+	0.293	1.85	1,664	249	1,415	17,857
49	2.0	0.442	742.5	0.130	- 1	0.312	1.97	1,772	249	1,523	19,379
50	2.0	0.442	767.6	0.100	<u>├</u>	0.348	2.19	1,975	249	1,726	21,105
51	2.8	0.470	772.5	0.126	<u> </u>	0,367	2.31	2,083	249	1,834	22,939
52	2.9	0.493	7975	0 124	+	0.454	2.86	2,575	249	2,326	25,265
53	3.4	0.570	802.5	0 122	<u>+ -</u>	0.456	2.87	2,586	249	2,337	27,602
<u>− 54</u> 	3.4	0.070	817.5	0.120	<u>+</u>	0,271	1.71	1,536	249	1,287	28,889
55	2.3	0.391	8225	0.120	+	0.341	2.15	1,932	249	1,683	30,571
56	2.7	0.459	032.0	0.110	+	0.325	2.05	1,845	249	1,596	32,168
1 57	1 2.6	U.44Z	1 047.0	Q.117					• · · · · · · · · · · · · · · · · · · ·		

BASIN A 100 YZAR-24 HOUR

50	26	0.442	862.5	0.115	-	0.327	2.06	1,855	249	1,606	33,774
50	2.0	0.472	877.5	0.113	-	0.312	1.97	1,769	249	1,520	35,294
	2.5	0.408	892.5	0.111	-	0.297	1.87	1,682	249	1,433	36,727
61	2.7	0.400	907.5	0.110	-	0.281	1.77	1,595	249	1,346	38,073
62	10	0.323	922.5	0.108	-	0.215	1.35	1,219	249	970	39,043
63	1.0	0.323	937.5	0.106		0.217	1.36	1,228	249	979	40,023
64	1.9	0.323	952.5	0.105	-	0.218	1.38	1,238	249	989	41,012
65	0.4	0.068	967.5	-	0.0122	0.056	0.35	316	249	67	41,079
66	0.4	0.068	982.5	_	0.0122	0.056	0.35	316	249	67	41,1 <u>46</u>
67	0.3	0.051	997.5	-	0.0092	0.042	0.26	237	249	(12)	41,134
68	0.5	0.085	1012.5	-	0.0153	0.070	0.44	395	249	146_	41,280
69	0.5	0.085	1027.5		0.0153	0.070	0.44	395	249	146	41,426
70	0.5	0.085	1042.5		0.0153	0.070	0.44	395	249	146	41,573
71	0.4	0.068	1057.5	-	0.0122	0.056	0.35	316	249	6 <u>7</u>	41,640
72	0.4	0.068	1072.5		0.0122	0.056	0.35	316	249	67	41,707
73	0.4	0.068	1087.5	-	0.0122	0.056	0.35	316	249	67	41,774
74	03	0.051	1102.5	-	0.0092	0.042	0.26	237	249	(12)	41,762
75	0.3	0.051	1117.5	-	0.0092	0.042	0.26	237	249	(12)	41,750
76	0.2	0.034	1132.5	-	0.0061	0.028	0.18	158	249	(91)	41,659
77	0.3	0.051	1147.5		0.0092	0.042	0.26	237	249	(12)	41,647
78	0.5	0.085	1162.5		0.0153	0.070	0,44	395	249	146	41,794
79	0.3	0.051	1177.5	-	0.0092	0.042	0.26	237	249	(12)	41,782
80	0.2	0.034	1192.5		0.0061	0.028	0.18	158	249	(91)	41,691
81	0.3	0.051	1207.5	-	0.0092	0.042	0.26	237	249	(12)	41,679
82	0.3	0.051	1222.5	-	0.0092	0.042	0.26	237	249	(12)	41,667
83	0.3	0.051	1237.5	-	0.0092	0.042	0.26	237	249	(12)	41,655
84	0.3	0.051	1252.5	-	0.0092	0.042	0.26	237	249	(12)	41,643
85	0.3	0.051	1267.5	-	0.0092	0.042	0.26	237	249	(12)	41,031
86	0.2	0.034	1282.5	<u> </u>	0.0061	0.028	0. <u>18</u>	158	249	(91)	41,541
87	0.3	0.051	1297.5	-	0.0092	0.042	0.26	237	249	(12)	41,529
88	0.2	0.034	1312.5	-	0.0061	0.028	0.18	158	249	(91)	41,430
89	0.3	0.051	1327.5	-	0.0092	0.042	0.26	237	249	(12)	41,420
90	0.2	0.034	1342.5	-	0.0061	0.028	0.18	158	249	(91)	41,330
91	0.2	0.034	1357.5	-	0.0061	0.028	0.18	158	249	(91)	41,244
92	0.2_	0.034	1372.5	-	0.0061	0.028	0.18	158	249_	(91)	41,103
93	0.2	0.034	1387.5		0.0061	0.028	0.18	158	249	(91)	41,002
94	0.2	0.034	1402.5	-	0.0061	0.028	0.18	158_	249	(91)	40,971
95	0.2	0.034	1417.5	•	0.0061	0.028	0.18	158	249	(91)	40,000
96	0.2	0.034	1432.5	-	0.0061	0.028	0.18	158	249	(91)	40,789
	100.0				<u> </u>	11.4		64,610			40,109
L											

Effective Rain Storm Volume 2.85 inches 0.94 Ac-Ft

6,475 CF/AC

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on using 5' deep single trap standard storm trap unit, 6" stone below the bottom, effective percolation area = 5,980 square feet Unit time = 30 minutes * 1 hour / 60 minutes = 0.25 hours Percolation Volume = 2 inch/hour *5,980 square feet * 0.08333 hours * 1 feet / 12 inches

249 cubic feet per unit time =

Note:

1. T = time in minutes. To get an average value for each unit time period, Use T=1/2 the unit time for the first time period, T = 1-1/2 unit time for the second period, etc.

2. Storm Rainfall = (60 x 4.25 x %Pattern) / (100 x 15) = 0.17 x %Pattern

BASIN B 100 YEAR - 1 HOUR

1	
3.70	
2.10	
5	
0.143	
18%	
Commercial	
	1 3.70 2.10 5 0.143 18% Commercial

Linit	%	Storm	Max, Loss	Low Loss	Effective	Flow	Flow	Perc.	Volume	Total
Time	Pattern	Rain	Rate	Rate	Rain	Rate	Volume	Volume	To Store	Storage Volume
n nne Desiant	Fattoin	in/br	in/hr	in/hr	In/hr	CFS	L CF	CF	CF	CF
Period		0.756	0.1420		0.613	2.27	680	81	599	599
1	3.0	0.756	0.1430		0.638	2.36	708	81	627	1,227
2	3.1	0.781	0.1430		0.030	2.00	736	81	655	1.882
3	3.2	0.806	0.1430		0.003	2.45	726	81	655	2,538
4	3.2	0.806	0.1430	<u> </u>	0.663	2.45	730	81	720	3 277
5	3.5	0.882	0.1430	-	0.739	2.73	820	01	139	4 426
6	5.0	1.260	0.1430	-	1.117	4.13	1,240	81	1,159	4,430
7	5.2	1.310	0.1430	-	1.167	4.32	1,296	81	1,215	5,651
8	17.0	4.284	0.1430	-	4.141	15.32	4,597	81	4,516	10,166
	18.5	4 662	0 1430	-	4.519	16.72	5,016	81	4,935	15,101
	20.9	5 242	0 1430		5.099	18.86	5,659	81	5,578	20,680
10	20.0	3.242	0.1430		3 511	12 99	3,897	81	3,816	24,496
	14.5	3.054	0.1430	╞╴┈┻━━	0.612	2.27	680	81	599	25,095
12	3.0	0.756	0.1430	<u> </u>	0.013	£.£1	26.067	<u> </u>		25,095
	1 <u>00.0</u>	ļ			23.5		20,007		I	

Effective Rain	1.96	Inches	6,782	CF/AC
Storm Volume	0.58	Ac-Ft		

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on the layout, 3:1 slope open-air basin, effective percolation area = 6,500 SF Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours Percolation Volume = 2 inch/hour *6,500 square feet * 0.08333 hours * 1 feet / 12 inches = 90 cubic feet per unit time

Note:

- 1. Storm Rainfall = (60 x 2.10 x %Pattern) / (100 x 5) = 0.252 x %Pattern
- 2. Effective percolation area = Average basin area @2.1'

Storm Period, years:	100	
Storm Period, hrs:	3	
Area, acres:	3.70	
Point Rainfall, inches:	2.70	
Unit Time, min:	5	
Loss Rate, in/hr:	0.143	
Low Loss Rate:	18%	
Land Use:	Commercial	

Unit	%	Storm	Loss	Low Loss	Effective	Flow	Flow	Perc.	Volume	Iotal
Time	Pattern	Rain	Rate	Rate	Rain	Rate	Volume	Rate	To Store	Storage
Period		ln/hr	in/hr	in/hr	in/hr	CFS	CF	CF	CF	CF
1	1.3	0.421	0.1430	-	0.278	1.03	309	90	219	219
2	1.3	0.421	0.1430	-	0.278	1.03	309	90	219	438
3	1.1	0.356	0.1430	-	0.213	0.79	237	90	147	584
4	1.5	0.486	0.1430	-	0.343	1.27	381	90	291	875
5	1.5	0.486	0.1430	-	0.343	1.27	381	90	291	1,166
6	1.8	0.583	0.1430	-	0.440	1.63	489	90	399	1,565
7	1.5	0.486	0.1430	-	0.343	1.27	381	90	291	1,855
8	1.8	0.583	0.1430	-	0.440	1.63	489	90	399	2,254
9	1.8	0.583	0.1430	-	0.440	1.63	489	90	399	2,653
10	1.5	0.486	0.1430	-	0.343	1.27	381	90	291	2,943
11	1.6	0.518	0.1430	-	0.375	1.39	417	90	327	3,270
12	1.8	0.583	0.1430	-	0.440	1.63	489	90	399	3,009
13	2.2	0.713	0.1430	-	0.570	2.11	632	90	542	4,211
14	2.2	0.713	0.1430	-	0.570	2.11	632	90	542	4,/04
15	2.2	0.713	0.1430	-	0.570	2.11	632	90	542	5,296
16	2.0	0.648	0,1430	-	0.505	1.87	561	90	4/1	0,/0/
17	2.6	0.842	0.1430	-	0.699	2.59	776	90	686	6,403
18	2.7	0.875	0.1430	-	0.732	2.71	812	90	122	7,175
19	2.4	0.778	0.1430	-	0.635	2.35	704		614	7,790
20	2.7	0.875	0.1430	-	0.732	2.71	812	90	722	8,512
21	3.3	1.069	0.1430		0.926	3,43	1,028	90	938	9,450
22	3.1	1.004	0.1430	-	0.861	3.19	956	90	866	10,316
23	2.9	0.940	0.1430	-	0.797	2.95	884	90	794	11,110
24	3.0	0.972	0.1430	-	0.829		920	90	830	11,941
25	3.1	1.004	0.1430	-	0.861	3.19	956	90	866	12,807
26	4.2	1.361	0.1430	-	1.218	4.51	1,352	90	1,262	14,068
27	5.0	1.620	0.1430	-	1.477	5.46	1,639	90	1,549	15,618
28	3.5	1.134	0.1430	-	0.991	3.67	1,100	90	1,010	10,028
29	6.8	2.203	0.1430	-	2.060	7.62	2,287	90	2,197	18,825
30	7.3	2.365	0.1430	-	2.222	8.22	2,467	90	2,377	21,201
31	8.2	2.657	0.1430	-	2.514	9.30	2,790	90	2,700	23,902
32	5.9	1.912	0.1430	-	1.769	6.54	1,963	90	1,873	25,775
33	2.0	0.648	0.1430	-	0.505	1.87	561	90	471	26,245
34	1.8	0.583	0.1430	-	0.440	1.63	489	90	399	26,644
35	1.8	0.583	0.1430	-	0.440	1.63	489	90	399	27,043
36	0.6	0.194	0.1430	-	0.051	0.19	57	90	(33)	27,010
	100.0				19.3		30,250		<u> </u>	27,010

BASTN

DASAN D 100 YBAR - 3HOUR

Effective Rain Storm Volume 1.61 Inches 0.62 Ac-Ft

7,300 CF/AC

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on the layout, 3:1 slope open-air basin, effective percolation area = 6,500 SF Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours Percolation Volume = 2 inch/hour *6,500 square feet * 0.08333 hours * 1 feet / 12 inches = 90 cubic feet per unit time

<u>Note:</u>

1. Storm Rainfall = (60 x 2.70 x %Pattern) / (100 x 5) = 0.324 x %Pattern

BASIN B 100 YBAR 6 HOUR

Storm Period, years:	100	
Storm Period, hrs:	6	
Area, acres:	3.70	
Point Rainfall, inches:	3.20	
Unit Time, min:	5	
Loss Rate, in/hr:	0.143	
Low Loss Rate:	18%	
Land Use:	Commercial	

				Law Lanc	Effective	Flow	Rupoff	Perc.	Volume	Total
Unit	%	Storm	LOSS	LOW LOSS	Cliective	Rate	Volume	Volume	To Store	Storage
Time	Pattern	Kain	rtate in/hr	rcate in/hr	in/hr	CFS	CF	CF	CF	CF
Period			0.1420		0.049	0.18	54	54	-	-
	0.5	0.192	0.1430		0.040	0.32	97	90	7	7
2	0.6	0.230	0.1430		0.087	0.32	97	90	7	14
	0.6	0.230	0.1430		0.087	0.32	97	90	7	21
4	0.6	0.230	0.1430		0.087	0.32	97	90	7	28
5	0.0	0.250	0.1430		0.126	0.47	140	90	50	78
	0.7	0.209	0.1430		0.126	0.47	140	90	50	127
<u> </u>	0.7	0.269	0 1430		0.126	0.47	140	90	50	177
	0.7	0.269	0.1430		0.126	0.47	140	90	50	227
10	0.7	0.269	0.1430	-	0.126	0.47	140	90	50	276
11	0.7	0.269	0.1430		0.126	0.47	140	90	50	326
12	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	418
13	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	510
14	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	603
15	0.8	0.307	0.1430	-	0.164	0.61	1 <u>82</u>	90	92	695
16	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	787
17	0.8	0.307	0.1430	-	0.164	<u>0.61</u>	182	90	92	879
18	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	972
19	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	1,064
20	0.8	0.307	0.1430	·	0.164	0.61	182	90	92	1,150
21	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	1,249
22	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	1,341
23	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	1,433
24	0.9	0.346	0.1430	-	0.203	0.75	225	90	135	1,000
25	0.8	0.307	0.1430	-	0.164	0.61	182	90	92	1,000
26	0.9	0.346	0.1430	-	0.203	0.75	225	90	135	1,795
27	0.9	0.346	0.1430	-	0.203	0.75	225	90	135	2.065
28	0.9	0.346	0.1430		0.203	0.75	225	90	135	2,000
29	0.9	0.346	0.1430	-	0.203	0.75	225	90	135	2,235
30	0.9	0.346	0.1430		0.203	0.75	225	30	135	2,469
31	0.9	0.346	0.1430		0.203	0.75	225	90	135	2.604
32	0.9	0.346	0.1430		0.203	0.75	268	90	178	2,782
33	1.0	0.384	0.1430		0.241	0.89	268	90	178	2,959
34	1.0	0.384	0.1430		0.241	0.05	268	90	178	3,137
35	1.0	0.384	0.1430		0.241	0.89	268	.90	178	3,314
36	1.0	0.384	0,1430		0.241	0.89	268	90	178	3,492
37	1.0	0.384	0.1430	<u> </u>	0.279	1.03	310	90	220	3,712
38	1,1	0.422	0.1430		0.279	1.03	310	90	220	3,932
39		0.422	0.1430	<u> </u>	0.279	1.03	310	90	220	4,152
40	1 1 2	0.424	0 1430		0.318	1.18	353	90	263	4,415
41	1 2	0.400	0.1430	<u> </u>	0.356	1.32	395	90	305	4,720
42	1.3	0.538	0.1430		0.395	1.46	438	90	348	5,068
43	1 4	0.538	0,1430		0.395	1.46	438	90	348	5,416
44	1.7	0.576	0.1430	- 1	0.433	1.60	481	90	391	5,807
46	1.5	0.576	0.1430	-	0.433	1.60	481	90	391	6,198
40	1.6	0.614	0.1430	-	0.471	1.74	523	90	433	6,631
48	1.6	0.614	0.1430	-	0.471	1 74	523	90	433	/,064
49	1.7	0.653	0.1430		0.510	1.89	566	90	476	/,540 0.050
50	1.8	0.691	0.1430	-	0.548	2.03	609	90	519	0,009
51	1.9	0.730	0.1430	-	0.587	2.17	651	90	561	0,020
52	2.0	0.768	0.1430	-	0.625	2.31	694	<u> </u>	004	9,224

53	21	0.806	0,1430	-	0.663	2.45	736	90	646	9,870
54	21	0.806	0.1430	-	0.663	2.45	736	90	646	10,516
	22	0.845	0.1430		0.702	2.60	779	90	689	11,205
56	2.2	0.883	0.1430	-	0.740	2.74	822	90	732	11,937
50	2.5	0.000	0 1430	-	0.779	2.88	864	90	774	12,711
51	2.4	0.022	0.1430		0.779	2.88	864	90	774	13,485
50	2.4	0.922	0.1430		0.817	3.02	907	90	817	14,302
	2.5	0.008	0 1430		0.855	3.16	949	90	859	15,162
00	2.0	1 100	0 1430		1.047	3.88	1,163	90	1,073	16,234
	<u> </u>	1 392	0.1430		1,239	4.59	1,376	90	1,286	17,520
62	3.0	1.302	0.1430		1.355	5.01	1,504	90	1,414	18,934
63	3.9	1,490	0.1430		1 470	5.44	1,631	90	1,541	20,475
64	4.2	1.013	0.1430		1.662	6.15	1,845	90	1,755	22,230
65	4.7	1.605	0.1430	<u> </u>	2 007	7.43	2.228	90	2,138	24,368
66	5.6	2,100	0.1430		0.587	2.17	651	90	561	24,929
67	1.9	0.730	0.1430		0.203	0.75	225		135	25,064
68	0.9	0,346	0.1430	├ <u>─</u> ───	0.200	0.32	97	90	7	25,071
69	0.6	0.230	0.1430		0.007	0.18	54	90	(36)	25,035
70	0.5	0.192	0.1430		0.049	0.10	105	90	15	25,050
71	0.3	0.115		0.02	0.094	0.35	70	90	(20)	25.030
72	0.2	0.077		0.01	0.063	0.23	24 475			25.030
	100.0				22.5		31,475			20,000

Effective Rain	1.87 Inches	6,765 CF/AC
Storm Volume	0.57 Ac-Ft	

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on the layout, 3:1 slope open-air basin, effective percolation area = 6,500 SF Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours Percolation Volume = 2 inch/hour *6,500 square feet * 0.08333 hours * 1 feet / 12 inches

= 90 cubic feet per unit time

<u>Note:</u>

Storm Rainfall = (60 x 3.20 x %Pattern) / (100 x 5) = 0.384 x %Pattern
Effective percolation area = Average basin area @ 2: (¹

BASSIN B 100 YBAR 24 Hour

Storm Period, years:	100
Storm Period, hrs:	24
Area, acres:	3.70
Point Rainfall, inches:	4.25
Unit Time, min:	15
Loss Rate, in/hr:	$F_T = 0.0013*((24-(T/60))^{1.55}+0.0713)$
Low Loss Rate:	18%
Land Use:	Commercial

Unit	%	Storm	Time	Max. Loss	Low Loss	Effective	Flow	Runoff	perc.	Volume	Total
Time	Pattern	Rain	(T)	Rate	Rate	Rain	Rate	Volume	Rate	To Store	Storage
Pariod	,	in/hr	(Minutes)	in/hr	in/hr	in/hr	CFS	CF	CF	CF	CF
1	0.2	0.034	7.5	-	0.0061	0.028	0.10	93	93	0	0
2	0.3	0.051	22.5	-	0.0092	0.042	0.15	139	139	0	0
	0.3	0.051	37.5	-	0.0092	0.042	0.15	139	139	0	00
<u> </u>	0.0	0.068	52.5	-	0.0122	0.056	0.21	186	186	0	0
	0.4	0.051	67.5	-	0.0092	0.042	0.15	139	139	0	0
	0.3	0.051	82.5	-	0.0092	0.042	0.15	139	139	0	0
	0.0	0.051	97.5		0.0092	0.042	0.15	139	139	0	0
8	0.0	0.068	112.5	-	0.0122	0.056	0.21	186	186	0	0
	0.4	0.068	127.5		0.0122	0.056	0.21	186	186	0	0
10	0.4	0.068	142.5		0.0122	0.056	0.21	186	186	0	0
- 10	0.4	0.085	157.5	_	0.0153	0.070	0.26	232	232	0	0
12	0.5	0.085	172.5	-	0.0153	0.070	0.26	232	232	0	0
12	0.5	0.085	187.5		0.0153	0.070	0.26	232	232	0	0
14	0.5	0.085	202.5	-	0.0153	0.070	0.26	232	232	0	0
14	0.5	0.085	217.5	-	0.0153	0.070	0.26	232	232	0	0
10	0.0	0.102	232.5	-	0.0184	0.084	0.31	279	271	8	8
17	0.0	0.102	247.5	-	0.0184	0.084	0.31	279	271	8	15_
- 19	0.0	0.119	262.5	-	0.0214	0.098	0.36	325	271	54	69
10	0.7	0 119	277.5	-	0.0214	0.098	0.36	325	271	54	123
20	0.7	0.136	292.5	-	0.0245	0.112	0.41	371	271	100	223
20	0.0	0 102	307.5		0.0184	0.084	0.31	279	271	8	231
21	0.0	0.102	322.5		0.0245	0.112	0.41	371	271	100	331
22	0.0	0.136	337.5		0.0245	0.112	0.41	371	271	100	432
23	0.8	0.136	352.5	1	0.0245	0.112	0.41	371	271	100	532
24	0.8	0.153	367.5		0.0275	0.125	0.46	418	271	147	679
25	1.0	0.170	382.5		0.0306	0.139	0.52	464	271	193	872
20	1.0	0.170	397.5	_	0.0306	0.139	0.52	464	271	193	1,065
- 27	1.0	0.170	412.5		0.0306	0.139	0.52	464	271	193	1,258
28	1.0	0.170	427.5		0.0306	0.139	0.52	464	271	193	1,451
29	1.0	0.170	442.5	0.173	-	0.014	0.05	48	271	(223)	1,228
30	<u> </u>	0.107	457.5	0.170	<u> </u>	0.034	0.12	112	271	(159)	1,069
31		0.204	472.5	0.168		0.053	0.20	176	271	(95)	974
32	1.5	0.255	487.5	0.166	<u> </u>	0.089	0.33	297	271	26	1,001
	1.5	0.255	502.5	0.163		0.092	0.34	305	271	34	1,035
34	1.5	0.233	517.5	0.161	t	0.111	0.41	369	271	98	1,133
30	1.0	0.289	532.5	0.159	-	0.130	0.48	433	271	162	1,295
30	1.7	0.323	547.5	0.157		0.166	0.62	554	271	283	1,578
37	20	0.340	562.5	0.154	-	0.186	0.69	618	271	347	1,925
30	2.0	0.357	577.5	0.152		0.205	0.76	682	271	411	2,336
40	22	0.374	592.5	0.150		0.224	0.83	746	271	475	2,810
40	15	0.255	607.5	0,148	- 1	0.107	0.40	357	271	86	2,896
41	15	0.255	622.5	0.146	-	0.109	0.40	364	271	93	2,989
42	20	0.340	637.5	0.144	<u> </u>	0.196	0.73	654	271	383	3,371
40	20	0.340	652.5	0.142		0.198	0.73	661	271	390	3,761
45	10	0.323	667.5	0.140	† <u>-</u>	0.183	0.68	611	271	340	4,101
40	19	0.323	682.5	0.137	- 1	0.186	0.69	618	271	347	4,447
40	17	0.289	697.5	0.135	T	0.154	0.57	511	271	240	4,688
19	18	0.306	712.5	0.133	-	0.173	0.64	574	271	303	4,991
40	2.5	0.425	727.5	0.132	·	0.293	1.09	977	271	706	5,698
50	2.6	0.442	742.5	0.130		0.312	1.16	1,040	271	769	6,467
51	2.0	0.476	757.5	0.128		0.348	1.29	1,160	271	889	7,356
<u> </u>	2.0	0.493	772.5	0.126	-	0.367	1.36	1,223	271	952	8,308
53	3.4	0.578	787.5	0.124	-	0.454	1.68	1,512	271	1,241	9,550
54	3.4	0.578	802.5	0.122	-	0.456	1.69	1,519	271	1,248	10,797
55	23	0.391	817.5	0.120		0.271	1.00	902	271	631	
66	2.0	0.459	832.5	0.118	-	0.341	1.26	1,134	271	863	12,292
57	2.1	0 442	847.5	0.117		0.325	1.20	1,084	271	813	13,104
1 0/	2.0	<u></u>			<u>.</u>						

							······			T	
58	2.6	0.442	862.5	0.115	-	0.327	1.21	1,090	271	819	13,923
59	2.5	0.425	877.5	0.113	-	0.312	1.15	1,039	271	768	14,691
60	2.4	0.408	892.5	0.111	-	0.297	1.10	988	271	717	15,408
61	2.3	0.391	907.5	0.110	-	0.281	1.04	937	271	666	16,074
62	1.9	0.323	922.5	0.108	-	0.215	0.80	716	271	445	16,519
63	1.9	0.323	937.5	0.106	-	0.217	0.80	721	271	450	16,969
64	1.9	0.323	952.5	0.105		0.218	0.81	727	271	456	17,425
65	0.4	0.068	967.5	-	0.0122	0.056	0.21	186	271	(85)	17,340
66	0.4	0.068	982.5	-	0.0122	0.056	0.21	186	271	(68)	17,254
67	0.3	0.051	997.5	-	0.0092	0.042	0.15	139	271	(132)	17,123
68	0.5	0.085	1012.5	-	0.0153	0.070	0.26	232	2/1	(39)	17,084
69	0.5	0.085	1027.5	-	0.0153	0.070	0.26	232	2/1	(39)	17,045
70	0.5	0.085	1042.5	-	0.0153	0.070	0.26	232	2/1	(39)	17,000
71	0.4	0.068	1057.5	-	0.0122	0.056	0.21	186	271	(85)	16,921
72	0.4	0.068	1072.5	-	0.0122	0.056	0.21	186	271	(85)	16,835
73	0.4	0.068	1087.5	-	0.0122	0.056	0.21	186	271	(85)	16,750
74	0.3	0.051	1102.5	-	0.0092	0.042	0.15	139	271	(132)	16,618
75	0.3	0.051	1117.5	-	0.0092	0.042	0.15	139	271	(132)	16,487
76	0.2	0.034	1132.5	-	0.0061	0.028	0.10	93	271	(178)	16,308
77	0.3	0.051	1147.5	_	0.0092	0.042	0.15	139	271	(132)	16,177
78	0.5	0.085	1162.5	-	0.0153	0.070	0.26	232	271	(39)	16,138
79	0.3	0.051	1177.5	-	0.0092	0.042	0.15	139	271	(132)	16,006
80	0.2	0.034	1192.5	-	0.0061	0.028	0.10	93	2/1	(178)	15,828
81	0.3	0.051	1207.5	-	0.0092	0.042	0.15	139	271	(132)	15,690
82	0.3	0.051	1222.5	-	0.0092	0.042	0.15	139	271	(132)	15,564
83	0.3	0.051	1237.5	-	0.0092	0.042	0.15	139	271	(132)	15,433
84	0.3	0.051	1252.5	•	0.0092	0.042	0.15	139	271	(132)	15,301
85	0.3	0.051	1267.5	_	0.0092	0.042	0.15	139	271	(132)	15,169
86	0.2	0.034	1282.5	-	0.0061	0.028	0.10	93	271	(178)	14,991
87	0.3	0.051	1297.5	-	0.0092	0.042	0.15	139	271	(132)	14,859
88	0.2	0.034	1312.5	-	0.0061	0.028	0.10	93	271	(178)	14,081
89	0.3	0.051	1327.5	-	0.0092	0.042	0.15	139	271	(132)	14,549
90	0.2	0.034	1342.5	-	0.0061	0.028	0.10	93	271	(178)	14,371
91	0.2	0.034	1357.5	-	0.0061	0.028	0.10	93	271	(178)	14,193
92	0.2	0.034	1372.5	-	0.0061	0.028	0.10	93	271	(178)	14,015
93	0.2	0.034	1387.5	-	0.0061	0.028	0.10	93	271	(178)	13,837
94	0.2	0.034	1402.5		0.0061	0.028	0.10	93	271	(178)	13,659
95	0.2	0.034	1417.5	- 1	0.0061	0.028	0.10	93	271	(178)	13,480
	0.2	0.034	1432.5	<u> </u>	0.0061	0.028	0.10	93	271	(178)	13,302
	100.0		1			11.4		37,946		l	13,302
	100.0		<u> </u>								

Effective Rain Storm Volume

2.85 Inches 0.305 Ac-Ft

3,595 CF/AC

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on the layout, 3:1 slope open-air basin, effective percolation area = 6,500 SF Unit time = 15 minutes * 1 hour / 60 minutes = 0.25 hours Percolation Volume = 2 inch/hour *6,500 square feet * 0.25 hours * 1 feet / 12 inches 271 cubic feet per unit time Ξ

Note:

- 1. T = time in minutes. To get an average value for each unit time period, Use T=1/2 the unit time for the first time period, T= 1-1/2 unit time for the second period, etc.
 Storm Rainfall = (60 x 4.25 x %Pattern) / (100 x 15) = 0.17 x %Pattern
 Effective percolation area = Average basin area @ 2.1'

BASIN C 100YZAR - 1 HOUR

Storm Period, years:	100	
Storm Period, hrs:	1	
Area, acres:	2.45	
Point Rainfall, inches:	2.10	
Unit Time, min:	5	
Loss Rate, in/hr:	0.143	
Low Loss Rate:	18%	
Land Use:	Commercial	

ilait	%	Storm	Max. Loss	Low Loss	Effective	Flow	Flow	Perc.	Volume	Total
Time	Pattern	Rain	Rate	Rate	Rain	Rate	Volume	Volume	To Store	Storage Volume
Period	1 4440111	in/hr	in/hr	in/hr	in/hr	CFS	CF	CF	CF	CF
1	30	0 756	0.1430	-	0.613	1.50	451	81	370	370
	31	0.781	0.1430	-	0.638	1.56	469	81	388	758
2	32	0.806	0.1430	-	0.663	1.63	488	81	407	1,164
	3.2	0.806	0.1430		0.663	1.63	488	81	407	1,571
	35	0.882	0.1430		0.739	1.81	543	81	462	2,033
	5.0	1 260	0 1430	-	1.117	2.74	821	81	740	2,773
	5.0	1 310	0 1430		1.167	2.86	858	81	777	3,550
<u>├</u> ;	17.0	4 284	0 1430		4,141	10.15	3,044	81	2,963	6,513
<u> </u>	19.5	4.662	0 1430		4.519	11.07	3,321	81	3,240	9,753
9	20.9	5 2/2	0.1430	 	5.099	12.49	3,747	81	3,666	13,420
	20.0	3.244	0.1430		3 5 1 1	8.60	2,581	81	2,500	15,919
<u> 11</u>	14.5	0.759	0.1430		0.613	1.50	451	81	370	16,289
12	3.0	0.756	0.1430	<u> </u>	23.5		17.261		· · · ·	16,289
L	100.0	L	· · · · · ·	L	20.0		1		· · · · · · · · · · · · · · · · · · ·	

Effective Rain	1.96	Inches	6,648	CF/AC
Storm Volume	0.37	Ac-Ft		

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on the layout, 3:1 slope open-air basin, effective percolation area = 8,400 SF Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours Percolation Volume = 2 inch/hour *4,360 square feet * 0.08333 hours * 1 feet / 12 inches = 61 cubic feet per unit time

Note:

- 1. Storm Rainfall = (60 x 2.10 x %Pattern) / (100 x 5) = 0.252 x %Pattern
- 2. Effective percolation area = Average basin area @2'

BASIN C 100 YEAR - 3 HOUR

Storm Period, years:	100	
Storm Period, hrs:	3	
Area, acres:	2.45	
Point Rainfall, inches:	2.70	
Unit Time, min:	5	
Loss Rate, in/hr:	0.143	
Low Loss Rate:	18%	
Land Use:	Commercial	

Unit		Storm	Loss	Low Loss	Effective	Flow	Flow	Perc.	Volume	Total
Time	/0 Dattern	Rain	Rate	Rate	Rain	Rate	Volume	Rate	To Store	Storage
Boriod	Fattern	in/hr	in/hr	in/hr	in/hr	CFS	CF	CF	CF _	CF
1 fenou	13	0.421	0.1430	-	0.278	0.68	204	61	143	143
	13	0.421	0.1430	_	0.278	0.68	204	61	143	287
	11	0.356	0.1430		0.213	0.52	157	61	96	383
	1.1	0.486	0.1430		0.343	0.84	252	61	191	574
	1.5	0.486	0.1430	-	0.343	0.84	252	61	191	765
5	1.0	0.583	0.1430	-	0.440	1.08	324	61	263	1,028
7	15	0.486	0.1430	-	0.343	0.84	252	61	191	1,219
- 8	18	0.583	0.1430		0.440	1.08	324	61	263	1,481
0	18	0.583	0.1430	-	0.440	1.08	324	61	263	1,744
	15	0.486	0.1430	-	0.343	0.84	252	61	191	1,935
10	16	0.518	0.1430	-	0.375	0.92	276	61	215	2,150
12	18	0.583	0.1430	-	0.440	1.08	324	61	263	2,412
13	22	0.713	0.1430	-	0.570	1.40	419	61	358	2,770
14	22	0.713	0.1430		0.570	1.40	419	61	358	3,128
15	22	0.713	0.1430	-	0.570	1.40	419	61	358	3,486
16	20	0.648	0.1430	-	0.505	1.24	371	61	310	3,796
17	2.6	0.842	0.1430	-	0.699	1.71	514	61	453	4,249
18	27	0.875	0.1430	•	0.732	1.79	538	61	477	4,726
19	24	0.778	0.1430	-	0.635	1.55	466	61	405	5,131
20	27	0.875	0.1430	-	0.732	1.79	538	61	477	5,608
21	33	1.069	0.1430	-	0.926	2.27	681	61	620	6,228
22	3.1	1.004	0.1430		0.861	2.11	633	61	572	6,800
23	2.9	0.940	0.1430	-	0.797	1.95	586	61	525	7,325
20	3.0	0.972	0.1430	-	0.829	2.03	609	61	548	7,873
25	31	1.004	0.1430	-	0.861	2.11	633	61	572	8,445
26	42	1.361	0.1430	-	1.218	2.98	895	61	834	9,279
20	50	1.620	0,1430	-	1.477	3.62	1,086	61	1,025	10,304
28	3.5	1.134	0.1430	-	0.991	2.43	728	61	667	10,971
20	6.8	2.203	0.1430	-	2.060	5.05	1,514	61	1,453	12,424
20	7.3	2.365	0.1430		2.222	5.44	1,633	61	1,572	13,997
31	82	2.657	0.1430		2.514	6.16	1,848	61	1,787	15,783
32	59	1.912	0.1430	-	1.769	4.33	1,300	61	1,239	17,022
	$\frac{1}{20}$	0.648	0.1430	-	0.505	1.24	371	61	310	17,332
34	1.8	0.583	0.1430	-	0.440	1.08	324	61	263	17,595
35	$\frac{1.0}{1.8}$	0.583	0.1430		0.440	1.08	324	61	263	17,857
36	0.6	0.194	0.1430	-	0.051	0.13	38	61	(23	17,834
	100.0	<u> </u>	1		19.3		20,030			17,834

Effective Rain Storm Volume 1.61 Inches 0.41 Ac-Ft

7,279 CF/AC

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on the layout, 3:1 slope open-air basin, effective percolation area = 4,360 SF Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours Percolation Volume = 2 inch/hour *4,360 square feet * 0.08333 hours * 1 feet / 12 inches = 61 cubic feet per unit time

Note:

1. Storm Rainfall = (60 x 2.70 x %Pattern) / (100 x 5) = 0.324 x %Pattern

100	
6	
2.45	
3.20	
5	
0.143	
18%	
Commercial	
	6 2.45 3.20 5 0.143 18% Commercial

BASZ	N C	<u> </u>
100 YBAR	2 - 6	Hour

Init		Storm	Loss	Low Loss	Effective	Flow	Runoff	Perc.	Volume	Total
Time	Pattern	Rain	Rate	Rate	Rain	Rate	Volume	Volume	To Store	Storage
Pariod		in/hr	in/hr	in/hr	in/hr	CFS	CF	CF	CF	CF
1	0.5	0.192	0.1430	-	0.049	0.12	36	36	-	-
2	0.6	0.230	0.1430	-	0.087	0.21	64	61	3	3
3	0.6	0.230	0.1430		0.087	0.21	64	61	3	6
4	0.6	0.230	0.1430	-	0.087	0.21	64	61	3	10
5	0.6	0.230	0.1430	-	0.087	0.21	64	61	3	13
6	0.7	0.269	0.1430	-	0.126	0.31	92	61	31	44
7	0.7	0.269	0.1430	-	0.126	0.31	92	61	31	/6
8	0.7	0.269	0.1430		0.126	<u>0.31</u>	92	61	31	107
9	0.7	0.269	0.1430		0.126	0.31	92	61	31	139
10	0.7	0.269	0.1430		0.126	0.31	92	61	21	202
11	0.7	0.269	0.1430		0.126	0.31	92	01	31	202
12	0.8	0.307	0.1430		0.164	0.40	121	61	60	321
13	0.8	0.307	0.1430		0.164	0.40	121	61	60	381
14	0.8	0.307	0.1430	<u> </u>	0.164	0.40	121	61	60	440
15	0.8	0.307	0.1430		0.164	0.40	121	61	60	500
16	0.8	0.307	0.1430		0.164	0.40	121	61	60	560
17	0.8	0.307	0.1430		0.164	0.40	121	10 81	60	620
18	0.8	0.307	0.1430		0.164	0.40	121	61	60	679
19	0.8	0.307	0.1430		0.164	0.40	121	61	60	739
20	0.8	0.307	0.1430		0.164	0.40	121	61	60	799
21	0.8	0.307	0.1430	<u> </u>	0.164	0.40	121	61	60	858
22	0.8	0.307	0.1430		0.164	0.40	121	61	60	918
23	0.8	0.307	0.1430	<u> </u>	0.164	0.40	149	61	88	1.006
24	0.9	0.346	0.1430		0.203	0.50	145	61	60	1.066
25	0.8	0.307	0.1430	ļ <u> </u>	0.164	0.40	149	61	88	1.153
26	0.9	0.346	0.1430		0.203	0.50	149	61	88	1,241
27	0.9	0.346	0.1430		0.203	0.50	149	61	88	1,329
28	0.9	0.346	0.1430		0.203	0.50	149	61	88	1,417
29	0.9	0.346	0.1430	+	0.203	0.50	149	61	88	1,505
30	0.9	0.346	0.1430	<u> </u>	0.203	0.50	149	61	88	1,593
31	0.9	0.346	0.1430		0.203	0.50	149	61	88	1,681
32	0.9	0.346	0.1430		0.241	0.59	177	61	116	1,797
33	1.0	0.384	0.1430	<u> </u>	0.241	0.59	177	61	116	1,913
34	1.0	0.384	0.1430		0.241	0.59	177	61	116	2,029
35	1.0	0.384	0 1430		0.241	0.59	177	61	116	2,145
30	1.0	0.384	0 1430	-	0.241	0.59	177	61	116	2,262
- 37	1.0	0.422	0.1430	-	0.279	0.68	205	61	144	2,406
30	1 1 1	0.422	0.1430	- 1	0.279	0.68	205	61	144	2,550
40	11	0.422	0.1430	-	0.279	0.68	205	61	144	2,695
40	1.2	0.461	0.1430	-	0.318	0.78	234	61	173	2,867
42	1.3	0.499	0.1430	-	0.356	0.87	262	61	201	3,068
43	1.4	0.538	0.1430	-	0.395	0.97	290	61	229	3,297
44	1,4	0.538	0.1430	-	0.395	0.97	290	61	229	3,526
45	1.5	0.576	0.1430	-	0.433	1.06	318	61	257	3,183
46	1.5	0.576	0.1430	-	0.433	1.06	318	61	25/	4,041
47	1.6	0.614	0.1430	-	0.471	1.15			285	4,520
48	1.6	0.614	0.1430		0.471	1.15	346		200	4,012
49	1.7	0.653	0.1430		0.510	1.25	375	61	342	5 267
50	1.8	0.691	0.1430	<u> </u>	0.548	1.34	403		270	5 637
51	1.9	0.730	0.1430		0.587	1.44	431		370	6 036
52	2.0	0.768	0.1430	<u> </u>	0.625	1.53	459	L01	390	0,000

and the second s

53	21	0.806	0,1430	-	0.663	1.63	488	61	427	6,462
54	21	0.806	0.1430	-	0.663	1.63	488	61	427	6,889
55	22	0.845	0.1430		0.702	1.72	516	61	455	7,344
55	23	0.883	0.1430		0.740	1.81	544	61	483	7,827
57	24	0.922	0.1430	-	0.779	1.91	572	61	511	8,338
59	2.4	0.922	0 1430	_	0.779	1.91	572	61	511	8,849
50	2.4	0.960	0 1430		0.817	2.00	600	61	539	9,389
	2.0	0.000	0.1430		0.855	2.10	629	61	568	9,957
00	3.1	1 190	0.1430	-	1.047	2.57	770	61	709	10,665
62	36	1 382	0 1430		1.239	3.04	911	61	850	11,515
02	3.0	1 /08	0 1430		1.355	3.32	996	61	935	12,450
63	3.9	1.430	0 1430		1.470	3.60	1,080	61	1,019	13,469
04	4.2	1.805	0 1430		1.662	4.07	1,221	61	1,160	14,630
60	4.1	2 150	0.1430	<u> </u>	2.007	4.92	1,475	61	1,414	16,044
67	1.0	0.730	0 1430	<u> </u>	0.587	1.44	431	61	370	16,414
<u> </u>	1.9	0.730	0.1430		0.203	0.50	149	61	88	16,502
60	0.9	0.340	0.1430		0.087	0.21	64	61	3	16,506
09	0.0	0.230	0.1430	<u> </u>	0.049	0.12	36	61	(25)	16,481
	0.5	0.192	0.1400	0.02	0.094	0.23	69	61	8	16,489
$-\frac{71}{70}$	0.3	0.115	<u> </u>	0.01	0.063	0.15	46	61	(15)	16,474
72	0.2	0.077	<u> </u>	<u>- 0,01</u>	22.5	0.10	20.841			16,474
	<u>100.0</u>			L						

Effective Rain	1.87 Inches	6,724 CF/AC
Storm Volume	0.38 Ac-Ft	

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on the layout, 3:1 slope open-air basin, effective percolation area = 4,360 SF Unit time = 5 minutes * 1 hour / 60 minutes = 0.08333 hours Percolation Volume = 2 inch/hour *4,360 square feet * 0.08333 hours * 1 feet / 12 inches = 61 cubic feet per unit time

Note:

1. Storm Rainfall = (60 x 3.20 x %Pattern) / (100 x 5) = 0.384 x %Pattern

Storm Period, years:	100
Storm Period, hrs:	24
Area, acres:	2.45
Point Rainfall, inches:	4.25
Unit Time, min:	15
Loss Rate, in/hr:	$F_T = 0.0013*((24-(T/60))^{1.55}+0.0713)$
Low Loss Rate:	18%
Land Use:	Commercial

Inda	0 /	Storm	Time	Max. Lose	Low Loss	Effective	Flow	Runoff	perc.	Volume	Total
Time	70 Dattern	Rain	(T)	Rate	Rate	Rain	Rate	Volume	Rate	To Store	Storage
Ported	Fautin	in/hr	(Minutes)	in/hr	in/hr	in/hr	CFS	CF	CF	CF	CF
1	02	0.034	7.5	-	0.0061	0.028	0.07	61	61	0	0
	0.2	0.051	22.5		0.0092	0.042	0.10	92	92	0	0
	0.3	0.051	37.5		0.0092	0.042	0.10	92	92	0	0
	0.0	0.068	52.5	-	0.0122	0.056	0.14	123	123	0	0
- 4	0.4	0.000	67.5	_	0.0092	0.042	0.10	92	92	0	0
	0.3	0.051	82.5	-	0.0092	0.042	0.10	92	92	0	0
7	0.3	0.051	97.5	_	0.0092	0.042	0.10	92	92	0	0
8	0.0	0.068	112.5	-	0.0122	0.056	0.14	123	123	0	0
	0.4	0.068	127.5	-	0.0122	0.056	0.14	123	123	0	0
- 10	0.4	0.068	142.5	-	0.0122	0.056	0.14	123	123	0	0
11	0.5	0.085	157.5	-	0.0153	0.070	0.17	154	154	0	0
12	0.5	0.085	172.5	-	0.0153	0.070	0.17	154	154	0	0
13	0.5	0.085	187.5	-	0.0153	0.070	0.17	154	154	0	0
14	0.5	0.085	202.5	-	0.0153	0.070	0.17	154	154	0	0
15	0.5	0.085	217.5	-	0.0153	0.070	0.17	154	154	0	<u>v</u>
16	0.6	0.102	232.5	-	0.0184	0.084	0.20	184	182	2	
17	0.6	0.102	247.5	-	0.0184	0.084	0.20	184	182	2	
18	0.7	0.119	262.5	-	0.0214	0.098	0.24	215	182	33	
19	0.7	0.119	277.5	-	0.0214	0.098	0.24	215	182	33	125
20	0.8	0.136	292.5	-	0.0245	0.112	0.27	246	182	04	130
21	0.6	0.102	307.5		0.0184	0.084	0.20	184	182	2	201
22	0.8	0.136	322.5		0.0245	0.112	0.27	246	182	64	201
23	0.8	0.136	337.5	-	0.0245	0.112	0.27	246	182	64	200
24	0.8	0.136	352.5		0.0245	0.112	0.27	246	182	04	329
25	0.9	0.153	367.5	-	0.0275	0.125	0.31	277	102	90	549
26	1.0	0.170	382.5		0.0306	0.139	0.34	307	182	125	675
27	1.0	0.170	397.5		0.0306	0.139	0.34	307	102	125	800
28	1.0	0.170	412.5	-	0.0306	0.139	0.34	307	102_	125	000
29	1.0	0.170	427.5		0.0306	0.139	0.34	307	102	(151)	775
30	1.1	0.187	442.5	0.173		0.014	0.03	31	182	(101)	667
31	1.2	0.204	457.5	0.170		0.034	0.08	/4	102	(100)	602
32	1.3	0.221	472.5	0.168	<u> </u>	0.053	0.13	117	192	15	617
33	1.5	0.255	487.5	0.166		0.089	0.22	197	192	20	637
34	1.5	0.255	502.5	0.163	<u> </u>	0.092	0.22	202	182	62	699
35	1.6	0.272	517.5	0.161	<u> </u>	0.111	0.27	244	182	105	804
36	1.7	0.289	532.5	0.159		0.130	0.32	367	182	185	989
37	1.9	0.323	547.5	0.157	<u> </u>	0.100	0.41	409	182	227	1.216
38	2.0	0.340	562.5	0.154		0.100	0.50	451	182	269	1,485
39	2.1	0.357	577.5	0.152	<u> </u>	0.200	0.50	401	182	312	1,797
40	2.2	0.374	592.5	0.150		0.224	0.00	236	182	54	1,851
41	1.5	0.255	607.5	0.148		0.107	0.27	241	182	59	1,910
42	1.5	0.255	622.5	0.146	+	0.105	0.48	433	182	251	2,161
43	2.0	0.340	657.5	0.144		0.198	0.49	437	182	255	2,416
44	2.0	0.340	052.5	0.142	↓	0 183	0.45	405	182	223	2,639
45	1.9	0.323	607.5	0.140	+ <u> </u>	0 186	0.45	409	182	227	2,866
46	$\frac{1.9}{\sqrt{7}}$	0.323	607 5	0.137	<u> </u>	0.154	0.38	339	182	157	3,022
47	1./	0.289	740 5	0.133	+	0.173	0.42	380	182	198	3,221
48	1.8	0.300	797 5	0.100	+	0.293	0.72	647	182	465	3,686
49	2.5	0.420	7426	0.104	<u> </u>	0.312	0.77	689	182	507	4,193
50	2.0	0.442	757 5	0.130	<u> </u>	0.348	0.85	768	182	586	4,779
51	2.8	0.470	7725	0.120	<u>† </u>	0.367	0.90	810	182	628	5,407
52 E2	2.9	0.493	787.5	0.124		0.454	1.11	1,001	182	819	6,226
53	3.4	0.578	802.5	0.122		0.456	1.12	1,006	182	824	7,050
		0.301	817.5	0.120		0.271	0.66	597	182	415	7,465
	2.3	0.459	832.5	0.118		0.341	0.83	751	182	569	8,034
	2.1	0.442	847.5	0.117	- 1	0.325	0.80	718	182	536	8,570
1 07	1 2.0	V	1								

BASIN C 100 YEAR - 24 HOUR

59	26	0.442	862.5	0.115	-	0.327	0.80	722	182	540	9,109
50	2.0	0.425	877.5	0.113		0.312	0.76	688	182	506	9,615
	2.0	0.408	892.5	0.111		0.297	0.73	654	182	472	10,088
61	23	0.391	907.5	0.110	-	0.281	0.69	620	182	438	10,526
62	19	0.323	922.5	0.108	-	0.215	0.53	474	182	292	10,818
63	1.0	0.323	937.5	0.106		0.217	0.53	478	182	296	1 <u>1,114</u>
64	1.0	0.323	952.5	0.105		0.218	0.53	481	182	299	11,413
65	0.4	0.068	967.5	-	0.0122	0.056	0.14	123	182	(59)	11 <u>,354</u>
66	0.4	0.068	982.5	-	0.0122	0.056	0.14	123	182	(59)	11,295
67	0.3	0.051	997.5	-	0.0092	0.042	0.10	92	182	(90)	11,205
68	0.5	0.085	1012.5	-	0.0153	0.070	0.17	154	182	(28)	11,177
	0.5	0.085	1027.5	-	0.0153	0.070	0.17	154	182	(28)	11,149
70	0.5	0.085	1042.5	-	0.0153	0.070	0.17	154	182	(28)	11,120
71	0.4	0.068	1057.5	-	0.0122	0.056	0.14	123	182	(59)	1 <u>1,06</u> 1
72	0.4	0.068	1072.5	-	0.0122	0.056	0.14	123		(59)	11,002
73	0.4	0.068	1087.5	-	0.0122	0.056	0.14	123	182	(59)	10,943
74	0.3	0.051	1102.5	-	0.0092	0.042	0.10	92		(90)	10,853
75	0.3	0.051	1117.5	-	0.0092	0.042	0.10	92	182	(90)	10,764
76	0.2	0.034	1132.5	-	0.0061	0.028	0.07	61	182	(121)	10,643
77	0.3	0.051	1147.5	-	0.0092	0.042	0.10	92	182	(90)	10,553
78	0.5	0.085	1162.5	-	0.0153	0.070	0.17	154	182	(28)	10,525
79	0.3	0.051	1177.5	-	0.0092	0.042	0.10	92	182	(90)	10,435
80	0.2	0.034	1192.5	-	0.0061	0.028	0.07	61	182	(121)	10,315
81	0.3	0.051	1207.5	-	0.0092	0.042	0.10	92_	182	(90)	10,225
82	0.3	0.051	1222.5	•	0.0092	0.042	0.10	92	182	(90)	10,135
83	0.3	0.051	1237.5	-	0.0092	0.042	0.10	92	182	(90)	10,045
84	0.3	0.051	1252.5	-	0.0092	0.042	0.10	92	182	(90)	9,955
85	0.3	0.051	1267.5	-	0.0092	0.042	0.10	92	182	(90)	9,800
86	0.2	0.034	1282.5	-	0.0061	0.028	0.07	61	182	(121)	9,745
87	0.3	0.051	1297.5	-	0.0092	0.042	0.10	92	182_	(90)	9,000
88	0.2	0.034	1312.5	-	0.0061	0.028	0.07	61	182	(121)	9,000
89	0.3	0.051	1327.5	-	0.0092	0.042	0.10	92	182	(90)	9,440
90	0.2	0.034	1342.5		0.0061	0.028	0.07	61	182	(121)	9,325
91	0.2	0.034	1357.5	-	0.0061	0.028	0.07	61	182	(121)	9,204
92	0.2	0.034	1372.5	-	0.0061	0.028	0.07	61	182	(121)	9,000
93	0.2	0.034	1387.5		0.0061	0.028	0.07	61	182	(121)	0,903
94	0.2	0.034	1402.5	-	0.0061	0.028	0.07	61	182	(121)	0,042
95	0.2	0.034	1417.5	-	0.0061	0.028	0.07	61	182	(121)	0,122
96	0.2	0.034	1432.5	-	0.0061	0.028	0.07	61	182	(121)	9 601
	100.0				<u> </u>	11.4	<u> </u>	25,126			0,001

Effective Rain Storm Volume

2.85 Inches 0.197 Ac-Ft

3,511 CF/AC

Percolation Calculations:

Percolation volume = percolation rate * effective percolation area * unit time

Based on the layout, 3:1 slope open-air basin, effective percolation area = S_{per} feet Unit time = 5 minutes * 1 hour / 60 minutes = 0.25 hours Percolation Volume = 2 inch/hour *4,360 square feet * 0.25 hours * 1 feet / 12 inches 182 cubic feet per unit time =

<u>Note:</u>

- 1. T = time in minutes. To get an average value for each unit time period, Use T=1/2 the unit time for the first time period, T = 1-1/2 unit time for the second period, etc.
- 2. Storm Rainfall = (60 x 4.25 x %Pattern) / (100 x 15) = 0.17 x %Pattern
- 3. Effective percolation area = Average basin area @ 2'

.

BACK POCKETS

- EXISTING HYDROLOGY MAP

DRC

PROPOSED HYDROLOGY MAPHYDRAULIC MAP

C07-304_AT-FT Combined C07304 bndy 304 La Quinta Regency/Docs/Hydrology & REF. EXTERNAL FILFNAMF

Aug

١ż

EXISTING HYDROL	OGY MAP
-----------------	---------

	SUBAREA
\0.73 AC/	ACREAGE
	NODE
$\begin{array}{c} 1 \\ 1 \\ \hline 0_{10} = 10.20 \\ \hline 0_{00} = 15.21 \end{array}$	TIME OF CONCENTRATION IN MINUTES RUNOFF FOR 10 YEAR STORM EVENT IN CFS RUNOFF FOR 100 YEAR STORM EVENT IN CFS
849.0FS	ELEVATION
	FLOW PATH
	SUBAREA BOUNDARY

HYDROLOCY SUMMARY						
DRAINAGE AREA	AREA (AC.)	Q10 (CFS)	Q100 (CFS)			
E1	4.53	4.74	10.18			
E2	6.33	5.87	12.75			
E3	0.99	3.05	5.20			
PEAK FLOWRATE:	11.85	13.66	28.13			
ч. 		1.15 CFS/AC.	2.37 CFS/AC.			

Technical Appendix C

Percolation Rate Update Letter & Original Study

GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION

September 21, 2022

KA Project No. 112-22117

Mr. Luis Gomez goUrban Development lagomez@gourbandev.com

RE: Update to Geotechnical Engineering Investigation Report Proposed Jefferson Square Development 44125 Jefferson Street La Quinta, California

Reference: Geotechnical Engineering Investigation, Proposed Jefferson Square, Jefferson Street & Fred Waring Drive, La Quinta, California, Project No. 112-07036, dated May 25, 2007.

Dear Mr. Gomez:

In accordance with your request, we are providing this letter to update our previous Geotechnical Engineering Investigation report, KA Project No. 112-07036, dated May 25, 2007 for the above-referenced project site.

Based on our review of the proposed site plan and our discussions with the project representative, we understand that the proposed development includes construction of three (3) new multi-story buildings on existing out-lot parcels located at the subject site. These out-lot parcels have been previously graded for the proposed development back then. It is understood that the new proposed structures will be of masonry, wood, or metal framed structure supported on a conventional shallow foundation system.

Based on our recent observation and field work of the subject site, review of the previous geotechnical investigation report, and review of the proposed development site plan, the site and proposed development are consistent with the conclusions and recommendations presented in the previous Geotechnical Engineering Investigation report. Additional information to conform to seismic design requirements of the 2019 California Building Code (2019 CBC) is provided below.

Also, grading recommendations associated with the proposed buildings to be located at the subject site are provided below. In order to prepare these recommendations, we have reviewed the preliminary site plans prepared by Aero Collective and the Geotechnical Engineering Investigation Report prepared by Krazan & Associates, Inc. These recommendations are intended to provide supplemental grading recommendations for preparation of the proposed building pad areas and surrounding paved areas. These recommendations have been requested based on the significant period of time since the initial preparation of the building pad areas.

In the event these structural or grading details are inconsistent with the final design criteria, we should be notified so that we can evaluate the potential impacts of the changes on the recommendations presented in this report and provide an updated report as necessary.

The Site Class per Section 1613 of the 2019 California Building Code (2019 CBC) and ASCE 7-16, Chapter 20 is based upon the site soil conditions. It is our opinion that a Site Class D is most consistent with the subject site soil conditions. For seismic design of the structures based on the seismic provisions of the 2019 CBC, we recommend the following parameters:

Seismic Item	Value	CBC Reference
Site Class	D	Section 1613.2.2
Site Coefficient Fa	1.000	Table 1613.2.3 (1)
Ss	1.948	Section 1613.2.1
S_{MS}	1.948	Section 1613.2.3
\mathbf{S}_{DS}	1.298	Section 1613.2.4
Site Coefficient Fv	1.700	Table 1613.2.3 (2)
\mathbf{S}_1	0.760	Section 1613.2.1
S _{M1}	1.292	Section 1613.2.3
S_{D1}	0.861	Section 1613.2.4
Ts	0.664	Section 1613.2
PGA _M	0.887g	Figure 22.7

* Based on Equivalent Lateral Force (ELF) Design Procedure being used.

Site Conditions

It is our understanding, based on a review of the referenced Compaction Reports for Building 1 and Building 3 per the proposed site plan, that remedial grading of the proposed building pad area was performed in 2008. Preliminary site plans indicate the buildings to be of similar size and orientation as the previously graded building pads. Based on our recent site visit and field work, the exposed subgrade associated with the subject building pads was noted to be weathered. The near surface soils were found to possess varying in-place densities and moisture contents.

Building 2 per the proposed site plan is currently been used as an asphalt paved parking lot for the existing shopping center. Site preparation for this area should be perform based on the recommendations presented on the Geotechnical Engineering Investigation referenced above.

Site Preparation

As previously discussed, rough grading of the subject building pads was performed in 2008. Based on visual observations made during a recent site visit, the near surface soils were found to possess varying in-place densities and moisture contents. The near surface soil conditions present at the site are not

considered suitable to support the proposed structures. As such, remedial grading is recommended for the proposed development.

Overexcavation and Recompaction – Building and Foundation Areas

To reduce post-construction soil movement and provide uniform support for the buildings and other foundations, overexcavation and recompaction within the proposed building footprint areas should be performed to a minimum depth of at least twelve (12) inches below existing grades. The actual depth of the overexcavation and recompaction should be determined by our field representative during construction. The exposed subgrade at the base of the overexcavation should then be scarified, moisture-conditioned as necessary, and compacted. The overexcavation and recompaction should also extend laterally five feet (5') beyond edges of the proposed footings or building limits. Any undocumented fill encountered during grading should be removed and replaced with Engineered Fill. This will apply to Building 1 and Building 3 (See Figure 1). For Building 2, recommendations presented on the Geotechnical Engineering Investigation referenced above should be follow.

Overexcavation and Recompaction – Proposed Parking Area

To reduce post-construction soil movement and provide uniform support for the proposed parking and drive areas, overexcavation and recompaction of the near surface soil in the proposed parking area should be performed to a minimum depth of at least twelve (12) inches below existing grades or proposed subgrade, whichever is deeper. The actual depth of the overexcavation and recompaction should be determined by our field representative during construction. The overexcavation and recompaction should also extend laterally at least three (3) feet beyond edges of the proposed paving limits or to the property boundary. Any undocumented fill encountered during grading should be removed and replaced with Engineered Fill.

Any buried structures encountered during construction should be properly removed and the resulting excavations backfilled with Engineered Fill, compacted to a minimum of 95 percent of the maximum dry density based on ASTM Test Method D1557. Excavations, depressions, or soft and pliant areas extending below planned finished subgrade levels should be cleaned to firm, undisturbed soil and backfilled with Engineered Fill. In general, any septic tanks, debris pits, cesspools, or similar structures should be entirely removed. Concrete footings should be removed to an equivalent depth of at least 3 feet below proposed footing elevations or as recommended by the Soils Engineer. Any other buried structures encountered, should be removed in accordance with the recommendations of the Soils Engineer. The resulting excavations should be backfilled with Engineered Fill.

The upper soils, during wet winter months become very moist due to the absorptive characteristics of the soil. Earthwork operations performed during winter months may encounter very moist unstable soils, which may require removal to grade a stable building foundation. Project site winterization consisting of placement of aggregate base and protecting exposed soils during the construction phase should be performed.

A representative of our firm should be present during all site clearing and grading operations to test and observe earthwork construction. This testing and observation is an integral part of our service as acceptance of earthwork construction is dependent upon compaction of the material and the stability of

the material. The Soils Engineer may reject any material that does not meet compaction and stability requirements. Further recommendations of this report are predicated upon the assumption that earthwork construction will conform to recommendations set forth in this section and the Engineered Fill section.

The recommendations and limitations provided in the Geotechnical Engineering Investigation Report prepared by Krazan & Associates, Inc., Project No. 112-07036 apply to this letter and should be incorporated into the design and construction of the proposed development.

If you have any questions, or if we may be of further assistance, please do not hesitate to contact our office at (951) 273-1011.

Respectfully submitted, KRAZAN & ASSOCIATES, INC.

Jorge A. Pelayo, MS, PE Project Engineer RCE No. 91269

APPROXIMATE BORING LOCATION

SITE MAP	Scale: NTS	Date: September, 2022	Krazan
PROPOSED JEFFERSON	Drawn by:	Approved by:	GEOTECHNICAL ENGINEERING
SOUARE DEVEL OPMENT	AM	JAP	
44125 JEFFERSON STREET	Project No.	Figure No.	
LA OUINTA. CALIFORNIA	112-22117	1	

GEOTECHNICAL ENGINEERING INVESTIGATION PROPOSED JEFFERSON SQUARE JEFFERSON STREET AND FRED WARING DRIVE LA QUINTA, CALIFORNIA

ţ

PROJECT NO. 112-07036 MAY 25, 2007

PREPARED FOR:

REGENCY CENTERS, INC. 36 EXECUTIVE PARK, SUITE 100 IRVINE, CALIFORNIA 92614

ATTENTION: MR. THOMAS MIDDLETON

PREPARED BY:

KRAZAN & ASSOCIATES, INC. 4221 BRICKELL STREET ONTARIO, CALIFORNIA 91761 (909) 974-4400

Offices Serving the Western United States
SEISMICITY, LIQUEFACTION POTENTIAL AND SEISMIC INDUCED SETTLEMENT

Seismicity is a general term relating to the abrupt release of accumulated strain energy in the rock inaterials of the earth's crust in a given geographical area. The recurrence of accumulation and subsequent release of strain have resulted in faults and fault systems. Fault patterns and density reflect relative degrees of regional stress through time, but do not necessarily indicate recent seismic activity; therefore, the degree of seismic risk must be determined or estimated by the seismic record in any given region. Soil liquefaction is a state of soil particle suspension caused by a complete loss of strength when the effective stress drops to zero. Liquefaction normally occurs under saturated conditions in soils such as sand in which the strength is purely frictional. However, liquefaction has occurred in soils other than clean sand. Liquefaction potential of the site, the following items were evaluated:

- 1) Soil type
- 2) Groundwater depth
- 3) Relative density
- 4) Initial confining pressure
- 5) Intensity and duration of ground shaking

The soils beneath the site consist predominately of dense and stiff materials. Groundwater is expected to be a depth of greater than 50 feet. The potential for liquefaction is considered to be low based on the absence of shallow groundwater and the relatively dense and stiff materials underlying the site.

One of the most common phenomena during seismic shaking accompanying any earthquake is the induced settlement of loose unconsolidated soils. Based on site subsurface conditions and the moderate to high seismicity of the region, any loose granular materials at the site could be vulnerable to this potential hazard. Our analysis of dynamic densification of "dry" soil above the water table in the upper 50 feet of existing soil profile was performed. The seismic densification of dry to damp alluvial sandy soils due to onsite seismic activity is calculated to have total settlements of approximately 2 to 3 inches. To reduce the effects and magnitude of the seismic induced settlements, remedial grading is recommended, as discussed later in this report. Following completion of the recommended remedial grading and foundation design, we estimate that differential settlements of approximately ½ inch in 20 feet laterally may result from seismic densification.

SOIL CORROSIVITY

Corrosion tests were performed to evaluate the soil corrosivity to the buried structures. The results of the tests are included as follows:

Parameter	Results	Test Method
Resistivity	12,500 ohms-cm	Caltrans
Sulfate	Less than 5 mg/kg	EPA 9038
Chloride	23.4 mg/kg	EPA 9253
pH	9.02	EPA 9045C

GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION

Krazan & ASSOCIATES, INC.

July 8, 2008

KA Project No. 112-07036

Mr. Thomas Middleton Regency Centers Inc. 36 Executive Park, Suite 100 Irvine, CA 92614

RE: Percolation Rate Study Proposed Shopping Center Jefferson Street and Fred Waring Drive La Quinta, California

Dear Mr. Middleton:

In accordance with your request, we have performed percolation testing at the subject site. This report documents the services and provides the results of our field and laboratory study.

PURPOSE AND SCOPE

This study was conducted to measure the approximate percolation rates within the near-surface strata of the site. It is our understanding that the data will be used by the project design team in their development of the on site storm water disposal system. The percolation testing conducted at the subject site was performed in general accordance with the City of La Quinta, Public Works Department, Engineering Bulletin <u>#06-16</u>, Hydrology and Hydraulic Report Criteria for Storm Drain Systems, USBR Percolation Test Standard. Our scope of services was outlined in our change order dated June 11, 2008 (KA Project No. 112-07036) and included the following:

- Conducting three (3) percolation tests within the area of the proposed detention basins at the subject site. Two of the percolation tests were performed at depths of approximately 10 to 13 feet below existing grade. The percolation test for the underground basin was performed at a depth of approximately 20 to 23 feet below the existing grade.
- A total of three exploratory borings were performed adjacent to the percolation tests. These exploratory borings were extended to a depth of at least 15 feet below the bottom of each test.
- Preparation of this report summarizing the results of our investigation.

SITE LOCATION AND SITE DESCRIPTION

The proposed site is located at the intersection of Jefferson Street and Fred Waring Drive in La Quinta, California. The site is roughly rectangular in shape and roughly sloping to the north and east. At the time of our field investigation and testing program, the site was undeveloped and covered with sparse bushes and exposed soil.

SOIL PROFILE AND SUBSURFACE CONDITIONS

The subsurface profile generally consisted of loose to dense fine sand and fine silty sands extending to the maximum depth explored. During the excavation of the borings, continuous visual and physical examination was conducted on the soil cuttings. Significant silt or clay layers/lenses were not identified as being encountered in any of the borings at the site.

Corrosion tests were performed to evaluate the soil corrosivity to the buried structures. The results of the tests are included as follows:

Parameter :	Results	Test Method
Resistivity	2,460 ohms-cm	Caltrans
Sulfate	268 mg/kg	EPA 9038
Chloride	117 mg/kg	EPA 9253
pH	7.52	EPA 9045C

Excessive sulfate or chloride in either the soil or native water may result in an adverse reaction between the cement in concrete and the soil. California Building Code has developed criteria for evaluation of sulfate and chloride levels and how they relate to cement reactivity with soil and/or water. The soil samples from the subject site were tested to have a low sulfate and chloride concentrations. Therefore, no special design requirements are necessary to compensate for sulfate or chloride reactivity with the cement. Electrical resistivity testing of the soil indicates that the onsite soils may have a mild potential for metal loss from electrochemical corrosion process.

PERCOLATION TESTING

Two methods for percolation testing are given in the City of La Quinta, Public Works Department, Engineering Bulletin <u>#06-16</u>, Hydrology and Hydraulic Report Criteria for Storm Drain Systems, USBR Percolation Test Standard. Either ASTM Double Ring Infiltrometer Test or U.S. Bureau of Reclamation Test were recommended by the City of La Quinta as approved test methods. The U.S. Bureau of Reclamation method was determined to be the most prudent for the subject site.

The test locations are presented on the attached site plan, Figure 1. Detail results of the percolation tests are attached. The data is presented in tabular format. The soil percolation rates are based on tests conducted with clean water. The infiltration rates may vary with time as a result of soil clogging from water impurities. A factor of safety should be incorporated into the design of the basins to compensate

for these factors. In addition, periodic maintenance consisting of clearing the bottom of the basins should be expected.

The highest percolation rate ranges from 4.25 inches to 6.5 inches per hour. A minimum factor of safety of 2.0 should be assigned to this value. The recommended design percolation rate should be a maximum of 2.0 inches per hour.

LIMITATIONS

Geotechnical Engineering is one of the newest divisions of Civil Engineering. This branch of Civil Engineering is constantly improving as new technologies and understanding of earth sciences advance. Although our services were conducted in accordance with current engineering practice, undoubtedly there will be substantial future improvements in this branch of engineering. In addition to advancements in the field of Soils Engineering, physical changes in the site, either due to excavation or fill placement, new agency regulations, or possible changes in the proposed structure after the soils report is completed may require the soils report to be professionally reviewed. In light of this, the Owner should be aware that there is a practical limit to the usefulness of this report without critical review. Although the time limit for this review is strictly arbitrary, it is suggested that 1 year be considered a reasonable time for the usefulness of this report.

The scope of our services did not include a groundwater study and was limited to the performance of percolation testing and the submitted of the data only. Our services did not include those associated with an Environmental Site Assessment for the presence or absence of hazardous and/or toxic materials in the soil, groundwater, or atmosphere; or the presence of wetlands. Any statements, or absence of statements, in this report regarding odors, unusual or suspicious items, or conditions observed, are strictly for descriptive purposes and are not intended to convey engineering judgment regarding potential hazardous and/or toxic assessment.

The geotechnical engineering information presented herein is based upon professional interpretation utilizing standard engineering practices. The work conducted through the course of this investigation, including the preparation of this report, have been performed in accordance with the generally accepted standards of geotechnical engineering practice, which existed in the geographic area at the time the report was written. No other warranty, express or implied, is made.

It is not warranted that such information and interpretation cannot be superseded by future geotechnical engineering developments. We emphasize that this report is valid for the project outlined above and should not be used for any other sites.

If you have any questions regarding the services performed or the data reported herein, or if we may be of further assistance, please do not hesitate to contact our office at (909) 974-4400.

Respectfully submitted, KRAZAN & ASSOCIATES, INC.

57

JAL GEO, OGIST Curistopher Robinso Project Geologist **CONSTOPHER** ROEINSON PG No. 8420 No. 8420 c Exp/008 27 g THE OF CALIF CR/JMK:rm

James M. Kello Project Engineer JAMES M. KELLOG RCE No. 65092-No 65092 Expires Sep 30, 2009 OF CA

Attachments: Figure 1, Site Plan Results of Percolation Tests Boring Logs

Log of Drill Hole B-17

Project: Proposed Jefferson Square

Client: Regency Centers

Location: La Quinta, CA

Depth to Water>

₽ ₩

Initial:

Project No: 112-07036

Figure No.: A-17

Logged By: WP

At Completion:

SUBSURFACE PROFILE				SAMPLE			
Depth (ft)	Symbol	Description	Dry Density (pcf)	Moisture (%)	Type	Blows/ft.	Water Content (%)
0		Ground Surface					
2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		SILTY SAND (SM), fine grained, light brown, slightly moist SILTY SAND/SAND (SM/SP), fine to medium grained, light brown, slightly moist SILTY SAND/SAND (SM/SP), fine grained, brown, slightly moist, medium dense SAND (SP), very fine grained, yellow-tan, slightly moist, medium dense					
14-		SILTY SAND (SM), medium to coarse grained, tan, medium dense					
16- 18-		SILTY SAND/SAND (SM/SP), fine to medium grained, light brown, slightly moist					
20		SILTY SAND/SAND (SM/SP), fine grained, tan-brown					
22		SAND (SP), medium to coarse grained, light brown, dense					
24 - - 26 -	····	SAND (SP), medium to coarse grained, light brown, dense End of Borehole					
28- - - 		Total Depth = 25' No groundwater was encountered during drilling Hole backfilled with soil cuttings and tamped 06/26/08					

Drill Method: Hollow Stem Auger

Drill Rig: CME 55

Krazan and Associates

Drill Date: 06/26/08

Hole Size: 6"

Elevation: See Site Plan Sheet: 1 of 1

Driller: JG

Project Name	112-07036 Date					
	Jefferson Square	24 hr pre-saturated				
Project Address	Jefferson Street a	nd Fred Waring Drive				
			nne a leanna an tha she na sea Chuirteachailte an tha she ann an tha		(d) State (see a second sec	
Test No:	P-6	Total Depth	13 feet	Test Size	6 inches	
Depth To Water	10 feel Soll Classification		SM	Gallons / hours	3.75 Gals / 6 hrs	
Reading	Elasped Time(min.)	Incremental Time (min.)	Gallons to keep Constant Head		Incremental Percolation Rate (in/hr)	
Start	0	0.00	0.0	<u> </u>		
2	10.00	10:00	0.3		12.3	
3	20.00	10.00	0.6		13.5	
4	30.00	10.00	0.8		13.1	
5	60.00	30.00	1.3		10.2	
6	90.00	30,00	1.8		9.5	
7	120.00	30.00	2.0		8.2	
8	150.00	30.00	2.3		7.4	
9	180.00	30.00	2.8		7.5	
10	240.00	60.00	3.0		6.1	
11	300.00	60.00	3.3		5.3	
12	360.00	60.00	3.8		51	
13	• •	•				
14						
	F					
15		Percolation Rate in	Inches per Hour		5:1	
		Percolation Rate in P-2	Inches per Hour		5. 1	

•

Project #	112-07036	July 3, 2008			
Project Name	Jefferson Square	24 hr pre-saturated			
Project Address	Jefferson Street a	nd Fred Waring Drive			
			la Casar an Storie - Albertan Colorada - Albertan Stories		
Test No:	P-6	Total Depth	13 feet	Test Size	6 inches
Depth To Water	10 feet	Soll Classification	SM	Gallons / hours	4.75 Gals / 6 hrs
Reading	Elasped Time(min.)	Incremental Time (min:)	Gallons to keep Constant Head		Incremental Percolation Rate (in/hr)
Start	0	0.00	0.0		
2	10.00	10.00	0.3		12.3
3	20.00	10.00	0.6		14.7
4	30.00	10.00	0.9	alement of the long land the state of the state of	147
5	60.00	30.00	1.3		10.6
6	90.00	30.00	1.6		8.7
7	120.00	30.00	2.1		8.6
8	150.00	30.00	2.6		8.5
9	180.00	30.00	3.1		8.4
10	240.00	60.00	3.5		7.1
11	300.00	60.00	4.1		6.7
12	360.00	60.00	4.7		6.5
14				· · ·	
13					
12 13 14					
13 14 15		Percolation Rate in	Inches per Hour		6.5
13 14 15		Percolation Rate in P-3	Inches per Hour		8.5
12 13 14 15 15 15 16 17 18 19 11 12 13 14 15 16 17 18 19 11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 17 18 19 11 12 13 14 15 16 17 17 18 19 11 12 13		Percolation Rate In P-3	Inches per Hour 7.1 8. 7.1 8.1	7 65	6.5

.

. •

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tei (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Krazan & Associates, Inc. 4221 Brickell St. Ontario, CA 91761 Tel(909)974-4400 Fax(909)974-4022

PROJECT: La Quinta

DATE RECEIVED:01/02/08 MATRIX: SOIL SAMPLING DATE: 12/24/07 DATE ANALYZED: 01/02-03/08 REPORT TO: MR. SCOTT KELLOGG DATE REPORTED: 01/04/08 _____ SAMPLE I.D.: 112-07036 / B-100-3' LAB I.D.: 080102-1 -----EPA Parameter SAMPLE RESULT UNIT POL DF METHOD RESISTIVITY 2460 OHMS-CM 100000* -- CALTRANS 268 MG/KG 10 1 EPA 9038 SULFATE CHLORIDE 117 MG/KG <u>10 1 EPA 9253</u> 7.52 pH/UNIT -- -- EPA 9045C рĦ

COMMENTS

DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL MG/KG = MILLIGRAM PER KILOGRAM = PPM OHMS-CM = OHMS-CENTIMETER RESISTIVITY = 1/CONDUCTIVITY * = HIGH LIMIT

 Technical Appendix D

Rational Method Analysis Proposed Condition

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) (Rational Tabling Version 22.0) Release Date: 07/01/2015 License ID 1510 Analysis prepared by: DRC Engineering, Inc. 160 South Old Springs Road, Suite 210 Anaheim Hills, CA 92808 714-685-6860 ***************************** DESCRIPTION OF STUDY ******************************* * 21-177 JEFFERSON SOUARE RESIDENTIAL * PROPOSED CONDITION * 10-YEAR STORM EVENT FILE NAME: 8619P10.DAT TIME/DATE OF STUDY: 08:15 11/03/2022 _____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ USER SPECIFIED STORM EVENT (YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2-YEAR, 1-HOUR PRECIPITATION(INCH) = 0.630 100-YEAR, 1-HOUR PRECIPITATION(INCH) = 2.100 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY (INCH/HOUR) = 1.247 SLOPE OF INTENSITY DURATION CURVE = 0.6000 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* BEGIN AREA A PROPOSED SUBAREA A1 _____

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2INITIAL SUBAREA FLOW-LENGTH (FEET) = 907.00 UPSTREAM ELEVATION (FEET) = 55.70 DOWNSTREAM ELEVATION (FEET) = 39.50 16.20 ELEVATION DIFFERENCE (FEET) = TC = 0.303*[(907.00**3)/(16.20)]**.2 = 10.33310 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.583 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8603 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF (CFS) = 4.87TOTAL AREA(ACRES) = 1.58 TOTAL RUNOFF(CFS) = 4.87 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< REPRESENTATIVE SLOPE = 0.0050FLOW LENGTH (FEET) = 205.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.39ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.87PIPE TRAVEL TIME (MIN.) = 0.78 Tc (MIN.) = 11.11 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 1112.00 FEET. _____ PROPOSED SUBAREA A2 ______ 3.00 IS CODE = 81FLOW PROCESS FROM NODE 3.00 TO NODE _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.430 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8593 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.57 SUBAREA RUNOFF(CFS) = 7.58 TOTAL AREA(ACRES) = 4.2 TOTAL RUNOFF(CFS) = 12.45 TC(MIN.) = 11.11FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
_____
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 445.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.51
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.45
 PIPE TRAVEL TIME(MIN.) = 1.35 Tc(MIN.) =
                               12.46
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1557.00 FEET.
 ______
 PROPOSED SUBEAREA A3
 -----+
FLOW PROCESS FROM NODE 4.00 TO NODE
                             4.00 \text{ IS CODE} = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
_____
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.203
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8578
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 2.69 SUBAREA RUNOFF (CFS) = 7.39
                6.8 TOTAL RUNOFF(CFS) =
                                    19.84
 TOTAL AREA(ACRES) =
 TC(MIN.) = 12.46
END AREA A
 BEGIN AREA B
PROPOSED SUBAREA B1
_____
FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
_____
     ASSUMED INITIAL SUBAREA UNIFORM
     DEVELOPMENT IS APARTMENT
 TC = K^* [(LENGTH^{**3}) / (ELEVATION CHANGE)]^{**.2}
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 342.00
 UPSTREAM ELEVATION (FEET) = 50.20
 DOWNSTREAM ELEVATION (FEET) =
                     46.30
 ELEVATION DIFFERENCE (FEET) =
                     3.90
 TC = 0.323*[( 342.00**3)/( 3.90)]**.2 = 8.147
  10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.132
 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8268
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF (CFS) = 5.23
 TOTAL AREA (ACRES) = 1.53 TOTAL RUNOFF (CFS) = 5.23
20.00 TO NODE
 FLOW PROCESS FROM NODE
                             30.00 \text{ IS CODE} = 31
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< REPRESENTATIVE SLOPE = 0.0050FLOW LENGTH (FEET) = 274.00 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 4.46 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.23 PIPE TRAVEL TIME (MIN.) = 1.02 Tc (MIN.) = 9.17 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 30.00 = 616.00 FEET. +_____ PROPOSED SUBAREA B2 ______ FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.849 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8618 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.13 SUBAREA RUNOFF(CFS) = 7.07 TOTAL AREA(ACRES) = 3.7 TOTAL RUNOFF(CFS) = 12.29 TC(MIN.) = 9.17_____ END AREA B BEGIN AREA C PROPOSED AREA C1 FLOW PROCESS FROM NODE 15.00 TO NODE 25.00 IS CODE = 21_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2INITIAL SUBAREA FLOW-LENGTH (FEET) = 533.00 UPSTREAM ELEVATION (FEET) = 46.90 DOWNSTREAM ELEVATION(FEET) = 39.00 ELEVATION DIFFERENCE (FEET) = 7.90 TC = 0.359*[(533.00**3)/(7.90)]**.2 = 10.27710 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.595 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7612 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) =6.81TOTAL AREA(ACRES) =2.49TOTAL RUNOFF(CFS) =6.81 _____

 END STUDY +				+
END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS)	= = =	2.5 6.81	TC(MIN.) =	10.28

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) (Rational Tabling Version 22.0) Release Date: 07/01/2015 License ID 1510 Analysis prepared by: DRC Engineering, Inc. 160 South Old Springs Road, Suite 210 Anaheim Hills, CA 92808 714-685-6860 * 21-177 JEFFERSON SOUARE RESIDENTIAL * PROPOSED CONDITION * 100-YEAR STORM EVENT FILE NAME: 8619P100.DAT TIME/DATE OF STUDY: 08:29 11/03/2022 _____ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2-YEAR, 1-HOUR PRECIPITATION(INCH) = 0.630 100-YEAR, 1-HOUR PRECIPITATION(INCH) = 2.100 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 2.100 SLOPE OF INTENSITY DURATION CURVE = 0.6000 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* BEGIN AREA A PROPOSED SUBAREA A1 _____

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _____ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2INITIAL SUBAREA FLOW-LENGTH (FEET) = 907.00 UPSTREAM ELEVATION (FEET) = 55.70 DOWNSTREAM ELEVATION (FEET) = 39.50 16.20 ELEVATION DIFFERENCE (FEET) = TC = 0.303*[(907.00**3)/(16.20)]**.2 = 10.333100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.033 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8712 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF (CFS) = 8.31TOTAL AREA(ACRES) = 1.58 TOTAL RUNOFF(CFS) = 8.31 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< REPRESENTATIVE SLOPE = 0.0050FLOW LENGTH (FEET) = 205.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.7 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.00 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.31PIPE TRAVEL TIME (MIN.) = 0.68 Tc (MIN.) = 11.02LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 1112.00 FEET. _____ PROPOSED SUBAREA A2 ______ 3.00 IS CODE = 81FLOW PROCESS FROM NODE 3.00 TO NODE _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.806 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8705 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.57 SUBAREA RUNOFF(CFS) = 12.99 TOTAL AREA(ACRES) = 4.2 TOTAL RUNOFF(CFS) = 21.29 TC(MIN.) = 11.02FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
_____
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 445.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 22.1 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 6.12
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.29
 PIPE TRAVEL TIME (MIN.) = 1.21 Tc (MIN.) = 12.23
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 1557.00 FEET.
 ______
 PROPOSED SUBAREA A3
 -----+
FLOW PROCESS FROM NODE 4.00 TO NODE
                             4.00 \text{ IS CODE} = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
_____
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.453
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8692
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA (ACRES) = 2.69 SUBAREA RUNOFF (CFS) = 12.75
                6.8 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                    34.05
 TC(MIN.) = 12.23
END AREA A
 BEGIN AREA B
PROPOSED AREA B1
______
FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
_____
     ASSUMED INITIAL SUBAREA UNIFORM
     DEVELOPMENT IS APARTMENT
 TC = K^* [(LENGTH^{**3}) / (ELEVATION CHANGE)]^{**.2}
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 342.00
 UPSTREAM ELEVATION (FEET) = 50.20
 DOWNSTREAM ELEVATION (FEET) =
                     46.30
 ELEVATION DIFFERENCE (FEET) =
                     3.90
 TC = 0.323*[( 342.00**3)/( 3.90)]**.2 = 8.147
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.958
 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8479
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF (CFS) = 9.03
 TOTAL AREA (ACRES) = 1.53 TOTAL RUNOFF (CFS) = 9.03
20.00 TO NODE
 FLOW PROCESS FROM NODE
                             30.00 \text{ IS CODE} = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH (FEET) = 274.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.07
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                9.03
 PIPE TRAVEL TIME (MIN.) = 0.90 Tc (MIN.) = 9.05
 LONGEST FLOWPATH FROM NODE 10.00 TO NODE
                                  30.00 =
                                          616.00 FEET.
                        _____
 PROPOSED SUBAREA B2
           ______
FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81
   _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
______
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.534
 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8728
 SOIL CLASSIFICATION IS "A"
 SUBAREA AREA(ACRES) = 2.13 SUBAREA RUNOFF(CFS) = 12.15
 TOTAL AREA(ACRES) =
                 3.7 TOTAL RUNOFF(CFS) =
                                        21.17
 TC(MIN.) = 9.05
 _____
 END AREA B
BEGIN AREA C
PROPOSED SUBAREA C1
FLOW PROCESS FROM NODE
                   15.00 TO NODE
                                25.00 \text{ IS CODE} = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
______
      ASSUMED INITIAL SUBAREA UNIFORM
     DEVELOPMENT IS CONDOMINIUM
 TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 533.00
 UPSTREAM ELEVATION (FEET) = 46.90
 DOWNSTREAM ELEVATION(FEET) = 39.00
 ELEVATION DIFFERENCE (FEET) =
                        7.90
 TC = 0.359*[(533.00**3)/(7.90)]**.2 = 10.277
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.053
 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7996
 SOIL CLASSIFICATION IS "A"
 SUBAREA RUNOFF(CFS) =12.05TOTAL AREA(ACRES) =2.49TOTAL RUNOFF(CFS) =12.05
 _____
```

 END STUDY +	 			+
END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE (CFS)	 2.5 12.05	TC(MIN.) =	10.28	

END OF RATIONAL METHOD ANALYSIS

Technical Appendix E

Hydrology Map Proposed Condition

TERNAL REFERENCES: 21177mac01 21177bn101 21177ct101 21177ct102 21177 CG101 21177 AR Site 21177 LA Trees 21177 CE Dutch Bros ENAME: M:\2021\21-177 Go Urban La Quinta Jackson Sq\HM\21177 PR HM.dwg, LAST SAVED ON: Dec 01 2022 6:29am PLOTTED BY: DREW, ON: Dec 01 2022 6:29am,